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Abstract 

The United States Air Force (USAF) is currently facing a 2,400-pilot shortage in 
an increasingly constrained budgetary environment.  Without pilots to engage the enemy, 
deliver weapons, and provide logistics support for operations, the USAF could lose the 
ability to fly, fight, and win global engagements and defend the homeland.  This study 
focused on Undergraduate Pilot Training (UPT) as a means of producing the USAF’s 
pilots to offset the current shortage.  Specifically, this study compared UPT to the recently 
initiated Pilot Training-Next (PTN) program through a cost-benefit analysis.  Like any 
new technology integration, PTN’s virtual reality training will require further study for 
proofing and justification prior to full-scale implementation and further utilization of 
constrained USAF resources.  This study’s use of extant financial and historical 
production data, coupled with interviews with PTN instructors, highlights the potential of 
PTN.  Ultimately, this study’s cost-benefit analysis uniquely contributes to the growing 
body of virtual reality training research through a Formula for Change theoretical lens, 
while simultaneously providing USAF decision makers a comparison of program costs, 
projected production capacity, and quality of training. 
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I. Introduction

Motivation & Background 

The United States Air Force (USAF) is currently facing a 2,400-pilot shortage [1] 

in an increasingly constrained budgetary environment [2], [3].  Without pilots to engage 

the enemy, deliver weapons, and provide logistics support for operations, the USAF 

could lose the ability to fly, fight, and win global engagements and defend our homeland 

[4], [5]. 

The USAF is no stranger to pilot shortages [6] and the current shortage is no less 

dire than its predecessors.  According to the Government Accountability Office (GAO), 

the current shortage affects many pilot communities (e.g., fighter, bomber, and special 

operations pilots) and extends to other Department of Defense (DoD) agencies [5].  As 

the pilot community with the worst shortage, each USAF fighter pilot represents a 

substantial investment to the USAF with a cost-to-train between $3 and $11 million over 

five years [5].  Staffing and personnel moves are handled within each career field, but not 

having enough personnel to call upon severely limits flexibility in assigning the best 

qualified candidate to each authorization [7].  Since 2012, the number of fully trained, 

mission-ready fighter pilots filling critical positions (staffing levels) has dropped 

precipitously below the total available positions (authorizations) as shown by Figure 1.  

For example, in 2017, less than 3,000 fighter pilots filled congressionally-allocated 

positions (including staff, training, and flying positions), representing a 27% gap between 

authorized and staffed positions; this trend is expected to continue past the year 2030 [5].  

1 
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Source: GAO-18-113 [5] 

Figure 1:  Current Fighter Pilot Shortage, Authorizations vs Staffing Levels [5] 

According to Lt. Gen. Gina Grosso, the Air Force Manpower, Personnel and 

Services Deputy Chief of Staff, the USAF’s plan to fix the current pilot shortage 

concentrates on evaluating three paths: reducing demand for pilots in non-flying 

positions, increasing retention of current pilots and increasing the number of new pilots 

produced through training [8].  To date, the USAF has explored the following methods to 

fix the shortage:   

1) pilot retention bonuses [9], [10],
2) voluntary return to active duty from retirement [8], [11], [12],
3) pilot life-improvement programs [12], [13],
4) personality testing as a prognosticator for airmanship skills [14], [15],
5) the feasibility of fly-only pilot tracks [16],
6) a warrant officer track [17], [18] and
7) the inclusion of enlisted aviators [19], [20].

Many of the explored methods have skewed heavily toward retention or getting 

existing pilots back to flying, leaving increased training production relatively unexplored.  

This is likely due to increased pilot production’s unique challenges including the 

increased number of required aircraft, amplified instructor availability constraints, and 
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support functions and resource limitations (e.g. maintenance, facilities, infrastructure, and 

auxiliary services) [21]–[23].  If the current aircraft inventory cannot cope with the 

increased demand, the USAF would also need to overcome the rising cost and complexity 

associated with procuring additional aircraft [24], [25]. Assuming more aircraft could be 

acquired, the USAF still requires qualified training instructors sourced from already 

strained staff and flying positions [8].  These potential instructors must continually be 

won over from the enticing offers to fly with commercial airlines [26], [27].  

Consequently, two key questions emerge:  1) Is there a way to train more pilots without 

obtaining additional aircraft and support equipment?  2) Is there a way to train more 

pilots without increasing the strain caused by drawing instructors from critical positions? 

Fortunately, the USAF has already discovered the principal components of a 

solution.  This solution comes in the form of emerging technologies that improve existing 

simulation capabilities.  Historically, the USAF’s technology adoption was constrained 

by expensive initial and recurring sustainment costs that ultimately limited total 

availability [28].  Despite these constraints, the USAF has depended upon simulators for 

decades “to reduce costs, extend aircraft life, maintain flying proficiency, and provide 

more effective training, especially in areas difficult to train in operational aircraft [29:ii].”  

However, with the expansion of virtual reality for educational purposes [30]–[32] and 

recent surges in hardware and software proliferation, costs for virtual reality training have 

fallen dramatically as the technology becomes more mainstream [33], [34]. This means 

virtual reality now presents an excellent alternative to traditional USAF simulators by 

providing a realistic training experience at a lower cost [35].  
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Research Gap 

Perhaps fortuitously, the current USAF pilot shortage arose concurrently with the 

rapid expansion of virtual reality training capabilities.  Unfortunately, despite support for 

virtual reality training’s growing utility at a reduced cost, this change in thinking also 

exposes a dearth of extant research specifically related to USAF pilot training.  To be 

effective, virtual reality pilot training must simulate the real world as accurately as 

possible to ensure the highest transfer of training and pilot safety [36].  This is necessary 

because a USAF pilot’s job is dynamic and involves coordination and cooperation 

between multiple individuals to achieve a successful sortie [37].  Previous studies have 

employed innovative equipment and extolled virtual reality’s immersive environment for 

training, yet no study has examined a virtual reality training environment sufficiently 

complex enough to replace portions of USAF pilot training (e.g., the ability to replicate 

realistic data-intensive task management and situational awareness scenarios while 

monitoring multiple pilots’ complex cognitive loads [38]–[40]).  Furthermore, no studies 

have addressed the costs and benefits of virtual reality training as a means of overcoming 

organizational resistance to adopting the technology. 

