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Abstract

In the absence of wind speed data from aircraft reconnaissance of tropical cy-

clones (TCs), analysts rely on remote sensing tools to estimate TC intensity. For over

40 years, the Dvorak technique has been applied to estimate intensity using visible

and infrared (IR) satellite imagery, but its accuracy is sometimes limited when the

radiative effects of high clouds obscure the TC convective structure below. Microwave

imagery highlights areas of precipitation and deep convection revealing different pat-

terns than visible and IR imagery. This study explores application of machine learn-

ing algorithms to identify patterns in microwave imagery to infer storm intensity,

particularly focusing on weaker storms where other analysis methods struggle. An

analysis of 91 GHz Special Sensor Microwave Imager/Sensor imagery onboard various

Defense Meteorological Satellite Program assets from February 2006 to 2017 is pre-

sented. Incorporating pattern recognition methods into the current analysis process

at the Joint Typhoon Warning Center has the potential to significantly improve TC

intensity estimates across all basins of responsibility.
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I. Introduction

Tropical cyclones (TCs) cause significant damage to people, property, and re-

sources totalling billions of dollars globally each year. As an example, the costliest

year for the United States (US) was 2005 when TC damages reached 143.9 billion

dollars (Blake et al., 2011). The US Department of Defense (DoD) aims to minimize

TC impacts to DoD assets and personnel. Accurate TC forecasts are imperative for

the DoD to guard their resources by initiating protective measures. The Joint Ty-

phoon Warning Center (JTWC) is responsible for issuing TC forecasts and providing

warning support for the DoD and other US government agencies across the Pacific

and Indian Oceans. JTWC is manned by both Navy and Air Force military and

civilian personnel.

Aircraft reconnaissance missions are frequently flown in the Atlantic Ocean to

investigate TCs, particularly those that are expected to make landfall. Dropsondes are

released to measure the wind speeds and surface pressure within the TC. However,

the Atlantic is the only basin where aircraft reconnaissance missions are routinely

flown through the storm center. When these observations are unavailable analysts

rely on satellite remote sensing to track and estimate the intensity of TCs. Visible and

infrared (IR) sensors aboard geostationary satellites are able to consistently observe

TCs at a temporal resolution of up to 10 minutes. This allows near real-time tracking

and a multitude of visible and IR imagery to analyze to estimate TC intensity.

The most widely used method to determine the intensity from satellite data

is the Dvorak Technique (DT), which analyzes visible and IR imagery. However,

there are other bands in the electromagnetic (EM) spectrum that are used to sense

atmospheric phenomena. The microwave band provides additional information about

TCs that cannot be captured by visible or IR sensors. Microwave radiation can pass

through clouds unlike visible and IR, which means that middle and lower level features

1



beneath the high cloud layer can be sensed by microwave instruments. This allows

the structure of a TC to be observed by a satellite orbiting Earth.

Currently, there is no universally accepted method to estimate intensity from

microwave imagery. The objective of this research is to identify patterns in microwave

imagery that relate to TC intensity, similar to how the DT relates visible and IR

imagery to TC intensity. This research implements cluster analysis, a type of machine

learning, to identify potential patterns.

Estimating TC intensity with microwave imagery or data gathered through

microwave sensing is an active area of research. There have been a number of objective

algorithms developed that utilize temperature sounding data from microwave sensors,

some of which have been incorporated into operational TC forecasting centers (Ritchie

et al., 2014). However, methods that analyze microwave imagery are less prevalent.

Most, if not all, of the methods devised in the past decade apply computationally

expensive algorithms to address the problem. None to our knowledge have applied the

relatively simple cluster analysis to directly reveal patterns that correlate to intensity.

There is one study by the Japan Meteorological Agency (JMA) that applies cluster

analysis as a first step, but then goes on to apply a regression equation to determine

the intensity (Sakuragi et al., 2014). Experienced analysts at JTWC have subjectively

identified microwave imagery patterns related to various TC intensity ranges. These

patterns are used as an analysis aid at JTWC to supplement the DT and other

intensity estimation methods. An objective scientific backing to these patterns would

bolster confidence in their use.

Perkins (2018) conducted initial research into identifying patterns in microwave

imagery that relate to TC intensity, which this study builds upon. The background

section will provide enough information on TCs and microwave remote sensing to

establish the baseline knowledge needed to appreciate this research. However, more

2



emphasis was placed on describing cluster analysis since this was a new component of

the research. For a more in-depth explanation of microwave remote sensing as related

to TCs please reference Perkins (2018).

This chapter introduced the motivation and objective of this research while

highlighting that this specific approach is new. Chapter II provides a brief review on

TCs, the DT, microwave remote sensing, developments in intensity estimation since

the DT, and cluster analysis. Chapter III details the methodology including data

selection, image processing, and cluster analysis procedures. Chapter IV presents the

results of multiple clustering trials and analyzes interesting patterns that emerged in

the data. Lastly, Chapter V discusses potential impacts of this research, limitations,

and future work ideas.
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II. Background

2.1 Tropical Cyclones

TCs are warm core low pressure systems that form over warm tropical oceans

around the globe (Chan and Kepert, 2010). TCs begin as areas of disorganized

enhanced convection. If this area of enhanced convection develops a rotational cir-

culation of a few hundred kilometers (km) it transitions to a tropical depression.

Once the rotational circulation has developed the system is typically considered to be

self-sustaining. Under favorable environmental conditions the tropical depression will

intensify to tropical storm strength and eventually typhoon strength (or equivalent in

other basins). As a TC reaches maturity the inner core becomes nearly axisymmetric.

There is a relatively calm eye in the center with a typical diameter of 20-100 km. The

eye is partly or fully surrounded by an intense ring of convection called the eyewall.

Finally, spiral rainbands extend out from the center and rotate cyclonically around

the eye (Chan and Kepert, 2010). The innermost area of a TC can be divided into

the inner core and outer core. There are multiple definitions for the size of the inner

and outer core. One from Weatherford and Gray (1988) defines the inner core as 0 -

1◦ latitude (0 - 111 km) and the outer core as 1◦- 2.5◦ latitude (111 - 278 km).

There are seven TC formation areas, also referred to as basins; four in the North-

ern Hemisphere and three in the Southern Hemisphere. These basins are defined

by the World Meteorological Organization (WMO) as the North Atlantic, Eastern

North Pacific, Western North Pacific (WP), North Indian, Southwest Indian, North-

west Australian/Southeast Indian, and Northeast Australian/Southwest Pacific, illus-

trated in Figure 1. The WMO Tropical Cyclone Programme (TCP) is charged with

establishing and managing regionally coordinated systems to minimize the loss of

life and property caused by TCs. The seven TC Regional Specialized Meteorological
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Figure 1. These are the TC basins as defined by World Meteorological Organization
(2017): 1)North Atlantic, 2)Eastern North Pacific, 3)Western North Pacific, 4)North
Indian, 5)Southwest Indian, 6)Northwest Australian/Southeast Indian, and 7)North-
east Australian/Southwest Pacific. Image from Hurricane Research Division (2014)

Centres (RSMCs), six of which are labeled in Figure 1, are responsible for advisories

and bulletins for all TCs in their region (World Meteorological Organization, 2017).

The intensity of a TC is defined by the maximum wind speed and minimum

sea level pressure of the storm. TC nomenclature depends on the basin and intensity

of a storm, the various naming conventions are shown in Figure 2. However, the

nomenclature listed for JTWC in Figure 2 is specific to the WP. The US National

Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC) separate

hurricanes into five categories based on the Saffir-Simpson Scale displayed in Table 1.

Table 1. The Saffir-Simpson Hurricane Wind Scale used by the US to categorize TCs.

Category Wind Speed (kt)

1 64-82

2 83-95

3 96-112

4 113-136

5 137 or higher
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Figure 2. Nomenclature of TCs from World Meteorological Organization (2017). The
JTWC nomenclature listed is specific to the Western North Pacific only.

2.2 Dvorak Technique

Satellite images have been used to determine TC intensity since the early 1960s.

At that time only one satellite image was available per day. Satellite technology im-

proved through the 1960s with the development of IR sensors and geostationary orbits.

A satellite in geostationary orbit remains above the same point on Earth at all times

so its field of view is constant. These improvements provided tropical meteorologists

the ability to observe the evolution of TCs at a finer temporal resolution. They ob-

served a relationship between TC development and the cloud patterns seen in satellite

images. One of the most critical discoveries made during this period was that “cloud

patterns of tropical cyclones evolve through recognizable stages as the intensity of
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the cyclone changed” (Dvorak, 1984). The cloud pattern experiences periods when

it is more and less defined during the development of a TC. Therefore, the intensity

was difficult to determine if the satellite image was taken when the cloud pattern

was less defined. It became clear that analysis procedures and rules would need to

be developed. These procedures could then be used in conjunction with the cloud

patterns to obtain accurate intensity estimates from satellite images (Dvorak, 1984).

