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Abstract

Space is a contested, congested, and competitive environment where space sit-

uational awareness (SSA) is a key factor in the long term sustainability of space

as a national interest. Space-based SSA conducted by inspector satellites is critical

to the detecting, tracking, and attribution of actions in space. Thus, space-based

fuel-optimal maneuvers are essential to increasing mission life and improving the ca-

pability of inspector satellites working to characterize resident space objects (RSOs)

in geosynchronous orbit (GEO). Additionally, on-orbit inspection missions can be

characterized by multiple waypoint visits where an inspector is accomplishing a set

of proximity operation mission objectives through the visit of multiple waypoints sig-

nifying viewing angles, natural motion circumnavigation (NMC) injection states, and

rendezvous locations. Traditionally, the combinatorial and trajectory optimization

aspects of these space-based multiple waypoint visits have been solved in a segre-

gated manner. This thesis presents a Mixed Integer Programming (MIP) framework,

in which the combinatorial and trajectory optimization nature of these problems are

coupled resulting in the fuel-optimal guidance for complex rendezvous and proximity

operation missions.

First, a Mixed Integer Linear Programming (MILP) formulation is used to solve

for the fuel optimal guidance of an inspector visiting multiple viewing angles, defined

by waypoints, around a single RSO. This mission is subject to keep-out-zones (KOZ)

and mission time constraints. Additionally, the initial MILP problem is extended to

a linear cooperative control formulation where two inspectors are working together

to accomplish the mission objectives. Both MILP problems are solved to global

optimality using a commercial MIP solver.
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Second, a Mixed Integer Convex Programming (MICP) formulation is used to

solve for the fuel optimal guidance of an inspector to rendezvous with multiple RSOs

in sequence. This mission is subject to convex control and mission time constraints.

Additionally, the initial MICP problem is extended to a convex cooperative control

formulation where two inspectors are working together to rendezvous with all desig-

nated RSOs. Both MICP problems are solved to global optimality using a commercial

MIP solver.

Finally, a Mixed Integer Nonlinear Programming (MINP) formulation is used to

solve for the fuel optimal guidance of an inspector conducting a single NMC around

multiple RSOs in sequence. This mission is subject to NMC sun-angle and mis-

sion time constraints. This nonlinear and non-convex MIP problem is solved using

metaheuristic methods.

This thesis shows that a MIP formulation allows for the representation of complex

spacecraft rendezvous and proximity operation missions. Additionally, solutions can

be found in a reasonable amount of time, giving mission planners information on the

allocation of inspectors to mission objectives and the associated coupled fuel-optimal

trajectories.
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A Mixed Integer Programming Framework for the Fuel Optimal Guidance of

Complex Spacecraft Rendezvous and Proximity Operation Missions

I. Introduction

1.1 Motivation

Space is continually being labeled a contested and congested environment. The

United States’ asymmetric advantage in space has decreased in recent years due to

the continued rise of technological peers [1]. Acknowledging this paradigm shift, the

National Space Policy of the United States of America has provided a set of guiding

principles. Space is vital to the national interests of the United States. Preventing

mishaps, perceptions, and mistrust is essential to preserving these vital interests [2].

The United States Department of Defense (DoD) defines SSA as the requisite current

and predictive knowledge of the space environment with one of its key objectives being

to ensure space operations and spaceflight safety [3]. Space Situational Awareness

(SSA) is critical to detecting, tracking, and attributing actions in space that are not

conducive to the long-term sustainability of space as a national interest. SSA consists

of either ground-based SSA or space-based SSA, the latter being the focus of this

thesis. Space-based SSA can obtain global and wide-area coverage over areas where

ground-based methods are denied or insufficient [4]. The particular area of interest is

Geosynchronous Earth Orbit (GEO) where many high-value space systems operate

such as communications satellites like MILSTAR. An inspector satellite placed in

GEO could have the capability to increase both the breadth and fidelity of the space
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catalog in ways that ground-based SSA methods cannot, helping to protect space as

a national interest.

There have been several United States Air Force missions aimed at demonstrating

and developing space-based SSA systems. The Geosynchronous Space Situational

Awareness Program (GSSAP), from July 2014 to September 2017, has placed four

satellites in GEO in order to collect SSA data allowing for more accurate tracking

and characterization of man made orbiting Resident Space Objects (RSOs) [4]. From

GEO, inspection satellites typically have a clear, unobstructed, and distinct vantage

points for viewing RSOs without the interruption of weather or atmospheric distortion

commonly experienced by ground-based SSA systems [4]. A limiting factor for the

mission life of GSSAP and other space systems is fuel. This research is motivated by

the need to conduct space-based SSA missions in a fuel optimal manner, both from a

single inspector trajectory and a multi-satellite mission objective tasking optimization

perspective.

This research is focused on providing fuel-optimal guidance and tasking strategies

for the inspection of single and multiple RSOs using a Mixed Integer Programming

(MIP) approach. First, guidance, in this context, refers to the trajectories, and asso-

ciated control, the inspector should follow in order to accomplish a set of proximity

operation objectives conducted near one or multiple RSOs. Second, tasking refers the

fuel optimal assignment of the desired waypoints or proximity operation maneuvers

around a single or multiple RSOs. Various proximity operation techniques include,

Natural Motion Circumnavigation (NMC), waypoint visits, and rendezvous. It is

worth noting that these proximity operation techniques can all be expressed as posi-

tion and velocity designated waypoints signifying the desired state or conditions that

mission objectives dictate for the inspector state to be. For example, these could

either be an entrance to an NMC, rendezvousing with an RSO at a specific instance
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in time, or simply arriving at a desired position and velocity. Thus, for the remain-

der of the thesis, waypoints may be used interchangeably with respect to the desired

proximity operations maneuver being investigated, however, it will be made clear

which maneuver is associated with each waypoint. The inspection missions are con-

strained by various mission essential considerations including total maneuver time,

Keep-Out-Zones (KOZ), and lighting constraints. Modern optimization methods are

investigated to solve this coupled trajectory optimization and maneuver assignment

optimization problem.

1.2 Thesis Overview

This section presents the unifying research hypothesis and research questions with

the logically categorized research tasks whose combined solutions address the research

hypothesis.

1.2.1 Research Hypothesis.

Proximity operation missions involving multiple waypoints about a single and

multiple RSOs with various mission constraints can be described and solved using

a MIP formulation. The solution gives a naturally coupled fuel optimal control and

fuel optimal waypoint assignment solution that informs mission planners designing

and executing complex inspection missions.

1.2.2 Research Questions.

The research was divided into three sections, posed as Problems A-C.

• Problem A: What is the linear formulation for the fuel optimal guidance of an

inspector satellite visiting multiple waypoints around an RSO? Can an optimal

control problem be formed where the inspector must visit all waypoints within a

3



specified amount of time while adhering to KOZs? What is the effect of adding

an additional inspector, resulting in a linear cooperative control formulation?

What is the logical solution strategy for the resulting Mixed Integer Linear

Programming (MILP) problem?

• Problem B: What is the convex formulation for the fuel optimal guidance of an

inspector satellite rendezvousing with multiple RSOs that are drifting relative to

each other? Can an optimal control problem be formed where the inspector must

visit all RSOs within a specified amount of time while adhering to convex control

constraints? What is the effect of adding an additional inspector, resulting in a

convex cooperative control formulation? What is the logical solution strategy

for the resulting Mixed Integer Convex Programming (MICP) problem?

• Problem C: What is the optimal control formulation for an environmentally

constrained minimum fuel NMC inspection of multiple RSOs in sequence? Can

a problem be formed where the inspector must conduct an NMC around each

RSO within a specified amount of time while adhering to NMC entry sun-angle

constrains? Can metaheuristic methods effectively solve the resulting nonlinear

and non-convex Mixed Integer Nonlinear Programming (MINP) problem?

In this thesis, these problems will be addressed as Problem A, Problem B, and

Problem C respectively. Problem A and Problem B have a natural pairing due to the

convex nature of both formulations, resulting in problems that can be solved to global

optimality with Branch-and-cut methods. Problem C shows how relaxing problem

convexity requirements allows for the inclusion of more complex proximity operation

maneuvers and dynamic environmental constraints, which can still be solved using

metaheuristic methods.
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1.2.3 Research Tasks.

In order to answer the above research hypothesis and questions, the following

problem categorized tasks will be accomplished:

1. Use MILP techniques to formulate and solve Problem A. Solve Problem A with a

Branch-and-cut MILP solver, giving minimum fuel solutions. Repeat these step

with the addition of another inspector satellite in a linear cooperative control

formulation. Investigate the trade-offs of adding an additional inspector into

the optimization.

2. Use MICP programming techniques to formulate Problem B and solve. Solve

Problem B using a Branch-and-cut MICP solver. Repeat these steps with the

addition of another inspector satellite in a convex cooperative control formu-

lation. Investigate the trade-offs of adding an additional inspector into the

optimization.

3. Use general MINP techniques to formulate Problem C and solve. Solve the

resulting non-linear and non-convex MIP with metaheuristic methods. Com-

pare and contrast different satellite dynamics models in the context of mission

planning.

1.2.4 Research Scope.

This research considers two main space-based SSA scenarios. First, missions in-

volving the inspection of a single RSO involving one and two inspector satellites are

investigated. Second, missions involving the inspection of multiple RSOs in sequence

involving one and two inspectors are also investigated. The first mission can be

thought of as an in-depth inspection of an RSO. The waypoints that must be visited

can be thought of as specific viewing angles between the inspector and RSO that
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represent areas of interest on the RSO, in addition to keeping out of various relative

locations that may interfere with the regular operations of the RSO or put the inspec-

tor satellite in danger. The second mission can be considered an exploratory and/or

debris removal mission. Conducting an NMC around an RSO would be considered

an appropriate technique for an exploratory mission as the circumnavigation of the

RSO would provide useful initial information. Additionally, visiting multiple RSOs

in sequence would provide useful local SSA information all in the scope of a single

mission. Rendezvousing with multiple RSOs in the context of a single mission could

be considered a debris collecting mission. As space becomes increasingly congested,

large scale missions to ”clean up” local area of operations may become more common.

This thesis only considers the proximity operation techniques of rendezvous, waypoint

visits, and NMCs. Other proximity operations techniques outside the scope of this

work include teardrop maneuvers and faster than natural forced circumnavigation.

Additionally, circular orbits in GEO are the only type of orbits considered. Other

regions such as Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), along with

elliptical orbits, are not considered. Figure 1 is a summary of the research scope

with associated research tasks. Notated is the scope of this thesis with respect to

traditional aspects SSA. Highlighted in green are the areas of SSA considered in this

thesis.

