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Abstract                                        
 
 
 
In this research, nonlinear optical absorption coefficients and laser-induced 

damage thresholds are measured in Ge and GaSb, which are materials that are used in IR 

detectors.  Using a simultaneous fitting technique to extract nonlinear absorption 

coefficients from data at two pulse widths, two-photon and free-carrier absorption 

coefficients are measured in Ge and GaSb at 2.05 and 2.5 μm for the first time.  At these 

wavelengths, nonlinear absorption is the primary damage mechanism, and damage 

thresholds at picosecond and nanosecond pulse widths were measured and agreed well 

with modeled thresholds using experimentally measured parameters.  The damage 

threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower 

than the uncoated threshold for picosecond or nanosecond pulses, respectively.  It was 

necessary to develop a pulsed 2.5 μm wavelength laser to conduct these measurements, as 

prior lasers at this wavelength possessed insufficient pulse energy to induce nonlinear 

absorption or damage these materials.  Using a Cr2+:ZnSe gain medium, a 3.1 mJ pulse 

energy laser was created whose peak power exceeded all Cr2+:ZnSe literature by a factor 

of eight.  The characteristics of the laser include nanosecond pulse width, 52% slope 

efficiency, beam quality of M2 = 1.4, Gaussian spatial profile and a spectral line width of 

110 nm.   
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ALL SOLID-STATE MID-IR LASER DEVELOPMENT, 
 

NONLINEAR ABSORPTION INVESTIGATION 
 

AND LASER-INDUCED DAMAGE STUDY 
 

 
Chapter 1. Introduction  

 
In this introductory chapter, the objectives of this research that will advance the 

art and science of mid-IR laser design and effects analysis are presented, and several 

factors are discussed that motivated this work.   

The broad goals of this research were to develop a high pulse energy mid-IR 

solid-state laser source and then use that source (and others) in a nonlinear absorption 

(NLA) investigation in conjunction with a laser-induced damage study.  NLA data from 

two pulse widths at the same frequency were used to isolate and extract the values of 

intrinsic two photon absorption (TPA) and free carrier absorption (FCA) coefficients.  

Then, as NLA effects are the primary damage mechanism in semiconductors illuminated 

by sub-bandgap photons, it is a logical extension to use the coefficients extracted to 

predict the conditions under which damage will occur and then test this parameter space. 

Objectives  

There were four specific objectives in this research.  The first was to develop a 

gain-switched, high pulse energy Cr2+:ZnSe 2.5 μm pulsed laser.  The second was to 

measure the nonlinear absorption coefficients of germanium (Ge) and gallium antimonide 

(GaSb) at 2.05 μm and 2.5 μm as these materials can be used in either IR detectors or 

optical limiters.  These materials were also selected to study the difference in nonlinear 
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absorption and laser-induced damage between direct bandgap (GaSb) and indirect 

bandgap (Ge) semiconductors.  The third objective was to model the dynamics of 

nonlinear absorption that lead to surface temperature rise and eventually thermal damage 

from a single laser pulse.  The final objective was to test the laser-induced damage 

threshold due to nonlinear effects and compare with modeled results. 

Motivation  

This research was motivated by pressing needs in the area of mid-IR laser 

development, application of nonlinear optical material properties and the need to 

understand the damage mechanisms that result from these material properties. 

Laser development:

A Cr2+:ZnSe laser gives output centered at 2.5 μm and can be tuned from  

1.9-3.1 µm, however, the lower atmosphere does not transmit well from 2.5 μm to  

2.85 μm.  This is primarily due to absorption from water vapor, CO2, N2O and CH4.  This 

absorption is shown in 

  Eye-safe mid-IR laser source technology is needed for 

numerous military, medical and scientific uses.  These uses include sensing of the battle 

space, providing active sources for countermeasures, spectroscopic material identification 

at range, many forms of laser surgery, medical diagnostics and atmospheric sensing.  For 

the reasons described above, it is important to generate laser power in the atmospheric 

transmission windows of 2-5 µm and 8-12 μm.  A chromium-doped zinc selenide 

(Cr2+:ZnSe) laser is an excellent source for nonlinear frequency conversion which could 

be used to access all of the 2-5 µm and 8-12 μm regions 

Figure 1, which was created by Fiorino et al from a HiTran-based 

model named LEEDR [1], and shows transmittance along a 1 km path at sea level in a 

mid-latitude summer atmosphere. 
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Figure 1.  Transmittance through 1 km of standard atmosphere  

There is interest in Cr2+:ZnSe lasers despite significant atmospheric absorption 

over part of its emission spectrum, as the laser is broadly tunable into regions with good 

transmittance.  The tuning curve of a nonlinear frequency conversion device was 

calculated using conservation of photon energy and conservation of photon momentum 

and is shown in Figure 2.  The material is orientation-patterned GaAs (OPGaAs), where a 

141μm grating period is used to convert a 2.2-2.45 μm Cr2+:ZnSe pump into a 3.8-5.2 μm 

signal/idler.   

Nonlinear and damage studies: 2  Since the invention of the laser [ ,3], 

incrementally shorter pulses and higher mid-IR pulse energies have been demonstrated 

[4], resulting in high peak irradiances which can cause significant changes in optical 

material properties.  As observed in this work, the absorption of a material can change 

nonlinearly from less than 5% to greater than 90% based solely on the level of incident 

irradiance.  The absorbed energy is converted to heat in the material, which is why the 

subjects of nonlinear absorption and damage are intertwined.   
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Figure 2.  Nonlinear optical frequency conversion in OPGaAs 

As higher power mid-IR laser sources are developed, the nonlinear properties of 

materials need to be measured and understood so that the effects and resulting 

vulnerabilities can be assessed.  There are numerous applications of NLA and damage, 

which can be separated into applications where these effects are desired and where these 

effects are a design constraint.  NLA has been exploited in the widely-ranging areas of 

nonlinear spectroscopy, mid-IR laser surgery, measurement of ultrashort pulses, and high 

speed all-optical switching [5].  The effect can be used to protect military sensors [6,7], 

or damage sensors if the appropriate wavelength and irradiance are chosen [8,9].  In 

industry, NLA has been used in micromachining and lithography for IC fabrication [10].   

There are many situations where an understanding of nonlinear absorption is 

necessary to avoid the effect.  NLA can limit the transmitted power used in optical 

communications [11].  In laser design, especially at UV wavelengths, NLA is a 

performance limiting factor for optics used in the National Ignition Facility in the USA 

and the Laser MegaJoule facility in France [12,13].  
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Chapter 2. Theory 
 

Background research and literature review was conducted in the areas of 

nonlinear absorption and laser-induced damage studies to set the stage for this research 

effort.  This chapter also documents the development of a finite difference model that 

incorporates the nonlinear absorption theory that is presented.  

In this section the fundamental parameters and processes that contribute to NLA 

are described.  Theoretical and empirical methods of predicting NLA parameters are 

explored and then the literature is reviewed for prior studies in Ge and GaSb. 

Nonlinear Absorption Investigation 

Nonlinear absorption was first proposed in 1931 by Nobel laureate Maria 

Goppert-Mayer [14] and was presented in her dissertation under the advice of Max Born 

at the University of Göttingen, Germany.  However, two-photon absorption (TPA) could 

not be confirmed without the high irradiances provided by the invention of the laser in 

1960, and this effect was first observed in 1961 by Kaiser and Garret [15].    

At high irradiances, nonlinear effects can cause absorption and refraction in 

materials that are transparent at low irradiances.  Nonlinearities are wavelength-

dependent, and as higher power laser sources are developed at 2.5 μm [4], the nonlinear 

properties of materials at this wavelength need to be studied. 

The bandgap (Egap) separating the conduction and valence bands of a material 

determine which wavelengths pass through without absorption.  Bandgaps of materials 

relevant to this dissertation are listed in Table 1, along with a conversion to equivalent 

photon energy.   
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Table 1.  Material bandgaps and equivalent wavelengths 

Material Bandgap (eV / λ)  0.5 * Bandgap (eV / λ) Reference 
InSb 0.17 eV / 7.3 μm 0.09 eV / 14 μm [16] 
Ge 0.67 eV / 1.9 μm 0.34 eV / 3.7 μm [17] 

GaSb 0.7 eV / 1.8 μm 0.35 eV / 3.5 μm [17] 
GaAs 1.4 eV / 0.9 μm 0.70 eV / 1.8 μm [17] 
ZnSe 2.7 eV / 0.5 μm  1.4 eV / 0.9 μm [18] 

 

 
A photon at a wavelength of 2.5 μm has an energy of 0.50 eV.  Using the bandgap 

property, GaAs and GaSb will be transparent to a 2.5 μm photon at low intensities as 

their bandgap energy is greater than the photon energy.  However, the same photon will 

not transmit through InSb due to linear absorption. 

At high irradiances, the first multi-photon ionization process that develops is two-

photon absorption (TPA).  As the name implies, two photons raise one electron to the 

conduction band using a virtual state, and the possible range of photon energies absorbed 

is 0.5Egap < Ephoton < Egap, as shown in Table 1.  At high irradiances, a 2.5 μm photon 

could be absorbed in GaSb and Ge due to TPA, and nonlinear absorption will be the 

dominant damage mechanism.  Also, if the irradiance is great enough, tunneling 

ionization and higher multi-photon absorption will contribute as described later in the 

damage study section of this chapter [19]. 

The optically and thermally excited carriers generated by linear and nonlinear 

absorption cause many processes that govern the interaction of an optical wave and a 

semiconductor material, as shown in Figure 3.  These processes and their related 

parameters are then defined and discussed. 
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Figure 3.  Linear and nonlinear optical processes within a semiconductor [20]  

The processes in Figure 3 affect the level of absorption, heat rise and carrier 

density in a material and causes radiation to propagate according to Eq. 1-3 [21]: 

 𝑑𝐼
𝑑𝑧

= −𝛼𝐼 − 𝛽𝐼2 − 𝜎(𝑁0 + 𝑁)𝐼 

𝑑𝑁
𝑑𝑡

=
𝛼𝐼
ℎ𝜈

+
𝛽𝐼2

2ℎ𝜈
−
𝑁
𝜏𝑅

 

𝑑𝑇
𝑑𝑡

=
𝛼𝐼
𝜌𝐶

+
𝛽𝐼2

𝜌𝐶
+
𝜎(𝑁0 + 𝑁)𝐼

𝜌𝐶
 

(1) 

 
(2) 

 
(3) 

The parameters in Eq. 1-3 that govern linear and nonlinear absorption are defined 

in Table 2, and are further discussed in this section.  These equations ignore three-photon 

(and higher) absorption, tunneling ionization and impact ionization.  Eq. 3 assumes that 
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all absorbed energy is immediately transferred to the lattice, and further assumptions 

stated in the Finite Difference Model section of this chapter.   

Table 2.  Nonlinear rate equation parameters 

Symbol Parameter Units 
I Irradiance W/cm2 

α Linear absorption coefficient cm-1 

β Two-photon absorption coefficient cm/GW 
σ Free carrier absorption coefficient cm2 

N0 Intrinsic free carrier density cm-3 

N Generated free carrier density cm-3 

hν Photon energy J 
τR Free carrier relaxation time s 
T Temperature K 
ρ Density of material g/cm3 

C Specific heat of material J/gK 
 
 
 

NLA is highly dependent on pulse width, as shown in Figure 4 where predicted 

transmission for several pulse widths is calculated using Eq. 1-3.  For shorter pulses, 

higher peak irradiance can be tolerated before nonlinear absorption occurs, but all pulse 

widths are susceptible.  In Figure 4, the x-axis is the peak pulse irradiance which ranges 

from 1 MW/cm2 to 1 TW/cm2. 

Linear and Nonlinear Absorption Parameters 

The parameters in Eq. 1-3 that affect absorption in semiconductors due to both 

instantaneous and cumulative effects are described in this section.   
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Figure 4.  Theoretical nonlinear transmission variation with pulse width and peak pulse 

irradiance [20]  

Two-photon absorption  
Two photon absorption (TPA) is an instantaneous process that occurs when two 

photons bridge the material bandgap using a virtual state.  The level of two photon 

absorption that occurs in a material is dependent on the irradiance squared and is 

described by a coefficient β that is typically expressed in units of cm/GW.  For example, 

if a material has β = 1.2 cm/GW, that means that at an irradiance of 1 GW/cm2, the 

material will absorb as if α = 1.2 cm-1.   

This nonlinear irradiance-dependent absorption is proportional to the 3rd order 

nonlinear susceptibility χ3, and does not depend on the material doping level.  This 

susceptibility can be described quantum mechanically as the sum of all possible optical 

transitions (ωi,ωjj) and their respective dipole moments (μi,μjj) [22]: 
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𝜒(3)(±𝜔1, ±𝜔2, ±𝜔3) =

                                𝑁
ℏ3
∑ ∑ 𝜇𝑔𝑎

𝜇𝑎𝑢
�𝜔𝑎𝑔∓𝜔𝑖�

𝜇𝑢𝑏
�𝜔𝑢𝑔∓𝜔𝑖∓𝜔𝑗�

𝜇𝑏𝑔
�𝜔𝑏𝑔∓𝜔𝑖∓𝜔𝑗∓𝜔𝑘�𝑎,𝑢,𝑏𝑖,𝑗,𝑘,𝑙  

  Degenerate TPA is studied in this work, where two photons of equal energy 

combine to bridge the material bandgap, which is acknowledged by setting ω2 = ω3 in  

Eq. 4.  It is also possible to study non-degenerate TPA using two beams of differing 

frequencies.  While nonlinear refraction (n2) is proportional to the real part of χ(3), two-

photon absorption is proportional to the imaginary part of χ(3) [22]:  

 𝛽(𝜔1;𝜔2) =
3𝜔1

2𝜀𝑜𝑛𝑜(𝜔1)𝑛𝑜(𝜔2)𝑐2
ℑ𝑚�𝜒(3)(𝜔1,−𝜔2,−𝜔2)� (5) 

The polarization response 𝑃� of a material is determined by its complex linear and 

nonlinear susceptibilities, which can be expressed as a series: 

 𝑃� = 𝜀𝑜�𝜒(1) + 𝜒(2)𝐸 + 𝜒(3)𝐸2 + ⋯�𝐸 (6) 

Finally, the polarization response couples into the nonlinear wave equation, which 

can be derived from Maxwell’s equations where E is the electric field and c is the speed 

of light: 

 
2

2

22

2

2

41)(
r
P

c
E

tc
E

∂
∂

=
∂
∂

+∇××∇
π  (7) 

Now that a theoretical perspective of two-photon absorption has been established, 

an empirical method is presented.  β can be predicted from the bandgap Eg, photon 

energy Ep, Kane parameter K and index n using Van Stryland’s empirical simplification 

to Wherrett’s scaling law given in Eq. 8 [23,24]: 

(4) 



11 

 𝛽(𝜔) = 𝐾
�𝐸𝑝

𝑛2(𝜔)𝐸𝑔3
𝐹2 �

ℎ𝜈
𝐸𝑔
�   where  𝐹2(𝑥) =

(2x − 1)1.5

(2x)5   and 𝑥 =
ℎ𝜈
𝐸𝑔𝑎𝑝

 (8) 

Using this method for Ge and GaSb, estimated β vs. wavelength has been 

calculated in Figure 5, which shows its variation with wavelength and relative magnitude. 

 

 
Figure 5.  TPA coefficient theoretical calculations for Ge and GaSb 

Free carrier absorption  
Free carrier absorption (FCA) is an optical transition where a photon is absorbed 

by an excited carrier (electron or hole), and is proportional to the free carrier absorption 

cross section σ.  This cross section is dependent on wavelength and temperature and is 

related to the free carrier density N by the expression αFCA = σN  [25].  σ  is expressed in 

units of cm2 – if a material has σ = 1x10-16 cm2, that means that at a free carrier density  

N = 1x1016 cm-3, the material will absorb as if α = 1 cm-1.  Referencing Figure 6, 

absorption can occur from free electrons in the conduction band or from free holes in the 

valence band.     
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An expression that describes the variation of free carrier absorption αFCA with 

wavelength is given in [26]: 

 𝛼𝐹𝐶𝐴(𝜆) =
𝜆2𝑁𝑒3

4𝜋2𝑐3𝑛𝑜𝜖𝑜𝑚𝑒𝑓𝑓
2 𝜇

 (9) 

In Eq. 9, e, c, no, ϵo, μ and meff are defined as electron charge, speed of light, index 

of refraction, vacuum permittivity, vacuum permeability and effective mass, respectively.  

Additionally, αFCA is directly proportional to σ, so this expression states that σ ~ λ2.   

 

 
Figure 6.  Sources of free carrier effects: a) electron-hole pair creation,  

b) intraband optical/thermal excitation, c) intervalence band transition [26] 

This is a cumulative nonlinearity as there is a lifetime associated with the excited 

carriers.  The free carriers will continue to absorb until they relax, which occurs at a 

material-dependent rate.  Because of this effect, conventional wisdom has held that β can 

be isolated with an ultrashort pulse.  That pulse width (τp) is derived in a recent work 

[27], which states that the pulse width must satisfy the condition in Eq. 10 to isolate β: 

 𝜏𝑝 ≪
2ℎ𝜈𝛽𝐿
𝜎𝑎𝑏𝑠

 (10) 
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In Eq. 10, L is the sample length.  The 10 ps pulse width NLA experiments in 

this work do not satisfy this condition for either the Ge or GaSb sample, which 

would require τp ≪ 45 fs.  The fact that the pulses were too long to isolate β was 

evident in the simultaneous β and σ fits shown in this study. 

Unlike β, free carrier effects can be affected by the material doping level, as a 

greater level of initial carriers will induce more absorption and refraction.  TPA and FCA 

both contribute to nonlinear absorption.  Because of this it can be difficult to isolate their 

parameters, and a code has been developed in this work to extract the parameters from 

data that is collected at the same wavelength but two different pulse widths. 