The Dvorak TC intensity estimation technique was first developed in the early

1970s to fill this demand. Dvorak (1984) details the technique and provides forecaster

tools for employing it. The technique was first used operationally early in the 1970s

and underwent continuous improvements through the years. There are analysis tech-

niques for both visible and IR data, which follow a similar series of steps illustrated

in Figure 3 from Dvorak (1984).

Figure 3. A simplified flow chart from Dvorak (1984) to determine TC intensity from
visible/IR satellite imagery. c©American Meteorological Society

7



Figure 4. The relationship between CI number (and T-number) and TC intensity as
defined by Dvorak (1984). c©American Meteorological Society

However, Figure 3 is merely a simplified outline of the DT (reference Appendix

A for a detailed flowchart). The output of the DT is a Tropical number (T-number)

that results in the current intensity (CI) estimate of a TC. Figure 4 shows the table

from Dvorak (1984) that defines this relationship for each CI number, the intensity

is defined the same for the T-numbers. This method was developed over decades by

observing and studying satellite imagery. However, it does not include an assessment

of microwave imagery, which was not available until 1987. Due to the capabilities

of microwave sensing there is a large amount of interest in incorporating microwave

imagery into the intensity estimation process.

2.3 Microwave Remote Sensing

Satellite remote sensing of the earth and its atmosphere is possible because EM

radiation is absorbed, reflected, scattered and emitted by the earth system. The re-
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sponse of an EM wave when encountering a particulate is dependent on the wavelength

of the incident radiation in addition to the size, shape, and molecular properties of the

atmospheric constituent it interacts with. Atmospheric phenomena can be observed

by exploiting different bands within the EM spectrum. The transparency of Earth’s

atmosphere varies depending on which band of the EM spectrum it is viewed in and

the amount of water vapor present in the atmosphere. The three bands most com-

monly used to observe meteorological phenomena are the visible, IR, and microwave

bands (Petty, 2006).

A dry atmosphere is almost completely transparent in the visible band. How-

ever, clouds are highly reflective of incoming solar radiation, therefore they are not

transparent. Within the IR and microwave bands there are ranges of wavelengths

where a cloud-free atmosphere is fairly transparent, these are called spectral win-

dows. However, even within a spectral window in the IR band clouds are not trans-

parent because IR radiation emitted by Earth’s surface does not pass through clouds.

Therefore, neither visible nor IR sensors can be used to observe conditions below or

within clouds. On the other hand, clouds are semi-transparent in the microwave band

allowing structure beneath cloud tops to be visible (Petty, 2006).

Water vapor and oxygen are particularly strong absorbers and emitters at cer-

tain wavelengths in the microwave band, Figure 5 from Petty (2006) shows these

absorption bands. Outside of the two oxygen absorption bands at 60 and 118 GHz

the dry atmosphere is nearly transparent. However, once water vapor is included

transmittance through the atmosphere decreases as the frequency increases, note the

solid line representing a tropical climate with high water vapor content in Figure 5.

Spatial resolution decreases with microwave sensors as compared to visible or IR

because wavelengths are longer in the microwave band. Therefore, microwave sensors

are flown on satellites in low earth orbit to improve the resolution. However, this
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tion bands for H2O and O2 are highlighted. The H2O effect varies with the average
water vapor content, therefore transmission in dry air and three different air mass types
(defined by water vapor content) are plotted (Petty, 2006). Used with permission.

orbit only allows each area on the earth to be observed twice a day. Furthermore,

because there are gaps between each pass of a polar orbiter and TCs move quickly at

times there are days where there may only be one or no images of a TC.

Different microwave frequencies are used to observe various properties of the

TC. Low frequencies are able to observe information near the earth’s surface due to

the high transmittance, whereas higher frequencies sense meteorological parameters

higher in the atmosphere. Transmittance through an atmosphere containing water

vapor has local minima at 22 and 183 GHz and local maxima near 37 and 85 GHz.

Absorption bands are utilized when sounding the atmosphere. This technique

exploits the sharp transition in absorptive properties over a short wavelength range.

The main TC imaging channels are 37 GHz and from 85-91 GHz where maximal

transmittance occurs. The 85-91 GHz imager channels are used to view the structure
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of a TC including the rainbands and eyewall (Hawkins et al., 2008). This is possible

because ice scatters microwave radiation in the 85-91 GHz channel which results in

an “ice-scattering signature” (Cecil and Zipser, 1999). Ice indicates an area of deep

convection highlighting the structure of a TC. Therefore, the frequencies between 85

GHz and 91 GHz are useful for investigating TC intensity.

The information output by a microwave imager is brightness temperature (TB).

TB is not the physical temperature of the surface that radiation is emitted or scattered

from. Rather, TB is related to both the physical temperature at which the radiation

was emitted and the particulates the radiation encounters prior to reaching the sensor

(Petty, 2006). Ice scattering microwave radiation in the eyewall and rainbands results

in lower TB in these areas (Cecil and Zipser, 1999). Whereas, area covered by non-

precipitating clouds will sense the microwave radiation emitted by the ocean surface

which is relatively warm and displays as a warmer TB. For instance a large well-

developed eye will show up as a warmer TB circle at the center of the TC.

2.3.1 Microwave Remote Sensing Instruments

The first microwave radiometer that measured radiation emitted and reflected

from the earth was launched by the Soviet Union in September 1968 aboard Cosmos

243 (Gorbunov and Kutuza, 2018). The first scanning radiometer, which was impor-

tant for furthering TC research, was aboard Nimbus 5, launched in 1972. Microwave

radiometers are used to sense many meteorological parameters including temperature,

moisture, and liquid water content. Additionally, wind speeds can be inferred over

the ocean based on wave roughness (Kidder, 1978) However, this research exclusively

analyzes microwave imagery therefore only imagers will be discussed from here on.

The first microwave imager was the Special Sensor Microwave/Imager (SSM/I)

launched on the Defense Meteorological Satellite Program (DMSP) F-8 polar orbit-
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ing satellite on 19 June 1987 (Hollinger, 1990). The follow-on to SSM/I was the

Special Sensor Microwave Imager/Sounder (SSMIS) launched on DMSP F-16 on 18

Oct 2003 (Kunkee et al., 2008). Other microwave imagers include the Advanced

Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Advanced

Microwave Scanning Radiometer 2 (AMSR2), Tropical Rainfall Measurement Mission

(TRMM) Microwave Imager (TMI), and most recently Global Precipitation Measure-

ment (GPM) Microwave Imager (GMI). TMI was launched aboard TRMM in 1997 as

a joint venture between National Aeronautics and Space Administration (NASA) and

Japan Aerospace Exploration Agency (JAXA). Unlike DMSP satellites, TRMM was

not a polar orbiting satellite though it was still in a low earth orbit (Hou et al., 2014).

The primary mission of TRMM was to provide precipitation estimates over the trop-

ics. Therefore, it utilized a circular, non-sun-synchronous orbit with an inclination of

35◦ to the equator to maximize time spent over the tropics (NASA, b). TMI had a

spatial resolution of 7 km x 5 km in the 85.5 GHz channel (Lee et al., 2002). TRMM

ended its mission in April 2015 after depleting its fuel supply (Blumenfeld, 2015).

Prior to the completion of TRMM’s mission the GPM Core Observatory carrying

GMI launched in February 2014. Its orbit was slightly different with an inclination

of 65◦ to the equator, which extended its field of view to capture information over

the midlatitudes in addition to the tropics (NASA, a). The spatial resolution of GMI

in the 89 GHz band is 4.4 km x 7.3 km (Hou et al., 2014), similar to that of TMI.

AMSR-E was in operation from June 2002 to October 2011 aboard the NASA Aqua

satellite. Due to a mechanical failure AMSR-E ceased operations in October 2011.

However, AMSR2 began operating in May 2012 on the JAXA Global Change Obser-

vation Mission 1st-Water satellite, essentially replacing AMSR-E. Both sensors were

aboard polar orbiting satellites and had spatial resolutions in the 89 GHz band of 5

km x 3 km and 6 km x 4 km, respectively (Du et al., 2014).
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Figure 6. The SSMIS scan geometry from Kunkee et al. (2008).

2.3.2 Special Sensor Microwave Imager/Sounder (SSMIS)

The SSM/I has a swath width of 1,400 km and spatial resolution of 12.5 km

in the 85.5 GHz channel (Hollinger, 1990). There were changes with the upgrade

to SSMIS. The frequency of the channel of interest was changed from 85.5 GHz to

91 Ghz to reduce the complexity of the hardware. The conical scanning geometry

and spatial resolution remained the same, but the swath width increased to 1,707 km

(Kunkee et al., 2008). Figure 6 illustrates the scanning geometry for SSMIS.

The change from 85.5 GHz with SSM/I to 91 GHz with SSMIS affected the

TB display because of how each channel responds to frozen hydrometeors. There

is increased scattering by frozen hydrometeors at 91 GHz as compared to 85.5 GHz

resulting in lower brightness temperatures. Therefore, areas of convection are high-

lighted better with SSMIS. Additionally, the increase in swath width allows more

TCs to be sensed by increasing the spatial coverage (Hawkins et al., 2008). Another

advantage of SSMIS is that it is flying on three satellites: F16, F17, and F18.
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2.4 Previous Research

2.4.1 Intensity Estimation Techniques

Since the DT there have been many other intensity estimation methods devel-

oped that use remotely sensed data. Some of these techniques have built upon the

DT such as the Advanced Dvorak Technique (ADT), while others aim to be used in

conjunction with the DT. Providing an exhaustive list of these methods is outside

the scope of this research. However, prominent techniques and those most relevant

to this thesis will be briefly introduced in this section.