Research Purpose  

This study focuses on Undergraduate Pilot Training (UPT) administered by the 

USAF’s Air Education and Training Command (AETC) and compares UPT’s cost, 

production, and quality to the recently initiated Pilot Training-Next (PTN) program 

through a cost-benefit analysis.  A cost-benefit analysis was chosen because it compares 

current and new approaches by offering “a unique opportunity to transform legacy 

defense forces into efficient, effective, and accountable 21st-century organizations [2:1].” 
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The initial budget and format of PTN suggest that this new approach could 

represent a cheaper, faster and more flexible way to increase the number of trained USAF 

pilots to offset the current shortage [41].  While PTN explores many areas of pilot 

training innovation, this study focused specifically on PTN’s utilization of virtual reality 

training.  The first iteration of PTN employed virtual reality training in place of some 

training flights, thus reducing the number of required flights in actual training aircraft.  

Additionally, with the increased modularity and portability of the PTN setup, each 

instructor retained greater ability to train more than one student at a time, directly 

improving those students’ flying skills.  Like any new technology integration, PTN’s 

virtual reality training will require further study for proofing and justification prior to 

full-scale implementation and additional utilization of constrained USAF resources [42], 

[43]. 

This study’s cost-benefit analysis will uniquely contribute to the growing body of 

virtual reality training research through a Formula for Change theoretical lens, while 

simultaneously providing USAF decision makers a comparison of program costs, 

projected production capacity, and quality of training.  To achieve this, the cost 

investigation centers on assessing and comparing PTN’s initial, fixed, and variable costs 

to UPT’s respective costs.  Next, PTN’s impact to USAF mission-ready pilot availability, 

via optimized aircraft and instructor utilization, illustrates how quickly full 

implementation of PTN—provided current support levels—could heal the current pilot 

shortage.  Finally, this study’s quality investigation establishes context and comparison of 

quality between PTN and UPT pilots.  
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II.      Literature Review  

This literature review contains five main sections.  The first section begins with 

some formative military and civilian virtual reality training research to reinforce the 

scope and significance of this study.  In the next section, the Formula for Change, as a 

theoretical framework, restructures the complex nature and outcomes of pilot training via 

meaningful ‘lenses’ for analysis [44], [45].  After theory, the last three sections discuss 

the components of the cost-benefit analysis.  This study compares the cost, production 

capacity, and quality of pilots, through the Formula for Change lens to provide the 

appropriate background for the reader to understand the literature in this domain of 

research. 

Virtual Reality Training 

Virtual reality’s flexibility, low cost, and popularity have not escaped the 

attention of the USAF and the military industrial complex, especially for realizing virtual 

reality’s potential for training.  As far back as 1991, the USAF Human Resources 

Directorate’s Intelligent Training Branch began studying the utility and preliminary 

applications of virtual reality training for relatively simple spatial, navigational, and 

sequential tasks.  Despite using rudimentary virtual reality technology, the study found 

that students who trained with virtual reality showed increased knowledge retention, 

faster acclimation over multiple training iterations, and superior task performance when 

compared to a statistically-generated random benchmark [46].  Following that study, the 

North Atlantic Treaty Organization (NATO) held a conference focused on applying 

virtual reality training to more complex tasks including “systems for dismounted 

combatants, mission rehearsal for special operations, training ship handling skills, tele-
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robotics, and practicing military medical procedures [36:iii].”  Ultimately, these subject 

matter experts recommended focusing on military-specific virtual reality training to 

overcome human factors obstacles (e.g., haptics, user interfaces, stimulation methods) 

while increasing user response accuracy and decreasing cyber sickness [47]. 

 Military research is not the only source of studies aimed at validating virtual 

reality training as a means of improving student task proficiency and refining system 

scalability from a managerial standpoint [48].  In 2002, a randomized, double-blinded 

specialized medical study found virtual reality-trained students performed their tasks 29% 

faster than non-virtual reality-trained students [49].  Additionally, these students made six 

times fewer errors and nine times fewer failure-to-progress indications [49].  The same 

study identified a need for greater focus on increased transfer-of-training from virtual 

success to operational success to enable a pathway to more sophisticated uses of virtual 

reality (e.g., assessments, training, error reduction, and certifications) [49].  Similarly, a 

successful 2016 virtual reality-based training study created for non-military drone pilots 

highlighted the difficulty of modeling non-linear, three-dimensional problem-solving 

environments, the need for improvement in physics models for realism, and additional 

external validation [50].  

Theory 

The original Formula for Change was attributed to David Gleicher who created 

the formula as a framework for solving complex organizational problems [51], [52].  The 

formula was reframed by Kathleen Dannemiller who sought to integrate organizational 

buy-in with technological innovation to connect organizations to their desired outcomes 

in a simple, understandable format [52], [53].  
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Taking Gleicher’s utilitarian problem-solving tool and applying Dannemiller’s 

mnemonic style, this study developed the model shown in Figure 2.  This figure 

demonstrates the relationship and implications of the following components as they relate 

to this study: virtual reality pilot training represents a possible end-state or change;  

USAF guidance and community buy-in for that change represent the shared vision;  PTN 

represents an innovative first step toward the change; motivation captures the 

dissatisfaction with the status quo and desire to achieve the change; resistance captures 

any residual hindrance to attaining the change.  

Stepping through each of the components, the modified Formula for Change 

model assumes change begins with shared vision.  Shared vision encapsulates the 

concepts of leadership and member awareness of an issue, a clearly defined end-state, 

and a path toward that desired end-state [45], [54].  In this case, the USAF’s shared 

vision requires cost effective spending and rapid acquisition of innovation [4], [55] to 

overcome the current pilot shortage.  This vision provides guidance for execution of 

innovation and the application of motivation to collectively overcome resistance.   

Innovation consists of the first actions necessary to get to the desired end-state 

(e.g., leveraging technology, adopting best practices, and restructuring the organization).  

For technology to constitute innovation in this model, the technology must be real and 

Figure 2:  Modified Formula for Change Component Breakout 
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applicable to the end-state.  If the technology is only theoretical or lacks utility to reach 

the end-state, increased motivation may be required to improve and apply the innovation 

to overcome resistance.  Initially, innovation is binary for this model, the focus is 

determining whether action occurs or not, instead of identifying the effectiveness of that 

innovation.  Yet, the long-term effectiveness is still important, especially when 

considering validation is necessary to sustain motivation.  Often innovation comes at a 

high initial cost, with quantifiable benefits realized many years later; this is where a cost-

benefit analysis provides context and quantifiably demonstrates strengths and weaknesses 

of the innovation compared to the status quo [2]. 