Free carrier lifetime τR (s)  
Excited electron-hole pairs eventually recombine, and the total free carrier 

recombination lifetime τR can be calculated from the inverse Auger recombination rate, 

radiative recombination rate and Shockley-Read-Hall (SRH) recombination rate.  Each of 

these recombination rates is dependent on free carrier density.  Free carrier lifetimes 

could be measured with a pump-probe technique [20], but lifetimes are well understood 

and will not be experimentally obtained. 

Intrinsic free carrier density N0 (cm-3) 
The intrinsic free carrier density indicates the number of free carriers present 

when the material is in equilibrium.  This parameter is material dependent and can be 

altered by doping the material with other elements.  In this work, N0 is neglected as it is 

measured to be orders of magnitude less than the generated free carrier density. 
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Generated free carrier density N (cm-3) 
 N indicates the free carrier density generated when the material is illuminated 

with an optical wave.  Carriers are generated by linear or nonlinear absorption according 

to Eq. 2.  If the number of generated free carriers exceeds 1% or 10% of total valence 

electrons, material bond softening or ablation (respectively) may result [19].  This 

generally only occurs for high-irradiance fs pulse widths.  In Ge, the atomic density is 

4.4x1022 atoms/cm3 and there are four valence electrons per atom, so a generated free 

carrier density at of least ~1022 cm-3 would be required to see this effect.  At the 

irradiances used in this work, the maximum free carrier density is 1020 cm-3 so material 

bond softening or ablation is not expected. 

Temperature T (K) 
Temperature rise due to NLA from a single-pulse can be sufficient to melt the 

surface of a sample, which is modeled and measured in this work.  Lattice expansion due 

to temperature rise can alter linear absorption, β, bandgap and N.  

Linear or one-photon absorption α (cm-1)  
If the photon energy is smaller than the bandgap of the material, there minimal 

interaction with the lattice and α is negligible in comparison to β and σ [21].  However,  

α can rise exponentially as the material is heated past 350-400 K, leading to a thermal 

runaway effect that is explored in this work.  

Nonlinear refraction  
Refraction can be induced in a material from nonlinear refraction (n2), thermal 

lensing (𝑑𝑛 𝑑𝑇⁄ ) or free carrier refraction (σFCR), based on instantaneous, thermal or 

cumulative effects, respectively.  Refraction could focus or defocus the beam, varying the 
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irradiance within the material and therefore the level of nonlinear absorption.  However, 

modeling is performed in Chapter 3 to show that these phenomena will not affect the test 

conditions in this work. 

Literature search – NLA studies for Ge and GaSb   

Prior Ge and GaSb nonlinear studies in the literature are now reviewed, and four 

studies for Ge shown in Table 3.  NLA at 2.05 μm or 2.5 μm is studied in this work, and 

the nearest literature wavelengths were 2.36 μm and 2.6 μm, but those studies did not 

account for free-carrier absorption.  The next closest study occurred at 2.8 μm, which 

according to theory [24] should have one-third the TPA of 2.5 μm photons in Ge.   

Table 3.  Survey of nonlinear studies for germanium, ordered by wavelength 

λ 
(nm) 

Pulse width TPA (β) 
cm/GW 

FCA (σ) 
cm2 

Dopant  
level (cm-3) 

Reference 

2360 not given 1000 - not given [28] Zubov 1969  
2600-3100  100 ns 2500 - not given [29] Wenzel 1973  

2650 480 ns 680 - n ~1015-1016 [30] Gibson 1976 Fig. 8 
2800 480 ns 325 - n ~1015-1016 [30] Gibson 1976 Fig. 8 
2900 2 ps 80±10 *6±1x10-17 not given [31] Rauscher 1997  
2950 480 ns 100 - n ~1015-1016 [30] Gibson 1976 Fig. 8 
3000 2 ps 20±5 *6±1x10-17 not given [31] Rauscher 1997  

*  non-degenerate value measured using a 2.9 μm pump and a 3 μm probe 

 

 

GaSb is far less studied, and there is only one paper where two-photon absorption 

was measured.  In a 1996 work, Akmanov [32] used an estimated σ = 2x10-17 cm2 to 

measure β = 380 cm/GW in GaSb at 2.94 μm.  At 2.05 μm, a β of 156 cm/GW was 

reported as a theoretical calculation [33]. 
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Serious errors can occur if FCA is neglected, as shown in a 1973 study where 

NLA was observed in 5.1 mm thick uncoated germanium [29].  The laser output covered 

a spectrum from 2.6-3.1 μm, pulse width was 100 ns, and peak irradiances ranged from  

1-10 MW/cm2.  FCA was not used, and β alone was used to fit the transmission, resulting 

in β = 2500 cm/GW for the data shown in Figure 7.  The same transmission can be fit 

using the finite difference model developed later in this chapter and actual NLA values 

measured from this work.  After scaling for wavelength, β = 30 cm/GW and  

σ = 8x10-16 cm2 fit the data well, highlighting the need for a simultaneous β and σ 

measurement technique. 

 

 
Figure 7.   Finite difference model applied to data from [29], showing that nonlinear 

transmission data can be fit with widely varying β and σ values.  

As mid-IR laser development progresses, the ability of these lasers to dazzle or 

damage IR sensors must be assessed.  In this section the material properties that 

contribute to laser-induced damage are described, timescale-dependent phenomena are 
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presented, and experimental guidance is examined.  Finally, the literature is reviewed for 

prior damage studies in Ge and GaSb.   

A reported value of in-band pulse energy required to damage an EO sensor is  

50-250 mJ at typical combat ranges, although the pulse width was unspecified [7].  

Figure 8 presents two examples of laser-induced damage to EO sensors. 

 

 
Figure 8.  Laser damage in (a) HgCdTe detector and (b) Silicon microbolometer [7]  

Laser-induced damage depends on numerous factors including pulse width, 

irradiance and wavelength, and it is much easier to damage a sensor if the radiation is in-

band for the sensor, as filtering is unlikely at those wavelengths.  The pulse width 

dependence is clearly shown in this work, as the high peak irradiances in the ps pulses 

resulted in damage at μJ levels while ns pulses required mJ pulse energies.       

Timescale-dependent laser damage mechanisms 

The laser-induced damage threshold (LIDT) is determined by many simultaneous 

processes operating on timescales that vary widely.  This section describes the 

mechanisms that dominate when the timescale of the incident radiation is varied from 
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continuous wave (CW) to ultrashort fs pulse widths.  Material properties that can affect 

damage thresholds include reflectivity, linear and non-linear absorption, density, thermal 

conductivity, specific heat and melting temperature.  Material failure modes can include 

crack formation, melting, buckling, ablation or exceeding the critical temperature of 

electronics. 

CW damage mechanisms

8

:  At CW or long pulse widths on the order of one 

second, the damage threshold is mainly determined by the thermal conductivity of the 

sample [ ].  For CW illumination, as laser radiation couples into the material, a thermo-

mechanical signal is propagated, which will affect different materials in different ways, 

including thermal, mechanical and nonlinear effects.  Thermal effects can include loss of 

strength, melting, pyrolysis, ablation, vaporization, ignition, deflagration or detonation.  

Mechanical response can include thermal-mechanical stresses and also pressure shock 

waves.  Finally, nonlinear responses can include absorption, self-focusing, and generation 

of hot electrons, x-rays or THz electromagnetic pulses [34].   

μs to ps pulse damage mechanisms

35

:  For μs pulse widths, the threshold fluence 

(J/cm2) is mainly determined by linear absorption, material heat capacity, free-carrier 

diffusivity and thermal diffusivity [ ].  The dominant damage mechanism is thermal 

melting, and the pulse width and laser spot size will determine if free-carrier or thermal 

diffusion will reduce the LIDT.   

fs-pulse damage mechanisms:  The mechanisms that affect damage at fs scale are 

very different than longer pulses, transitioning from thermal mechanisms to dielectric 

breakdown.  The extreme level of peak irradiance resulting from the ultra-short pulse 

duration can cause the energy to be deposited faster than free carriers can relax into 
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phonons [19].  Mechanisms of damage vary depending on what percentage of excited 

carriers are generated, as a percent of valence electrons.  At <1% excitation, damage is 

due to excitation of coherent phonons. At ~1% excitation, damage occurs as a result of 

bond softening, and at ~10% excitation it is due to non-thermal ablation [19]. 

The transition between thermal mechanisms and dielectric breakdown can be 

described by two methods.  The first method states that dielectric breakdown can occur 

when τp becomes shorter than the phonon relaxation time, which for example is 0.1 to  

0.5 ps in silicon [36].  Keldysh theory [37] is the second method, and is widely discussed 

in the fs damage literature to predict the transition between dielectric breakdown and 

thermal damage mechanisms [19,38,39].  The Keldysh parameter γ is the ratio of the 

incident electric field frequency to the tunneling frequency, and the γ = 1 case is the 

dividing line between the classical and quantum regimes [40].  When γ << 1, damage is 

dominated by dielectric breakdown, which primarily results from Zener tunneling 

between Bloch bands.  When γ >> 1, damage is dominated by thermal mechanisms that 

result from photoionization, including TPA.   

γ is defined in Eq. 11 where ω is the optical frequency, ωt is the tunneling 

frequency, Ip is the ionizing potential (eV), Up is the ponderomotive energy (eV), I is 

irradiance (PW/cm2) and λ is wavelength (nm) [41]: 

 

 𝛾 =
𝜔
𝜔𝑡

= �
𝐼𝑝

2𝑈𝑝
   where    𝑈𝑝 = 9.337𝑥10−5 ∗ 𝐼𝜆2 (11) 
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In Chapter 5, the Keldysh parameter is calculated for the actual test conditions, 

using an ionizing potential of 5.03 eV for GaSb [42] and 7.86 eV for Ge [43].  If the peak 

irradiance is sufficient at a fs pulse width, electrons are ripped away and the resulting 

positively charged atom undergoes a Coulomb explosion, resulting in non-thermal 

ablation.  This effect is especially useful in laser machining, where molten residue is 

undesirable.   

Experimental guidance 

A valuable resource for designing damage test experiments is ISO standard 

11254-1, which governs single-shot laser-induced damage testing [44].   It defines the 

damage threshold as “the highest quantity of laser radiation incident upon the optical 

surface for which the extrapolated probability of damage is zero”.  An example of this 

method is shown in Figure 9 where the resulting fluence threshold is circled in red. 

Beam diameter on-sample is recommended to be > 800 μm for pulses shorter than 

100 ns and > 200 µm for longer pulses, with spacing between sites of 1.25-5 times the 

beam diameter.  Pre-test sample cleaning consists of a four step process by cleaning the 

sample with acetone, then methanol, then de-ionized water and finally the surface is dried 

with N2 gas.  The standard specifies a minimum test plan, where ten sites per fluence are 

required and a minimum total of 75 sites.  Finally, damage is defined as any permanent 

surface modification visible with a Nomarski-type differential interference microscope.     
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Figure 9.  Extrapolation method of determining damage threshold [44] 

Literature search – damage studies for Ge and GaSb   

There were no damage studies found in the literature for GaSb, and two Ge 

studies are reported in Table 4.  The 250 nm study occurs in the linear absorption regime, 

and the only test where TPA is the dominant damage mechanism is the 2.8 μm study by 

Seo et. al.  Additionally, the 2.8-5.2 μm tests were conducted on the Vanderbilt free-

electron laser, which is a 10,000 shot test, not a single shot test as performed in this work. 

Table 4.  Survey of damage studies for germanium 

λ 
(μm) 

Pulse 
width 

LIDT 
(J/cm2) 

Dopant 
level (cm-3) 

Beam spot 
radius (μm) 

 
Reference 

0.25 38 ns 0.327 p  ~1017 1500 [45] Jellison 1986 
2.8 5 μs FEL1 5.3 n = 1013-1014 260-380 [46] Seo 2008 
3.2 5 μs FEL1 12.8 same 260-380 [46] Seo 2008 
3.6 5 μs FEL1 21.5 same 260-380 [46] Seo 2008 
4.0 5 μs FEL1 22.5 same 260-380 [46] Seo 2008 
4.4 5 μs FEL1 26 same 260-380 [46] Seo 2008 
4.8 5 μs FEL1 24.8 same 260-380 [46] Seo 2008 
5.2 5 μs FEL1 22.8 same 260-380 [46] Seo 2008 

1 Free electron laser – 30 Hz, 5 μs length macro pulse consisting of 10,000 1 ps micro pulses.   

Damage threshold = ~175 mJ/cm2 
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Significant effort went into the development and verification of a single-pulse 

finite difference (FD) model, which was used extensively in this work for NLA design of 

experiments, measurement of nonlinear absorption coefficients and to model temperature 

rise resulting in laser-induced damage.  In this section the modeling method and 

assumptions are presented and a comparison is made to a simplified analytic solution.  

Then, additional rate equations are coupled into the model and parameter behavior is 

explored.  Finally, model verification is performed and the modeling of a non-Gaussian 

pulse is described. 

Finite Difference Model 

The model incorporates Eq. 1-3 presented previously on page 7 for optical 

absorption, free carrier density and temperature rise [21].  Additionally, free-carrier 

density dependent recombination τR(N) in Eq. 12 and temperature dependent linear 

absorption α(T) in Eq. 13 are implemented for each element in radius (r), position (z) , 

time (t) and temperature (T): 

 

1
𝜏𝑅

= 𝐵𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 ∗ 𝑁(𝑟, 𝑧, 𝑡) + 𝐶𝑎𝑢𝑔𝑒𝑟 ∗ 𝑁(𝑟, 𝑧, 𝑡)2 

𝛼 = 𝛼{𝑇(𝑟, 𝑧, 𝑡)} 

(12) 

(13) 

Previously, the temperature rate equation was a diagnostic and did not affect 

irradiance and free carrier density.  Now, the inclusion of α(T) has the effect of coupling 

temperature (Eq. 3) into the irradiance and free carrier equations (Eq. 1-2), resulting in 

higher accuracy.   
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Several assumptions are made with the model: 

• The incident beam has radial symmetry and contains quasi-monochromatic light 
• The sample is thin compared to the beam confocal parameter, resulting in 

negligible diffraction while traversing the sample, and nonlinear refraction is 
insignificant 

• The sample is of sufficient purity that the intrinsic carrier density N0 is 
insignificant in comparison to the generated free carrier density   

• The slowly varying envelope and paraxial approximations can be applied 
• Three-photon (and higher) absorption and tunneling ionization are insignificant  
• The temperature dependence of β, σ and τR are insignificant 
• The combination of pulse width, spot radius (ro) and pulse repetition frequency 

(PRF) are chosen to avoid both free-carrier diffusion and thermal diffusion 
• The peak pulse irradiances are low enough to avoid dielectric breakdown 

 

Analytic solution 

While the full set of coupled nonlinear partial differential equations can only be 

solved numerically, the first equation can be solved analytically if the following 

assumptions are made in addition to those listed above: 

• The pulse has Gaussian profiles in time and space:  𝐼(𝑟, 𝑡) = 𝐼0𝑒
−� 𝑟𝑟𝑜

�
2

𝑒−�
𝑡
𝑡𝑜
�
2

  
• There is no linear absorption (α = 0) 
• Fresnel losses at surfaces are ignored 
• The pulse width is short enough that FCA is insignificant compared TPA.  As 

described previously, this condition is 𝜏𝑝 ≪
2ℎ𝜈𝛽𝐿
𝜎𝑎𝑏𝑠

   [27]  

 
If a dimensionless parameter Q is defined as 𝑄 = 𝛽𝐼𝑜𝐿, (L is sample length) then 

an analytic solution for transmission (T) can be derived as Eq. 14 [47] and is graphed as a 

function of Q in Figure 10: 

 𝑇 =
1

√𝜋𝑄
� 𝑙𝑛 �1 + 𝑄𝑒−�

𝑡
𝑡𝑜
�
2

�
∞

−∞ 
𝑑𝑡 (14) 
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Figure 10.  (left) Nonlinear transmission vs. Q parameter.  (right) Ge sample theoretical 

transmission vs. peak pulse irradiance with Q overlay 

Finite difference treatment of coupled nonlinear differential equations 

An implicit finite difference (FD) numerical method was used to solve the 

coupled nonlinear differential equations in Eq. 1-3 and Eq. 12-13, and was used both to 

extract nonlinear absorption coefficients and to model temperature rise resulting in laser-

induced damage.  An explicit solution solves the equations as only a function of the 

current state (z or t), while an implicit form solves the equation as a function of both the 

current system state (z or t) and the state after one step (z+1 or t+1).  The implicit form is 

the proper numerical method and leads to increased accuracy and stable results.  Eq. 15 

results when Eq. 1 is expressed as an implicit finite difference, and is solved as quadratic 

equation in Eq. 16:  

 

𝐼𝑧+1 − 𝐼𝑧
Δ𝑧

= −𝛼𝐼𝑧+1 − 𝛽𝐼2𝑧+1 − 𝜎𝑁𝐼𝑧+1 

 

0 = −𝐼𝑧 + [1 + Δ𝑧(𝛼 + 𝜎𝑁)]𝐼𝑧+1 + Δ𝑧𝛽𝐼2𝑧+1 

(15) 

(16) 
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In a similar fashion, the generated free-carrier density and temperature equations 

are implicitly solved to yield Eq. 17-18:  

 
                                 𝑁𝑡+1 = �

1
1 + Δ𝑡 𝜏𝑅�

� �𝑁𝑡 + Δ𝑡 �
𝛼𝐼
ℎ𝜈

+
𝛽𝐼2

2ℎ𝜈
��   

 

        𝑇𝑡+1 =
Δ𝑡
𝜌𝐶

(𝜎𝑁𝐼 + 𝛼𝐼 + 𝛽𝐼2)   

(17) 

(18) 

The pulse profile in time and space is modeled beyond the typical 1/e or FWHM 

level.  In Figure 11 (left), half of a Gaussian pulse is shown with a 1/e spatial and 

temporal profile denoted by a semi-transparent aqua surface intersecting the pulse shape.  

