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Abstract

This research presents and solves constrained real-world problems of using syn-

thetic data to train artificial neural networks (ANNs) to detect unresolved moving

objects in wide field of view (WFOV) electro-optical/infrared (EO/IR) satellite mo-

tion imagery. Objectives include demonstrating the use of the Air Force Institute of

Technology (AFIT) Sensor and Scene Emulation Tool (ASSET) as an effective tool

for generating EO/IR motion imagery representative of real WFOV sensors and de-

scribing the ANN architectures, training, and testing results obtained. Deep learning

using a 3-D convolutional neural network (3D ConvNet), long short term memory

(LSTM) network, and U-Net are used to solve the problem of EO/IR unresolved ob-

ject detection. U-Net is shown to be a promising ANN architecture for performing

EO/IR unresolved object detection. In two of the experiments, U-Net achieved 90%

and 88% pixel prediction accuracy. In addition, the results show ASSET is capable

of generating sufficient information needed to train deep learning models.
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UNRESOLVED OBJECT DETECTION USING SYNTHETIC

DATA GENERATION AND ARTIFICIAL NEURAL NETWORKS

I. Introduction

1.1 Background

Electro-optical and infrared (EO/IR) unresolved object detection using wide field

of view (WFOV) sensors is a challenging problem due to the numerous variables and

complexities involved. As defined here, EO/IR unresolved objects are not spatially

resolved, occupy a small ratio of pixels within an image, and can be indistinguishable

from satellite sensor noise. Satellite sensors, orbiting at or below a geosynchronous

earth orbit (GEO), also operate over diverse environments with varying background

signal characteristics. Unstable atmospheric and weather conditions add to the com-

plexity of the problem.

Many of the existing methods of solving the EO/IR unresolved object detection

problem involves using closed form algorithms to process a sequence of images, as

opposed to a single image at a time. This allows detection algorithms to utilize both

the temporal and spatial changes between images to better distinguish clutter or

background pixels from the desired object pixels. Example algorithms include: 3D

matched filtering, temporal filtering, and triple temporal filters [1]. Downsides to

using closed form algorithms are the amount of computational power and time re-

quirements needed to produce a solution [1]. In addition, these closed form algorithms

are often generic and are not optimized for any specific satellite environment.
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1.2 Problem Statement

Using artificial neural networks (ANNs) to optimally solve the EO/IR unresolved

object detection problem is an intractable task due to the vast volume of labeled

truth data required to train an ANN for the wide variability in object, background,

atmospheric, and sensor conditions. That said, there have been recent advancements

in EO/IR data generation which may allow generation of sufficient quantities of re-

alistic, labeled data to effectively perform training. This is an unexplored area which

combines knowledge gained from the remote sensing and medical artificial intelligence

(AI) fields. The Air Force Institute of Technology (AFIT) Sensor and Scene Emula-

tion Tool (ASSET) is the key enabler of this research and is the source of all EO/IR

data generation [2].

1.3 Research Goals

This thesis is the initial exploration of using synthetically generated EO/IR datasets

in training deep learning models to perform unresolved object detection. It doc-

uments the EO/IR data generation settings using ASSET, details the ANN data

pre-processing steps, explores several ANN architectures created specifically for un-

resolved object detection, and evaluates the performance impacts of training with

different EO/IR datasets.

1.4 Research Questions

The work in this thesis was designed with the intent of answering these three

overarching questions:

1. Can ANNs be used to perform EO/IR unresolved object detection?

2. Which ANN architecture could be used?

3



3. How does the object signal-to-noise ratio (SNR), overall background to object

pixel ratio, and the number of scenarios within the dataset impact ANN per-

formance?

1.5 Hypothesis

This research hypothesizes that ANNs can be used to perform EO/IR unresolved

object detection with the appropriate architecture. It also hypothesizes a larger

EO/IR dataset with more scenarios will have a greater positive impact to the perfor-

mance of the ANN.