Motivation includes both dissatisfaction with the status quo and proximity to the 

change compared to the costs of getting to that desired end-state [56].  Proximity 

represents the gap between the issue and the end-state.  If that gap is too large, motivation 

can decline if not countered by a high dissatisfaction with the status quo [45].  For this 

scenario, the benefits of attaining and sustaining virtual reality training are just beginning 

to surface, however for PTN to succeed, these benefits must positively outweigh the costs 

(e.g., capital, time, risk) to perpetuate motivation.  

 The previous components must be present, in sufficient quantity, and function 

collaboratively to overcome resistance.  An important intuition of the modified Formula 

for Change model comes from this compound structure that indicates that if any of the 

change components (left-side, green arrows) are missing or zero, resistance (right-side, 

red arrow) could prevent the change.  This is because resistance to change is rarely, if 

ever, zero [52].  Assuming the reduction of resistance to the change cannot occur by 

force, and neither the dissatisfaction with the current pilot shortage nor USAF’s vision 

and resolve to fix it are likely to diminish, PTN’s success remains the only component 
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open for modulation and assessment.  To measure and validate this success, this research 

focused on three areas: cost, production, and quality to substantiate a cost-benefit 

analysis. 

Cost  

Cost estimation and forecasting research is as diverse and varied as the many 

projects and applications that depend on such calculations [2], [57].  Regardless of any 

assumptions made to develop a cost comparison, all calculations must adhere to generally 

accepted principals of accounting for validity [58], and be grounded in units that make 

sense to data consumers—in this case, USAF decision makers [59].  Historically, the 

USAF has overcome resistance to adoption of increasing fidelity training devices by 

demonstrating that flight simulators cost less than real aircraft--both in training time 

savings and when acquisition cost-per-unit are amortized over the life of the system [28].  

Contemporary research also supports lowering total cost-per-pilot by capitalizing on 

virtual reality with the added benefit of improving the realism, scalability and flexibility 

of military training [38], [47], [60].  Unfortunately, virtual reality training has not yet 

reached a steady state, a condition that severely limits the accuracy and utility of life-

cycle cost projections [61], [62].  To counter this predicament, previous research has 

focused on a variable cost-per-pilot as a metric for comparing simulator-based training to 

aircraft-only methods [63]. 

Production 

Another form of organizational resistance stems from comfort with the current 

process and fear of the unknown when making significant changes [45].  Currently, the 

USAF trains pilots on a rigid timeline wherein student pilots are introduced to flight 
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concepts and then tested via evaluation flights, steadily increasing pilot proficiency and 

complexity [23].  To standardize flying proficiency the USAF begins formal flight 

training with UPT.  This training includes ground school for basic airmanship, simulation 

training, and actual flights in real aircraft.  UPT uses the T-6 Texan II for the first phase 

of training, then separates students into more specialized tracks.  These training tracks 

utilize more complex training aircraft including the T-1 Jayhawk for mobility pilots and 

the T-38 Talon for fighter pilots.  Pilots then attend dedicated aircraft training at a Formal 

Training Unit (FTU).  This training, coupled with additional time at their operational base 

allows for certification as mission-ready pilots in their respective Mission Design Series 

(MDS), otherwise known as their primary aircraft.  Each phase of this training pipeline 

requires time, aircraft, instructors, and supporting resources.  Therefore, any change to 

this production process has long-reaching implications and contributes to organizational 

resistance to changing the current process [23]. 

A way to overcome this resistance to organizational change is to get leadership 

and member buy-in [45].  The USAF leadership recently implored Airmen to solve 

complex issues (like the pilot shortage) by leveraging the best of technology and industry 

innovation [4], [55].  Simulator training is an example of this civilian innovation, and is 

now accepted as an integral part of the processes of civilian pilot training [64]. Even the 

Federal Aviation Administration (FAA)—the regulatory oversight for many of the 

USAF’s main competitors for retaining highly-skilled pilots [10]—now permits up to 

100% replacement of initial and recurring training and evaluations on simulators instead 

of aircraft, assuming minimum simulator capabilities and functionality [65].  

Additional USAF member buy-in can be generated by allowing members to feel 

empowered by innovation and proximity to the success of the initial PTN pilots [45].  
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Opportunity to be part of the change could come through implementing and absorbing the 

continuing advances in computer hardware, software and peripheral devices that enable 

virtual reality’s leverage as a training device to engage human senses to a greater degree 

than legacy simulators at a lower cost [60].  Perhaps some members, especially 

instructors seeking a reason to stay in the USAF, would find empowerment via virtual 

training’s capacity for greater instructor engagement that, in turn, leads to better transfer 

of training and, potentially, better pilots [66], [67].  Others may find motivation in virtual 

reality training’s reduced instructor workload, and the subsequent decreased wear on 

training airframes [23].  Finally, virtual reality training’s reduced implementation 

timeframe and technology refreshment cycles, following Moore’s Law, combine to allow 

for more rapid change and upgrade cycles compared to previous technology [68].  This 

enables untold flexibility and adaptability as a skills-teaching tool [60] that correlates to 

higher job satisfaction for instructor pilots. 

The implementation of PTN is the USAF’s innovative first step to reducing the 

pilot shortage.  PTN incorporates virtual reality headsets and high-fidelity physical 

training equipment with tactile, audio, and haptic feedback.  These features, accentuated 

by instructors and artificial intelligence, provide training scenarios as close to realistic 

flight as possible.  Students engage this training unbound by UPT’s lockstep pass-or-fail 

timeline.  Instead PTN encourages exploration at each individual’s learning level, both 

during on-duty and off-duty hours.  Available aircraft or simulator support limitations no 

longer constrain training.  Instead, student pilots have more opportunities to train:  

virtually in their dorms, cooperatively with peers, and with instructors in realistic 

scenarios to further hone their skills. 
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Quality 

Possessing initial levels of vision, innovation, and motivation may not be enough 

to overcome resistance to change [45].  To overcome resistance and sustain the change, 

each of these components must actively support and reinforce the others.  Stated another 

way: to ensure maximum motivation, vision must drive the innovation.  Innovation then 

must prove at least partially successful to maintain momentum and the enthusiasm that 

transforms the innovation into the new status quo, the desired end-state [45]. 

For PTN’s innovation to become accepted as the new status quo for pilot training 

throughout the USAF pilot community, PTN graduates must be the same or better quality 

when compared to their peers [69].  All the cost savings, production optimization, and 

increased realistic virtual experience would be meaningless if the PTN pilots do not 

perform at an equitable level as their UPT peers.  If unchecked, this condition opens PTN 

to reduced acceptance and motivation, and greater negativity toward the change.  This 

would further fuel organizational resistance and potentially prevent the USAF’s change 

from UPT to PTN. 