Some energy would be lost if the effects below this level are ignored, so the limits of 

integration are extended to include pulse time and radii where I = 0.005 * Io in order to 

improve accuracy.  

In the FD model, the pulse and sample are broken up into elements in time, 

sample radius and sample length as shown in Figure 11 (right).  Radial symmetry is 

assumed, and for each radial slice the differential equations are applied to each element, 

whose output is fed to the next element on the z-axis until the sample end. 

 

 

Figure 11.  (left) 100 ns Gaussian pulse shape highlighting 1/e intensity profile.  
(right) the FD model divisions are shown for the pulse (sphere) and sample (cylinder)  
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The loop structure is presented below: 

- Start with a Gaussian pulse and a defined sample length, sample radius and input 
pulse energy (Ein) 

- Loop 1:  for each radial element… 
o Loop 2: for each time relative to the pulse center… 

 Loop 3: for each z-axis position… 
• Find irradiance according to the Gaussian profile, which 

varies with radius and time relative to pulse center 
• This irradiance is presented to the crystal face 
• Irradiance attenuation, free-carrier variation and temperature 

variation are computed for that element. 
• The resulting irradiance is presented to the next element in z 
• During Loop 3, N and T arrays are maintained to propagate 

cumulative effects to the next time step in Loop 2 
 Loop 3 is repeated for each z-axis position  

o Loop 2 is repeated for each time relative to the pulse center 
- Loop 1 is repeated for each radial element 

 

During Loop 2, for a single radial element, the resulting irradiances are integrated 

over time to calculate the resulting transmitted fluence for that radial element.  At the end 

of Loop 1, the resulting fluences from each radial element are integrated to determine the 

exiting pulse energy (Eout).  Finally, the transmittance is calculated as Eout/Ein.  

Addition of free carriers and temperature  
The next step is to couple in the free carrier absorption and temperature equations.  

The free carrier absorption equation will result in greater absorption, while the 

temperature equation is a diagnostic and does not affect absorption unless temperature 

dependent linear absorption is implemented.  

The influence of free carrier relaxation time on free carrier density is now 

investigated.  In the top graph of Figure 12, N follows the irradiance profile of the pulse 

as the τR of 10 ns is shorter than the example pulse width of 100 ns.  On the bottom graph, 
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τR = 1000 ns and N remains elevated even after the irradiance has decreased, as there is 

insufficient time for the free carriers to recombine during the pulse. 

 

 
Figure 12.  Behavior of free carrier density within the timeframe of the incident 100 ns 

pulse.  Multiple curves are different points in the crystal: black = start, green = middle, and 
blue = end.  (top) free carrier relaxation time is fast at 10 ns.  (bottom) free carrier 

relaxation time is slow at 1000 ns 

By saving a time history of all radii and z data, distributions of irradiance or free 

carrier density can be created, as shown in Figure 13.  This illustrates that the highest N 

and T variation occurs in a shallow skin depth and also proved helpful during model 

development for troubleshooting. 



28 

 
Figure 13.  Irradiance of on-axis radial element (top), Irradiance vs. radius (middle), and 

free carrier density (bottom) as a function of z location within a 0.1 cm sample length. 

An advantage of the numerical method is that a non-Gaussian temporal pulse can 

be used.  This allows the accurate modeling of nonlinear parameters even if the input 

pulse has a unusual time profile, which is typical of Cr2+:ZnSe gain-switched lasers 

[48,49] as shown in Figure 25 on page 45.   

Fresnel reflections are modeled, whose resulting linear transmission can be 

obtained from a spectrophotometer or FTIR measurement.  If the sample is 70% 

transmissive (T), the 30% loss occurs from Fresnel reflections from the two faces of the 

crystal, as it is assumed that linear absorption does not occur for sub-bandgap photon 

energies.  The first Fresnel reflection reduces the irradiance presented to the crystal face 

by a factor of 1-√T or 16%, which then lowers the irradiance within the sample and 
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results in reduced nonlinear absorption.  At the exit face, transmission is reduced by 

another 1-√T factor, which results in 70% total transmission if no absorption has taken 

place.  The reflection from the back face is assumed to be scattered within the sample and 

will be small enough to not affect nonlinear properties, as a significant portion (up to 

90%) has already been absorbed. 

In Figure 14, model output for ten pulse widths is presented where linear 

transmission is set to 100%.  The limit on the left-hand side (towards 1 μs τp) occurs due 

to the free carrier lifetime τR of 100 ns.  At this limit, τR << τp and further variation of τR 

no longer affects the nonlinear absorption.  The right side of Figure 14 (towards 1 fs τp) 

shows that the influence of FCA drops off when 𝜏𝑝 ≪
2ℎ𝜈𝛽𝐿
𝜎𝑎𝑏𝑠

, as predicted [27].  At this 

limit, the dominant absorption effect is β and the transmission curve becomes 

independent of further reductions in τp. 

 

 
Figure 14.  Theoretical nonlinear transmission as a function of irradiance and pulse width, 

including TPA and FCA 
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Model accuracy can be improved by increasing the number of steps (divisions) in 

time, radius and z position.  However, there is a point where increased simulation time is 

not worth the extra accuracy gained.  Figure 15 shows that accuracy within half of a 

percent can be achieved with 350 divisions, which is the value used in all modeling 

performed.  Each simulation takes about 20 seconds in this case. 

 

 
Figure 15.  Accuracy improvement by increasing the model fidelity.  Left is transmission, 

middle is temperature and right is the simulation time 

Model verification 
Extensive verification of the FD model was performed.  First, the analytic model 

was compared to a simplified version of the finite difference model.  As required by the 

analytic model, the models are both set to exclude Fresnel losses, linear absorption and 

free carrier absorption.  In this comparison, the sample was broken up into 500 length, 

radii and pulse sections, and a maximum 0.5% relative error was found. 

The accuracy of modeling α was verified when studying irradiance-dependent 

bleaching in a Cr2+:ZnSe sample.  Low irradiance transmission was predicted by  

%T = e-αz = 37.8% for the sample, which matched spectrophotometer measurements.  

The model predicted %T = 37.9% in this case. 
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Verifying the model with σ present was accomplished by comparing the results 

over ten different pulse widths (Figure 16) with the AFRL/RXPJ model (Figure 4 on page 

9), and a match was achieved. 

 

 
Figure 16.  Comparison graph to prior work: theoretical nonlinear transmission as a 

function of irradiance and pulse width 

Finally, 28 comparison cases between the present work and [51] were 

accomplished with varying levels of α, β, σ, Fresnel reflections and τR.  Excellent 

agreement was achieved in the resulting peak free carrier density, peak on-axis 

temperature rise and energy transmission through the sample for each case.  The author 

again thanks the AFRL/RXPJ team for frequent assistance. 

Modeling 2.5 μm gain-switched pulses 
The development of a Cr2+:ZnSe gain-switched laser will be described in Chapter 

3, whose pulses possess a non-Gaussian temporal profile.  The modeling of these pulses 

is performed in this section for incorporation into the finite difference model.   
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For the nonlinear absorption tests, the laser output was fixed at 1.5 mJ.  The 

repeatable 1.5 mJ temporal profile that is loaded into the FD model is shown in Figure 17 

(left).  For comparison, an equivalent 1.5 mJ Gaussian pulse is fit to the gain-switched 

pulse which resulted in an admittedly poor best fit of 68 ns pulse half width.  It is shown 

that the peak irradiance of the gain-switched pulse is much greater than an equivalent 

Gaussian. 

 

  
Figure 17.  (left) gain-switched pulse with Gaussian best fit overlay, (right) sum of squared 

error variation with Gaussian pulse width, showing 68 ns best fit 

The pulse energy in a non-Gaussian pulse can be expressed as 

𝐸 = 𝐴𝑟𝑒𝑎 ∫ 𝐼𝑑𝑡, or alternatively 𝐸 = 𝐴𝑟𝑒𝑎𝑠𝑝𝑜𝑡 ∑(𝐼𝑖 ∗ 𝜏) where τ is the oscilloscope 

time step of 0.2 ns.  The irradiance profile Ii can be determined by multiplying the 

oscilloscope voltage trace Vi by a constant M, and varying that constant until 

 1.5 mJ = 𝐴𝑟𝑒𝑎𝑠𝑝𝑜𝑡 ∑(𝑉𝑖𝑀 ∗ 𝜏).  Using this method and a 265 μm spot radius, the 

peak irradiance was calculated as 22.3 MW/cm2, as shown in Figure 17.  The peak 
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irradiance and pulse energy vary linearly with the scaling factor, for example a 10x 

reduction in scaling factor gives a peak irradiance of 2.2 MW/cm2 and E=0.15 mJ.     

The peak irradiance is much higher than an equivalent Gaussian pulse and the 

effect is now explored.  This increase in peak irradiance increases the nonlinear 

absorption of the pulse when compared to an equivalent Gaussian.  A comparison is 

given in Figure 18, where the FD model was modified to load this scope trace and the 

scaling factor was used to vary the incident pulse energy. 

 

 
Figure 18.  Comparison of transmission from Gaussian pulses (red) and gain-switched 

pulses (blue) of identical pulse energy 

The difference is highlighted in Table 5, where the higher peak irradiance 

decreases the transmission, increases the generated free carrier density and increases 

the temperature rise in comparison to an equivalent gain-switched pulse.  Ge melts at 

1210 K, which is a temperature rise of 937 K above room temperature.  For this scenario, 

a 5 mJ gain-switched pulse would melt the surface of the sample while an equivalent 

Gaussian pulse would not. 

10
-2

10
-1

10
0

10
1

0

0.5

1

Ge: β=81 cm/GW, σ=1.04e-016 cm-2, Brad=6.4e-014 cm3/s, Auger=2.0e-031 cm6/s λ=2.50 µm
Gaussian pulse: τp=68.0 ns, 1/e spot radius=265 µm, linear %T=90.0

Tr
an

sm
is

si
on

Pulse energy (mJ)

 

 
Gaussian pulse
gain switched pulse



34 

Table 5.  Comparison of transmission, generated free carrier density and temperature rise 
from Gaussian pulses and gain-switched pulses in Ge  

 Gaussian pulse Gain-switched pulse 
Incident 
energy 
(mJ) 

Transmission 
(%) 

Free 
carriers 

ΔN (cm-3) 

Temp 
rise ΔT 

(K) 

Transmission 
(%) 

Free 
carriers 

ΔN (cm-3) 

Temp 
rise ΔT 

(K) 
0.01 90 5.5x1013 0 90 9.4x1013 0 
0.05 89.9 1.4x1015 0 89.5 2.4x1015 0 
0.1 87.9 5.5x1015 0.01 85.9 9.4x1015 0.02 
0.5 63.2 1.4x1017 0.9 54.8 2.3x1017 1.8 
1 44.9 5.5x1017 7 37.5 9.1x1018 14 
5 14.8 4.5x1018 649 12.0 4.7x1018 945 
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Chapter 3. Method 
 

This chapter contains the calculations, analysis and design work that supports the 

nonlinear absorption and damage threshold results achieved in Chapter 4.  Two 

nanosecond laser sources are described which were required to complete the NLA and 

damage test plans: a 2.5 μm laser source was developed; and modifications to a 2.05 μm 

laser are documented.  Additionally, the semiconductor samples are characterized and 

calculations are performed to support development of the nonlinear absorption and 

damage test plans.  

A 2.5 μm nanosecond laser source was required for testing, and a gain-switched 

Cr2+:ZnSe laser was created whose peak power exceeds all designs reported to date by a 

factor of eight.  In this section the aspects of the lasing active ion and host material that 

apply to gain-switched laser development are discussed.  Additionally, the pump laser, 

gain-switched cavity design and laser output are described, including slope efficiency and 

pulse width variation for different outcouplers.     

Gain-switched laser 

Material Properties 

Divalent chromium (Cr2+) is a group 6 transition metal (TM) and was selected as 

the lasing transition ion because of its broad tunability in ZnSe from 1.9 μm to 3.1 μm 

[52].  In 1995, tunable mid-IR lasing at room temperature from Cr2+ ions was first 

achieved [53,54].  Benefits of Cr2+:ZnSe lasers include room-temperature operation, up to 

70% conversion efficiency [4], pure CW power up to 14 W [56] and pulsed average 

power up to 18.5 W [49].  Transitions to nearby excited states are spin forbidden, which 
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gives this gain medium advantages over earlier TM lasers such as Co2+ and Ni2+ [57,58].  

Additionally, at room-temperature, Cr2+:ZnSe exhibits small nonradiative relaxation, a 

large gain cross section, no excited state absorption, and finally high thermal 

conductivity, infrared transparency and quantum efficiency [61]. 

The energy level diagram that explains the Cr2+:ZnSe mid-IR transition is given in 

Figure 19 (left), where lasing occurs from the 5E excited state to the 5T2 ground state.  
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Figure 19.  (left) Cr2+ Energy levels in Cr2+:ZnSe, (right) Configuration Coordinate diagram 

explaining four-level behavior from a two-level system [59] 

While there are only two levels involved in the lasing transition, Cr2+:ZnSe 

behaves as it were a four level system due to the offset in configuration coordinate 

between the energy levels, as shown in Figure 19 (right).  This offset, when combined 

with strong vibrational coupling to the host lattice [60], creates the broad emission and 

absorption bandwidths that are shown in Figure 20.  The broad absorption spectrum 

allows pumping from a variety of laser sources, including erbium fiber, thulium fiber, 

Tm,Ho:YLF and finally Cr,Tm,Ho:YAG that is used in this work.   
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Figure 20.  Absorption and emission cross sections of a typical Cr2+:ZnSe sample 

Challenges with Cr2+:ZnSe 

There are challenges when working with Cr2+:ZnSe because it has a large thermo-

optic coefficient (𝑑𝑛 𝑑𝑇⁄ ) of 70x10-6 K-1 and short radiative lifetime (τrad ) of ~6 μs [62].  

The high 𝑑𝑛 𝑑𝑇⁄  results in thermal lensing [60] that can lead to cavity instability for CW 

and high-PRF pulsed laser designs.  Additionally, while a long τrad  is desirable for 

storing energy in the laser gain medium prior to lasing, Cr2+ doping levels up to 100-200 

parts per million (0.02-0.04% atomic) yield a τrad of only 6 μs which is orders of 

magnitude smaller than other ions.   

In Cr2+:ZnSe, τrad decreases at doping levels above 200 ppm (0.04% atomic) due 

to concentration quenching, which occurs due to an increase in the rate of nonradiative 

relaxation [63].  In other materials such as Nd:YAG, concentration quenching does not 

occur until concentrations reach several percent, which is orders of magnitude greater 

than Cr2+ [64].  If techniques such as hot-pressed ceramics [65] can be refined to dope 

higher ion levels into ZnSe without inducing concentration quenching, longer τrad  at 
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room temperature should be achievable, which will give increased energy storage and 

performance.  

Literature search 

In a 2004 review of Cr2+:ZnSe laser development [61], the highest pulse energy 

obtained at the time was 0.43 mJ.  Three other gain-switched lasers have been created 

during or after 2004, which are shown in Table 6 along with the pulse energy record from 

the 2004 review.   

Table 6.  Cr2+:ZnSe gain-switched lasers 

Pulse energy Pulse full 
width 

Slope 
efficiency 

(%) 

PRF 
(Hz) 

Outcoupler 
(%R) Reference 

0.43 mJ 200 ns 50 10,000 90 McKay 2002 [48] 
2.6 mJ 100 ns 65 7,000 30 Carrig 2004 [49] 
2.0 mJ * 3 or 5 * 99.5 Gallian 2006 [65] 
14 mJ 120 μs 66 1 66 Koranda 2007 [66] 

 *  not given 
 
 
 

Gallian used a hot-pressed ceramic crystal to achieve 2 mJ pulse energy, and  

Koranda’s highest pulse energy of 14 mJ was achieved by pumping with pulses that 

exceeded the Cr2+:ZnSe radiative lifetime by a factor of 20.  Thus, these pulses are over 

2,000 times longer than those reported in this work which means the operation was more 

continuous-wave than gain-switched.  Carrig’s 2004 work occurred at a high PRF, 

yielding the current average power record of 18.5 W. 
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Pump laser 

The pump for the gain-switched Cr2+:ZnSe laser is a Schwartz Cr,Tm,Ho:YAG 

laser which was recently refurbished by R. Shori at UCLA to improve stability and 

provide 2.095 μm, 13 mJ, TM00 spatial profile pulses.  The pump’s flashlamp driver was 

set to 3 Hz, 990 V operation and details of the laser include a 67 cm linear cavity,  

68% reflective outcoupler, 10° C water temperature and the spinning Q-switch mirror 

speed was 12,000 rpm.  

The pulse width of the Schwartz pump laser was measured as 85 ns FWHM 

which corresponds to a 55 ns half-width at 1/e irradiance.  This was measured using a 

sub-ns rise time Boston Electronics PVM-10 detector and a LeCroy 2 GHz Waverunner 

204MXi oscilloscope with 50 Ω coupling.  It was possible to align the Schwartz laser to 

achieve > 17 mJ pulses, but only with a degraded temporal and spatial profile.  At higher 

pulse energies, double or triple pulsing occurred within a 1 μs timescale.  Also, the spatial 

profile became non-Gaussian as an 8-null radial spatial profile was observed near the 

laser’s 74 mJ maximum pulse energy output.  

