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Abstract

In this paper, we revisit the “Two Cutters and Fugitive Ship” differential game that

was addressed by Isaacs, but move away from point capture. We consider a two-on-

one pursuit-evasion differential game with simple motion and pursuers endowed with

circular capture sets of radius l > 0. The regions in the state space where only one

pursuer effects the capture and the region in the state space where both pursuers

cooperatively and isochronously capture the evader are characterized, thus solving

the Game of Kind. Concerning the Game of Degree, the algorithm for the synthesis

of the optimal state feedback strategies of the cooperating pursuers and of the evader

is presented.
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TWO-ON-ONE PURSUIT WITH

A NON-ZERO CAPUTURE RADIUS

I. Introduction

In this paper we consider a two-on-one pursuit-evasion differential game with

simple motion and pursuers endowed with circular capture sets. We revisit the “Two

Cutters and Fugitive Ship” differential game that was addressed by Isaacs [1], [2],

but move away from point capture. The pursuers are now endowed with a radius

of capture l > 0. The regions in the state space where only one pursuer effects the

capture and the region in the state space where both pursuers cooperatively capture

the evader are delineated and the algorithm for the synthesis of the optimal state

feedback strategies of the cooperating pursuers and of the evader is presented. In

this game, all players have simple motion and the evader/pursuer’s speed ratio is

µ , vE
vP

< 1. Thus, the problem parameters are µ and l. Because the pursuers are

faster, the evader cannot escape if the pursuers play optimally.

We start by constructing the Safe Region (SR) and Boundary of the Safe Region

(BSR) of the evader. This elemental BSR is the locus of points that the Evader (E)

and a Pursuer (P ) will reach at the same time along straight line trajectories. The

construction of the elemental BSR in the case of point capture when l = 0 is based

on the concept of the Apollonius circle. When the capture radius of the Pursuer

l > 0, the BSR of E will be a Cartesian oval — we shall refer to these as ”Apollonius

ovals”. This forms the basis for constructing the composite SR and BSR of E when

two pursuers are at work. The introduction of a non-zero radius of capture affects

the geometry of the surface in the state space which separates the regions where the
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evader will be captured by one pursuer and where the evader will be in minimum

time cooperatively captured by both pursuers, thus providing the solution of the

Game of Kind. This will differ from the point capture case and allow us to provide

full state solutions for games with parameters that were previously not able to be

solved, because of the lack of a closed SR. The algorithm for the construction of

the players’ optimal state feedback strategies in the state space region where both

pursuer isochronously capture the evader is presented, thus providing the solution of

the Game of Degree.

We will then move this focus into analyzing a similar differential game, this one

derived from an Attacker-Defender-Target game. In it, we will again apply a radius

of capture to our pursuer, but we will reduce his speed such that he will be slower

than the evader. We will then determine the region in which the evader could reach

while still avoiding the evader, determining what the locus of point in which he could

not reach a target should the target be located at those points.

This paper is motivated by Air-to-Air Concept Operations. This research is useful

in devising strategies for air-to-air combat and in autonomous decision making. We

will determine the necessary conditions that would be required for an aircraft to

ensure pursuit and capture of a potential aircraft.

The paper is organized as follows. The geometry of the basic Apollonius circle

is discussed in Section 3.1, followed by the construction of Apollonius ovals in Sec-

tions 3.2 and 3.3. We introduce in Section 3.5 metrics for gauging the geometry of

Apollonius ovals. The characterization of the Apollonius ”oval” when the evader is

faster than the pursuer is discussed in Sections 3.6 and 3.7. The Two Cutters and

Fugitive Ship differential game is recast in a reduced state space whose dimension is

three in Section 3.8. The solution of the Game of Kind and of the Game of Degree

in the reduced state space is presented in Sections 4.1 and 4.2, respectively, followed

2



by examples in Section 4.6.
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II. Background

This paper derives its concepts from two main sources. The first is game theory

in its application of interactions between intelligent decision makers. The second is

optimal control in its application of deriving the minimum time solution for capture.

We will utilize game theory to devise and model the scenario that we are attempting

to solve.

Game theory was originally developed by John von Neumann in 1928. It was

defined in 1991 as “the study of mathematical models of conflict and cooperation

between intelligent rational decision makers.” This field of study has a broad range

of applications from politics to economics. These games can vary in their objective,

and can have two players cooperatively trying to obtain a cooperative objective or

two players trying to achieve objectives that are antithetical to the other. We will

deal with the latter case in the following discussion.

This paper deals with a subset of game theory where the dynamics are modeled

using differential equations, as in control theory, called a differential game. The

concept of a differential game was developed by Rufus Issacs in 1951, while he was

working for the Rand Corporation. [1] We can use differential games to find solutions

to real world scenarios in which we have multiple players attempting to reach a joint

goal. In Isaacs’ novel book, he gives several examples of types of differential games,

where the players have various goals and changing parameters. One example of one

of these differential games is the Homicidal Chauffeur differential game, described in

Issacs [1] and Merz [3]. In this game, you have a purser and an evader, with the

pursuer having a turning radius and attempting to capture the evader. In [3], the

feedback strategies for this game are developed. This game provided a basis for a

typical solution method for differential games; however, we will focus on a different

type of game.

4



Our second source we derive this work from is the work done on optimal control.

Much of optimal control was developed by Lev Pontryagin [4] and Richard Bellman [5].

They founded methods to solve optimal control problems in minimum time situations.

This work led us to be able to solve for minimum time problems. We will utilize this

work to devise solutions to our differential games as minimum time problems.

We wish to expand this work to include multiple agents. We want to study the two

on one and many on one types of games. We have seen solutions to some types of two

on one games and their applications in many fields, including that of air defense. [6], [7]

Previous solutions to two on one games have focused on point capture [8], but we will

be also focusing on finite capture sets. While this type of scenario isn’t novel [9], we

will be expanding these solutions for a fixed capture radius to determine the actual

region of capture. The many on one game manifests itself generally in the form of a

pursuer-evader-defender game. Again, these games have focused on the point capture

problem, [10], while we will be focusing on finite radius of capture scenarios.

These types of games have shown to have direct application in air-to-air warfare.

[11], [12] This research could be adapted to air combat in a more realistic scenario

than the solutions that have been proposed so far for this type of engagement. This

would be particularly useful in the case of missile defense, where the desired outcome

would be to have an aircraft outside of a certain range of an exploding missile.
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III. Methodology

3.1 Geometry

Isaacs’ geometric solution of the “Two Cutters and the Fugitive Ship” game used

the Apollonius circle geometric construct. The Apollonius circle is the locus in the

Euclidean plane such that the ratio of distances to two fixed points, the foci, is

constant — see Fig 1; in the context of our game, the foci of the Apollonius circle are

the instantaneous positions of P and E. Let d be the P-E separation. The radius, ρ,

of the Apollonius circle is

ρ =
µ

1− µ2
d (1)

and in an (x, y) Cartesian frame with E at the origin, its center O is at

xO =
µ2

1− µ2
d, yO = 0 (2)

The point I on the circumference of the Apollonius circle shown in Fig. 1 is where P

will intercept a course holding E.

We may specify the Apollonius circle using polar coordinates as well. As seen in Fig

2, applying the law of cosines to ∆IPE we have:

1

µ2
R2 = d2 +R2 + 2Rd cos(θ)

which yields the quadratic equation in R

(
1

µ2
− 1)R2 − d2 − 2Rd cos θ = 0

6



.