1.2.5 Assumptions and Limitations.

Linear and convex MIP formulations are effective for problems of visiting multiple

waypoints or a rendezvous with multiple RSOs in a fuel optimal manner using linear

dynamics. Linear dynamics are assumed when modeling the satellite motion which

can result in a less accurate representation. These linearized dynamics can cause

issues when solving problems where precise state information is required. The errors
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Figure 1. Research scope summary.

in linearized dynamics can also become greater when they are propagated too far

forward in time. Mass loss is not accounted for in Problems A and B. As a satellite

loses mass, available acceleration increases, giving the satellite more control author-

ity, a practical artifact that is not accounted for in Problem A and B. Finally, all

fuel optimal trajectories generated are open-loop. As summarized in Prince [5], feed-

back controllers are required to keep the satellite on the initial open-loop trajectory

due to the presence of various disturbances. These disturbances can include orbital

perturbations, errors in navigation sensors and propagation algorithms, and imper-

fections in thrusters, including modeling errors such as not accounting for mass loss.

RSO and waypoint state information is perfectly known throughout the trajectory.
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Finally, The spacecraft is modeled as a point mass, thus, the dynamics only consider

translational motion with no attitude dynamics.

1.2.6 Research Implications.

The formulations and results provided can be used by mission planners to plan

complex rendezvous and proximity operation maneuvers with multiple waypoints.

This research helps to bridge the gap between mission planning for a single objective

and considering your future objectives in a fuel-optimal context. The main contri-

bution of this thesis is the formulation of missions as MIP problems, combining the

combinatorial and optimal control nature of these problems into a singular fuel op-

timal optimization problem so that mission planners can consider the assignment of

objectives in conjunction with satellite trajectories. The specific expected contribu-

tions associated with each problem are outlined below:

• Problem A: The MILP formulation and solution of a constrained space-based

multiple undetermined waypoint visit with converged globally optimal solutions

presented. Next, extending the above formulation to a linear cooperative control

scenario where multiple inspectors are working together to visit all waypoints.

• Problem B: The MICP formulation and solution of a constrained multiple

undetermined RSO rendezvous with globally converged optimal solutions pre-

sented. Next, extending the above formulation to a convex cooperative control

scenario where multiple inspectors are working together to rendezvous with all

RSOs.

• Problem C: The MINP formulation and solution of a constrained multiple

undetermined RSO NMC. This problem shows how relaxing convexity require-
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ments allows for the “Black Box” description and meteheuristic optimization of

complex proximity operation maneuvers in sequence.

1.2.7 Summary.

The layout for the thesis is as follows:

• Chapter 2: Provides detailed background information on relative satellite dy-

namics utilized for all three problems, an introduction to MIP, and a literature

review related to each problem.

• Chapter 3: Presents the mathematical formulation for each problem with an

in-depth discussion of decision variables, objective functions, constraints, and

the convexity of each formulation. Additionally, solution methodologies for each

problem are introduced.

• Chapter 4: Demonstrates the implementation of each problem and presents

associated results along with an analysis.

• Chapter 5: Draws conclusions along with helpful insights for mission planners

and discusses recommendations for future work.
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II. Background

2.1 Overview

This chapter provides the background and previous work that allows for the for-

mulation and solving of Problems A, B, and C. First, the governing dynamics of

relative satellite motion are derived, solved, and placed into convenient forms. Par-

ticular attention is paid to previous work that provides a useful parameterization of

NMC trajectories. Second, MIP is introduced along with a discussion of the various

relevant modeling and solution methodologies. Finally, recent research is provided

that shows related problems solved with similar solution methodologies as Problem

A, B, and C.

2.2 Relative Satellite Motion

Relative satellite motion, in this thesis, is primarily concerned with the relative

motion of an inspector satellite around an RSO. Designating the RSO as the chief and

the inspector as the deputy, a non-inertial and rotating reference frame is centered

at the chief. Keplerian, or two-body motion, can then be expressed in this reference

frame. Adhering to the Local-Vertical Local-Horizontal (LVLH) convention for the

reference frame centered at the chief, the x̂ axis points along the radial direction. The

ẑ axis points in the orbit normal direction, or in the same direction as the inertial

angular momentum vector. The ŷ axis completes the right handed set. Thus, the

general Nonlinear Equations of Relative Motion (NERMs) are developed in Alfriend

and are presented as [6]:
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ẍ− 2ḟ ẏ − f̈y − ḟ 2x+
µ(r + x)

[(r + x)2 + y2 + z2]
3
2

− µ

r2
= ax (2.1)

ÿ + 2ḟ ẋ+ f̈x− ḟ 2y +
µy

[(r + x)2 + y2 + z2]
3
2

= ay (2.2)

z̈ +
µz

[(r + x)2 + y2 + z2]
3
2

= az. (2.3)

where µ is the gravitational constant, µ = 398600.5 km3/sec2, f is the true anomaly,

r is the magnitude of the position vector from the center of the Earth to the RSO,

and a is the applied acceleration in each direction.

Assuming that the RSO is in a near circular orbit, such as a geosynchronous orbit,

where ḟ = n, with n being the mean motion of the satellite, is constant and r is now

the semi-major axis a, and the equations reduce to the circular-NERMs (CNERMs):

ẍ− 2nẏ − n2x+
µ(a+ x)

[(a+ x)2 + y2 + z2]
3
2

− µ

r2
= ax (2.4)

ÿ + 2nẋ− n2y +
µy

[(a+ x)2 + y2 + z2]
3
2

= ay (2.5)

z̈ +
µz

[(a+ x)2 + y2 + z2]
3
2

= az. (2.6)

A starting point for deriving useful (for mission planners) differential equations

that have readily available solutions involves linearizing the nonlinear equations. By

neglecting higher-order terms and using the binomial expansion theorem, the following

Linear Equations of Relative Motion (LERMs) can be derived [7]:
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ẍ− 2ḟ ẏ −
(
ḟ 2 + 2

µ

r3

)
x− f̈y = ax (2.7)

ÿ + 2ḟ ẋ+ f̈x−
(
ḟ 2 − µ

r3

)
y = ay (2.8)

z̈ +
µ

r3
z = az. (2.9)

2.2.1 Hill-Clohessy-Wiltshire Equations of Motion.

Assuming that the distance between the chief and deputy is much smaller than

the distance between the chief and the center of the Earth, and, remembering the

LERMs and CNERMs previously defined, Equations (2.4)-(2.6) reduce to the Hill-

Clohessy-Wiltshire (HCW) equations of relative motion [8]:

ẍ− 2nẏ − 3n2x = ax (2.10)

ÿ + 2nẋ = ay (2.11)

z̈ + n2z = az. (2.12)

Assuming that the applied acceleration is the control, u(t) = [ax, ay, az]
T these can

be expressed in state-space form as:

ẋ(t) = Ax(t) + Bu(t) (2.13)

where,
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A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


, B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


, (2.14)

x =



x

y

z

ẋ

ẏ

ż


, u =


ax

ay

ay

 , (2.15)

A convenient form for these linear constant coefficient differential equations is the

discrete state space form. Texts such Ogata’s [9] show the transformation process

using the zero-order hold method. The continuous HCW dynamics are discretized

into N equal time-steps, ∆t, where ∆t = ti+1 − ti. Thus, the discrete states become

xi ∀i ∈ [1, . . . , N ]. This assumes that the control acceleration is held constant over

each time step. The continuous state-space differential equations become discrete

difference equations, and, in matrix form are:

xi+1 = Adxi + Bdui, (2.16)
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where Ad, or the system State Transition Matrix (STM) Θ(ti+1, ti), and Bd are

defined as:

Ad = eA∆t = Θ(ti+1, ti) (2.17)

Bd =

(∫ ti+1

ti

Θ(ti+1, τ)dτ

)
B. (2.18)

Sources such as Vallado [10] show the solution process for the previously defined HCW

STM giving:

Θ(t) = eAt =



4− 3 cos(nt) 0 0
sin(nt)

n
−2(cos(nt)−1)

n
0

6 sin(nt)− 6nt 1 0
−2(cos(nt)−1)

n
4 sin(nt)−3nt

n
0

0 0 cos(nt) 0 0
sin(nt)

n

3n sin(nt) 0 0 cos(nt) 2 sin(nt) 0

6n cos(nt)− 6n 0 0 −2 sin(nt) 4 cos(nt)− 3 0

0 0 −n sin(nt) 0 0 cos(nt)


(2.19)

where t is the current time assuming that the initial time t0 is 0. These two solution

approaches to the HCW equations are useful for two guidance methods, Clohessy-

Wiltshire Targeting (CW-Targeting) and discrete acceleration control.

CW Targeting uses the HCW STM in equation 2.19 to determine the two impulsive

maneuvers required to reach a certain state in a specified amount of time. Maneuver

time is specified as tm, the desired position is pt, the desired velocity is vt, and Θ11,

Θ12, Θ21, Θ22 are the partitioned 3X3 blocks in the HCW STM [5]. Superscripts are

used to represent the values before (-) and after (+) the ∆V , or impulsive velocity,

is applied. The following equations represent the first and second burn respectively:

∆V1 = Θ−1
12 (tm)(pt −Θ11(tm)p0)− v−0 (2.20)
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∆V2 = vt − (Θ21(tm)p0 + Θ22(tm)p0)v+
0 . (2.21)

Discrete acceleration control can be thought of as a transcription of a continuous

optimal control problem to a linear or nonlinear programming problem. This method,

also used by Richards [11] and Ortolano [12], is a direct collocation of the dynamics

over a fixed time interval where an integral approximation of the dynamics has been

replaced by the discrete form of the dynamics [13]. Thus, the optimization is searching

for both states and control, constrained by xi+1 = Adxi +Bdui, such that we satisfy

boundary conditions in a fixed amount of time. The implementation of this method

will be discussed later in the methodology and formulation sections of Problem A and

Problem B while the implementation of CW Targeting will be discussed in Problem

C.

2.2.2 Lovell’s Relative Orbital Elements.

Lovell et al. re-parameterized the solution to the HCW equations in an effort to

characterize the relative motion of a deputy with respect to a chief in a geometric

sense [14, 15]. This clear representation of the geometry, dubbed Lovell’s Relative

Orbital Elements (LROEs), allow for the simple expression of the size and shape of

natural motion trajectories. The LROEs are given below:
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ae = 2

√(
ẋ

n

)2

+

(
3x+ 2

ẏ

n

)2

(2.22)

xd = 4x+ 2
ẏ

n
(2.23)

yd = y − 2
ẋ

n
(2.24)

β = atan2(ẋ, 3nx+ 2ẏ) (2.25)

zmax =

√(
ż

n

)2

+ z2 (2.26)

ψ = atan2(nz, ż) (2.27)

apogee

perigee

deputy

ae

ae
(xd,yd)

y

x

β

chief

Earth

velocity

Figure 2. Relative orbital elements.

where ae is the semi-major axis of the instantaneous ellipse in the orbital plane of

the RSO, xd and yd are the radial and in-track displacements from the center of

LVLH reference frame, β is the in-plane phasing angle, zmax is the maximum cross-
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track distance, and ψ is the out-of-plane phasing angle. The in-plane LROES are

geometrically summarized in Figure 2. Thus, the LROEs allow for the expression

of the size and shape of a NMC trajectory, then, determine the injection state in

Cartesian states defined in terms of the LROEs:

x =
−ae

2
cos β + xd (2.28)

ẋ =
ae
2
n sin β (2.29)

y = ae sin β + yd (2.30)

ẏ = aen cos β − 3

2
nxd (2.31)

z = zmax sinψ (2.32)

ż = zmaxn cosψ (2.33)

NMC trajectories, as initially investigated by Sabol et al. [16], are bounded, thus,

do not drift in the relative frame, under the HCW dynamics. This corresponds to

the chief and deputy having the same semi-major axis but with a slight difference

in eccentricity. Using Lovell’s equations, it is possible to map the slight difference

in eccentricity to a desired 2 by 1 bounded elliptical trajectory around the chief, or

center of the relative reference frame. This NMC trajectory is useful for proximity

operations as we get a periodic encirclement of the object of interest without using

any fuel. Note, that these trajectories are only explicitly defined under the linearized

HCW dynamics. When these trajectories are propagated using higher-order dynamics

such as the CNERMs, the 2 by 1 ellipse becomes distorted and drifts in the relative

frame.[17]

Figure 3 shows a summary of relative dynamics and the assumptions/transforms

required to derive them. Note, for completeness the Tschauner Hempel (TH) equa-
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tions of relative motion are included. These linear time-varying dynamics are derived

through a scaling and change of variables from time to true anomaly [18]. Addition-

ally, choosing specific relative dynamics should be based on the orbits of interest and

the nature of the problem. This thesis will utilize the linearized HCW dynamics for

investigating circular orbits in GEO with a desired discretization of time.