Cavity design 

Several interconnected topics are considered in the cavity design, including active 

ion bleaching, absorption, mode size and damage thresholds.  If all possible Cr2+ ions are 

excited during pumping, the material will become transparent as there is no excited state 

absorption allowed in Cr2+:ZnSe [64].  While this effect is useful for passive Q-switching 

[67], in this design it is undesirable as it reduces efficiency.  The irradiance where 

bleaching starts to occur is the saturation irradiance (Isat) and was experimentally 

determined to be ~2 MW/cm2 for a 2.095 μm pump.   
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For pulsed Cr2+:ZnSe laser design, Isat is the practical concern as it will dictate the 

optimal mode diameter for the gain-switched laser.  To avoid bleaching and for best 

absorption of the pump, a radius and length of gain crystal was selected to operate at  

1-3 MW/cm2 peak irradiance with ~95% absorption of the pump.  This is on the edge of 

the bleaching curve, where any more pulse energy will reduce efficiency as less % 

absorption of the pump will occur. 

If a Gaussian pulse profile in time and space is assumed, the resulting peak pulse 

irradiance I from a pulse energy E is derived on page 68 to yield Eq. 19.  Eq. 20 solves 

Eq. 19 so that a radius ro can be calculated to achieve the desired I of 1-3 MW/cm2:   

 𝐼 =
𝐸

√𝜋𝜏𝑝𝜋𝑟𝑜2 
 𝑟𝑜 = �

𝐸
𝐼√𝜋𝜏𝑝𝜋 

 (19/20) 

The mode radius ro that gives 1-3 MW/cm2 peak irradiance from a range of 

Schwartz pump pulse energies are represented by the solid lines in Figure 21.  Cavity 

design was guided by this constraint, and also the resulting fluence level from a given 

pulse energy and spot radius are graphed as dotted lines.  A ZnSe LIDT fluence of  

2.8 J/cm2 was reported at a wavelength of 10.6 μm and pulse full width of 100 ns.  For  

2.095 μm pumping, the damage mechanism in ZnSe would likely be 4-5 photon 

absorption, not dielectric breakdown as would be the case at a wavelength of 10 μm.  

However, the threshold should not change significantly, and a value of 2.0 J/cm2 was 

selected as the fluence constraint for the cavity.  Figure 21 does not include intra-cavity 

magnification induced by the outcoupler, but the damage constraint should be satisfied as 

a fluence < 0.5 J/cm2 results if 1-3 MW/cm2 peak pulse irradiance is maintained.   
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Figure 21.  Radius to achieve 1-3 MW/cm2 peak irradiance for a range of pump energies 

(solid lines), resulting fluence level from a given pulse energy and spot radius (dotted lines) 

Pump absorption is the next consideration, and the available Cr2+:ZnSe crystal 

lengths and doping levels were reviewed to find a suitable crystal.  The optimum crystal 

length to achieve 95% absorption for a given α is shown in Figure 22 and is calculated 

using Eq. 21-23:  

 𝐼𝑜𝑢𝑡
𝐼𝑖𝑛� = 𝑒−𝛼𝑧 0.05 = 𝑒−𝛼𝑧 𝑧 =

−𝑙𝑜𝑔(0.05)
𝛼

 (21/22/23) 

 

 
Figure 22.  Crystal length required for 95% pump absorption of a 2.095 μm pump.  In the 

figure, CrXXX is the sample identifier  
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There were several uncoated Cr2+:ZnSe crystals that absorb well at this 

wavelength (Cr73, Cr107, Cr108), however Cr107 and Cr108 can only be placed at 

normal incidence which would induce intolerable losses within a resonator.  The edges of 

Cr73 are cut at the Brewster angle to eliminate Fresnel losses, which make it the best 

candidate.  This has an added benefit of spreading out the spatial profile on the crystal, 

which raises its damage threshold when compared to normal incidence.  The crystal was 

purchased from Photonics Innovations, with a specified Cr2+ doping level of  

N = 7.8x1018 cm-3 and dimensions of 5.3x4.7x24 mm.  The path length in the laser cavity 

is 2.4 cm, giving an acceptable e-0.98*2.4  = 10% T, or 90% absorption.   

The minimum entrance dimension of the crystal (Cr073) is 4.7 mm.  However, the 

crystal orientation in the cavity due to its Brewster cut limits the mode diameter to 2 mm, 

as shown in Figure 23.  Another design constraint is that diffraction losses may occur if 

the clear aperture is less than three times the mode size.  

A V cavity was designed with a variable length d1 to allow the mode size to be 

adjusted to match Isat for varying levels of pump power.  In the cavity design shown in 

Figure 23 (top right), M1 is a 50 cm ROC mirror, d1 is 7.5 cm and d2 is 15 cm.  Figure 23 

(top left) shows the LASCAD analysis that predicts a 1/e2 mode radius of 600 μm at the 

planar outcoupler (o/c) and 444 μm at the planar M2 folding mirror.  Matching the pump 

mode to the resonant mode was accomplished by focusing the pump with a one meter 

focal length lens, and adjusting the lens position for optimum pulse energy.  The laser 

cavity is pictured in Figure 23 (bottom), where the laser output is shown in yellow. 
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Figure 23.  Cavity design for Cr2+:ZnSe gain-switched laser including mode size (top left), 

optical layout (top right) and actual laser cavity (bottom) 

Gain-switched output 

The pulse energy, slope efficiency, temporal profile, spatial characteristics and 

spectral profile of the gain-switched output are analyzed in this section.   

Lasing pulse energies using 50% and 70% outcouplers are presented in Figure 24 

along with their slope efficiencies.  In order to measure lasing slope efficiencies, the 

incident pump pulse energy was calibrated to the reflection from a Thor Labs BP108 

beam splitting pellicle, and Cr2+:ZnSe pulse energy was measured on an RJ-735 energy 

head and RJ-7620 ratiometer.  Measurement of unabsorbed pump energy was performed 
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pump 13 mJ max 
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over the range of pump powers by recording the laser output after dumping the Cr2+ 

emission away with a dichroic mirror.  This unabsorbed pump energy was subtracted 

from the incident pulse energy to yield the ‘absorbed pump’ x-axis in Figure 24.  

 

 
Figure 24.  Slope efficiencies for gain-switched Cr2+:ZnSe output 

The 3.1 mJ pulse energy is compared to maximum theoretical pulse energy using 

an efficiency method and also an excited ion method.  Using the efficiency method, the 

maximum gain-switched laser output is the product of the quantum efficiency, pump 

efficiency, coupling efficiency and pump energy.   

Quantum efficiency for this 4-level laser is ℎ𝜈2.5
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, or 82%.  Imperfect mode-

matching could result in ~ 80% pump efficiency.  Coupling efficiency should be high at 

~90% as Seigman (p1014) states “the output energy from a Q-switched laser is largely 
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estimated efficiency of 60%, resulting in 6.2 mJ possible output from 10.5 mJ of 

absorbed pump energy.   

Another way to calculate the theoretical maximum pulse energy is to find the 

energy in the mode volume if all Cr2+ ions are excited.  This energy is the product of hν, 

the mode volume and doping level of 7.8x1018 cm-3, and a maximum energy close to  

10 mJ results from a 500 μm mode radius.  Atmospheric absorption is the likely cause for 

the laser’s failure to provide maximum theoretical pulse energy, although sub-optimal 

coatings or passive losses within the gain medium could also contribute. 

The gain-switched temporal profile is shown in Figure 25 (left) for a 50% 

reflective outcoupler (blue) and a 70% reflective outcoupler (red).  Also shown are the 

temporal profiles from two other works that used a 90% or 30% reflective outcoupler. 

 

                           
Figure 25.  Temporal profile of gain-switched Cr2+:ZnSe output (left) and output from two 

previous works: middle [48], right [49] 
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As the outcoupler reflectivity is reduced, the amount of energy in the secondary 

peak is shifted towards the primary peak.  It would be desirable to have all the energy in 

the primary peak, which may be possible if a 40% outcoupler were available.   

For this laser, a beam quality of M2 = 1.4 was measured for both x and y axes, 

with a slight astigmatism as shown in Figure 26 (left).  Figure 26 (right) shows that the 

beam has a near-Gaussian spatial profile at focus, as measured with a 10 μm pinhole. 

 

     
Figure 26.  Cr2+:ZnSe laser beam quality measurement (left), and spatial profile (right) 

The spectral content of the pulses were measured with an ARC SpectraPro-750 

three-quarter meter monochromator.  The spectrum was sampled at 0.2 nm increments 

from 2000-2800 nm by using 2 mJ pulses and measuring the monochromator output on 

an RJ-735 energy head, which varied from 1-25 μJ.  During the experiment, the incident 

pulse energy was sampled with another RJ-735 energy head and the RJ-7620 ratiometer 

ratio output was used as the input to the SpectraPro GUI.  The measurements given in 

Figure 27 showing a 2.47 μm peak emission, 110 nm linewidth (full width at 1/e pulse 
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energy) and verifies there is no 2.095 μm pump present.  Additionally, the LEEDR-

predicted [1] atmospheric transmittance over a 2 meter path length is overlaid in black.  

 

  
Figure 27.  Spectra of gain-switched Cr2+:ZnSe laser output.  (left) Complete spectra 

showing no 2.095 μm pump present, (right) zoomed in to show peak emission and linewidth   

Significance 

Record Cr2+:ZnSe peak power has been achieved with this laser, as shown in 

Table 7.  Peak power is defined as the pulse energy divided by the full pulse width, and 

3.1 mJ pulse energy in a 60 ns pulse width yields a peak power of 52 kW, doubling the 

record held by Carrig’s 18.5 W average power gain-switched laser [49].  However, the 

peak power is higher if calculated directly, which is performed below the table. 

All gain-switched Cr2+ pulses in the literature have a temporal profile consisting 

of an impulse followed by a structured pulse.  As previously shown in Figure 25, the 

pulses produced by the laser in this work have a much higher proportion of energy in the 

initial 10 ns FWHM impulse, making it worthwhile to calculate the peak power directly. 
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Table 7.  Cr2+:ZnSe literature search, organized by peak power 

Pulse 
energy 

Pulse 
full 

width 

Slope 
efficiency 

(%) 
PRF Outcoupler 

(%R) 

Peak 
Power 

(W) 

Mode of 
operation Reference 

2 mJ * 3 or 5 - 99.5 - GS Gallian [65] 
- - - - - 12 CW Moskalev [69] 

14 mJ 120 μs 66 1Hz 66 117 GS Koranda [66] 
4 nJ 11 ps - 100 MHz - 364 ML Pollack [70] 

0.4 mJ 200 ns 50 10 kHz 90 2,000 GS McKay [48] 
375 pJ 100 fs - 200 MHz - 3,750 ML Sorokina [71] 
444 pJ 80 fs - 180 MHz - 5,556 ML Sorokina [72] 

2.6 mJ 100 ns 65 7 kHz 70 26,000 GS Carrig [49] 

3.1 mJ 60 ns 52 3 Hz 50 51,667 
(194,000) 

GS Present work 

Legend:  * = not published.  CW = continuous wave, GS = gain-switched, ML = modelocked 

 
 

The power Pi at each scope time step (τ = 0.2 ns) is calculated by fitting the entire 

scope trace to the expression 3.1 mJ = ∑𝑃𝑖 ∗ 𝜏.  The output of this method is presented in 

Figure 28, where the peak power of the pulse is calculated as 194 kW. 

 

 
Figure 28.  Peak power calculation for 3.1 mJ gain-switched Cr2+:ZnSe laser output  
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4.5 mJ and 5.0 mJ pulse energies were also observed from the laser, but upon 

further investigation they were not a single pulse.  Instead, they consisted of two ~50 ns 

pulses within a 1 μs timeframe.  This would not increase the peak power of the laser, and 

resulted from the pump drifting to a poor temporal profile.  The final observation from 

Table 7 is that mode-locked peak power is low despite a fs or ps pulse width, because the 

energy of individual pulses is very small (nJ or pJ).   

A nanosecond 2.05 μm Tm,Ho:YLF laser [

2.05 μm Laser Source Modifications 

48] used in the NLA tests is described 

in this section, however, the laser was designed for CW or kHz Q-switched operation 

which is not suitable for NLA testing.  Modifications are documented which allowed the 

laser to run in a single-shot mode or low PRF in order to satisfy the thermal diffusion 

constraint on PRF which is calculated later in this chapter.  

The laser crystal was cooled to -140 °C using a CryoTiger closed-cycle system 

and was pumped by a 792 nm water-chilled diode focused to a 450 μm spot radius on the 

crystal.  Losses in the cavity were modulated using a NEOS acousto-optic Q-switch, and 

cavity design details include a 20 cm one-way path length and an 80% outcoupler with a 

50 cm radius of curvature.  Characterization was performed on the laser resulting in a 

30% slope efficiency, lasing threshold of 4 W pump, 2 nm linewidth and a beam quality 

of M2 = 1.2.  The laser possessed a Gaussian spatial profile and 1.8 mrad divergence. 

The quasi-CW pumping scheme described here was implemented to give 10 Hz 

operation by implementing a Q-switched mode of operation that pumps the crystal for  

6 ms prior to each pulse with a variable repetition rate [73,74].  In this scheme, the pump 
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diode is modulated and a delay generator is triggered from the diode driver, which in turn 

opens the Q-switch after a variable delay.  

The delay before opening the Q-switch is based on Louchev’s work, which used 

an 8-level model to determine that a 0.7 ms delay allowed optimum relaxation from the 

Tm3+ 3H4 level to the 3F4 level and finally to the lasing Ho3+ 5I7 level [75,76].  Louchev’s 

empirical verification of the optimal delay is shown in the left graph of Figure 29, and the 

right graph presents a comparison of the resulting CryoTiger pulse energy in blue and 

pulse full width in red.   

 

  
Figure 29.  (left) Louchev quasi-CW pulse energy vs. delay Q-switch opening [75,76].  

(right) Comparison with data taken for CryoTiger laser, including pulse width  

The two materials investigated are Ge and GaSb, which are shown in 

Semiconductor Samples 

Figure 30.  

The optical, electrical and thermal properties of these samples are characterized in this 
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coating is studied and then surface quality is evaluated with measurements from a 

scanning electron microscope and atomic force microscope.  Finally, all material 

properties from measurements and literature values are summarized in Table 8. 

 

 
Figure 30.  Semiconductor samples: germanium (left) and gallium antimonide (right) 

Ge is an indirect bandgap material according to the band structure diagram shown 

in Figure 31 (left) where the effective bandgap is circled in red.  For an indirect bandgap 

material, theoretical predictions of β use the effective bandgap EΓ1, as β was found to be a 

factor of 2,000 times less at the indirect gap [77].     

 

  
Figure 31.  Band structure of Ge (left) and GaSb (right) [78] 
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Temperature dependent linear absorption 

In order to increase the accuracy of damage modeling, FTIR spectra for Ge and 

GaSb spectra were obtained from room to near-melting temperatures [79].  The goal of 

this effort was to capture the dramatic increase in linear absorption (α) that occurs due to 

lattice expansion and an increase in phonon vibration from thermally excited carriers.  

This phenomenon is named ‘thermal runaway’ because for CW illumination, if a sample 

starts to heat up, it will continue to increase in absorption and heat up further, triggering 

an exponential process that results in damage. 

As shown in Figure 32, linear absorption increases dramatically at temperatures 

above 450 K or 500 K for Ge and GaSb, respectively.  The dashed blue lines are 600 K 

spectra for both materials, showing that the effect is much stronger in Ge.  The bottom 

graph in Figure 32 presents α(T) for both materials at 2.5 μm where α is calculated using 

Eq. 24-26, where %T is normalized to account for Fresnel reflections: 

 𝐼(𝑧)
𝐼(0)� =

%𝑇
100

= 𝑒−𝛼𝑧 ln �
%𝑇
100

� = −𝛼𝑧 𝛼 = − ln �
%𝑇
100

� 𝑧�   (24/25/26) 

The material bandgap also changes, as shown by a rightward shift of the 

transmission edge from wave number k = 5500 cm-1 to k = 4500 cm-1 in Figure 32.  The 

change in material bandgap is presented in [79] and will change the nonlinear absorption 

by altering β.  While discussed here, Eg(T) and the resulting β(T) are not implemented in 

the finite difference model as the resulting Δβ was calculated to be less than the error bars 

on the final measurements. 

 



53 

 
Figure 32.  Temperature-dependent spectra for Ge (top) and GaSb (middle) [79].   The 

bottom chart is the resulting %T and α vs. temperature at 2.5 μm (k = 4000 cm-1). 

Free carrier density dependent recombination 

The level of nonlinear absorption will decrease if a significant number of free 

carriers recombine during a pulse.  Because free carriers relax at a rate which depends on 

the free-carrier density, this effect is studied as it can significantly affect free-carrier 

absorption, transmission and temperature rise leading to damage.  N-dependent 

recombination lifetimes τR(N) are determined here for inclusion into the FD model.   
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There are three processes that contribute to relaxation: Auger recombination, 

radiative recombination and Shockley-Read-Hall (SRH) recombination.  At the modeled 

carrier densities in these experiments (1016-1020 cm-3), SRH recombination [80,81] can be 

neglected as it is insignificant compared to either radiative or Auger recombination.   

When the recombination rates in Table 8 are used to calculate τR from Eq. 12, an 

important difference between indirect and direct bandgap materials is highlighted.  For an 

equivalent N, radiative recombination is suppressed in Ge as it must be phonon assisted, 

and resulted in τR(N) of 250-500 ns during the NLA testing.  This was several times 

longer than the 37-68 ns pulses in these experiments, and τR did not reduce NLA in Ge.  

However, the GaSb τR(N) of 45-65 ns was on the order of the pulse width, which reduced 

the NLA and the increased the LIDT as carrier recombination occurred during the pulse. 

Figure 33 graphs the recombination parameters both separately (dashed and 

dotted lines) and combined (solid lines) over a range of N.  As shown in Figure 33, 

radiative recombination dominates in GaSb until N is greater than 1020 cm-3 (damage-

level), while in Ge, Auger recombination dominates for any N greater than 1017 cm-3.  