Figure 1: Apollonius Circle

Hence, in polar coordinates the Apollonius circle equation is

R(θ) =
µ

1− µ2

(
µ cos θ +

√
1− µ2 sin2 θ

)
d , ∀ θ ∈ [0, 2π] (3)

The polar coordinate representation will be useful when the pursuer is endowed with

a capture circle of radius l > 0 whereupon the SR is an Apollonius oval.

Figure 2: Apollonius Circle — Polar Coordinates

Since in the ”Two Cutters and Fugitive Ship” pursuit-evasion differential game

[1], [2] two pursuers are at work, we have an Apollonius circle/oval for each one of

7



the pursuers, say P1 and P2. The foci of the Apollonius circle C1 are P1 and E and

the foci of the Apollonius circle C2 are P2 and E. Isaacs used this concept to find

a geometrical solution to the differential game: The two Apollonius circles intersect

at two points. The pursuers will isochronously and cooperatively capture the evader

at the point of intersection of their respective Apollonius circles, at the point of

intersection which is farther from E. It might also happen that the Apollonius circles

don’t intersect, that is, the small Apollonius circle is inside the bigger Apollonius disk.

This signals that the evader will be single-handedly captured by one pursuer in Pure

Pursuit (PP ). The pursuer associated with the smaller Apollonius circle can always

capture the Evader prior to the farther pursuer, and his optimal strategy is PP . This

will also be the case if the Apollonius circles intersect but the point antipodal to E

on the circumference of one of the Apollonius circles is inside the second Apollonius

disk.

3.2 Apollonius Oval Construction

When the pursuer are endowed with a capture circle of radius l > 0, the Apollonius

“circles” are Cartesian ovals. We shall refer to these as Apollonius ovals. We will

develop a parametric representation to characterize the Apollonius ovals with a view

to constructing the evader’s Safe Region(SR) and the Boundary of the Safe Region

(BSR). To construct the Apollonius oval when the capture radius l > 0, we start

with the elementary pursuit-evasion game that has only two players, a pursuer and

an evader, where the pursuer is endowed with a radius of capture l > 0. This is to

say that if the distance between the pursuer and the evader is less than l, the evader

will be captured. To justify our construction of the novel Apollonius ovals, we invoke

the following

Lemma 1. The Pursuer is endowed with a capture circle of radius l and he strives to

8



capture the Evader in minimum time. Assume the Evader is obliged to pre-announce

his course and to hold course. The Pursuer will employ Collision Course (CC) guid-

ance and set his course s.t. the three points P , P ′, and E ′ are collinear, as shown

in Figure 3. The optimal course of the Pursuer is determined upon solving the in-

terception triangle ∆E ′PE. A solution exists irrespective of the course chosen by the

Evader, provided the speed ratio µ , VE
VP

< 1.

Figure 3: Interception Triangle

Proof. Suppose the optimal solution is s.t. the path P , P ′, E ′ is kinked — see Figure

4. Consider the circular arc of radius PP ′ centered at P and the straight line PE ′.

Let P ∗ be the point where the circular arc intersects the straight line PE ′. By

construction, PP ∗ = PP ′, but the triangle inequality yields

PP ∗ + P ∗E ′ ≤ PP ′ + l

so

P ∗E ′ ≤ l

9



Figure 4: Non-Optimal Configuration

Hence, choosing the path PP ∗ which takes as long as the path PP ′ would have caused

the Pursuer to overshoot the target/Evader. Hence, the path PP ′ is not optimal –

the triangle inequality must be an equality, that is, the three points P , P ′, E ′ must

be collinear.

3.3 Parameterization of Apollonius Ovals

If the Evader starts at the (x, y) plane’s origin with speed µ < 1 and, without loss

of generality, a pursuer with speed 1 starts at (−d, 0), as seen in Figure 5, then we

have the following two equations which allow us to determine the elemental BSR for

the evader, that is, the E, P Apollonius oval:

µ2t2 = x2 + y2 (4)

(t+ l)2 = (x+ d)2 + y2 (5)

10



Figure 5: Apollonius Oval

We subtract Equation (4) from Equation (5) and, upon solving a quadratic equation,

obtain the equation of the Apollonius oval in parametric form

x(t) =
(1− µ2)t2 + 2lt+ l2 − d2

2d

y(t) =

√
µ2t2 − [(1− µ2)t2 + 2lt+ l2 − d2]2

4d2
, − d+ l

1 + µ
≤ t ≤ d− l

1− µ

(6)

Equation (6) specify the Apollonius oval in parametric form. The minimum and

maximum values for x are realized in head on and tail chase encounters,

− µ

1 + µ
(d− l) ≤ x ≤ µ

1− µ
(d− l) (7)

and to find the maximum y-coordinate, or height, of the Apollonius oval, we will take

11



the derivative of the function y(t) and set it equal to 0. The equation that determines

the value of t for which y is maximized is the cubic

(1− µ2)2t3 + 2l(1− µ2)t2 + [2l2 + µ2l2 − µ2d2 − d2]t+ l(l2 − d2) = 0 (8)

which has a real positive root t > 0. When 0 < l << d, the cubic has three real

roots and the maximal root determines ymax. When this value of t is substituted into

Equation (6), we obtain ymax.

3.4 Equal Speed Geometry

We will now look at the geometry of the special case where the three players have

equal speeds. The Two Cutters and Fugitive Ship differential game is solved using

a geometric method — no HJBI PDE here. The validity of the geometric method

was proved in [2]. When a pursuer and an evader; both with simple motion á la

Isaacs, have the same speed and the pursuer is endowed with a radius of capture l,

the locus of points in the Euclidean plane which they can reach at the same time is

a hyperbola. Therefore, for any value of capture range l > 0 of the pursuers, what

would have been an Apollonius oval had the pursuer been faster than the evader [13]

will become a hyperbola and the Boundary of the Safe Region of the Evader (BSR)

will be delineated by an arc of the hyperbola

x2

a2
− y2

b2
= 1

with the parameters

a =
l

2
, b =

1

2

√
d2 − l2

where d is the P−E separation. Since there are two pursuers, there are two hyperbolae

at play. We will use the asymptotes of those hyperbolae to solve the Game of Kind,

12



and these are given by

y = ± b
a
x

It will be useful to define the hyperbola’s ”eccentricity” e , d
l
, and so the asympototes’

slope is

b

a
=
√
e2 − 1 (9)

The hyperbola locus, whose foci are the instantaneous positions of the pursuer P and

the Evader E, and it’s asymptotes, are shown in Figure 6. We use the hyperbola

construct to designate the Safe Region (SR) of E in the Two Cutters and Fugitive

Ship differential game. Figure 6 shows the Boundary of the Safe Region (BSR) in the

realistic plane when the pursuer is at (−d
2
, 0) and the evader at (d

2
, 0). Because the

Pursuer is not faster than the Evader, this BSR is open; in other words, the Evader

can escape. Hence, we need at least one other pursuer to obtain a closed SR.

In the version of the Two Cutters and Fugitive Ship Differential Game investigated

herein we have two pursers with capture radius l and one evader, with all three having

the same speed. We use a rotating reference frame (x, y), with the x-axis running

through the instantaneous positions of the Pursuers P1 and P2 and the y-axis is the

orthogonal bisector of the segment P1P2. The state is specified by three variables: half

of the separation of the pursuers, xp, and the x and y position of the evader, (xE, yE).

For example, the symmetric situation E, P1, and P2 are collinear and the Evader is

located halfway between P1 and P2 is illustrated in Figure 7. This figure shows both

the hyperbolae and their asymptotes, which intersect. The SR is bounded.