1.6 Thesis Overview

This thesis is described in five chapters. Chapter 2 provides background informa-

tion on ASSET, 3D convolutional neural network (ConvNet), long short-term memory

network (LSTM), and U-Net. It also provides an overview of the related work that

supported the development of this work. Chapter 3 provides the methodology of

the experiments and describes all ANN architectures, the dataset generation settings,

dataset pre-processing steps, and the experimental assumptions. Chapter 4 displays

the training results, describes the prediction performance, and provides visual graphs

of the ANNs predictions. Chapter 5 presents the results of the experiments and

identifies potential future work.
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II. Background and Related Research

2.1 Overview

This chapter provides an overview of ASSET, 3D ConvNets, LSTMs, and U-Nets.

This section also outlines the related research used in developing this research.

2.2 ASSET

ASSET is a physics-based, image chain model used to generate synthetic imagery

data captured by satellite sensors. ASSET is supported by AFIT’s Center for Tech-

nical Intelligence Studies and Research (CTISR). ASSET is written in the Matrix

Laboratory (MATLAB) computer programming language and was originally devel-

oped ”...to support student research where absolute knowledge of object position and

radiometric signature (i.e. truth) is needed, as is the case in detection and tracking

efforts, as well as research where large number of datasets are required, such as ma-

chine learning” [2]. A detailed description and the initial validation results of ASSET

can be found in the paper by Young et al. [2].

ASSET currently contains 182 customizable scenario parameters under five cate-

gories: input/output, simulation options, source options, scene parameters, and sen-

sor parameters. By adjusting the parameters within the categories, ASSET is able

to generate scenarios with customizable satellite noise characteristics, satellite sensor

artifacts, atmospheric conditions, and background scenes.

In addition, ASSET has the capability of inserting a user defined number of mov-

ing objects into the generated satellite images and videos. There are currently 13

customizable object parameters. There are currently 13 customizable parameters

controlling the signal level and motion of randomly generated moving objects, or the

user can provide their own signal and motion profile. The objects created by ASSET

5



are not spatially resolved, thus they are not visually identifiable. In other words, it

is not possible to recognize the object type (e.g. planes, cats, dogs) by its spatial

characteristics. Instead, the objects are representative of point-like signals and can

be customized to represent objects as observed by real satellite sensors.

2.3 Convolutional Neural Network (CNN or ConvNet)

2D ConvNets are used to solve problems where spatial relationships exist. The

convolution and pooling layers reduce the number of parameters in the ANN, which

makes 2D ConvNets the go-to network for prediction problems involving images. 3D

ConvNets gained popularity when results showed they could outperform 2D ConvNets

in solving the problem of human action recognition in videos [3]. Tran et al. has

shown the effectiveness of extracting features using 3D ConvNets trained on a large

scale video dataset [4]. 3D ConvNets have since expanded in scope to other fields

using videos or image sequences as the source of data. Similar to 2D ConvNets,

3D ConvNets have convolution and pooling layers; however, these layers are applied

simultaneously in the spatial and temporal dimensions.

2.4 Long Short-Term Memory Network (LSTM)

LSTMs are a type of recurrent neural network (RNN) used to solve sequence

prediction problems. Kim et al. has shown LSTMs are effective at predicting future

vehicle trajectory coordinates [5]. Sequence prediction problems can be categorized as

one-to-one, one-to-many, many-to-one, and many-to-many. This research addresses

the many-to-many prediction problem. LSTMs were designed with an improvement

which prevents the vanishing and exploding gradient problem found in RNNs. LSTM

connections also form a directed graph. The directed graph structure allows LSTMs

to maintain memory by using the output as the input in the next sequence member.

6



2.5 U-Net

U-Net was based on the fully convolutional network (FCN) [6] and was originally

used for biomedical image segmentation [7]. The FCN was published in 2014 and

contains convolutional, downsampling, and upsampling layers. There are no dense or

fully connected layers in a FCN. Similarly, U-Net does not contain dense layers. This

vastly reduces the size and training times when compared to traditional ConvNets.

An example 3D U-Net architecture can be seen in appendix F. The left side is

known as the contracting path, and it reduces the spatial resolution of the image

while extracting the feature information. The right side is known as the expansive

path, and it increases the spatial resolution while reinserting the feature information.

