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Abstract

Launched in 1996, EXPRESS (Execution and Prioritization of Repairs Support

System) is a program integral to the Air Force reparable supply chain. Daily, EX-

PRESS relies on a number of data sources and individual modules like the Support-

ability Module to determine which necessary repairs can and should be made. The

Supportability Module examines the prioritized list of repairs and checks four con-

straints in order to decide whether each repair can be made given current resources.

According to the logic of the module, a single constraint failure means that subse-

quent resource checks are not made before evaluating the next repair. Unfortunately,

this leads to missing observations in the EXPRESS data table, ultimately masking

potential resource issues and possibly contributing to extended mission capability is-

sues. In this study, a time series analysis via explanatory autoregressive distributed

lag (ARDL) models was conducted using EXPRESS and MICAP (mission capability)

data to examine possible connections between missing constraint values in the EX-

PRESS table and future MICAPs. These models suggested that up to 0.793 MICAP

days are added for each additional parts failure missing in the EXPRESS table. Addi-

tionally, the presence of significant relationships between the EXPRESS and MICAP

data over time suggest that maintainers examining trends in the EXPRESS data

could feasibly reduce future MICAPs. As a byproduct of this study, the potential for

the use of time series models with maintenance data was explored. Model diagnostics

suggest that maintenance data is too volatile and noisy for regression-based methods

and that stochastic methods or simulation may prove more useful.
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EXAMINING THE EXPRESS SUPPORTABILITY MODULE: IMPLEMENTING

AN AUTOREGRESSIVE DISTRIBUTED LAG APPROACH WITH AIR FORCE

MAINTENANCE DATA

I. Introduction

1.1 Background

Sustaining optimal supply chain management processes is of the utmost impor-

tance to the daily operations of the Air Force. Maximizing mission capability is a

function of moving reparable aircraft parts through the process as quickly and afford-

ably as possible. To this end, the Air Force takes advantage of a variety of programs

at each step of the extensive supply chain process to best make decisions about where

items should be repaired (local versus depot), what item to repair next and where

that item should be assigned upon completion of the repair. Rather than relying

on industry supply chain practices for inspiration, the unique nature of the military,

which offers extreme variability in daily levels of demand, necessitated the develop-

ment of programs specific to the Air Force mission. Each of these programs are used

in accordance with official Air Force policy.

As instructed by Department of Defense Directive (DoDD) 4140.1-R, the Air

Force previously used the Uniform Materiel Movement and Issue Priority System

(UMMIPS) “for allocating materiel and other logistics resources among competing

demands” [1]. Based on the necessity of a part and the urgency of the maintenance

issue, UMMIPS determined how depot repairs should be prioritized. The system

was in place from its inception in 1962 until opportunities for improvement became
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evident [2]. A 1995 report poked holes in the logic of UMMIPS that left the Air Force

lacking in both readiness and sustainability [3]. Knowing it was time for change, the

Air Force sponsored a project with RAND Corporation to search for a new system.

In developing the comprehensive Distribution and Repair in Variable Environ-

ments (DRIVE) prioritization approach, RAND aimed to address some of the short-

comings of the current supply chain process. There was simply too much uncertainty

in forecasting future part failures which hurt the prospect of sustaining affordable

maintenance scheduling [2]. Many sources of information were combined with DRIVE.

Current asset positions, aircraft availability goals and user-specified data such as fly-

ing hours were combined to create a bigger picture with two resulting outputs, a

sequenced repair list and an asset allocation list [4]. The main objective was aircraft

availability as opposed to measures like MICAP (mission capability) and AWP (parts

awaiting components for repair), a change which was a “cultural shock to the Air

Force logistics system” [4]. Initial results were promising; DRIVE offered increased

readiness and sustainability without increased costs [4]. Many organizations including

AFIT supported its implementation into official Air Force policy. One thesis in 1996

argued that DRIVE offered many improvements to current processes, a conclusion

shared by other researchers [5].

Ultimately, EXPRESS was launched in 1996 as a combination of three programs:

the prioritization capabilities and distribution module from DRIVE, the Automated

Induction System (AIS) used by the Oklahoma City Air Logistics Complex (ALC),

and the Supportability Module used by the Ogden ALC [6]. The AFMC Annual

Report detailing their 1996 projects declared that the overall goal of EXPRESS was

“to closely link recoverable item depot repair and distribution actions to operational

customers’ needs” [6]. The EXPRESS program was officially integrated into policy

in 1996. Air Force Materiel Command Instruction 23-120 is the foremost document

2



containing the policies and procedures for the execution of EXPRESS [7]. Although

the Air Force Sustainment Center (AFSC) runs EXPRESS on a global scale, it relies

on the three Air Logistics Complexes to input local constraints [8]. In EXPRESS,

there are a variety of functions: data services, prioritization, repair and distribution

[7]. This process is shown in Figure 1.

Figure 1. EXPRESS System Flow [9]

The most important step is taken before the actual execution of EXPRESS when

data is fed into the system from a variety of sources. Then, the Prioritization of All

Reparable Spares (PARS) Model and the EXPRESS Prioritization Processor (EPP)

together handle the prioritization and determination of requirements [7]. The Sup-

portability Module, which is explained in greater detail in the following paragraph,

checks how many repairs can reasonably be made with current resources. The distri-

bution process determines where fixed items should be sent [7]. Overall, four questions

are answered with EXPRESS [10]:

1. What should we fix?
2. Which item should we fix first?
3. What can be repaired?
4. Who will receive it when it gets fixed?

The focus of this research is the Supportability Module, a part of the repair

process of EXPRESS, which considers the prioritized list and checks four resource

constraints. These constraints are described according to 2006 Air Force regulations.

3



Upon taking in the prioritized list, resources are checked in the following order: car-

casses, capacity, funds and parts [7]. The logic for the module is presented in Figure

2. The Supportability Module begins by considering the first requirement. The first

check is for carcasses, or reparable assets [7]. The second check, which ensures there

are enough personnel and equipment to complete the repair, requires user input for

man-hours available [7]. The system then checks that the required funds are available.

The final check for parts is the most complex. EXPRESS determines how many parts

are required to complete the repair and computes the probability that the parts are

available [7]. This probability is compared to the Predetermined Acceptance Proba-

bility (PAP), another user input. The PAP “governs the amount of certainty desired

that the available level of component parts will support the repair of an end item”

[9]. In other words, PAP is a measure of the risk a shop is willing to take. Next,

EXPRESS decides whether any items not on hand should be added to the Shopping

List for Item Managers (SLIM) Report before adding the action to the final list [9].

Figure 2. EXPRESS Supportability Logic [10]
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Issues can arise because each of the constraints are evaluated sequentially rather

than simultaneously. Consider the example presented in Table 1 where there are ten

items being checked for each constraint. For simplicity, results are listed as pass, P,

or fail, F. In reality, there are a multitude of different codes for each check which will

be explained later. According to the logic in Figure 2, when requirement six fails

for capacity, funds and parts are not checked and the program moves on to the next

requirement. The issue compiles when the next requirement also fails for capacity.

Table 1 shows an example of the final list that is sent to the depot. It is known

that there are enough funds and parts for the first five requirements, but what about

the last five? Additionally, the carcasses for the final five requirements are not being

officially obligated to those items, so there might not actually be enough carcasses

for all the requirements. Being blind to issues involving some of the constraints is

dangerous in that the issues can compile over time and become costly.

Table 1. Scenario Using Current Supportability Module Logic
Req ID Carcass Capacity Funds Parts

1 P P P P
2 P P P P
3 P P P P
4 P P P P
5 P P P P
6 P F
7 P F
8 P F
9 P F
10 P F

1.2 Problem Statement

This research addresses a lapse of logic in the ALC Supportability Module of

EXPRESS. Since the inception of EXPRESS, the Air Force has sponsored multiple

RAND studies looking into possible improvements for the system. A 2014 study on

depot-level maintenance in the Department of Defense (DoD) highlighted some of the

5



current issues affecting mission capability. Maintenance depots across all the services

had one main issue in common: parts supportability [11]. When the researchers

visited each ALC, this was the first issue discussed by the interviewees [11]. Refining

the Supportability Module logic in EXPRESS so that each of the four constraints are

considered individually could offer improvements in production agility. This would

not be a radical change because the supportability process at the HQ level already

uses this logic [12]. As opposed to the list generated in Table 1, Table 2 shows a

bigger picture view of the resources available for each requirement. This type of

list would ensure the depot knows they have no shortage of funds and their main

issues involve capacity and parts. While it may be difficult to address capacity,

which could theoretically involve adding new employees or expanding shop space,

the parts issue can be addressed and mitigated sooner. This research considers the

consequences of the existing Supportability Module logic. The main objectives are

to analyze the repercussions of checking the four resources sequentially and examine

the improvements offered when the resources are evaluated individually such that

no values are missing in the table. Do missing values in the supportability data

mask issues that will affect mission capability in the future? What improvements are

offered by considering the resource constraints individually within the Supportability

Module?

Table 2. Scenario Using HQ Supportability Module Logic
Req ID Carcass Capacity Funds Parts

1 P P P P
2 P P P P
3 P P P P
4 P P P P
5 P P P P
6 P F P P
7 P F P F
8 P F P F
9 F F P F
10 F F P F

6



II. Literature Review

2.1 Introduction

In this section, DoD instructions and memorandums in addition to EXPRESS

manuals are used to provide an overview of the entire Air Force reparable supply

chain process and EXPRESS, which is only a small part of the reparable supply

chain. Additionally, past research involving EXPRESS is reviewed. While there are

little to no academic journals referencing EXPRESS and its use in the Air Force

supply chain process, there are a number of DoD studies detailed in RAND reports,

Air Force Journal of Logistics articles, and AFIT theses. Many of these studies are

discussed in this section.

2.2 Air Force Supply Chain

After years of debate on how to align the management of the maintenance supply

chain, the Air Force has settled with a near complete pull system with an emphasis on

demand, priorities and inventory levels [11]. Planning occurs daily which introduces

issues due to the uncertainties involved in executing the mission. Two recent emphasis

items for the Air Force have been increasing the use of demand history adjustments

(DHAs) and demand data exchange (DDE) [11]. A significant issue arises when

maintenance crews find a workaround instead of ordering a part - no demand record

is created [11]. However, demand records are essential when planning for future

demand. The use of DHAs by the depot ensures a complete demand history for an

item [11]. Additionally, whenever plans are likely to cause demand to divert from

past trends, DDEs are submitted, promoting collaboration and proactiveness [11].

Air Force Materiel Command (AFMC), located at Wright-Patterson Air Force

Base, oversees the sustainment and acquisition of weapon systems to meet the needs
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of the Air Force [11]. The command is organized into five centers, as shown in

Figure 1. Most important to the supply chain process is the Air Force Sustainment

Center (AFSC), which “provides depot-level weapon system maintenance and Air

Force supply chain management functions” [11].

Figure 3. Air Force Materiel Command Organizational Chart [11]

The AFSC manages three ALCs at Tinker, Hill and Warner Robins Air Force

Bases in addition to two supply chain wings [11]. Each ALC performs a similar mission

of depot-level maintenance on differing weapons systems [11]. These organizations

perform both scheduled and unscheduled maintenance daily on a variety of aircraft.

The daily execution of EXPRESS is a responsibility of the AFSC and each individual

ALC. The AFSC executes EXPRESS on a larger scale, creating a global priority list

that is sent to each ALC who can apply local constraints [8].

Kimmel, assigned to AFSC, provides a breakdown of the Air Force repairable

supply chain. Aircraft are inspected by maintenance crews daily. Items are classified

as consumable, repairable or depot recoverable [13]. Consumable items are low cost

items that are never repaired, while depot recoverable items are expensive items

8



repaired at a base or depot [13]. The rest of the items are repairable and are classified

as “Not Repair This Station” (NRTS), which are sent to the depot, or “Repair This

Station”, which are sent to the base repair shop [13]. The NRTS items are routed

through depot supply before being repaired as part of the Management of Items

Subject To Repair (MISTR) process. Depot-level maintenance of recoverable and

replacement items follows the MISTR process in accordance with Air Force Materiel

Command Instruction 23-112 [14]. It is in this part of the supply chain that the daily

execution of EXPRESS determines which repairs should be inducted.