There are three important points labeled in Figure 7: I, I ′, and I ′′. I ′ and I ′′ are

the points of intersection of the asymptotes. The existence of these points provides

the solution to the Game of Kind. If the asympototes don’t intersect the evader can

escape capture. If the hyperbolae intersect and E is in the lends shaped region formed

13



Figure 6: The Hyperbola is the BSR of E

by the intersecting hyperbolae, if the pursuers play optimally, captures of the Evader

is guaranteed. I1 and I2 are the points of intersection of the (P1, E) and (P2, E) based

hyperbolae. Each of these points will be important in the next two sections. Our

goal is to determine whether the SR is bounded, which obviously is the case in the

symmetric configuration illustrated in Figure 7, where the evader is hemmed in by

the pursuers and the asymptotes of the hyperbolae intersect.
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Figure 7: Two Pursuer Action

3.5 Metrics

To gauge the Apollonius oval’s dependence on the speed ratio µ and the ratio of

the radius of capture l to the initial distance d between P and E, we introduce the

following three metrics: eccentricity, e, and two definitions of the Apollonius oval’s

Aspect Ratio, ÆR1 and ÆR2. The three metrics are defined as follows.

e =

√
1− b2

a2
(10)

15



ÆR1 ≡
a

b
(11)

ÆR2 ≡
a

y(x = 0)
(12)

where b is the length of the “semi-minor” axis and a is the length of the “semi-major”

axis of the Apollonius oval. Here,

a ≡ 1

2
(xmax − xmin) , b ≡ ymax

and xmin, xmax, ymax are shown in Figure 8 where an Apollonius oval with µ = 1
2

and

d
l

= 2 is illustrated: xmin = −5
6
, xmax = 5

2
, ymax = 1.561, e = .123, ÆR1 = 1.068,

ÆR2 = 1.25. Note however that the Apollonius ovals are not ellipses.

Figure 8: Apollonius Oval: µ = 1
2
, d
l

= 2
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We investigate how these Apollonius ovals’ metrics are dependent on the speed

ratio parameter µ and the ratio of the distance d between the pursuer and evader and

the radius of capture l: In the classical case, when l = 0, these Apollonius circle’s

metrics are e = 0 and ÆR1 = ÆR2 = 1.

To quantify how the Apollonius oval changes as the problem parameters µ or l
d

vary,

we use the eccentricity (e) and Aspect Ratio (ÆR) metrics (10)-(12). To this end,

we use the parametric equations above to first calculate the values for a and b, the

respective length and the width of the Apollonius oval.

a =
µ

1− µ2
(d− l) , b =

√
µ2t̄2 − [(1− µ2)t̄2 + 2lt̄+ l2 − d2]2

4d2
,

where t̄ is the maximal real positive root of the cubic Equation (8).

In the limiting case, when the speed ratio µ = 1, the BSR is a hyperbola and the

aspect ratios

ÆR1 =
l
d√

1− ( l
d
)2

ÆR2 =
1− l

d√
1− µ2(1− ( l

d
)2)− l

d

The evader is slower than the pursuer, so E is always located inside the Apollonius

ovals — see Fig. 9. When we evaluate this for µ = 1, we obtain the envelope of the

family of Apollonius ovals parameterized by 0 < µ < 1. It is the hyperbola

(x+ d
2
)2

a2
− y2

b2
= 1 (13)

where

a =
l

2
, b =

1

2

√
d2 − l2,

17



as shown Figure 9.

Figure 9: Family of Apollonius ovals, 0 ≤ µ ≤ 1, l
d

= .8

The dependence of the eccentricity e of the Apollonius ovals on the parameters µ

and l is shown in Figure 10. The Apollonius ovals’ eccentricity increases as the P -E

separation d approaches l. In Figures (10) and (11) we show the dependence on l of

the 3 metrics: eccentricity and the two ÆRs, as a function of the ratio l
d
. These graphs

confirm the earlier derived results.
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Figure 10: Eccentricity of Apollonius Ovals

Figure 11: Apollonius Oval’s Aspect Ratio dependence on the parameters µ and l
d

3.6 Slower Pursuer — Point Capture

Restructuring this for the case where the pursuer is slower than the evader and now

redefining the speed ratio vE
vP

= 1
µ

so that µ ≤ 1, we derive the equation for the

Apollonius circle as follows — see Fig 12, where now the origin is collocated with the

Pursuer P. We apply the law of cosines to ∆IEP which gives

R2 =
1

µ2
R2 + d2 − 2

1

µ
Rd cosϕ
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Figure 12: Apollonius Circle — Slow Pursuer

This is a quadratic equation in R,

(
1

µ2
− 1)R2 + d2 − 2

1

µ
Rd cosϕ = 0

To have a real solution, the evader’s course must satisfy

0 ≤ ϕ ≤ A sinµ (14)

and the Apollonius circle is

R(ϕ) =
µ

1− µ2

(
cosϕ−

√
µ2 − sin2 ϕ

)
d , ∀ ϕ ∈ [0, A sinµ] (15)

When ϕ = A sinµ, the radial from E is tangent to the Apollonius circle arc’s endpoint

which is at (0, µ√
1−µ2

d).
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Next we apply the law of sines to ∆IEP which gives

sin θ =
1

µ
sinϕ , 0 ≤ θ ≤ π

2

and so, in polar coordinates the Apollonius oval arc when the evader is faster than

the pursuer is

R(θ) =
µ

1− µ2

(√
1− µ2 sin2 θ − µ cos θ

)
d , ∀ θ ∈ [0,

π

2
] (16)

The second solution of the quadratic equation is

R(ϕ) =
µ

1− µ2

(
cosϕ+

√
µ2 − sin2 ϕ

)
d , ∀ ϕ ∈ [0, A sinµ]

Hence, using the parameter θ,

R(θ) =
µ

1− µ2

(√
1− µ2 sin2 θ + µ cos θ

)
d , ∀ θ ∈ [

π

2
, π] (17)

So now, when the evader is faster than the pursuer the complete Apollonius circle in

polar coordinates is given by Equations (16) and (17).

We have formally obtained the Apollonius circle, however only its ”leading edge”

arc which is delineated by the point of tangency to the Apollonius circle of the EI

segment is relevant as far as the differential game is concerned. Therefore, returning

to Equation (15), the maximum ϕ value is given using Equation 14. Indeed, when E

is faster than P the Usable Part of the Apollonius circle is the arc given by Equation

15.

3.7 Slower Pursuer — Apollonius “Oval” Parametrization

When l > 0, we use Fig 13 and the law of cosines to find the maximum value
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Figure 13: Capture with Finite Capture Radius l > 0

d2 + t2 − 2dt cosϕ = (µt+ l)2

so,

(1− µ2)t2 − 2t(d cosϕ+ µl) + d2 − l2 = 0 , ∀ ϕ ∈ [0, ϕmax]

we then find that

(d cosϕmax + µl)2 − (1− µ2)(d2 − l2) = 0

which leads to

cosϕmax =
√

1− µ2

√
1− (

l

d
)2 − µ l

d

The scenario when the evader is faster than the pursuer is relevant to the differential

game of guarding a target, where the Attacker (A), here represented by E, is trying to

avoid a slower Defender (D), here represented by P , while striving to reach a target

set in IR2. The Apollonius oval then helps delineate the region where the defender will

be able to reach the target before the attacker. Should E(A) pre-announce his course,

he will be intercepted by P (D) provided his course 0 ≤ ϕ ≤ cosϕmax; if ϕ > A sinµ,

P (D) cannot touch E(A).