This is not the first study to assess the quality of pilot training across competing 

programs.  Previous USAF simulator upgrades have demonstrated that improved flight 

training devices positively correlated to a greater transfer of training and increased 

student pilot skill retention when compared to legacy training [70].  More recently, a 

comprehensive 2003 study found that virtual reality training improved productivity and 

flight experience especially in areas of critical factor recognition, decision-making skills, 

situational awareness, and crew coordination [71].  These findings were reinforced by 

studies that concluded that the retention of skills taught in a virtual reality environment 

were based primarily on equipment fidelity, realism, and integration of available 
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technology [72], [73].  A corollary study found little to no difference between the fidelity 

of simulators used for training--beyond a defined minimum requirement--when 

measuring the quality of training via regression [74].  However, that same study indicated 

a marked improvement in flying task performance by simulation-trained pilots versus a 

control group who received no simulator training. 

As an important caveat for quality measurement, one study found a positive 

correlation between a student’s interest in a specific technology with their ultimate 

retention of skills taught using that technology [75].  Another study conducted between 

online and in-residence (non-pilot) students concluded that overall performance, 

quantified by grades, was chiefly dependent upon each student’s motivation and ability to 

self-regulate learning [76]. Together, these studies indicate that each student’s receptivity 

to the training method and individual motivation likely bears consequence upon overall 

performance and corresponding scores. 
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III.      Methodology  

This study employed multiple data collection methods including qualitative tele-

communication and in-person interviews with subject matter and data experts.  A site 

visit focused on collecting production and financial information in addition to 

interviewing PTN leadership to gain content for the qualitative analysis.  The following 

sections detail the information sources, assumptions, limitations, and approaches used to 

establish this study’s cost, production, and quality analysis. 

Cost 

Cost estimation and analysis require standardized data collection to substantiate 

cost-effectiveness between alternative flight training programs [28].  For consistency, this 

research’s cost data was derived from AFI 65-503 (Tables A34-1, A34-2 and A4-1) [77], 

AETC’s Financial Management official records (derived from Air Force Total Ownership 

Cost (AFTOC) data), and UPT historical production data provided by the Air Force 

Personnel Center Headquarters Strategic Research and Assessments Branch.  This 

research utilized the following syllabi as they represent the highest total USAF capital 

and personnel investment: Sheppard Air Force Base’s USAF Euro-NATO Jet Pilot 

Training syllabi for T-6 and T-38 (P-V4A-N and P-V4A-N[T-38C], respectively) and 

Laughlin Air Force Base’s T-1 syllabus (P-V4A-G).  Additionally, as PTN is under 

development, it lacks robust historical financial programing comparable to UPT; 

therefore, fiscal year 2018 budget allocations and student grade sheets from the first 

iteration comprise this research’s PTN financial underpinnings. 

Following accepted methods for conducting a cost-benefit analysis [2], [59] and 

in adherence to AFI 65-503 costing and government accepted accounting practices [57] 
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the total cost-per-pilot for each program was chosen as the key comparison metric. This 

research utilized flying and logistics costs broken out per hour, per airframe.  Those 

costs, multiplied against each representative syllabus’ hourly requirements, provide 

UPT’s total and variable cost as a benchmark to compare against PTN’s initial, fixed, and 

variable cost.  Additionally, Moore’s Law was integral to this study’s cost assumptions 

for technological development timing, and provided the two-year aviation-based system 

replacement cycle necessary for forecasting programmatic costs [68]. 

Production 

When performing production forecasting as part of a cost-benefit analysis, 

research must focus on comparable attributes of both programs and to highlight the 

limiting factors for each [2], [57].  This research calculated production capabilities for 

both UPT and PTN using the previously described documentation and focused on 

production of Combat Air Force (CAF) and Mobility Air Force (MAF) pilots as both 

UPT and PTN produce these pilot-tracks.  This research discovered the production 

limiting factors via interviews with subject matter experts. 

After establishing the context of production restrictions, research moved to 

comparative projections of total pilot output through iterative optimization.  This 

analysis, predicated on Little’s Law, considered the change in arrival of inventory 

(student pilots through each phase of training) and reduction of delays to determine 

overall output to return a metric encompassing the USAF’s total usable time of fully-

trained, mission-ready pilots.  Additionally, Little’s Law grounded student pilot inventory 

and delay-induced bottleneck calculations [62] that were then used to compare this 
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study’s iterative improvements over a ten-year notional period.  The ten-year period helps 

illustrate each optimization’s efficacy against the pilot shortage. 

Quality 

As is often the case with cost-benefit analysis, a nascent system like PTN may not 

have sufficient data for fruitful comparison [2] especially in the first iteration. This study 

proved no exception.  Great effort went into collecting data to compare the PTN students’ 

grades to a normalized evaluation score baseline—derived from G-TIMS, a database that 

tracks a multitude of pilot training metrics, including evaluation scores—however that 

data proved to be unattainable in the timeframe allotted for this research.  Additionally, 

given the time between PTN completion and the wait time to enter FTU, a follow-up 

comparison with the PTN students to their FTU peers proved difficult as only a few PTN 

graduates had entered FTU courses.  During this study, no PTN graduates had completed 

their full training profile to produce comparable scores.  Understandably, agents 

responsible for those courses could not release information until graduation without 

unduly influencing the outcome or otherwise skewing the results [80]. 

However, the majority of this research’s usable pilot quality comparison stemmed 

from the data gathering research trip and interviews with instructor pilots involved in 

PTN.  Individual and group interviews were conducted to gather information on 

perceived attributes considered critical to performance.  The term ‘attribute’ refers to the 

inherent cognitive aptitudes and personality traits that must be present to acquire the level 

of knowledge and skills needed to successfully operate as, and adapt to, the unique 

demands of a USAF pilot.  The interviews included a review of PTN’s unique operations, 

the stressors and job requirements associated with pilot duties, and how students compare 
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to former UPT students.  Discussion also entailed a review of cognitive aptitude and 

personality traits perceived as critical to adapting and thriving during PTN. 

In addition to providing context and a better understanding of PTN, the instructor 

pilots provided credible observations of the PTN students’ performance and a comparison 

to their previous (legacy UPT and FTU) students.  It is important to note that the PTN 

program recruited experienced instructor pilots from various legacy training platforms.  

