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Abstract 

During the last century, airbases were attacked at least 26 times in an effort to destroy the 

enemy at its base. Attacks on military airbases impose prohibitive losses to critical 

infrastructure, which in turn impacts the maintenance of air power projection. The 

primary enemy threat facing critical infrastructure today is the use of ballistic and land-

attack cruise missiles to disrupt an airbase’s ability to launch and recover aircraft. Over 

the last decade, ballistic and cruise missile technology has grown to allow the world’s 

most powerful countries to achieve a nascent threat to forward operating bases used in 

theater security campaigns worldwide. Planners can reduce the impact of ballistic and 

cruise missile attacks on aircraft projection platforms by incorporating a number of 

resiliency measures, including dispersal of critical infrastructure assets, such as aircraft 

fuel containment and conveyance equipment. The integration of resiliency measures 

increases construction costs; therefore, planners need to identify an optimum balance 

between maximizing airbase resiliency and minimizing site costs. This research presents 

an airbase resiliency assessment capable of quantifying facility dispersal and risk 

tolerance levels in an environment threatened by missile attack. Model performance was 

evaluated using a case study from Osan AB, Republic of Korea. The model’s distinctive 

capabilities are expected to support planners in the critical task of analyzing and selecting 

the design strategy that maximizes airbase resiliency against the threat of ballistic and 

cruise missile attack.  
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QUANTIFYING RESILIENCY RISK METRICS THROUGH FACILITY 
DISPERSION  

 
I.  Introduction 

 

Background 
 
“Our forces face the very real possibility of arriving in a future combat theater and finding 

themselves facing an arsenal of advanced, disruptive technologies that could turn our 

previous technological advantage on its head – where our armed forces no longer have 

uncontested theater access or unfettered operational freedom of maneuver.”  

Robert Work, Deputy Secretary of Defense 

 

Airfields have been strategic targets within adversary shot doctrine dating back to 

the first recorded account of a German airfield attack by a British aircraft in 1914 (Vick, 

2015). Continuing through the last century, airbases were attacked at least 26 times, 

proving that strategic reliance on infrastructure and support assets is critical to the 

generation of air superiority (Vick, 2015). Giulio Douhet, an early airpower pioneer, 

institutionalized the idea that the most effective way to achieve airpower is to destroy the 

enemy at its bases (Conner, 2017; Douhet, 1998). Furthermore, within the last decade, 

ballistic and cruise missile technology has grown to allow peer adversaries of the United 

States (U.S.) to achieve a nascent threat to forward operating bases used in theater 

security campaigns (Conner, 2017; Luebert et al., 2016; Vick, 2015). The technological 

advancements in short range ballistic missile accuracy has been demonstrated to be 

achievable to within a circular error probable (CEP) of 5-45 meters from the desired 
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mean point of impact (DMPI) (Nuclear Threat Initiative, 2012; Vick, 2015). This 

assertive threat is now forcing the idea that sanctuary basing, the belief that assets are 

outside of an effective threat range for missile attack, is no longer a military strategy for 

planners (Conner, 2017; Vick, 2015). Instead, the United States Department of Defense 

(DoD) has been tasked to investigate and define airbase resiliency. 

In 2018, Pacific Air Forces (PACAF) headquarters employed strategic discussions 

aimed at reducing the risk of operating within the threat of missile attack. The resulting 

PACAF Agile Combat Employment (ACE) strategy follows the National Defense 

Strategy of “forward force maneuver and posture resilience” by studying airbase 

resiliency from multiple levels in order to determine how to appropriately defeat attack 

from adversaries (Levin, 2018; Mattis, 2018). Bases in the PACAF area of responsibility 

have transitioned to fighting positions in which military operations are now ongoing, 

even as the risk to the mission and personnel have increased (Levin, 2018). Therefore, 

quantifying and understanding risk has become a critical element to how geographically 

threatened areas are used, to include how facilities and assets are dispersed.  

 
Problem Statement 

 

The People’s Republic of China maintains the capability to launch a high 

precision, ground launched ballistic missile from an area near Beijing to locations 

extending passed the Korean peninsula, where the DoD currently sustains multi-service 

operations (Conner, 2017). This brings to light the significant need to study the 

quantitative measures of resiliency in order to better understand the risk involved with 

any mission throughout the world. 
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The need to create a resilience strategy for “stand-in basing” within ballistic and 

cruise missile threat rings is becoming an ever present requirement for the next 

generation of airpower (Conner, 2017). Therefore, assessing risk of a stand-in base has 

received growing attention within the highest levels of the U.S. political spectrum. This 

can be seen in The National Security Strategy published in December of 2017, which 

highlights the need for military response to competitors around the world. To further 

campaign the issue of resilience and risk, the National Security Strategy provoked a 

response from the DoD. In the National Defense Strategy, the focus is clearly on forward 

resilience, with investments in assets that can survive, as well as regenerate in all 

domains, while under attack. It then continues to specifically identify the priority to 

disperse infrastructure within these forward postures (Mattis, 2018). Ted Lewis confides 

that it’s currently not possible to “know in advance where, when, and what the next 

attack is,” and thus, instilling the ability to prepare for, respond to, and recover from an 

attack on critical assets on an airfield is essential (Lewis, 2006). The direction from the 

highest ranks underpins the budgeting of all military departments to embrace a culture 

transitioning from a large, robust basing structure, to small locations that are resilient to 

attack (Mattis, 2018). 

A drawback to the defense of critical infrastructure is that it is often built in 

concentrated areas, which leads to vulnerabilities against attack (Lewis, 2006). To help 

reduce asset vulnerabilities the DoD has sponsored many studies into how military assets 

can become more resilient. A report published in early 2017 by the Air Force Civil 

Engineer Center (AFCEC) demonstrated that “the application of engineering capabilities 

to support Airbase Resiliency requirements are multi-faceted and not yet qualitatively 
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defined attack (Air Force Civil Engineer Center, 2017). The purpose of the study was to 

identify the engineering functions needed to inform the discussion on Airbase Resiliency. 

This AFCEC resilience study is one example of how the DoD would like to quantify risk 

and has been a spring board for many studies in the genre.  

Headquarters PACAF has also begun to explore risk tolerance over risk aversion 

when force presence in forward locations is analyzed (Levin, 2018). Yet the discussions 

fall short of any calculations or measurable computations. Unfortunately, measuring 

resiliency at a forward operating base, or any location, is not a simple task and can be 

measured from multiple lens and functions (Air Force Civil Engineer Center, 2017). 

Therefore, by focusing on the prioritized issues that drive resiliency, a designer and 

decision-maker can begin to determine a resiliency score for that location and operation. 

 
Research Objectives 
 

This research begins to study the descriptive functions of resiliency to better 

understand the risk associated with facility destruction at a location threatened by missile 

attack. By studying the dispersion of asset location, the designer can impart the decision-

makers risk tolerance level with the optimum facility dispersion resiliency measure. The 

development of risk profiles help the designer to quantitatively assess the resiliency level 

at a location and leads to better advocacy of military planning choices and project 

funding.  

The objective of this research is to provide a mathematical lens to the analysis of 

emerging airbase resiliency strategies. The research uses dispersion methodologies 
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coupled with known missile characteristics to quantify the risk profiles of facility siting 

in a location that has a constant threat of missile attack. By studying the adversary 

weapon characteristics and combining the analysis with research in optimal facility 

dispersion, a risk profile is generated to allow for decision-maker risk tolerance to be 

quantified. This research objective is to better understand how the DoD might defend 

combat power generation against future enemy attacks on airfields. Ultimately, the 

research goal is to determine the optimal layout for assets and systems, using weapon 

capabilities, to achieve maximum effective dispersion. 

 
Research Focus 
 
 The scope of this research is defined to the analysis of facility dispersion of assets 

within a geographically bounded area that are within the constant threat of adversary 

missile attack. The research is a study of how different weapon characteristics can change 

the risk level of facility locations. The approach to this research is to study the question: 

“what is currently going on?” (Lunday, 2018). It is also employed to describe the metrics 

used in dispersion analysis. This research is focused on establishing the risk metric for 

the designer and decision-maker to quantitatively measure risk associated with facility 

dispersion, and therefore ultimately increase base resiliency. 

 
Methodology 
 

 To quantify the level of risk associated with facility location, dispersion 

methodologies are used. The coverage of destruction areas is based on weapon 

characteristics and is analyzed with a multi-phase approach. First, the anti-covering based 

methodology is used to show that a facility can be located in an area where more than one 



6 

 

weapon has the chance of destroying it. The second phase allows for maximum weapon 

capability coverage, and analyzes how the risk to a facility located within the coverage 

area is affected by the weapon characteristics. 

Assumptions 
  

In order to quantify risk in facility dispersion, some assumptions have been made 

and are used to establish the groundwork analysis for the problem. This research assumes 

that all weapons fired will impact within the geographical bounds of the targeting grid. 

No weapon will destruct by neither self-elimination, nor physical destruction and will 

always reach the intended destination. It is also assumed that the facility coordinates used 

in the analysis of impact locations of the weapon are facility locations. Therefore, the 

adversary will never target a location not occupied by a facility, such as an empty field. 

This technique assumes that the least amount of weapons are used to destroy the 

maximum amount of geographical area. Finally, the destruction radius for all weapons is 

assumed to be 900 feet. 

 
Significance 

 
 This research presents an assessment model capable of efficiently quantifying the 

impact of infrastructure dispersal on airbase resiliency. The performance of the model 

was evaluated using a case study from Osan AB, Republic of Korea. The distinctive 

capabilities of the model are expected to support planners in the critical task of analyzing 

and selecting the design strategy that maximizes airbase resiliency against the threat of 

ballistic and cruise missile attack as mandated by the National Defense Strategy. 
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Preview 
  

The following chapter summarizes a comprehensive literature review to establish 

a thorough understanding on facility dispersal. The literature review establishes 

requirements for the development of improved analysis of facility dispersion based on 

quantity dispersal and redundancy within a threatened environment. Chapter 3 presents 

the methodology used to develop the dispersal risk profiles as well as the dispersal 

analysis. It contains discussion on how the data is collected, and an explanation of the 

methods and procedures used to generate the research results. This methodology can be 

used for further analysis of the base resiliency problem definition and clarity for decision-

makers. Chapter 4 presents the assessment of risk associated with facility dispersion 

within a threatened environment. The risk metric is developed using a five-stage analysis 

for multiple blast types and weapons. Chapter 4 also develops the model to quantify 

storage potential given the boundary and system constraints within the geographic area. 

Chapter 5 serves as a final discussion of the study. Conclusions along with pertinent 

findings and the identification of future research opportunities are presented and 

summarized.  
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II. Literature Review 
 
Introduction 
 
 The Department of Defense (DoD) has spent over $1.9 billion dollars in support 

of global contingency operations in the previous two decades (Cordesman, 2017). 

Contingency operations often require an expeditionary means of construction in order to 

meet the demands of military forces, yet still today, the DoD is plagued by the problem of 

installing new facilities for stability operations in locations that are threatened by attack 

from peer and near-peer adversaries (Air Force Civil Engineer Center, 2017). 

Accordingly, decision-makers must analyze multiple factors when planning for new 

facilities. Dispersion of facilities is among the most influential of these factors. 