2.4.1.1 Using Data from Microwave Sensors

The first microwave sensor used to infer TC intensity was the Scanning Mi-

crowave Spectrometer (SCAMS) aboard Nimbus 6, launched in 1975. Kidder (1978)

proposed a method that deduced the central pressure of a TC from warm temperature

anomalies in the upper troposphere. The outer surface wind speeds were calculated

by assuming gradient balance and estimating the surface pressure gradient. There

have been numerous studies since Kidder (1978) that attempt to determine TC in-

tensity from microwave sounding data. This has led to five microwave sounder-based

intensity estimation techniques that are routinely used in operational settings (Ritchie

et al., 2014). Three of these methods are derived from algorithms that utilize data

from the Advanced Microwave Sounding Unit (AMSU) instrument. These were de-

veloped by Cooperative Institute for Meteorological Satellite Studies (CIMSS), JMA,

and Cooperative Institute for Research in the Atmosphere (CIRA)/National Environ-

mental Satellite, Data, and Information Service (NESDIS). The fourth and fifth are

produced by CIMSS and use data from SSMIS and Advanced Technology Microwave

Sounder (ATMS), respectively, in their algorithms (Herndon and Velden, 2016).
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Once satellite-based microwave imagery became available in 1987 numerous

studies were conducted that attempted to relate the TB to TC intensity. Although

there were a few notable studies prior to it, Cecil and Zipser (1999) is often cited as

landmark research for relating microwave TB to TC intensity. Cecil and Zipser (1999)

found high correlations between the 85 GHz mean polarization corrected brightness

temperature (PCT), which was a proxy for updraft strength and precipitation inten-

sity, and both current and 24-hour intensity.

Another development spurred by microwave imagery was an objective method

to determine the TC center. It can be hard to identify the TC center on visible or

IR imagery if an eye has not yet developed or the eye is covered by clouds. Wimmers

and Velden (2010) designed an objective algorithm, Automated Rotational Center

Hurricane Eye Retrieval (ARCHER), that ingests 85-92 GHz microwave imagery to

determine the rotational center of a TC. There have been improvements to the initial

algorithm. Wimmers and Velden (2016) details the improvements to the algorithm,

which is now called ARCHER-2. ARCHER-2 ingests more data than the original

version, now including visible and IR imagery from geostationary satellites in addition

to scatterometer data and 37 GHz microwave imagery. Furthermore, it now provides

an expected error score that tells the user how reliable the center fix provided was.

2.4.1.2 Using Data from Infrared and Visible Sensors

Perhaps the most prominent objective intensity estimation technique is the

ADT, documented by Olander and Velden (2007). The ADT is a culmination of many

research projects conducted by the University of Wisconsin-Madison’s CIMSS. This

research includes the Objective Dvorak Technique and Advanced Objective Dvorak

Technique. The original goal of designing an objective DT was to mimic the original

DT closely and merely automate the process to increase its objectivity. However, as
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research into TC intensity has increased statistical evaluation of the technique led

to some deviation from the original DT. The ADT algorithm is run operationally at

the National Oceanic and Atmospheric Administration (NOAA)/NESDIS Satellite

Analysis Branch and is used by JTWC, NHC, and other forecast centers (Ritchie

et al., 2014).

An effort to combine the aforementioned techniques is underway at CIMSS.

Satellite Consensus (SATCON) combines objective estimates from the ADT, the

ATMS sounder algorithm from CIMSS and CIRA, and the SSMIS and AMSU sounder

algorithms from CIMSS to determine the best intensity estimation (CIMSS, 2019).

The SATCON algorithm performs better than each member individually and acts as

an ensemble of objective intensity estimation techniques (Velden and Herndon, 2014).

2.4.1.3 Techniques that Apply Machine Learning

Recently machine learning has been utilized to address the difficult problem of

estimating TC intensity. Pradhan et al. (2018) designed a deep convolutional neural

network to categorize TCs by intensity using image recognition. The intensity cate-

gories were set using the Saffir-Simpson Hurricane Wind Scale. Estimating intensity

from an image alone is a difficult problem to solve. The techniques discussed up to

this point have involved significant image pre-processing and domain knowledge to

choose the information that was fed into the estimation algorithms. However, con-

volutional neural networks are very good at recognizing images, which inspired this

cutting-edge research.

The DT is built upon the idea that TCs have similar patterns when they are of

a similar intensity, which supports the potential of Pradhan et al. (2018). Instead of

relying on analysts to identify important features the algorithm steps through layers

generating feature maps and selecting critical features from within these maps. This
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method showed skill in identifying the correct categories as it learns from its mistakes

and continually improves. This is a very significant development but is currently only

applied to IR imagery. Furthermore, it requires significant computing power to train

the initial algorithm as deep learning is a highly sophisticated technique.

Bankert and Cossuth (2016) looks specifically at determining TC intensity from

microwave imagery. This research uses machine learning algorithms to select features

within microwave images that are most indicative of intensity. While Bankert and

Cossuth (2016) focuses on microwave imagery as opposed to sounding data the ob-

jective of the study is not to identify patterns that relate to intensity. Furthermore,

the feature selection algorithms are likely still computationally expensive, albeit less

so than Pradhan et al. (2018).

A less computationally intensive form of machine learning is cluster analysis.

Clustering has been applied to TC tracks with the intent of determining any inter-

annual variability in tracks due to large scale teleconnections. There are a number of

studies that have explored this including Ramsay et al. (2012), Daloz et al. (2015),

and Kim and Seo (2016). However, cluster analysis has rarely been applied to the

problem of intensity estimation.

Only one research study applying cluster analysis to estimate TC intensity from

microwave imagery was uncovered. Sakuragi et al. (2014) details an objective TC in-

tensity estimation method developed by JMA. This method uses TB information from

five channels of the TMI, including the 85 GHz channel. The TC is divided into sec-

tions that are dependent on the direction of the storm motion. The mean, minimum,

maximum, and ratio of pixels exceeding a defined TB threshold were calculated for

each section. This was done for each channel used of each polarization yielding a final

457 variables to be used for cluster analysis.
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Sakuragi et al. (2014) applied k-means cluster analysis to the dataset separating

the data into ten clusters. Once each cluster was created regression analysis was

applied to each cluster to define a regression equation to relate five to seven of the

original 457 variables to the maximum wind speed. The initial clusters were created

from data from 1998-2008 then validation was accomplished on TCs from 2009-2012.

During validation the images were once again clustered into 10 clusters using k-means

then the regression equation determined from the 1998-2008 data was applied to see

what the maximum wind speed was. This result was then compared to the best

track maximum wind speed for analysis. Their results showed a bias near 0 m/s

and a root-mean squared error of 6.26 m/s, which they note is comparable to the

accuracy of the DT. While TMI data was available this method was used by the

RSMC Tokyo-Typhoon Center as supplementary information to the DT.

2.4.2 Research this Thesis Directly Builds On

Perkins (2018) provided the proof of concept for this research wherein microwave

imagery from four sensors was analyzed. The images were separated by intensity using

Saffir-Simpson Scale categories. Then images in each intensity bin were composited

together. Each intensity bin showed a different pattern with higher intensities con-

taining more defined structure. However, since the images were not separated into

like images the composite resulted in muddled patterns that were not representative

of the entire intensity bin. This is where this research begins its focus. Cluster anal-

ysis is applied to the images, separated by intensity, to pick out common patterns

that could subjectively signify a certain intensity. JTWC has a binder of microwave

patterns that have been subjectively identified by experienced analysts to correspond

to certain intensity ranges. Satellite analysts and forecasters refer to the images in

this binder to identify patterns that resemble a current TC microwave satellite im-
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age to estimate the current intensity based on the closest visual match. While this

method has proven beneficial to the JTWC forecast process, it is highly unstructured

and informal. This supports both the feasibility and necessity of this study.

2.5 Cluster Analysis

The primary objective of a machine learning algorithm is to learn from training

data in order to assess unseen test data by performing various predefined tasks on the

data provided. Machine learning problems are typically broken into supervised and

unsupervised learning. Supervised learning, routinely called classification, assesses

labelled data. Conversely, unsupervised learning involves only unlabeled data and

can ultimately lead to the discovery of hidden patterns in data (Jain, 2010).

Cluster analysis is a type of unsupervised learning. The purpose of clustering

data is to reveal the natural grouping of a set of objects. For instance, given some

representation of n objects find k groups based on a similarity measure where the

intra-group similarity is high and similarity between groups is low. Although humans

are adept at recognizing patterns in two or three dimensions, clustering algorithms

must be employed to pick out clusters from high-dimensional data (Jain, 2010).