2.3 EXPRESS

The Air Force launched EXPRESS in 1996 as an implementation of the RAND-

developed DRIVE model and other previously developed systems [8]. The program

is embedded inside the Weapon System Management Information System (WSMIS)

[9]. The purpose of EXPRESS is to use standard data systems to support the prior-

itization, execution, and distribution of repairs [9]. It is executed daily to promote

the “repair-on-demand philosophy” emphasized by the Depot Repair Enhancement

Program (DREP) [9]. One important feature is that there are centralized and de-

centralized processes within EXPRESS. The centralized processes are executed at

HQ AFMC while the decentralized processes are performed at the three ALCs [9].

While the primary use of EXPRESS is at the ALCs, a vast number of organizations

have influence in the ongoing maintenance and use of EXPRESS. Official policy from

HQ USAF dictates the use of EXPRESS while the major commands (MAJCOMs)

provide tempo data that influences depot-level maintenance [9]. Other organizations

provide pivotal studies into possible improvements for the system.

The logic within EXPRESS emphasizes the supportability of weapon systems [9].

A total of four main modules, identified in Figure 4, make up EXPRESS. The cycli-

9



cal process includes Data Services, Prioritization, Supportability and Distribution

Modules.

Figure 4. EXPRESS Module Flow [9]

The Data Services Module is concerned with providing the data necessary for the

execution of the remaining three modules. The Prioritization Module decides what

should be repaired next based on current requirements. The Supportability Module

determines what can feasibly be repaired with current resources. The Distribution

Module decides where to send completed repairs [9]. These modules are described

in great detail in a series of EXPRESS guides prepared by the Computer Sciences

Corporation for various units within AFMC [12, 15, 16].

The data that flows both in and out of EXPRESS daily impacts the remaining

modules. Multiple organizations are responsible for providing data input on an es-

tablished timeline. The data network operates on both the classified and unclassified

levels. On a classified server, EXPRESS receives operational tempo data from the

MAJCOMs [16]. Some other examples for the data input in EXPRESS are files re-

porting worldwide asset status, back order and depot resource information, all of

10



which are updated daily [16]. Every day, EXPRESS loads data onto an unclassified

server where it is transferred to the three ALCs for use in the Supportability and Dis-

tribution Modules [16]. The thoroughly designed database structure of EXPRESS

“facilitates timely data processing and access, including the means for input, storage,

extraction, access, and processing of item characteristic, linking, and scenario data”

[16]. This level of timeliness in data exchange is necessary to achieve the production

agility and operational tempo desired by military leadership. When all the necessary

data is in place, EXPRESS begins the prioritization process.

For prioritization, the first executable is the Prioritization of Aircraft Reparables

(PARS), which was adapted from the DRIVE model [12]. There are three modules

within PARS: Allocation (ALLO), Preparation (PREP) and Computation (COMP)

[12]. Prioritization methods and procedures differ based on values set by administra-

tors. The ALLO module computes allocation weights for items based on expected

demands and the PREP module calculates expected demands by base; both are ex-

ecuted in the classified environment at AFMC [12]. The COMP module calculates

the probability that bases can sustain their aircraft availability goals based on ex-

pected demands and available assets [12]. Once all of this information is calculated,

PARS determines how to best address current needs. First, if the depot has service-

able assets, the model decides which base should receive them based on the expected

increase to their probability of meeting their aircraft availability goals [12]. Next,

PARS considers that same probability increase in addition to the cost of each repair

until either there are no depot carcasses left, each base has the maximum probability

of meeting goals or the impact of further repairs are minimal [12]. Along the way,

PARS considers Spares Priority Release Sequence (SPRS) rules which are assigned

based on mission priority and need [12]. The highest SPRS number is 84, repre-

senting the highest need. Lower SPRS numbers indicate a lower need. The lists

11



output by PARS represent different weapon systems and are sent to the EXPRESS

Prioritization Processor (EPP) for further analysis.

The goal of EPP is to refine the priority sequence generated by PARS to find a

balance for support across weapon systems [10]. First, Single Prioritization Across

Weapon Systems (SPAWS) creates a unified, prioritized list to try to attain some

target percentage for each weapon system. Moore [17], one of the key POCs for

EXPRESS assigned to AFMC, provides great insight into the logic of SPAWS. The

prioritized lists in PARS for each weapon system are based on sort values which are

the amount of increase in likelihood of meeting aircraft availability goals per repair

hour [17]. Consider the example in Figure 5 with three weapon systems A, B and

C. If the final, prioritized list were simply each item sorted by descending sort value,

EXPRESS might choose to make the wrong weapon system healthier than others

[17]. Instead, SPAWS finds optimal trade-offs between all weapon systems by using

percentages for each weapon system. The weapon system percents are the ratio of the

catch-up costs for a single weapon system versus the catch-up costs for all weapon

systems [17]. The EPP also incorporates Foreign Military Sales (FMS) and other

service requirements into the list [17]. The final output from the joint prioritization

effort of PARS and EPP is a single, prioritized list for use by the Supportability

Module.

The essential functions of EXPRESS lie in the repair and distribution processes.

The Supportability Module, part of the repair process, is executed at the ALC level

[9]. This module checks what can reasonably be repaired given current resource con-

straints. It determines how much of the prioritized Net Repair Objective (NRO) list

output from the prioritization process can be supported with four available resources:

carcasses, capacity, funds and parts [9]. The module takes the highest prioritized ac-

tion and checks these constraints (success vs fail) sequentially until either the repair

12



Figure 5. Illustration of SPAWS [17]

passes each or fails one of the constraints. The first three constraints are straightfor-

ward.

First, the Supportability Module checks for carcass availability in warehouses of

the current or other ALCs, contractor locations and off-base storage [7]. The next

check is for capacity. Capacity refers to man-hours available and relies on inputs from

representatives at each ALC [7]. After that, EXPRESS decides whether or not the

repair can be supported with available funds. Depending on settings, the module will

apply two types of logic: “Over Funds Available” or “Meet Funds Available” [12].

In the former setting, items will pass funding until the next item would break the

budget [12]. In the latter setting, if there are lower prioritized items left that could

meet budget goals, they will pass for funding [12].

After checking carcasses, capacity, and funds, the next check is for parts. This

constraint check requires a number of background probability calculations. The mod-

ule considers parts located at the individual ALC [12]. For each subcomponent, the

quantity required, replacement percentages and assets on hand are all considered
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[10]. These are all inputs into Equation 1 rooted in binomial theory, which outputs a

“‘goodness’ probability for that particular subcomponent” [10].

p(y) =
n!

y!(n− y)!
∗ py ∗ qn−y (1)

where n = quantity required, q = replacement percentage and y = available assets

The parts check is highly reliant on ALC input because each of these calculated

probabilities are then compared against the Predetermined Acceptance Probability

(PAP), a user-defined value between 0 and 1. The PAP is a measure of the risk a

shop is willing to take that the necessary parts will be available for the repair. When

PAP is set to 0, all repairs will pass for parts. When PAP is set to 1, only items

whose necessary parts are all on hand will pass [9].

EXPRESS also affords the opportunity to execute a supportability check at the

HQ level [12]. As part of the EXPRESS Constraints Analysis Tool, users can per-

form a supportability check across all the ALCs [12]. The HQ Supportability Module

considers all constraints individually such that an item can fail for multiple resource

shortages [12]. Additionally, one important deviation from the ALC Supportability

Module is that the required resources are obligated and decremented when each con-

straint is passed instead of when all four constraints are passed [12]. This research is

concerned with implementing this methodology at the ALC level.

The final module executed by EXPRESS is the Distribution Module, part of the

distribution process, which also uses the prioritized list generated in earlier processes.

The primary function of this module is to preemptively assign repaired items to their

destinations by matching backorder requisition numbers to repair actions [12]. This

concludes the lengthy EXPRESS process described in the preceding paragraphs and

shown visually through both the HQ and ALC levels in Figure 6.

The processes within the Supportability Module of EXPRESS have changed over
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the years. As of 16 Sept 2016, the current process is described as follows. For the

carcass check, which remains first, resources are only obligated if all of the other

resource checks are passed. There has been a change in order of operations from this

point. The parts check now follows the carcass check. The third and fourth checks

are capacity and funds, respectively. There are no issues regarding the discrepancies

in Supportability Module logic between different years as only EXPRESS data after

this change are considered in this analysis.

Figure 6. EXPRESS Daily Process [12]

2.4 Past Work

In 1996, Anderson [5] provided research supporting the implementation of the

DRIVE model into official policy. Anderson provided a direct comparison between
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the results of the previously used Uniform Material Movement and Issue Priority

System (UMMIPS) and the results of DRIVE. He used a limited scenario involving

C-130 parts and found that DRIVE utilization increased aircraft availability across

all bases with a slight decrease for high priority locations [5]. This was because the

goal of DRIVE was to maximize aircraft availability as a whole, which, depending

on settings, caused the program to ignore Force Activity Designator (FAD) codes,

which indicate higher priority locations [5]. This research not only helped military

members better understand the DRIVE process, but also addressed the effect of the

new model on mission capability. As previously mentioned, the DRIVE model was

later implemented into EXPRESS for use in the reparable supply chain process.

Early on, following the launch of EXPRESS, members of the logistics community

were essential in refining and perfecting the process. Analysts provided close scrutiny

of EXPRESS and many documented ideas for improvement in Air Force Journal

of Logistics articles. One such example was Carter and Clarke [18] who identified

a need for an additional module in EXPRESS. The authors noted that EXPRESS

was severely hampered by resource constraints and hypothesized integrating Depot

Repair Enhancement Program (DREP) philosophy into the system [18]. The resulting

EXPRESS Planning Module (EPM), a tool which is still operational today, uses

forecasting to provide users with financial and repair plans in addition to insights on

constraints [18]. This was not the last time Carter offered criticism of EXPRESS.

Carter and London [19] addressed Air Force struggles with repairing and dis-

tributing line-replaceable units (LRU). When parts are not available for a repair, a

LRU must either be waitlisted for induction or inducted and put into awaiting parts

(AWP) status which results in the back ordering of parts [19]. One of the biggest

problems causing an excessive number of LRUs in AWP status was not having the

right mix of depot resources on the day of EXPRESS execution [19]. This caused
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EXPRESS to skip over higher priority repairs in favor of those with lower priority

levels, a result of the Supportability Module [19]. Carter and London criticized the

use of historical data in forecasting for multiple reasons. First, the military operates

in a high tempo environment with fast-changing requirements. Second, when high

priority repairs were skipped because parts were unavailable, no demand data for

that part were generated. Carter poked holes in the logic for parts supportability and

advocated for the use of the EPM in the process [19]. Unfortunately, AWP issues are

still prevalent in the Air Force.

Huber [20] performed a gap analysis to identify which parts were most influential

in causing AWP delays. The AWP problem, a consequence of the trade-off between

the cost of inventory and responsiveness to the customer, is a longstanding issue with

recent Air Force initiatives focused on minimizing it [20]. While depots can easily see

which end items are put into the AWP process, information regarding which parts

regularly put them in this process was not available [20]. In addition to running into

time constraints, this research experienced informational constraints upon realizing

that AWP delay information was not readily available. However, Huber showed that

the Air Force may be addressing the issue wrong by taking the end item perspec-

tive instead of examining the impact of individual parts. The implementation of an

aggregate measure of AWP impact might assist in the prioritization procedure and

help depot personnel balance trade-offs between addressing the shortages of different

parts [20].

Lee [21] analyzed the potential for the Collaborative Planning, Forecasting and Re-

plenishment (CPFR) business approach to be implemented into the Air Force repara-

ble supply chain. The CPFR process was developed to reduce production costs and

inventory levels while also providing increased scheduling flexibility, ultimately result-

ing in greater profits [21]. This research was essentially an extensive literature review

17



followed by a case study analysis tracking the life of National Stock Number (NSN)

1270-01-384-1108, the F-15E Eagle Multipurpose Display Processor, through the sup-

ply chain [21]. Ultimately, Lee showed the potential for using CPFR in the Air Force

supply chain, which paved the way for future research. Other authors have advocated

for the implementation of different trains of thought into depot-level maintenance.