It is interesting to also consider Apollonius ovals in the case of a faster evader, that
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is, µ is redefined as µ = vP
vE
≤ 1. To this end, we will also redefine the objective for

the players. In this model, the desire of the purser will be to capture the evader. The

evader’s objective is defined in this case to be to reach points beyond the pursuer. In

Figure 5, the position of the Evader and Pursuer are interchanged. The Evader’s SR

in this case is obviously not bounded. Figure 14 indicates how this Apollonius oval is

constructed: P is now in the interior of the Apollonius oval and the following holds,

Figure 14: Apollonius ”Oval” when Evader is Faster than the Pursuer; l
d

= 0.8,
µ = 0.5

(µt+ l)2 = x2 + y2 (18)

t2 = (x+ d)2 + y2 (19)

This yields the parametric representation of the Apollonius oval

x(t) =
(1− µ2)t2 − 2µlt− l2 − d2

2d
(20)
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y(t) =

√
t2 − [(1− µ2)t2 − 2µlt− l2 + d2]2

4d2
,

d− l
1 + µ

≤ t ≤ d+ l

1− µ
(21)

Similar to the slower Evader case, the x limits come from the head on and tail chase

“encounters”:

−µd+ l

1 + µ
≤ x ≤ d+ l

1− µ
(22)

Additionally, we have at x = 0,

y =
µ
√

(1− µ2)d2 + l2 + l

1− µ2
(23)

This Apollonius oval has a qualitatively different shape than in the conventional,

slower evader, case. In the slower pursuer case, we plot the Apollonius oval which

is given in parametric form in Equations (20) and (21), and the result is shown in

Figure (15). The Apollonius oval is dented on the x-axis when the pursuer’s capture

radius l increases, and when d increases, the Apollonius oval expands. In Figure 15,

we see a dented ”oval” when l
d

= 1.

We have formally obtained the Apollonius oval however its ”leading edge” which

is delineated by the points of tangency to the Apollonius oval of the two straight lines

emanating from E is relevant to the differential game under consideration. We can

then see calculate the new bounds for t by calculating the value at ϕmax. This gives

us

tmax =

√
d2 − l2
1− µ2

This gives us a curve which delineate a barrier in which the evader cannot cross

without being captured. Because this region is open, it does not provide a full BSR

for the evader.
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Figure 15: Apollonius Oval for Slower Pursuer and d = l, No Usable Part

3.8 Reduced State Space

The “Two Cutters and the Fugitive Ship” differential game has six states. Isaacs

solved the “Two Cutters and Fugitive Ship” differential game in the realistic plane.

It is however beneficial to analyze our differential game in a reduced state space,

similar to Isaacs’ treatment of the Homicidal Chauffeur differential game [1]. The

dimension of our game’s state space can be reduced to three using a non-inertial,

rotating reference frame, by pegging the x-axis to the instantaneous positions of P1

and P2. The y-axis is the orthogonal bisector of the P1P2 segment. In this rotating

(x, y) reference frame the states are E’s x and y-coordinates (xE, yE) and the x -

position xP of P1; the position of P2 is (−xP , 0) Thus, if in the realistic plane (X, Y )

the positions of the players are P1 = (XP1 , YP1), P2 = (XP2 , YP2), E = (XE, YE), in

the reduced state space
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xP =
1

2

√
(XP1 −XP2)

2 + (YP1 − YP2)
2x

xE =
(XE − 1

2
XP1 − 1

2
XP2)(XP2 −XP1) + (YE − 1

2
YP1 − 1

2
YP2)(YP2 − YP1)√

(XP1 −XP2)
2 + (YP1 − YP2)

2

yE =
−(XE − 1

2
XP1 − 1

2
XP2)(YP2 − YP1) + (YE − 1

2
YP1 − 1

2
YP2)(XP2 −XP1)√

(XP1 −XP2)
2 + (YP1 − YP2)

2

In this reduced state space the y-coordinates of P1 and P2 will be 0, the position of

P1 will always be (xP , 0) and the position of P2 will always be (−xP , 0). Without

loss of generality we assume xE ≥ 0 and yE ≥ 0. The rotating reference frame (x,y)

is shown overlaid on the realistic plane (X,Y) in Figure 16 where the P1, E and P2

players’ respective headings χ, φ and ψ are also indicated. The player’s headings in

the realistic plane and in the reduced state space are related according to

ψ = ψ + θ , χ = χ+ θ , φ = φ+ θ

where

sin θ =
YP2 − YP1

2xP
, cos θ =

XP2 −XP1

2xP

Without loss of generality, the rotating reference frame (x, y) is initially aligned with

the inertial frame (X, Y ).

Using the rotating reference frame (x,y), the state space of the Two Cutters and

Fugitive Ship differential game is reduced to the first quadrant of R3, that is, the set

R3
1 ≡ {(xP , xE, yE) | xP ≥ 0, yE ≥ 0}

and symmetry allows us to confine our attention to the case where xE ≥ 0 so, the
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Figure 16: Rotating Reference Frame

state will evolve in the positive orthant of R3, that is, in

R3
+ = {(xP , xE, yE) | xP ≥ 0, xE ≥ 0, yE ≥ 0}

The three-state nonlinear dynamics of the “Two Cutters and Fugitive Ship” differen-

tial game in the reduced state space now are

ẋP =
1

2
(cosχ− cosψ), xP (0) = xP0 (24)

ẋE = µ cosφ− 1

2
(cosχ+ cosψ) +

1

2

yE
xP

(sinχ− sinψ), xE(0) = xE0 (25)

ẏE = µ sinφ− 1

2
(sinχ+ sinψ)− 1

2

xE
xP

(sinχ− sinψ), yE(0) = yE0 (26)
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IV. Results & Analysis

4.1 Game of Kind

We concern ourselves with two Pursuers, each faster than the Evader, both en-

dowed with a radius of capture l > 0.

We partition the game’s state space into a region R1,2 where both pursuers coop-

eratively and isochronously capture the Evader and into additional two regions, R1

and R2, where pursuer P1 or pursuer P2 single-handedly capture the evader in PP .

We obtain the separating surfaces between R1, R2 and R1,2 in the reduced state

space: The regions in which the Evader will only be captured by one pursuer, P1 or

P2 and the region where the evader will cooperatively be captured by both pursuers

isochronously.

Let R1 be the state space region where E is single-handedley captured by pursuer P1,

R2 is the state space region where E is single-handedly captured by P2 and R1,2 is

the state space region where E is isochronously captured by the cooperating pursuers

P1 and P2. To find the surface in the reduced state space’s positive orthant which

separates R1 and R1,2, we look at the critical state at which capture by P1 and P2

occurs isochronously and at the same time E is captured by P1 in PP . The geometry

is illustrated in Fig. 17.

The critical situation arises when the point I, where E is captured in PP by P1, is

on the y-axis, for there E will also be captured by P2. Let t be the time-to-capture

at I. This gives us the following equations to find t, and subsequently the evader’s
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Figure 17: Critical Configuration

point of interception I = (xI , yI):

µt+ d = t+ l

Hence

t =
1

µ
(d− l)

At the same time

IP 1 = d+ µt

Substituting in the value for t, we obtain,

IP 1 =
1

1− µ
(d− l)

Because of similar triangles, we find:

xP − xI
1

1−µ(d− l)
=
xP − xE

d
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so

xI =
1

1− µ
1

d
[µ(l − d)xP + (d− µl)xE]

and

yI
1

1−µ(d− l)
=
yE
d
,

we calculate

xI =
1

1− µ
1

d
[(d− µl)yE]

with

d =
√

(xP − xE)2 + y2E

The Pursuer, the Evader, and the interception point I on the y-axis are collinear. The

second pursuer in the LHP is also on the x-axis. The first pursuer and the Evader

are initially a distance d apart, as is shown in Figures 17 and 18.