Dispersion within a geographic area can be influential on facility survivability when the 

location is attacked (Owen & Daskin, 1998; Snyder, 2006).  

 In order to meet the needs of mission evolution, planning for facility construction, 

even temporary facilities, can lead to long timelines in funding acquisition, facility 

location determination and operational support generation (Owen & Daskin, 1998). To 

better understand the difficult task of siting a facility, several studies have conducted 

research on the effects of facility dispersal within a range of community types. These 

studies have given designers the ability to minimize facility quantities. This ability stems 

from the optimization of new facility layouts that reduce duplication of service and 

maximize effectiveness. Researchers have been interested in facility location problems 

for over four decades because the study has given decision-makers the ability to link the 

maximum service coverage of a facility dispersion plan with the lowest cost.  
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 Ultimately, the facility dispersion problem is pared down to the identification and 

minimization of future risk (Aven, 2012). Through focused and purposeful analysis of the 

placement metrics of new facilities, designers can better articulate the risk associated 

with facility location selection and how it pertains to accomplishing the mission in a 

threat-constrained environment. This chapter summarizes a comprehensive literature 

review to establish a thorough understanding on facility dispersal. For the purpose of this 

research, the siting of a facility is constrained to within a hostile environment and is 

bounded by the damage potential of ballistic and cruise missiles (Conner, 2017).   

 
Background 
 

Demand nodes & servicing nodes 
 

A key component in the study of facility dispersal is the role of the 

demand node. A demand node is used to describe the geographic location that 

generates the requirement for the siting of a facility, the servicing node. Figure 1 

shows a representation of demand nodes, shown by “x”, with the servicing node, 

the inner circle, and the prescribed area of service capability of the servicing 

node. 
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Figure 1: Servicing node facility radius of coverage to a demand area, annotated by "X.” Adapted from 
Toregas et al., 1971 

 

DMPI & CEP 
 

The desired mean point of impact (DMPI) is used by military analysts to 

estimate the point where a missile will impact a target (Joint Staff, 2017). DMPI 

is used to describe a point “associated with a target and assigned for a specific 

weapon impact,” as shown in Figure 2 (Joint Staff, 2017). DMPI can also be used 

to describe the center location of multiple missiles hitting a geographic area. 

Similarly, the circular error probable (CEP) is used to estimate the precision 

targeting capabilities of a missile. The most advanced capability that has been 

published in unclassified sources show that missiles can be very precise. In fact, 

the CEP for the most advanced missile is known to be as accurate as 5 meters, 

meaning that based on the damage radius of any missile, the intended target will 

be destroyed (Nuclear Threat Initiative, 2012). CEP allows analysts to 

differentiate between the actual location of a target and the DMPI coordinates, as 

shown in Figure 2 (Joint Staff, 2014). CEP is useful during the study of attack 

effects in which the target destruction is statistically analyzed. CEP is calculated 
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by how much instrumentation and technology is associated with the operation of 

the missile and is outside the scope of this research. 

 

Figure 2: The desired mean point of impact, annotated by “X” shown with the circular error probable area 
(Joint Staff, 2017; Joint Staff, 2014) 

 

Damage radius & threat rings 
 

Designers must investigate the survivability of a mission within an 

environment threatened by attack. Missiles have a prescribed damage radius, in 

which the target and any unintended target collateral within the damage radius 

will be damaged or destroyed (Nuclear Threat Initiative, 2012; Vick, 2015). 

Therefore, it is important to plan and design facilities in locations that optimize 

dispersion from the center point of the missile and its associated impact location. 

By optimizing the dispersion of a facility set, the survivability of a mission is 

increased by: (1) maximizing the dispersal distance of assets from intended 

targets to reduce damage to critical infrastructure; and (2) reducing the time 

needed for mission regeneration post-attack (Air Force Civil Engineer Center, 

2017).  
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In an environment threatened by attack, designers are interested in 

minimizing the threat to mission success. Therefore, the survivability of the 

mission is linked to the missile range from outside the area of geographic 

responsibility. Some locations are threatened by missiles with the lethal capability 

of traveling up to 15,000 kilometers from the point of origin (Nuclear Threat 

Initiative, 2012). 

Intended damage and unintended damage 
 

Adversaries of the US are actively pursuing technology that will meet or 

exceed the defense capabilities of operating locations around the world 

(Krepinevich et al., 2003). This study considers two types of damages associated 

with the analysis of dispersal of facilities. The first and most destructive, is the 

damage caused by a missile hitting the facility as an intended target. The term 

“intended target” is used when the adversary strategically employs a missile to 

destroy and/or disable the facility and the functions associated with the facility. 

This study assumes that the missile hitting an intended target associated with a 

fuel storage or conveyance capability destroys the facility and renders the facility 

useless as a servicing node to a demand node.   

The second type of damage associated with the analysis of dispersal of 

facilities is the “unintended damage.” Unintended damage is used by this study to 

describe the damage a facility receives when located in close proximity to the 

intended target. In this case, the intended target is destroyed and resultantly 

projects damage on the unintended facility through projectiles and shrapnel. This 
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study assumes that if a facility is within the damage radius of the missile hitting 

an intended target, the unintended facility associated with a fuel storage or 

conveyance capability destroys the facility and renders the facility useless as a 

servicing node to a demand node. 

Noxious facilities 
 

Researchers have developed frameworks that analyze the linkages in 

dispersion and hazardous facility explosions such as fuel tanks (Daskin, 2013; 

Jung et al., 1987). These studies have demonstrated that dispersion methods can 

be used to site noxious or hazardous facilities a priori an explosive event or 

attack. Designers can use facility dispersion principles to reduce the risk to the 

mission by siting facilities that are essential for successful operations yet pose a 

threat to other facilities. The threat can be from hazardous operations at the 

facility to the damage potential endured by other facilities if an explosive event 

were to take place. Designers have sited munitions bunkers, fuel storage tanks and 

other facilities with undesirable characteristics away from critical operations to 

reduce the threat of sequential facility damage when an accident or attack on a 

facility happens. As Buchanon and Wesolowsky (1993) state in their Locating a 

Noxious Facility with Respect to Several Polygonal Regions Using Asymmetric 

Distances, “the distinguishing characteristic of noxious facility problems…is that 

the optimum location is ‘as far as possible’ from the set of demands.” This study 

will account for hazardous facilities as “noxious facilities” to identify facilities 

that pose a threat to operations.   
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Development of Risk 
 

Risk is inherent to any mission, and therefore must be analyzed by 

designers at all levels. Terje Aven (2012) describes risk as an additive process of 

consequences and uncertainties that cannot be entirely accounted for. Others 

describe risk as something that needs to be balanced in order to achieve the 

desired performance of a facility to meet the organization’s objectives (ISO, 

2014).  

While risk is difficult to quantify with a high level of certainty, it is critical 

to the management of decision-making. Therefore, the ability to define risk and 

plan for necessary avoidances of risk is imperative for designers as they site 

noxious facilities in a threat-constrained environment. The risk that a critical 

facility has to the mission must be reduced as much as possible in order to reduce 

the exposure to loss (Aven, 2012). Furthermore, designers must also be able to 

communicate any risk reduction measures to decision-makers when analyzing the 

siting of new facilities (Aven, 2012).   

 
Dispersal 
 
 Several methods were developed to predict the dispersion of facilities. The 

dispersion analysis dates back to Pierre de Fermat, a student to Galileo, and French 

mathematician who studied analytic geometry relating to curved lines (Farahani et al., 

2010). Within the scientific community, it is accepted that the original work in dispersion 

was first introduced by Alfred Weber in 1909, where he studied a single facility location 

problem to minimize the distance between where an industrious facility was located in 
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relation to the demand nodes and the customers (Daskin, 2008). Weber based his analysis 

on three variables: (1) location of raw materials; (2) location of the market; and (3) 

transportation costs of the materials to the industry and the market (Weber, 1909). The 

result of Weber’s work produced a method of calculating the ideal facility location based 

on the transportation costs between raw materials markets and consumer markets. A 

representation of Weber’s work is shown in Figure 3, where, C1 and C2 are the source 

locations for raw material; M is the consumer market location; and, P is the optimum 

facility location. 

 

Figure 3: Alfred Weber's Least Cost Theory of Industrial Transportation, showing the optimal location of an industrial 
facility that relies on two raw materials markets and the consumer market (Weber, 1929) 

 

 Weber used his facility location triangle for Euclidean (straight-line) distance 

analysis to predict the best location of an industry by reducing transportation costs 

(Drezner & Suzuki, 2004). The location of the manufacturing facility, P, would be sited 

in the ideal location to reduce costs. The method was simple, but it generated a high 

amount of interest into the economical perspectives of facility siting.   



16 

 

 There has been a sustained interest in the application of location theory over the 

last century because designers continue to optimize facility locations for business and 

industry growth (Farahani et al., 2010). Although the application of location theory in 

dispersion science continues to grow as more tech and industry growth occurs, dispersion 

science remains grounded to three genres: (1) covering-based methods; (2) median-based 

methods; and (3) other dispersion methods such as the siting of noxious facilities to 

maximize the distance between any two facilities (Daskin, 2008). Figure 4 illustrates the 

three different dispersion problem contributions.  

 

Figure 4: Breakdown of discrete location models (Daskin, 2008) 

 
 When using covering-based methods, designers need to plan for facility location 

with a dispersed criterion. The covering problem ensures that a facility is close enough to 

the demand node yet far enough from the same or similar servicing node to generate a 

need for the facility siting (Emir-Farinas & Francis, 2005). Covering models are seen 
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most in the siting of emergency services vehicle facility locations (Emir-Farinas & 

Francis, 2005; Kvet & Janáček, 2018; Serra & Marianov, 2004).   

 When using median-based methods, designers locate a known number of facilities 

with an objective function of minimizing the distance between the nearest facility and its 

demand node (Daskin, 2013). This methodology reduces facility requirements and 

associated costs of facility development (Daskin, 2013). Other location problems include 

the siting of noxious facilities in which the designers are interested in siting the facilities 

farthest a part to reduce the probability that simultaneous reactions will result when 

threatening events such as accidents, explosions, or attacks occur at a single facility 

location. 

 
Covering Methods 
 
 Facility location problems that involve covering seek to arrange the facility 

dispersion in one of two fashions: (1) covering; and (2) anti-covering. Covering allows 

the designer to minimize facilities in the region of service by maximizing the coverage 

area of each new servicing facility sited within the region. By reducing the overlap of 

facility coverage as much as possible, designers are able to maximize the amount of 

demand nodes being serviced by the least amount of facility nodes. With anti-covering 

strategies, the designer can maximize the number of facilities such that each facility is 

constrained by a specified distance of minimum separation from the closest like or 

similar neighboring facility (Emir-Farinas & Francis, 2005; Niblett & Church, 2015).  
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Covering  
 

The facility covering dispersion problem is viewed as a binary 

consideration. The demand node is within the servicing capability, or coverage, of 

the servicing node, or is otherwise outside the maximum value of coverage 

offered by the servicing facility (Daskin, 1997). Covering dispersal analysis is 

useful when a designer would like to ensure the locations demanding service from 

the covering facility are all within the service radius capabilities, and therefore 

minimize the maximum distance between a demand node and the closest facility, 

as illustrated in figure 5 (ReVelle & Hogan, 1989).  