The resulting output is a segmentation map, where every pixel is labeled based on

the classification criteria. This research uses binary classification, and every pixel is

either a background or an object pixel.

2.6 Related Research

Using ANNs to detect unresolved objects (i.e. point-like signals) in EO/IR motion

imagery is a relatively unexplored area when compared to the more general problem

of using networks to detect and track spatially resolved objects (e.g. cars, dogs,

people). Limited work addressing the problem of detecting unresolved objects in

EO/IR motion imagery dates back to late 1980’s. In early research, using ANNs

to detect objects was more focused on theoretical uses than actual implementation.

One of the earliest papers using ANNs to detect unresolved objects in EO/IR imagery

was published in 1989 [8]. In the paper, Chenoweth describes the potential use of

an ANN to replace a least-mean-square (LMS) filter during image processing. In

1992, Liou and Azimi-Sadjadi developed an ANN which leverages the temporal and

spatial relationships present in motion imagery to identify object windows [9]. In
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1995, Shirvaikar and Trivedi compare the performance of a neural network filter to a

contrast box filter in detecting unresolved objects in high clutter thermal images [10].

Afterwards, the remote sensing AI community shifted focus from using ANNs

in favor of deterministic algorithms. Publications using ANNs to detect unresolved

objects declined until the resurgence of deep learning, which occurred in the early

2010’s. Two recent publications involving the use of ANNs to detect unresolved

objects. In 2010, Yun and Zhou compare the performance of support vector machine

(SVM) to ANNs in low SNR images [11]. In 2017, Hu et al. use a combination of a

bilateral filter with a LSTM to detect and predict unresolved object trajectories [12].

The concept of using a LSTM to predict object locations was further reinforced by

the publication from Kong et al. [13].

The medical AI community was surveyed due to the dearth of publications in

the remote sensing AI community. The medical AI community had several recent

publications involving the use of 3D ConvNets to detect anomalies using computed

tomography (CT) and magnetic resonance image (MRI) scans. CT and MRI scans

are single channel images and are comparable to single channel EO/IR images. Dou

et al. used 3D ConvNets to detect cerebral microbleeds in MRIs [14] and Huang et

al. used 3D ConvNets to detect lung nodules in CT scans [15]. More importantly,

these papers demonstrate the effectiveness and viability of using sequential images to

detect small anomalies in single channel images.

The medical AI field was continually consulted and referenced throughout the

research. The technique of semantic image segmentation using U-Net matched the

ANN profile needed to solve unresolved object detection in less constrained environ-

ments. U-Net is a proven and popular architecture based on subsequent research

within the medical AI field. Research proving the viability of using U-Net for image

segmentation include: biologically-informed brain tumor segmentation [16] and retina

8



blood vessel segmentation [17]. There has even been success at expanding U-Net into

a recurrent residual network [18].

2.7 Background Summary

This chapter presented an overview of ASSET, 3D ConvNets, LSTMs, and U-Nets,

which also provided insight into why these ANN architectures were chosen for this

research. It also presents the history of ANNs in the field of remote sensing and the

related research found in the medical AI community. This thesis is the culmination

of the knowledge gained by combining the techniques from both the remote sensing

and medical AI communities.
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III. Methodology

3.1 Problem/Objective

This thesis aims to provide the initial exploration of using synthetically gener-

ated EO/IR datasets to train ANNs in-performing unresolved object detection. It

documents the EO/IR data generation settings using ASSET, details the ANN data

pre-processing steps, explores several ANN architectures created specifically for un-

resolved object detection, and evaluates the performance impacts of training with

different EO/IR datasets. The objectives of the thesis are to answer these research

questions:

1. Can ANNs be used to perform EO/IR unresolved object detection?

2. Which ANN architecture could be used?

3. How does the object signal-to-noise ratio (SNR), overall background to object

pixel ratio, and the number of scenarios within the dataset impact ANN per-

formance?

This research methodology followed the Spiral model, a software engineering de-

sign process model. This method was chosen to reduce the overall risk of not produc-

ing viable results. The goal was to increase the difficulty of the problem with each

cycle or phase. Figure 1 lists the high level steps used to guide this research.