Figure 18: Critical Geometry

This gives

µ(d− l)xP = (d− µl)xE

or

(µxP − xE)d = µl(xP − xE)
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hence

d = µl
xP − xE
µxP − xE

Next, in the right triangle with the hypotenuse of P1E

(xP − xE)2 + y2E = d2

Substituting in the expression for d and solving for yE gives

yE =
xP − xE
µxP − xE

√
µ2l2 − (µxP − xE)2

When yE = 0, this gives the line xE = µxP − µl, as expected. Alternatively,

(d− µl)xE ≤ µ(d− l)xP

or,

µl(xp − xE) ≤ d(µxp − xE)

When yE = 0,

µl(xP − xE) ≤ (xP − xE)(µxP − xE)

xE ≤ µxP − µl

Hence, in the first orthant of the reduced state space (xP , xE, yE) the surface sepa-

rating the sets R1 and R1,2 is

yE(xP , xE) =
xP − xE
µxP − xE

√
µ2l2 − (µxP − xE)2 , l +

1

µ
xE ≥ xP ≥

1

µ
xE (27)
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In the plane xE = 0, we have the circular arc

yE(xP ) =
√
l2 − x2P , 0 ≥ xP ≥ l

Figure 19: Solution of the Game of Kind; l = 1, µ = 1
2

In Figure 19 the state space region R1,2 where E is isochronously captured by P1

and P2 is separated from the region where E is single-handedly captured by P1 by

the surface covered by the family of curves (27) which is parametrized by xE. E is

single-handedly captured by P1 in the region included between this surface and the

plane xP = 0. The mirror image of Figure 19 about the plane xE = 0 yields the

region R2 where E is single-handedly captured by P2. The region R1,2 where P1 and

P2 cooperatively and isochronously capture E is symmetric about the plane xE = 0.

The surface separating the sets R1, and R1,2 shown in Figure 19 is parametrized by
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µ and l. When l = 0, this is the wedge [2]:

R1,2 = {(xP , xE, yE)|xP ≥ 0, yE ≥ 0,−µxP ≤ xE ≤ µxP}

4.2 Game of Degree

The Apollonius ovals constructed in Sections 3.2 and 3.3 are used to obtain the

solution in R1,2 of the two-on-one pursuit-evasion Game of Degree. Similar to Isaacs’

geometric method applied to the Two Cutters and Fugitive Ship scenario in [1], the

players’ optimal state feedback strategies are obtained upon calculating the intersec-

tion of the two Apollonius ovals C1 and C2 which pertain to pursuers P1 and P2,

respectively. This yields the SR of E.

Using the Apollonius ovals construct, we obtain the geometric solution of the two-

on-one pursuit-evasion game in R1,2 by forming the composite, lens shaped, BSR of

the Evader. The two Apollonius ovals are shown in Figure 20. The Apollonius ovals

intersect at two points. The point of intersection of the two Apollonius ovals which is

farther from E yields the players’ aim point I. The evader and the two pursuers head

to the aim point I where the evader will be isochronously captured by the two pur-

suers. Once the aim point I is calculated as a function of the current game’s reduced

state (xP , xE, yE), the players’ optimal state feedback strategies are obtained.

We analyze the Game of Degree in the three-dimensional reduced state space. In the

rotating reference frame (x, y) the pursuers start at the points (−xP , 0) and (xP , 0)

so a translation and a rotation transformation is required. We use the parametric

representation of the Apollonius ovals in Equation (6) where they are given in an

evader-centered reference frame (X, Y ). The frame (X1, Y1) where the Apollonius

oval C1 resides is rotated relative to the (x, y) frame by an angle α and the frame
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Figure 20: Two Pursuer; µ = 1
2
, l
d

= 2
5
, xP = 5, xE = 1, yE = 1

(X2, Y2) where the Apollonius oval C2 resides is rotated relative to the (x, y) frame by

an angle β — see Figure 20 and Equations (30). The transformations take the form

of Equations (28) and (29). In the reference frame (x, y) the Apollonius oval C1 is

x1 = xE −X1 cosα− Y1 sinα , y1 = yE + Y1 cosα +X1 sinα (28)

and the Apollonius oval C2 is

x2 = xE −X2 cos β − Y2 sin β , y2 = yE + Y2 cos β +X2 sin β (29)

where (xE, yE) is the evader’s instantaneous position in the rotating reference frame

(x, y), and α and β are the rotation angles of the axes of P1 and P2, respectively. In
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terms of the state (xP , xE, yE), α and β are

tanα =
yE

xP − xE

tan β =
yE

xP + xE

(30)

(X1, Y1) is a point of C1 in the evader-centered frame (X, Y ), and (X2, Y2) is a point of

C2 in the evader-centered frame (X, Y ). In Section 3.2, (X1, Y1) and also (X2, Y2) were

given in an alternative parametric form X1 = X1(θ1), Y1 = Y1(θ1) and X2 = X2(θ2),

Y2 = Y2(θ2) in Equation (??) and in Section 3.3 they were given in the parametric

form X1 = X1(t1), Y1 = Y1(t1) and X2 = X2(t2), Y2 = Y2(t2) in equations (6). In

Equations (6), d1 =
√

(xP − xE)2 + y2E, d2 =
√

(xP + xE)2 + y2E. In the (x, y) frame,

C1 is

x1 = x1(t1;xP , xE, yE) , y1 = y1(t1;xP , xE, yE)

where

−
√

(xP − xE)2 + y2E + l

1 + µ
≤ t1 ≤

√
(xP − xE)2 + y2E − l

1− µ

and the Apollonius oval C2 is

x2 = x2(t2;xP , xE, yE) , y2 = y2(t2;xP , xE, yE)

where

−
√

(xP + xE)2 + y2E + l

1 + µ
≤ t2 ≤

√
(xP + xE)2 + y2E − l

1− µ

Because we wish to find the points of intersection of the two ovals in the (x, y)

plane, we must obtain two equations for the two unknowns x and y. Concerning the

oval C1, we have

(x− xE)2 + (y − yE)2 = µ2t2
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and

(x− xP )2 + y2 = (t+ l)2

This gives us the equation for C1

[(x− xP )2 + y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]2 = 4l2[(x− xP )2 + y2]

that is,

(x− xP )4 + 2(x− xP )2[y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]

+ [y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]2 = 4l2(x− xP )2 + 4l2y2 (31)

Concerning oval C2, we have

(x− xE)2 + (y − yE)2 = µ2t2

and

(x+ xP )2 + y2 = (t+ l)2

This gives us the equation for C2

[(x+ xP )2 + y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]2 = 4l2[(x+ xP )2 + y2]

that is,

(x+ xP )4 + 2(x+ xP )2[y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]

+ [y2 + l2 − (x− xE)2 + (y − yE)2

µ2
]2 = 4l2(x+ xP )2 + 4l2y2 (32)
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Equations (31) and (32) yields the ovals’ intersection points. However, because the

pursuers have the same speed and the same capture radii, by symmetry we conclude

that the Apollonius ovals intersect on the y-axis, that is, the x-coordinate of the

aimpoint I is xI = 0. This reduces Equations (31) and (32) to the quartic equation

in y:

x4P + 2x2P [y2 + l2− x
2
E + (y − yE)2

µ2
] + [y2 + l2− x

2
E + (y − yE)2

µ2
]2 = 4l2(x2P + y2) (33)

A quartic equation has 4 roots, giving us 4 possible values for y. The greatest real

value for y determines the players’ aimpoint I. When l = 0, this equation reduces to

the quadratic equation

x2P + y2 − x2E + (y − yE)2

µ2
= 0

yielding the solution to Isaacs’ original Two Cutters and Fugitive Ship differential

game. Solving the quadratic equation yields a good initial guess for the iterative

solution of the quartic equation, which we note can also be solved analytically.