Branson [22] argued for the use of high-velocity maintenance (HVM) to com-

bat the aircraft availability issues that were especially prevalent in high-demand and

low-density weapon systems. The HVM concept was hypothesized to move aircraft

through the depot process more quickly than the current process. With the current

system, aircraft were waiting long periods of time between programmed depot main-

tenance (PDM), causing issues with unanticipated maintenance requirements and

unneeded repairs [22]. In one of a few criticisms of EXPRESS, Branson noted that

the Supportability Module had potential to declare items supportable when resources

were not available due to inaccuracies in stock inventories [22]. He argued that the

benefits of forecasted requirements and increased efficiency would outweigh the costs

and challenges of initial HVM implementation [22].

Other recent efforts used simulation for analyzing changes to the reparable supply

chain. Mayhall [23] incorporated the CPFR approach into the Air Force supply chain

using simulation. The discrete-event stochastic simulation model exhibited the flow

of demand information and parts between the two echelons of the supply chain: base

and depot [23]. There were some differences between the CPFR approach and the

methods used in the military supply chain. In particular, while CPFR had historically

not been used for reparable parts, the Air Force was very interested in repairing and

returning many high-cost parts that were important in aircraft operations. Mayhall

looked at two main performance metrics, back orders and fill rate, which are both

concerned with how well demand is met [23]. The research showed that effective
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communication between the base and depot and accurate forecasting were of the

utmost importance in limiting back orders and maximizing fill rate [23]. This was

not the last time the simulation approach was used in EXPRESS research.

In 2012, Williams [2] used simulation to examine a case study of three reparable

parts managed by EXPRESS. Williams viewed the EXPRESS process as a whole

instead of concentrating on a single part of the program and focused on the mission

capability ramifications of running EXPRESS with variable frequencies. The two

specific performance metrics of interest were Customer Wait Time (CWT) and Mis-

sion Capable (MICAP) hours, which both measure the responsiveness of the repair

process [2]. While CWT is simply the amount of time a customer spends waiting for

a part from the depot, MICAP status is an indication that stock has been depleted

and a weapon system cannot operate until a part arrives [2]. As expected, Williams

found that running EXPRESS less frequently resulted in statistically higher MICAP

days as this would intuitively cause less responsiveness to customer needs. While

a number of simplifying assumptions were made in the analysis, Williams’ resulting

simulation model was useful for analyzing overarching system performance and was

open-ended enough to promote future research.
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III. Data Description and Methodology

3.1 Introduction

This chapter details the processes by which EXPRESS and MICAP (mission capa-

ble) data sets were prepared for analysis and also highlights limitations. The prepa-

ration of the data includes manipulation of the data into variables of interest and

merging information contained in multiple data sources. The ALC and HQ support-

ability data in addition to the MICAP data are described in detail. Finally, the

modeling processes used in this study, including the autoregressive distributed lag

(ARDL) bounds testing procedure, are outlined.

3.2 Data Description

As previously discussed, the management of accurate data is extremely important

in the supply chain process. For this thesis, three major data sources were of interest:

ALC EXPRESS tables from 2011 to 2018, the 2018 HQ EXPRESS table, and a

table of 2018 MICAP information. Each year of the ALC EXPRESS tables contains

millions of records of a number of variables previously discussed, including PAP,

sort value and SPAWS ranking. Most importantly, these tables contain values for

carcass, parts, capacity and funds availability for each repair. There are a variety

of codes for each constraint (see Table 3). Rather than a simple pass versus fail,

each of these variables can take on a number of different designators depending on

each unique situation. For the purposes of this analysis, the intricacies between

designators, such as P versus U for carcass availability, are not significant. While F

and S are straightforward and represent either fail or supportable for each resource

check, all other designators are treated as a failure except B for parts. In this case,

the Bill of Materiel (BOM) is not available, but the repair still passes. Each code is
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presented in Table 3 along with its explicit meaning and the result for the repair. A

pass means that the repair moves onto the next constraint, while a fail means that

the repair is not supportable and the Supportability Module moves onto the next one.

Table 3. Supportability Code Descriptions

Check Designator Description Status
Carcass S Supportable Pass

F Failure Fail
P Awaiting Parts Fail
B Bypass Fail
U Upper Control Limit Fail

Parts S Supportable Pass
B BOM Unavailable Pass
F Failure Fail

Capacity S Supportable Pass
F Failure Fail
M Max Item/Shop Hours Buffer Fail

Funds S Supportable Pass
F Failure Fail

While there are never missing values for carcass, many of the parts, capacity and

funds availabilities are left blank as a consequence of the logic of the Supportability

Module. This is the main concern for this research. The extent of this issue is shown in

Figure 7, which depicts the percentage observed of each code for the carcass and parts

constraints for each year. Summary graphs of the capacity and funds constraints are

available in Appendix A. The primary concern are the missing values for parts which

might be causing extended MICAP lengths. While the number of missing values

for parts have trended downward due to changes in the logic of the Supportability

Module in 2016, the issue is still prevalent.

As compared to the ALC data, the HQ EXPRESS data is complete such that

there are no empty values for parts, capacity or fund availabilities because all con-

straints are checked individually instead of sequentially. Unfortunately, the HQ data

were available only for 2018. However, this data provides an idea of the usual truth
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Figure 7. Summary of Carcass and Parts ALC Data

concerning the constraint codes that are sometimes missing in the ALC data.

Although the HQ table does not have the missing data issue that plagues the ALC

data, it is not without problems. The primary stock number used to identify parts in

the Air Force is the National Item Identification Number (NIIN). The repairs listed

in the EXPRESS tables each concern unique NIINs. A NIIN is only included in the

table on a certain day if a repair is needed on that day. This leaves massive holes in

the data for the majority of NIINs. Even when a NIIN is included in the table on a

certain day, there are often no resource constraint failures which means the repair can

be completed right away. While it is good that the majority of NIINs have minimal

carcass and parts failures, the sparsity of the data can cause issues with modeling

approaches when attempting to relate the HQ data to MICAPs. Of all the NIINs

in the 2018 HQ table, 58.6% had no carcass failures, 50.8% had no parts failures

and 79.5% had no missing parts failures. A NIIN has missing parts failures if there

were both carcass and parts failures for an observation meaning that the parts failure

would have been masked in the ALC data.

In 2018, some repairs involving certain NIINs struggled with the carcass constraint

more than with the parts constraint, while many struggled with both. From left to

right, the three tables within Table 4 show the NIINs with the highest occurrence
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of carcass failures, parts failures and missing parts failures. The top offending NIIN

for carcass failures was 12368313, which is a component of a C-135 variant. The

top offending NIIN for parts failures was 15614960, which is a component of a C-130

variant. The NIIN involved in repairs that most often had parts failure issues missing

in the ALC data was 5675873, which is a component of a C-135 variant.

Table 4. Top NIINs for Carcass Failures, Parts Failures and Missing Parts Failures
Rank NIIN Carcass Failures

1 12368313 31919
2 5675873 22142
3 12308578 21642
4 15229461 19609
5 13297411 17393
6 12043672 16606
7 13035871 16502
8 2499370 16244
9 15954096 15371
10 13134227 14410
11 8188189 13910
12 14111338 13517
13 14679426 13303
14 12828769 13190
15 14696512 12922
16 145395245 12867
17 15867702 12838
18 14429628 12665
19 9141329 12646
20 12773879 12269
21 13508048 12250
22 13247734 11737
23 11428094 11486
24 12267238 11481
25 13035872 10995

NIIN Parts Failures
15614960 82337
15614963 33501
11479116 30774
11402105 24532
145395245 22745
5675873 22058

145393070 19579
10862249 19517
10833837 19213
12267238 18663
14478547 18628
7961672 17957
13035871 17656
13508048 16686
11106043 16346
11460722 15431
10696588 15236
13134227 14307
16265537 14224
11428094 13779
2671046 13714
14679426 13343
11438543 12086
13381380 12042
7849693 11926

NIIN Parts Missing
5675873 21758
13035871 16312
13134227 13869
14679426 13168
145395245 12276
13508048 12110
13297411 11480
11428094 11325
12267238 11280
8188189 11248
13035872 10609
12043672 10369
15994049 10327
9831597 10261
14223330 9501
13586178 9396
16265537 8756
12572789 8277
14429628 8193
12562481 8091
11479116 7802
14696512 7788
11892936 7503
2671046 7483
14444195 7162

The final data set contains MICAP days, which is one of the foremost issues

plaguing the Air Force. The MICAPs represent a potential consequence of the logic

of Supportability Module that leaves massive holes the data. Some individual parts of

an aircraft are considered necessary for mission completion. When these parts break,

the aircraft is put into MICAP status. The MICAP data includes the beginning and

ending dates of each MICAP record spanning a wide number of years. Data exists

for years 1951 to 2018. Every MICAP day is another day when the Air Force has

limited mission capability. As such, MICAP days are an effective performance metric

for maintenance data to analyze the potential impacts of the current Supportabil-
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ity Module logic as compared to the HQ Supportability Module logic. Minimizing

MICAP days saves time and money and enhances mission readiness.

This analysis was concerned with MICAPs that either started in years prior and

were still active as of this writing or those that started in 2018. There were 465,473

observations meeting this criteria. While the MICAP data is more complete than

the ALC data, there are additional complications. Each MICAP is assigned a unique

document number, but most documents contain a number of observations spanning

different dates. This can cause some confusion when trying to extract the beginning

and ending dates of each MICAP. The example data in Table 5 shows one MICAP

involving an F-15 part at Kadena Air Base that started on 2/21/2018 and ended

in 3/16/2018, but this information is contained in multiple rows that track various

status changes.

Additionally, some of the records do not include an ending date. Some include

only a starting date presumably because the MICAP had not ended as of the date the

data was pulled. However, there are clearly some data mismanagement issues since

there are ongoing MICAPs from the 1960s and earlier. Obviously, these MICAPs are

not ongoing, but were never officially closed. For this analysis, it is assumed that

each MICAP document number represents one continuous MICAP and the earliest

MICAP start date and latest MICAP stop date are used to form the duration. The

majority of MICAPs have a length of a few days or less. In many cases, MICAPs last

only hours because components are cannibalized from other aircraft at the source of

repair. For this analysis, information up to 31 October 2018 was available.

Table 5. MICAP Document Number FB52708052800

MICAP Document Number MICAP Sequence Start Date Stop Date NIIN
FB52708052800 1 2/21/2018 2/25/2018 16136577
FB52708052800 2 2/25/2018 NULL 16136577
FB52708052800 3 2/25/2018 3/16/2018 16136577
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3.3 Limitations

This analysis intended to show that problems with the ALC Supportability Mod-

ule logic were contributing to issues with mission capability and resource (time and

money) waste. Making a connection between the ALC and MICAP data by require-

ment was necessary so that models like multiple linear regression and decision trees

could show if missing fields in the ALC data were conducive to increasing MICAP

lengths and whether providing a more complete picture of the constraints tended

to decrease the length of MICAPs. However, there were a number of issues that

prohibited the use of this methodology.

Clearly, there are many moving parts in the supply chain process. Since these data

sets encapsulate the entire Air Force, there are many complications. Repair shops

and maintainers worldwide are constantly fighting for resources. Since EXPRESS

is run every day, the daily changes in priorities makes the four resource constraints

convoluted. For example, an aircraft at Luke AFB might be waiting a week for a

specific part. On day 8, the part is finally available, but a higher priority repair at

Langley AFB that was added the day prior consumes the part. Some actions, or

requirements, from the NRO can simply be canceled if the Air Force no longer needs

the repair. Additionally, some repairs may be supported laterally, which means parts

were swapped between planes. While this solves the issue with one plane, the other

plane now has the exact same issue. These issues contribute to the fact that it is not

possible to follow a single maintenance requirement through the entire process to see

how missing data could have contributed to a MICAP. These limitations diverted the

direction of this analysis to manipulating the data via aggregation at the NIIN level

to provide an upper bound on the possible benefits of eliminating the missing data

issue at the ALC level.
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3.4 Data Manipulation

A significant portion of this study was devoted to data manipulation. As stated

previously, it was not possible to follow specific repair requirements through the entire

process. However, the data could still be aggregated by NIIN and values could be

matched between the HQ and MICAP tables.