NERMs
ẋ = f(x, t)

LERMs
ẋ = A(t)x

HCW
ẋ = Ax

TH
˙̃x = B(f)x̃

LROEs
ae xd yd
β zmax ψ

CNERMs
ẋ = f(x)

Binomial
Theorem

Truncation

Circular
ḟ = n

x̃ = T (f)x
t→ f

GeometricCircular
ḟ = n

Figure 3. Relative dynamics summary.

2.3 Mixed Integer Programming

Mixed Integer Programming (MIP) problems are optimization problems that con-

tain a mixture of continuous and integer decision variables. Representing Problems

A, B, and C as MIP problems allows for a direct investigation of the research ques-

tions, solving a coupled combinatorial and optimal control problem for constrained

space-based waypoint visits. This section introduces MIP along with various model-

ing and solution methodologies utilized for all three problems. The general form for

MIP problems is given as: [19]
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min f(x, y),

subject to:

gi(x, y) ≤ bj, j = 1, ..., r1

hi(x, y) = bj, j = r1 + 1, ..., r1 + r2

xLi ≤ xi ≤ xUi : integer, i = 1, ..., n1

yLi ≤ yi ≤ yUi , i = 1, ..., n2

x = [x1, x2, ..., xn1 ]
T

y = [y1, y2, ..., yn2 ]
T

(2.34)

Here, x is the vector of integer decision variables and y is the vector of continuous de-

cision variables. Additionally, gi and hi represent inequality and equality constraints

respectively. The nature of the objective function and constraints dictate the classifi-

cation of the MIP problem as either linear, nonlinear convex, or nonlinear non-convex.

This thesis considers all three.

A Mixed Integer Linear Programming (MILP) problem considers a linear objec-

tive function with linear constraints. A Mixed Integer Convex Programming (MICP)

problems can be thought of as a natural extension to MILP, where one attempts to

minimize a convex objective function subject to convex constraints. Lubin’s disser-

tation [20] contains a summary of the field of MICP, with particular attention to

constraints of the Second Order Cone (SOC) form. While SOCs have many practical

applications, we are primarily concerned with SOC constraints and their ability to

model the `2 or Euclidean norm. For completeness the standard SOC representation

of an `2 norm constraint is [21]:

C = {(x, t) | ||x||2 ≤ t} ⊆ Rn+1. (2.35)
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Finally, Mixed Integer Nonlinear Programming (MINP), in this case, is concerned

with non-convex objective functions and constraints [22]. Solution methodologies, in

the field of MIP, are explicitly tailored to the type of problem. As Problem A, B, and

C represent the different sub-classes of MIP problems just discussed, each solution

technique will also be unique.

2.3.1 Disjunctive Sets.

Disjunctive sets arise naturally from a desire to model constraints that are de-

pendant on a logical condition, these are also known as “either or” constraints [23].

Mathematically these can be expressed as:

⋃
i∈M

{x ∈ Rn | ∨Aix ≤ bi} (2.36)

where Aix ≤ biyi is the system of inequalities associated with alternative i and ∨ is

the “logical or”. Thus, there are two separate or disjunctive solution spaces. Disjunc-

tive sets arising from logical constraints are used to model many problems including

assignment, reformulation of non-convex constraints, and piece-wise affine systems

[24].

2.3.2 Big-M Reformulation.

Modeling disjunctive sets requires the addition of integer variables resulting in

MIP problems. These are much more computationally difficult to solve than LP

problems. The accepted approach to solving these problems is through relaxing the

disjunctive constraints and solving the modified problem. The modified problem’s so-

lution is equally optimal to previous problem’s solution since relaxing the constraints

only increases the solution space [23]. The modified constraints are generally defined

as:
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−Mi(1− yi) ≤ Aixi − bi ≤Mi(1− yi) (2.37)

m∑
i=1

yi = 1. (2.38)

where Mi is an arbitrary large constant associated with decision variable xi (hence a

Big-M reformulation). Inspecting the modified constraints, if yi is chosen to be active

by the optimization, then constraints act as normal; however, if yi is chosen to not be

active, then the constraint is null and continuous decision variable xi is only bounded

by some large Mi. Additionally, by introducing the second constraint, the disjunction

is captured as only one yi system of inequality constraints is desired to be active or

yi = 1.

A relevant example is the Big-M reformulation of a non-convex KOZ constraint.

Considering 2D position with an x and y axis, Figure 4 provides an example KOZ

linearization. Here, (xmin, ymin) and (xmax, ymax) are the lower left hand coordinates

and upper right hand coordinates of the KOZ rectangle respectively. By inspection,

we can see that these constraints uphold the integrity of the KOZ by ensuring that

no more than three of the four dimensions that define the lower left-hand corner and

upper right-hand corner of the rectangle are violated [25]. This KOZ linearization

using MIP is implemented for a 3D case in Problem A.

Another example involves modeling the disjunction that results from enforcing

a constraint on a continuous decision variable depending on the value of an integer

variable. This reformulation is analogous to an undetermined waypoint visit that

is a topic of Problem A and Problem B. Consider 2 “either or” continuous variable

constraints where x = [x1, x2]T are the continuous variables, y = [y1, y2]T are the

binary decision variables that model the disjunction, and M is the bound on x:
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Figure 4. KOZ linearization with Big-M reformulation

 if y1 = 1

then x1 ≤ b1

 or

 if y2 = 1

then x2 ≤ b2

 or

 if y1, y2 = 0

then x1, x2 ≤M

 (2.39)

This disjuction can be reformulated by the introduction of three constraints, one for

each binary variable and one that captures the “or” logic:


−M(1− y1) ≤ x1 − b1 ≤M(1− y1)

−M(1− y2) ≤ x2 − b2 ≤M(1− y2)∑2
i=1 yi ≤ 1

 (2.40)

If y1 is active or 1 then the first condition must be satisfied as the first constraint

will reduce to 0 ≤ x1 − b1 ≤ 0. The second condition is true if y2 is active. However,

if both y1 and y2 are inactive, then the continuous variables are only constrained to

stay within some upper and lower bound. It is easily seen how x could be the state of

22



an inspector satellite, b could be the state of the desired waypoint, y is the indicator

if a specific waypoint is being visited, and M are the state bounds of the problem.

2.3.3 Solution Techniques for MIP.

The software used to solve resulting MIP problems include IBM’s CPLEX [26]

software and the Genetic Algorithm (GA) solver included with Matlab’s global opti-

mization toolbox. For Problems A and B, CPLEX will be used while Problem C will

utilize Matlab’s GA solver.

When solving MILP and MICP problems, CPLEX [26] uses a Branch-and-cut

search technique which involves a combination of the Branch-and-bound method with

the addition of cutting planes. Branch-and-cut produces a search tree consisting of

nodes that represent a Linear Programming (LP) or Quadratic Programming (QP)

subproblem associated with a specific combination of binary variables. Nodes are

considered active until they have been explored by the algorithm. Branching is the

creation of two new nodes from a parent node by the splitting of a relaxed integer de-

cision variable. Cutting involves adding constraints to relaxed LP or QP subproblem

so that fractional solutions can be iteratively tightened to allow faster convergence to

integer values, thus, reducing the size of the solution domain while not eliminating

the best integer feasible LP or QP subproblems that can occur. Figure 5 shows this

process for a notional LP subproblem that would occur at a node within Branch-

and-cut. Every node posses an optimal objective function value. As the algorithm

advances, the current best node value is compared to value of the incumbent solution.

When active nodes no longer exists, the optimal solution with the included cut con-

straints has been obtained. At the absolute worst case, Branch-and-cut approaches

an exhaustive search through the problem nodes. Branch-and-cut methods are known

to be global search algorithms, finding the global optimum of the MIP problems [27].
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However, problem size and complexity is directly related to the computational time

required for the Branch-and-cut method to converge [27].

x

y Objective Function

LP Relaxation Optimum

IP Optimum

Cutting Planes

Figure 5. LP subproblem cutting planes.

Matlab’s GA solver is a real-coded GA that utilizes special creation, crossover,

and mutation functions, from Deep et al. [19], that enforces desired integer-valued

variables. Constraints are handled by minimizing a penalty function that includes

terms for infeaseability. The penalty function prioritizes feasible members of the

population first, and then ranks according to penalty function values where binary

tournament selection picks subsequent generation individuals from this list. This

thesis does not contain a detailed description of GAs; however, for the solver utilized,

aside from the MIP adaptations from Deep, is consistent with Reeves’ cornerstone

journal article on the topic [28].

2.4 Problem A Literature Review

Problem A is a linear formulation of the fuel optimal guidance of an inspector

satellite visiting multiple waypoints around an RSO. The inspector must visit all

waypoints within a specified amount of time while adhering to KOZ constraints.
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Since the problem is a Mixed Integer Linear Programming (MILP) problem, Branch-

and-cut solution techniques are utilized to solve the problem. Richards [11] proposed

an MILP formulation for solving a discretized optimal control problems subjected

to path and terminal/waypoint visit constraints. First, he used a MIP to formulate

and solve a minimum fuel, fixed-final time, and fixed-final state space-based optimal

control problems subject to rectangular KOZ and plume avoidance constraints. The

rectangular KOZ and plume avoidance path constraints were linearized using a Big-

M reformulation on the resulting disjunctive set. Richards utilized CPLEX to solve

the MIP problem, making note that a “converged” solution was not presented as the

computation time exceed reasonable limits. Additionally, Richards formulated and

solved an aircraft-based multiple waypoint visit with rectangular keep out constraints

using MIP [29]. This formulation considered 2-dimensional dynamics, a set of 3

waypoints that must be visited, and a weighting function dictating the priority order

of the waypoints contained in the objective function. Finally, a more recent conference

proceeding used MIP in a Model Predictive Control (MPC) formulation for a space-

based multiple waypoint visit subject to path constraints [30]. This formulation

utilized 3-dimensional dynamics and Big-M constraint formulation with the order of

the waypoints being visited specified in advance.