 

Figure 5: Facility coverage problem that disperses servicing facilities in order for the demand nodes to be 
covered by only one servicing node (ReVelle & Hogan, 1989) 

 

Many studies have been performed using location methods to 

mathematically solve the demand node coverage of servicing nodes (Bélanger et 

al., 2018). Hakimi (1964) shows the first attempt at location coverage methods. 

The author uses absolute centers to find the minimum distance to the farthest 

point of a switching center within a communications network. Hakimi shows that 
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finding the absolute center between a set of points is used to conclude that a 

radius can be generated to cover demand nodes within a service area.  

To build upon the work of Hakimi, Toregas et al. (1971) show that a 

demand area can be covered by only one servicing facility to reduce the facility 

requirement and associated costs. The study was influential enough to enact 

legislation and mandate a response time requirement as a part of the Emergency 

Service Medical Act of 1973 (Daskin, 1982). Toregas identified potential facility 

locations so that the demand area is covered by only one emergency service 

vehicle facility and call this approach the location set covering model (LSCM). 

The study analyzed the servicing facility locations based on a maximum time or 

distance between the demand node and the servicing node. The result of their 

findings provided a solution that indicated “the number and location of the 

facilities that provide the desired service”. In order to determine the servicing 

node locations for emergency services, the response time from the servicing node 

to the demand node is constrained to a maximum value. Coverage for the 

servicing node is denoted by all values within the response time to the demand 

node. The nature of the problem creates a binary consideration by rejecting all 

other facilities from the coverage area if a solution already exists for that facility.  

Toregas et al. (1971) formulate the LSCM problem analysis by using static 

variables. A known maximum for vehicle response time to a demand node is used 

with integer programming to determine a set of nodes within the response time. 

Ultimately, the total number of service facilities is minimized subject to: (1) only 
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one service facility can support a demand node; and (2) only one facility can be 

located at a site. (Toregas et al., 1971).  

 Seeking to expand the work by Toregas at al. (1971) and incorporate 

aspects of real-life problems, Brotcorne et al. (2003) showed that multiple 

coverage scenarios can be used to develop a methodology that accounts for 

coverage being diminished throughout the demand area when a service vehicle is 

employed to another node on the network. In this case, there may not be adequate 

coverage as vehicles become too busy. Although this study has advanced the 

dispersion analysis methodology for coverage of demand nodes by service nodes, 

the deterministic approach to the problem’s solution is not in line with the static 

nature of this study and will not be considered. 

 
Anti-covering 
 

Another methodology used in dispersion analysis is the anti-covering 

methodology. Anti-covering can be used to mathematically quantify dispersal at a 

location by representing “the largest number of facilities that can be 

simultaneously located while keeping each of them at least a minimum distance, r, 

from each other” (Niblett & Church, 2015). Designers can use the boundary 

constraints of a location and anti-covering principles to formulate a discrete 

quantity of dispersal (Niblett & Church, 2015).  

Anti-covering was first developed by Moon and Chaudhry (1984). The 

authors used a standardized minimum separation distance that allowed for the 

maximum amount of facilities to be sited in a discrete geographical area. The 
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study used linear programming to solve the problem with an objective solution 

that (1) ensured maximum site selection criteria for a facility; and (2) all other 

facility locations are either too close to the boundary constraint, or too close to an 

existing facility in which both violate the separation constraints (Niblett & 

Church, 2015).   

Figure 6 demonstrates the anti-covering methodology on a plane (Niblett 

& Church, 2015). It illustrates the anti-covering dispersion method by showing 

three sites, A, B and C. Site A has two radii associated with it showing the radius 

r, for the minimum separation between sites, and radius s, for the coverage of site 

A if it were a demand node. Conversely, site C is too close to the location of both 

sites A and B (as it is shown to be in the shaded area and not constrained by the 

minimum separation distance) and cannot be considered a location for a facility. 

Since site B is located at the minimum separation distance away from site A, it is 

located in the optimum location for the site layout and facilities should be chosen 

at both sites A and B. Otherwise, site C can be chosen, without placing facilities 

and either of sites A or B.   
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Figure 6: An example site layout for an anti-covering dispersion in which A, B, and C are all sites that have 
been dispersed on a plane. The radius, r, shows the minimum separation distance between site A and site B. 
The coverage radius, s, is shown as not overlapping between site A and B. Adapted from Niblett & Church 

( 2015). 

Moon and Chaudhry (1984) maximized the possible facility locations by 

using the following formulae notation to setup the anti-covering analysis problem 

(Moon & Chaudhry, 1984; Niblett & Church, 2015): 

  N = a discrete set of potential facility sites; 

  i,j = indices used to represent specific sites; 

  dij = the shortest distance between sites i and j; 

  r = minimum acceptable separation distance between any two new  
facilities; 
 

  Qi = { j ∈ N| dij < r where j ≠ i}, defined for each i ∈ N;  

  xj = �1, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑗𝑗 𝑖𝑖𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎 𝑖𝑖𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑓𝑓
0, 𝑓𝑓𝑠𝑠ℎ𝑠𝑠𝑓𝑓𝑒𝑒𝑖𝑖𝑠𝑠𝑠𝑠 ; and 

  M = a large positive number. 

𝑀𝑀𝑎𝑎𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑠𝑠 𝑍𝑍 = ∑ 𝑀𝑀𝑗𝑗𝑗𝑗∈𝑁𝑁  to maximize the possible facility locations. 

 

Others have built upon the first look at anti-covering from Moon and 

Chaudhry (1984). Grubesic and Murray (2008) used anti-covering analysis to test 
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policy that regulates the maximum amount of sex offender residencies in a 

specific geographic region. Carrizosa and Tóth (2015) show the anti-covering 

solution can also be bounded by a continuous region instead of only a discrete 

boundary. Others have used anti-covering methodologies to study the impact and 

compute the largest density of merchandizing stores that can be placed in a 

geographic area without sharing customers between stores (Grubesic et al., 2012).  

Niblett and Church (2015) expand on Moon and Chaudhry (1984) anti-

covering methodologies by showing how disruptive configurations to a network 

can change the effectiveness of anti-covering, to which the authors asked the 

question: “what configurations disrupt [optimal anti-covering] the most” (Niblett 

& Church, 2015). Niblett and Church (2015) were the first to define the number 

of facilities on the lower bound of the optimal solutions without violating the 

separation constraints of anti-covering (Niblett & Church, 2015). This application 

is attributable to real-world scenarios. As such, anti-covering solution techniques 

show how maximum separation distances can be maximized; in the sex offender 

case, the residential options are never exactly where they need to be and therefore 

the optimum anti-covering solution can never be obtained (Grubesic & Murray, 

2008). 

 
Median-Based Methods 
 
 Many studies have followed in the studies of Alfred Weber, one of which was 

Hakimi (1964). While Weber (1909) developed his problem around facility location in 

the Euclidean plane, Hakimi (1964, 1965) studied the location problem on a network to 
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locate a specified number of facilities. Hakimi’s work is important to designers as it 

solves the question of how many facilities to site within a specified geographic area. He 

minimized a distance objective function between the nearest facility and demand nodes 

(Daskin, 2013; García-Palomares, Gutiérrez, & Latorre, 2012) using the following 

constraints: (1) a known number of facilities must be provided for siting analysis; (2) all 

demand points must be known and input into the problem; and (3) a facility has a set 

capacity for service or storage as defined by the facility (Pirkul et al., 1999).  

 From Hakimi (1964), the objective for using the p-median approach to facility 

siting is easily explained by noting that the distance between the demand node and the 

servicing nodes are reduced as much as possible. For analysis, the problem setup entitles 

the designer to input a set number of facilities. Hakimi has determined that since the 

problem is a discrete location problem, the assets and infrastructure are analyzed as nodes 

of a network. Therefore, within a p-median problem, Hakimi (1965) has shown that as 

least one optimal solution will be created.  

 Serra et al. (2004) review four decades of facility location modeling and trends to 

optimize discrete space for public facility locations. The analysis is emphasized with a 

description within the dispersal network using p-median modeling (Serra & Marianov, 

2004). Pirkul et al. (1999) introduced a decision support tool, “VisOpt,” to show the 

decision-maker a visual representation of the p-median problem. Furthermore, J. Reese 

(2006) provided a survey of the p-median problem, focusing on the applied techniques of 

the p-median problem (Reese, 2006).  

 Further research in the field of median-based methods of facility location analysis 

came from Garcia et al. (2011), who introduced an algorithm that allows analysis of large 



25 

 

input values of facility sets. This important work allows for faster analysis for the 

decision-maker on large-scale location determination for a given variable. Other notable 

research is drawn from the recent work by Kvet & Janáček (2018), who used the p-

median to minimize the disutility of emergency services.  

 
Other Dispersion Methods 
 
 Many facility analysis problems site the location analysis of desirable facilities 

such as stores, public services, and worksites. Other forms of dispersion analysis take the 

form of the maximization objective model, which is a technique used in the siting of 

noxious facilities (Erkut & Neuman, 1989). In such an analysis, the objective is to locate 

a given number of facilities to maximize the (population-weighted) distance between 

population centers and the nearest sites (Church & Garfinkel, 1978; Daskin, 2013; 

Minieka, 1983). Such a model is useful for designers in the critical analysis of facility 

siting for noxious facilities a priori a hazardous event. The methodology of siting a 

noxious facility was first developed by Moon and Chaudhry (1984). The authors studied 

the effects of using the lower distance bounds between facilities to approach the facility 

siting problem from a minimization perspective (Moon & Chaudhry, 1984). 

 Accidents involving flammable materials have prompted urgent need for 

designers to allocate facility footprint separation in such a way as to minimize the 

consequences of fire and explosion to other facilities (Jung et al., 2011). The 2005 

Buncefield fire (Hailwood et al., 2009) and Texas City Refinery explosion (Jung et al., 

2011) prompted action by safety organizations such as the Occupational Safety and 

Health Administration (OSHA) and the Dow Fire and Explosion Index (Dow F&EI) to 
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regulate the facility siting for facilities that hold large inventories, or potential ignition 

sources (Jung et al., 2011).  

 
Geographic Information System Modeling 
 
 Geographic information systems (GIS) have proven to be a significant resource to 

facility location analysis because of its ability to retrieve, analyze, and store a 

considerable amount of data from multiple sources (Gbanie et al., 2013; Murray, 2010). 

As such, the use of GIS has surged and is now at the forefront of spatial analysis 

capabilities (Murray, 2010). Many developments have occurred in the study of location 

of facilities within a network using GIS (García-Palomares et al., 2012). The distribution 

of potential demand node locations has lead researchers to use GIS-based multi-criteria 

analysis for dispersal problems. Of the different scenario types, bike-sharing program 

analysis has been studied to evaluate what number of stations should be introduced to a 

network (García-Palomares et al., 2012). Furthermore, Gbanie et al. (2013) show that the 

use of GIS technologies is crucial to the quick and efficient spatial analysis. They use the 

capabilities of GIS to locate the optimal siting location of landfill sites. 