Initially, the data was aggregated at the annual level. Each repair requirement

in the HQ table is complete in relation to carcass, parts, capacity and funds values,

making it is easy to infer which fields would have been missing in the ALC tables. For

example, if there was a failure for carcass, then the parts, capacity and funds fields

would be missing. For all of 2018, the number of failures per NIIN for carcass, parts,

capacity and funds were collected. In addition, the number of failures for parts,

capacity and funds that would have been missing in the ALC table were counted.

From these values, the percent of time that parts, capacity and funds failures were

visible for each NIIN were computed. In addition, after extracting the minimum and

maximum MICAP dates for each unique MICAP document, the number of MICAPs

and the average and maximum length of MICAP in hours was found for each NIIN.

Data from each source was then merged by NIIN.

When the first iteration of analysis yielded minimal results, another approach

was considered. Aggregating the data at the annual level seemed to smooth out any

possible relationship in the data. Obviously, there are cyclical trends in maintenance

data. In the HQ data, one NIIN might trend upward in capacity failures during one

week and downward during the next week. There are similar trends in the MICAP

data. Accordingly, the data should be aggregated at the daily instead of annual level

to capture these kinds of trends. Further, it was noted that AFSC only plays a direct

part in the carcass and parts requirements, so capacity and funds were not especially

relevant to this analysis. For these reasons, the number of failures per NIIN per
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day for carcass and parts, in addition to the number of missing parts failures, were

collected using the R software. The entirety of the code used for data manipulation

and time series analysis is available in Appendix B for reproducibility. Figure 8 shows

an example of the resulting data for NIIN 11428094.

Figure 8. Daily Aggregated HQ Sample Data

One major issue is apparent in Figure 8. Parts failures are only missing if there

were carcass and parts constraint failures for a repair. This means that the missing

parts failures for a day often matches the lesser of the daily count of carcass and

parts failures, which happens in most cases. If there are major carcass failure issues

for a NIIN, then the number of parts failures missing would match the daily count of

parts failures since the majority of parts issues would be masked in the ALC table.
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Conversely, if there are minimal carcass failure issues for a NIIN, then the number

of parts failures missing would match the daily count of carcass failures since the

majority of parts issues would be visible in the ALC table. This is a significant

multicollinearity problem that must be accommodated. For this reason, any models

involving the missing parts failures variable are formed absent of the carcass and parts

failures variables for the remainder of this study.

The number of ongoing MICAPs per day were also calculated using a multistage

process. As discussed previously, the duration of each unique MICAP document was

found by extracting the minimum and maximum MICAP date as a first step. This

resulted in a table of MICAPs with a sample provided in Figure 9. Next, for each

pair of NIIN and date, the number of ongoing MICAPs was found using the MICAP

duration table. This step simply counted the number of active MICAP documents

involving each NIIN on each day. This value could be more than one if a NIIN was

involved in multiple MICAPs during a given day.

Figure 9. MICAP Document Durations Sample Data
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The two resulting HQ and MICAP data sets were merged by both NIIN and date.

The final data set presented a number of issues that would have to be addressed.

First, the HQ data suffers from missing data differently than the ALC data. There

are missing dates in the HQ EXPRESS table which happens in two situations. When

there are no repairs necessary for a NIIN on a certain day, there are no inclusions

of that NIIN in the table on that date. Also, EXPRESS data is unavailable on

the weekends. These issues are addressed using data imputation techniques before

running time series models.

Further, time series models rely on sufficient amounts of training data. For many

NIINs, there were little to no occurrences in the HQ table simply because they needed

few repairs in 2018. Even when observations were not missing, the majority of NIIN

and date pairs contained zeros for constraint failures because EXPRESS deemed that

the repair could be made right away. Likewise, many NIINs were involved in few

MICAPs in 2018. Additionally, there were NIINs involved in MICAPs that would

never appear in the HQ table because those repairs are outside of Air Force control.

No meaningful connection can be made between constraint failures in the EXPRESS

table and MICAPs without adequate amounts of training data. For these reasons,

a subset of ten NIINs that had sufficient data available were chosen for analysis.

The main connection of interest to be made was between missing parts failures and

MICAPs. Accordingly, the ten NIINs that had the most missing parts failures and at

least 100 ongoing MICAPs in 2018 were chosen. For these ten NIINs, the number of

carcass failures, parts failures, missing parts failures and MICAP documents in 2018

are shown in Figure 10. They were involved in 2,017 ongoing MICAPs in 2018.
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Figure 10. Annual Counts for Subset of NIINs

3.5 Methodology

As previously discussed, two views of the data were taken, at the annual and daily

level. First, a top-level approach using summarized supportability and MICAP data

over an entire year attempted to connect missing supportability data to MICAPs. The

variables of interest for each NIIN were the percent of time maintainers were blind to

constraint issues and the number of MICAPs, maximum length of MICAP and average

length of MICAP in 2018. Simple correlation analysis and graphical procedures were

used on the annual data which both showed that a connection between missing parts

supportability data and MICAP days could not be meaningfully established at the

annual level.

In the second method, rather than aggregating data over the entire year, a time-

series analysis approach was used with the data aggregated at the daily level. For

each day and each NIIN in the HQ data, the number of carcass failures, parts failures,

missing parts failures and the number of ongoing MICAPs were counted. While this

approach still does not allow for the tracking of a particular repair requirement over

time to see potential opportunities for a reduction in MICAP days, these savings can
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still be estimated.

Time Series Analysis Approach

An unknown is the connection between the EXPRESS data and MICAPs. Ac-

cording to representatives from AFSC, there are certain trends in the EXPRESS

data. Carcass problems usually arise first. When these issues are resolved or reserve

carcasses are expended, parts problems come next. It is hypothesized that MICAPs

follow some time after carcass and parts problems. Knowing that there are cyclical

trends in maintenance data, running time series models may be the best approach to

establishing a relationship between these variables.

For this study, a dynamic model is used because multiple explanatory variables

are available to predict a dependent variable. The dependent variable of interest is

the daily count of active MICAPs. In dynamic models, lags of the predictor variables

are used. Lags are past observations of each variable. There are multiple types of

dynamic models depending on whether the dependent or independent variables or a

combination of both should be used to predict future values of the dependent variable.

Time series model selection requires careful consideration. It is hypothesized that

carcass and parts failures in addition to previous MICAPs are contributing to future

MICAPs. It would be tempting to use a simple distributed lag model where future

MICAPs are predicted using many lags of the carcass and parts failure time series.

However, the first step to time series analysis is to establish the order of integration

of each variable. This refers to the stationarity of the time series. Establishing the

stationarity of the time series is analogous to performing hypothesis tests to find a

unit root. It is customary to perform more than one test to check for stationarity.

In this study, two common methods to test for a unit root, the Augmented Dickey-

Fuller (ADF) test and the Phillips-Perron (PP) test, are used. The ADF test uses
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the model in Equation 2 and involves a hypothesis test where the null is that δ equals

zero [24]. In the equation, the user supplies k, the number of lags to include in the

model. Clearly, this is an autoregressive process as the variable is regressed on its

past values.

4yt = µ+ δyt−1 +
k∑

i=1

βi4yt−1 + et (2)

Conversely, the PP method is a non-parametric test that uses the model in Equa-

tion 3. One difference between the methods is the inclusion of a deterministic trend

component, D [24]. Similarly to ADF, the hypothesis test checks whether the coeffi-

cient on the first lag of y (π) equals zero.

4yt = πyt−1 + βiDt−i + et (3)

Analysis in the subsequent chapter shows that the EXPRESS and MICAP time

series are primarily non-stationary, meaning they exhibit a trend and have a noncon-

stant mean over time. A distributed lag model requires that both the dependent and

independent variables are stationary. If that model were used with this data, a high

R-squared value would suggest a great model fit simply because of spurious regres-

sion. Due to the non-stationarity of both the dependent and independent variables,

model output might show significant relationships that do not represent the truth.

One solution may be to take the first difference of each variable and fit the model,

but this eliminates any long-term relationships that can be gleaned from the output

[24]. Additionally, it is intuitive to expect that past MICAPs, in addition to carcass

and parts failures, are contributing to future MICAPs.

For these reasons, the ARDL model was chosen as the primary model for this

analysis. This model was originally conceived by Pesaran and Shin [25]. In the ARDL
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model, both the dependent and independent variables are used to predict future values

of the dependent variable. The benefit of the ARDL model is that the independent

variables can be either I(0) or I(1). However, the dependent variable must be I(1)

since meaningful results cannot be attained with a stationary dependent variable that

has repeated, cyclical patterns. Specifically, the dynamic error correction variant of

the ARDL is used. This model utilizes both lagged values and lagged differences to

predict a future change in the dependent variable and allows extraction of both short

and long-term relationships. There are numerous methods for selecting the number

of lags in the ARDL model. However, according to AFSC, it is reasonable to expect

that EXPRESS failures have a weekly impact on future MICAPs as far as one month

out. For this reason, four iterations of error-corrected ARDL models are fit with

lags of seven, fourteen, twenty-one and twenty-eight days. As mentioned previously,

there are collinearity issues between the carcass and parts failure time series and the

missing parts failures. For this reason, two separate models are fit. Equation 4 is the

seven day lagged ARDL model using carcass and parts failures. Since lags are cut off

at seven days, this is a finite model [24].

4MICAPst = α0 +
7∑

i=1

βi4MICAPst−i +
7∑

i=1

γi4CarcassFailurest−i+ (4)

7∑
i=1

δi4PartsFailurest−i + λ1MICAPst−1 + λ2CarcassFailurest−1+

λ3PartsFailurest−1 + ut

where:

MICAPs = Number of Active MICAPs

CarcassFailures = Number of Carcass Failures
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PartsFailures = Number of Parts Failures

u = Error Term

Obviously, the remaining iterations of the model simply include more lagged dif-

ferences of the variables. Equation 5 shows the second model of interest involving the

missing parts failures.

4MICAPst = α0 +
7∑

i=1

βi4MICAPst−i +
7∑

i=1

δi4PartsMissingt−i+ (5)

λ1MICAPst−1 + λ2PartsMissingt−1 + ut

where:

PartsMissing = Number of Parts Failures Missing in EXPRESS table

The coefficients in these models are interpreted in the usual way as with all regres-

sion models. The long-run coefficients describing the impact of constraint failures on

the number of MICAPs can be calculated from these coefficients in a process described

in the subsequent chapter.

As with all regression methods, there are a number of model assumptions that

should hold in order to trust the results. Residual diagnostic tests are most important

for ARDL models. It is crucial that the residuals are not autocorrelated. In this

analysis, the Breusch-Godfrey test is employed to check for autocorrelation in the

residuals. Also important is that the residuals are independently and identically

distributed and can be considered white noise [24].

The benefit of using the error correction ARDL model is that Pesaran, Shin and

Smith have developed a bounds test to see whether the variables in the model are

cointegrated [26]. Variables that share a cointegrated relationship with each other
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have similar movement over time [24]. Referring to the coefficients from Equation 4,

the ARDL bounds F-test process is the hypothesis test shown as Equation 6 [27].

H0 : λ1 = λ2 = λ3 = 0

HA : At least one λ 6= 0

(6)

As a secondary check, Pesaran et al. also include a t-test that uses the following

hypotheses [27].

H0 : λ1 = 0

HA : λ1 < 0

(7)

Equation 6 is a hypothesis test that the first-lagged variables are all equal to

zero while Equation 7 tests whether the coefficient on the first-lagged dependent

variable is equal to zero. Rejecting the null hypothesis indicates that there is a long-

run relationship in the data [27]. This is useful information for trying to establish a

relationship between the EXPRESS and MICAP data. Pesaran et al. [26] established

critical values for performing both a t-test and an F-test. The relevant tables for this

analysis are provided in Figure 11. In these tables, k refers to how many first-lagged

variables there are in the model in excess of the lagged dependent variable. Use of

these tables is demonstrated in the next chapter.
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Figure 11. F-critical (top) and t-critical (bottom) values for ARDL bounds testing [26]
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IV. Analysis

4.1 Introduction

This chapter details the results of both modeling approaches using the annually

and daily aggregated HQ supportability and MICAP data. Annual analysis related

aggregated EXPRESS and MICAP data for all of 2018. When the annual analysis

yielded minimal results, a time series regression approach using past daily data to

predict future MICAPs was used. Specific steps included imputing missing EXPRESS

data, establishing time series stationarity, fitting four ARDL models of differing lag

lengths with carcass and parts failures as predictors, fitting an ARDL model with

only missing parts failures as a predictor, testing model validity and testing for coin-

tegration of the time series. Two modeling processes are shown in full involving

NIIN 14429628, an F-15 part, and NIIN 14696512, an F-16 part. Summary output is

provided for the remaining eight NIINs identified in Chapter 3.