In total, two phases were completed using this methodology. The goal of Phase

1 was to determine the viability of using synthetically generated EO/IR datasets to

train ANNs to perform unresolved object detection and prediction. A small scaled

problem was created and successfully solved using a synthetic dataset. The success

of Phase 1 was critical in order to proceed with using ASSET to generate EO/IR

datasets.
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Figure 1. Spiral model

The goal of Phase 2 was to analyze the performance of an ANN solving the

problem of unresolved object detection trained using different EO/IR datasets. Each

experiment used an untrained ANN as the baseline. Transfer learning was not used

to train any ANN. Phase 2 also focused on the impact of dataset generation using

ASSET, while relaxing several small scaled problem constraints identified in Phase

1. Due to the relaxation of the problem constraints, a different approach was needed

to solve the problem of EO/IR unresolved object detection. In particular, Phase 1

constraints guaranteed an unresolved object would be present in every frame of a

video. Phase 2 removed this constraint which renders the ANN architecture used for

Phase 1 obsolete. Therefore, Phase 2 solves the unresolved object detection problem

using semantic image segmentation.

3.2 Phase 1

Phase 1 was the initial exploration to determine the viability of using ANNs to

detect unresolved objects. Phase 1 combined the techniques of extracting features, us-

ing 3D ConvNets, and predicting future trajectories, using LSTMs, into one pipeline.
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This phase was needed to ensure EO/IR data generated by ASSET contained the

appropriate information needed to perform machine learning.

Assumptions.

In Phase 1, the scenarios’ variables were constrained to create a small scaled

problem. Listed below were the assumptions used for Phase 1:

• ASSET was used to create EO/IR motion imagery data with noise, clutter, and

atmospheric conditions representative of a generic space-based sensor.

• There was no attempt to reduce noise and clutter in the motion imagery gener-

ated by ASSET. There are proven techniques of suppressing background clutter

to amplify the object signals using ANNs, and noise reduction was not a focus

of Phase 1 [10, 19].

• In the scenarios considered, atmospheric effects such as clouds and attenuation

were set to nominal and did not influence object detection.

• Each scenario was limited to one moving object that is present in each frame.

This avoids the added complexity of first determining whether or not an object

is present.

• All generated objects moved at a constant speed with either a linear or slightly

curved trajectory. Figure 2 shows example linear and curved trajectories using

the same background image.

• All scenarios were generated using the same background image. Having the

same background image is notionally consistent with a sensor viewing a fixed

swath on the earth.
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• Since the objective is to demonstrate an architecture capable of detection and

prediction, the object signals were well above the background noise pixel signals.

• Even with these constraints, the unresolved objects were not visibly apparent

within an image frame due to the contrast between their relatively low signal

and bright background (see figure 3).

Figure 2. Example trajectories created by ASSET

Figure 3. Example image frame with object location
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ANN Architectures.

Figure 4 shows the details of the 3D ConvNet architecture and figure 5 shows

the details of the LSTM architecture. Each of the models’ layers used the rectified

linear unit (ReLU) activation function with alpha set to 0.0, and max value set to

‘None’. Both architectures were also compiled using the mean squared error (MSE)

loss function and the ‘Adam’ optimizer with a learning rate of 0.001, beta 1 of 0.9,

beta 2 of 0.999, epsilon set to ‘None’, decay rate of 0.0, and amsgrad set to ‘False’.

The 3D ConvNet consisted of seven layers and had a total of 658,167 trainable

parameters. Based on the image pixel dimensions, the 3D ConvNet layers were in-

spired by LeNet-5 [20]. The LSTM was smaller and only consisted of two layers, with

a total of 92,102 trainable parameters.

ANN Pipeline.

Figure 6 shows a high level diagram of the ANN training and testing pipeline.

First the scenarios were randomly separated using the the standard train/test split of

80/20. The data set was split by scenarios vs image frames to maintain the temporal

information. Then, the 3D ConvNet was trained using the image files as the input

data and the spatial tuples (x, y) found in the object files as the labeled data. The

LSTM was trained only on the object location files. Finally for testing, the 3D

ConvNet and LSTM predictions were separately compared against the object truth

data for analysis.