 
Limitations to Dispersal Studies 
 
 Little research is available regarding the analysis of dispersion methods within the 

threat of ballistic and cruise missile attack. However, the static nature of a lingering threat 

of attack makes the facility planning strategic in nature. Despite the significant 

contributions of the aforementioned research studies, these dispersion models only tend 

to maximize a measure of distance a population is from a facility or the distance between 

facilities (Ratick & White, 1988). They are incapable of: (1) quantifying a dispersal 
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coefficient that provides a safe operating distance for noxious facilities based on threat 

analysis; (2) investigating the objective function of survivability within a quantifiable 

threat ring to a dispersal coefficient; and (3) implementing redundancy in terms of 

mission effectiveness and survivability.   

 Accordingly, there is an urgent need to apply single facility quantity 

authorizations dispersal with the added consideration of facility redundancy to efficiently 

analyze the survivability of dispersal effects on facilities with the effectiveness of facility 

dispersion. This will help designers in there critical task of identifying the most effective 

treatment for facility siting. 

 
Quantified Risk 
 
 Risk is classically defined as the additive relationship of consequences and 

uncertainties (Aven, 2012). Therefore, risk management is critical to decision-making 

and includes a number of variable considerations for analysis. Unfortunately, the 

variables that are relevant to an area threatened by adversary attack are always changing. 

As such, the decision-maker must adjust to the environment and use the following simple 

decision-making framework to aid in the decision-making process: (1) analyze the 

problem and alternatives; (2) consider the stakeholder values and goals; (3) analyze 

countermeasures and evaluations; (4) perform constant review and judgement of the 

considered decision to be made; and (5) make the decision (Aven, 2012).   

 
Quantified Risk Limitations 
 

 Current literature is incapable of quantifying the decision-making risk associated 

with fuel facility locations in a threatened environment. The statistical analysis on 
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dispersion of noxious facilities lacks the ability to predict the consequential damage 

received by the missile damage radii. Therefore, this study has organized the research 

around binomial dispersion considerations, where the probability of attack on a fuel 

facility is analyzed based on the distance from the DMPI and associated damage radius.   
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III. Methodology 
 

Introduction 
 

The literature review established requirements for the development of improved 

analysis of the dispersion of facilities and assets based on quantity dispersal and 

redundancy within a threatened environment. This chapter presents the methodology used 

to develop the dispersal risk profiles as well as the dispersal analysis. It contains 

discussion on how the data is collected, and an explanation of the methods and 

procedures used to generate the research results. This methodology can be used for 

further analysis of the base resiliency problem definition and clarity for decision-makers. 

This thesis defines risk tolerance levels for decision-makers to consider when 

siting a facility in a hostile environment. It identifies the risk acceptance levels decision-

makers must consider when facilities are within the missile threat range of adversaries. In 

identifying the risk, the decision-maker will generate the most informative and 

constructive information of the facility siting analysis (Vose, 2008). This research will 

establish the methodology of identifying risk in areas that are threatened by destructive 

attack when facilities are still required for mission success. This thesis defines destruction 

as a direct hit from a ballistic and/or a cruise missile, or the potential of destruction from 

unintended target damage due to the proximity of the facility to a targeted object.  

Data analysis considers four levels of modeling: descriptive, diagnostic, 

predictive, and prescriptive. The data analysis framework is presented in Figure 7. The 

first step in the dispersion analysis is created by using a descriptive approach to study the 

question: “what is currently going on?” It is also used to describe the metrics used to 
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analyze dispersion. In this study, the research is focused on establishing the risk metric 

for the development of follow-on research within the model (Lunday, 2018).  

 
Figure 7: Paradigm model for data analytics (Brian J. Lunday, personal communication, November 20, 

2018) 

 
Data  
 
 Data has been collected for this study through multiple sources. The geospatial 

data was collected through the Air Force internal GIS system operated by the Air Force 

Civil Engineer Center (AFCEC). The Air Force Petroleum Office provided the fuel 

facilities location data, in conjunction with the Logistics Readiness Squadron from Osan 

Air Base, South Korea. The weapons data was provided through multiple intelligence 

reports, mainly the Nuclear Threat Initiative. 

 The DoD maintains installations worldwide with differing threat environments. In 

an effort to conduct this research as close to reality as possible and establish an accurate 

baseline for analysis, field data was collected. The Pacific Air Forces (PACAF) command 

has many installations that are currently operating under the constant threat of adversary 

attack. Of these installations, Osan Air Base (AB) is well within the range of a ballistic 



31 

 

and cruise missile from adversaries such as Russia, China, and North Korea (Mattis, 

2018). Therefore, the dispersion implementation of facilities at Osan AB is used in this 

research for a case study analysis. 

 
Instrumentation 
 
 Microsoft Excel 2013 is used to conduct this research, including the statistical 

analysis of the risk and efficiency metrics. The software is a part of the Microsoft Suite 

that is paid for and provided by the Air Force Institute of Technology. Microsoft Excel 

has many add-on packages that can provide robust capability and is therefore commonly 

used in research studies. The add-on packages used for this research were Solver, data 

analysis toolpak, and data analysis toolpak - VBA.  

 
Dispersal Development 
 
 From the literature review, it is determined that this research must build upon the 

work already performed in the field of facility dispersion analytics. Therefore, the 

dispersal methodology used in this research employs characteristics of covering and anti-

covering methodologies. Covering methods are used to assess the risk of a facility in 

geospatial analysis. It is known that missiles are capable of producing a 900-foot damage 

diameter on a coordinate plane after detonating (Nuclear Threat Initiative, 2012). Figure 

8 shows weapon impact dispersion based on a 900-foot damage diameter. The center 

point of each damage potential zone serves two purposes: (1) to show the location of the 

facilities being targeted within the dispersed geospatial environment; and (2) to show the 

DMPI and associated missile damage potential zone, as represented by the circles. Each 

damage potential zone is placed on a Euclidean distance of 900 feet from centerline. 
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Figure 8 shows a perfect shot pattern where all three weapons that are deployed by the 

adversary hit the intended target perfectly. Figure 8 shows the highest achievable 

effectiveness of deploying three missiles to destroy a linear distance of up to 2,700 feet. 

If the missile does not strike at the coordinates of the intended target, covering overlap 

occurs, the maximum efficiency of target engagement is reduced, and a reduction of 

effectiveness over a Euclidean distance is seen.  

 
Figure 8: Representation of the highest achievable destruction over a Euclidean distance 

 
Figure 8 also indicates that facility placement of dispersed capabilities must be 

placed outside the damage potential zone in order to be effective. If facility placement is 

less than 450 feet and within any arc, dispersal is not achieved, and the facility will be 

destroyed due to the weapon’s damage potential zone. If facility placement is more than 

450 feet, minimum dispersion is achieved, requiring more weapons from the adversary to 

complete resource destruction. 

 
Considerations for Risk Development 
 
 By using a geographic coordinate for the missile DMPI and the associated CEP 

(Nuclear Threat Initiative, 2012), a designer has the ability to disperse facilities according 

to a risk tolerance in Table 1. Table 1 defines the risk of facility dispersal based on 

facility coordinates in relation to the coordinates of the initial missile impact location. 
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Figure 9 is oriented on an x,y axis with a (0,0) coordinate center point, and is therefore 

the DMPI coordinate. Furthermore, the development of risk zones is used to provide an 

understanding of how designers can plan for facilities in a threat-constrained 

environment.   

Table 1: Risk Tolerance Levels for Facility Dispersal 

Risk Zone Location of Facility In Relation to Missile Impact Location 

Low Risk 
Zone 

Facility has coordinates OUTSIDE of the missile impact damage 
radius and OUTSIDE the missile circular error probable 

Medium Risk 
Zone 

Facility has coordinates OUTSIDE of the missile impact damage 
radius but INSIDE the missile circular error probable 

High Risk 
Zone Facility has coordinates INSIDE the missile impact damage radius 

 

 
Figure 9: Risk zones showing the damage zone and the CEP of the weapon 
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 The “high risk zone” in Figure 9 shows the radius of 450 feet and was adapted 

from the original work by Stillion and Orletsky (1999). Analysis completed by the 

RAND Corporation further quantifies the destructive capabilities of ballistic and cruise 

missiles and determined the effective lethal radius of a Type 1 cruise missile loaded with 

132 bomblets to be 900 ft (Vick, 2015). Therefore, if the weapon impacts a geographic 

location, the resultant damage zone will be 450 feet in any direction from the impact area.  

The “medium risk zone” is defined by the damage radii extension from the DMPI 

according to the CEP of the weapon. As the weapon impact location is analyzed along a 

Euclidean distance from the DMPI, the “medium risk zone” is derived as a range 

covering an area just outside the “high risk zone” to, and including, the maximum 

distance a facility can be located from the DMPI and still be considered within the lethal 

capability of the weapon.   

The furthest zone from the center point of the impact of the weapon is the “low 

risk zone”. The “low risk zone” is defined as the best dispersal location for a facility 

when only one weapon DMPI is being analyzed. In a threat-constrained environment, the 

criticality of the “low risk zone” is increased when multiple weapons are simultaneously 

analyzed. The interaction between each weapons DMPI and associated damage potential 

zone effect the location of “low risk zone.”  

 
Dispersal and Redundancy Methodology 
 

When a designer is interested in the analysis of facility dispersion, risk measures 

are calculated with the weapon DMPI and CEP, and the Euclidean distance between 
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facilities. In a threat-constrained environment, the adversary remains unpredictable and 

therefore a multi-level analysis is needed. The analysis is initiated by baselining the 

effectiveness of a single weapon attacking a geographic area. After developing the 

weapon’s baseline, a more robust analysis that involves a multi-weapon attack scenario 

can be generated (Stillion & Orletsky, 1999). To determine the best approach to facility 

dispersion, a multi-weapon attack scenario is used. 

 To begin the assessment, the designer must first analyze the DMPI and CEP of a 

single weapon to understand the effects on a geographic location. Additional analysis of 

facility dispersal using multiple facilities and multiple weapons follows this framework: 

(1) a single weapon impacting a single target; (2) two or more of the same type of 

weapon impacting a single target; (3) two or more different types of weapons impacting a 

single target; (4) the same type of weapon impacting multiple targets; and, (5) two or 

more different types of weapons impacting multiple targets. Table 2 shows the 

framework for analysis and includes the weapon characteristics used. 