4.3 Equal Speed Game of Kind

To find the solution to the Game of Kind when the players have equal speed,

that is, whether under optimal pursuer play the Evader’s capture is guaranteed, we

need to determine whether the SR is bounded, which is the case iff the hyperbolae

asymptotes intersect. First, the evader must be in between the two pursuers. If the

state is outside of the slab −xP < xE < xP , the evader can escape. Consider now

the diagram in Figure 21. There are four points of interest, O1,O2, I
′, and I ′′ that

are vertices of a quadrilateral. This quadrilateral contains the entirety of the evader’s

SR, so we can ensure capturability if we determine that this quadrilateral is indeed
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formed.

Figure 21: Quadrilateral Formed by Intersecting Asymptotes

To this end, Consider the angles θ, φ1, φ2 in Figure 21. Since a quadrilateral must

have all internal angles sum to 360 degrees, we have the following

(360− θ) + φ1 + φ2 < 360

This yields the condition for a closed SR, and consequently the capturability condition
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is

θ > φ1 + φ2

Since the slope of the asymptotes in the realistic plane (X, Y ) are specified by Equa-

tion 9, we know that φ1 = arctan(
√
e21 − 1) and φ2 = arctan(

√
e22 − 1), with e1 = r1

l

and e2 = r2
l
. The angles φ1, φ2, and θ are exclusively determined by the game’s state

(xP , xE, yE). Additionally, we can state that, because both pursuers with equal speed

must travel the same distance in the same time, ∆IP1P2 is isosceles, so the vertex

I of the BSR must be on the orthogonal bisector of the segment P1P2; therefore,

the intercept point I is on the y-axis. Figure 22 shows the state of this game in the

reduced state space (x, y) when P1, P2, and E are in a general position. In Figure 22

the points

Figure 22: The State (xP , xE, yE)
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O1 =
1

2
(xE − xP , yE) , O2 =

1

2
(xE + xP , yE)

The angles

tanα1 =
√
e21 − 1 , tanα2 =

√
e22 − 1

and

tanP1 =
yE

xP + xE
, tanP2 =

yE
xP − xE

Therefore, summing those angles, we can characterize the captured zone in the re-

duced state space (xP , xE, yE).

tan(α1 + P1) =
yE +

√
e21 − 1(xP + xE)

xP + xE − yE
√
e21 − 1

and

tan(α2 + P2) =
yE +

√
e22 − 1(xP − xE)

x+ P − xE − yE
√
e22 − 1

so

tan(α1 + P1) =
lyE + (xP + xE)

√
(xP + xE)2 + y2E − l2

l(xP + xE)− yE
√

(xP + xE)2 + y2E − l2

and

tan(α2 + P2) =
lyE + (xP − xE)

√
(xP − xE)2 + y2E − l2

l(xP − xE)− yE
√

(xP − xE)2 + y2E − l2

The capturability condition then becomes the requirement that the denominator of

tan(α1 + P1) > 0 and the requirement that the denominator of tan(α2 + P2) > 0,

as the angles α1 + P1 and α2 + P2 would be approaching 90 deg, making the two

asymptotes perpendicular to the x-axis and therefore parallel to each other, opening

up the SR. We need then

l2(xp − xE)2 > y2E[(xP − xE)2 + y2E − l2]
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and

l2(xp + xE)2 > y2E[(xP + xE)2 + y2E − l2]

which yields the conditions:

l2[(xp − xE)2 + y2E] > y2E[(xP − xE)2 + y2E]

and

l2[(xp + xE)2 + y2E] > y2E[(xP + xE)2 + y2E]

Fortunately, both of these inequalities are the same and they yield the condition

yE < l

This gives us a bound on yE for where the Evader can be such that the SR would

be closed, so under optimal play by the pursuers capture of the evader is possible.

Concerning the x-coordinate xE of E, the condition was given above, that is, the

evader is between the two pursuers, that is −xP < xE < xP . Therefore, the SR is

closed and capturability is guaranteed iff in the reduced state space (xP , xE, yE) the

evader is located in the interior of the rectangle in Figure 23. If the x coordinate

of the evader is xE < −xP , xE > xP or if the y coordinate is greater than l, then

the SR is open and the evader can escape along a straight line path; he might even

pre-announce his course and he’ll still get away.
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Figure 23: Region of Capture

4.4 Equal Speed Game of Degree

Now that we have ascertained the existence of the surrogate aimpoint, I ′, we

will calculate the players’ aimpoint I. The latter is the vertex of the lens shaped

BSR which is farther from E. To do so, we must first perform a transformation

from the (x, y) frame to the realistic plane (X, Y ) by translating and rotating the

(x, y) reference frame. Figure 24 shows how the transformation is performed for each

pursuer, translating the x and y axes to center upon the evader and rotating the axes

such that the evader and the pursuer are on the x axis.

First, we perform a translation to get X ′1 and Y ′1 , centered at point O1:

X ′1 = x+
1

2
(xP − xE) , Y ′1 = y − 1

2
yE

At this point, we rotate the (x, y) frame so that P1 and E are on the x-axis.

X1 = X ′1 cosP1 + Y ′1 sinP1
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Figure 24: Translation and Rotation

and

Y1 = −X ′1 sinP1 + Y ′1 cosP1

with

sinP1 =
yE√

(xP + xE)2 + y2E
, cosP1 =

xP + xE√
(xP + xE)2 + y2E

Combining the translation and rotation, we have:

X1 = (x+
1

2
(xP − xE)) cosP1 + (y − 1

2
yE) sinP1

and

Y1 = −(x+
1

2
(xP − xE)) sinP1 + (y − 1

2
yE) cosP1

Substituting values for cosP1 and sinP1 into these equations, we have completed the

transformation and

X1 =
1√

(xP + xE)2 + y2E
[(xP + xE)x+ yEy −

1

2
(x2E + y2E − x2P )] (34)

Y1 =
1√

(xP + xE)2 + y2E
[(xP + xE)y − yEx− yExP )] (35)

Next, we must also repeat this process for the frame (X ′2, Y
′
2) which is centered at
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O2:

X ′2 =
1

2
(xP + xE)− x , Y ′2 = y − 1

2
yE

At this point, we rotate the x-axis so that P2 and E are collinear on this axis.