Dataset Generation.

ASSET generates scenarios by using three sources of information:

1. Background image - The ASSET default background image used for Phase 1 is

shown in appendix A.
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Figure 4. Phase 1: 3D ConvNet architecture
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Figure 5. Phase 1: LSTM architecture

Figure 6. Phase 1: ANN Pipeline
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2. Configuration files - A custom and default configuration file were used. The

custom configuration file points to the default configuration file and updates the

parameters listed in the custom configuration file. The default configuration file

is packaged within ASSET and contains a generic configuration.

3. Object file - This file identifies the number of objects and its attributes. For

Phase 1, only one object was created and had either a linear or curved trajectory.

Signals move linearly or with a slightly curved path at approximately 1.21 pixels

per frame.

ASSET then saves all output image information as a HDF5 (.h) file and the asso-

ciated object truth information as a .txt file. The ASSET HDF5 (.h) file contains

all of the sensor image data, meaning there is one .h file for each scenario.

The dataset used for Phase 1 was 242MB in size and was customized given the

assumptions presented for Phase 1. Initially, 3,000 scenarios with linearly moving

objects and 3,000 scenarios with slightly curved moving objects were generated (see

figure 2 for example trajectories). The dataset was then downsized to only keep

scenarios with a object present in each frame. This complies with the assumption

that an object is present in every frame of a scenario. Downsizing was needed due to

ASSET’s inherent object generation algorithm, as generated objects did not always

appear in every frame of the scenarios.

The final dataset used to train the ANNs contained 2,786 scenarios (.h files).

1,724 of the scenarios had one moving object with a linear trajectory and 1,062 of

the scenarios had one moving object with a curved trajectory. Each scenario had 16

frames (image sequence) and each image frame was 32x32 (width x height) pixels. The

number of frames and image sizes were chosen to keep the neural network architectures

small and reduce the training times needed.

Like the .h files, there is one object truth file (.txt) generated for each scenario.
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Each object file contains 16 spatial coordinate pairs (one spatial coordinate pair for

each frame in the input sequence), and the final dataset contains 2,786 object .txt

files. Having labeled truth information is essential to the success of any supervised

learning problem. As an example, table 1 shows the object column and row pixel

coordinates for the linear and slightly curved trajectories corresponding to figure 2.

Dataset Pre-processing.

All dataset processing was perform in Python and used the 5,572 (2,786 .h and

2,786 .txt) files as input. The pre-processing steps are described in this section.

Step 1: Analyze .h and .txt Files.

Within the .h file is a key, saved as a Dataset named CalRawData. All of the

required training information was extracted from CalRawData. The data is stored in

the shape (frame, column, row), with each scenario having 16 frames, 32 columns,

and 32 rows.

The .txt file contained nine columns and 16 rows of object information. The

columns are: Number, time, frame, row, column, signal, peak, NET, and SET.

The rows provided details of the object’s position, signal level, and background noise

in each frame. Training the 3D ConvNet only required using the row and column

details. An example object (.txt) file is attached to appendix B.

Step 2: Import Into Python.

The .h files were used as the image data, and the object .txt files were used

as the labeled data. First, the .h primitive data type was converted from unsigned

int32 to signed float32. After conversion, the scenario information was saved into

NumPy arrays. The NumPy arrays were then reshaped into the input shape needed
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Table 1. Example Coordinates Found in .txt Files

Linear Slightly Curved
frame column (x) row (y) column (x) row (y)

1 26.12 11.83 14.20 9.06
2 25.79 13.00 14.81 10.11
3 25.46 14.17 15.40 11.17
4 25.13 15.34 15.99 12.24
5 24.80 16.51 16.56 13.31
6 24.47 17.68 17.13 14.38
7 24.15 18.85 17.67 15.47
8 23.82 20.02 18.20 16.56
9 23.49 21.19 18.72 17.67
10 23.16 22.36 19.21 18.78
11 22.83 23.53 19.67 19.90
12 22.50 24.70 20.11 21.03
13 22.17 25.87 20.51 22.18
14 21.84 27.04 20.89 23.34
15 21.52 28.21 21.22 24.50
16 21.19 29.38 21.51 25.68

for a Keras Conv3D layer: (batch, conv dim1, conv dim2, conv dim3, channels). This

translates into: (number of scenarios, number of frames per scenario, pixel height,

pixel width, number of channels). For reference, the .h dataset had the shape (2786,

16, 32, 32, 1) with the one gray-scale channel.