Clustering algorithms can be separated into two main groups: hierarchical and

partitional. Hierarchical clustering can further be subdivided into agglomerative or

divisive. Agglomerative hierarchical clustering begins with each object in its own

cluster, then matches them based on similarity, starting with the most similar two

objects. In contrast, divisive hierarchical clustering starts with all objects in one

cluster then breaks a cluster into two at each step until each object is in its own cluster.

Unlike hierarchical clustering, partitional clustering algorithms find all clusters at the

same time rather than in steps. One of the most widely-used partitional clustering

algorithms is k-means due to its simplicity and efficiency (Jain, 2010).
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2.5.1 K-means Clustering

K-means was first discovered in 1956 and was found by four different research

teams independently across scientific fields between 1956-1967. K-means clusters data

by minimizing the squared error between the mean of the cluster and the points in the

cluster. Figure 7 displays the steps taken by k-means to identify clusters. Although

the algorithm appears quite simple there are important limitations that must be taken

into consideration.

There are three user defined parameters in k-means: the number of clusters

(k), the initial clusters created, and the distance metric. The final clusters output

by k-means are affected by the cluster initialization because k-means converges to

local minima. One method used to try to correct this is to replicate k-means with

different initializations and choose the run with the smallest squared error. However,

Steinley (2003) noted that for a medium-sized dataset with 200 objects and 8 features

there could be thousands of unique local optima. Therefore, Steinley (2003) advises

completing many thousand random initializations and choosing the one with the

smallest sum of squared error. However, this is viewed as a clumsy approach that

may still provide a sub-optimal result. Although this is a serious limitation of k-

means, Jain (2010) states that the most critical choice is the value of k.

There is no formula to objectively determine the correct number of clusters.

Typically, k-means is run for multiple values of k and the results are reviewed by an

expert in that field to determine what the best k for the dataset is. However, there

are many methods that can be applied to search for the optimal k. For example,

the elbow method is one well-known technique. An error measure is plotted which

decreases as k increases. Sometimes there is a clear point at which the error decreases

less rapidly, this k is the elbow and is considered the optimal k (Tibshirani et al.,

2001). There are other methods that could be discussed, but they are outside the
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Figure 7. The general steps taken during k-means cluster analysis.

scope of this project as there is no standard approach. Next, hierarchical clustering

will be described, which is another widely used clustering algorithm (Jain, 2010).

2.5.2 Hierarchical Clustering

Agglomerative hierarchical clustering is the most commonly used type of hi-

erarchical clustering. There are three user defined parameters within hierarchical

clustering: the distance metric, the linkage method, and where the tree is cut to

create clusters. The steps of hierarchical cluster analysis are laid out in Figure 8.

Each step in Figure 8 represents a decision point that must be made by the

user. Within Matrix Laboratory (MATLAB), a programming platform popular in

engineering and science, there are twelve built-in distance metrics or users can define
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Figure 8. The general steps taken during hierarchical cluster analysis.

their own. Once the distance metric is chosen a similarity matrix is created by

calculating the distance between each pair of objects using features provided to the

computer. After the similarity matrix is created the objects are grouped based on

linkage method. The most common linkage methods are single linkage and complete

linkage (Jain, 2010). When a pair is joined a new similarity matrix is created with the

pair acting as a new object. For single linkage the smallest distance of the two is used,

whereas in complete linkage the largest distance is used to recalculate the distance

between the now “paired” object and all other objects. The output of linking the

objects based on similarity is a matrix, where each row represents a step and contains

information about the pair of objects that was combined. Once the tree is created

the user can choose to cut it by specifying arbitrary maximum number of clusters or

by finding natural divisions in the data through the inconsistency coefficient. The

inconsistency coefficient compares the similarity of a pair against all others at that

same step in the hierarchy to determine natural breaks in the data (The MathWorks

Inc, 2015).
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Hierarchical clustering is convenient because the clusters created can be easily

viewed. The best way to view them is by forming a dendrogram from the output from

Step 2. This allows the user to visualize their clusters and assess natural groupings

based on the shape of the divisions. However, this is not the only way to view the

data. Once clusters are identified by an algorithm it is useful to run an analysis to

determine if objects were placed in the right cluster. One popular tool to do this is

the silhouette plot (The MathWorks Inc, 2015).

2.5.3 Silhouette Plot

Rousseeuw (1987) proposed a graphical display of clusters produced by cluster-

ing algorithms called silhouettes. The purpose is to determine how likely an object

is in the correct cluster. Figure 9 contains example objects divided into clusters to

accompany Equation 1, which defines how the silhouette value is calculated for each

object:

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (1)

In Equation 1 a(i) is the average dissimilarity of i to all other objects of A, in

Figure 9 this is the average length of all lines in A. In order to calculate b(i) Rousseeuw

(1987) first defines d(i, C) as the average dissimilarity of i to all object of C, in Figure

9 this is the average length of all lines going from i to C. Next, d is calculated for

every cluster that is not A. Then, the smallest average distance is selected as b(i),

such that b(i) = minimum
C 6=A

d(i, C).
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Figure 9. An illustration of the components used to compute s(i) in Equation 1 from
Rousseeuw (1987). Used with permission.

The silhouette value will always fall between -1 and 1. A silhouette value of 1

means the object has the highest likelihood of belonging in that cluster, whereas a

value of -1 means the object has the lowest likelihood of belonging in that cluster. A

value of 0 is neutral, not indicating either way if the object belongs in that cluster.
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III. Methodology

3.1 Data Selection

The microwave images analyzed in this research were originally-generated by

Naval Research Laboratory (NRL) and Fleet Numerical Meteorology and Oceanog-

raphy Center (FNMOC) and provided by JTWC through their on-site secure server.

Receiving the data directly from JTWC was preferable because there were no country

borders, latitude, or longitude lines overlaid on the images. JTWC creates best track

files for each storm during the post-storm review. All available data is reviewed by

three people with the benefit of hindsight and time to complete an intensive review.

The final product is the best estimate of reality in the absence of aircraft observations.

JTWC has access to data from five microwave imagers and two microwave sounders,

from which imagery is derived, across five basins. Yet, to minimize the amount of

variability in the data analyzed this research focuses on the WP basin using 91 GHz

microwave imagery from SSMIS.

The WP basin was chosen because it has the highest frequency of TCs, approxi-

mately 30% of the global total (World Meteorological Organization, 2017). Addition-

ally, there is a limited number of large islands in the basin. This is desirable because

TC structure is affected when storms encounter land. Gray (1968) noted that TCs

can form in the WP in any month but the highest concentration occurs during boreal

summer. The borders of the WP basin are the 180◦ longitude line and the Asian

coastline with the area of maximum TC intensification occurring between 130◦E and

150◦E (Gray, 1968).

SSMIS was selected as the preferred sensor because there is more data available

for it. SSMIS has flown on three DMSP satellites, whereas other imagers introduced

in Section 2.3 have only flown on one satellite, with the exception of SSM/I. The
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final imagery was selected with strict criteria to produce optimal results, which will

be detailed in Section 3.3.

3.2 Image Processing

TCs are tracked by JTWC using an annual cyclone number. The TC num-

bers start at 01 for the first storm of the calendar year, then increase by 1 for each

subsequent storm in that specific basin. The best track data compiled by JTWC is

stored in a single document per storm, labeled with a ‘b’ for best track, the basin,

TC number, and year, i.e. ‘bwp052009.txt’. Information about the TC is recorded

every 6 hours at 00Z, 06Z, 12Z, and 18Z. Up to 35 pieces of data related to the TC

are recorded at each time step. The best track data includes the date, time, latitude

and longitude of the storm center, maximum sustained wind speed, and minimum

sea level pressure among other storm properties. Similar data are stored within the

filename of the imagery obtained from JTWC. Figure 10 shows an example filename

and highlights the data contained within it.

The images received from JTWC were not storm-centered. Additionally, some

maximum wind speeds were revised in the best track data causing the wind speed

encoded in some files’ names to be incorrect. Matthew Kucas, JTWC Technical

Services Team Chief, provided the script to process the images so they could be used

in this research. Figure 11 outlines the image processing steps.

Figure 10. Example of the file naming convention for the images provided by JTWC.
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Figure 11. Flowchart outlining the steps taken during image processing.

All scripts were created and run through MATLAB. The images were stored as

a matrix, moving through the dataset one storm at a time. Next, the best track file

for that storm was imported and scanned. The TC number, date/time of observation,

latitude and longitude of the center, storm development level, maximum wind speed

and minimum central pressure were stored as variables. Next, the date, time, and

latitude/longitude at the center of the image is extracted from the image filename

and stored.

The image time was used in conjunction with the best track data to interpolate

the center location and maximum wind speed at the time of the image. Next, the

image is recentered on the interpolated best track location by determining the distance

and direction between the original image center location and the new interpolated best
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track center location. The image is then cropped based on the new center position

to a 401x401 pixel image, with the interpolated center location at pixel [201,201].

Finally, if the entire bounds of the recentered image fell within the bounds of the

original image it was saved with the interpolated best track wind speed and center

location in the new filename for future reference.