Solving Problem A addresses a research gap by solving a minimum fuel, fixed final

time, multiple waypoint visit in geosynchronous orbit using 3-dimensional dynamics,

including keep out zones, and letting the order of waypoints being visited free to the

optimization. Additionally, to the best of the author’s knowledge, the above problem

has not been addressed with the addition of another inspector satellite so that both

are working together in a linear cooperative control fashion to visit all waypoints.
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2.5 Problem B Literature Review

Problem B is a convex formulation of the fuel optimal guidance of an inspector

satellite rendezvous with multiple objects that are drifting in the relative frame. The

inspector must visit all objects within a specified amount of time while adhering to

convex control constraints. There is significant research on large scale, multiple ob-

ject rendezvous, in the context of active debris removal and on-orbit servicing. Cerf

[31] investigated the fuel optimal visit of multiple pieces of debris in low Earth orbit.

Considering two-body dynamics, drifting debris, and Lambert targeting for impulsive

control calculation, a MIP formulation was used with a Branch-and-Bound solution

methodology. This formulation is consistent with a time-dependant Traveling Sales-

man Problem (TSP). Yu [32] proposed a purely integer formulation for finding the

sequence of drifting debris visits that minimizes the total impulsive change in velocity,

or ∆V . In an effort to provide a more precise and realistic scenario, a small subset

of debris was investigated (less than 6 objects). Again, two-body dynamics with

two-burn impulsive control was utilized. From an aircraft perspective, Bonami [33]

solved a minimum fuel, multiple waypoint visit problem subject to time constraints

and dynamic wind disturbances. Control was constrained by a 2-norm so that accel-

eration appeared to only come from a single source. Additionally, the dynamic wind

disturbances are analogous to a spacecraft operating in a gravity field where the fuel

optimal trajectory between two points is not a trivial straight line.

Solving Problem B addresses a research gap by solving a small scale, multiple

drifting object rendezvous with path constraints and 2-norm constrained accelera-

tion control. The research herein attempts to address a realistic scenario where a

single thruster inspector satellite must visit multiple objects with time-dependant

states. Additionally, a convex cooperative control formulation is investigated where
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two inspectors are working together to visit all drifting objects, which has multiple

applications in the space community.

2.6 Problem C Literature Review

Problem C is the constrained minimum fuel NMC inspection of multiple RSOs

in sequence. The inspector must conduct an NMC around each RSO within a spec-

ified amount of time while adhering to the NMC entry sun-angle constraints. The

problem is formulated as a nonlinear and non-convex MIP that requires the use of

metaheuristic methods to solve. Prince [5] investigated optimal finite guidance for

proximity operations involving one inspector and one RSO. One particularly related

problem utilized a novel analytic propagation of a burn-coast-burn sequence to find

the min-time and min-fuel NMC injection solutions subject to sun-angle entrance

constraints. The size and location of the NMC were specified in advance with the

in-plane phasing angle β left free to the optimizer. The solution finds the optimal tra-

jectory in addition to the optimal β angle that meets sun-angle injection constraints.

Shen [34] formulated and solved the minimum ∆V multiple rendezvous assuming a

two-burn impulsive maneuver with two-body dynamics. The problem is analogous

to the classic Traveling Salesman Problem where an active satellite must visit all

objects and return back to the original starting location. Additionally, Shen showed

that by assuming a particular type of transfer such as Lambert Targeting, the MIP

becomes a sequencing problem where the order and time distribution of transfers

and loitering become the decision variables. Kolemen [35] utilized a Time-Dependant

Traveling Salesman formulation for the optimal reconfiguration of an Occulter Based

Extrasolar-Panet-Imagining mission. Again, by assuming a targeting method (con-

tinuous optimal control or Lambert targeting in this case), the problem reduces to

finding the fuel optimal sequencing and time distribution. Additionally, terminal con-
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straints involved reaching a desired observation angle in addition to a terminal state.

Due to the non-convex nature of the formulation, heuristic branching and simulated

annealing methods were utilized to solve the problem.

Taking inspiration from Shen and Kolemen, Problem C extends Prince’s formu-

lation to the case where multiple RSOs are visited in sequence with a proximity op-

eration technique, subject to sun-angle lighting constraints. Due to the non-convex

nature of these problems, a metaheuristic method is used to solve the resulting MIP

problem.

2.7 Chapter Summary

This chapter included a summary of relevant literature associated with each prob-

lem investigated. This survey revealed a research gap in the literature with respect

to formulating and solving for undetermined space-based waypoint visits, where the

optimal trajectory and the visit order of the waypoints is solved in a unified and

coupled manner.
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III. Methodology

This chapter contains the formulations and solution methodology for Problems

A-C.

3.1 Problem A Formulation and Solution Methodology

Section 3.1 provides the problem formulation and solution methodology for Prob-

lem A, which involves finding the optimal impulsive guidance for the waypoint-based

inspection of a single RSO. This problem is formulated as a MILP which can be

globally solved with algorithms such as Branch-and-cut.

3.1.1 Decision Variables.

The optimization algorithm must choose inspector states and control input (ad-

hering to the satellite dynamics), so that all waypoints are visited and the inspector

reaches a predefined boundary condition. First the inspector state is discretized over

some sampling time ∆t where the state vector is xT = [x, y, z, ẋ, ẏ, ż], resulting in the

state decision variables as,

xi ∈ R6 ∀ i ∈ [0, 1, . . . , T − 1, T ]. (3.1)

Next, we must choose impulsive control applied at each time-step i so that the chosen

states adhere to the dynamics and all desired waypoints are visited. Thus, u =

[ux, uy, uz]
T , which is the acceleration control in all dimensions, and discretized as,

ui ∈ R3 ∀ i ∈ [0, . . . , T − 1]. (3.2)

A set of binary integer decision variables will dictate if the jth waypoint is visited at

the ith time step where P is the total number of waypoints to visit,
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hij ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , P ]. (3.3)

Finally, using the Big-M reformulation for keep out constraints, a set of binary integer

variables will determine if the KOZ is enforced at the ith time step where N is

dimensionality of the KOZ:

cij ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , 2N ]. (3.4)

In order to make the constraint definition for the KOZ more compact, the decision

variable vector for each time step, ci, will be partitioned. cmax
i will be the three

binary variables at time step i associated with the upper right-hand corner of the

KOZ and cmin
i will be for the lower left-hand corner. The significance of this change

will be shown when defining the KOZ constraint.

3.1.2 Objective Function.

Problem A is a minimum fuel, fixed final time trajectory assignment problem.

Thus, the cost functional to be minimized is,

min J =
T∑
i=0

|ui|1. (3.5)

Additionally, note that the above absolute value can be linearized by introducing an

additional control variable where ui = u+
i − u−i with u+

i ,u
−
i ≥ 0.

3.1.3 Constraints.

Using the linear HCW dynamics outlined in section 2.2.1 and using the discrete

state space representation (discretized to the time step ∆t), the dynamics of the

inspector are upheld at intermediate steps by introducing the constraint:
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xi+1 = Adxi + Bdui ∀i ∈ [0, . . . , T − 1]. (3.6)

The optimization must account for the possibility that a jth waypoint is visited on

the ith time step. Thus, utilizing the Big-M reformulation and designating xwj as

the state vector for the jth waypoints, the following constraints are formed:

xi − hijxwj ≤ (1− hij)MU ∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ] (3.7)

−xi + hijxwj ≤ − (1− hij)ML ∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]. (3.8)

When the jth waypoint is not visited at time step i, hij = 0, and the state is only

constrained to be within some arbitrary upper and lower bound, MU and ML. If

a waypoint is visited at time step i, hij = 1, and 0 ≤ xi − xwj ≤ 0, creating an

equality constraint so that the waypoint is visited at the correct time step. M in

the Big-M reformulation is also representative of the position and velocity bounds

of the inspector, signifying some predetermined safe operating region. From the

above constraints, the inspector must be restricted to only be at one waypoint at any

instance in time:

P∑
j=1

hij = 1 ∀i ∈ [1, . . . , T − 1]. (3.9)

Next, the amount of time spent at each waypoint can be constrained as seen below,

where Gj is the desired number of time steps that the inspector spends at waypoint

j:

T−1∑
i=1

hij = Gj ∀j ∈ [1, . . . , P ]. (3.10)
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KOZ constraints can also be linearized and implemented using a Big-M reformulation.

The rectangular constraint is defined by its lower left-hand corner (xmin, ymin, zmin)

and its upper right-hand corner (xmax, ymax, zmax). Compactly designating each 3 by

1 min and max corner vector as Zmin and Zmax respectively, and choosing an arbitrary

upper limit M the following mixed integer constraints for a 3D rectangular KOZ are:

xi ≤ Zmin + Mcmin
i (3.11)

−xi ≤ −Zmax + Mcmax
i (3.12)

n∑
j=1

cij ≤ d− 1, (3.13)

where d is equal to twice the dimensionality of the states.

Finally, we impose some bounds on the control ui. These bounds are used to

represent the available force of each thruster:

L ≤ ||ui||∞ ≤ U (3.14)

In summary, the minimum fuel, fixed final time, waypoint assignment problem is,
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minimize J =
T∑
i=0

|ui|1

Subject to:

(1) xi+1 = Adxi + Bdui

∀i ∈ [0, . . . , T − 1]

(2)
P∑

j=1

hij = 1

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(3)
T−1∑
i=1

hij = Gj

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(4) xi − hijxwj ≤ (1− hij)M

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(5) − xi + hijxwj ≤ − (1− hij)M

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(6) xi ≤ Zmin + Mcmin
i

∀i ∈ [1, . . . , T ]

(7) − xi ≤ −Zmax + Mcmax
i

∀i ∈ [1, . . . , T ]

(8)
n∑

j=1

cij ≤ d− 1

∀i ∈ [1, . . . , T ]

(9) L ≤ ||ui||∞ ≤ U

∀i ∈ [0, . . . , T − 1]
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where x0 and xT are the fixed initial and final conditions of the inspector respectively.

3.1.4 Linear Cooperative Control Extension.

This formulation for a single inspector can be extended to the case of N inspectors,

resulting in the number of decision variables being increased by a multiple of N . Now

the decision variables become:

x
(n)
i ∈ R6 ∀ i ∈ [0, . . . , T ], ∀n ∈ [1, . . . , N ] (3.15)

u
(n)
i ∈ R3 ∀ i ∈ [0, . . . , T − 1], ∀n ∈ [1, . . . , N ] (3.16)

h
(n)
ij ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , P ], ∀n ∈ [1, . . . , N ] (3.17)

c
(n)
ik ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , 2N ], ∀n ∈ [1, . . . , N ], (3.18)

where N is the numerical designation of the inspector. Additionally, the objective

function needs to be extended so that the sum of the control from the N inspectors

is considered, resulting in:

J =
N∑

n=1

T∑
i=0

|u(n)
i |1. (3.19)

Finally, the visit constraints are adapted so that waypoints can be visited by only one

inspector at a time and each waypoint is only visited once by all inspectors, giving:

N∑
k=1

P∑
j=1

h
(k)
ij = 1 (3.20)

N∑
k=1

T−1∑
i=1

h
(k)
ij = Gj. (3.21)
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Note that the KOZ constraints are created for each additional inspector as well. These

simple adjustments, while increasing the number of decision variables and constraints

by a factor of N , allow for the optimization to consider multiple inspectors working

together to visit all waypoints and minimize fuel.