4.2 Annual Analysis

Correlation Analysis

Before fitting any models with the annual data, graphs relating the variables of

interest were formed before computing the Pearson correlation coefficient between

each pair of variables. The variables of interest for each NIIN were the percent of

time parts, capacity and funds failures were missing in the ALC supportability table,

the number of MICAPs and the average and maximum length of MICAP in hours.

All of these variables were collected using 2018 data. Three plots relating the parts,

capacity and funds variables to the mean length of MICAP are shown in Figure 12. It

is evident that there are minimal relationships between the variables. Plots relating

the parts, capacity and funds variables to the number of MICAPs and maximum
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length of MICAP for each NIIN showed similar results. There are clearly NIINs that

had minimal missing variable issues, but still had frequent and long MICAPs in 2018.

Also, there are NIINs that had many missing variable issues, but did not suffer from

many MICAP issues.

Figure 12. Plots Relating Three Supportability Variables to Mean MICAP Length in Hours

The Pearson correlation coefficients for each pair of variables were also calculated.

These correlations are shown in Figure 13. The correlation between the percent

of time parts, capacity and funds failures were missing in the ALC supportability

table and the MICAP variables was minimal. These results indicated that any type

of modeling approach, such as multiple linear regression, would fail to show any

meaningful relationship between missing variable issues in the ALC table and MICAP

lengths aggregated at the annual level. Using this information, a second approach

using data aggregated at the daily level was implemented.

4.3 Daily Analysis

NIIN 14429628

Data Imputation

As discussed previously, the HQ EXPRESS data is not without missing data issues

primarily due to weekends. If ARDL models were formed using the raw HQ data,

many observations would be dropped due to missing data. The regions of missing data
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Figure 13. Pearson Correlation Coefficient Values

were filled using an imputation method within the R package imputeTS, which was

developed specifically for imputation of missing data in time series variables [28]. The

“last observed carried forward” technique was used for data imputation. Using the

known data, this method fills gaps with values that were last observed. As opposed to

more advanced methods, this method was chosen to preserve integer values and avoid

artificially improving model performance by smoothing the independent variables.

For NIIN 14429628, the imputation resulted in the full carcass failure data in Figure

14, in which the imputed data is highlighted in red. The same imputation method

was used for parts failures and missing parts failures to prepare the data for modeling.

Unit Root Testing

The first step in any time series analysis is determining whether or not the time

series are stationary or non-stationary. Time series with a constant, common mean

over time are stationary. Looking at plots of the time series can give some idea of
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Figure 14. Imputation Results

the stationarity of a time series. Plots that resemble a sine wave would be considered

stationary, while plots that show trends over time are non-stationary. There are

multiple formal tests for a unit root, which time series have if they are non-stationary.

This analysis uses the Augmented Dickey-Fuller Test and the Phillips-Perron Unit

Root Test. These tests are both easily performed using functions within the tseries

package [29]. Time series that are deemed stationary are declared I(0), while those

that become stationary after differencing once are considered I(1). Results are pre-

sented in Table 6.

A p-value exceeding 0.05 indicates a non-stationary time series. Both tests indicate

that parts failures, missing parts failures and number of MICAPs are non-stationary.

Since taking the first difference of these variables makes a stationary time series, they

are I(1). However, there is a discrepancy between the two tests for carcass failures,
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Table 6. Unit Root Test Results

Variable Level
First

Difference
Test Statistic p-value Statistic p-value

ADF

Carcass Failures -1.4779 0.7964 -8.7191 <0.01
Parts Failures -1.321 0.8625 -6.451 <0.01
Parts Missing -1.2814 0.8792 -6.3972 <0.01

MICAPs -2.3554 0.4265 -6.7723 <0.01

PP

Carcass Failures -37.568 <0.01 -368.58 <0.01
Parts Failures -5.5371 0.7999 -367.55 <0.01
Parts Missing -5.2293 0.8172 -365.2 <0.01

MICAPs -17.083 0.1525 -343.87 <0.01

which might be I(0) or I(1). As previously mentioned, the independent variables may

be either I(0) or I(1) in the ARDL model, so this has minimal impact.

ARDL Models

The carcass failures, parts failures and number of MICAPs are shown visually in

Figure 15. The number of MICAPs have a separate axis due to differing scales. From

this plot, some idea of the relationship between the variables can be hypothesized.

Figure 15. MICAPs, Carcass Failures and Parts Failures for NIIN 14429628
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The error-corrected variant of the ARDL model was fit for lags of seven, fourteen,

twenty-one and twenty-eight days using the dynamac package in R [30]. The inde-

pendent variables were carcass and parts failures. The first model output is shown in

Table 7. Lagged difference coefficients past seven days are omitted for brevity.

Table 7. First ARDL Model Results
(7) (14) (21) (28)

Constant -0.435(0.573) -0.897(0.622) -1.802(0.824)** -1.492(1.253)
l.1.NumMICAPs -0.104(0.029)*** -0.118(0.035)*** -0.154(0.042)*** -0.122(0.055)**

l.1.Carcass Failures 0.029(0.014)** 0.039(0.016)** 0.063(0.021)** 0.052(0.032)
l.1.Parts Failures 0.004(0.005) 0.005(0.005) 0.005(0.005) 0.002(0.007)
ld.1.NumMICAPs -0.026(0.06) 0.014(0.067) 0.061(0.07) 0.048(0.083)
ld.2.NumMICAPs 0.087(0.06) 0.089(0.066) 0.087(0.071) 0.073(0.083)
ld.3.NumMICAPs 0.051(0.059) 0.062(0.065) 0.111(0.07) 0.048(0.081)
ld.4.NumMICAPs 0.084(0.059) 0.115(0.065)* 0.163(0.07)** 0.145(0.08)*
ld.5.NumMICAPs -0.064(0.059) -0.057(0.065) -0.067(0.07) -0.05(0.08)
ld.6.NumMICAPs -0.105(0.058)* -0.054(0.064) -0.051(0.069) -0.053(0.079)
ld.7.NumMICAPs 0.104(0.058)* 0.077(0.064) 0.047(0.069) 0.024(0.077)

ld.1.Carcass Failures -0.013(0.02) -0.021(0.023) -0.041(0.025) -0.031(0.036)
ld.2.Carcass Failures -0.004(0.022) -0.012(0.024) -0.031(0.027) -0.028(0.036)
ld.3.Carcass Failures 0(0.022) -0.013(0.024) -0.032(0.026) -0.024(0.035)
ld.4.Carcass Failures -0.009(0.021) -0.03(0.024) -0.051(0.026)* -0.041(0.034)
ld.5.Carcass Failures 0.013(0.021) -0.01(0.024) -0.022(0.026) -0.005(0.032)
ld.6.Carcass Failures -0.015(0.019) -0.026(0.024) -0.05(0.025)* -0.044(0.032)
ld.7.Carcass Failures -0.009(0.015) -0.011(0.024) -0.026(0.026) -0.017(0.031)
ld.1.Parts Failures 0.002(0.013) -0.001(0.014) 0.009(0.014) 0.012(0.016)
ld.2.Parts Failures 0.021(0.015) 0.015(0.015) 0.012(0.016) 0.02(0.017)
ld.3.Parts Failures 0.009(0.015) 0.003(0.016) -0.001(0.016) 0.005(0.017)
ld.4.Parts Failures -0.006(0.015) -0.007(0.016) 0.002(0.017) 0.003(0.018)
ld.5.Parts Failures -0.001(0.015) 0.004(0.016) -0.003(0.017) -0.004(0.018)
ld.6.Parts Failures -0.014(0.015) -0.018(0.016) -0.02(0.016) -0.024(0.018)
ld.7.Parts Failures 0.029(0.015)* 0.015(0.016) 0.015(0.017) 0.021(0.018)

R2 0.1526 0.2406 0.3517 0.4229
Adjusted R2 0.07702 0.09886 0.1508 0.1515

Residual Std. Error 0.9256(df = 269) 0.9172(df = 241) 0.8947(df = 213) 0.9005(df = 185)
F statistic 2.019***(df = 24;269) 1.697***(df = 45;241) 1.715***(df = 66;213) 1.558***(df = 87;185)

***p<0.01; **p<0.05; *p<0.1

Model selection was performed based on both R2 values and model diagnostics

performed in the next section. The final model chosen was the twenty-one day lag

model. With an R2 of 0.3517 and an adjusted R2 of 0.1508, this is not a very strong

model by most standards. However, there are still significant variables which can be

interpreted in the usual way. As expected, the lagged value of MICAPs are significant

in predicting changes in the number of MICAPs the following day. However, the

lagged value of carcass failures is also significant in the model. This indicates that

carcass failures are influential on future changes in the number of MICAPs in the

long run. The actual long-run multiplier between carcass failures and the number of
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MICAPs is calculated in Equation 8 [27]. The relevant values from Table 7 are the

coefficients on the number of MICAPs and carcass failures, which were identified as

λ1 and λ2 in Equation 4. One additional carcass failure leads to an increase of 0.409

MICAPs in the long run.

−λ2
λ1

= − 0.063

−0.154
= 0.409 (8)

Due to multicollinearity issues, a second model using only missing parts failures

as a predictor was formed. Missing parts failures and the number of MICAPs are

shown visually in Figure 16.

Figure 16. MICAPs and Parts Failures Missing for NIIN 14429628

Model results are shown in Table 8. With low R2 values, this model also suffers

from poor fit, but an interesting long run relationship was uncovered. Missing parts

failures are significant predictors of MICAPs in the long run. The long-run multiplier
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between missing parts failures and the number of MICAPs is 0.197, indicating that

one additional part failure that is missing in the EXPRESS table leads to an increase

of 0.197 MICAPs in the long run.

Table 8. Second ARDL Model Results
(21)

Constant 0.404(0.358)
l.1.NumMICAPs -0.066(0.029)**
l.1.Parts Missing 0.013(0.005)***
ld.1.NumMICAPs -0.067(0.067)
ld.2.NumMICAPs 0.088(0.067)
ld.3.NumMICAPs 0.055(0.068)
ld.4.NumMICAPs 0.099(0.068)
ld.5.NumMICAPs -0.101(0.068)
ld.6.NumMICAPs -0.115(0.067)*
ld.7.NumMICAPs 0.046(0.068)
ld.1.Parts Missing 0.004(0.014)
ld.2.Parts Missing 0.02(0.014)
ld.3.Parts Missing 0.007(0.014)
ld.4.Parts Missing -0.015(0.014)
ld.5.Parts Missing -0.013(0.014)
ld.6.Parts Missing -0.016(0.014)
ld.7.Parts Missing 0.011(0.014)

R2 0.2365
Adjusted R2 0.0935

Residual Std. Error 0.9244(df = 235)
F-statistic 1.654***(df = 44;235)

***p<0.01;**p<0.05;*p<0.1

Model Diagnostics

An important assumption for ARDL models is that the residuals are i.i.d. (inde-

pendently and identically distributed). This implies that the residuals not autocor-

related and do not suffer from heteroskedasticity issues. Most important for ARDL

models is that the residuals are not autocorrelated. Typical diagnostics involve per-

forming autocorrelation and normality tests and viewing residual plots.