 
Table 2: Facility Dispersal Analysis Framework Based on Weapon Type. Adapted from 

(Nuclear Threat Initiative, 2012) 
Analysis Level Weapon Use Weapon Type 

1 Single weapon impacting a single target DF-15A 

2 Two or more of the same type of weapon 
impacting a single target DF-15A 

3 Two or more different types of weapons 
impacting a single target 

DF-15A 
DF-11 (M-11) 

4 Same type of weapon impacting multiple targets DF-15A 

5 Two or more different types of weapons 
impacting multiple targets 

DF-15A 
DF-11 (M-11) 
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Level 1  
 

The analysis of Level 1 is driven by only one weapon and its associated 

DMPI and CEP. For the purpose of developing a dispersion distance that 

represents the defense against all adversary weapons, the Level 1 analysis uses the 

DF-15A short-range ballistic missile (SRBM) with a maximum CEP of 147 feet 

from the intended target. If using two facilities, and the Euclidean distance is less 

than 450 feet, the facilities do not have dispersion and fall within the “high risk 

zone.” If the facilities have a distance between them that is greater than 450 feet, 

but less than 597 feet, they have some dispersal with a medium risk. This is 

because the CEP of the DF-15A short range ballistic missile (SRBM) is 147 feet 

and therefore effects the DMPI location over a range from an impact coordinate 

of (0,0) to 147 feet away from the intended target. Level 1 analysis is represented 

in Figure 10.   
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Figure 10: Representation of Level 1 analysis 

 
 

Not all geographic locations have the luxury of vast spaces for maximum 

dispersion. Therefore, to determine the probability of risk associated with the 

placement of a facility within the “medium risk zone,” a normal distribution with 

random sampling is used. A normal distribution with a mean equal to 0 and a 

standard deviation of 49 feet to account for 99.74% of the total missile impact 

possibilities. The range of 0-147 feet is used to determine the location of weapon 

DMPI and a risk range is developed for the probability of destruction, P(D), of a 

facility within the “medium risk zone.” The analysis of Level 1 dispersion only 

considers the P(D) within the “medium risk zone.” It is assumed that the P(D) 

associated with the “high risk zone” in Level 1 analysis is 100%, and the P(D) 

associated with the “low risk zone” in Level 1 analysis is 0%. 
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Level 2  

 

The analysis of Level 2 is driven by more than one iteration of the same 

weapon type with the same coordinates, and the associated DMPI and CEP. In 

Level 2 analysis, the designer is concerned with the P(D) of a facility that is 

dispersed to outside the “high risk zone”. Therefore, a normal distribution with a 

mean equal to 0 and a standard deviation of 49 to account for 99.74% of the total 

missile impact possibilities. The Level 2 analysis involves an additive equation 

that adds one normal distribution with another to simulate a multi-weapon attack 

using the same weapon characteristics. The range of 0-147 feet is used to 

determine the location of the impact location of each weapon. As with the Level 1 

analysis, Level 2 only considers the P(D) in the “medium risk zone” because of 

the maximum CEP of the weapon. It is assumed that the P(D) associated with the 

“high risk zone” in Level 2 analysis is 100%, and the P(D) associated with the 

“Low Risk Zone” in Level 2 analysis is 0%. Level 2 analysis is represented by 

Figure 11. 
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Figure 11: Representation of Level 2 analysis 

  
 

Level 3  
  

The analysis of Level 3 involves more than one weapon type used for an 

attack on a target coordinate. In Level 3 analysis, the designer calculates the P(D) 

of a facility based on dispersion and differing weapon characteristics. This level 

of analysis assumes that the adversary may attempt to destroy a target without any 

state of the art geospatial guidance systems, but with a larger CEP value. Level 3 

analysis assumes that the adversary will follow the first munition with another 

missile to guarantee the target destruction by deploying a precision munition on 

the same target coordinates.   

Therefore, a normal distribution is performed in Microsoft Excel to 

analyze the location of a DF-11 (M-11) DMPI within a large CEP range of 0-
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1,969 feet, as well as a follow-on DMPI from a DF-15A salvo with the same 

targeting coordinates and a much smaller CEP range of 0-147 feet. Figure 12 

represents the DMPI and CEP range of both the DF-15A and DF-11 (M-11) 

weapons. In this analysis the “Low Risk Zone” from earlier iterations is no longer 

a safe-haven for facility dispersal as the DF-11 (M-11) CEP reduces the precision 

targeting capabilities and assumes destruction potential up to 2,419 feet from the 

target coordinates. . The dotted red line shows the potential weapon destruction 

location based on the CEP of a non-precision weapon. In this extreme case, the 

weapon impacts the outer boundary area of the circular error probable. 

 

Figure 12: Level 3 analysis - DMPI and CEP range of both the DF-15A and DF-11 (M-11) weapons 
targeting the same coordinates 

 
  

Potential weapon destruction location 
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Level 4  
 

In Level 4 analysis, the designer calculates the P(D) of a facility based on 

dispersion and the same weapon characteristics effecting more than one target. 

This level of analysis assumes that the adversary may attempt to destroy multiple 

targets with the same technology. Therefore, a normal distribution is performed in 

Microsoft Excel to analyze the P(D) of three dispersed facilities. The analysis 

includes the DMPI and CEP of a DF-15A SRBM with a precision range of 0-147 

feet from the intended target. Two DF-15A’s are used to analyze the P(D) of 

facilities dispersed within a geographically defined area. 

The DF-15A is first analyzed in the same way as the Level 1 analysis, 

where the facility location is determined based on the weapon’s CEP. Within this 

analysis the medium and low risk zones are considered for dispersed capabilities 

only, as the P(D) in the “high risk zone” is assumed to be 100%. Thereafter, the 

Level 4 analysis then examines a nearby facility targeted by the same weapon 

capabilities. Level 4 is intended to analyze one more facility then weapons used 

by the adversary. This consideration can be used to develop redundancy of a 

resource, or dispersion.  

In a two-weapon analysis of Level 4 dispersal, the designer disperses two 

facilities greater than 900 feet apart for the third facility P(D) development in the 

“medium risk zone.” The “medium risk zone” with a Euclidean distance of 

facilities is developed using the CEP of a DF-15A SRBM with a precision range 

of 0-147 feet within a target coordinates. Level 4 analysis differs from the 
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analysis of Level 1 by extending the range of the potential “medium risk zone.” In 

a condensed analysis, the CEP range from two DF-15As shows the “medium risk 

zone” is greater than 450 feet up to and including 597 feet in any direction from 

the DMPI of either weapon. Figure 13 shows a representation of this Level 4 

dispersion. 

 
Figure 13: Level 4 analysis – The minimum DMPI and CEP range of two DF-15A weapons targeting 

multiple target coordinates 

 
By using covering methodologies to show a Euclidean distance serviced 

by only one weapon damage potential zone, the destruction area is maximized. 

Therefore, Figure 14 shows that the “medium risk zone” can be extended in the 

Level 4 analysis to include any point within a range of greater than 450 feet up to 

and including 744 feet in any direction from the weapon’s DMPI. This 

representation is used in the Level 4 analysis of this study as the baseline for the 

“medium risk zone.” 

Low Risk Zone 

Medium Risk Zone 

High Risk Zone High Risk Zone 
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Figure 14: Level 4 analysis – The maximum DMPI and CEP range of two DF-15A weapons targeting 

multiple target coordinates 

 
The analysis of Level 4 dispersion only considers the P(D) within the 

“medium risk zone.” It is assumed that the P(D) associated with the “high risk 

zone” in Level 4 analysis is 100%, and the P(D) associated with the “low risk 

zone” in Level 4 analysis is 0%. Therefore, the additional facility that is located 

outside the damage potential zone of both weapons is located either in the 

“medium risk zone” or the “low risk zone” within the geographical area. 

Level 5  
 
In Level 5 analysis, the designer calculates the P(D) of a facility based on 

dispersion and the characteristic of more than one weapon effecting more than 

one target. This analysis assumes that the adversary will attempt to destroy targets 

within a geographical area with both precision and non-precision weapons. The 

analysis includes the DMPI and CEP of: (1) a DF-15A SRBM with a precision 
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range of 0-147 feet from the intended target; and (2) a DF-11 (M-11) SRBM with 

a non-precision range of 0-1,969 feet from the intended target. One DF-15A and 

one DF-11 (M-11) are used to analyze the P(D) of facilities dispersed within a 

geographically defined area. Because of the uncertainty in the target and weapon 

selection, the risk profile is developed by incorporating a two-sided analysis by 

striking each side of the bounded area with each weapon. 

The DF-15A is first analyzed in the same way as the Level 1 analysis, 

where the facility location is determined using the CEP of the weapon. Within this 

analysis the medium and low risk zones are considered for dispersed capabilities 

only, as the P(D) in the “high risk zone” is assumed to be 100%. It is intended to 

analyze one more facility then weapons used by the adversary. This consideration 

can be used to develop redundancy of a resource, or dispersion.  

In the two-weapon analysis of Level 5 dispersal, the designer disperses 

two facilities greater than 2,869 feet apart for the third facility P(D) development 

in the “medium risk zone.” The “medium risk zone” is developed using the DMPI 

and CEP of both the DF-15A SRBM and the DF-11 (M-11). The CEP range from 

one DF-15A overlaps the CEP range of the DF-11 (M-11) and shows the 

“medium risk zone” is greater than 450 feet up to and including 2,419 feet in any 

direction from the DMPI of either weapon. Figure 15 shows a representation of 

this Level 5 Phase I dispersion. 
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Figure 15: Level 5 Phase I Analysis - DMPI and CEP range of both the DF-15A and DF-11 (M-11) 

weapons targeting multiple target coordinates in an anti-covering analysis 

 

By using anti-covering methodologies to show a Euclidean distance 

serviced by only one weapon damage potential zone, the destruction area is 

maximized. Therefore, Figure 16 shows that the “medium risk zone” can be 

extended in the Level 5 Phase II analysis to include any point within a range of 

greater than 450 feet up to and including 3,016 feet in any direction from the 

weapon’s DMPI.  

The analysis of Level 5 dispersion only considers the P(D) within the 

“medium risk zone.” It is assumed that the P(D) associated with the “high risk 

zone” in Level 5 analysis is 100%, and the P(D) associated with the “low risk 

zone” in Level 5 analysis is 0%. Therefore, the additional facility that is located 

outside the damage potential zone of both weapons is located either in the 

“medium risk zone” or the “low risk zone” within the geographical area. 
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Figure 16: Level 5 Phase II Analysis - DMPI and CEP range of both the DF-15A and DF-11 (M-11) 

weapons targeting multiple target coordinates in a covering analysis 

 

Combined Analysis 
 

 The combined analysis of this research can follow multiple optimization methods. 

In order to conclude with the best representation of risk for a decision-maker in a threat 

constrained environment, the highest, and lowest values are used. A midpoint risk value 

is also achieved. The high risk represents the most risk available to the decision-maker 

and the most dangerous facility dispersion distance. The low risk represents the least risk 

available to the decision-maker and is the least dangerous facility dispersion distance. 

The midpoint value demonstrates the midpoint risk value available to the decision-maker.  

 
Case Study 
 

Osan AB in the Republic of South Korea is oriented in a region roused with 

continuous threats from adversaries (Stillion & Orletsky, 1999). Therefore, Osan AB is 
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used as the geographic area for a case study to illustrate the model capabilities and 

demonstrate its ability for risk analysis of dispersion. In particular, four locations on the 

AB are considered for the case study analysis. Each area considered is a parking ramp 

used for mission aircraft ranging in size of usable area. The Euclidean distance of each 

ramp is: (1) 1,250 feet; (2) 700 feet; (3) 700 feet; and (4) 1,300 feet. Each ramp is 

analyzed for dispersal operations on the ramp, as well as analyzed for the combined total 

space between ramps. The total distance used in the analysis was 7,000 which is the total 

distance between and including parking ramp 1 and parking ramp 4. Figure 17 illustrates 

the analyzed space. 

 

 
Figure 17: Geographic area representation of the case study 

 

Once the linear distance is determined for the application of the geographical 
area, the quantitative measures of risk tolerances can be applied. Along with applying the 
length and capacity of the storage system, the total quantity of fuel able to be dispersed 
with the risk tolerance level is obtained. This process can be applied to multiple iterations 
of analysis, as long as the dispersion distance remains a constraint.  
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IV. Results and Analysis 
 

Introduction 
 
This chapter presents the assessment of risk associated with facility dispersion 

within a threatened environment. The risk metric was developed using a five-stage 

analysis for multiple blast types and weapons: (1) a single weapon impacting a single 

target; (2) two or more of the same type of weapon impacting a single target; (3) two 

different types of weapons impacting a single target; (4) the same type of weapon 

impacting multiple targets; (5) two different types of weapons impacting multiple targets.  