3.1.5 Solution Methodology.

Problem A is modeled in Matlab using YALMIP [36], an object oriented Matlab

toolbox for modeling optimization problems and interfacing with external solvers such

as CPLEX. First, all problem parameters are defined which include, inspector starting

and ending locations, the waypoint states, dimensions of the rectangular KOZ, bounds

on states and control, and total time allocated for the inspection. These parameters

are used to define the objective function and constraints for the specific problem,

which is then package by YALMIP and sent to CPLEX to be solved.

In an effort to reduce computation time, scaling is utilized so that all continuous

decision variables are scaled:

x = Xx̂ (3.22)

u = Uû. (3.23)

where X and U are diagonal scaling matrices that contain the upper bound vector

M and control upper bound U on their diagonals respectively. This results in con-

tinuous decision variables that are now scaled between 1 and −1 in the optimization.

Constraints are scaled using the same methodology. This scaling is recommended in

the CPLEX users manual to improve the branching heuristics in the Branch-and-cut

algorithm [26].
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Solving Problem A also included a tuning of the various parameters and heuristics

in the Branch-and-cut algorithm. Notably, we set the branching direction heuristic

to up so that the upper branch on the binary variable is explored first for each node.

This means that the algorithm will work more towards exploring branches that have

binary variable values of 1, helping to reach feasible incumbent solutions earlier in

the solution process.

3.2 Problem B Formulation and Solution Methodology

This section presents the problem formulation and solution methodology for Prob-

lem B, which involves finding the optimal guidance for the rendezvous of multiple

drifting objects with a constraint on the magnitude of the control vector. This prob-

lem is formulated as a MICP which can be globally solved with a Branch-and-cut

algorithm.

3.2.1 Decision Variables.

The optimization algorithm must choose inspector states and control input (ad-

hering to the satellite dynamics), such that all drifting objects are visited and the

inspector reaches some specified boundary condition. First, as in Problem A, the

inspector state is discretized using the zero-order hold method with a sample time ∆t

where the state vector xT = [x, y, z, ẋ, ẏ, ż], resulting in the state decision variables

as,

xi ∈ R6 ∀ i ∈ [0, . . . , T ]. (3.24)

Next, the control applied at each discretized i must be chosen so that the states

adhere to the dynamics and all desired objects are visited. Thus, u = [ux, uy, uz]
T ,

which is the acceleration control in all dimensions.
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ui ∈ R3 ∀ i ∈ [0, . . . , T − 1]. (3.25)

A set of binary integer decision variables will dictate if the jth RSO is visited at the

ith time step where P is the total number of objects to visit,

hij ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , P ] (3.26)

3.2.2 Objective Function.

Problem B is a minimum fuel, fixed-final time trajectory assignment problem.

Thus, the objective function is formulated so that the optimization produces the

minimum fuel solution, resulting in,

min J =
T∑
i=0

|ui|1. (3.27)

3.2.3 Constraints.

Using the linear HCW dynamics outlined in section 2.2.1 and using the discrete

state space representation (discretized to the time step ∆t), the dynamics of the

inspector are upheld at intermediate steps by introducing the constraint,

xi+1 = Adxi + Bdui ∀i ∈ [0, . . . , T − 1]. (3.28)

The optimization must account for the possibility that a jth RSO is visited on the ith

time step. Thus, utilizing the Big-M reformulation and designating xj
w|i as the state

vector for the jth RSO at the ith time step, the following constraints are formed,
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xi − hijxj
w|i ≤ (1− hij)MU ∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ] (3.29)

−xi + hijx
j
w|i ≤ − (1− hij)ML ∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]. (3.30)

If the jth RSO is not visited at time step i, then hij = 0, and the state is only

constrained to be within some arbitrary upper and lower bound, MU and ML. If

an RSO is visited at time step i, hij = 1, and 0 ≤ xi − xj
w|i ≤ 0, creating an

equality constraint so that the RSO is visited at the correct time step. From the

above constraints, the inspector must be restricted to only be at one RSO at any

instance in time,

P∑
j=1

hij = 1 ∀i ∈ [1, . . . , T − 1]. (3.31)

Remembering that objects with a radial displacement will drift according to HCW

dynamics, the problems must accurately represent objects whose positions and veloci-

ties are changing at each time step. Thus, the state vector of each RSO is constrained

to be consistent with the linearized HCW dynamics:

xj
w|i+1 = Axj

w|i ∀i ∈ [0, . . . , T ]. (3.32)

Next, the amount of time spent at each waypoint can be constrained, where Gj is the

desired number of time steps that the inspector spends at waypoint j,

T−1∑
i=1

hij = Gj ∀j ∈ [1, . . . , P ]. (3.33)

Finally, we impose the norm constraint and bounds on the control ui so that,
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||ui||2 ≤ U (3.34)

In summary, the minimum fuel, fixed-final time, waypoint assignment problem is,

minimize J =
T∑
i=0

|ui|1

Subject to:

(1) xi+1 = Adxi + Bdui

∀i ∈ [0, . . . , T − 1]

(2) xj
w|i+1 = Axj

w|i

∀i ∈ [0, . . . , T ]

(3)
P∑

j=1

hij = 1

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(4)
T−1∑
i=1

hij = Gj

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(5) xi − hijxj
w|i ≤ (1− hij)MU

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(6) − xi + hijx
j
w|i ≤ − (1− hij)ML

∀i ∈ [1, . . . , T − 1] ∀j ∈ [1, . . . , P ]

(7) ||ui||2 ≤ U

∀i ∈ [0, . . . , T ]
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where x0 and xT are the fixed initial and final conditions of the inspector respectively.

3.2.4 Convex Cooperative Control Extension.

This formulation for a single inspector can be simply extended to the case of N

inspectors, resulting in the number of decision variables being increased by a multiple

of N . Now the decision variables become:

x
(n)
i ∈ R6 ∀ i ∈ [0, . . . , T ], ∀n ∈ [1, . . . , N ] (3.35)

u
(n)
i ∈ R3 ∀ i ∈ [0, . . . , T − 1], ∀n ∈ [1, . . . , N ] (3.36)

h
(n)
ij ∈ [0, 1] ∀i ∈ [1, . . . , T − 1], ∀j ∈ [1, . . . , P ], ∀n ∈ [1, . . . , N ], (3.37)

Additionally, the objective function needs to be extended so that the sum of the

control from the N inspectors is considered, resulting in:

J =
N∑

n=1

T∑
i=0

|u(n)
i |1. (3.38)

Finally, adapting the visit constraints so that multiple inspectors cannot visit the

same RSO at the same time and the RSO is only visited once by the inspectors,

giving:

N∑
k=1

P∑
j=1

h
(k)
ij = 1 (3.39)

N∑
k=1

T−1∑
i=1

h
(k)
ij = Gj. (3.40)

Note that the Big-M visit constraints are created for each of the Nth inspectors as

well. These simple adjustments, while increasing the number of decision variables and
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constraints by a factor of N , allow for the optimization to consider multiple inspectors

working together to visit all objects and minimize fuel.

3.2.5 Solution Methodology.

Problem A is modeled in Matlab using YALMIP [36], an object oriented Matlab

toolbox for modeling optimization problems and interfacing with external solvers such

as CPLEX. First, all problem parameters are defined which include, inspector starting

and ending locations, the waypoint states, dimensions of the rectangular KOZ, bounds

on states and control, and total time allocated for the inspection. These parameters

are used to define the objective function and constraints for the specific problem,

which is then package by YALMIP and sent to CPLEX to be solved.

In an effort to reduce computation time, scaling is utilized so that all continuous

decision variables are scaled:

x = Xx̂ (3.41)

u = Uû. (3.42)

where X and U are diagonal scaling matrices that contain the upper bound vector

M and control upper bound U on their diagonals respectively. This results in con-

tinuous decision variables that are now scaled between 1 and −1 in the optimization.

Constraints are scaled using the same methodology. This scaling is recommended in

the CPLEX users manual to improve the branching heuristics in the Branch-and-cut

algorithm [26].

Solving Problem A also included a tuning of the various parameters and heuristics

in the Branch-and-cut algorithm. Notably, we set the branching direction heuristic

to up so that the upper branch on the binary variable is explored first for each node.
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This means that the algorithm will work more towards exploring branches that have

binary variable values of 1, helping to reach feasible incumbent solutions earlier in

the solution process.

3.3 Problem C Formulation and Solution Methodology

This section presents the general problem formulation and solution methodology

for Problem C which consists of finding the optimal impulsive guidance for conducting

a series of proximity operation maneuvers around multiple RSOs in geosynchronous

orbit within a specified amount of time. The inspector must stay in a predetermined

NMC around each RSO for a minimum amount of time where the entry points to

the NMC are left free to the optimization. Below is the mathematical formulation of

Problem C. Due to Problem C being fundamentally different from Problem A and C,

a different set of notation is utilized.

3.3.1 Decision Variables.

The mission order decision variables are defined in matrix form as:

Q =


q11 . . . q1n

...
. . .

...

qm1 . . . qmn

 . (3.43)

where qij is integer valued and signals that the jth designated NMC will be accom-

plished in the ith place in the order sequence which can be defined mathematically

as:
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qij =


1, jth designated NMC accomplished in sequence location i

0, otherwise

i = 1, . . . ,m

j = 1, . . . , n.

(3.44)

The time distribution decision vector T designates the following in sequence for each

maneuver: The time to be spent in NMC j − 1 and the time to transfer to NMC j.

T = [T1, . . . , Tm] (3.45)

Tj =
{

∆t
(1)
j , ∆t

(2)
j

}
(3.46)

where ∆t
(1)
j is the total time to be spent in NMC j − 1 and ∆t

(2)
j is the total time to

transfer to NMC j. Note that ∆t
(1)
1 represents the time spent waiting at the initial

problem state and not the time in an NMC. Additionally, for j − 1 = 0 and j = n,

the boundary conditions are referenced which are the desired initial and final states.

Finally, since the size and shape of the NMC about each object are determined in

advance, the optimization is concerned with where to enter along the NMC so that

constraints are met and fuel is minimized. This results in the inclusion of the in-plane

phasing angle β as a decision variable for the optimization to consider. Thus, βj is

the in-plane phasing angle for the jth NMC.