This inhibits relaxation when compared to GaSb, causing a greater number of generated 

carriers which then increases free-carrier absorption and lowers the Ge LIDT.  The 

impact of this parameter is explored in the sensitivity analysis section of this chapter. 

Anti-reflective coatings 

The high indices of these materials result in significant Fresnel reflection at each 

surface, as calculated in Table 8 at the end of this section.  This could add a challenge to 

the nonlinear measurements – even if Ge has zero absorption at a given irradiance, only 

39.7% of the light will pass through, and for GaSb 43.6% will transmit. 
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Figure 33.  Carrier lifetime vs. free carrier density in Ge (left) and GaSb (right) 

In order to increase transmitted energy and prevent strong internal reflections 

from distorting the NLA measurements, anti-reflective coatings were applied to a portion 

of each sample. Aluminum oxide (Al2O3) is the amorphous form of sapphire and was 

selected for the coating material as its refractive index is close to the square root of the 

index of GaSb and Ge, which maximizes the efficiency of the coating.   

The single-layer coating thickness of 361 nm was calculated to give a quarter-

wavelength optical path length in order to maximize the destructive interference of the 

reflection.  The coating was applied to both samples at the University of Dayton using a 

150-watt RF plasma sputter deposition process from a 3" aluminum oxide target.  The 

final thicknesses of the coatings on the front and back surfaces were measured as 360.5 

and 361.3 nm, respectively.  The partially coated Ge sample is shown in Figure 34 and 

spectra before coating and after coating for both samples are given in Figure 35.   
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Figure 34.   Ge sample showing the coating on the bottom right quadrant 

  
Figure 35.   Transmission improvement with coated sample: Ge (left), GaSb (right) 

The spectra show that the index match was imperfect, as 95% transmission was 

predicted and 80% - 90% transmission was achieved.  However, this was a significant 

improvement over the uncoated samples and deemed acceptable for NLA testing. 

Pre-test inspection 

As specified in ISO standard 11254-1 [44], surface inspections before damage 

testing were performed on a Hitachi S-4700 Scanning Electron Microscope (SEM) and a 

Veeco NanoScope V atomic force microscope (AFM) at the AFIT cleanroom.  For the 

SEM, the reflective sample surfaces initially caused a lack of contrast but increasing the 

voltage to 18 kV improved the images.   
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Figure 36 shows SEM imagery for the Ge and GaSb samples and the scale is 

given in the lower right corner. 

 

     
Figure 36.   Pre-test SEM imagery of samples.  (left)  Ge 2000x view of the general surface. 

(right) GaSb 2,500x view of the general surface  

    AFM surface roughness measurements of the samples were also performed.  

The two parameters that describe surface roughness are the arithmetic average (Ra) of a 

number N of surface height deviations Zj and the root mean squared average of these 

deviations (Rq) [82]: 

 𝑅𝑎 =
1
𝑁
��𝑍𝑗�
𝑁

𝑗=1

                  𝑅𝑞 = �∑ �𝑍𝑗�𝑁
𝑗=1

𝑁
 (27/28) 

The results from the AFM measurement are presented in Table 8 and show that 

GaSb has slightly lower roughness despite the scratches visible in Figure 36.  However, 

both samples have an optical-grade finish – for example Ra = 2 nm is the ‘precision’ 

fabrication tolerance from CVI Melles Griot.  Optical, electrical and thermal properties 
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for these materials that are used in NLA and damage threshold modeling are presented in 

Table 8 for Ge and GaSb. 

Table 8. Material properties for Ge and GaSb samples 

Property Ge Ref GaSb Ref 

Thickness (mm) 3.05 M 1.06 M 

Index of refraction at 2.5 μm 4.06 [78] 3.749 [78] 

Fresnel loss per surface (%) 37 C 34 C 

Bandgap (eV) 0.8* [78] 0.726 [78] 

Surface roughness Ra parameter (nm) 1.73 M 1.46 M 

Surface roughness Rq parameter (nm) 2.21 M 1.87 M 

Melting temperature (°K) 1210 [78] 985 [78] 

Thermal conductivity  (W/cm°C) 0.58 [78] 0.32 [78] 

Density  (g/cm3) 5.32 [78] 5.61 [78] 

Specific heat (J g-1K-1) 0.31 [78] 0.25 [78] 

Thermal diffusivity  (cm2/s) 0.352 [78] 0.228 [78] 

Free carrier diffusivity  (cm2/s) 44 [85] 77 [86] 

Resistivity (Ωcm)   1865 M 2717 M 

Electron mobility µn (cm2/Vs) 3900 [78] 3000 [78] 

Hole mobility µp (cm2/Vs) 1900 [78] 1000 [78] 

Ionizing potential (eV) 7.9 [43] 5.03 [42] 

Intrinsic free carrier density (cm-3) ~1012 C ~1012 C 

Radiative recombination coefficient (cm3/s) 6.4x10-14 [78] 1.2x10-9 M 

Auger recombination coefficient (cm6/s) 1x10-30 [78] 5x10-30 [33] 

2.05 μm linear transmission from FTIR / 
spectrophotometer  (%) 

77.1 / 76.5 M 73.8 / 77.0 M 

2.05 μm transmission indicated by data (%) 72 M 71.5 M 

2.5 μm linear transmission from FTIR / 
spectrophotometer  (%) 

89.4 /89.3 M 82.1 / 85.6 M 

2.5 μm transmission indicated by data (%) 87 M 87 M 
Legend:  M = measured, C = calculated, * = effective gap 
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The last four rows of Table 8 present linear transmission measurements on the 

coated portions of the samples.  The FTIR values are taken from the same data as Figure 

35, and the ‘indicated by data’ values are the transmissions at the lowest irradiances in 

the NLA experiments.  There is a small difference between the FTIR and indicated 

values.  The tests were performed at different locations on the samples, and it is possible 

that the coating thickness (and therefore transmission) varied slightly across the surface.  

Additionally, periodic surface cleaning may have slightly degraded coating quality 

between sites. 

The calculations, analysis and design work that support the nonlinear absorption 

testing are presented here.  There are several factors that could possibly contribute to 

nonlinear absorption, and accurate measurement of nonlinear coefficients requires careful 

test design to avoid the effects that cannot easily be modeled.  In this section these effects 

are described, a sensitivity analysis of NLA parameters is presented and experimental 

procedures are outlined.     

Nonlinear Study 

Design of experiments 

Several factors are described here that could possibly contribute to nonlinear 

absorption.  Awareness of these factors is needed to either rule them out, create a test 

designed to avoid them or understand the process well enough to model the effect.   

Thermal diffusion:  Heat generated by the incident pulse influences absorption 

by changing the level of linear absorption, as reported in the Samples section.  Test 

results could be distorted if heat escapes during the pulse width or if residual heat builds 
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up in the spot area over repeated pulses.  To avoid these effects, test constraints for spot 

size and maximum laser PRF are calculated.  The distance that heat will diffuse within 

the time of the laser pulse is the definition of the diffusion length L in Eq. 29 [83]:    

 𝐿2 = 4D𝜏p            where           𝐷 = 𝜅
𝜌𝐶�  (29) 

In Eq. 29, D is diffusivity, κ is conductivity, ρ is density and C is heat capacity 

and Table 9 shows the calculations of the diffusion length for various pulse widths.  

Table 9.  Values used to determine thermal diffusion length in Ge and GaSb samples, using 
materials data from [78]  

 
pulse 
width 

conductivity 
κ (W/cm°C) 

density 
σ 

(g/cm3) 

specific 
heat C 
(J/g°C) 

diffusivity 
D (cm2/s) 

diffusion length 
L (µm) 

Ge 10 ps  0.58 5.32 0.31 0.352 0.03 
Ge 100 ns 0.58 5.32 0.31 0.352 3.8 
Ge 5 µs 0.58 5.32 0.31 0.352 27 

GaSb 10 ps 0.32 5.61 0.25 0.228 0.03 
GaSb 100 ns 0.32 5.61 0.25 0.228 3.0 
GaSb 5 µs 0.32 5.61 0.25 0.228 21 

 
 
 

If the spot size is much larger than L, there is negligible spread of heat in the pulse 

duration and the test will not be affected.  Table 9 shows that thermal diffusion can be 

ignored for the ps and ns pulses used in these experiments, but may need to be taken into 

account for μs and longer pulses, depending on the spot size.    

If testing is accomplished using a train of pulses, thermal diffusion dictates a 

maximum PRF that will allow heat to dissipate out of the spot area in between pulses.  
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This PRF is calculated in Table 10, using the spot radius ro, diffusivity D and diffusion 

time τd, which are related by the expression: 𝜏𝑑 = �𝑟𝑜
2

4
� 1
𝐷

  [84].  

Table 10.  Values used to determine maximum PRF in Ge and GaSb samples 

 
1/e2 spot radius 

(μm) 
diffusivity D 

(cm2/s) 
diffusion 
time τd  

max PRF to have 
period > 10x τd  (Hz) 

Ge 100 0.352 71 μs   1407 
Ge 700 0.352 3.5 ms 29 

GaSb 100 0.228 110 μs 913 
GaSb 700 0.228 5.4 ms 19 

 

The maximum PRF is calculated as a repetition rate whose period is ten times the 

thermal diffusion time, so that any heat generated can escape the area in between pulses.  

The spot sizes for the 3 Hz and 10 Hz experiments in this work were selected to allow a 

large safety margin with respect to thermal diffusion. 

Free-carrier diffusion:  In addition to recombining, free carriers generated by the 

incident pulse can diffuse out of the spot area, which would reduce FCA and therefore 

alter the test results.  Using the same method as thermal diffusion, a free carrier diffusion 

length L can be calculated as 𝐿2 = 4𝐷𝜏p where a Ge value of D=44 cm2/s was used from 

[85] and D=77 cm2/s was reported in [86] for GaSb. 

Table 11 shows that free carrier diffusion is much faster than thermal diffusion, 

and while it results in a larger diffusion length, it will still be insignificant for ps pulses.  

However, it may affect ns and longer pulses so care was taken to choose a spot size larger 

than the free carrier diffusion length.   
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Table 11.  Values used to determine free-carrier diffusion length in Ge and GaSb samples  

 
pulse 
width 

free carrier  
diffusivity (cm2/s) 

diffusion length 
L (µm) 

Ge 10 ps 44 0.4 
Ge 100 ns 44 42 
Ge 5 µs 44 297 

GaSb 10 ps 77 0.5 
GaSb 100 ns 77 56 
GaSb 5 µs 77 392 

 
 
 

Intrinsic free carrier absorption:  Modeling indicated that changes to absorption 

could occur due to intrinsic free carriers N0 if their density levels became greater than  

1015 cm-3, which could be possible if the sample is heavily doped.  The intrinsic carrier 

concentration is measured in this section to rule out this effect. 

Resistivity ρ of the samples was measured using a Fluke 81438 multimeter, a 

probe area A, sample thickness L, resistance R and the expression 𝑅 = 𝜌 𝐿
𝐴
.  Conductivity 

σ and electron/hole carrier concentration (n/p) are related by 𝜎 = 1
𝜌

= 𝑒�𝜇𝑛 ∗ 𝑛 + 𝜇𝑝 ∗ 𝑝� 

where μn is the electron mobility and μp is the hole mobility.  If the type of carriers is 

unknown, 𝜎 = 𝑒(𝜇 ∗ 𝑁0) which results in 𝑁0 = 𝜎/𝑒𝜇.  Calculations for the samples are 

shown in Table 12 for both n-doping and p-doping. 

The results from Table 12 show that the samples are of high purity with intrinsic 

carriers ~ 1012 cm-3.  The intrinsic carrier density could be used in the finite difference 

model to add accuracy to the nonlinear coefficient measurements.  However, a  

level < 1015 cm-3 will not affect the results as it is insignificant compared to the density of 

carriers generated by the pulse, which can reach 1020 cm-3.   
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Table 12.  Intrinsic carrier concentration calculation in Ge and GaSb samples  

if n-type  
      

 

path 
length 
(cm) 

probe 
area 
(cm2) 

resistance 
(Ω) 

resistivity 
(Ωcm) 

conductivity  
(Ωcm)-1 

electron 
mobility µn 

(cm2/V*S) 

carrier 
concentration 

(cm-3) 

Ge 0.305 0.36 1580 1865 5.36x10-4 3900 (9±2)x1011 
GaSb 0.106 0.36 800 2717 3.68x10-4 3000 (8±2)x1011 

        if p-type  
      

 

path 
length 
(cm) 

probe 
area 
(cm2) 

resistance 
(Ω) 

resistivity 
(Ωcm) 

conductivity  
(Ωcm)-1 

hole 
mobility µp 
(cm2/V*s) 

carrier conc 
(cm-3) 

Ge 0.305 0.36 1580 1865 5.36x10-4 1900 (2±0.5)x1012 
GaSb 0.106 0.36 800 2717 3.68x10-4 1000 (2.5±0.7)x1012 
 

 

Nonlinear refraction:  There are two ways that nonlinear refraction could affect 

the nonlinear measurements.  The first is that induced refraction could cause the beam to 

be defocused to the point that some of the pulse energy misses the detector, resulting in 

an inaccurate energy measurement.  This potential problem is alleviated by placing the 

energy head close to the sample exit surface in order to collect all transmitted energy.  

The second issue is that nonlinear refraction could focus or defocus the beam within the 

sample, varying the irradiance and therefore the level of nonlinear absorption.  

Refraction would have the greatest effect on the Ge sample as it was three times 

thicker than the GaSb sample.  Modeling was performed on the 2.05 μm Ge NLA data to 

rule out refractive effects, using nominal Ge values of nonlinear refraction  

n2=7x10-13 cm2/W, thermal lensing 𝑑𝑛 𝑑𝑇⁄ =396x10-6 K-1 and free carrier refraction 

σFCR=7x10-21 cm3.  The data points with the highest absorption in both the ns and ps data 

sets were first modeled without refractive effects, resulting in transmission of 33.3% and 
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31.3%, and temperature rise of 4 K and 0.04 K, respectively.  Then n2 and σFCR were 

modeled using the values above, and also after being increased by two orders of 

magnitude to account for any error in reported values.  Both data points changed by less 

than 0.1% transmission due to these variations.  𝑑𝑛 𝑑𝑇⁄  is a well known quantity and its 

addition changed the ns data set by 0.03% T and the ps data point was unchanged. 

Three-photon absorption: At 2.5 μm it is possible for three photons to combine 

to bridge the bandgap of these materials.  However, three photon absorption (3PA) is 

assumed to be negligible at the irradiances used in this study as there is a much lower 

probability associated with 3PA in a regime where TPA is possible [87]. 

Measurement method:  There are many ways to extract nonlinear coefficients, 

including measuring transmittance changes, sensing energy absorbed in a material, 

measuring focusing and defocusing as a function of irradiance, pump probe methods, 

two-photon fluorescence and finally photoacoustic, optoacuostic and calorimetric 

methods [88].  An irradiance scan method [47] that measures transmittance change was 

selected in order to accurately measure two coefficients (β and σ) by fitting the NLA data 

from two different pulse widths using the single-pulse FD model. 

 
Sensitivity Analysis 

The sensitivity of β to variations in pulse width and free-carrier recombination 

parameters is now discussed, which highlights the need for a dual β/σ fit.  β is sensitive to 

pulse width, as shown from simulations compiled in Table 13.  In the table, the β values 

given are fits to the same data set and the only variation is the pulse width, which varies 

the peak irradiance level used to fit β. 
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Table 13.  β sensitivity to pulse width variation at 2.5 μm 

Pulse width β fit for Ge β fit for GaSb 
8 ps (not a measured value) -22% -15% 
9.25 ps -8% -9% 
10.08 ps 0% 0% 
10.2 ps 1% 2% 
10.9 ps 8% 8% 

 
 
 

A sensitivity analysis for free carrier recombination time (τR) is now explored.  

Modeling indicates that changes in τR are insignificant at ps timescales, which is expected 

as τR ≫ τp for these materials in this case.  However, the variation could be significant for 

a nanosecond pulse as shown in Figure 37.  A 20% change in nonlinear transmission due 

to a 10x variation in τR could cause β to change by a factor of two or more, requiring 

accurate knowledge of this parameter for accurate ns testing.  In Figure 37, τp is 65 ns and 

the black line shows predicted transmission if τR = 10 ns.  The blue line shows that the 

absorption increases substantially if τR is greater than the pulse width at τR = 100 ns. 

 

 
Figure 37.  Sensitivity analysis to variations in τR for ns NLA testing 
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Finally, a sensitivity analysis was performed to predict β variation with changes in 

free carrier absorption cross section, as σ is not well known for Ge and GaSb.  As shown 

in Figure 38, β is sensitive to changes in σ at ps timescales.   

 

 
Figure 38.  Sensitivity analysis to variations in σ for ps NLA testing 

While Figure 38 shows a theoretical variation for Ge, an observation from 

measured GaSb ps data is that β = 144 cm/GW if σ is estimated as 2x10-17 cm2.  β is 

reduced by 50% when the data is refit with σ increased by 8x, i.e. 16x10-17 cm2, which 

highlights the need for a simultaneous technique to measure β and σ.   