 The contribution of this research is to define the risk metric used to disperse 

facilities within the threatened environment. By identifying the risk metric associated 

with the dispersal of facilities, the designer and decision-maker can make the most 

appropriate dispersion decisions. The analysis of facility dispersal based on weapon type 

is described with further detail in Chapter 3. 

 
Level 1 Analysis 
 

Level 1 analysis is driven by a single DF-15A impacting a single target to 

baseline the analysis. The distribution represents the CEP of a DF-15A missile with a 

range of target impact locations from coordinates (0,0) to (147,0) over a Euclidean 

distance. The output shows a normal distribution, centered on zero, with three standard 

deviations allowing for analysis of 99.74% of the data. The Microsoft Excel probability 

distribution function gives the output probability percentage for each input value 

spanning away from (0,0) with a cumulative total adding to 0.5. This shows a 50% 

probability distribution of a weapon impacting a distance between 0 and 147 feet – the 
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right side of the normal distribution. The analysis uses a standard deviation of 49 and a 

mean of 0. Level 1 is represented by Figure 18. 

 
Figure 18: Representation of Level 1 analysis 

 

The output of the Level 1 analysis shown in Figure 19 categorizes the level of risk 

into three risk profiles: (1) the high risk of siting a facility while only considering a 

missile will impact the target directly, or within 49 feet away, is equal to a 34.79% 

probability over any given number of missile impact iterations; (2) the medium risk of 

siting a facility while considering a missile will impact the target directly, or within a 

range of 49-98 feet from the target coordinates, is equal to 13.89% probability over any 

given number of missile impact iterations; and (3) the low risk of siting a facility while 

considering a missile will impact the target directly, or within a range of 98-147 feet from 
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the target coordinates, is equal to 2.09% probability over any given number of missile 

impact iterations.  

 
Figure 19: Probability distribution of a DF-15A SRBM over the CEP range 

 

The objective of the Level 1 analysis is to determine the best location for a 

facility. By accounting for to a precision missile impact location within the 147-foot 

weapon error probable range, and a 450-foot damage potential radii, the best location to 

site a facility in the Level 1 analysis is 597 feet away from any facility, in any direction. 

The P(D) of a facility decreases as it is sited further away from the impact and damage 

potential zone. Level 1 uses covering methodologies for noxious facilities to keep the 

siting of a facility outside the coverage range of a weapon destruction zone. 

 
Level 2 Analysis 
 

Level 2 analysis is driven by covering dispersion methodologies. The servicing 

node P(D), used in this analysis as the precision weapon impact location, is developed by 
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overlaying the risk profile of two precision weapons targeting the same facility. The 

curve representing the risk profile of two precision weapons targeting the same 

coordinates is shown in Figure 20. The analysis uses a standard deviation of 49 and a 

mean of 0. The resulting risk is categorized into three risk profiles: (1) the high risk of 

siting a facility while only considering a missile will impact the target directly, or within 

49 feet away, is equal to a 34.79% probability over any given number of missile impact 

iterations; (2) the medium risk of siting a facility while considering a missile will impact 

the target directly, or within a range of 49-98 feet from the target coordinates, is equal to 

13.89% probability over any given number of missile impact iterations; and (3) the low 

risk of siting a facility while considering a missile will impact the target directly, or 

within a range of 98-147 feet from the target coordinates, is equal to 2.09% probability 

over any given number of missile impact iterations. 

 
Figure 20: Probability distribution of a DF-15A SRBM over the CEP range 
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The output analysis of Level 2 is identical to Level 1. This is because the 

characteristics of the weapons used is the same. Level 1 uses only one precision weapon, 

while Level 2 uses more than one. The outcome of the analysis remains the same because 

the CEP doesn’t change. This analysis replicates the adversary employing more than one 

weapon to cover the intended destruction zone. The redundancy of the weapon usage 

does not affect the dispersion of the facilities relative to the baseline.  

Level 2 analysis determines the best location for a facility accounts for a 450-foot 

blast radius and a 147-foot weapon error, or 597 feet away from any facility, in any 

direction. The P(D) of a facility decreases as it is sited further away from the impact and 

damage potential zone. Level 2 uses covering methodologies for noxious facilities to 

keep the siting of a facility outside the coverage range of a weapon destruction zone. 

 
Level 3 Analysis 
 

Level 3 analysis studies two or more different types of weapon characteristics 

impacting a single target. One DF-15A missile and one DF-11 (M-11) missile are used to 

impact a single target and represent a precision missile, and a non-precision missile, 

respectively. The intent of the study in Level 3 analysis is to determine the risk associated 

with both missile types targeting the same coordinates. In this environment, the use of 

precision weapons has less of an effect on the facility dispersal. Figure 21 is the CEP of 

the precision missile striking a target at a (0,0) coordinates and remains the same as the 

first two analyses. 



53 

 

 
Figure 21: Probability distribution of a DF-15A over the CEP range 

 

Following the precision missile analysis, the risk profile of the non-precision 

missile was developed and is shown in Figure 22. The analysis was performed 

independent to the characteristics of each missile, and therefore only represents the 

probability of destruction associated with the non-precision missile targeting the (0,0) 

coordinate. Furthermore, it shows that the CEP of the non-precision missile extends the 

risk profile distance by over thirteen times the distance of the precision missile. 

 
Figure 22: Probability distribution of a DF-11 (M-11) SRBM over the CEP range 
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The total risk profile distance was developed by combining the characteristics of 

both weapon capabilities. The output of the combined analysis is shown in Figure 23. 

When the risk profiles from both weapons are combined, the high risk zone increases 

50% over the baseline study of only one precision weapon impacting the target 

coordinates. Because of the high error potential of the non-precision weapon, the analysis 

distance is extended to include all risk from the precision weapon within the first standard 

deviation. Therefore, siting a facility within the high risk zone equates to 84.45% 

probability that the facility will be destroyed over any given number of impact iterations.  

The medium risk associated with the combined risk profiles of both weapons is 

shown in Figure 23 and has a CEP range of 656 to 1,312 feet from the DMPI. When 

siting a facility in the medium risk zone, the risk decreases to only 13.62% facility 

destruction probability. Furthermore, the best scenario for siting a facility within the 

Level 3 design of experiments (DOE) is within the low risk CEP range of 1,312 to 1,969 

feet from the targeted coordinates. Within this range, the probability of destruction of a 

facility decreases to only 2.14% over any given number of missile impact iterations. 
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Figure 23: Probability distribution of a DF-15A and DF-11 (M-11) SRBM over the CEP range 

 

The safest dispersion distance as determined by the Level 3 analysis accounts for 

a 450-foot blast radius and a 1,969-foot weapon error, or 2,419 feet away from any 

facility, in any direction. The P(D) of a facility decreases as it is sited further away from 

the DMPI and associated damage potential zone. Level 3 employs covering 

methodologies for noxious facilities to keep the siting of a facility outside the coverage 

range of a weapon destruction zone. 

 
Level 4 Analysis 
 

Level 4 analysis quantifies risk by focusing on targeting two separate facilities. 

The first facility remains the same as the baseline and is analyzed similarly with the same 

weapon characteristics input and the same output risk profile. The analysis then studies 

two phases of weapon impact scenarios as the DMPI is adjusted between anti-covering 

and covering methodologies. The results from both phases are combined to produce the 

overall risk profile that allows designers to quantify the risk associated with dispersion of 

multiple facilities in defense from precision weapons. 
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The second phase is analyzed with no overlap in the “medium risk zone,” 

representing full coverage of a facility dispersion model. The area of interest in this study 

is the decrease in facility destruction probability as covering methodologies transfer from 

anti-covering and overlapped CEP potential, to a covering methodology that maximizes 

the destruction capabilities of each weapon targeting each facility. 

 
Level 4 Phase I 
 

The first phase of analysis allows for potential overlap of the “medium risk 

zones” of both weapons by using the anti-covering methodologies of Moon and 

Chaudhry (1984).. Phase I develops the CEP range of two facilities targeted by the same 

weapon characteristics. Because of the anti-covering methodology used in this analysis, 

the facility dispersion is limited to the precision weapon CEP range and is represented by 

the medium risk zone shown in Figure 24. 

Low Risk Zone 

Medium Risk Zone 

High Risk Zone High Risk Zone 

Figure 24: Level 4 Phase I Analysis – The minimum DMPI and CEP range of two DF-15A weapons 
targeting multiple target coordinates 
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The output shows the missile impact probability over a range of 147 feet along the 

x-axis, with a cumulative total adding to 1.0. Because the curves are inverse to each other 

and intersect at the midpoint of the overall 147-foot distance, the probability distributions 

of each curve add together to produce the cumulative total at each point. Therefore, the 

dispersion analysis gives designers the capability to quantify risk at locations that are 

geographically constrained.  

Within the medium risk zone of Figure 24, the risk for facility destruction is 

developed into three separate categories: (1) the high risk of siting a facility while only 

considering both missiles will impact each target directly, or within 49 feet away, is equal 

to a 36.98% probability over any given number of missile impact iterations; (2) the 

medium risk in siting a facility while considering both missiles will impact within a range 

of 49-98 feet from the target coordinates, is equal to 27.79% probability over any given 

number of missile impact iterations; and (3) the low risk in siting a facility while 

considering both missiles will impact within a range of 98-147 feet from the target 

coordinates, is equal to 36.98% probability over any given number of missile impact 

iterations. The output of Phase I is represented by Figure 25. 

 
Figure 25: Level 4 Phase I Analysis - Probability distribution of two DF-15A SRBMs over the CEP range 
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The best location of a facility in the Phase I analysis accounts for a 450-foot blast 

radius and a 73.5-foot weapon error, or 523.5 feet away from any facility, in any 

direction. The risk tolerance level for this location is quantified as medium based on the 

standard deviations within the analysis. This is because of the risk profiles intersect with 

each other, which increases the P(D) of the facility as the distance between facilities is 

maximized. Phase II will examine the maximum covering of the missile destruction radii, 

resulting in a transition from anti-covering aspects from Phase I to covering 

methodologies in Level 4 Phase II analysis. 