3.3.2 Constraints.

The optimization Problem C assumes that the control is calculated via two-burn

HCW targeting as discussed in section 2.2.1. Thus, the goal is to optimally select the
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visit order and initial states of the NMCs so that the impulsive ∆V is minimized over

the entire trajectory. Since the control for each transfer is a function of the current

state of the inspector and the desired NMC injection state, the dynamics of both

the inspector and RSOs must be upheld during the transfer phase where control is

applied and during the drift phase when the inspector is in the NMC about the RSO.

For clarity, the state of the inspector at the beginning and ending of each jth transfer

phase is designated as X
(1)
Tj X

(2)
Tj

respectively. Similarly, the state of the inspector

at the beginning and ending of the jth drift phase is designated as X
(1)
Dj and X

(2)
Dj .

Using the compact function definition of the HCW STM defined in section 2.2.1 we

can define each inspector state in sequence as:

Θ
(

∆t
(1)
j

)
X

(1)
Dj = X

(2)
Dj (3.47)

X
(1)
Tj = X

(2)
Dj (3.48)

Θ
(

∆t
(2)
j

)(
X

(1)
Tj + B∆V

(1)
j

)
+ B∆V

(2)
j = X

(2)
Tj (3.49)

X
(1)
Dj+1 = X

(2)
Tj . (3.50)

where B is the same matrix used in the state space definition of the HCW dynamics

and ∆V = [∆Vx,∆Vy,∆Vz]
T is the control vector that is an impulsive change in

velocity in each direction.

Now that the linkage constraints on the inspector state are in place, we must

constrain X
(2)
Tj to be the entrance to the desired NMC which is a function of the

decision variable βj. Note, that this research only considers in-plane NMCs centered

at the origin of the reference frame which further reduces the LROES. For each jth

NMC this gives:
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X
(2)
Tj =



−ae
2

cos βj

ae sin βj

0

ae
2
n sin βj

aen cos βj

0


, (3.51)

which are the LROEs defined in section 2.2.2 where all NMC parameters, aside from

β, are determined in advance and n is now the mean motion of the chief. While

not explicitly shown, solving for these NMC entry states involves assuming that the

object being circumnavigated is at the center of the LVLH frame. Thus, through the

course of the optimization, a rotation must occur between each object’s LVLH frame

when solving for the respective NMC entry state. This involves keeping track of the

inspector’s and each object’s inertial state so that rotation can be determined and

the objective function can be computed.

Since the problem is concerned with the assignment of a single inspector to a

sequence of maneuvers, it must be ensured that the inspector is assigned to only one

maneuver at a time. Thus, for each ith maneuver time the inspector can only accom-

plish one maneuver. Additionally, we only want to accomplish each jth maneuver

once. This gives the following constraints:

n∑
j=1

qij = 1 ∀i ∈ [1, . . . , n] (3.52)

m∑
i=1

qij = 1 ∀j ∈ [1, . . . ,m]. (3.53)
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Second, we wish the sequence of inspections to be accomplished in a specified amount

of time (tf ), resulting in the constraint:

m∑
i=1

(
∆t

(1)
i + ∆t

(2)
i

)
= tf . (3.54)

Additionally, the mission planner could create upper and lower bounds for the time

spent drifting in each jth NMC. This leads to the bounds on each ∆t
(1)
j as:

Lj ≤ ∆t
(1)
j ≤ Uj. (3.55)

Finally, we consider environmental constraints, which are a function of the states

of the inspector satellite and the RSOs at
∑j

k=1 Tk, or, at very first time step of jth

NMC in global time. Thus, denoting VS as the sun vector pointing from the sun to

the RSO in the LVLH frame and VI as the vector from the inspector to the RSO

in the RSO centered LVLH frame, we can use the dot product relation to uphold an

initial sun angle constraint for the injection state of the NMC. This ensures that the

inspector injects into an NMC with the RSO illuminated.

cos−1

(
VS · VI

‖VS‖ ‖VI‖

)
≤ θ. (3.56)

3.3.3 Objective Function.

Problem C consists of finding the optimal impulsive guidance for the entire tra-

jectory. However, by assuming a two burn targeting solution between each NMC

(HCW-targeting), we can write the objective function for the optimal impulsive guid-

ance as a function of the inspector state at the end of its ith drift phase and desired

inspector state at the end of the transfer phase, or the desired initial NMC state
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about a particular RSO. Again, assuming HCW targeting defined in the background

section, the objection function is:

J =
n∑

j=1

(∥∥∥∆V
(1)
j

∥∥∥
2

+
∥∥∥∆V

(2)
j

∥∥∥
2

)
. (3.57)

3.3.4 Solution Methodology.

Problem C is a nonlinear and non-convex MIP problem. Thus, a metaheuristic

method will be used to solve the resulting problem. Metaheuristic methods are es-

pecially useful when solving problems of the “Black Box” variety, where behind the

scenes ECI propagation, coordinate rotations, and other nonlinearities can be eas-

ily handled when calculating the objective function values for each member of the

population.[37] The main hurdle of Problem C is logistical. Coding and decoding

the problem chromosome efficiently while capturing all problem characteristics is not

intuitive.

Matlab’s GA solver was used to find a solution to the resulting MINP problem.

A population of 200 members was utilized. Additionally, some heuristics were tuned

to provide better results. First, the mutation rate was decreased due to the small

number of possible combinations in the order that the inspector visits the objects.

A decreased mutation rate limited the problem of returning to an infeasable solution

once feasibility had been achieved. Second, increasing the Elite Count, or number of

best members of the population that are guaranteed to survive to the next generation

helped to preserve the best visit order combinations. This focused the GA on solving

the nonlinear and non-convex subproblems to optimality. Due to the small number

of visit order combinations, it may be useful to simply enumerate all possible combi-
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nations, assuming that “Black Box” nature of the problem can be made clearer. This

could be an area of future work.

3.4 Chapter Summary

Having outlined the formulations and solution methodologies for Problems A-C,

the next chapter will present solutions to and an analysis of various instances for each

problem. Special attention is paid to verifying the optimality of the solutions and

what they mean in the context of mission planning.
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IV. Implementation and Analysis

4.1 Problem A

Problem A considers an MILP formulation and solution for the multiple waypoint

visit around a single RSO with a rectangular KOZ within a fixed amount of time.

First in A.1, the fuel optimal guidance is found for a single inspector. Next, in A.2,

linear cooperative control is investigated with an analysis of fuel trade-offs between

number of inspectors and mission time allotted. Again, Big-M reformulations are

utilized to linearize the resulting logical disjunctive sets from the waypoint visit and

KOZ. IBM’s CPLEX is used to solve both subproblems. For both A.1 and A.2, a 5

waypoint visit is considered with a 450 meter rectangular KOZ centered at the origin

of the HCW frame. Table 1 summarizes all problem parameters considered. Also,

the number of time-steps required to be spent at each waypoint, or Gj, was set to 1

for each waypoint. The state bounds for the Big-M reformulation are set to ±10 km

for position and ±1 km/s for velocity.

Table 1. Problem A mission parameters.

Number of
Inspectors

Number of
Waypoints

Mission
Duration

KOZ
Type

A.1 1 5 2 hours rectangle
A.2 2 5 1 hour rectangle

4.1.1 Problem A.1.

Problem A.1 starts with an single inspector with a 5 km offset in-track, x0 =

[0, 5, 0, 0, 0, 0]T . The inspector will start from this location, visit all previously desig-

nated waypoints while avoiding the KOZ and returning to its starting location within

the designated amount of time in a fuel optimal manner. Table 2 show the parameters

used in the instance of Problem A.1.
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Table 2. Problem A.1 simulation parameters.

Waypoint
Coordinates (m)

Control
Bound

KOZ Size
(m)

Time-
Step (sec)

A.1 (500,0,0,0,0,0),
(-500,0,0,0,0,0),
(0,-500,0,0,0,0),
(0,0,-500,0,0,0),
(0,0,500,0,0,0)

u ≤ 1m
s2

450 meters 60

Figure 6 shows the 3D trajectory of the multiple waypoint visit. Green circles sig-

nify the position of the inspector at a specific point in time while the stars signify the

waypoint positions. This view illustrates an important point, while the discrete state

of the inspector satellite never enters the KOZ throughout the trajectory, the inter-

polated trajectory can pierce the boundaries. Thus, selecting the time discretization

(time-step) in the problem formulation can have impacts greater than just introduc-

ing more variables to the optimization, it also determines the accuracy and fidelity of

the solution. Figure 7 shows the position and velocity of the inspector with respect

to time. This verifies that the inspector starts and ends at the same state in addition

to seeing the effect that the acceleration control has on the velocity of the satellite.

Also, because this is a min-control formulation, it is expected that the optimization

elects to use the full amount of time to visit all waypoints and return. This is what

occurs for Problem A.1, giving more confidence to the validity of the solution.

Verifying that the KOZ is not violated can be accomplished by looking at a time

history of absolute position in addition to the 3D trajectory view. Remembering

the Big-M reformulation for the KOZ constraints, as long as the inspector is 450

meters away in at least 1 axis, the constraint is not violated. Thus, as seen in Figure

8, the KOZ is not violated by the discrete states as there is always 1 axis that is

greater than the 450 meter KOZ shown in red. Also, the trajectory chosen by the

optimization skirts along the outside of the KOZ when moving between waypoints.

50



Figure 6. Problem A.1 single inspector 3D trajectory.

This also suggest that the formulation is acting correctly as minimizing the distance

traveled by the inspector between waypoints would directly minimize the amount of

control required to conduct those maneuvers.

Figure 9 is the time history of control that results in the fuel optimal multiple

waypoint guidance solution. Easily seen, the control never reaches its upper bound of

1 m
s2

, thus, the control is not bang-bang, a characteristic that is commonly seen in min-

time formulations [5]. Additionally, the magnitude of the control used is on the same

order as sources such as Thomas [30], Richards [11], and Ortolano [12] for similar ma-

neuvers and time duration, giving increased confidence in the validity of the solution.

For this implementation, the number of time steps required the inspector to spend

at each waypoint was 1. Increasing this value from 1, while giving mission planners
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Figure 7. Problem A.1 single inspector position and velocity time history.

added flexibility, greatly increases the computation effort required to find a solution.

Requiring a number greater than 1 increases the number of possible branches that

the solution algorithm needs to explore. Theoretically, an inspector could visit and

then return to a waypoint in order to meet the multiple time step visit requirement.

As an example, setting the number of time steps to be spent at each waypoint to 10

increased the run-time on one instance to approximately 35 minutes. This could be

future area of research, exploring how to include a constraint for spending multiple

time steps at a waypoint without significant increase in computational effort.

4.1.2 Problem A.2.

Problem A.2 is the linear cooperative control formulation where an additional

inspector is added to the problem so that 2 inspectors are working together to visit

all waypoints and return to their original starting locations. Using the simulation
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Figure 8. Problem A.1 single inspector absolute position time history.

parameters found in Table 1, Problem A.2 is formulated and solved. Inspector 1

and inspector 2, as in Problem A.1, are initially displaced 5 kilometers and 5.05

kilometers in-track respectively. Also, time is discretized to 30 second intervals with

a total allotted mission time of 1 hour to visit all waypoints. The parameters are

summarized in Table 3

Table 3. Problem A.2 simulation parameters.