These include T-6 and T-38 instructor pilots and combat-proven mission ready pilots 

from other primary weapons systems.  Collectively, the instructor pilots provide PTN 

students a comprehensive breadth of USAF aviation expertise that adds realism and 

accuracy to the training experience. 
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IV.      Analysis  

This analysis section details the cost, production, and quality components of this 

study’s cost-benefit analysis.  The cost analysis utilizes graduate track ratios and 

published financial information to compare PTN to UPT based on initial, fixed, and 

variable costs.  For production, historical UPT annual averages and aircraft utilization 

ratios fortify each iterative increase in the USAF’s available pilots, based on incremental 

optimization of wait-time reduction and application of PTN innovation across the pilot 

training process.  To add context, these optimizations—mapped over a notional ten-year 

period—further delineate their respective impact to the current pilot shortage.  Finally, 

insight gleaned from PTN grade sheets and interviews with instructors comprises this 

study’s quality analysis. 

Cost 

Utilizing historical UPT production data and PTN grade sheets, each program’s 

graduates, sorted by track, provided working ratios necessary to determine costs per 

graduate comparison, as seen in Table 1.  As of this study, PTN only produced MAF and 

CAF tracks, whereas UPT has historically produced additional tracks (e.g., helicopter, 

remotely piloted aircraft).  Since PTN has no comparable tracks to those additional UPT 

tracks, only UPT’s values appear in the ‘Other’ column.  Instead, since all PTN students 

share a common course length, this study focused on the ratio of graduates for cost 

development.  This comparison helped frame PTN’s single iteration against UPT’s 

historical production, and provides track ratios—specifically the MAF to CAF ratio—for 

each training approach.  For example, at 7% attrition the first iteration of PTN produced 
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thirteen graduates, seven MAF and six CAF for a ratio of 1.2 to 1 as compared to UPT’s 

historical 2.4 to 1 ratio.   

Table 1: Track Production Details by Training Approach 

  
Next the track ratios for UPT and PTN factored into each program’s cost-per-

graduate per year.  This cost comparison included academic, both virtual and non-virtual 

reality simulators, flying and support costs for both training approaches.  Using this 

approach helped avoid the disparity between budget-induced changes in logistics costs 

year-to-year and the variance of annual pilot production.  Specific comparison costs are 

detailed in the Appendix. 

The distinction between fixed and variable cost is important for this comparison 

as some costs are inherently incurred to run each program (fixed), while other costs 

change with variations in total student pilots (variable).  For example, a program needs 

established base support and an operable airfield regardless of the number of pilots.  

These are considered fixed costs.  Conversely, the number of simulators in each program 

is dependent on the total number of students in the program; additional students require 

increased hardware, driving the variable cost per student up. 

For this study’s comparison, shown in Table 2,  a summation of academic, 

simulator, flying, and support costs for the T-6 and—for UPT only—the secondary 

training platform (CAF: T-38 or MAF: T-1) comprised both UPT and PTN’s fixed cost 

per graduate.  The variable track costs (sans support cost) incorporated a summation of 

each programs’ academics, simulator, and flying costs.  Ultimately, PTN’s fixed costs 
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represent a fraction, 45% MAF and 28% CAF, of those for UPT.  Following that trend, 

PTN’s variable costs are only 32%, MAF, and 13%, CAF, of those incurred by UPT.  As 

an accounting validity check, this study’s CAF figures are 9% under, and MAF 

calculations are within 1% of AFI-65-503’s published figures. 

Table 2: Cost Comparison Between UPT and PTN by Cost Type

 

Production Analysis 

The current UPT approach utilizes approximately 117 flight-hours in the T-6 

training aircraft per graduate.  After UPT, an additional 86 flight-hours for the T-38 CAF 

track or 78 flight-hours for the T-1 MAF track are required, depending on the pilot’s 

specialization.  As noted previously, the largest benefit of PTN is the reduced number of 

aircraft and instructors required to train pilots.  PTN’s innovative virtual reality training 

fulfills most of each pilot’s instruction and practice, requiring only 65 hours in the T-6 for 

training and real-world evaluation, regardless of track.  For context, this means PTN 

effectively eliminates the need for UPT’s T-38 and T-1 flight-hours.  Comparison of 

requirements between programs yields a ratio of flight hours (UPT T-6 to PTN T-6) equal 

to 117:65 or 9 to 5.  This implies that if instructors and other support functions are 

available, PTN could increase pilot production by an additional 44.44% to match the 

current UPT T-6 utilization rate and flying hour program projections.  Given the current 

1,000 pilots produced per year, PTN production could increase to 1,444 pilots per year 
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with no additional operational costs (e.g. aircraft, fuel, maintenance) than currently 

allocated to UPT. 

This analysis utilizes a concept coined ‘Pilot Ready Years’ as a unit of measure 

representing the aggregate time-service commitment produced annually for the Air Force.  

For example, the current UPT production is 1,000 pilots per year, each of whom incur a 

ten-year time service commitment upon completion of UPT.  Each pilot may spend up to 

two of those time service commitment years waiting for an open FTU slot and then 

completing training.  The USAF loses those Pilot Ready Years.  Since the current annual 

production of 1,000 UPT graduates wait one year, on average, for FTU and require one 

year to complete FTU, then each graduate retains 8 years of commitment or 8,000 Pilot 

Ready Years (8×1,000) for the group, each year.  This appears in Figure 3 as “Current 

Training.” 

The next row, “Current PTN,” indicates the PTN approach with no other change 

in the production of pilots from before.  While the timeline changes, the production and 

Pilot Ready Years remain the same.  This means the same total number of pilots 

graduate, but the PTN graduates are mission-ready six months earlier compared to their 

UPT peers with no increase in total Pilot Ready Years. 

The “Excess Capacity” row shows PTN replacing UPT and production raised to 

max capacity of 1,444 pilots per year, as discussed above.  This condition still does not 

increase total Pilot Ready Years, and, more importantly, illustrates the problem of partial 

PTN implementation.  Following Little’s Law, higher PTN production alone leads to a 

higher inter-arrival rate into the wait buffer between training, effectively increasing the 

queue length and total system wait time.  This is due to the FTU’s inability to accept the 

excess capacity of new pilots given available aircraft, support personnel and 



 

23 

 

infrastructure constraints.  In short, this becomes a pilot training bottleneck, contributing 

to delays in pilot production.  If allowed to manifest, this could create a worse backlog, 

lower motivation, and increase organizational resistance to PTN’s innovation.  