Experimental procedure 

As shown in the sensitivity analysis section, any inaccuracy in laser beam 

measurement is magnified when fitting NLA coefficients.  As a result, the irradiance-scan 

apparatus was carefully aligned, calibrated and used according to the following 

procedures, referencing the experimental setup in Figure 39: 
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• Optimize the laser cavity to provide stable pulse energy 
• Measure the pulse width  
• The Labview GUI records pulse energy using an external trigger, which can give 

inaccurate results if the trigger delay is wrong.  Make sure the pulse energy does 
not change in external trigger mode 

• Use an IR focal plane array (FPA) to view the spatial profile, make sure the beam 
is Gaussian throughout the attenuator range of motion 

• Perform calibration scans in pulse energy with all combinations of ND filters 
• Using pinhole x & y scans, find the focal point and measure spatial profile  
• Translate the pinhole to the focal point and measure the 1/e spot radius 
• If the Rayleigh range is short, focus an IR FPA on the pinhole, remove the 

pinhole, then install sample and move until the sample is in focus.   
• Perform irradiance scans  
• Check sample transmission at low irradiance to make sure there is no damage 

resulting from the measurement 
• Make sure the laser has not changed during the test 

o Recheck time profile 
o Remove sample and perform calibration scans again 

 

 
Figure 39.  NLA and damage testing experimental setup 

As discussed in the literature review, there is a wide variation in reported β 

values.  While the majority of the variation is due to the exclusion of FCA effects, some 
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spot size.  These parameters are carefully defined here and these definitions are used for 

all calculations regarding Gaussian beams in this work. 

The energy contained in a laser pulse with Gaussian spatial and temporal profiles 

is defined as the integral of the irradiance profile over time and space in Eq. 30.  In  

Eq. 30, I0, x0, y0, t0 are defined as the peak irradiance, spot radius in the x dimension, spot 

radius in the y dimension and pulse half-width, respectively. 

 𝐸 = � � � 𝐼0𝑒
−� 𝑥𝑥0

�
2

𝑒−�
𝑦
𝑦0
�
2

𝑒−�
𝑡
𝑡0
�
2

𝑑𝑥𝑑𝑦𝑑𝑡
∞

−∞

∞

−∞

∞

−∞
 (30) 

If x0 and y0 are equal to a radius r0 defined at the 1/e level of peak irradiance I0, 

the integral relationship ∫ 𝑒−𝑎2𝑟2𝑑𝑥 = 1
2𝑎 √𝜋

∞
0  can be used [90].  In this expression, a is 

defined as either 1/r0 or 1/t0 and the result is doubled to account for energy in the range  

-∞ to ∞.  The energy in the laser pulse is now solved in Eq. 31. 

 
𝐸 = 𝐼0 ∗ 𝑟0√𝜋 ∗ 𝑟0√𝜋 ∗ 𝑡0√𝜋  

= 𝐼0 ∗ 𝜋𝑟02 ∗ 𝑡0√𝜋 
(31) 

The peak pulse irradiance can then be calculated from the pulse energy, 1/e radius 

of the spot size and 1/e radius of the pulse width using Eq. 32. 

 𝐼0 =
𝐸

√𝜋𝜏𝑝𝜋𝑟𝑜2 
 (32) 

A 10 μm molybdenum pinhole was used to measure the beam radius (ro) using 

raster scans along x and y dimensions in all experiments in this work.  Pulse width was 

measured using an autocorrelator for the ps laser source, and mid-IR fast photodetectors 

for the ns laser sources. 
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Chapter 4. Experiment and Results 
 

This chapter describes six experiments and their results which have advanced the 

state of the art in the modeling and measurement of nonlinear optical absorption leading 

to damage in semiconductors.  First, nonlinear absorption coefficients were measured for 

an indirect bandgap semiconductor (Ge) and a direct bandgap semiconductor (GaSb).  

Then, as nonlinear absorption is the primary damage mechanism at 2.5 μm, laser-induced 

damage thresholds due to nonlinear absorption are measured at two pulse widths.  

Finally, damage threshold modeling is performed to compare theory to experiment and 

also explore the pulse width dependence of the measured LIDT.  

In this section, four experiments and their results are presented which measure 

NLA coefficients in Ge and GaSb at two wavelengths in the mid-IR region for the first 

time.  In the pages below, the experimental setup, beam characterization, calibration and 

nonlinear absorption data are presented for both the picosecond and nanosecond NLA 

tests on Ge and GaSb.  An uncertainty analysis follows after β and σ are measured using a 

simultaneous fit method. 

Nonlinear Absorption Investigation 

Picosecond NLA experiment 

Two nonlinear absorption experiments were conducted on Ge and GaSb at both  

λ = 2.5 μm and λ = 2.05 μm using picosecond pulses.  The laser source was a 10 Hz 

Ekspla model PL2143 that produced 532 nm and 1064 nm wavelengths separately in two 

arms.  This output was sent to an Ekspla PG501 DFG2-10P frequency converter.   
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The AgGaS2 crystal in the frequency converter is pumped with simultaneous  

532 nm and 1064 nm pulses from the PL2143.  The 532 nm light is passed through a 

variable optical parametric generator stage (OPG) to down-convert the light which is then 

mixed with the 1064 nm pump in an angle-tuned difference frequency generation stage to 

achieve a 2.5 μm or 2.05 μm idler.  The overall experimental setup is shown in Figure 40. 

 

                          
Figure 40.  (left) Overall nonlinear experimental setup.  (right) close-up showing sample, 

channel A and channel B 

The beam was spatially filtered through a 500 μm pinhole to achieve a Gaussian 

profile and no focusing of the beam was required to see significant nonlinear absorption.  

The maximum pulse energy incident on the samples after spatial filtering was 30-35 μJ.  

Attenuation to achieve a range of irradiances across two orders of magnitude was 

accomplished with two neutral density filters that were flipped in and out of the beam for 

large increments and a computer controlled attenuator for fine control.  The optical 

densities of the two filters were 0.3 and 0.6. 

The computer controlled attenuator consisted of two optics; the first was either a 

polarizer for the 2.5 μm tests or a half wave plate for the 2.05 μm tests, and the second 
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optic was a polarizer oriented to pass only horizontally polarized light.  100% horizontal 

polarization was maintained throughout the optical path to prevent polarization-

dependent reflections from skewing the results.  This was important with the Thor labs 

BP208 8% reflective pellicle that was used to sample the pulse energy, which would only 

reflect if the incident beam was polarized perpendicular to the plane of reflection. 

Beam characterization 
Pulse width was measured using an autocorrelator, and beams were spatially 

characterized using a Boston Electronics IR photodetector mounted behind a 10 µm 

pinhole.  Pinhole scans along x and y axes were taken to measure the spatial profile.  

Measurements showing the pulse width and spot size at 2.5 and 2.05 μm are given in 

Figure 41 and Figure 42, respectively.    

The Ekspla laser output has a 11.5±0.6 ps pulse width based on a Gaussian fit to 

its autocorrelation [91], and the 2.05 μm and 2.5 μm output pulse widths are further 

reduced due to nonlinear conversion.  Using an Ekspla non-collinear autocorrelator, pulse 

width was measured using two-photon absorption in a Ge detector.  An autocorrelation 

will always be symmetric as it is the convolution of a pulse with itself – so this 

measurement will give an accurate pulse width but does not give a true temporal pulse 

shape.   

Assuming a Gaussian temporal profile, a deconvolution factor of √2 was used and 

the 2.5 μm pulse width was measured as 10.1±0.83 ps.  The same technique was used to 

measure the 2.05 μm pulse as 10.2±0.8 ps, as shown in Figure 41. 
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Figure 41.   Pulse width autocorrelations of 2.05 μm output (left) and 2.5 μm (right) [91]   

The beams had near-Gaussian spatial profiles, as shown in Figure 42.  For the  

2.5 μm NLA tests, a 734 µm spot radius at 1/e irradiance was measured, and a 584 µm 

spot radius was measured for the 2.05 μm NLA tests.   

 

    
Figure 42.   Beam characterization for the NLA tests showing x and y profiles, overlaid with 

a Gaussian profile.  (left) 2.05 μm beam with a 584 μm spot.  (right) 2.5 μm, 734 μm spot 

Pulse energy was calibrated using the reflection from a Thor labs BP208 pellicle 

beamsplitter to measure the total pulse energy that was incident on the sample.  With the 

sample removed, calibration data was taken at 2.05 μm and 2.5 μm for the four possible 

combinations of ND filters.  For each combination of ND filter and wavelength, two runs 
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were recorded.  After the NLA tests, these calibration values were used to calculate the 

percent transmission though the sample.  In some experiments the calibration varied with 

pulse energy, requiring a mathematical fit to the calibration curve.       

2.5 μm picosecond NLA  
The nonlinear absorption data collected using picosecond pulses at a wavelength 

of 2.5 μm are shown in Figure 43 for Ge (left) and GaSb (right).  The data consist of 16 

runs, and absorption obtained from each of the four combinations of ND filters is 

displayed as a different color. 

 

  
Figure 43.   NLA data and theory for Ge (left) and GaSb (right) at 2.5 μm.  The blue line is 
theory from the FD model, and the star is irradiance at the laser-induced damage threshold  

It must be noted that the nonlinear coefficients cannot be determined from data at 

a single pulse width, as there are numerous combinations of β and σ that result in an 

excellent fit.  This is shown in the title of Figure 43 (left) where the β and σ values are 

significantly different than the final ns-ps best fit.   
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2.05 μm picosecond NLA 
The nonlinear absorption data collected using picosecond pulses at a wavelength 

of 2.05 μm are shown in Figure 44 for Ge (left) and GaSb (right).  There were more 

losses in the optics leading to the sample at 2.05 μm, when compared to 2.5 μm.  This 

caused less data to be available at 2.05 μm as either channel A or channel B became 

noisy at pulse energies less than 0.5 μJ. 

 

 
Figure 44.   2.05 μm NLA data and theory for Ge (left) and GaSb (right) 

Nanosecond 2.05 μm NLA experiment 

This section describes the third NLA experiment, which was conducted on Ge and 

GaSb at a wavelength of 2.05 μm.  The laser source was a nanosecond Tm,Ho:YLF laser, 

which was modified to provide 10 Hz operation as described in Chapter 3. 

Experimental setup 
In the apparatus shown in Figure 45, attenuation was achieved using a half wave 

plate rotated relative to a fixed polarizer orientation, maintaining horizontal polarization 

throughout the optical path.  As in the ps tests, a diagnostic Channel A measurement was 
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focusing onto the sample using a coated lens.  Channel B measures transmission through 

the sample and the ratio of Channel B over Channel A gives the percent transmission for 

each pulse. 

NLA measurements were automated with a LabView GUI combined with a 

Newport PR50PP computer controlled rotation stage that drives the attenuator.  This 

allowed a series of 20-shot pulse energy averages to be recorded in a single run.  

 

 
Figure 45.   Portable NLA measurement apparatus.  In actual testing the focusing lens was 

replaced with a weaker focus and was located to the right of the picture 
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Beam characterization 
In the experiment, spot size was measured by conducting 10 μm pinhole raster 

scans along x and y axes, and the temporal profile was measured with an extended 

InGaAs detector.  As shown in Figure 46, the pulses used in ns testing are very well 

approximated by a Gaussian 74.1 ns pulse full width at 1/e irradiance, and the spatial 

profile was a perfect Gaussian in x and y axes.  The Gaussian pulse is modeled using its 

half-width at 1/e irradiance, which was 37 ns in this case.  

 

     
Figure 46.  2.05 μm Gaussian pulse profiles in time (left) and space (right) 

2.05 μm nanosecond NLA 
The nonlinear absorption data collected using nanosecond pulses at a wavelength 

of 2.05 μm is shown in Figure 47 for Ge (top) and GaSb (bottom).  For an identical range 

of irradiances tested, Ge experienced a much higher level of nonlinear absorption.    
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Figure 47.   2.05 μm ns NLA data for Ge (top) and GaSb (bottom) 

Nanosecond 2.5 μm NLA experiment 

The fourth NLA experiment was conducted on Ge and GaSb at λ = 2.5 μm using 

nanosecond pulses.  The experimental setup was the same as the ns 2.05 μm test 

described above, with the exception that the gain-switched Cr2+:ZnSe laser was used as 

the laser source.  The source was characterized to a 265 μm spot radius at focus with a 

near-Gaussian spatial profile, as shown previously in Figure 26 (right) on page 46.   

As described in the Gain-switched laser section, the spectral content of the pulses 

were measured with an ARC SpectraPro-750 three-quarter meter monochromator, 

yielding a 2.47 μm peak emission and 110 nm linewidth.  The ps experiment was 

performed using 2.50 μm pulses, so there is a slight difference in wavelengths.  β 

theoretically changes by less than 4% over the range 2.4-2.5 μm for either Ge or GaSb, 
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which is shown in Figure 48 (right).  This variation is acceptable as it is less than the 

error bars on the final β measurements. 

 

  
Figure 48.  Spectra of gain-switched Cr2+:ZnSe laser output (left), predicted β for Ge and 

GaSb in this range (right) 

Prior to taking data, the experiment was calibrated twice with no sample in place.  

The first calibration used an ND filter to increase the dynamic range of the experiment, 

and the second calibration was performed with no ND filter in place to maximize the 

energy incident on the sample.  The nonlinear absorption data collected using nanosecond 

pulses at a wavelength of 2.5 μm for Ge and GaSb is shown in Figure 49.   

Simultaneous fitting of NLA coefficients to ns and ps data 

The quantitative simultaneous fit method was performed on all NLA data in order 

to extract β and σ, which are difficult to separate using other methods.  This builds on the 

work in [89], where β and σ are measured using a self-consistent method on dual-pulse 

width NLA data.  In this section the fitting method is described, β and σ are measured at 

wavelengths of 2.05 μm and 2.5 μm, and an uncertainty analysis is conducted.  
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Figure 49.  2.5 μm NLA data for Ge (top) and GaSb (bottom)  

Figure 50 shows the 2.05 μm Ge ns NLA data (red) and ps NLA data (blue), 

along with the theoretical fitting lines obtained from the quantitative best fit pair of  

β = 71 cm/GW and σ = 4.9x10-16 cm2 values.   

 

 
Figure 50.  Ge 2.05 μm simultaneous ‘best fit’ of ns and ps data 
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The fitting method is shown in Figure 51, which contains six graphs that test for 

best fit over a wide range of β and σ values.  The top row fits both ns and ps data 

simultaneously.  The error metric for the middle row only considers the ns error and 

shows the resulting best fit for the ns data.  Conversely, the bottom row only tries to fit 

the ps data, and in most cases gives a poor fit for the ns data. 

The left column shows the resulting fit on the two data sets, and the right column 

shows regions where the fit is quantitatively assessed by testing roughly 100 pairs of 

values using the FD model.  The right column plots the inverse sum of squared error 

(sse), where regions of best fit are shown in red and a yellow star signifies the best 

quantitative fit. 

The ps data prefers a high β and a very small σ as shown in Figure 51 (bottom 

right), while the ns data cannot tolerate σ < 0.2x10-15 cm2 as shown in the middle right 

graph.  The best fit values of β and σ are revealed in the top row, showing that an 

excellent fit (within 1.5%) is obtained in the top left chart.  The range of β and σ that is 

tested is then decreased in order to increase the accuracy of the fit, as shown in Figure 52. 
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Figure 51.  Ge 2.05 μm fitting routine showing best fits to combined ns/ps data (top row),  

ns data only (middle row) and ps data only (bottom row).  In the right column, a yellow star 
indicates the best fit 
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Figure 52.  Ge 2.05 μm fitting routine with a tighter range to accurately determine 

parameters 

2.05 μm GaSb simultaneous fit 
Using an approach similar to the Ge case, Figure 53 shows the GaSb data taken at 

a wavelength of 2.05 μm for ns pulses (red) and ps pulses (blue), along with the 

theoretical fitting lines obtained from the quantitative best fit pair of β = 64 cm/GW and  

σ = 3.8x10-16 cm2. 

 

 

Figure 53.  2.05 μm GaSb simultaneous ‘best fit’ of ns and ps data.  The dashed line is the ns 
data modeled without recombination  
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The fit was obtained using the same method as Ge, but with one important 

difference – the radiative recombination parameter (Brad) is large enough to affect NLA, 

and it was varied to obtain the best fit.  It is clear from Figure 53 that the slope of the 

transmission curve changes when Brad is included, which is caused by free carrier 

relaxation during the pulse in Figure 53.  The best fit occurred at Brad = 1.2x10-9 cm3/s, 

and it was noted that the best β value did not change throughout the range of Brad tested. 

2.5 μm Ge simultaneous fit 
Using the gain-switched temporal profile and the same fitting technique as the 

2.05 μm Ge data, Figure 54 shows the 2.5 μm Ge ns data (red) and ps data (blue), along 

with the theoretical fitting lines obtained from the quantitative best fit pair of  

β = 68 cm/GW and σ = 9.0x10-16 cm2. 

 

 
Figure 54.  Ge simultaneous ‘best fit’ of ns and ps data 
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2.5 μm GaSb simultaneous fit  
For 2.5 μm GaSb, Figure 55 shows the calculated fitting lines obtained from the 

quantitative best fit pair of β = 119 cm/GW and σ = 6.5x10-16 cm2.  The same radiative 

lifetime of Brad = 1.2x10-9 cm3/s from the 2.05 μm data yielded an excellent fit. 

 

 
Figure 55.  GaSb simultaneous ‘best fit’ of ns and ps data  
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The peak irradiance for a Gaussian pulse was derived on page 68, and an 

expression for the peak irradiance of the gain-switched pulses used in these experiments 

was determined empirically on page 32.  The uncertainty expression requires several 

partial derivatives for energy, pulse width and spot radius.  These are given below for a 

Gaussian pulse in the top row, and for a gain-switched pulse in the bottom row: 
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Cross-variance is excluded as, for example, an error in pulse width will not induce 

an error in spot radius.  As shown in Table 14, the pulse width measurement had the 

highest uncertainty in all tests.  For example, in the ps tests, autocorrelations for 2.5 μm 

pulse widths performed on separate days were measured as 10.9 ps, 10.15 ps and 9.25 ps 

[91], yielding a pulse width of 10.1 ±0.8 ps.     