Waypoint Coor-
dinates (m)

Control
Bound

KOZ Size
(m)

Time-
Step (sec)

A.2 (500,0,0,0,0,0),
(-500,0,0,0,0,0),
(0,-500,0,0,0,0),
(0,0,-500,0,0,0),
(0,0,500,0,0,0)

u ≤ 1m
s2

450 meters 30

53



Figure 9. Problem A.1 single inspector control time history.

Figure 10 is the 3D trajectory generated by solving the specific instance of Problem

A.2. The optimization elected to task inspector 2 with 3 waypoints and inspector 1

with 2 waypoints. The tasking is expected to be split as evenly as possible because

the control of each inspector carries an equal weighting in the objective function.

Figure 11 is the time histories of the position and velocity for inspector 1 and

inspector 2. Again, it is verified that both inspectors are starting and returning to the

same location as directed by the problem formulation. Figure 12 is the control time

histories for both inspectors. Just to reiterate, as shown by the problem formulation,

the optimization is picking the values of the state and control decision to meet the

mission objectives. Thus, all values in these four figures come directly from the

optimization and are not calculated in post-processing.
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Figure 10. Problem A.2 inspector 3D view.

The linear cooperative control formulation allows for mission planners to verify if

there is an advantage, from a min-fuel perspective, of including additional inspectors

into the mission, particularly when considering total mission time allotted for this

specific scenario. Using differing allotted mission times, 2 Pareto Fronts were gener-

ated with the single inspector formulation and the 2 inspector formulation. Plotting

these 2 Pareto Fronts as shown in Figure 13 allows for the visualization of the point

where it becomes more optimal for the inspection mission to include 2 inspectors as

opposed to 1 inspector for the specific scenario. It is hypothesized that this occurs

due to the majority of the control effort being allocated to the initial transfer to

the local area of the RSO and then returning once all waypoints have been visited.

By including an additional inspector, the optimization can give more time to these
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(a) Inspector 1 (b) Inspector 2

Figure 11. Problem A.2 inspector position and velocity time history.

(a) 1 Inspector (b) 2 Inspectors

Figure 12. Problem A.2 inspector control time history.

control-heavy transfer phases because less time overall is allowed for the transfers

between each waypoint. It is worth highlighting that in the two inspector formula-

tion for the 2 hour and 1.5 hour mission time cases, the optimization allocated all

waypoints to inspector 1, explaining why the objective function value is essentially

identical for these cases.

As a final test case, a slightly larger cooperative control case was run. One addi-

tional waypoint was added so that an inspection would cover all faces of the KOZ,

giving information on every face of the RSO centered at the origin. Additionally, the
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Figure 13. Linear cooperative control Pareto Front

inspectors are coming from different directions in-track from the RSO. Inspector 1

and inspector 2 will start with an in-track displacement of 1 kilometer and -1 kilo-

meter respectively. Figure 14 shows the 3D trajectory and the associated state and

control histories of each inspector. It is easily verified that both inspector states and

control are symmetric about the in-track axis, with one inspector being allocated the

upper waypoints and the other being allocated the lower waypoints.

Table 4 shows a comparison of run-times for instances of Problems A.1 and A.2

including information on how the chosen heuristics influence the run-time of the

algorithm. Each value reported is the average of 10 runs of an identical problem.

The default configuration refers to the default values of CPLEX [26]. The heuristic

configuration, summarized in the table, is discussed in greater detail in section 3.1.
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(a) 3D trajectory

(b) Inspector 1 (c) Inspector 2

(d) Inspector 1 (e) Inspector 2

Figure 14. Symmetric linear cooperative control instance.
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Each value reported is the average of 10 runs of the identical initial instance reported

for the 1 inspector and 2 inspector cases.

Table 4. Computation time for default and heuristic settings.

# of Inspectors Computation Time

1
Default 282 seconds
Heuristic 157 seconds

2
Default 349 seconds
Heuristic 271 seconds

Notes: Branching direction=up, MIP gap=1%,
computation time is average of 10 runs, number of
time steps is kept constant at 120

In summary, these solutions to instances of Problem A.1 and A.2 show that a

multiple waypoint visit around a single RSO with a rectangular KOZ has a linear for-

mulation for the case of 1 and 2 inspectors. Also, the linear formulations can be solved

efficiently using a commercial MILP solver. These solutions can help inform mission

planners with respect to fuel optimal trajectories and inspector satellite allocation to

mission objectives.

4.2 Problem B

Problem B considers an MICP formulation and solution for the rendezvous of

multiple RSOs within a specific amount of mission time. First in Problem B.1, the fuel

optimal guidance is found for a single inspector. Next, in Problem B.2, 2 inspectors

are included in a convex cooperative control fashion. This is investigated with an

analysis of fuel trade-offs between the number of inspectors and mission time allotted.

Again, Big-M reformulations are utilized to linearize the resulting logical disjunctive

sets from the multiple rendezvous. IBM’s CPLEX is used to solve both subproblems.

For both Problem B.1 and Problem B.2 a 5 RSO rendezvous will be considered with 2-

norm constrained control. Table 5 is a summary of all problem parameters considered.

59



Also, the number of time steps required to be spent at each waypoint, or Gj, is set

to 1 for each RSO. The state bounds for the Big-M reformulation are set to ±10 km

for position and ±1 km/s for velocity.

Table 5. Problem B mission parameters.

Number of
Inspectors

Number
of RSOs

Mission
Duration

B.1 1 5 1 hour
B.2 2 8 2 hours

4.2.1 Problem B.1.

Problem B.1 starts with a single inspector with a 5 km initial displacement along

the in-track axis. The inspector will start from this state, rendezvous with all 5

drifting objects, and return it its original starting state within the designated amount

of mission time. Table 6 is a collection of the parameters that define an instance of

Problem B.1.

Table 6. Problem B.1 simulation parameters.

RSO
Coordinates (m)

Control
Bound

Time-
Step (sec)

B.1 (500,500,0,0,0,0),
(500,-500,0,0,0,0),
(0,-500,0,0,0,0),
(-500,-500,0,0,0,0),
(-500,500,0,0,0,0)

||u||2 ≤ 1m
s2

30

Figure 15 is the total in-plane trajectory of the maneuver. In green is the trajectory

of the inspector. Starting from the initial displacement we can see the inspector visit

each drifting object, whose visit order is designated by the numbers 1-5. This shows

how the trajectory evolves with time. Additionally, the trajectory of each drifting

RSO is shown in blue. Four objects include a radial initial displacement so they

will drift under the HCW dynamics. However, one object is only displaced in-track
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so it will not drift with time. While not explicitly obvious, one can visualize the

time evolution of the trajectory by looking at where along the RSO trajectory the

inspector visits, with further along the “tail” occurring later in time. As expected the

optimization elected to visit the objects so that a counter-clockwise and semi-circular

trajectory was the result. Remembering NMC trajectories, this result intuitively

makes sense and gives confidence to the result. By a quick observation one can

infer that a NMC like trajectory would allow the inspector to visit all objects and

return to the original starting location while using minimum fuel as NMC trajectories

use only natural motion. Thus, a trajectory that utilizes counter-clockwise natural

motion in a manner similar to an NMC should be a candidate for a fuel optimal

trajectory. The optimization arrived at the intuitive choice, affirming our confidence

in the formulation and solution.

Figure 15. Problem B.1 inspector and RSO trajectories.
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Figure 16 (a) is the position and velocity time history of the inspector. The knot-

like discontinuities in the position time history indicate the rendezvous with a RSO.

Additionally, the notches in the steps of the velocity time history indicate when a

rendezvous has occurred.

(a) Inspector State (b) Inspector Control

Figure 16. Problem B.1 inspector position and velocity time history.

As mission time increases, the drifting RSOs move further from the origin of the

reference frame. Thus, given a long enough mission time, it is possible that the

bounds, M on the state of the inspector could constrain the inspector trajectory.

Since the bounds on M are arbitrary, we do not want them to directly influence the

fuel optimal result. Thus, as mission time increases, iteratively checking various state

bounds for influence on objective function value would be advantageous. Using this

method, the longest mission time of 2 hours was found to not be limited by the state

bounds chosen.

Figure 16 (b) is the inspector control time history. This figure highlights the

optimality of the two-burn maneuvers for this problem formulation. Each rendezvous

with a RSO starts with an initial burn to place the inspector on the correct trajectory

to intercept the RSO, then a final burn zeros out the relative velocity so that a

rendezvous has occurred. This Burn-Coast-Burn structure is common and indicative
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of the optimal nature of Lambert Targeting, particularly since thruster on constraints

are not included in the formulation [5, 11]. Seeing this result gives confidence to the

problem formulation and its solution. The number of time steps spent at each object

is 1 for this formulation. Increasing this number increases the number of branches

that the algorithm needs to create to handle the formulation. This can cause the

problem to become intractable and unsolvable in reasonable amounts of computation

time. It may be beneficial to include some time-step grouping so that the integer

decision variable for RSO visits designates the center of the time distribution spent

at the RSO [25]. This heuristic method could be an area of future work.

4.2.2 Problem B.2.

For the convex cooperative control scenario, a larger problem instance was run.

This included adding 3 additional RSOs that require a rendezvous for one time step

so that all RSOs are distributed in a square pattern around the origin of the frame.

Additionally, the initial states of the inspectors were moved so that they are centered

at the origin with a 25 meter offset in the in-track direction. Total mission time

is set to 2 hours with a time-step of 60 seconds. As seen in Figure 17, an equal

number of RSO rendezvous was allocated to each inspector. Also, the trajectories of

each inspector are counter clockwise around the center of the reference frame. This

direction of motion is consistent with NMC trajectories, thus, the inspectors are using

natural motion to aid in the fuel-optimal multiple rendezvous. Figure 18 and 19 show

the state and control time histories of each inspector for this large problem instance.

From these, we can see that control still follows a burn-coast-burn sequence for each

rendezvous, consistent with the solutions found for the other Problem B instances.

Additionally, the same scenario was run with varying mission times. From Figure

20, the trajectories that the inspectors follow changes with an increased mission time.
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Table 7. Problem B.2 simulation parameters.

RSO
Coordinates (m)

Control
Bound

Time-
Step (sec)

B.2 (500,500,0,0,0,0),
(500,0,0,0,0,0),
(500,-500,0,0,0,0),
(-500,0,0,0,0,0),
(-500,-500,0,0,0,0)
(0,-500,0,0,0,0)
(-500,500,0,0,0,0)
(0,500,0,0,0,0)

||u||2 ≤ 1m
s2

60

For the 3 hour mission time case, the trajectories of the two inspectors follow a

similar trajectory to the detailed 2 hour mission time instance previously discussed.

However, the optimization elected to visit the in-plane RSOs last as opposed to in

the middle for the other case. For the 5 hour mission time case, there is a drastically

different trajectory. The inspectors seem to follow a more spiral trajectory in order to

rendezvous with radial RSOs before they drift too far from the center of the reference

frame.