Next, the row and column information was imported from the object files, also

as float32, into NumPy arrays. The object arrays were reshaped into (number of

scenarios, number of frames per scenario*2). The “number of frames per scenario*2”

represents each frame having one row and one column coordinate. Each scenario is

comprised of a vector: [x1, y1, x2, y2, ..., xn, yn] (n = number of frames per scenario).

Step 3: Create Train/Test Sets.

3D ConvNet Train/Test Sets.

The 3D ConvNet was trained using the standard train/test split of 80/20. After

splitting, the image data training and testing values were normalized to a range
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between [0, 1]. Normalizing ensures the pixel values are evenly evaluated regardless

of spatial location [21]. These were the image data and label shapes after the split:

• Training data

– conv3d image train: (2228, 16, 32, 32, 1)

– conv3d image train: (2228, 32)

• Testing data

– conv3d label test: (558, 16, 32, 32, 1)

– conv3d label test: (558, 32)

LSTM Train Set.

Preparing the LSTM training set took several more steps compared to the 3D

ConvNet. A LSTM learns from a sequence of inputs to predict the next output.

There are no standard values for look back and prediction window lengths, as they

both are dependent on the given problem and data available. Given that the dataset

has 16 frames per scenario, the look back window was set to five and the prediction

window was set to one. Having additional frames per scenario would have increased

the look back window. Also, the LSTM was trained only on the training data available

to the 3D ConvNet.

Here is the Python style pseudocode to create a LSTM training set:

Algorithm 1 created 24,508 scenarios from the 2,228 scenarios available in conv3d y train

set. The input parameters and training shapes resulting from Algorithm 1 are:

• Dataset = conv3d label train.reshape(2228, 16, 2)

• lb (look back window) = 5

• pw (prediction window) = 1
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Algorithm 1 Pseudocode to create LSTM training set

procedure create training(Dataset)
lb = 5 . look back window
pw = 1 . prediction window
lookback train, pred train = [ ], [ ] . empty lists
for i in number of scenarios do

for j in number of frames do
lookback train.append(Dataset[i, j:(j+lb)])
pred train.append(Dataset[i, (j+lb):(j+lb+pw))

end for
end for
return lookback train, pred train

end procedure

• lstm lookback train: (24508, 5, 2)

• lstm pred train: (24508, 2)

LSTM Test Set.

For testing, a combination of 3D ConvNet and LSTM predictions were used. The

3D ConvNet had the task of detecting the object using the first 10 frames, and the

LSTM was given the task of predicting the future coordinates for the final six frames.

The predictions were then compared to the truth coordinates.

The steps to process LSTM inputs are:

1. Take the last 10 (number of frames*2) values from the 3D ConvNet output.

Only the last five coordinates will be used as LSTM inputs (based on the look

back window). Output goes from shape (558, 32) ⇒ (558, 10).

2. Reshape the 10 values again to match the input shape defined by the LSTM

model. Shape goes from (558, 10) ⇒ (558, 5, 2).

3. The LSTM then outputs the predicted coordinates for the following window(s).

The number of predicted coordinates can be set by the user. For this research,
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the LSTM prediction window was set to one, so the resulting output shape was

(558, 2).

4. For additional LSTM predictions, continually use the last five frames to predict

the following frame.

Analysis Strategy.

Phase 1 was evaluated by analyzing the ANN training loss plots, quantitatively

calculating mean absolute error (MAE), and qualitatively examined by graphing the

predicted coordinates.

ANN Training Loss Plots.

ANN training loss plots provided insight into the training process. Of interest are

the number of epochs required for training and the minimum/maximum loss metrics

achieved. The validation line also a good indicator of test set performance.

Mean Absolute Error.