Two prominent tests are available within the dynamac package [30]. The Breusch-

Godfrey test checks for autocorrelation and the Shapiro-Wilk test checks for normal-

ity. The output of these tests for the first twenty-one day lag model is shown in Figure

17. These tests indicate that there are no autocorrelation or normality issues since

the null hypotheses cannot be rejected at the 95% confidence level. The normality of

the residuals is confirmed by the quantile-quantile plot available in Appendix A which
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showed that no residuals caused the distribution to stray from normality. In addi-

tion, there were no heteroskedasticity issues evident when viewing a standard residual

plot shown in Appendix A. The variance of the residuals does not change with time.

Diagnostic tests for the second ARDL model with only missing parts failures as a

predictor showed similar results, confirming a valid model. The twenty-one day lag

model follows the necessary assumptions. With a well-behaved model, another logical

step in time series analysis is testing for cointegration.

Figure 17. Diagnostic Test Results for First ARDL Model

Cointegration Testing

Cointegration testing is a way to formally determine whether time series variables

are in a long-term relationship. The ARDL bounds test proposed by Pesaran, Shin

and Smith [26] can be used to see whether the time series in the model are coin-

tegrated. The F and t statistics for the hypothesis tests are computed in R and

compared to the critical values in Figure 11. When the F-statistic exceeds the upper

critical value, there is significant evidence of cointegration. When the absolute value

of the t-statistic exceeds the absolute value of the upper critical value, there is signifi-

cant evidence of cointegration. Statistics that are within the bounds are inconclusive

at that confidence level. Figure 18 shows the bounds test results for both ARDL

models.
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Figure 18. Cointegration Tests for First (left) and Second (right) Model

For the first ARDL model, the output indicates cointegration among the variables.

The F-test indicates that cointegration is evident with 99% confidence since the F-

statistic exceeds the upper 1% critical value. The t-test indicates that cointegration

is present with 95% confidence. Since carcass failures were most significant in the

model, it is likely that carcass failures and number of MICAPs have a cointegrating

relationship. For the second ARDL model, the F-test suggests cointegration with

95% confidence and the t-test rejects that there is cointegration between the vari-

ables. Missing parts failures and the number of MICAPs may or may not be in a

cointegrating relationship.

NIIN 14696512

Data Imputation

The same data imputation process was used for NIIN 14696512. The regions of

missing data for carcass failures, parts failures and missing parts failures were filled

using the “last observed carried forward” technique to prepare the data for further

analysis.
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Unit Root Testing

The Augmented Dickey-Fuller Test and the Phillips-Perron Unit Root Test were

again performed on each time series of interest. Results are presented in Table 9.

Both tests indicate that all four time series are I(1).

Table 9. Unit Root Test Results

Variable Level
First

Difference
Test Statistic p-value Statistic p-value

ADF

Carcass Failures -1.7262 0.6917 -5.9844 <0.01
Parts Failures -1.8096 0.6566 -8.7385 <0.01
Parts Missing -1.8096 0.6566 -8.7385 <0.01

MICAPs -1.8388 0.6443 -5.6061 <0.01

PP

Carcass Failures -6.1646 0.7647 -368.58 <0.01
Parts Failures -16.078 0.2089 -253.03 <0.01
Parts Missing -16.078 0.2089 -253.03 <0.01

MICAPs -7.3235 0.6998 -299.65 <0.01

ARDL Models

The time series variables for the data used to fit the first ARDL model are shown

in Figure 19. The different time series seem to move together in some fashion. Model

results are shown in Table 10.

Figure 19. MICAPS, Carcass Failures and Parts Failures for NIIN 14696512
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Based on both R2 values and the model diagnostics performed in the next section,

the seven day lag model was superior. The chosen model had a small R2 of 0.153 and

an adjusted R2 of 0.07745. However, information can be gleaned from the significance

of variables. Again, the lagged value of MICAPs were significant in predicting changes

in the number of MICAPs the following day. In this model, both the lagged values

of carcass and parts failures were also significant. This indicates that both carcass

and parts failures influence daily changes in the number of MICAPs in the long run.

The long-run multiplier between carcass failures and the number of MICAPs is -0.15,

meaning an additional carcass failure leads to a decrease of 0.15 MICAPs in the long

run. Parts failures, the more significant predictor, has a long-run multiplier of 0.38,

meaning an additional parts failure leads to an increase of 0.38 MICAPs.

Table 10. First ARDL Model Results
(7) (14) (21) (28)

Constant 1.58(0.4)*** 1.735(0.544)*** 1.847(0.7)*** 2.496(0.854)***
l.1.NumMICAPs -0.097(0.023)*** -0.105(0.031)*** -0.11(0.04)*** -0.15(0.049)***

l.1.Carcass Failures -0.015(0.007)** -0.019(0.008)** -0.017(0.01)* -0.002(0.079)
l.1.Parts Failures 0.037(0.011)*** 0.044(0.014)*** 0.043(0.018)** 0.005(0.077)
ld.1.NumMICAPs -0.014(0.06) -0.01(0.065) -0.016(0.073) -0.037(0.078)
ld.2.NumMICAPs -0.027(0.059) -0.004(0.065) -0.022(0.073) 0.114(0.077)
ld.3.NumMICAPs -0.084(0.06) -0.076(0.065) -0.08(0.072) 0.122(0.079)
ld.4.NumMICAPs 0.063(0.06) 0.079(0.065) 0.08(0.071) 0.18(0.079)**
ld.5.NumMICAPs 0.049(0.06) 0.065(0.066) 0.057(0.071) 0.23(0.081)***
ld.6.NumMICAPs 0.075(0.06) 0.102(0.066) 0.116(0.072) -0.027(0.012)**
ld.7.NumMICAPs 0.14(0.06)** 0.156(0.065)** 0.188(0.073)** 0.064(0.022)***

ld.1.Carcass Failures 0.009(0.034) 0.014(0.036) 0.007(0.04) 0.017(0.043)
ld.2.Carcass Failures -0.064(0.034)* -0.053(0.036) -0.057(0.04) -0.052(0.043)
ld.3.Carcass Failures 0.074(0.034)** 0.079(0.036)** 0.066(0.04) 0.071(0.043)
ld.4.Carcass Failures -0.051(0.034) -0.038(0.037) -0.048(0.041) -0.036(0.044)
ld.5.Carcass Failures 0.001(0.034) 0.003(0.037) -0.019(0.041) -0.016(0.044)
ld.6.Carcass Failures 0.003(0.034) 0.013(0.037) 0.016(0.041) 0.02(0.044)
ld.7.Carcass Failures 0.034(0.034) 0.056(0.037) 0.044(0.042) 0.061(0.045)
ld.1.Parts Failures -0.027(0.016)* -0.035(0.019)* -0.03(0.022) -0.052(0.026)
ld.2.Parts Failures -0.023(0.015) -0.03(0.019) -0.028(0.022) -0.055(0.025)
ld.3.Parts Failures -0.029(0.015)** -0.036(0.018)** -0.033(0.022) -0.055(0.026)
ld.4.Parts Failures -0.016(0.015) -0.024(0.019) -0.02(0.023) -0.039(0.026)
ld.5.Parts Failures 0.002(0.013) 0(0.019) 0.006(0.023) -0.011(0.026)
ld.6.Parts Failures -0.012(0.013) -0.022(0.019) -0.013(0.023) -0.03(0.026)
ld.7.Parts Failures -0.013(0.013) -0.021(0.019) -0.013(0.023) -0.029(0.026)

R2 0.153 0.2009 0.2473 0.3263
Adjusted R2 0.07745 0.05169 0.0141 0.009429

Residual Std. Error 0.9412(df = 269) 0.9624(df = 241) 0.9899(df = 213) 0.998(df = 185)
F-statistic 2.025***(df = 24;269) 1.346*(df = 45;241) 1.06(df = 66; 213) 1.03(df = 87; 185)

***p<0.01; **p<0.05; *p<0.1

A second iteration of the chosen model was fit with only missing parts failures as

a predictor. This model uses the data shown in Figure 20.
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Figure 20. MICAPS and Parts Failures Missing for NIIN 14696512

The results of the second ARDL model are given in Table 11. Again, this model

suffers from poor fit, but includes several significant predictors of interest. As ex-

pected, past values of MICAPs are significant predictors of future MICAPs. Addi-

tionally, missing parts failures are significant predictors of MICAPs in the long run.

The long-run coefficient between missing parts failures and the number of MICAPs

is 0.20, indicating that one additional part failure that is missing in the EXPRESS

table leads to an increase of 0.20 MICAPs in the long run. The short-run coefficients

offer no information of interest.
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Table 11. Second ARDL Model Results
(7)

Constant 1.058(0.323)***
l.1.NumMICAPs -0.079(0.022)***
l.1.Parts Missing 0.016(0.005)***
ld.1.NumMICAPs -0.039(0.059)
ld.2.NumMICAPs -0.006(0.059)
ld.3.NumMICAPs -0.102(0.059)*
ld.4.NumMICAPs 0.069(0.059)
ld.5.NumMICAPs 0.061(0.059)
ld.6.NumMICAPs 0.074(0.06)
ld.7.NumMICAPs 0.129(0.06)**
ld.1.Parts Missing -0.011(0.013)
ld.2.Parts Missing -0.016(0.013)
ld.3.Parts Missing -0.009(0.013)
ld.4.Parts Missing -0.01(0.013)
ld.5.Parts Missing 0.01(0.012)
ld.6.Parts Missing -0.003(0.012)
ld.7.Parts Missing -0.006(0.012)

R-Squared 0.09817
Adjusted R-Squared 0.04608
Residual Std. Error 0.957(df = 277)

F-statistic 1.885**(df = 16; 277)
***p<0.01;**p<0.05;*p<0.1

Model Diagnostics

Before making any conclusions with confidence, model assumptions must be ver-

ified. The Breusch-Godfrey and Shapiro-Wilk tests were performed to rule out auto-

correlation of the residuals and to check for normality of the residuals. The output

of these tests for the first seven day lag model is shown in Figure 21.

Figure 21. Diagnostic Test Results for First ARDL Model

There appears to be an issue with the distribution of the residuals that requires

further investigation. The quantile-quantile plot for the residuals is shown in Figure

22. The residuals do not seem to follow the normal distribution and seemingly cannot
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be called white noise. While there are many problem residuals, the 136th and 251st

are the most problematic. Upon further inspection, the number of ongoing MICAPs

for the 135th observation, which was 19 May 2018, was 27. The number of MICAPs

on the following day was only 19. This is an unusual drop and is easily visible

in Figures 19 and 20. Observations such as this one are problematic for any type of

predictive model. The non-normality of the residuals speaks to the noise and volatility

of maintenance data. However, the most important assumption that there is not

autocorrelation in the residuals is verified for this model. Additionally, there were

little to no issues with heteroskedasticity evident when viewing a standard residual

plot, which is available in Appendix A. Diagnostics for the second ARDL model

produced similar results. Using the ARDL bounds test, the models were next checked

for the presence of cointegration.

Figure 22. Q-Q Plot of Residuals for First ARDL Model

51



Cointegration Testing

Both models were tested for cointegration to see if the time series variables are

in a long-term relationship. The F and t statistics calculated in R were compared

to the critical values in Figure 11. Figure 23 shows the bounds test results for both

models. The bounds tests overwhelmingly indicates cointegration among the time

series in the first ARDL model since both the F and t statistics lie outside the critical

value for 99% confidence. There is a cointegrating relationship between the number

of MICAPs and carcass and parts failures. For the second ARDL model, the F-

test suggests cointegration with 99% confidence and the t-test accepts the hypothesis

of cointegration between the variables with 95% confidence. There is evidence of a

cointegrating relationship between missing parts failures and the number of MICAPs.

Figure 23. Cointegration Tests for First (left) and Second (right) Model

Additional Models

Data from eight additional NIINs were analyzed using the ARDL approach. The

summary results are available in Table 12 and additional statistics are available in

Appendix A. For each NIIN, the model using carcass and parts failures is listed first

followed by the model using missing parts failures. These models offered mixed results.
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In cases such as NIIN 13134227, there was significant evidence of cointegration and

evidence that each part failure missing from the EXPRESS table adds 0.424 MICAP

days. In other cases, models suffered from poor fit and offered minimal evidence of

cointegration. Sometimes, even past values of MICAPs were not great predictors

of future MICAPs. Ultimately, these models exemplified the nature of maintenance

data. These are parts from a variety of bombers, fighters and cargo aircraft and the

EXPRESS data seemingly impacts MICAPs on differing timelines. The volatility of

the data was evident again because each model suffered from issues with normality.