X2 = X ′2 cosP2 + Y ′2 sinP2

and

Y2 = −X ′2 sinP2 + Y ′2 cosP2

with

sinP2 =
yE√

(xP − xE)2 + y2E
, cosP2 =

xP − xE√
(xP − xE)2 + y2E

Combining the translation and rotation, we have:

X2 = [
1

2
(xP + xE)− x] cosP2 + (y − 1

2
yE) sinP2

and

Y2 = −[
1

2
(xP + xE)− x] sinP2 + (y − 1

2
yE) cosP2

Substituting values for cosP2 and sinP2 into these equations, we have the full de-

scription of X2 and Y2

X2 =
1√

(xP − xE)2 + y2E
[−(xP − xE)x+ yEy −

1

2
(x2E + y2E − x2P )] (36)

Y2 =
1√

(xP − xE)2 + y2E
[(xP − xE)y + yEx− yExP )] (37)

The (X, Y ) frame of reference allows us to use the canonical equations of the

hyperbolae,

X2
1

a21
− Y 2

1

b21
= 1 ,

X2
2

a22
− Y 2

2

b22
= 1
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with

a1 = a2 =
l

2

and now

b1 =
1

2

√
(xP + xE)2 + y2E − l2 , b2 =

1

2

√
(xP − xE)2 + y2E − l2

Inserting these expressions into Equations (34)-(37), we obtain

1

l2
[(xP + xE)x+ yEy − 1

2
(x2E + y2E − x2P )]2

(xP + xE)2 + y2E
− [yEx− (xP + xE)y + xPyE]2

[(xP + xE)2 + y2E][(xP − xE)2 + y2E − l2]
=

1

4

(38)

and

1

l2
[(xP − xE)x− yEy + 1

2
(x2E + y2E − x2P )]2

(xP − xE)2 + y2E
− [yEx+ (xP − xE)y − xPyE]2

[(xP − xE)2 + y2E][(xP + xE)2 + y2E − l2]
=

1

4

(39)

Combining terms, we have:

[(xP+xE)x+yEy−
1

2
(x2E+y2E−x2P )]2−l2 [yEx− (xP + xE)y + xPyE]2

(xP − xE)2 + y2E − l2
=
l2

4
[(xP−xE)2+y2E]

(40)

and

[(xP−xE)x−yEy+
1

2
(x2E+y2E−x2P )]2−l2 [yEx+ (xP − xE)y − xPyE]2

(xP + xE)2 + y2E − l2
=
l2

4
[(xP+xE)2+y2E]

(41)
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However, we know that in the reduced state space xI = 0, so we only need to consider

one hyperbola, say hyperbola 1. In Equation (40) set x = 0:

[yEy − 1
2
(x2E + y2E − x2P )]2

l2
− [(xP + xE)y − xPyE]2

(xP − xE)2 + y2E − l2
=

1

4
[(xP − xE)2 + y2E] (42)

This gives:

[(xP + xE)2 + y2E](y2E − l2)
l2[(xP + xE)2 + y2E − l2]

y2 − yE[
[(xP + xE)2 + y2E](x2P − x2E + y2E − l2)

l2[(xP + xE)2 + y2E − l2]
]y+

1

4l2
(x2E + y2E − x2P )2 −

x2py
2
E

(xP + xE)2 + y2E − l2
− 1

4
((xP + xE)2 + y2E − l2) = 0

which is a quadratic equation in y. The same equation would have been obtained if

we set x = 0 in Equation (41) If the state is in the rectangle {(xP , xE, yE)| − xP <

xE < xP , 0 < yE < l}, the quadratic equation has two real roots. We pick the bigger

y.

Figure 25: Optimal Headings of the Pursuers and Evader
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The players’ optimal strategies are — see Figure 25:

ψ∗ = arctan(
y(xP , xE, yE)

xP
) , χ∗ = arctan(

y(xP , xE, yE)

xP
) ,

ϕ∗ = arctan(
y(xP , xE, yE)− yE

xE
)

and the time-to-go/Value function is

V (xP , xE, yE) =
√

[y(xP , xE, yE)− yE]2 + x2E

∀ (xP , xE, yE) ∈ {(xP , xE, yE)| − xP < xE < xP , 0 ≤ yE < l}

4.5 Optimization Problem

We can also find the solution via an optimization problem derived as such.

X1(θ1;xP , xE, yE) = X2(θ2;xP , xE, yE) , Y1(θ1;xP , xE, yE) = Y2(θ2;xP , xE, yE)

Inserting Equation (30) in Equation (28), we obtain

X1(θ1;xP , xE, yE) cos(α(xP , xE, yE)) + Y1(θ1;xP , xE, yE) sin(α(xP , xE, yE)) =

−X2(θ2;xP , xE, yE) cos(β(xP , xE, yE)) + Y2(θ2;xP , xE, yE) sin(β(xP , xE, yE))

and,

Y1(θ1;xP , xE, yE) cos(α(xP , xE, yE))− Y2(θ2;xP , xE, yE) cos(β(xP , xE, yE))

= X2(θ2;xP , xE, yE) sin(β(xP , xE, yE))−X1(θ1;xP , xE, yE) sin(α(xP , xE, yE))
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Since xP , xE, yE are fixed, these terms are suppressed and the equations are

X1(θ1) cosα + Y1(θ1) sinα = −X2(θ2) cos β + Y2(θ2) sin β

and,

Y1(θ1) cosα− Y2(θ2) cos β = X2(θ2) sin β −X1(θ1) sinα

that is

X1(θ1) cosα +X2(θ2) cos β + Y1(θ1) sinα− Y2(θ2) sin β = 0

and,

Y1(θ1) cosα +X1(θ1) sinα− Y2(θ2) cos β −X2(θ2) sin β = 0

We must solve these two equations in the two unknowns θ1 and θ2. To find the

intersection points of the Apollonius ovals, that is, obtain the parameters θ1 and θ2,

we numerically perform the minimization of the ”cost”

Jθ1,θ2 = min
0≤θ1≤2π,0≤θ2≤2π

(
[X1(θ1) cosα−X2(θ2) cos β + Y1(θ1) sinα− Y2(θ2) sin β]2

+ [Y1(θ1) cosα +X1(θ1) sinα− Y2(θ2) cos β −X2(θ2) sin β]2
)

This simplifies to:

Jθ1,θ2 = min
0≤θ1≤2π,0≤θ2≤2π

(
X2

1 (θ1) + Y 2
1 (θ1) +X2

2 (θ2) + Y 2
2 (θ2)

+ 2[X1(θ1)X2(θ2)− Y1(θ1)Y2(θ2)] cos(α + β)

− 2[X1(θ1)Y2(θ2) +X2(θ2)Y1(θ1)] sin(α + β)

)
(43)

The Apollonius ovals C1 and C2 intersect at two points. Solving this optimization,

we find the farthest from E intersection point I of the two Apollonius ovals, i.e. the
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geometric solution of the differential game, as illustrated in Figure 20.

4.6 Examples

1. Let the problem parameters be l = 2 and µ = 1
2
. Say, the current positions

of the players in the reduced state space are xP = 5, xE = 1, yE = 1 as shown in

Figure 20. Therefore, d1 =
√

(xP − xE)2 + y2E =
√

18 and d2 =
√

(xP + xE)2 + y2E =
√

37. We calculate α = arctan(1
4
) and β = arctan(1

6
). This gives us the parametric

equations for P1’s Apollonius oval C1 — see Section 3.3,

X1(t1) =
3
4
t21 + 4t1 − 14

2
√

18

Y1(t1) =

√
1

4
t21 −

[3
4
t21 + 4t1 − 14]2

72
, −2 +

√
18

1.5
≤ t1 ≤

√
18− 2

.5

(44)

Similarly, the parametric equations for the Apollonius oval associated with P2 are

X2(t2) =
3
4
t22 + 4t2 − 33

2
√

37

Y2(t2) =

√
1

4
t22 −

[3
4
t22 + 4t2 − 33]2

148
, −2 +

√
37

1.5
≤ t2 ≤

√
37− 2

.5

(45)

Since the state is in the region R1,2 upon reverting to the (x, y) frame — see Figure

19 — Eq. (33) is solved to yield the aimpoint I on the y-axis. This equation lends

us 4 solutions, two of which are the intersection points of our two Apollonius ovals.