The recentered images were initially saved as red, green, blue (RGB) images,

meaning each pixel had a red, green, and blue value. In order to run cluster analysis

on the images each pixel could only have one reference value. The RGB images were

converted into indexed images so that each pixel had only one value associated with

it. When the indexed image is displayed with the original color map the microwave

TB correspond directly to the new pixel values, illustrated in Figure 12. Before begin-

ning cluster analysis the images were refined based on requirements of the clustering

algorithm and experiment-imposed restrictions.

Figure 12. Typhoon Dolphin (2015) - Example of an indexed image, note the color bar
on the right indicating that the pixel values are related to the brightness temperatures.
The image is 401x401 pixels which equates to approximately 800 km x 800 km.
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3.3 Image Selection Criteria

In order to optimize the data analyzed three general restrictions were imposed

on the images used, shown in Table 2. These will be expanded upon in this section.

Table 2. Image selection criteria

Coverage No images with data missing

Temporal There cannot be two images within a one-hour time-span

Location No TCs over land (see Table 3)

3.3.1 Automated Criteria

Two restrictions were placed within the initial image processing code. First, the

percent coverage was limited to greater than or equal to 80%. Initially, the threshold

was set at greater than or equal to 70%, but all images with less than 80% coverage

resulted in final images with missing data. For this initial study, this methodology

does not incorporate images with missing data. Therefore, the cutoff was set at 80%

to avoid tediously deleting unusable images later in the process.

Secondly, no TCs over land were included in the dataset, due to structural

changes that occur when TCs encounter land (Stenger, 2013). This was accomplished

by setting longitude cutoffs based on latitude ranges. Any TC with a center west of

the longitude cutoff was not included. Figure 13 illustrates these cutoffs that are

listed in Table 3.

Table 3. The location criteria used to eliminate images of TCs over land.

Latitude Range Longitude Cutoff
0 - 15◦N 130◦E

15.1◦N - 30◦N 125◦E
30.1◦N - 40◦N 145◦E
40.1◦N - 50◦N 150◦E

50.1◦N - Max Latitude 165◦E
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Figure 13. Map of the cutoff values listed in Table 3. Any TC center that was west of
the white line was discarded, the equator is also highlighted. Underlying imagery from
c©2018 NASA TerraMetrics, Google.

3.3.2 Manually Executed Criteria

Once the images were processed, they were manually examined to ensure the

highest quality. Any images that were missing data, even a tiny fraction as illustrated

in Figure 14, were discarded. Additionally, when two images were within an hour or

less of each other one of the images was discarded. This was done because the struc-

tures were so similar that it was akin to having two of the same images, which would

weight that pattern over others. Table 4 displays the number of images originally

received from JTWC and the number remaining after each restriction was imposed.

Table 4. The number of images available for analysis after each restriction was imposed.

Original Dataset
Total

80% and Land
Restrictions

Missing Data
Removed

Images within
1-hour Removed

15,164 1,869 1,645 1,496
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Figure 14. Typhoon Phanfone (2014) - Example of an image that was missing a small
amount of data, in the top left corner.

Finally, once all manual quality control was complete the images were binned

according to the Dvorak T-number that most closely approximates their correspond-

ing, interpolated best track intensity. The Dvorak T-number is known to represent

unique structures within visible/IR imagery. Therefore, it follows that microwave

imagery may also exhibit unique patterns within these bins. The number of images

analyzed in each bin are listed in Table 5.

3.4 Cluster Analysis

Once the data was fully processed cluster analysis was applied to identify re-

curring patterns. Clustering is accomplished by providing pieces of information, or

variables, about each object (images for this research) to the computer, which creates

clusters based on a similarity measure. The variables supplied to the algorithm are

Table 5. The number of images in each Dvorak bin after all restrictions were applied.

Dvorak Number T1 T2 T2.5 T3 T3.5 T4 T4.5 T5 T5.5
# of Images 319 144 156 181 136 114 99 124 80
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user defined. Many different methods of creating variables were tested, since there

was no previous research that set a standard approach. One method tested was di-

viding the image into sections of rings and quadrants and then taking the mean or

sum of each section. However, the final approach chosen was dividing the image into

octants and computing statistical measures on each section to form the variables.

This method will be described in the following section.

3.4.1 Description of Cluster Analysis Variables

Initially, using rings of equal thickness as sections was contemplated. However,

in order to focus on the inner area of the storm that drives the TC intensity, the

thickness of the rings was varied based on the inner core and outer core definitions

by Weatherford and Gray (1988). The inner core rings which occupy the region from

0-60 pixels radially from the center pixel, were 10 pixels thick. The outer core rings

that were 61-140 pixels from the center were 20 pixels thick. Between 141-200 pixels

from the center pixel there were two rings, each 30 pixels thick. The corners remaining

after the final ring was created were considered one section, producing 13 different

sections. Next, these rings were divided into octants resulting in the 104 sections

shown in Figure 15.

One complication noted during previous variable testing was addressed for the

final creation of variables. The pixel values of the blue TB are higher than the pixel

values of the red, yellow and green TB, illustrated in Figure 12. The red and yellow

pixels are important for the clustering solution, since they represent convection within

the TC. When the only statistical measure used to cluster is the mean or sum of each

section the higher blue pixels could mask convection in a section. Therefore, multiple

statistical measures were employed to cluster the images based on the full spectrum

of the pixels. The mean, median, maximum, minimum, standard deviation, and
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Figure 15. This figure illustrates the octants that each image was divided into, using
the definitions of inner-core and outer-core by Weatherford and Gray (1988)

interquartile range were taken of each section and set as the variables, which resulted

in 624 variables. These variables will be applied for use in two different clustering

algorithms, hierarchical and k-means.

3.4.2 Hierarchical Clustering

There are three primary options within hierarchical clustering, which were de-

scribed in Section 2.5. Three trials were conducted using hierarchical clustering for

this research, the settings are displayed in Table 6. The linkage method and the ap-

proach used to cut the hierarchical tree, from now on referred to as the cut method,

remained consistent throughout the trials The distance metric and number of maxi-

mum clusters (k) were varied.

Table 6. The settings chosen for each trial.

Distance Metric Linkage Method Cut Method
Trial 1 Correlation Complete Max Clusters
Trial 2 Euclidean Complete Max Clusters
Trial 3 City Block Complete Max Clusters
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Preliminary testing revealed that complete linkage was the best method for this

dataset. Single linkage consistently produced multiple one-image clusters and one

extensive cluster that contained the majority of the images, which were unsurprisingly

highly dissimilar. Average linkage did not perform as poorly as single linkage but the

images clustered together were less similar to the eye than with complete linkage.

The cut method was set as maximum clusters instead of the inconsistency coefficient

because this provided more control for determining the optimal number of clusters.

Three different ways to calculate the distance between two objects s and t are

defined in Equations 2 - 4, where xs and xt represent vectors of n variables that

describe each object such that xs = [xs1, xs2, ..., xsn] and xt = [xt1, xt2, ..., xtn]. In

Equation 2, x̄s = 1
n

∑
j

xsj and x̄t = 1
n

∑
j

xtj. Additionally, the apostrophe indi-

cates the result is the transpose of the vector calculated within the parentheses (The

MathWorks Inc, 2015). The distance metric that subjectively performed the best in

preliminary testing was the correlation distance. It is defined as one minus the sample

correlation between points:

dst = 1− (xs − x̄s)(xt − x̄t)
′√

(xs − x̄s)(xs − x̄s)′
√

(xt − x̄t)(xt − x̄t)′
. (2)

Next, for validation of the Trial 1 results, Trial 2 was completed with the Eu-

clidean distance. This was chosen because it is the most common distance metric.

The Euclidean distance is the distance between two objects if a straight line were

drawn between them and is defined as:

d2st = (xs − xt)(xs − xt)
′. (3)

Finally, for robustness a third trial was completed using the city block metric.

The city block metric computes the distance as if the path between two objects could
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only follow lines on a Cartesian coordinate system, similar to how city blocks are

organized. There were only four distance metrics remaining that could be used both

in hierarchical clustering and silhouette plots. The city block metric was the simplest

remaining distance measure and is defined as:

dst =
n∑

j=1

|xsj − xtj|. (4)

The final piece of information required to run the cluster analysis was the num-

ber of maximum clusters (k). The optimal k was determined within each trial for

individual intensity bins. The maximum clusters parameter was set at a minimum

of two clusters and a maximum of 1
3
T, the total number of images per bin. Dendro-

grams and silhouette plots, introduced in Sections 2.5.2. and 2.5.3 respectively, were

created for each of k = 2, 3, 4, ..., 1
3
T. The silhouette plots were examined starting

with the highest k then stepping down. Potentially significant clusters were defined

as clusters that were large relative to the others and contained members with highly

positive silhouette values. These potentially significant clusters were identified as

they appeared and were tracked through the process. When there was a step where

a potentially significant cluster combined with another cluster and the intra-cluster

similarity of the potentially significant cluster deteriorated the k directly prior to the

merge was chosen. The dendrogram was used as a visualization tool to track which

clusters combined on each step, Figure 16 illustrates this process.