While using time series models is arguably one of the best approaches to characterize

any relationship between the EXPRESS and MICAP data, these issues suggest that

there may be a better method than ARDL. Additionally, while it would be great if a

“one size fits all” model could be fit and used daily to predict future MICAPs for all

NIINs, this is infeasible since data from each NIIN should be treated as its own time

series and such a model would produce results that could not be trusted.

Table 12. Additional ARDL Model Results
NIIN Aircraft Lag Model R-Squared Adj R-Squared Significant Terms (Long Run Coefficient) Cointegration

13134227 F-15E 21
1 0.3377 0.1324 Carcass Failures***(0.285) 13.843***;-5.398***
2 0.2719 0.1355 Parts Missing***(0.424) 22.622***;-5.012***

145395245 C-135 7
1 0.2891 0.2257 Carcass Failures**(0.032) 2.04;-4.148***
2 0.2809 0.2394 Parts Missing**(0.031) 4.065ˆ;-4.246***

11428094 C-135 7
1 0.1843 0.1116 5.705**;-3.569**
2 0.118 0.06702 Parts Missing***(0.275) 13.853***;-3.714**

12043672 F-16 28
1 0.4075 0.1289 Parts Failures**(1.714) 3.252ˆ;-0.612
2 0.2278 0.01848 Parts Missing**(0.793) 4.443ˆ;-1.012

12902065 C-135 28
1 0.4887 0.2482 Carcass Failures*(-0.079); Parts Failures**(0.073) 1.978;-2.556
2 0.4174 0.2595 0.003;-3.433**

11402105 C-135 7
1 0.1116 0.0323 0.665;-3.374*
2 0.08949 0.0369 0.199;-3.19*

792295
B-52
C-135

14
1 0.2209 0.07541 0.661;-2.912ˆ
2 0.196 0.1018 1.704;-3.146*

12511153 F-15E 28
1 0.3949 0.1103 Parts Failures**(0.477) 4.068ˆ;-2.522
2 0.2832 0.08889 Parts Missing*(0.302) 2.952;-1.444

***p<0.01; **p<0.05; *p<0.1; ˆinconclusive
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V. Conclusions and Future Research

5.1 Conclusion

This research related EXPRESS data to MICAPs using ARDL models in the ex-

planatory sense to find evidence of long-run relationships between relevant variables

and explored the use of time series models for this purpose. As hypothesized, the

EXPRESS data seemingly impacted MICAPs over time rather than instantaneously.

In some cases, ARDL models showed that constraint failures, and the absence of

constraint failures due to Supportability Module logic, in the EXPRESS table were

significant predictors of future MICAPs up to 28 days out. In the two models pre-

sented in full, the long-run coefficient between missing parts failures and the number

of MICAPs indicated that each additional parts failure that was missing in the EX-

PRESS table led to 0.197 and 0.2 additional MICAP days. Other models suggested

that up to 0.793 MICAP days were added as a consequence of each parts failure

that was masked in the EXPRESS table. Many models indicated the existence of

cointegrating relationships, suggesting that the variables of interest seemed to move

together over time. Overall, it seems that missing values in the supportability data

impact mission capability in many cases. Carcass failures and parts failures, which

are available in the HQ EXPRESS table, were also significant predictors of future

MICAPs in most cases. This suggests that it may be helpful for maintainers to be

looking at trends in the HQ data to best prevent future MICAPs. The HQ data is

available to shops and maintainers, but is not as readily available as the ALC EX-

PRESS data and is not directly involved in the maintenance process. While many of

the models offered interesting results, various model diagnostics suggested that the

ARDL approach may not have been the best for maintenance data. Obviously, main-

tenance data is volatile over time. There are certain times when some parts require
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more repairs. Time series plots in this analysis showed noise in both the EXPRESS

and MICAP data that would impede success of most forecasting methods, including

ARDL which is regression-based. The volatility in the data led to non-normality of

the residuals in most cases, violating a fundamental assumption and suggesting that

any conclusions should be made with caution. There were often starkly atypical ob-

servations, such as sudden drops to zero parts failures, but it was assumed that the

data used in this analysis was accurate. Precise data management is crucial to the

success of any modeling procedure.

As a byproduct of this analysis, the potential for the use of time series models

in forecasting maintenance data was explored. Even if these models were perfectly

valid, periodically updating and fitting new time series models for the purpose of

forecasting MICAPs would not be feasible. While a single “one size fits all” model

would be great, data related to each unique NIIN is distinct and should be treated

as separate time series. Additionally, while this study used NIINs with a sufficient

amount of data available to fit ARDL models, many NIINs were not present in both

the EXPRESS and MICAP data. For example, there were NIINs that required a

lot of repairs, but had no MICAP documents associated with them. Further, recent

changes in the Supportability Module logic reduced the percent of time that parts

failures were missing such that only about 20% of NIINs that needed repairs in 2018

dealt with this issue. These observations suggest that the initial issue posed for this

study may not be as prevalent as expected.

5.2 Future Research

This analysis used only data from 2018 due to limitations in the availability of the

HQ EXPRESS data. Further analysis should be conducted as more data becomes

available. Further, while this study looked at a subset of ten stock numbers, a more
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large-scale modeling procedure would be required to increase confidence in conclusions

about any causation between EXPRESS data and MICAPs. This study attempted

to relate the EXPRESS data to MICAPs, but many models exhibited poor fit. There

may be a different dependent variable of interest that is better impacted by the

EXPRESS data. However, there is the possibility that regression-based time series

models such as ARDL are simply ill-suited for maintenance data due to noise and

volatility. In this case, some of the newer nonlinear time series approaches might be

considered. Time series modeling using advanced computing software is a growing

field and new models will be developed in the future, some of which may be more

appropriate for this data. Additionally, there seems to be randomness involved in

this data. Sometimes, even past MICAP values are not an accurate predictor of

future MICAPs. With randomness and probabilities involved, stochastic methods or

simulation might be more appropriate for future modeling efforts with EXPRESS or

MICAP data. Future research might involve examining other assumptions and logic

in the Air Force supply chain process instead of the Supportability Module.
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Appendix A

Additional ALC Summary Graphs

Figure 24. Summary of Capacity and Funds ALC Data

NIIN 14429628 21 Day ARDL Model Q-Q Plot

Figure 25. Q-Q Plot of Residuals for First ARDL Model
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NIIN 14429628 21 Day ARDL Model Residual Plot

Figure 26. Residual Plot for First ARDL Model

NIIN 14696512 7 Day ARDL Model Residual Plot

Figure 27. Residual Plot for First ARDL Model
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Additional Model Statistics

Table 13. Additional Statistics for Supplemental Models

NIIN Aircraft Lag Model Res. Std. Error F-statistic

13134227 F-15E 21
1 1.798(df = 213) 1.645***(df = 66;213)
2 1.795(df = 235) 1.994***(df = 44;235)

145395245 C-135 7
1 1.76(df = 269) 4.558***(df = 24;269)
2 1.744(df = 277) 6.764***(df = 16;277)

11428094 C-135 7
1 1.311(df = 269) 2.533***(df = 24;269)
2 1.343(df = 277) 2.315***(df = 16; 277)

12043672 F-16 28
1 0.8256(df = 185) 1.463**(df = 87 ;185)
2 0.8763(df = 214) 1.088(df = 58;214)

12902065 C-135 28
1 1.14(df = 185) 2.032***(df = 87;185)
2 1.131(df = 214) 2.643***(df = 58;214)

11402105 C-135 7
1 1.323(df = 269) 1.408*(df = 24;269)
2 1.32(df = 277) 1.702**(df = 16;277)

792295
B-52
C-135

14
1 0.5086(df = 214) 1.518**(df = 45;241)
2 0.5012(df = 256) 2.08***(df=30;256)

12511153 F-15E 28
1 1.331(df = 185) 1.387**(df = 87;185)
2 1.347(df = 214) 1.458**(df = 58;214)

***p<0.01; **p<0.05; *p<0.1
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Appendix B

Packages Used in Analysis

library(data.table)

library(zoo)

library(dplyr)

library(imputeTS)

library(tseries)

library(dynamac)

library(car)

library(lubridate)

library(corrplot)

library(xtable)

MICAP Data Cleaning and Preparation

# Import data from csv file

MICAPs ← read.csv("MICAP Data v2.csv", header=TRUE)

# Remove leading zeroes in NIIN for to match format from

EXPRESS tables

MICAPs$niin ← gsub("(?<![0-9])0+", "", MICAPs$NIIN , perl =

TRUE)

# Replace any NULL values with NA for ease of use

MICAPs ← apply(MICAPs ,2,function(x) suppressWarnings(levels(

x)←sub("NULL",NA ,x)))

MICAPs ← data.table(MICAPs)
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# Format date columns as dates

MICAPs$StartDate ← as.Date(MICAPs$MICAP.Start.Date)

MICAPs$StopDate ← as.Date(MICAPs$MICAP.Stop.Date)

# Subsetting to the top 10 NIINs with missing values for

parts that had at least 100 MICAPs in 2018

MICAP_Subset ← subset(MICAPs ,niin ==13134227| niin ==145395245|

niin ==11428094| niin ==12043672| niin ==14429628| niin

==14696512| niin ==12902065| niin ==11402105| niin ==792295|

niin ==12511153)

# Drop any observations that started after 10/31/2018

MICAP_Subset ← MICAP_Subset[MICAP_Subset$StartDate <="

2018 -10 -31"]

# Finding the duration of each unique MICAP document

MICAP_Durations ← MICAP_Subset %>%

group_by(niin ,MICAP.Document.Number) %>%

summarize(Start = min(StartDate), End = max(StopDate , na.

rm = TRUE))

# If no maximum stop date was found , then there were no end

dates for that MICAP on record - fill in with 10/31/2018

MICAP_Durations$End ← as.character(MICAP_Durations$End)

MICAP_Durations$End[is.na(MICAP_Durations$End)] ← "

2018 -10 -31"

MICAP_Durations$End ← as.Date(MICAP_Durations$End)
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# Creating data table of each NIIN with each date

# First date of data is 1/3/2018 and last date is 10/31/2018

time_series_full ← seq(ymd("2018 -01 -03"), ymd("2018 -10 -31"),

by="day") # vector of relevant dates

# Creating repeated vectors of each NIIN to combine with the

date vector

NIINs ← c(13134227 , 145395245 , 11428094 , 12043672 , 14429628 ,

14696512 , 12902065 , 11402105 , 792295 , 12511153)

i = 1

for (value in NIINs){

name ← paste("NIIN_", value , sep = "")

assign(name ,rep(value , length(time_series_full)))

}

# Combining into one data frame

NIIN_Vectors ← c(NIIN_13134227 , NIIN_145395245 , NIIN_11428094 ,

NIIN_12043672 , NIIN_14429628 , NIIN_14696512 , NIIN_12902065 ,

NIIN_11402105 , NIIN_792295 , NIIN_12511153)

Date_Vector ← rep(time_series_full ,10)

# Make a blank vector for number of MICAPs

NumMICAPs ← rep(0,length(Date_Vector))

# Check "MICAP_Durations" for each pair of NIIN/date to see

if that date is between any of the start/end dates in

that table

for (row in 1: length(Date_Vector)){
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NIIN ← NIIN_Vectors[row]

date ← Date_Vector[row]

datasubset ← subset(MICAP_Durations ,niin==NIIN)

NumMICAPs[row] ← sum(datasubset$Start <=date & datasubset$

End >=date)

}

# Make final MICAP data table

MICAPsByNIINandDate ← data.table(NIIN_Vectors ,Date_Vector ,

NumMICAPs)

colnames(MICAPsByNIINandDate) ← c("niin_id","date","

NumMICAPs")

HQ EXPRESS Data Cleaning and Preparation

# Import data from csv file

HQ_Supp ← read.csv("HQ spt results v2.csv", header=TRUE)

HQ_Supp ← as.data.table(HQ_Supp)

# Forming a more understandable date column from "Date of

Data"

colnames(HQ_Supp)[1] ← "DateOfData"

HQ_Supp$date ← substr(HQ_Supp$DateOfData ,0,10)

HQ_Supp$date ← as.Date(HQ_Supp$date)

# Replacing carcass codes - B, F, P are all failures. S is

success. New column will be 1 if there was a failure.