To ease the bottleneck, it seems intuitive to simply replace UPT with PTN, 

synchronize training slots, and eliminate all wait-time.  However, doing so has potentially 

negative consequences if not addressed carefully.  Since PTN takes only six months, two 

courses fill the same timeframe as each year-long UPT course.  If each PTN course tried 

to produce 1000 pilots every six months this would incur twice the utilization on training 

airframes and complicate scheduling.  Additionally, this higher utilization rate on the T-6 

could potentially drive time-intensive flying hour program and sustainment 

recalculations, and increasing resistance to PTN. 

To circumvent this condition, the row labeled “Sub-Optimal,” consists of 

adopting the PTN model for the entire pilot production process (UPT and FTU) to 

remove the bottleneck.  This approach assumes production remains at 1,000 pilots per 

year (500 every six months) and elimination of all wait-time between training courses.  

The total training time reduces to 1 year versus 2.5 or 3 years, allowing for a 19% 

increase in total Pilot Ready Years, up to 9,500 per group. 

This option sounds achievable, yet the USAF can do even better by setting annual 

production equal to the current annual T-6 flying hour allocation, as shown by the 

“Optimal” row.  To ensure this change does not put T-6 utilization over allocation, total 

annual flying hours are divided between two six-month long PTN courses per year.  This 

increases annual production capability from 1,000 pilots to 1,444 pilots per year (722 

every six months).  Now utilizing the PTN model for full pilot production (UPT and 
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FTU) and increasing pilot production consistent with the current flying-hour program 

yields 13,718 Pilot Ready Years (1,444 × 9.5 = 13,718). 

Applying the previous optimizations over a longer timeframe allows for a better 

understanding of consequence measured by the speed the USAF could theoretically 

recover from the current pilot shortage.  Figure 4 results from using a ten-year timeframe 

broken up into 12-month segments for a comparison of cumulative pilot production 

values after implementing iterative improvements. 

Stepping through the figure, the lowest output represents the current pilot training 

production: 1000 graduates per year progress through 12 months each of UPT, FTU, and 

the wait between UPT and FTU, yielding 8,000 pilots after 10 years.  The next higher 

production represents PTN replacing UPT, with no change to the 12-month wait and 12-

month FTU, yielding the same 8,000 graduates after 10 years.  The difference between 

these two approaches is that the pilots will be ready six months sooner with the PTN 

implementation.  If the wait-time is removed between UPT and FTU in the current pilot 

Figure 3:  Pilot Production with Incremental Adoption of the PTN Approach 
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production, this would yield the same 8,000 pilots one year sooner than the current 

approach, with a total production of 9,000 pilots after 10 years.  Replacing only UPT with 

PTN and removing the 12-month wait prior to current 12-month FTU training also yields 

9,000 pilots after 10 years.  However, if the PTN approach replaces both UPT and FTU 

with all wait-time removed, total production reaches 9,500 pilots at 10 years, a 19% 

increase over current production.  Finally, if PTN throughput is held at the current 

planned and budgeted allocation for the T-6 (1,444 pilots per year) to avoid sustainment 

consequences, total production yields 13,718 pilots after 10 years, representing a 71% 

improvement over current production. 

Quality 

The quality portion of this cost-benefit analysis began with the understanding that 

quality could be compared by establishing quantitative metrics that were both accurate 

and useful [81].  Initially, this study sought the following metrics as acceptable measures 

Figure 4:  Comparison of Pilot Production Optimizations 
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of quality comparison between UPT and PTN: track selection criteria and the average 

speed of pilots through each phase of training.  These metrics should have added context 

and bolstered a comparison of evaluation flight scores.  However, in developing these 

metrics, complications forced a shift in focus to the empirical evidence from instructor 

interviews as a more qualitative measure [82] for comparing UPT and PTN pilots. 

One potential quality issue concerned class stratification.  Competition and 

stratification are time-honored components of USAF training, and pilot training is no 

exception [83].  Both UPT and PTN train to minimum flying competencies, albeit 

through different scheduling timeframes because of aircraft and instructor availability and 

student progression.  Additionally, each student’s progression through the training phases 

directly feeds into a stratification that determines which track each student earns, and 

ultimately what aircraft they fly after graduation.  With the increased utilization of virtual 

reality training, PTN’s overall course length was significantly shorter when compared to 

UPT.  This may have impacted instructors’ ability to stratify students who were 

competing for specific tracks. 

Looking closer at PTN student grades, it appeared PTN CAF graduates finished 

the first phase of training faster (69.17 ± 6.68 days) than PTN MAF graduates (87.86 ± 

10.76 days).  Due to course length restrictions this gave CAF graduates more time in the 

specialized training phase (47 ± 5.37 days) compared to their MAF counterparts (26.71 ± 

11.06 days).  This result implies that more highly motivated students may have more time 

in specialized training, thus gaining greater proficiency prior to graduation; this parallels 

the track differentiation and stratification methods of UPT. 

With track selection synchronized, the next planned step for comparing PTN to 

UPT involves determining standardized evaluation flight scores for each phase of UPT to 
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benchmark against PTN evaluation flight scores.  This comparison should employ a 

simplified non-parametric statistical comparison such as a Student’s T-Test, given the 

small PTN sample size.  This information tells decision makers whether PTN scores fell 

within the historical average for UPT and shows how PTN graduates compared to their 

UPT contemporaries. 

Unfortunately, supporting data for this portion of the cost-benefit analysis did not 

come to fruition.  One reason for this appears in Figure 5.  This thirty-month snapshot 

shows the grade variability of only one of four evaluation flights across three UPT bases.  

According to G-TIMS analysts, this grade variability is attributed to such disparate 

factors as each base’s different training syllabus, rotating instructor cadre, seasonal 

weather, and base-specific support limitations.  Despite this information, this study is 

unable to tell which of those factors played a statistically significant role in that data 

variability.  Additionally, various aircraft groundings and syllabus optimizations 

occurring concurrently with research efforts in 2018 further complicated data tracking 

and acquisition for this study [84], [85].  Attempting to draw conclusions and quality 

comparisons from such data would be both grossly inaccurate and irresponsible. 

 

Figure 5:  UPT’s T-6 Average Evaluation Score Variability by Training Location 
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Fortunately, a quality comparison between UPT and PTN was still possible 

through insight gained from instructor interviews.  PTN’s experienced cadre, with their 

significant insight from their combined experience with UPT, FTU, and PTN students, 

provided this study with unique positional feedback pertinent to the quality of the PTN 

approach. 

During PTN, instructors act as both a coach and simulated air traffic controllers 

during student training and evaluation flights.  This method adds both chaos and realism 

to the virtual reality training, augmenting each PTN student pilot’s off-duty practice.  