In Figure 16 the left hand images each represent k=14, note clusters 3 and 5 in

the top left silhouette plot. Cluster 5 was being tracked as a potentially significant

cluster. The right hand images show the clusters formed when k=13. Referencing

the dendrograms confirms that clusters 3 and 5 did combine to form a new cluster

3 that has many images with negative silhouette values. In this case the number of

clusters was set at k=14 in order to retain cluster 5 as a significant cluster. Once
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Figure 16. The method employed to determine the optimal value for k.

k was chosen the hierarchical cluster analysis was run. The next section details the

options chosen for k-means cluster analysis.

3.4.3 K-means Clustering

Although k-means is the most simple clustering algorithm there are options

within the MATLAB k-means function that result in more or less accurate results.

Similar to hierarchical clustering, the user must decide which distance metric to in-

struct the function to use. For k-means the distance metric is used to compute the

centroid of each cluster. K-means is used in this research as a secondary cluster-

ing technique. Therefore, only the correlation distance metric that was subjectively

identified as the best option within hierarchical clustering is used. Secondly, within k-

means you can set the maximum number of iterations the function can complete. The
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maximum iterations was set at 100, which was more than enough as most instances

converged within 10 iterations. The number of replications supplied is important in-

formation when using k-means clustering. As discussed in Section 2.5.3 there could be

thousands of local optima for a dataset of only 200 objects with 8 variables (Steinley

and Brusco, 2007). Since there is a maximum of 319 objects with 624 variables being

clustered in this research the possible local optima is likely in the millions. However,

due to computational restraints, 100,000 replications was set as the constraint.

K-means was actually the first clustering algorithm tested for this research

and was applied to a subset of the data from 2016-2017. These initial results were

promising but it was difficult to scale to the full dataset. The primary challenge was

identifying the optimal k. The traditional “objective” methods of determining k such

as the elbow method and built-in functions in MATLAB yielded inconsistent results.

The suggested k was typically either two or the highest k that had been presented

as a choice, which indicated that these methods were unable to reliably identify an

acceptable k. Therefore, k-means was only applied after k was identified during the

hierarchical clustering steps. Then, the same k determined in that step was applied

to the k-means clustering. Not all of the clusters identified were significant though.

The criteria used to differentiate between significant and insignificant clusters will be

discussed in the following section.

3.4.4 Determining Significant Clusters

Two standards were set to identify significant clusters. First, the cluster had

to contain at least 5% of the number of images within the intensity bin. The 5%

threshold was subjectively chosen to eliminate clusters that only contained a few

images but ensure that all clusters were not eliminated as most clusters contained

less than 10% of the images within a bin. Secondly, the average silhouette value of
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the cluster had to exceed the average silhouette value of the entire intensity bin. For

example, referencing the top left panel in Figure 16 the average silhouette value for

Cluster 5 is certainly higher than that of the entire bin, denoted by the red line.

The images from all significant clusters were then saved with the cluster number

in the filename. All images with positive silhouette values within the cluster were

composited to create a representative image for the cluster. The composites were

created by taking the mean of each pixel value and assigning it to a new matrix

then saving it with the original color map. Furthermore, the image with the highest

silhouette value was also saved. Once all trials were completed and significant clusters

selected the results were visually inspected to find significant patterns.

3.5 Significant Pattern Requirements

The significant clusters that met three final requirements were classified as sig-

nificant patterns. First, the cluster could not contain more than three negative silhou-

ette value images. However, if the cluster contained less than 13 images the negative

silhouette images had to be less than a quarter of the total cluster. Secondly, the

cluster had to contain images from at least three different storms. Finally, images

within the cluster had to look reasonably similar to the cluster composite (Figure 17).

Figure 17. The composite image (left) with a reasonably similar image (middle) and a
dissimilar image (right) all from a significant cluster that did not meet criteria to be
classified as a significant pattern.
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Figure 18. The cluster analysis process

Figure 18 condenses the steps followed to perform the cluster analysis into a

simple flowchart. In the next chapter the results of the analysis using hierarchical

and k-means clustering will be presented.
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IV. Analysis and Results

Overview

The composite images from each significant cluster are presented and compared

for the three hierarchical clustering trials. The data are displayed in two different

manners. First, they are depicted numerically, both by the number of significant

clusters per trial and the number of images within each significant cluster. Secondly,

the composite images are displayed to allow visual evaluation of the results. The

significant patterns that span all three trials are presented first as the most dominant

patterns. Next, the significant clusters identified in each trial are shown separated by

trial. Finally, a chart of all significant patterns that appeared in at least two trials is

shown. Additionally, the k-means clustering results will be presented for comparison.

4.1 Numeric Results

Prior to performing the final cluster analysis k had to be determined, as de-

scribed in Section 3.4.2. Table 7 displays the k values used for each intensity bin.

Notice that k varies throughout each trial, sometimes drastically such as in T3.

Table 7. The values of k applied for hierarchical cluster analysis
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Table 8. Columns 2-4 display the number of significant clusters that were initially
identified during the clustering. Columns 5-7 show how many clusters were considered
significant patterns once the restrictions in Section 3.5 were imposed. Numbers that
changed are displayed in red in columns 5-7.

Once the significant clusters were identified they were scrutinized using the

criteria described in Section 3.5. Table 8 shows how the number of clusters changed

when the restrictions were applied, highlighted in red text. Trials 1 and 2 contained

three and four significant clusters, respectively, that did not meet the significant

pattern requirements. However, in Trial 3 there were only two significant clusters

that were not able to be classified as significant patterns.

The number of images within each significant pattern is important when con-

sidering the legitimacy of a given pattern. Table 9 shows the total number of images

in each intensity bin, the minimum cluster size (5% of image total), and the num-

ber of images per cluster for the significant patterns. Since the composites were

created without the negative silhouette value images, the number of positive images

are included in the right three columns with all changes are red. Finally, the colors

represent similar patterns: green spans all three trials and yellow spans two trials.
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Table 9. Total number of images in each intensity bin, the minimum cluster size (5% of
image total), the number of images per significant pattern, and the number of positive
silhouette value images per pattern. Differences between Columns 4-6 and Columns
7-9 are typed in red. The colors represent similar patterns: green spans all three trials
and yellow spans two trials.
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4.2 Pattern Results

4.2.1 Hierarchical Clustering Results

There were seven patterns that spanned all three trials, shown in Figure 19. As

the intensity increases the inner TC structure becomes more defined and the areas

of convection are more pronounced. Note that while the patterns are similar there

are some differences among different distance metrics. For instance, all of the T4.5

patterns are similar but not identical. This may indicate more robust results because

different images were clustered that resulted in a similar composite image.

All significant clusters identified in Trials 1, 2, and 3 are displayed in Figures

20, 21, and 22 respectively. The T1 pattern was not included to allow the remaining

images to be larger. The only T1 pattern identified is in Figure 19. When referencing

an image within these figures they will be labeled as: Dvorak bin (column number)

(e.g. T3.5(2)). The bold line separates significant patterns on the left from significant

clusters that did not meet all pattern requirements. The significant patterns are

further categorized by the number of trials they appeared in. The green border

indicates that they occurred in all trials, yellow means 2 trials, and red means 1 trial.

Lastly, the Saffir-Simpson scale is on the left for readers more familiar with that scale.

Figure 19. The significant patterns that spanned all three trials, the first column
denotes the trial number.
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Figure 20. All significant clusters identified for Trial 1 from T2-T5.5. Images left of
the bold line are significant patterns. The image border indicates how many times that
pattern repeats: green appears in all 3 trials, yellow in 2, and red in 1. The left hand
side displays approximate equivalent intensity in the US Saffir-Simpson Scale.
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Figure 21. All significant clusters identified for Trial 2 from T2-T5.5. Images left of
the bold line are significant patterns. The image border indicates how many times that
pattern repeats: green appears in all 3 trials, yellow in 2, and red in 1. The left hand
side displays approximate equivalent intensity in the US Saffir-Simpson Scale.
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Figure 22. All significant clusters identified for Trial 3 from T2-T5.5. Images left of
the bold line are significant patterns. The image border indicates how many times that
pattern repeats: green appears in all 3 trials, yellow in 2, and red in 1. The left hand
side displays approximate equivalent intensity in the US Saffir-Simpson Scale.

In Trial 1 23 significant clusters were identified and 20 met the requirements to

be a significant pattern. Out of 20 significant patterns: 7 appeared in 3 trials, 6 in

2 trials, and 7 appeared in Trial 1 only. In Trial 2 there were 24 significant clusters
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and 20 met the requirements to be classified as a significant pattern. Out of the 20

significant patterns: 7 appeared in 3 trials, 7 in 2 trials, and 6 appeared in Trial 2

only. In Trial 3 there were 27 significant clusters and 25 met the requirements to be

a significant pattern. Out of the 25 significant patterns: 7 appeared in 3 trials, 11 in

2 trials, and 7 appeared in Trial 3 only.