The convex cooperative control formulation allows for mission planners to verify if

there is an advantage, from a min-fuel perspective, of including additional inspectors

into the mission, particularly when considering total mission time allotted. Using dif-

fering allotted mission times, 2 Pareto Fronts were generated with the single inspector

formulation and the 2 inspector formulation. Plotting these 2 Pareto Fronts as shown

in Figure 21 allows for the visualization of the trade-off between mission time, inspec-

tor number, and fuel. Overall, for this specific scenario, it is better from a min-fuel

perspective to include an additional inspector into the mission. This Pareto front

shows mission planners when to consider adding additional inspectors for the multi-

ple RSO rendezvous missions, allowing them to weigh increasing mission complexity

by adding an additional inspector with the amount of fuel saved.
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Figure 17. Problem B.2 inspector and RSO trajectories.

Table 4 shows a comparison of run-times for instances of Problems B.1 and B.2

including information on how the chosen heuristics influence the run-time of the

algorithm. The default configuration refers to the default values of CPLEX [26]. The

heuristic configuration, summarized in the table, is discussed in greater detail in 3.2.

Each value reported is the average of 10 runs of the identical 2 hour mission time

instance.

In summary, these solutions to instances of Problem B.1 and B.1 show that a mul-

tiple RSO rendezvous has a convex formulation for the case of 1 and 2 inspectors with

2-norm constrained control. Also, the convex formulations can be solved efficiently

using a commercial MICP solver. These solutions can help inform mission planners
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(a) Inspector 1 (b) Inspector 2

Figure 18. Problem B.2 inspector position and velocity time history.

(a) Inspector 1 (b) Inspector 2

Figure 19. Problem B.2 inspector control time history.

with respect to fuel optimal trajectories and inspector satellite allocation to mission

objectives.

4.3 Problem C

Problem C is the nonlinear and non-convex formulation where an inspector must

conduct an NMC around multiple drifting RSOs while being subject to mission time,

NMC time, and sun-angle entry constraints. Matlab’s GA solver will be used with a

population of 200 members and using the heuristic tuning previously discussed. For
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(a) 3 hour mission time (b) 5 hour mission time

Figure 20. Varying mission time inspector trajectories.

Table 8. Computation time for default and heuristic settings.

# of Inspectors Computation Time

1
Default 269 seconds
Heuristic 157 seconds

2
Default 358 seconds
Heuristic 212 seconds

Notes: Branching direction=up, MIP gap=1%,
computation time is average of 10 runs, number of
time steps is kept constant at 120

this instance, 3 RSOs will be visited in sequence with the inspector returning back

its original state. Table 9 is a summary of the problem parameters.

The semi-major axis of the NMC 2 by 1 ellipse is the only parameter that is needed

to define the natural motion trajectory since the inspector is constrained to in-plane

motion. Thus, all other parameters from the background section are set to 0 except

for the in-plane phasing angle decision variables β. Additionally, explicit bounds are

placed on the time that the inspector is in each NMC. In hours, the inspector can

only be in each NMC for 20 ≤ tNMC ≤ 24. A full circumnavigation is accomplished in

67



Figure 21. Problem B.2 convex cooperative control Pareto Front.

Table 9. Problem C mission parameters.

Number of
Inspectors

Number of
RSOs

Mission
Duration

NMC Pa-
rameters

Sun-Angle
Constraint

1 3 3.2 days ae = 5 km θ ≤ 30 deg

approximately 24 hours, thus, the bounds give the inspector the option to exit early

and transfer to the NMC if it is advantageous to do so. The problem is essentially a

sequencing problem where all of the periodic problem elements such as the NMC and

sun-angle are being lined up by the optimization in a fuel optimal manner.

Figure 22 shows the initial RSO and inspector locations with respect to the LVLH

frame centered at the inspectors inertial state. The initial positions are summarized

in Table 10, each RSO will be referred to by their initial state with the state vector

x = [x, y, z, ẋ, ẏ, ż].
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Table 10. Problem C RSO initial states.

State (km)
RSO 1 x1 = (−20, 20, 0, 0, 0, 0)
RSO 2 x2 = (20, −20, 0, 0, 0, 0)
RSO 3 x3 = (0, −20, 0, 0, 0, 0)

Since RSO 1 and 2 have initial radial displacements, they will drift with time

assuming an inspector centered reference frame. RSO 3, will not initially drift with

respect to this reference frame. Remembering section 3.3, both the RSOs and inspec-

tors ECI position will be propagated using two-body dynamics. Thus, each target

NMC is with respect to an LVLH frame centered at the inertial state of the respective

RSO. Coordinate transformations are used so that HCW targeting is accomplished

in the correct frame.

Figure 22. Problem C initial RSO and inspector states.
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Figure 23 and Figure 24 are the sequential NMCs with respect to each RSO

centered reference frame. The transfer trajectory from the previous RSO inspection

to the next RSO NMC is shown as the dashed red line. The beginning of this transfer

trajectory is the end of the previous RSO NMC, shown as the red dot, rotated to

the current RSOs reference frame. The objective function is calculated based on this

transfer trajectory as it is the two burn CW-Targeting to go from the end of the

previous RSO NMC to the beginning of the current RSO NMC. As shown in these

Figures, the NMC sun-angle entry constraints are verified. Additionally, because the

NMC and sun-angle are both periodic, it is verified that sun-angle at the end of the

NMC is roughly that same as the entry sun-angle. As discussed in the background,

we can see how an NMC targeted using HCW equations deviates when propagated

using the CNERMs. This actual trajectory is shown in blue on the figures.

Figure 23. Problem C RSO 1 visit.
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Looking at first RSO visit seen in Figure 23, the fuel-optimal transfer trajectory

from the origin to the first RSO NMC attempts to minimizes the 2nd burn of the 2-

burn targeting by entering the NMC as close as possible velocity vector of the injection

state that resulted from the β decision variable. Note that the β decision variables,

in addition to the transfer trajectory and drifting time of flight decisions, have to

balance meeting the sun-angle entry constraint with providing the most fuel-optimal

trajectory. Overall, the ∆V required to visit all RSOs and return to the same orbit

was, on average, 23.1m
s

. This number was reached by averaging 10 identical runs.

(a) RSO 2 (b) RSO 3

Figure 24. Problem C RS0 2 and 3 visit.

Additionally, these figures show the result that the sun-angle entry constraint has on

the amount of fuel required for the 2-burn transfers for the other 2 RSOs. These

transfer trajectories bring the inspector to a more perpendicular NMC injection than

the more tangential trajectory seen with the first RSO. Thus, it seems that the

formulation is being restricted by the sun-angle constraint in choosing a more fuel-

optimal transfer. In order to verify that less restrictive sun-angle constraint produces

more tangential transfer trajectories and consequently requires less total ∆V for the

maneuver, a case with a relaxed sun-angle entry constraint and identical initial RSO

states problem parameters was run. These new parameters are shown in Table 11.
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Table 11. Relaxed Problem C instance.

Number of
Inspectors

Number of
RSOs

Mission
Duration

NMC Pa-
rameters

Sun-Angle
Constraint

1 3 3.2 days ae = 5 km θ ≤ 45 deg

As seen in Figures 25 and 26 relaxing the sun-angle entry constraint allows for

transfer trajectories that are more tangential to the NMC, thus requiring less total

∆V . This identical case with the relaxed sun-angle constraint required on average a

total of 19.2m
s

. Again, this value is the average of 10 identical runs.

Figure 25. Problem C relaxed RSO 1 visit.

In order to quantify the total fuel vs. sun-angle trade-offs for this specific mission

configuration, the optimization was run for varying levels of sun-angle entry con-

straints with the associated total fuel being reported as an average of 10 identical

runs. This Pareto front is shown in Figure 27. This Figure shows that, for this

specific mission configuration, there seems to be a point where the sun-angle entry
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(a) RSO 2 (b) RSO 3

Figure 26. Problem C relaxed RS0 2 and 3 visit.

constraint does not influence the fuel-optimal solution. Thus, mission planners can

decide what sun-angle vs. total fuel required for their specific mission is adequate.

In summary, Problem C shows that a constrained multiple NMC mission can be

formulated in a nonlinear and non-convex manner and efficiently solved with meta-

heuristic methods. By relaxing convexity constraints and taking a more “Black Box”

approach, more complex proximity operation techniques can be included into the

mission optimization.
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Figure 27. ∆V Sun-Angle Pareto front.
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V. Conclusion and Future Work

5.1 Conclusion

Fuel-optimal guidance methods have been successfully developed for an inspector

satellite conducting multiple undetermined waypoint visits that represent static view-

ing angles, rendezvous, and NMCs. It has been shown the formulating these problems

as MIP problems allows for the modeling of these proximity operation scenarios in

both a single inspector and multiple inspector configurations, and subsequently solved

to global optimality (in the linear and convex case) with commercial MIP solvers or

efficiently with metaheuristic methods. Three different Problems were investigated

and presented that are categorized based on mission type and classification of the

formulation. These solutions show that complex rendezvous and proximity operation

missions that required multiple objectives to be met in sequence along with KOZs,

lighting constraints, and control constraints can be efficiently formulated and solved.

Overall, these formulations and results provide the mission planner the capability

to have and evaluate fuel-optimal choices. In Problem A and B the formulations

and solutions allow for the evaluation of trade-offs between mission time, number of

inspectors allotted, and allocation of mission objectives. In Problem C, the formu-

lations and solutions give mission planners insights to the balancing of acceptable

sun-angles with mission time constraints and desired NMC parameters. These results

can form the basis for more precise and computationally rigorous mission planning

using higher order dynamics models.

5.2 Potential Future Research

Below is the recommend future work categorized by Problem.
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5.2.1 Problem A.

Future work for Problem A involves experimenting with other linear dynamics for

relative spacecraft motion. Particularly with Tschauner-Hempel equations of relative

motion so that elliptical orbits can be considered with a greater degree of accuracy

[18]. Additionally, different types of KOZs can be investigated, such as ellipsoids,

with the relative computational and accuracy trade-offs.

5.2.2 Problem B.

In addition to the aspects outlined for Problem A, future work for Problem B

could be adapted for the case of electric propulsion. Thus, convex thruster on con-

straints could be developed, along with 2-norm control constraints, to simulate a single

thruster inspector with continuous propulsion. Additionally, time-step grouping could

be investigated so that RSOs with greater initial separation and subsequently greater

mission times can be investigated with minimal increase in computation time. Fi-

nally, one could consider a MIP reformulation accounting for discrete thruster states,

making for a more realistic scenario.

5.2.3 Problem C.

In additionally to all the aspects outlined in Problem A and Problem B, future

work for Problem C could include investigating the idea of enumerating all possible

combinations while solving the objective function value at each unique sequence.

Because that is a relatively small number of possible combinations, this may be

a more efficient method for gaining a solution. Additionally, instead of assuming

impulsive control, continuous trusting could be included with an analysis of how this

changes the trajectories and order of RSOs visited. Finally, there could be an analysis

of matching the NMC injection states, which are found under the assumed linearized
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HCW dynamics, with the CNERMs so that the shown drifting while in the NMC is

kept to a minimum.
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