Some instructors cited the experimental, low-threat atmosphere of PTN that gave each 

student more freedom to accelerate their own proficiency.  Others claimed the adoption 

of more pilot-friendly technology and flexibility allowed instructors to teach each student 

in innovative ways.  Still others cited benefits of selective recruitment and previous 

USAF training outcomes. 

Despite the disparity in the underlying cause, PTN instructors were unanimous in 

the assertion that PTN graduates are talented, highly motivated, and promising aviators.  

Per the instructors, the greatest common impact to overall quality came from students’ 

ability to strengthen their skills flying virtually prior to entering an actual training 

aircraft.  According to PTN instructors, this practice enabled PTN students to fly ‘leaps 

and bounds’ ahead of their legacy UPT peers, even on their first flight in a real aircraft.  

This lead to PTN students performing feats unheard of in legacy UPT, including 

performing landings without direct instructor intervention on their first flight in the 

training aircraft.  According to instructors, this level of proficiency was not normally seen 

until the fifth UPT flight. 
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In a compounding cycle, class-leading students motivated instructors to engage 

opportunities to rapidly train on many different airframes without the limitation of 

needing to source real aircraft and learn the intricacies of specific operating procedures 

prior to flight.  Halfway through PTN training, instructors claimed PTN pilots 

demonstrated superior T-6 proficiency compared to their UPT peers, and many showed 

comparable flight proficiency to mid-course FTU students.  Furthermore, all instructors 

interviewed agreed that PTN graduates were at least as good as, if not better than many of 

the instructor’s previous pupils taught using legacy USAF pilot training methods. 
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V.      Conclusion 

This section redresses the research questions and their implication to the USAF, 

suggests ideas for future research, and provides the study’s final thoughts.  This study 

focused on comparing PTN to UPT with respect to cost, production, and quality, and the 

results of this cost-benefit analysis support PTN’s innovation as the catalyst necessary for 

overcoming organizational resistance to virtual reality training in the USAF and, 

potentially, wider application throughout the DoD. 

Cost 

This study’s cost investigative question centered on the comparison of PTN’s 

initial, fixed, and variable costs compared to UPT.  While the initial cost was determined 

largely by budgeting and attrition, the more important comparison stems from the fixed 

and variable costs per graduate.  As shown in the cost analysis, PTN’s MAF fixed costs 

equate to less than half of UPT’s, while PTN’s CAF is nearly a quarter of UPT’s CAF 

cost.  Similarly, PTN’s variable costs are a third and tenth (MAF and CAF, respectively) 

of UPTs costs.  While the lower cost is attributable to reduced time-to-train and 

significant decrease in logistics costs associated with supporting multiple airframes (e.g., 

T-1 and T-38) the implications of cost savings extend beyond just pilot training. 

The PTN innovation not only represents a significant cost savings for the USAF, 

but these savings will compound each year.  Coupled with the maturation of more 

accurate financial programming, the USAF can simultaneously train pilots to offset the 

shortage and use the remaining funds to help procure new airframes for them to pilot in 

prosecution of the USAF’s mission.  For example, based on current PTN track ratios and 

full utilization of T-6 current flying hours, in ten years the USAF could train 14,444 
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pilots and fix the shortage at a savings of $8.96B (fixed cost) and $3.96B (variable cost).  

These funds could then be reallocated to other fiscally scrutinized programs like the B-

21, T-X, KC-46, and F-35. 

Production 

This study’s two production investigative questions focused on determining 

PTN’s impact to USAF mission-ready pilot availability with respect to aircraft and 

instructor utilization and determining how quickly full implementation of PTN—

provided current support levels—could heal the current pilot shortage.  While the 

analysis drew from the best available information during research, it must be understood 

that real-world application may not occur as cleanly and seamlessly as projected.  

Nevertheless, PTN, if applied to its full potential, offers a potential solution to the USAF 

pilot shortage. 

Although PTN could produce pilots faster (approximately 6 months), simply 

replacing UPT with PTN does not represent the most optimal change.  PTN graduates 

will still wait to enter and complete the FTU and additional training before they are 

mission-ready in their respective primary aircrafts.  However, the PTN model provides 

great promise on many of the issues impacting current production and could have 

positive impact on pilot availability via 1) reduced hours required in each aircraft, 2) 

reduced demand for instructors, 3) increased total Pilot Ready Years.  To wit, if PTN 

only replaces UPT this creates excess capacity and queuing prior to the FTU.  If this flow 

is maintained throughout the training pipeline the PTN approach will not represent a net 

time-savings to the Air Force.  At full application however, the Air Force could reduce 
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total wait time while significantly increasing production capability, with the added 

benefit of freeing up more aircraft for non-training purposes.  

Keeping the current 2,400 pilot shortage in mind, one can safely assume this 

number represents the minimum number of pilots needed to rectify the shortage.  Given 

the same conditions outlined in the analysis and assuming personnel levels hold constant, 

fixing the shortage using the current training approach would take approximately 60 

months.  Replacing only UPT with PTN eliminates the shortage in 54 months.  Stepping 

back for a moment, not implementing PTN but removing the wait-time between UPT and 

FTU achieves the same outcome in 48 months.  Combining the benefits of previous 

optimizations by implementing PTN for UPT and removing the wait-time heals the 

shortage in 42 months.  Better yet, PTN replacing UPT and FTU training with a reduction 

of wait time could eradicate the shortage in as little as 36 months.  However, if 

production is expanded to the current UPT’s T-6 flying budget, or 1,444 pilots per year, 

the shortage would disappear in 30 months after full implementation.  This solution 

represents a 71% increase in production without incurring the significant cost of over-

utilizing the T-6 fleet.  This approach also provides the USAF a single-source solution to 

the current shortage, while offering lower risk compared to the USAF’s previously 

explored paths to fix the shortage. 

Quality 

This study’s quality investigative questions focused on establishing context and 

comparison of evaluation flight scores between PTN and UPT pilots.  Additionally, when 

data acquisition to support this comparison failed to materialize, the study shifted to 

establishing a comparison of how PTN graduates perform versus UPT peers during initial 



 

33 

 

and follow-on training.  Unfortunately, this effort failed to produce the intended 

quantitative data due to timing.  However, the promising reports from PTN instructors, 

coupled with continued support of USAF leadership, adds to the motivation to continue 

studying, optimizing, and engineering virtual reality as a cost-effective method for 

increasing pilot production to offset the current shortage. 