Performance results were quantitatively evaluated by plotting and then calculating

the median MAE of the histograms. As opposed to mean, the median value is less

influenced by extreme outliers and is preferable when comparing different histograms.

A perfect prediction would equate to a total MAE of 0.

MAE was calculated by sequentially placing all x and y coordinates into sepa-

rate arrays. The set predicted X contained all predicted x coordinates, and the set

predicted Y contained all the predicted y coordinates. The same was done for the

truth x and y coordinates and placed into sets truth X and truth Y . The formulas

below detail the steps used to calculate MAE between the x and y coordinates:

22



MAE X =
1

n

n∑
i=1

|truth Xi − predicted Xi| (1)

MAE Y =
1

n

n∑
i=1

|truth Yi − predicted Yi| (2)

MAE Total = MAE X + MAE Y (3)

where i represents the iteration through each element of the set and n represents

the total number of elements in the set. Finally, MAE X and MAE Y were combined

to create the total MAE for one scenario. This process was repeated for each test set

scenario and then graphed on a histogram.

Graph Predictions.

ANN prediction results were also qualitatively evaluated by graphing the predicted

and truth coordinates on the same plots. Visual representations of the predictions

provide instant feedback into the ANN’s prediction performance.

3.3 Phase 2

Phase 2 was the next cycle of this research. Phase 2 removed several assumptions

presented in Phase 1 to create a more difficult problem. As a result the 3D ConvNet

and LSTM architectures were no longer viable solutions. By leaning on the works

published in the medical AI field, U-Net was chosen as the solution.

For Phase 2, U-Net was tasked with receiving 32 images (one scenario) as input

and producing 32 semantic image segmentation masks. There is one semantic image

segmentation mask for each frame (or image) in a scenario. Each pixel within the

mask was either identified as background or object (see figure 7 for a visual example).
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Figure 7. Phase 2: U-Net example

Phase 2 was designed around the two research questions:

1. Which ANN architectures could be used?

2. How does the object SNR, overall background to object pixel ratio, and the

number of scenarios within the dataset impact ANN performance?

Experiments 1-3 used a control dataset to identify best ANN architecture, and

experiments 4-6 used a control ANN architecture to identify dataset impacts (see

figure 8).

Assumptions.

Phase 2 relaxed several small scaled problem constraints previously identified in

Phase 1. The updated assumptions are provided below. Note: unlike Phase 1, Phase

2 did not include object prediction.

• ASSET was used to create EO/IR motion imagery data with noise, clutter, and

atmospheric conditions representative of a generic space-based satellite sensor.
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Figure 8. Phase 2: Research questions and experiments

• There was no attempt to reduce noise and clutter in the motion imagery gen-

erated by ASSET.

• In the scenarios considered, atmospheric effects such as clouds and attenuation

were set to nominal and did not influence object detection.

• Allow scenarios to have multiple and/or zero objects in any given image frame.

For example, an object may appear in frame 2 and disappear in frame 10. There

will be no constraints to keep the object in all frames of a scenario.

• Scenarios will have randomized background images (figure 11 showcases the

randomized background images).

• Objects will be initialized with random trajectories, speed, and acceleration.

After initialization, the object will maintain a constant speed and acceleration,

and trajectory will be formed based on those two parameters. As an example,

if an object is moving right, it will continue to moving right at a constant speed

and acceleration. The object will never veer left or slow down.

• Removed object prediction goal, focused on detection.

• Even with these constraints, the unresolved objects were not visibly apparent
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within an image frame due to the contrast between their relatively low signal

and bright background (see figure 3).

ANN Architecture.

Three U-Net variants were chosen as the main ANN architectures for Phase 2.

These variants were created to answer the second research question, “Which ANN

architectures could be used?”

All U-Nets were based on the works presented by Ronneberger et al. [7] and

Milletari et al. [22]. Ronneberger et al. developed the popular U-Net architecture.

Milletari et al. showed using the Dice-coeffiecient as the loss function on the last

layer performs well on image segmentation tasks with strongly imbalanced binary

classes. The Dice-coefficient function was calculated using The true positive (TP),

false positive (FP), and false negative (FN) values and is shown in equation 4. A

DSC of 1.0 represents a perfect match between the truth and predicted sets.