Examining Figures 20, 21, and 22 reveals similar patterns that span multiple in-

tensity bins. For example, in Figure 22 T3.5(3) and T4(1) display a similar structure;

likewise, T5(3) and T5.5(1) in Figure 21 have comparable features. Additionally,

there are patterns that would be very similar if rotated around an imaginary vertical

axis at the TC center. For example T5(3), T5(4), and T5(5) in Figure 21 would

resemble each other once rotated about the center. Similarly, in Figure 20 T5.5(2)

and T5.5(3) would be alike once aligned. There are more comparisons that could be

made in these figures, but this is a subjective analysis of the data where the results

may be analyst dependent.

Finally, all significant patterns that appeared in at least two trials are displayed

in Figure 23. The composites are displayed on the left and the image within each

cluster with the highest silhouette value is shown on the right. The silhouette value is

a measure of how likely an object is in the correct cluster. Therefore, the image with

the highest silhouette value is proposed as most representative of the cluster. Figure

23 reveals that the composites represent the location of the convection well, but they

do not always properly portray the intensity. Slight variations in the location of the

strongest convection within each image in the cluster explains this. Red and yellow

areas in the composites represent locations where convection was most consistent.

There are important caveats to note when viewing these results. Due to the

limited images available for analysis in each bin some of these pattern are the result

of only a few different storms or a hand-full of images. Specifically, clusters T4(1) and
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T4(3) only contained images from 4 and 5 different storms, respectively. Additionally,

clusters T4.5(2) and T5.5(4) were comprised of only 5 images in total. Finally, almost

half of the images in cluster T5.5(2) are from the same storm. These specifics may

vary slightly by trial, but are comparable to what has been listed for each pattern

discussed.

Figure 23. The significant patterns that spanned at least two trials. The composite
images are on the left and the image with the highest silhouette value for that cluster
is displayed on the right.
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4.2.2 K-means Clustering Results

For comparison the same dataset was clustered using k-means with the k values

listed in Table 7. Only Trial 1 was repeated due to time constraints on this research.

Figure 24 contains the significant patterns determined by k-means cluster analysis.

The T1 bin was not included because of the lack of patterns identified previously.

Figure 24 reveals similar patterns to those identified in Figure 23 as most robust

by hierarchical cluster analysis. The images in Figure 24 that correspond to a pattern

in Figure 23 are marked with an asterisk. Out of 23 significant patterns nine coincide

with a pattern in Figure 23, which itself only contains 18 patterns between T2-T5.5.

In general the patterns identified by k-means clustering show the same progression

in TC structure with intensity. As the intensity increases the patterns become more

defined with increased convection about the TC center.

4.2.3 Clustering Results using All Pixels

The method used to create the variables that produced the results up to this

point was fairly arbitrary. The results may have changed if the rings were scaled

differently or 16 sections were used instead of octants, for example. It is not feasible

to test all possible variable configurations. However, clustering using individual pixels

is a simplistic approach that removes the subjectivity of choosing sections.

The dataset was evaluated with hierarchical and k-means cluster analysis using

each pixel as a variable, which resulted in 160,801 variables. The settings were kept

the same as Trial 1 so results from the four different tests using the correlation distance

metric could be compared. A new k was determined for each bin through the same

methods described in Section 3.4.2, listed in Table 10. Furthermore, because the

number of variables increased from 624 to 160,801 the k-means replications had to be

adjusted. K-means replications were reduced from 100,000 to 1,000 due to limitations
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Figure 24. All significant patterns identified by k-means cluster analysis from T2-T5.5.
The image border indicates how many times that pattern repeats within the tests using
the correlation distance metric: green appears in all 4 tests, yellow in 3, orange in 2,
and red in this test only. The left hand side displays approximate equivalent intensity in
the US Saffir-Simpson Scale. The asterisks denote patterns that also appear in Figure
23.
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Table 10. These are the values of k applied for both hierarchical and k-means cluster
analysis when clustering by all pixels.

T1 T2 T2.5 T3 T3.5 T4 T4.5 T5 T5.5
26 30 13 19 16 13 11 11 11

in computing power.

The results of the hierarchical cluster analysis are presented in Figure 25 while

Figure 26 displays results from the k-means cluster analysis. The image border in-

dicates how many times that pattern repeats during the tests using the correlation

distance metric: green appears in all four tests, yellow in three, orange in two, and red

in only one. The significant patterns identified are similar to those pinpointed during

the octant-variable trials. The TC structure again develops as would be expected

with enhanced convection near the center at the intensity increases. There are no

noticeable differences in the quality of clusters that are produced when the data are

clustered using all of the pixels.

4.2.4 Analysis of Correlation Distance Results

Comparing the results from the four correlation distance tests provides inter-

esting information. Figure 27 contains the significant patterns from the original Trial

1 in Section 4.2.1 with the borders adjusted to the new color scheme for comparison.

The four tests resulted in a total of 94 significant patterns. Out of these 94 patterns

29 were selected in only one of the tests with 18 found in T2-T3.5 bins. Likewise,

30 spanned two tests meaning there were 15 unique patterns identified. Of these

15 patterns eight appeared between T2-T3.5 Additionally, 15 of these patterns were

represented across three tests, meaning there were only five unique patterns. Of these

five patterns that spanned three tests only one occurred between T2-T3.5. Finally, 20

covered all four tests constituting five unique patterns, only one of which was found

between T2-T3.5. These five patterns are displayed in Figure 28.
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Figure 25. All significant patterns identified by hierarchical cluster analysis from T2-
T5.5, when clustering by all pixels. The image border indicates how many times that
pattern repeats within the tests using the correlation distance metric: green appears
in all 4 tests, yellow in 3, orange in 2, and red in this test only. The left hand side
displays approximate equivalent intensity in the US Saffir-Simpson Scale.
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Figure 26. All significant patterns identified by k-means cluster analysis from T2-T5.5,
when clustering by all pixels. The image border indicates how many times that pattern
repeats within the tests using the correlation distance metric: green appears in all 4
tests, yellow in 3, orange in 2, and red in this test only. The left hand side displays
approximate equivalent intensity in the US Saffir-Simpson Scale.
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Figure 27. All significant patterns identified by hierarchical cluster analysis from T2-
T5.5. These are the Trial 1 results with the image borders updated. The image border
indicates how many times that pattern repeats within the tests using the correlation
distance metric: green appears in all 4 tests, yellow in 3, orange in 2, and red in
this test only. The left hand side displays approximate equivalent intensity in the US
Saffir-Simpson Scale.
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Further investigation of the patterns that appear in only two of the tests reveals

an interesting result. Two tests were compared at a time where either the variable

used was held constant or the clustering algorithm was the constant. Within each test

the number of patterns that appeared in only two tests was identified. Next, the two

were compared to determine how many two-test patterns they shared. For example,

the two tests that used octant variable would be analyzed side by side. The number or

two-test patterns would be noted for each test, then the number they had in common

was recorded. This analysis was then conducted for the all pixels variable tests, k-

means clustering, and hierarchical clustering also. Finally, pairs were compared where

no parameter was held constant. So, the k-means all pixels result was compared to

the hierarchical octant result and vice versa. Table 11 shows how many patterns

coincided per pair with the number of patterns that could have been shared for each

pair in the far right column.

There are seven similar patterns out of a possible 13 that could have been shared

when the variable is held constant. In contrast, there are only two like patterns out

of a possible twelve that could have been shared when the clustering technique is held

constant. Furthermore, there are six similar patterns out of a possible twelve when

neither parameter is held constant.

Table 11. The number of two-test patterns that coincide within each pair with the
total number of patterns that could have been shared in the far right column. The left
hand column identifies what parameter is being held constant.
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Figure 28. The significant pattern that spanned all four correlation distance tests. The
top row is the composite image and the bottom is the highest silhouette value.

The five patterns that occurred in all four tests also coincide with patterns

initially identified in Figure 23. However, there are some caveats on these patterns

as the dataset was limited. The primary limitation was the total number of images

within each cluster, with the exception of the cluster in T2.5. The remaining four

patterns were crafted from clusters that had ten or less images in the cluster, which

affects the legitimacy of the final pattern.
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V. Discussion and Conclusions

5.1 Summary of Results

Cluster analysis was employed to analyze the data in lower intensity bins from

T1-T5.5 and ascertain if there is a relationship between microwave patterns and TC

intensity. First, hierarchical clustering was applied to the dataset with the clustering

variables created by partitioning the images into 104 sections. Three trials were

conducted for this portion of the analysis utilizing three different distance metrics,

but keeping all other parameters constant. Figure 23 presented the patterns that

appeared in at least two of the three trials as the most significant results from this

portion of the research. The patterns identified match the expected TC structure at

each given intensity. In the T1 bin the convection is sparse and disorganized to the

point that only low clouds are visible in the composite. In bins T2-T3 the areas of

enhancement are located in the outer core and image periphery, not in the TC center.

Once the storms intensify to T3.5 the convection increases and begins to infiltrate

the inner core. At T4 the spiral structure sets up with amplified convection near the

center of the storm. The spiral structure with enhanced convection around the center

escalates in the T4.5 bin and an eye takes form by T5 and T5.5. The TC development

revealed by these results is a good indication of their validity.