The incident pulse energy was measured on Laser Precision RJ-735 heads which 

are calibrated to 5% accuracy and a 0.5 μJ noise level.  The spatial profiles were 

measured with a 10 μm pinhole and the resulting error of 3-5 μm is calculated from the 

quality of the Gaussian fit at 1/e irradiance.  Using the propagation of errors method, the 

uncertainty of the peak pulse irradiance is calculated for each of the four experiments and 

is presented in Table 14.    
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Table 14.  Parameters used to calculate uncertainty in pulse peak irradiance 

Wavelength 
(μm) 

Pulse 
width 

Pulse 
width 
error 

Spot 
radius 

Spot 
radius 
error 

Pulse 
energy 

Energy 
error 

Peak 
irradiance 
(MW/cm2) 

±ΔI  
(MW/cm2) 

2.05 10.2 ps 0.8 ps 734 μm 5 μm 40.0 μJ 2.8 μJ 132 15 

2.5 10.1 ps 0.8 ps 584 μm 5 μm 25.2 μJ 1.5 μJ 130 13 
2.05 37 ns 3 ns 375 μm 5 μm 1030 μJ 52 μJ 3.6 0.35 
2.5 68 ns 6 ns 265 μm 3 μm 2080 μJ 110 μJ 22 3.4 

 
 

The second step is to determine how much the uncertainty in irradiance affects  

β and σ.  It is not possible to apply a propagation of errors method to the rate equations 

governing nonlinear absorption as they are nonlinear, coupled, and are partial derivatives 

in other variables.  The uncertainty range for β and σ is therefore measured by scaling the 

peak irradiance of the NLA data using the values in Table 14, and then refitting using the 

quantitative technique described in this section.  The simultaneous fit is sensitive to errors 

in the ns and ps data, yielding four combinations of errors that require testing: ± ns I and 

± ps I.  The re-fit for two of these combinations is shown in Figure 56.  

Figure 56 (left) shows an expected trend, as higher NLA coefficients (β and σ) 

result if the same absorption occurs at 90% of the original irradiance.  Finally, each 

quadrant of Table 15 gives the best-fit β and σ that result from scaling the NLA data 

across all four combinations of  ± ns I and ± ps I for each experiment.   
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 Figure 56.   NLA uncertainty analysis – refitting results after scaling NLA data over the 

error range.  (left) the irradiance for both ns and ps data sets is multiplied by 0.9,  
(middle) no variation, (right) irradiance for both data sets multiplied by 1.1  

The red values show little variation when ns and ps data are scaled at the same 

time, however the blue values show there is greater variation when one data set is scaled 

with the opposite sign.  

Table 15.  Results of uncertainty analysis for Ge and GaSb at 2.05 μm and 2.5 μm 

GaSb   2.05 μm ns I = 
 -10% 

ns I = 
0% 

ns I = 
+10% GaSb   2.5 μm ns I =  

-15.5% 
ns I = 
0% 

ns I = 
+15.5% 

ps I = -11% 70/4.3 β / σ 90/2.5 ps I = -10% 129/7.6 β / σ 148/5.0 

ps I =     0% - 64/3.8 - ps I =     0% - 119/6.5 - 
ps I = +11% 49/5.4 - 61/3.3 ps I = +10% 86/9.8 - 109/5.9 

Ge   2.05 μm ns I =  
-10% 

ns I = 
0% 

ns I = 
+10% Ge   2.5 μm ns I = 

 -15.5% 
ns I = 
0% 

ns I = 
+15.5% 

ps I = -11% 80/5.5 β / σ 45.7/9.4 ps I = -10% 69/12.4 β / σ 95/5.7 
ps I =     0% - 71/4.9 - ps I =     0% - 68/8.96 - 
ps I = +11% 96/3.0 - 61/4.9 ps I = +10% 60/12.5 - 57/9.6 

 

It was noted that the error range for the coefficients presented here is not 

symmetric, which is expected due to the nonlinear processes involved.  Comparisons of  

β and σ are made to literature values and theoretical trends in Chapter 5 Conclusions. 
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The culmination of this research was the measurement and modeling of single-

pulse laser-induced damage thresholds in these materials at 2.5 μm for the first time.  In 

this section, the experimental setup, characterization, calibration, damage morphologies 

and measured thresholds are presented for the damage tests on Ge and GaSb.  An 

uncertainty analysis is conducted on reported LIDT values, and finally pulse width 

dependent LIDT modeling is performed.  

Laser-Induced Damage Study 

The two experiments described below are performed at picosecond and 

nanosecond pulse widths.  The source for the ps experiment is the tunable Ekspla DFG 

which was also used in the NLA testing, and the source for the ns experiment is the gain-

switched Cr2+:ZnSe laser developed in this work.  While the coatings were applied for the 

nonlinear measurements, the damage threshold of the coating on the Ge sample was 

measured as an additional data point.  The LIDT of the GaSb coating was not measured 

as the sample possessed insufficient area to allow ps and ns damage grids while still 

leaving an undamaged portion for the NLA experiments. 

Picosecond damage experiment 

This section describes single-pulse surface LIDT tests that were conducted on 

GaSb, Ge and coated Ge at 2.5 μm using 10 ps pulses.  In the experiments at the 

AFRL/RXPJ IR Lab facility, the apparatus used to measure laser-induced damage 

thresholds is shown in Figure 57.   
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Figure 57.   (left) Overall LIDT setup   

The only difference from the NLA setup was that the laser output was passed 

through a Uniblitz VS25 shutter to allow single shot per site damage testing.  The beam 

was focused onto the sample using a 2.5” focal length coated ZnSe lens.  The lens had a 

tight focus and the spot radius was highly dependent on z position.  Accurate placement 

of the sample surface at focus was achieved by leveraging the power of the lens to image 

the sample on an IR focal plane array (FPA), as shown in Figure 58. 

 

   
Figure 58.   (left) Imaging sample onto IR FPA using pellicle to accurately position the 

sample at focus.  (right) Setup used during testing – the pellicle is flipped to reflect ~10% of 
the pulse energy to Channel A as a diagnostic 
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First, the pinhole was located at the beam waist using a series of raster scans and 

the pinhole was imaged on the FPA.  Then, the pinhole would be swapped with the 

sample and the sample z position would be altered until the sample was in focus.  The 

sample would become in or out of focus at a Δz of 100 μm (0.1 mm), allowing very 

accurate placement.  The process was aided using a soldering iron as a ‘thermal 

flashlight’ to bring out details on the pinhole or sample surface on which to focus. 

Beam characterization and calibration 
The pulse width was previously autocorrelated at 2.5 μm to be 10.1±0.8 ps, as 

shown in Figure 41 of the NLA section.  While the NLA tests used an unfocused beam, a 

higher energy density is required to induce surface damage and the beam in this test was 

focused using a 2.5” focal length lens.  The beam was spatially characterized using a  

10 μm pinhole scans along x and y axes (and various z positions) to measure beam 

quality, focus point and spot radius.  For the GaSb LIDT test, a 44 μm 1/e waist radius 

was achieved, the beam was slightly astigmatic, beam quality was M2 = 1.7 and it 

possessed a near-perfect Gaussian spatial profile, as shown in Figure 59. 

 

  
Figure 59.   Beam characterization for GaSb damage test: (left) M2 data,  

(right) beam profile measured in x and y axes 
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For the Ge test, a larger spot was desired.  An 8” focal length lens was substituted, 

characterized to a 150 μm spot and a test was attempted.  Unfortunately single shot 

damage was not achievable, so the 2.5” lens was replaced.  The lens was slightly 

misaligned when installed, which caused the spot radius to increase from 44 to 98 µm 

and beam quality to change.  However this was acceptable as the beam profile at focus 

was a near-perfect Gaussian and a larger spot radius was obtained, as shown in Figure 60. 

 

  
Figure 60.   Beam characterization for Ge damage test: (left) M2 data,  

(right) beam profile measured in x and y axes 
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is constant for each row and the number of pulses is constant for each column.  For each 

sample a rough test was conducted to find the approximate LIDT; then a final test at a 

higher fluence resolution was conducted.  For the germanium test, the final test plan is 

given in Figure 61, and photographs of the resulting damage grid for uncoated and coated 

samples are shown in Figure 62.  For the GaSb test, the test plan and a photograph of the 

resulting damage grid are shown in Figure 63. 

 

 
Figure 61.   Ge LIDT final test plan used for tests on the uncoated and coated Ge samples 

    
Figure 62.   Ge LIDT damage grids on uncoated (left) and coated (right) surfaces  
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Figure 63.   GaSb LIDT final test plan with higher fluence resolution and photograph of the 

damage grid    
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threshold charts.  The incident beam is horizontally polarized and corresponds to a left-

right orientation in all photographs. 

Ge uncoated damage morphologies 

 
 

      
Figure 64.   Evolution of 30 shot damage threshold in uncoated germanium 

   
Figure 65.   Evolution of 10 shot damage threshold in uncoated germanium 

    

Figure 66.   Evolution of single shot damage in uncoated germanium 

b) F=40 mJ/cm2, N=30 a) F=26 mJ/cm2, N=30 

b) F=40 mJ/cm2, N=10 a) F=26 mJ/cm2, N=10 

c) F=228 mJ/cm2, N=30 

c) F=228 mJ/cm2, N=10 

d) F=228 mJ/cm2, N=1 c) F=105 mJ/cm2, N=1 b) F=57 mJ/cm2, N=1 a) F=37 mJ/cm2, N=1 
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In Figure 66a, which is near the Ge single-shot LIDT of 24 mJ/cm2, a single 

vertical crack is noted in all of the damage sites.  It is thought to be a result of thermal 

stresses on the surface, and would lead to further damage with each pulse.   

Ge coated damage morphologies 

 

    

Figure 67.   Evolution of 30 shot damage in coated germanium 

    

Figure 68.   Evolution of 10 shot damage in coated germanium 

     
Figure 69.   Morphology near single (a) and ten (b) shot damage threshold in coated Ge 

d) F=82 mJ/cm2, N=30 

d) F=82mJ/cm2, N=10 

a) F=14 mJ/cm2, N=1 b) F=14 mJ/cm2, N=10 

c) F=45 mJ/cm2, N=30 b) F=37 mJ/cm2, N=30 a) F=31 mJ/cm2, N=30 

c) F=37 mJ/cm2, N=10 b) F=31 mJ/cm2, N=10 a) F=21 mJ/cm2, N=10 
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The coated Ge morphologies show a progression from both surface and coating 

damage to only coating damage at lower fluence/shot levels, with ejected fragments of 

coating visible in Figure 68c.  Very close to threshold (Figure 69), the coating was 

ablated slightly but did not crack or fracture.  This is a significant finding – that the 

coating has a lower damage threshold than the Ge surface.  The coating reduced the 

Fresnel reflection from the surface to 5% from 37%, allowing a greater irradiance to be 

absorbed in the skin depth of the sample, which could possibly lower the surface LIDT.  

However, as the coating could damage without underlying surface damage, it is clear that 

the coating has a lower damage threshold.  

GaSb damage morphology is similar to Ge, except that it requires a higher fluence 

level to achieve damage. 

 

    

Figure 70.   Evolution of 10 shot damage in uncoated GaSb 

 
Figure 71.   Example of single shot damage in uncoated GaSb 

d) F=1288 mJ/cm2, N=10 c) F=148 mJ/cm2, N=10 b) F=90 mJ/cm2, N=10 a) F=79mJ/cm2, N=10 

   F=148 mJ/cm2, N=1 
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Post-damage SEM inspection 
A post-damage inspection for the picosecond damage tests was conducted on a 

Hitachi S-4700 Scanning Electron Microscope (SEM).  Single shot damage sites were not 

visible on the SEM, as there was not enough surface scarring to create a charge 

differential.  However, excellent images of the multiple shot damage sites were obtained. 

Fringing oriented perpendicular to the direction of polarization was noted in the 

30-shot damage sites.  Using the SEM imagery, the period of fringing was measured as 

2.3 μm in both Ge and GaSb, which nearly corresponds to the incident wavelength of  

2.5 μm.  This structure has been observed in the literature [92], and is likely a result of an 

interference pattern generated between the incident beam and a surface scattered wave.  

In this case, the surface scattered wave would originate from the reflection of the incident 

pulse with damage from prior shots, which reinforces the structure with each pulse. 

Figure 72 shows the periodic structure in a GaSb 30 shot damage site, which 

shows clear evidence of melting – there are no jagged edges from thermo-mechanical 

stress and also no evidence of ablation.   

 

 
Figure 72.  SEM imagery for the GaSb sample – 30 shot damage morphology.   

(left) 1800x view of the site.  (right) 13,000x view showing detail of the periodic structure 
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A 30-shot coated Ge damage site is shown in Figure 73.  The inset shows jagged 

edges where the coating has fractured, and also the periodic structure.  In the final 

15,000x zoom image, 200 nm diameter molten sputter ejected from the damage site is 

visible – more evidence the multi-shot damage was dominated by thermal mechanisms. 

 

 

 

 

 

 

 
Figure 73.  SEM imagery for the Ge coated sample – 30 shot damage morphology.  (inset) 

800x view of entire damage site.  (left) 6000x view of the damage site edge showing periodic 
structure, molten sputter and clean line where coating is removed.  (right) 15,000x view 

showing detail of molten sputter surrounding the damage site 

Figure 74 shows an uncoated Ge sample, with a 100 μm radius circle drawn in 

black and offset from the site to show the damage spot size.  This is nearly an identical 

match to the 98 μm 1/e radius of the incident beam. 
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Figure 74.  SEM imagery for the Ge uncoated sample – 400x view of 30 shot morphology   

Picosecond damage thresholds  
Picosecond damage threshold measurements are presented in this section for 

uncoated GaSb, uncoated Ge and coated Ge.  Using the ISO-11254 method shown in 

Figure 9, the single shot threshold for GaSb is 93 mJ/cm2 and the ten shot threshold is  

65 mJ/cm2 as measured in Figure 75. 

 

 
Figure 75.   ps LIDT’s for uncoated GaSb  

The uncoated Ge single shot LIDT is 24 mJ/cm2, the ten shot LIDT is 18 mJ/cm2 

and the 30 shot LIDT is 15 mJ/cm2 as shown in Figure 76 (top).  Finally, for the 
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aluminum oxide coating on the Ge sample, the single shot LIDT is reduced to 11 mJ/cm2, 

while the ten and thirty shot LIDT coincide at 10 mJ/cm2 as shown in Figure 76 (bottom).    

 

 
Figure 76.   ps LIDT’s for uncoated Ge (top) and coated Ge (bottom)   

As expected, the damage threshold decreases with an increased number of shots, 

as undetectable fractures from previous shots will absorb increasing amounts of energy, 

causing the damage to become visible.  In the ps experiment, eight ps LIDT’s were 

measured, and an LIDT uncertainty analysis follows after the ns damage test section. 

 
Nanosecond damage experiment 

In this experiment, single-pulse surface LIDT tests were conducted on GaSb, Ge 

and coated Ge at 2.5 μm using ns pulses from the gain-switched Cr2+:ZnSe laser.  The 

method used for the ps damage testing was followed, with an important exception.  The 

pulse-to-pulse energy from the Schwartz Cr,Th,Ho:YAG pump laser has a ±30% 
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variation, which means the gain-switched laser has a similar variation.  Therefore, the 

experiment was calibrated using a different method than the ps damage tests, and also 

ten-shot and thirty-shot damage thresholds would not be possible to assess due to this 

variability.   

In order to accurately measure the LIDT, the pulse energy of every incident pulse 

was recorded using the pellicle beam splitter and an energy head.  Pinhole scans along x 

and y axes were taken to measure a perfect Gaussian 136 μm spatial profile of the beam 

after focusing with a coated f = 15 cm lens.  

For each sample tested, the test plan and photograph of all test sites are shown in 

Figure 77 through Figure 79.  In the test plans, a red circle indicates that the site was 

found to be damaged, while a black circle shows that no damage was present.  The text 

inside the circles is either the fluence from a single pulse (J/cm2), or ‘20x’ which 

indicates that 20 pulses at maximum fluence were incident to delineate the test grid.   

 

 

   
Figure 77.  Uncoated Ge test plan (left) and photograph of damage test (right).  The number 

inside the test plan circles is the single pulse incident fluence in J/cm2 

1.8 2.0 2.1 1.9 2.0 1.8 2.1 1.9

20x 2.0 2.1 2.1 1.9 1.6 1.8 1.6 1.9

20x 1.4 1.7 1.7 1.7 1.7 1.7 1.2 20x

20x 1.4 1.9 1.5 1.9 1.0 1.8 1.9 20x

20x 2.0 2.0 2.0 1.9 1.9 1.9 1.8 20x

20x 2.0 2.4 1.8 2.2 1.1 2.1 1.7 20x

20x 2.4 2.1 2.1 2.4 2.2 2.2 2.4 20x

20x 2.1 2.7 2.6 2.7 2.5 2.8 2.6 20x

20x 3.1 3.0 2.8 1.4 3.0 2.9 2.8 20x

20x 2.9 2.9 3.1 3.0 2.6 3.0 3.0 20x

20x 3.1 3.1 3.1 2.7 3.0 2.7 3.0 20x

20x
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Figure 78.  Coated Ge test plan and photograph of damage test  

    
Figure 79.  GaSb test plan and photograph of damage test  

In contrast with the ps damage tests, GaSb damaged at a lower fluence with ns 

pulses, which will be further discussed in Chapter 5. 
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Ge damage morphology  
  As in the ps damage tests, damage was defined as any visible surface 

modification visible using a Nikon AZ100 bright-field optical microscope.  In the 

morphology examination, damage statistics were collected for each fluence level (F) and 

number of shots (N).  In the ns tests, the Ge damage morphology did not exhibit dramatic 

scarring or boiling, only surface melting that does not have good contrast on the 

microscope capture images, as shown in Figure 80a.  Melting was easily detected by 

varying the fine z-axis control on the microscope as any surface modification would 

defocus at a different point than the sample surface.   