USAF Implications 

A strategic comparison of benefits indicates that PTN is better from a cost and 

production standpoint, but further analysis is required to make a comprehensive quality 

comparison.  With increased fiscal scrutiny on government and military spending, PTN’s 

cost savings alone should motivate the USAF to pursue the program.  Similarly, PTN’s 

ability to fix the current pilot shortage in as little as 30 months allows the USAF to get 

the desired end-state and frees Airmen to tackle other complex issues facing the USAF.  

Even the lack of concrete quality comparison should not dampen motivation.  Continuous 

improvement during future iterations will provide quality comparison metrics, but the 

real benefit lies in the USAF’s ability to utilize this time to decide the best mix of training 

capabilities and outcomes to produce the best pilots.  Ultimately, each success in the PTN 

program increases validation, strengthens motivation, and positively offsets 

organizational resistance until PTN’s innovation becomes the status quo for USAF pilot 

production. 

Future Research  

As mentioned in the introduction, the lack of virtual reality pilot production 

optimization studies represents a wealth of opportunity for future research.  If research 

interest includes USAF cost methods, AETC is, at the time of this writing, seeking a 
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better process for accounting and forecasting pilot production costs.  On the production 

side, recent changes to UPT syllabi have reduced the time to train new pilots but USAF 

leadership still seeks optimizations and application for scheduling and synchronizing 

training between UPT and FTUs and integration of the new T-X system replacing the T-

38 [23].  There is also room for study in the adaptation of the PTN approach to other 

airframes including drones, helicopters, and other specialized vehicles.  For quality, there 

are even more options.  Though time-intensive and complicated by many factors, 

securing historical UPT training data may yet prove useful.  The data may permit 

development of interactions to establish key variables for a regression comparison [86] 

thus enabling an analysis of which training events are most impactful to forecasting pilot 

success.  Additionally, this information enhances the mutually beneficial study of transfer 

of training effectiveness for flight training devices [67].  Ultimately, UPT performance 

may not be as meaningful to the future researcher as FTU and career performance.  

However, this presents an opportunity for a longitudinal study following PTN pilots over 

their careers, though choosing the proper comparison metric may prove challenging. 

If research interests do not involve pilot training, virtual reality training presents 

opportunities to study adaptation to other fields, especially how to manage and succeed 

with such applications from the organizational development perspective.  Examples for 

future study abound, including the following: studying the impact of crowd-sourced 

virtual reality training on long-term individual task proficiency; measuring the 

effectiveness of utilizing virtual training to improve recurring training and maintain task 

proficiency; calculating the opportunity cost and intrinsic rewards of returning former 

instructors to their primary roles; or delving into issues associated with international 

technology access restrictions, network and physical security concerns or associated 



 

35 

 

mitigation techniques.  Virtual reality has great potential to impact learning and improve 

quality of life; now is the time to discover and define the USAF’s path to that goal! 

Final Thoughts 

By acquisitions and systems engineering standards, PTN exists in a prototype 

stage; the first step to achieving USAF shared vision for change.  PTN—as an innovative 

first step to overcome the pilot shortage—produced positive results as a concept 

demonstrator.  Next a low rate production phase should begin wherein changes and 

improvements can be made prior to full scale production [2], [87] to maintain motivation.  

This maturation, coupled with the knowledge gained in similar training improvement 

initiatives will set the USAF up with a dynamic and repeatable method for increasing 

pilot production.  Successively improving production by fine-tuning the vital details 

(personnel, infrastructure, and training events) saves time, money, and frustration prior to 

going full-scale. 

Following the axiom ‘slow is smooth, smooth is fast,’ deliberately and 

methodically restructuring the training program will yield the pilot production the USAF 

needs: fiscally responsible, high quality training with lower risk than shutting down, 

retooling, restarting a new program, and with the benefit of no reductions in current 

production output.  Using this approach may delay the pilot shortage solution but allow 

the current UPT to maintain production while PTN scales up.  This approach allows the 

USAF to leverage technology improvements and industry best practices for a bespoke 

solution, dovetailing with current USAF leadership’s vision and guidance. 

Lastly, while PTN should not replace current pilot training immediately, the 

USAF should not wait to start a phased transition.  Implementing virtual reality training 
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now will allow the USAF to capitalize on the strengths of the emergent technology to the 

cost advantage of the American taxpayer.  As an early adopter, the USAF will benefit 

from the efforts of previous virtual reality training implementations but still enjoy priority 

when resolving initial issues, especially in light of fewer competing interests [88]. 

Ultimately, the experience will yield reduced learning curves as the USAF builds a 

continuously improving, cost-effective and leading-edge training solution to offset the 

current pilot shortage.  PTN’s virtual reality training, with best practices shared across the 

enterprise, not only solve the pilot shortage but also provide seminal success for the 

USAF and DoD. 
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VI.      Appendix: Cost Calculation 

The following paragraphs detail the calculation method for the cost figures in 

Table 3 (below), as utilized for Table 2 (in Cost Analysis, above).  Setting the 

benchmark, UPT platform specific costs (T-6, T-38 and T-1) were determined by 

multiplying the logistics cost per flying hour (from AFI 65-503 Table A4-1, for fiscal 

year 2018) by the average number of hours flown per student (from each respective 

syllabus).  UPT’s (non-virtual reality) simulator cost was based on that simulator’s cost-

per-hour multiplied by number of hours required per student (also derived from each 

respective syllabus).  Support costs (base, payroll, and indirect costs) were calculated 

using AETC Training Cost per Graduate data and subtracting flying costs from total cost 

per graduate.  

For comparison, PTN academic costs were derived as a ratio of PTN’s 4-week 

timeline compared to UPT’s six-week timeline multiplied against UPT’s academic cost 

per graduate.  Next, PTN flying hours were averaged from PTN student gradebooks, then 

multiplied by the logistics cost per flying hour (from AFI 65-503 Table A4-1, for fiscal 

year 2018).  PTN track costs were then calculated from each track’s average flying hours 

multiplied against the logistics costs.  PTN support costs were held equal to UPT as both 

programs take approximately six months, implying they both should cost the host base 

approximately the same to support.  PTN’s virtual reality systems per-unit annual costs 

included virtual reality software licenses, maintenance, hardware, and setup cost, all 

sourced from AETC’s financial management’s contract wedge.  Dividing these costs by 

the 20 initial PTN candidates provides the current fixed cost per student.  To calculate the 

variable cost per additional student, the hardware cost was divided by four (representing 

the number of courses in two years) then added to the software licensing costs. 



 

38 

 

 

  

Table 3: UPT vs PTN Cost Comparison Components 
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