As the pursuers are on the x-axis, the longer path would be the path with a greater

absolute value on the y-axis.

The aimpoint I in Figure 20 is calculated for xP = 5, xE = 1, yE = 1, the speed

ratio µ = 1
2
, and l = 2 to be at I = (0, 2.4873). Hence, we calculate the players’
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optimal headings — see Figure 16: the heading of P2 is ψ∗, of P1 is χ∗, of E is ϕ∗:

ϕ∗ = arctan(
yI − yE
xI − xE

)

ψ∗ = arctan(
yI

−xP − xI
)

χ∗ = arctan(
yI

xP − xI
)

(46)

For the current state xP = 5, xE = 1, and yE = 1, we find these to be:

ϕ∗ = 124.0 deg

ψ∗ = 26.4 deg

χ∗ = 153.5 deg

2. Consider the case where the pursuers are only slightly faster than the evader,

that is, the speed ratio is µ = 1; l = 2.5. Let’s also set the players’ initial positions at

xP = 5, xE = .25, and yE = .5. When the speed ratio is 1 the BSR is a hyperbola —

see Figure 9. We then proceed as in the first case to find the aimpoint I of the players.

Similar to the previous case, we first calculate the distance between the pursuers and

the evader, d1 =
√

(xP − xE)2 + y2E =
√

22.8125 and d2 =
√

(xP + xE)2 + y2E =
√

27.8125, with the angles α = arctan( 1
9.5

) and β = arctan( 1
10.5

). We then obtain the

following parametric equations for each of the two hyperbolae.

X1(t1) =
5t1 − 16.5625

2
√

22.8125

Y1(t1) =

√
t21 −

[5t1 − 16.5625]2

91.25
, −2.5 +

√
22.8125

2
≤ t1 ≤ inf

(47)
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Likewise,

X2(t2) =
5t2 − 21.5625

2
√

27.8125

Y2(t2) =

√
t22 −

[5t2 − 21.5625]2

111.25
, −2.5 +

√
27.8125

2
≤ t2 ≤ inf

(48)

The bounds on the possible values for t1 and t2 go up to infinity as the SR for each

evader-pursuer pairing in this case is unbounded. However, the composite BSR is

bounded because the state is such that the asymptotes to the hyperbolae intersect.

Reverting to the (x, y) frame, setting xI = 0 and calculating yI , now forces the

solution of a quadratic equation in lieu of the quartic Eq. (33). We find the aimpoint

to be I = (0, 5.662), as seen in Fig. 26.

Figure 26: Case 2 Figure

For the current state xP = 5, xE = .25, and yE = .5 and µ = 1, we find the
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players’ optimal heading angles to be, as per Equations (46),

ϕ∗ = 93.0 deg

χ∗ = 46.3 deg

ψ∗ = 133.7 deg

3. Now we will evaluate this for the case where the pursuers have different speeds

so the speed ratios are µ1 = 1
2
, µ2 = 1; l = 2.5. Let’s also set the player’s initial

positions at xP = 5, xE = .25, and yE = .5. We see in Figure 9 that the BSR when

the speed ratio is 1 is a hyperbola. As the two pursuers have different speeds, we

cannot use the methods given above. Therefore, we solve the optimization given in

Equation (43) to find what the aimpoint of the players should be. Similar to the

previous cases, we first calculate the distance between the pursuers and the evader,

d1 =
√

(xP − xE)2 + y2E =
√

22.8125 and d2 =
√

(xP + xE)2 + y2E =
√

27.8125. The

angles of each α = arctan(1
9
) and β = arctan( 1

11
). Then, like in the first case, we see

similar parametric equations, but the speeds and distances will be different this time.

X1(t1) =
3
4
t21 + 5t1 − 14.25

2
√

20.5

Y1(t1) =

√
1

4
t21 −

[3
4
t21 + 5t1 − 14.25]2

82
, −2.5 +

√
20.5

1.5
≤ t1 ≤

√
20.5− 2.5

.5

(49)

Likewise,

X2(t2) =
5t2 − 24.25

2
√

30.5

Y2(t2) =

√
t22 −

[5t2 − 24.25]2

122
, −2.5 +

√
37

2
≤ t2 ≤ inf

(50)

The bounds on the possible values for t2 in Equation (50) go up to infinity as the BSR
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in this case is unbounded. However, the BSR described by Equation (49) is bounded,

meaning that the effective BSR is bounded. This will be true so long as the radius

of capture does not equal the distance between the pursuer and evader. Performing

the optimization, we find the aimpoint to be I = (−0.97, 1.61) as seen in 26.

Figure 27: Case 3 Figure

For the current state xP = 5, xE = .5, and yE = .5 and µ1 = .5, µ2 = 1, we find

the players’ heading angles to be, as per Equation (46)

ϕ∗ = 143.0 deg

χ∗ = 15.1 deg
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ψ∗ = 158.2 deg

These calculations must be performed in real time as the (reduced) state of the

game changes over time.

During optimal play the frame (x, y) is not rotating and the players’ optimal tra-

jectories in the realistic plane and in the reduced state space are straight lines. In

summary, the following holds

Theorem 1. The two-on-one pursuit-evasion differential game where the pursuers

are endowed with a capture radius l > 0 and the speed ratio vE
vP

= µ < 1 is considered.

The solution of the Game of Kind is given by the surface (27) which delimits the

region where both pursuers cooperatively and isochronously capture the evader. The

Game of Degree is then solved by finding the optimal aimpoint of the three players:

When the pursuers have equal speed and equal capture radii, this entails the solution

in real time of a quartic equation, Eq. (33). When the pursuer have different speeds or

have different capture radii, this will require the solution of a system of two polynomial

equations of degree four with two variables, Equations (31) and (32). And when all the

players have the same speed and the pursuers have equal capture radii the capturability

region is bounded. When the state is in the capturability region the solution of the

game of Degree entails the solution of a quadratic equation. �
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V. Conclusion

The two-on-one pursuit-evasion differential game where the three players have

simple motion à la Isaacs and the two pursuers are endowed with a radius of cap-

ture l > 0 is solved. We provided the solution of the Game of Kind by obtaining

the partitioning of the state space into the respective regions R1, R2 and R1,2 illus-

trated in Figure 19, where pursuer P1 captures the evader single-handedly, pursuer

P2 captures the evader single-handedly, and both pursuers P1 and P2 cooperatively

and isochronously capture the evader. The surface separating the three capture zones

is similar to the planar surface when the pursuers’ capture radius l = 0, as expected,

but becomes more curved as l increases, with the region R1,2 shrinking as l increases.

The Game of Degree was solved using Isaacs’ geometric method. To this end, first

the Apollonius ovals which are a departure from the classical Apollonius circle were

constructed. Having a finite radius of capture did reduce the size and altered the

shape of the Apollonius ovals, but, of course, the equations derived hold for the clas-

sical limiting case l = 0 where we have Apollonius circles. When the capture range

l > 0, the solution of the Game of Degree, that is, the calculation of the optimal state

feedback strategies, necessitates the real time analytic solution of a quartic equation

— this, as opposed to the limiting case of point capture where l = 0 and the solution

of the Game of Degree came down to the solution of a quadratic equation. However,

similar to the case of point capture, in this two-on-one differential game, when l > 0,

the players’ optimal trajectories in both the realistic plane and in the reduced state

space are straight lines. The optimal flow field then consists of straight lines. This is

a three state differential game with primary optimal trajectories and regular charac-

teristics only. There are no singular surfaces and the Value function is differentiable.

Thus, the solution of this differential game is identical to the solution of the two-sided

max min optimal control problem.
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