 

   
Figure 80.   Examples of single and multiple shot damage in uncoated germanium  

For coated Ge, the damage sites in Figure 81 show a progression from both 

surface and coating damage to only coating damage at lower fluence levels.  At fluences 

very close to the threshold of 1.25 J/cm2 (Figure 81a), the coating would be ablated 

slightly but not crack or fracture.  This confirms the observation from the ps coated 

damage test that the coating has a lower damage threshold than the material surface. 

 

a) F=3.1 mJ/cm2, N=1 b) F=3.1 J/cm2, N=20 
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Figure 81.   Evolution of single shot damage in coated germanium 

GaSb damage morphology  
The lower melting point of GaSb caused greater surface modifications than found 

in Ge, as shown in Figure 82 for single shot damage sites. At a fluence near the threshold 

of 1.75 J/cm2, a series of thermal fractures was visible in Figure 82a which then proceed 

to smoothly melt at higher fluences. 

 

    
Figure 82.   Evolution of single shot damage in uncoated GaSb 

Nanosecond damage thresholds  
Nanosecond damage threshold measurements are presented in this section for 

uncoated GaSb, uncoated Ge and coated Ge.  For uncoated GaSb, Figure 83 (top) 

displays the actual binary damage data (clean or damaged) for each incident pulse 

fluence.  In the bottom of the figure the shots are binned into 90 mJ divisions to allow a 

damage probability to be assigned to each division.  Using the ISO 11254-1 method, the 

GaSb single shot LIDT for 68 ns pulses is determined to be 1.75 J/cm2. 

d) F=3.0 J/cm2, N=1 c) F=3.0 J/cm2, N=1 b) F=2.4 J/cm2, N=1 a) F=1.3 J/cm2, N=1 

a) F=1.9 J/cm2, N=1 b) F=2.7 J/cm2, N=1 c) F=2.9 J/cm2, N=1 d) F=3.2 J/cm2, N=1 
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Figure 83.   ns LIDT for GaSb   

Figure 84 (top) shows the single shot LIDT for uncoated Ge to be 1.94 J/cm2, and 

the bottom graph measures the single shot LIDT for the aluminum oxide coating on Ge as 

1.25 J/cm2. 

 

 
Figure 84.   Ge ns LIDT for uncoated surface (top) and coated surface (bottom)  
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Uncertainty analysis 

The uncertainty in reported LIDT fluence is calculated using the same 

propagation of errors method as the NLA coefficients.  The fluence F of a laser pulse is 

defined as 𝐹 = 𝐸/𝜋𝑟2 and will have uncertainties in pulse energy and measured spot 

radius.  The incident pulse energy is measured on Laser Precision RJ-735 heads which 

are calibrated to 5% accuracy and a 0.5 μJ noise level.  The spatial profiles were 

measured with a 10 μm pinhole and the resulting error of 3-6 μm is calculated from the 

quality of the Gaussian fit at 1/e irradiance.  The expression for uncertainty in fluence ΔF 

that results from these errors is defined below, along with the required partial derivatives 

for energy and spot radius:  
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As in the NLA analysis, cross-variance is excluded as an error in pulse energy 

will not induce an error in spot radius.  Using the propagation of errors method, the 

fluence uncertainty ΔF is calculated for each experiment and is presented in Table 16. 

Table 16.  Parameters used to calculate uncertainty in LIDT fluence 

Material /  
Pulse width 

Spot 
radius 

Spot 
radius 
error 

LIDT 
pulse 

energy 

Energy 
error 

LIDT 
Fluence F ± ∆F 

Ge      / 10.1 ps 98 μm 6 μm 7 μJ 0.5 μJ 24 mJ/cm2 3.3 mJ/cm2 
GaSb / 10.1 ps 44 μm 3 μm 6 μJ 0.5 μJ 93 mJ/cm2 16 mJ/cm2 
Ge      /    68 ns 136 μm 5 μm 1.13 mJ 62 μJ 1.94 J/cm2 0.18 J/cm2 
GaSb /    68 ns 136 μm 5 μm 1.02 mJ 58 μJ 1.75 J/cm2 0.17 J/cm2 
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Modeling of damage thresholds 

In this section, the scaling of LIDT with pulse width is explored along with the 

prediction of temperature rise from absorption leading to surface melting.  The FD model 

is used to predict single pulse LIDT due to linear and nonlinear absorption, and the 

variation due to α(T) is also studied.   

Pulse width scaling 
Pulse width (τp) scaling of laser-induced damage thresholds (LIDT) typically 

possess a τp
 x  dependence where x ranges from 0.4 – 0.5 [35].  When using a τp

 0.5  value 

of pulse width scaling, the Ge τp = 10 ps LIDT measurement (0.024 J/cm2) is in excellent 

agreement with the τp = 68 ns LIDT (1.94 J/cm2 vs. 1.85 J/cm2 predicted).  Using this 

method, GaSb had a τp
 0.34dependence on pulse width.  When using damage thresholds, 

this relationship shows why the LIDT pulse width is a critical detail, as scaling effects 

could be detrimental to a design.  Pulse width scaling of laser-induced damage is 

modeled from linear and nonlinear absorption in the next two sections, which show 

significant differences between the two mechanisms. 

FD modeling of linear absorption leading to damage 
In order to compare the effects of linear and nonlinear absorption, LIDT are first 

modeled where linear absorption is the only source of free carriers that induce a 

temperature rise.  This case is not experimentally tested.  An iteration routine was used 

with the FD model to find the pulse fluence that will cause surface melting.  The pulse 

width was varied from fs to μs, and the laser-induced damage threshold (LIDT) predicted 

from linear absorption is graphed in Figure 85.  The threshold curve is dominated by the 

free carrier relaxation time of τR = 10 ns (10-8 s) in this case.  The inset of Figure 85 
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illustrates this recombination effect for fused silica, where the dominant τR is much 

shorter at 0.5 ps. 

 

 
Figure 85.  Predicted LIDT fluence from FD model for linear absorption.  Inset shows LIDT 

variation for Si [35] where the dominant recombination time is 0.5 ps [36]  

For pulse widths shorter than τR, no carriers can relax during the pulse and the 

surface melts at a constant energy level, according to energy = mass * specific heat * ΔT.  

If the pulse width is greater than τR, free carriers can relax during the pulse, requiring 

more energy to melt the surface as the pulse width increases.   

FD modeling of nonlinear absorption leading to damage 
The LIDTs from nonlinear absorption are graphed in Figure 86 over the same 

range of pulse widths.  There are three factors explored below which cause the LIDT due 

to nonlinear absorption to vary substantially from the linear absorption graph.   
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The first factor is based on nonlinear vs. linear absorption.  For a given fluence 

level, peak irradiance rises as the pulse becomes shorter, and NLA ~ I2 while α ~ I.  This 

allows the LIDT to continue to decrease with shorter pulse width, while LIDT due to 

linear absorption remains constant if τp is shorter than the dominant recombination time.   

 

 
Figure 86.  Nonlinear absorption - predicted LIDT fluence for Ge and GaSb using  

N-dependent carrier recombination.  Dashed lines = no α(T), solid lines = α(T) included  

The second factor is that free carrier dependent τR values are implemented, which 

eliminates the sharp bend in the curve from Figure 85 as the impact of τR gradually 

becomes significant.  The third factor is the implementation of temperature dependent 

linear absorption.  The variation due to α(T) is shown in Figure 86 where the solid lines 

include the effect and the dashed lines do not.  It is predicted that α(T) reduces the LIDT 

only for pulses greater than 100 ps in duration, and can reduce the LIDT by a factor of 

two for a μs pulse width.  As shown in Figure 85, the effect of linear absorption decreases 
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with longer pulse widths as recombination reduces the number of free carriers.  When 

α(T) is modeled, this trend is countered as ever-increasing numbers of free carriers are 

generated from α(T) as the temperature rises.  Pulse width scaling of LIDT using the 

NLA coefficients measured in this work are presented along with experimentally 

determined ns and ps thresholds in Chapter 5.  
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Chapter 5. Conclusions 
 

This chapter summarizes the main results of this research effort, draws general 

conclusions in the areas of mid-IR laser design and effects analysis, and provides 

recommendations for future work in these fields. 

This research measured the nonlinear absorption coefficients and laser-induced 

damage thresholds (LIDT) of Ge and GaSb.  Additionally, it was necessary to develop a 

pulsed Cr2+:ZnSe 2.5 μm wavelength laser to conduct these measurements, as prior lasers 

at this wavelength possessed insufficient pulse energy to induce nonlinear absorption or 

damage these materials.  Using a Brewster-cut gain medium, a ns pulse width, 3.1 mJ 

pulse energy laser was created with record peak power.  For the first time, NLA 

coefficients in Ge and GaSb at 2.05 μm and 2.5 μm were measured and modeled using 

the single-pulse finite difference model developed in this work.  Finally, those NLA 

coefficients were used to predict damage thresholds, which were experimentally tested at 

2.5 μm, also for the first time.  The experimental results from this research are given in 

Research Summary  

Table 17 and Table 18.  In Table 17, the uncertainty bounds are the maximum variation 

in β and σ that resulted from the uncertainty analysis that was presented in Table 15.  

Table 17.  NLA coefficients measured in Ge and GaSb at two mid-IR wavelengths 

 Ge GaSb 
Wavelength (nm) 2050 2500 2050 2500 
β (cm/GW) value 

 (lower bound – upper bound) 
71  

(45-96) 
68 

 (57-95) 
64  

(49-90) 
119  

(86-148) 
σ (x10-16 cm2) value 

 (lower bound – upper bound) 
4.9  

(3.0-9.4) 
9.0  

(5.7-12.5) 
3.8  

(2.5-5.4) 
6.5  

(5.0-9.8) 
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Table 18.  Single-shot and multiple-shot LIDT measured in Ge and GaSb at a wavelength of 
2.5 μm, including key parameters 

Sample Pulse  
width 

Number 
of shots 

(N) 

LIDT 
(mJ/cm2) 

spot 
radius at 
1/e (μm) 

Peak 
irradiance at 

LIDT 
(GW/cm2) 

Pulse energy 
at LIDT (μJ) 

GaSb uncoated 10.1 ps 1 93 ± 16 44 4.97 5.5 
GaSb uncoated 10.1 ps 10 65 ± 16 44 3.36 3.7 

Ge uncoated 10.1 ps 1 24 ± 3.3 98 1.24 6.8 
Ge uncoated 10.1 ps 10 18 ± 3.3 98 0.932 5.1 
Ge uncoated 10.1 ps 30 15 ± 3.3 98 0.776 4.2 

Al2O3 coating 
on Ge 10.1 ps 1 11 ± 3.3 98 0.569 3.1 

Al2O3 coating 
on Ge 10.1 ps 10 & 30 10 ± 3.3 98 0.517 2.8 

GaSb uncoated 68 ns* 1 1750 ± 170 136 0.015 1020 
Ge uncoated 68 ns* 1 1940 ± 180 136 0.017 1130 

Al2O3 coating 
on Ge 68 ns* 1 1250 ± 180 136 0.011 730 

* gain-switched pulse 

 
 

The NLA coefficients reported in 

Nonlinear Absorption Conclusions 

Table 17 are now compared to literature values 

and theoretical predictions.  Figure 87 compares experimentally measured Ge two-photon 

absorption coefficients with literature values, and the Van Stryland prediction is overlaid 

as the green curve.  The values from this work are in excellent agreement with the 

prediction and are in reasonable agreement with the only literature value that also used 

free-carrier absorption in their NLA fit (Rauscher 1997).   
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         Figure 87.   Ge dispersion of β in present work and literature values, with a theoretical 

overlay presented in green 

For GaSb, the two photon absorption coefficients are compared in Figure 88, and 

the 2.5 μm value is in excellent agreement with the Van Stryland prediction.  There is a 

discrepancy between the GaSb 2.05 μm value of β = 64 cm/GW and the Van Stryland 

prediction of 111 cm/GW.  This variation may be explained with a GaSb full band-

structure prediction created by SRI International which predicts a 2.05 μm β of  

41 cm/GW, which is closer to the value reported in this work.  This model is overlaid as 

the blue line in Figure 88.  It is noted that neither model provides an excellent fit to both 

data points; however the uncertainty range of each model may intersect the uncertainty 

range of the reported values.   

   The Akmanov 1996 GaSb study at 2.94 μm used an estimate of σ = 2x10-17 cm2 

which is over an order of magnitude smaller than the values reported in this work 

(3.8x10-16 cm2 and 6.5x10-16 cm2).  This results in a much higher fit to β, which is 
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expected due to the inverse relationship between β and σ that is visible in the error 

surfaces of Figure 51 on page 81. 

 

 
Figure 88.   GaSb dispersion of β in present work and literature values, with a theoretical 

overlay presented in green and blue 

The σ values reported for Ge and GaSb agree with the trend of one wavelength 

scaling theory, whose comparison is shown in Figure 89.  In this theory, absorption due 

to free carriers (α) is given as 𝛼(𝜆) = 𝜆2𝑁𝑒3

4𝜋2𝑐3𝑛𝑜𝜖𝑜𝑚𝑒𝑓𝑓
2 𝜇

 [26], showing that σ is proportional 

to λ2, as α is directly proportional to σ in the expression α = σN.   

This theory is now applied to the σ values obtained in this work, where σ is 

predicted to rise by a factor of 2.52 – 2.052 = 2.04.  There is good agreement in the 

measured values between 2.05 and 2.5 μm, as Ge σ rises by a factor of 1.73 and GaSb  

σ rises by a factor of 1.65.   
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Figure 89.  Dispersion of σ for Ge (left) and GaSb (right), including theoretical trend lines 

and a literature value  

Another study [25] calculates σ(λ) using second order perturbation theory to show 

that the variation of free carrier absorption with wavelength has higher complexity, as 

shown for InAs and HgCdTe in Figure 90. 

 

  
Figure 90.  Predicted dispersion of free carrier absorption with wavelength in InAs (left) 

and HgCdTe (right)  [25] 
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Figure 91

Laser-Induced Damage Study Conclusions 

 presents measured single pulse LIDT’s (ps and ns) for these two 

materials overlaid with predicted thresholds from the FD model.  These predictions use 

no fitting parameters – only measured NLA coefficients, measured beam parameters, 

carrier density dependent recombination times from the literature and measured 

temperature dependent linear absorption.  The calculated error bars are not shown as they 

are smaller than the symbol shapes due to the log-log presentation of Figure 91.   

 

 
Figure 91.  Predicted LIDT fluence for Ge and GaSb using measured NLA coefficients, 

markers indicate experimentally determined LIDT fluences 

The range of pulse widths that are modeled in Figure 91 are bounded by free 

carrier diffusion and dielectric breakdown, which are effects not included in the FD 

model.  Using free carrier diffusion values from Table 11, a diffusion length of 100 μm 
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was selected as the constraint on the longest pulse width modeled.  This corresponds to τp 

= 500 ns for Ge and τp = 350 ns for GaSb.  As the pulse width is decreased, eventually a 

transition to dielectric breakdown will occur.  The shortest pulse width modeled 

corresponds to the predicted Keldysh theory transition to dielectric breakdown [37,38] 

using Eq. 11, which was on the order of τp = 300 fs for these materials.  

The LIDT values are in good agreement with theory with one exception - at a ps 

pulse width, Ge damaged at a fluence level five times less than predicted.  Possible 

causes for this discrepancy include field enhancement and thermalization, but not 

dielectric breakdown, which is predicted only if the irradiance were increased by an order 

of magnitude.  The incident electric field at surface defects is known to be locally 

enhanced at a rate proportional to n4 [83], giving Ge a 35% greater enhancement over 

GaSb.  This calculated enhancement is only based on the difference in n, and the 20% 

greater surface roughness of Ge given in Table 8 will further magnify the field. 

While the hot carrier thermalization of Ge was not modeled as it was beyond the 

scope of this study, its non-equilibrium phonon decay time of 4 ps could certainly 

contribute towards a lower LIDT for a 10 ps pulse width [95]. 

For both pulse widths, the aluminum oxide coating on the Ge sample had a lower 

damage threshold than the uncoated sample.  However, this simple coating was optimized 

for transmission and not for high fluence levels.  There are several ways to engineer a 

coating to increase the damage threshold, as detailed in the results of the annual coating 

competition held at the Boulder Damage conference.  In 2008 the winner had an LIDT of 

125 J/cm2 [93] for 5 ns pulses, compared with a best-of-class LIDT of only 1 J/cm2 for 
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180 fs pulses in the 2009 competition [94], which further reinforces the pulse width 

scaling theory for LIDT.  

The nonlinear absorption and damage study could be expanded by performing 

experiments at additional pulse widths and wavelengths.  This would allow a better 

understanding of the scaling properties and modeling efforts that describe two photon 

absorption [

Future Work 

23,24], free carrier absorption [25,26] and single-pulse laser-induced damage 

thresholds [35].  Testing damage thresholds at pulse widths of 100 fs, 1 ps and 1 ns 

would allow the transition to dielectric breakdown to be further studied and comparisons 

made between its onset in an indirect bandgap vs. direct bandgap material. 

The pulse energy of the gain-switched Cr2+:ZnSe laser is currently limited by the 

damage threshold of the optics, as one of the optics has started to damage at 13 mJ pump 

energy, which corresponds to a fluence of 2 J/cm2.  If the resonant mode size were 

expanded using custom optics, the pump mode size could be increased.  This would in 

turn decrease the fluence levels, which would allow pump pulse energies closer to the  

74 mJ maximum to be explored.  Another limitation to pump power is Cr2+:ZnSe crystal 

size, whose maximum dimension is currently limited by the diffusion doping process.  If 

the hot pressed ceramic method of crystal manufacturing [65] is further refined, larger 

crystals, mode areas and pulse energies are possible.  Finally, wavelength tunability could 

be explored using a grating, which would minimize the cavity loss for a narrow 

bandwidth of frequencies.   
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