The second set of results displayed used the correlation distance metric, but

varied the clustering technique and variables. There were four tests completed using

the correlation distance, two applied k-means and two hierarchical clustering. The

number of times patterns repeated across trials was noted in Chapter IV. If the dataset

is separated into lower intensity storms (T2-T3.5) and higher intensity storms (T4-

T5.5) an interesting result emerges. Of the patterns that occur in only one test

18 of 29 are from the lower intensity bins. On the contrary, out of the 10 unique
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patterns that emerged in at least three tests only two were in the lower intensity bins.

This development supports that the more defined structure in the higher intensity

bins lends itself to repeating patterns as opposed to the disorganized convection that

characterizes the lower intensity bins.

Additionally, the second set of results reveals an interesting trait when the

patterns that spanned two tests are examined. Table 11 shows number of two-test

patterns that coincide within each pair defined. When the clustering variable is held

constant the pairs share seven patterns out of a potential 13. In contrast, when the

clustering technique is held constant only two of twelve possible patterns align. This

may suggest that the data are more sensitive to the variables used to represent an

object than the clustering technique applied. This is supported by a summary of

cluster analysis by Jain (2010), which states that data representation is one of the

more important factors impacting the performance of clustering algorithms. However,

it is noteworthy that when neither parameter was held constant six of a possible twelve

patterns aligned, which may indicate these initial findings are coincidental.

5.2 Limitations

There were four main categories of limiting factors that affected the final results

of this study. First, there was limited data once all restrictions listed in Section 3.3

were imposed. The smallest intensity bin was T5.5, which contained 80 images. In

general the bin size decreased as the intensity increased. Therefore, the number of

images required to be considered a“significant cluster” also decreased, as it was set

at 5% of the total bin size. Most significant clusters identified above T4 contained 10

images or less, which is a very small sample size. Additionally, the imagery was not

divided into intensifying and decaying storms, which may affect the TC structure at

a given intensity.
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Secondly, there are multiple limitations specific to cluster analysis. The vari-

ables used were arbitrary and as discussed in the previous section may have an impor-

tant role in the resulting patterns. Additionally, the initial distance metric applied,

correlation, was chosen based on preliminary testing that showed it performed best

when viewing the clusters in a silhouette plot. This was decided early in the research

and the method used to make this determination was not purely objective. However,

applying three different distance metrics was an effort to combat this limitation and

reveal patterns that occurred across multiple trials. Furthermore, complete linkage

was utilized because it provided the most distinct clusters. Although single linkage

was determined to definitely be a bad choice for this research, average linkage may

be feasible with more testing.

Thirdly, within cluster analysis there were limitations specific to k-means. K-

means randomly places centroids so the resulting clusters can change with each repli-

cation, particularly when using such a high number of variables. To combat this

k-means was replicated 100,000 times when clustering by octants and 1,000 when

clustering by all pixels. However, this is the brute force method and is still not

enough replications to determine the optimal answer as there could be millions of

local optima (Steinley, 2003). Therefore, the k-means results presented are the best

solution with the time constraints and computing power available.

Finally, possibly the most critical limiting factor to this research was how k

was determined. Depending on the k that is used the significant clusters identified

through the cluster analysis change because they are based on the silhouette values.

As clusters join together they may fall below the average silhouette value of the entire

bin or rise above it. Therefore, the result can be different with a different k. The

analysis was completed many times varying the configurations and the final results

presented appeared across multiple trials. This is again an attempt to offset the effect
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of this limitation. Lastly, this is only one study completed on one basin with a small

set of data. The research would need to be reproduced and built upon to validate all

results presented here.

5.3 Future Work

5.3.1 Intensity Range

One result noted in Chapter IV was that similar patterns appeared across mul-

tiple intensity bins. Applying the same methodology across a range of intensity bins

could allow patterns to be labeled with a wind speed range. For instance, T1-T3

could be run together to see if there were any common patterns. From there T2-

T3.5, T2.5-T4, T3-T4.5, etc could also be analyzed.

To test the potential of this application all images in bins T4-T5.5 were sub-

jected to the same methodology outlined in Chapter III. Hierarchical clustering, oc-

tant variables, and settings from Trial 1 laid out in Table 6 were used for this analysis.

There were 417 images in the T4-T5.5 bins. When determining k there were two dif-

ferent values for k that seemed probable. First, when k=53 there were a number of

large, highly positive clusters so these results are presented in Figure 29. Similarly,

when k=15 there were well-defined clusters, these results are presented in Figure 30.

Both figures contain patterns that repeated often during the individual runs presented

in Chapter IV. Furthermore, the clusters found when k=15 are similar to those when

k=53. The clusters chosen when k=15 are less detailed since they contain more im-

ages within each bin there is a higher likelihood of convection in different areas. It

is important to note that these clusters were not quality controlled as described in

Section 3.4.4 due to time constraints. However, this technique shows promise for

identifying the intensity range of certain patterns.
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Figure 29. The clusters identified when applying hierarchical cluster analysis to the
T4-T5.5 bins when k=53
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Figure 30. The clusters identified when applying hierarchical cluster analysis to the
T4-T5.5 bins when k=15

5.3.2 JTWC Patterns

JTWC has a binder of microwave imagery patterns that are related to inten-

sity, determined through empirical observations. Expanding this research to discover

a pattern’s intensity range, as described in the previous section, could be used to

validate these patterns. The patterns that appeared in all four correlation distance

tests displayed in Figure 28 are compared to images from the JTWC binder for any

similarities.

Making comparisons between patterns is a subjective process, but there are a

number of patterns that seem to relate to patterns in the JTWC binder. Figure 31
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compares the T4 pattern in Figure 28 to a pattern called the “claw”. The maximum

sustained winds for the T4 bin is 65kts, which falls within the intensity range identified

by JTWC. Furthermore, the T4.5 pattern resembles the “6s or 9s” pattern identified

by JTWC compared in Figure 32. The T4.5 maximum sustained winds are 77kts

which falls within the range determined by JTWC. These examples show that the

results of this research support established empirically derived patterns.

Figure 31. A “claw” microwave pattern compared to T4 pattern from Figure 28. Image
on the left from Joint Typhoon Warning Center (2018).

Figure 32. A “6s or 9s” microwave pattern compared to T4.5 pattern from Figure 28.
Image on the left from Joint Typhoon Warning Center (2018).
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5.3.3 Additional Future Work

One key limiting factor of this research was the amount of images analyzed.

There are multiple ways this could be addressed in future studies. First, including

images with missing data would greatly expand the dataset. However, different meth-

ods would need to be applied to use missing data in a clustering algorithm. Secondly,

the analysis could be expanded to include other basins, which would increase the total

number of images. Thirdly, other microwave imagers could be incorporated into the

research. However, they would need to be normalized to the same TB scale, which

was outside the scope of this research. It is feasible though, Wimmers and Velden

(2007) outlines how this was accomplished for the MIMIC product. Additionally,

NRL has worked towards recalibrating all ice-scattering channels to 89 GHz to re-

duce this bias between sensors, which could be another avenue if these images become

publicly available (Cossuth, 2017).

Cluster analysis specific advancements could focus on the variables used to

cluster and a method for identifying the optimal clustering variables. Also, average

linkage could be used instead of complete linkage. Additionally, determining the

best placement for centroids when initializing k-means could drastically improve the

ability to identify the optimal clusters. Furthermore, utilizing deep learning and

convolutional neural networks to detect these patterns could greatly improve the

results of this research and would allow the use of partial images..

Another avenue would be to use a similar methodology on TCs that are making

landfall to see how interacting with land affects the structure of the TC, as revealed

by microwave imagery. Additionally, some TCs could have radar imagery associated

with their landfall that could be used to fill gaps in the microwave imagery.

Once microwave patterns that relate to intensity have been identified the next

step could be to develop a pattern recognition technique similar to the Dvorak
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Pattern-T method. Once developed this method could be tested by satellite ana-

lysts at JTWC and other TC centers to assess its effectiveness.

5.4 Conclusions

The objective of this thesis was to determine if there are patterns in microwave

imagery that are related to TC intensity. Current intensity estimation techniques

struggle at lower TC intensities, typically below 90 kts. Accurately representing the

intensity of a TC is important for the forecast of a TC. The goal of JTWC is to

provide accurate information on TCs in the Pacific and Indian Oceans so the US

DoD can protect their assets and personnel in these areas.

While the results of this research are preliminary and require validation, they

are promising. Multiple parameters were adjusted during this research to detect how

these changes would affect the clustering solution to increase confidence in the final

result. During the study two clustering techniques, three distance metrics, and two

methods of creating the clustering variables were tested. Techniques similar to this

could be used to validate the patterns subjectively identified by JTWC analysts. This

would bolster the number of techniques available to assess TC intensity and possibly

contribute to improved forecasts to protect DoD assets.
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Appendix A

Figure 33. Part 1 of the detailed flow chart to determine intensity using visible imagery
(Dvorak, 1984).
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Figure 34. Part 2 of the detailed flow chart to determine intensity using visible imagery
(Dvorak, 1984).
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