HQ_Supp$Carcass[!HQ_Supp$carc_avail == "S"] ← 1

HQ_Supp$Carcass[HQ_Supp$carc_avail == "S"] ← 0
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# Replacing parts codes - F is a failure. B and S are

success. New column will be 1 if there was a failure.

HQ_Supp$Parts[HQ_Supp$parts_avail == "F"] ← 1

HQ_Supp$Parts[!HQ_Supp$parts_avail == "F"] ← 0

# Counting number of failures per NIIN per day for carcass

Carcass_Failures ← HQ_Supp %>%

group_by(niin_id, date) %>%

summarize(Number_Failures = sum(Carcass))

# Counting number of failures per NIIN per day for parts

Parts_Failures ← HQ_Supp %>%

group_by(niin_id, date) %>%

summarize(Number_Failures = sum(Parts))

# Adding a column to check if a NIIN failed for carcass and

parts

HQ_Supp$PartsMissing[HQ_Supp$Carcass == 1 & HQ_Supp$Parts ==

1] ← 1

HQ_Supp$PartsMissing[is.na(HQ_Supp$PartsMissing)] ← 0

# Counting number of times per NIIN per day that there was a

Carcass and Parts failure

Parts_Missing ← HQ_Supp %>%

group_by(niin_id, date) %>%

summarize(Number_Missing = sum(PartsMissing))
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# Change format of data tables so information can be joined

easily

Carcass_Failures ← as.data.table(Carcass_Failures)

Parts_Failures ← as.data.table(Parts_Failures)

Parts_Missing ← as.data.table(Parts_Missing)

# Join data tables

HQ_Table ← cbind(Carcass_Failures ,Parts_Failures [,3],Parts_

Missing [,3])

colnames(HQ_Table)[3:5] ← c("Carcass_Failures","Parts_

Failures","Parts_Missing")

# Finding NIINs with the most failures over the year

HQ_Year ← HQ_Supp %>%

group_by(niin_id) %>%

summarize(Carc_Failures = sum(Carcass), Part_Failures =

sum(Parts), Part_Missing = sum(PartsMissing))

# Viewing the correlation of the variables

M ← cor(HQ_Year[,c("Carc_Failures","Part_Failures","Part_

Missing")])

corrplot(M,method="square")

# Calculating summary percentages

table(HQ_Year$Carc_Failures)[1]/dim(HQ_Year)[1] # percent of

NIINs with NO carcass failures in year 2018

table(HQ_Year$Part_Failures)[1]/dim(HQ_Year)[1] # percent of

NIINs with NO parts failures in year 2018
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table(HQ_Year$Part_Missing)[1]/dim(HQ_Year)[1] # percent of

NIINs with NO parts missing in year 2018

# Forming LaTeX tables of top offending NIINs

xtable(head(HQ_Year[order(HQ_Year$Carc_Failures ,decreasing=

TRUE) ,],25)[,c(1,2)],caption = "Top NIINs for Carcass

Failures", digits = 0)

xtable(head(HQ_Year[order(HQ_Year$Part_Failures ,decreasing=

TRUE) ,],25)[,c(1,3)],caption = "Top NIINs for Parts

Failures", digits = 0)

xtable(head(HQ_Year[order(HQ_Year$Part_Missing ,decreasing=

TRUE) ,],25)[,c(1,4)],caption = "Top NIINs for Parts

Missing", digits = 0)

Merging Information from HQ and MICAP Data Tables

# Subsetting to the top 10 NIINs for carcass failures that

had at least 100 MICAPs in 2018 (at least 100 unique

MICAP document numbers)

HQ_Subset ← subset(HQ_Table ,niin_id ==13134227| niin_id

==145395245| niin_id ==11428094| niin_id ==12043672| niin_id

==14429628| niin_id ==14696512| niin_id ==12902065| niin_id

==11402105| niin_id ==792295| niin_id ==12511153)

HQ_Subset ← HQ_Subset[HQ_Subset$date <= "2018 -10 -31"]

# Merge with MICAP daily aggregated data

FullData ← merge(HQ_Subset ,MICAPsByNIINandDate ,by=c("niin_id

","date"), all=TRUE)

Preparing Data For Time Series Analysis
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# Extract data for NIIN of interest from the 10 in the table

NIIN_Subset ← subset(FullData , niin_id == 14429628 , select =

c("niin_id","date","Carcass_Failures","Parts_Failures","

Parts_Missing","NumMICAPs"))

# Form univariate time series data sets

carcass ← NIIN_Subset [,3]

parts ← NIIN_Subset [,4]

parts_missing ← NIIN_Subset [,5]

num_micaps ← NIIN_Subset [,6]

carcass_failures_zoo ← zoo(carcass , NIIN_Subset$date)

parts_failures_zoo ← zoo(parts , NIIN_Subset$date)

parts_missing_zoo ← zoo(parts_missing , NIIN_Subset$date)

num_micaps_zoo ← zoo(num_micaps , NIIN_Subset$date)

# Perform LOCF missing data imputation

carcass_failures_smooth ← na.locf(carcass_failures_zoo)

parts_failures_smooth ← na.locf(parts_failures_zoo)

parts_missing_smooth ← na.locf(parts_missing_zoo)

ts_df ← cbind(num_micaps_zoo ,carcass_failures_smooth ,parts_

failures_smooth ,parts_missing_smooth)

# Plots showing the interpolation for carcass failures , can

be repeated for other variables - imputed values are

shown in red

par(mar = c(5, 5, 5, 5))

plot(carcass_failures_smooth , type = "l", col = "red", ylab

= "Number of Carcass Failures", xlab = "Date", main = "
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Carcass Failures")

par(new = TRUE)

plot(carcass_failures_zoo , type = "l", col = "black", xaxt =

"n", yaxt = "n", ylab = "", xlab = "") # Parts

legend("topleft",legend = c("Original","Imputed"), col = c("

black","red"), fill = c("black","red"), cex = 1)

# Plotting carcass failures , parts failures and MICAPs on

the same plot with two y axes

par(mar = c(5, 5, 5, 5))

plot(ts_df[,2], type = "l", col = "blue", ylab = "Number of

Failures", xlab = "Date") # Carcass Failures

par(new = TRUE)

plot(ts_df[,3], type = "l", col = "darkgreen", xaxt = "n",

yaxt = "n", ylab = "", xlab = "") # Parts Failures

par(new = TRUE)

plot(ts_df[,1], type = "l", col = "red", xaxt = "n", yaxt =

"n", ylab = "", xlab = "") # MICAPs

axis(side = 4)

mtext("Number of MICAPs", side = 4, line = 3)

legend("topleft",legend = c("Carcass Failures","Parts

Failures","Number of MICAPs"), col = c("blue","darkgreen"

,"red"), fill = c("blue","darkgreen","red"), cex = 0.8)

# Plotting parts missing and MICAPs on the same plot with

two y axes

par(mar = c(5, 5, 5, 5))

plot(ts_df[,4], type = "l", col = "purple", ylab = "Number
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of Failures", xlab = "Date") # Parts Missing

par(new = TRUE)

plot(ts_df[,1], type = "l", col = "red", xaxt = "n", yaxt =

"n", ylab = "", xlab = "") # MICAPs

axis(side = 4)

mtext("Number of MICAPs", side = 4, line = 3)

legend("topleft",legend = c("Parts Missing", "Number of

MICAPs"), col = c("purple","red"), fill = c("purple","red

"), cex = 1)

# Form data set for dynamac package , which doesn ’t work with

time series objects

df ← cbind(num_micaps , as.vector(carcass_failures_smooth),

as.vector(parts_failures_smooth), as.vector(parts_missing

_smooth))

colnames(df)[2:4] = c("Carcass_Failures", "Parts_Failures","

Parts_Missing")

Performing Time Series Analysis

# Testing for unit root

# Augmented Dickey -Fuller Test

adf.test(carcass_failures_smooth)

adf.test(parts_failures_smooth)

adf.test(parts_missing_smooth)

adf.test(num_micaps_zoo)

adf.test(diff(carcass_failures_smooth))

adf.test(diff(parts_failures_smooth))

adf.test(diff(parts_missing_smooth))
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adf.test(diff(num_micaps_zoo))

# Phillips -Perron Test

pp.test(carcass_failures_smooth)

pp.test(parts_failures_smooth)

pp.test(parts_missing_smooth)

pp.test(num_micaps_zoo)

pp.test(diff(carcass_failures_smooth))

pp.test(diff(parts_failures_smooth))

pp.test(diff(parts_missing_smooth))

pp.test(diff(num_micaps_zoo))

# Running ARDL models for carcass and parts failures for

lags of 7, 14, 21 and 28 days

my_model7 ← dynardl(NumMICAPs ∼ Carcass_Failures + Parts_

Failures , data = df, lags = list("NumMICAPs" = 1, "

Carcass_Failures" = 1, "Parts_Failures" = 1), lagdiffs =

list("NumMICAPs" = c(1:7) , "Carcass_Failures" = c(1:7), "

Parts_Failures" = c(1:7)), ec = TRUE , simulate = FALSE ,

trend = FALSE)

summary(my_model7)

my_model14 ← dynardl(NumMICAPs ∼ Carcass_Failures + Parts_

Failures , data = df , lags = list("NumMICAPs" = 1, "

Carcass_Failures" = 1, "Parts_Failures" = 1), lagdiffs =

list("NumMICAPs" = c(1:14) , "Carcass_Failures" = c(1:14) ,

"Parts_Failures" = c(1:14)), ec = TRUE , simulate = FALSE

, trend = FALSE)
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summary(my_model14)

my_model21 ← dynardl(NumMICAPs ∼ Carcass_Failures + Parts_

Failures , data = df , lags = list("NumMICAPs" = 1, "

Carcass_Failures" = 1, "Parts_Failures" = 1), lagdiffs =

list("NumMICAPs" = c(1:21) , "Carcass_Failures" = c(1:21) ,

"Parts_Failures" = c(1:21)), ec = TRUE , simulate = FALSE

, trend = FALSE)

summary(my_model21)

my_model28 ← dynardl(NumMICAPs ∼ Carcass_Failures + Parts_

Failures , data = df , lags = list("NumMICAPs" = 1, "

Carcass_Failures" = 1, "Parts_Failures" = 1), lagdiffs =

list("NumMICAPs" = c(1:28) , "Carcass_Failures" = c(1:28) ,

"Parts_Failures" = c(1:28)), ec = TRUE , simulate = FALSE

, trend = FALSE)

summary(my_model28)

# Check model diagnostics for chosen model

dynardl.auto.correlated(my_model21) # Function that checks

for autocorrelation and normality of residuals

qqPlot(my_model21$model$residuals , ylab = "Residual", xlab =

"Norm Quantiles", main = "Q-Q Plot of Residuals") # Q-Q

Plot

plot(my_model21$model$residuals , ylab = "Residual", main = "

Residual Plot for ARDL Model") # Checking for

Heteroskedasticity
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# Testing for cointegration of variables

pssbounds(my_model21)

# Running ARDL model for missing parts failures for chosen

lag

my_model21 ← dynardl(NumMICAPs ∼ Parts_Missing , data = df,

lags = list("NumMICAPs" = 1, "Parts_Missing" = 1),

lagdiffs = list("NumMICAPs" = c(1:21) , "Parts_Missing" =

c(1:21)), ec = TRUE , simulate = FALSE , trend = FALSE)

summary(my_model21)

# Check model diagnostics of model

dynardl.auto.correlated(my_model21) # Function that checks

for autocorrelation and normality of residuals

qqPlot(my_model21$model$residuals , ylab = "Residual", xlab =

"Norm Quantiles", main = "Q-Q Plot of Residuals") # Q-Q

Plot

plot(my_model21$model$residuals , ylab = "Residual", main = "

Residual Plot for ARDL Model") # Checking for

Heteroskedasticity

# Testing for cointegration of variables

pssbounds(my_model21)
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