Level 4 Phase II 
 

In the Phase II analysis, the risk profile was developed for a maximum coverage 

with precision weapons scenario. The facility location on one side of the analysis remains 

the same as the baseline. The DOE of Phase II changes by moving the second DMPI 

coordinates to a location that prohibits the additive CEP and destruction radii of each 

weapon from intersecting. Phase II analysis develops a risk profile distribution 

accounting for maximum coverage of the weapon impact zone, including any potential to 

miss the target and impact at a location within the CEP range of each weapon. Figure 26 

displays the distance for siting a facility within the “medium risk zone” along the x-axis.  
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Figure 26: Level 4 Phase II Analysis – The maximum DMPI and CEP range of two DF-15A weapons 

targeting multiple target coordinates 

 

The output of Phase II shows the missile impact probability over a range of 147 

feet along the x-axis. The analysis is categorized by level of risk into three standard 

deviations over the maximum destruction distance: (1) the high risk of siting a facility 

while only considering both missiles will impact each target directly, or within 49 feet 

away, is equal to a 34.79% probability over any given number of missile impact 

iterations; (2) the medium risk of siting a facility while considering both missiles will 

impact within a range of 49-98 feet from the target coordinates, is equal to 13.40% 

probability over any given number of missile impact iterations; and (3) the low risk of 

siting a facility while considering both missiles will impact within a range of 98-147 feet 

from the target coordinates, is equal to 2.09% probability over any given number of 

missile impact iterations. Figure 27 represents the risk profile of facility dispersion of 

three facilities. 
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Figure 27: Level 4 Phase II Analysis - Probability distribution of two DF-15A SRBMs over the CEP range 

 

The Phase II analysis shows that the best facility dispersion accounts for a 450-

foot blast radius and a 147-foot weapon error potential, or 597 feet away from any 

facility, in any direction. This is because there is no intersection between the weapon 

CEPs resulting in the safest conditions at the lowest probability. The P(D) of a facility 

decreases as it is sited further away from the DMPI and associated damage potential 

zone. 

 
Level 4 Combined Analysis 
 

 When considering the combined risk profile of the Level 4 Phase I and II analysis, 

the risk factors change according to the distance from the intended target. Level 4 Phase I 

shows that the best location to disperse a facility is 523.5 feet away from any facility in 

any direction. As the methodology transforms from an anti-covering based model, to a 

covering based model, the risk reduces. Level 4 Phase II shows that the best location to 
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disperse a facility is 597 feet away from any facility in any direction. Therefore, the 

combined analysis results in the most accurate risk profile and is categorized into three 

results: (1) the high risk is categorized as dispersing a facility 450-523.5 feet away from 

any other facility in any direction; (2) the medium risk is categorized as dispersing a 

facility 523.5-560 feet away from any other facility in any direction; and (3) the low risk 

is categorized as dispersing a facility 560-597 feet away from any other facility in any 

direction. The risk profiles are for the combined Level 4 analysis is shown in Table 3. 

Ultimately, as the CEP radii move away from each other on the x-axis, the amount of risk 

is reduced. 

Table 3: Level 4 Combined Analysis - Risk profile for facility dispersion against DF-15A 
SRBM impact locations 

Risk Level 
 

Dispersion Distance Between 
Facilities (ft) 

Probability of 
Destruction 

 
High Risk 450-523.5 50.0% 
Low Risk 523.5-560 6.31% 

Medium Risk 560-597 1.08% 
 
 
Level 5 Analysis 
 

The Level 5 analysis is driven by more than one type of weapon effecting more 

than one target within a geographically defined area. The analysis involves characteristics 

of both a precision missile (DF-15A) and a non-precision missile [DF-11 (M-11)]. It has 

two phases of analysis over a distance of 2,116 feet, as discussed in Chapter 3. The first 

phase of analysis allows for potential overlap of the “medium risk zones” of both 

weapons by using the anti-covering methodologies of Moon and Chaudhry (1984). The 
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second phase is analyzed with no overlap in the “medium risk zone,” representing full 

coverage of a facility dispersion model. 

 

Level 5 Phase I 
 

The first analysis produces the output shown in Figure 28, representing the CEP 

and associated damage potential of a DF-15A and DF-11 (M-11) missile with two range 

distributions for target impact locations: (1) coordinates (0,0) to (147,0); and (2) 

coordinates (900,0) to (2869,0), respectively. Figure 28 represents the orientation for 

siting a facility within the “medium risk zone” along the x-axis. 

 
Figure 28: Level 5 Phase I Analysis - DMPI and CEP range of both the DF-15A and DF-11 (M-11) 

weapons targeting multiple target coordinates 

 

The output shown in Figure 29 represents the missile impact probability over a 

range of 1,822 feet along the x-axis, with three standard deviations. Figure 29 also 
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represents the risk of not knowing the adversary shot doctrine for missile characteristics. 

Because the missile characteristics can be applied to both sides of the analysis, the risk 

profile curves are inverse to each other and intersect. This shows that the probability 

distributions of each curve must be combined to produce the cumulative total of risk at 

each point.  

 
Figure 29: Level 5 Phase I Analysis - Probability distribution of DF-15A and DF-11 (M-11) SRBMs over 

the CEP range 

 

In the Phase I analysis configuration, the risk profile is categorized into three 

levels for decision-maker tolerance considerations and dispersion distances. The risk 

profile considers the anti-covering methodologies of maximum coverage and produce the 
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following results: (1) the high risk of siting a facility while only considering both missiles 

will impact each target directly, or within 328 feet away, is equal to a 69.96% probability 

over any given number of missile impact iterations; (2) the medium risk in siting a 

facility while considering both missiles will impact within a range of 328-656 feet from 

the target coordinates, is equal to 16.72% probability over any given number of missile 

impact iterations; and (3) the high risk in siting a facility while considering both missiles 

will impact within a range of 656-984 feet from the target coordinates, is equal to 13.49% 

probability over any given number of missile impact iterations.  

The precision weapon CEP also influences this model because with the low range 

in error, the covering model is never obtained. Therefore, the risk level is reduced to three 

standard deviations from the target coordinates to the center point between each facility, 

making the dispersion distance of 984 feet the safest over the CEP range, or 1,434 feet 

away from any facility, in any direction. This accounts for the missiles hitting from either 

side of the analysis area. Phase II will examine the maximum covering of the missile 

damage area, resulting in a transition from anti-covering aspects from Phase I to covering 

methodologies in Phase II of the Level 5 analysis. 

 
Level 5 Phase II 
 

Phase II of Level 5 analysis represents the impact potential of both precision and 

non-precision weapons. The two range distributions are: (1) from coordinates (0,0) to 

(147,0); and (2) from coordinates (1047,0) to (3016,0) over a Euclidean distance, and as 

shown in Figure 30, where the distance for siting a facility within the “medium risk zone” 

is annotated along the x-axis.. The inverse analysis is also applied to this orientation and 



65 

 

is shown in the risk profile for P(D) in Figure 31. The risk profile accounts for maximum 

coverage of the weapon impact zone, including any potential to miss the target and 

impact at a location within the CEP range of each weapon. The covering methodology 

used for this scenario accounts for the maximum possible destruction potential. 

 
Figure 30: Level 5 Phase II Analysis - DMPI and CEP range of both the DF-15A and DF-11 (M-11) 

weapons showing maximum coverage 

 

The output of Phase II shows the missile impact probability over a range of 147 

feet along the x-axis from one direction and 1,969 feet along the x-axis from the other 

direction. The analysis does not allow for the intersection of the medium risk zone radii 

from any direction. A standard deviation of 49 and a mean of 0 produce the left side 

curve, and a standard deviation of 656 and a mean of 2116 produce the right side curve to 

show the non-precision weapon impact probability along the x-axis in a maximum 
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covering scheme. The resultant intersection of the non-precision risk profile from each 

direction shows the safest location for a facility according to the P(D).  

 
Figure 31: Level 5 Phase II Analysis - Probability distribution of one DF-15A and one DF-11 (M-11) 

SRBM over the CEP range 

 

The output of the analysis categorizes the level of risk into three standard 

deviations over the maximum destruction distance within the geographically defined 

area: (1) the high risk of siting a facility while only considering both missiles will impact 

each target directly, or within 352 feet away, is equal to a 70.91% probability over any 

given number of missile impact iterations; (2) the medium risk in siting a facility while 
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considering both missiles will impact within a range of 352-705 feet from the target 

coordinates, is equal to 16.73% probability over any given number of missile impact 

iterations; and (3) the low risk in siting a facility while considering both missiles will 

impact within a range of 705-1058 feet from the target coordinates, is equal to 12.60% 

probability over any given number of missile impact iterations.  

 In Phase II of the Level 5 analysis, the best location for a facility accounts for a 

450-foot blast radius and a 1,058-foot weapon error potential, or 1,508 feet away from 

any facility, in any direction. This is because it cannot be determined which target the 

larger CEP weapon will impact, and therefore the location with the lowest P(D) for a 

facility is the intersection of the larger CEP risk profiles as analyzed from both directions. 

 
Level 5 Combined Analysis 
 

Phase I and II results are then combined to develop a combined risk profile for 

Level 5 analyses. Phase I shows the best location to disperse a facility is 1,434 feet away 

from any facility in any direction. Phase II analysis shows the best location to disperse a 

facility is 1508 feet away from any facility in any direction. As the methodology 

transforms from an anti-covering based model, to a covering based model, the risk 

reduces by over 15 percent. This is seen as the methodology transforms from anti-

covering to covering and the dispersion distance is extended. The risk of P(D) for siting a 

facility within the Phase I analysis at 984 dispersion between facilities, the lowest 

probability of 3.946 x 10-4 is obtained. By transforming the methodology, the dispersion 

distance increases and when the maximum destruction scenario is used, the P(D) of a 

facility sited at 984 feet from any other facility changes to 3.350 x 10-4.   
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Unfortunately, the DoD cannot guarantee its adversaries will employ a shot 

doctrine of maximum coverage for facility destruction. Therefore, the result of Level 5 

analysis produces a dispersion risk profile that captures both the most amount of risk and 

the least amount of risk for the decision-maker and designer: (1) the high risk is 

categorized as dispersing a facility 450-778 feet away from any other facility in any 

direction; (2) the medium risk is categorized as dispersing a facility 778-1,106 feet away 

from any other facility in any direction; and (3) the low risk is categorized as dispersing a 

facility 1,106-1,508 feet away from any other facility in any direction. The risk profiles 

are for the combined Level 5 analysis is shown in Table 4.  

Table 4: Level 5 Combined Analysis - Risk profile for DF-15A and DF-11 (M-11) 
SRBM impact locations 

Risk Level 
 

Dispersion Distance Between 
Facilities (ft) 

Probability of 
Destruction 

High Risk 450-778 69.96% 
Medium Risk 778-1106 16.72% 

Low Risk 1106-1508 13.32% 
 

Results 
 

 The results of the study are that dispersion of facilities and risk tolerances can 

now be quantified. For evaluation of the model, a case study of a military installation in 

the Pacific region is used to show the dispersal of fuel assets and the resulting storage 

capacity within a constrained distance. A model that correlates risk with the optimized 

storage capacity of aircraft fuel is developed and implemented. The highest risk 

dispersion distance, the midpoint risk dispersion distance and the lowest risk dispersion 
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distance were used to develop an overall risk profile based on weapon usage and weapon 

type. This risk profile is shown in Table 5.  

 

Table 5: Risk profile for DF-15A and DF-11 (M-11) SRBM impact locations 

Weapon Type 
 

Risk Level 
 

Dispersion Distance 
Between Facilities (ft) 

DF-15A High Risk 450 
DF-15A Medium Risk 524 
DF-15A Low Risk 597 

DF-15A & DF-11 (M-11) High Risk 450 
DF-15A & DF-11 (M-11) Medium Risk 1106 
DF-15A & DF-11 (M-11) Low Risk 1508 

 

The results of this risk profile analysis are incorporated into design configurations 

that produce a model for each weapon type and risk profile. The efficiency of the model 

allows the designer to program facility dispersal according to the risk tolerance level of 

the decision-maker. 

 

𝑄𝑄 = �
𝐿𝐿𝐸𝐸𝐸𝐸

(𝐿𝐿𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑇𝑇) + 1� 𝑆𝑆𝑆𝑆 

 

Where, 

LED  = Euclidean distance that bounds the geographical distance in one  
direction (ft); 

LDD  = facility dispersion distance (ft); 
LT  = length of the specified fuel bladder (ft); 
SC  = fuel bladder design storage capacity (gallons); and 
Q  = quantity of maximum allowable fuel to be dispersed within the bounds  

of the geographical distance per the risk level (gallons). 
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Case Study 
 

The model performance was evaluated using a case study of Osan AB, Republic 

of South Korea. The output of the analysis is shown in Appendix 1. As reported in 

Chapter 3, the case study constrains the overall geographical bounds to a Euclidean 

distance of 7,000 feet. The case study applies the quantification equation to show the 

overall fuel storage capacity per risk and weapon type. The analysis of the model within 

the geographical bounds of the ramp space shows an overall storage efficiency gained by 

using the 210,000 gallon bladder in place of the 50,000 gallon bladder. This is shown in 

Figure 32. 

 
Figure 32: Case Study Analysis – The dispersed fuel storage capacity per weapon type and risk tolerance 

level 

 

With an on-base storage capacity of 13,500,000 gallons of aircraft fuel, Osan AB 

would only be able to disperse up to 22% (3,010,000 gallons) of fuel within the 
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geographical bounds set in this study. If further dispersal is needed, another area that 

meets the dispersal requirements must be analyzed.  

The case study also allows for the analysis of the number of adversary weapons 

needed to destroy an asset within the dispersed environment. This information can be 

used, along with intelligence reports, to better assess the risk a decision-maker is willing 

to tolerance in a threatened area. Figure 33 shows that the higher the tolerated risk is, the 

more the adversary has to attack the asset to destroy it. 

 
Figure 33: Case Study Analysis – The number of weapons required for complete adversary destruction of a 

dispersed asset per weapon type and risk tolerance level 

Summary 
 

Osan AB in the Republic of South Korea is oriented in a region roused with 

continuous threats from adversaries (Stillion & Orletsky, 1999). Therefore, Osan AB is 

used as the geographic area for a case study to illustrate the model capabilities and 

demonstrate its ability for risk analysis of dispersion. After applying the model to the 

quantities of Osan, the designer is assured that the use of 210,000 gallon fuel bladders 
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allows for 16.7% more storage capacity in the bounds of the scenario. The analysis of the 

case study also allows the designer, within the bounds of the scenario, to see that 66% of 

the dispersion against precision weapons requires one additional weapon to destroy the 

asset over the dispersion against non-precision weapons. In a highly contested 

environment, the decision-maker now has the ability to choose between the risk tolerance 

associated with dispersal of facilities, and can quantify risk in: (1) dispersion of facilities; 

(2) quantity of fuel dispersed; (3) percentage of total fuel capacity dispersed; and (4) the 

number of missiles needed for the adversary to achieve asset destruction and associated 

mission failure.  
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V. Conclusions 
 

Introduction 
 

The purpose of this chapter is to highlight and discuss the conclusions and 

recommendations found from the results attained and identified in Chapter 4. The results 

from Chapter 4 will be put to use in the case study from Osan AB to demonstrate the 

effectiveness of the risk metric in a threat-contested environment. Specifically, the ramp 

space at Osan AB will be examined with the results from Chapter 4. Furthermore, this 

chapter will identify considerations for future research that will provide contributions to 

the field of knowledge and designers looking to disperse facilities. 

Research Summary 

This research identified a need to study airbase resiliency metrics contributing to 

the enduring presence of military operations in a contested environment. The 

development of the risk metric helps designers and decision-makers consider dispersal of 

critical infrastructure to reduce the risk of mission capability failure. By studying the risk 

profile of facility dispersion, the designer can correlate a risk tolerance to a dispersion 

distance.  

In order to study the effects of short range ballistic missiles on a geographical 

area, the research was bounded by the characteristics of a high performance missile and a 

low performance missile. The associated circular error probable of each missile identified 

the bounds of missile impact locations associated with the desired mean point of impact 

coordinates, and developed the range of study in this research. The damage potential 

radii, which was developed by other research, was used to study the missile capability. It 
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identified the full range of locations that had the potential for destruction based on the 

initial coordinates of the weapon.   

After identifying the missile capabilities and developing the geographical bounds 

of the study, a distribution of potential locations provided the research to a distinct 

solution. This risk profile will provide the decision-maker with a probability of a facility 

being destroyed by either unintended damage or a direct missile impact, and is based on a 

distance calculation from other facilities.  

To evaluate the risk profile metric, a case study was used to research how 

dispersal can be implemented based on different risk strategies taken. The research 

developed a high, medium and low risk profile for the decision-maker to consider when 

anticipating a high performance missile to show how facility dispersion can be effected 

when siting facilities closer together. The research also developed a high, medium and 

low risk profile for the decision-maker to consider when anticipating a low performance 

missile to show how facility dispersion can be effected when siting facilities farther apart.   

Key Findings 

 By using covering-based models and anti-covering based models for the analysis 

of the dispersion within a geographically bounded area, the research was able to develop 

a risk profile that reduces the amount of risk a decision-maker will take when considering 

multiple attacks from multiple missile characteristics. The model is efficient in providing 

the designer with the ability to quantify risk in: (1) dispersion of facilities; (2) quantity of 

fuel dispersed; (3) percentage of total fuel capacity dispersed; and (4) the number of 

missiles needed for the adversary to achieve asset destruction and associated mission 
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failure. This ability demonstrates that risk in airbase resiliency can be quantified and 

efficiently used for the analysis of asset dispersion in a contested environment. 

Research Impacts 

 The impacts of this research can be seen through multiple lenses. One critical 

impact is in the military planning in which projects are advocated for, to receive funding 

for execution. A designer can now use risk profiles and the capacity models to 

quantitatively measure the resiliency of fuel storage in a forward location. The decision-

maker can now statistically measure the successfulness of an operation based on the 

ability of that mission surviving a missile attack. The importance of this research is in the 

ability of the designer to assess resiliency by quantifying facility dispersal and risk 

tolerance levels. By being able to measure risk, a designer can maximize resiliency as 

mandated by the National Defense Strategy. 

Recommendations for Future Research 

Further research in the study of quantifying resiliency is bountiful. Other areas 

include how hardening a facility will affect the dispersion distance, and how ground 

attacks from outside the geographical bounds of dispersion analysis, such as a vehicle 

borne improvised explosive devices, can have on dispersion 

 The study of resiliency metrics is extensive due to the long list of potential 

considerations into what defines resiliency. The study of resiliency ultimately optimizes 

risk or recovery time associated with an adversary attack. The study of how risk can be 

perceived at multiple levels and at different times before, during and after an attack can 

generate research streams to determine resiliency at time intervals. Preparedness, versus 
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respond, versus recover can be focus areas to further define resiliency. Further analysis 

within the paradigm model for data analytics can lead to continued advancement to the 

body of knowledge as descriptive analytics evolves into diagnostic, predictive and 

prescriptive analytics.  

The impacts of the study on resiliency can help the DoD maintain mission 

capability levels in a threat constrained location. Further refinement of the risk metric can 

be seen by studying the effects of multiple target coordinates that are not facilities. The 

research can identify how dispersal will be affected when planning for the employment of 

more weapons by the adversary then what is needed to achieve maximum destruction of a 

geographical area.   

Other work in base resiliency can study location based risk in which the facility is 

currently sited. This research can also develop risk profiles according to natural disasters. 

Resiliency is not only a forward location consideration, and should be studied holistically 

to reduce as much risk as possible. Ultimately, the use of genetic algorithms for 

optimization can lead to refinement in decision-maker risk tolerance levels and further 

quantify risk in resiliency. 
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Appendix A: Case Study Analysis 

Weapon Type Risk 
Level 

Dispersion 
Distance 
Between 
Facilities 

(ft) 

Quantity of 
Dispersal 
(Gallons) 

Percentage 
of Total 

Base 
Capacity 

Number of 
Adversary 

Missiles Used 
to Achieve 

Mission 
Failure 

DF-15A High 
Risk 450 

                           
761,382  5.6%                                  

15.0  
                        

3,010,000  22.3%                                  
14.0  

DF-15A Medium 
Risk 597 

                           
597,731  4.4%                                  

11.0  
                        

2,397,500  17.8%                                  
11.0  

DF-15A Low 
Risk 523.5 

                           
668,921  5.0%                                  

13.0  
                        

2,666,140  19.7%                                  
12.0  

DF-15A & 
DF-11 (M-11) 

High 
Risk 450 

                           
761,382  5.6%                                  

15.0  

                        
3,010,000  22.3%                                  

14.0  

DF-15A & 
DF-11 (M-11) 

Low 
Risk 1434.5 

                           
287,047  2.1%                                    

5.0  

                        
1,183,832  8.8%                                    

5.0  

DF-15A & 
DF-11 (M-11) 

Medium 
Risk 2419 

                           
192,219  1.4%                                    

3.0  

                           
799,415  5.9%                                    

3.0  
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Appendix B: Case Study Analysis (50,000 Gallons) 
Storage Size (50,000 Gallons) 
Weapon 
Type 

Risk 
Level 

Dispersion 
Distance 
Between 
Facilities 
(ft) 

Quantity 
of 
Dispersal 
(Gallons) 

Percentage of 
Total Base 
Capacity 

Number of 
Adversary Missiles 
Used to Achieve 
Mission Failure 

Precision  
Weapon 

High 
Risk 

450 761,382 5.6% 15 

Precision  
Weapon 

Medium 
Risk 

597 597,731 4.4% 11 

Precision  
Weapon 

Low 
Risk 

523.5 668,921 5.0% 13 

Non-
Precision 
Weapon 

High 
Risk 

450 761,382 5.6% 15 

Non-
Precision 
Weapon 

Medium 
Risk 

1434.5 287,047 2.1% 5 

Non-
Precision 
Weapon 

Low 
Risk 

2419 192,219 1.4% 3 
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Appendix C: Case Study Analysis (210,000 Gallons) 
Storage Size (210,000 Gallons) 
Weapon 
Type 

Risk 
Level 

Dispersion 
Distance 
Between 
Facilities (ft) 

Quantity of 
Dispersal 
(Gallons) 

Percentage 
of Total Base 
Capacity 

Number of 
Adversary 
Missiles 
Used to 
Achieve 
Mission 
Failure 

Precision  
Weapon 

High 
Risk 

450 3,010,000 22.3%                                  
14.0  

Precision  
Weapon 

Medium 
Risk 

597 2,397,500 17.8%                                  
11.0  

Precision  
Weapon 

Low Risk 523.5 2,666,140 19.7%                                  
12.0  

Non-
Precision 
Weapon 

High 
Risk 

450 3,010,000 22.3%                                  
14.0  

Non-
Precision 
Weapon 

Medium 
Risk 

1434.5 1,183,832 8.8%                                    
5.0  

Non-
Precision 
Weapon 

Low Risk 2419 799,415 5.9%                                    
3.0  
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Appendix D: Raw Data Used for Research 
 

Methodology - 
Radii.xlsx

Analysis.xlsx
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