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

Here are the descriptions of the three ANN architectures created for Phase 2:

1. ANN 1 (2D U-NET Dice) - This ANN was modeled after the original U-Net

and is considered a FCN. The 2D U-Net performs a convolution over the width

and height of the input volume. Figure 9 shows the network architecture using

Keras functional application program interface (API) style notation. There were

a total of 34,512,193 trainable parameters in ANN 1. The input shape matched

the Keras 4D tensor (batch, rows, cols, channels) and the output shape was

(batch, new rows, new cols, filters). To keep figure 9 relatively small, these

additional hyperparameters were not shown in the figure:
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• All Conv2D layers, except Layer 36, used (kernel size = 3, padding =

‘same’, activation = ‘relu’).

• Layer 36 used (kernel size = 1 and padding = ‘valid’). Due to having

only one class, the sigmoid activation function was used on this final layer.

Dice-coefficient was used as the loss function.

• All MaxPooling2D layers used (pool size = 2 and strides = 2)

• All UpSampling2D layers used (size = 2).

2. ANN 2 (3D U-NET Dice) - This ANN was almost an exact copy of ANN 1. The

3D U-Net performs a convolution over the width, height, and depth/frames of

the input volume. Using figure 9 as a reference, simply replace all 2D layers

with 3D layers (Conv2D→ Conv3D, MaxPooling2D→MaxPooling3D, UpSam-

pling2D and → UpSampling3D). There were a total of 103,522,753 trainable

parameters in ANN 2. The input shape matched the Keras 5D tensor (batch,

depth, rows, cols, channels) and the output shape was (batch, new depth,

new rows, new cols, filters). The hyperparameters used for ANN 2 were:

• Conv3D, MaxPooling3D, and UpSampling3D used the same hyperparam-

eters, loss function, and activation function as ANN 1.

• Concatenation layers used axis = 4, instead of axis = 3.

3. ANN 3 (3D U-NET BCE) - This ANN was created solely to compare the per-

formance difference between the loss functions Dice-coefficient and binary cross-

entropy (BCE). ANN 3 uses the exact same hyperparameters as ANN 2 and has

the same number of trainable parameters. The only difference is that ANN 3

was compiled using binary cross-entropy as the loss function and accuracy was

used as the metric.
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4. The architecture used for ANN 2 and 3 can be viewed at appendix F.

Figure 9. Phase 2: 2D U-Net architecture

All ANNs were compiled using the ‘Adam’ optimizer with a beta 1 of 0.9, beta 2

of 0.999, epsilon set to ‘None’, decay rate of 0.0, and amsgrad set to ‘False’. The LR

was adjusted pending the dataset used and was inversely proportional to the dataset

size. The datasets with 500/600 scenarios used a learning rate of 0.0001 and the

dataset with 3,000 scenarios used a learning rate of 0.00001.
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Dataset Generation.

Similar to Phase 1, ASSET needed three sources of information for Phase 2:

1. Background image - Each scenario used a different background image for this

phase. These images were created by randomly taking 32x32 pixel samples

from the original background image. The scenario characteristics were also

randomly assigned within ASSET to emulate different times of day, time of

year, temperature, and satellite longitude. Appendix E shows a snapshot of

40 scenarios with random satellite generation parameters. The largest dataset

required 3,000 scenario generation parameters.

2. Configuration files - A new custom configuration file was created for Phase 2.

3. Object file - This file identifies the number of objects and its attributes. For

Phase 2, all objects were generated using the same base configuration; because

objects are generated randomly, their trajectories are different in each dataset

but have similar speed, acceleration, and signal levels.

Phase 2 was also tasked with answering the third research question,“how does the

object SNR, overall background to object pixel ratio, and the number of scenarios

within the dataset impact ANN performance?”. Several variables were hypothesized

as having a significant impact to ANN performance. These were the variables changed

for each dataset generation:

• Object signal-to-noise ratio (SNR) - Users can define the object’s SNR prior to

scenario generation. The object’s SNR takes into account both the background

image and noise signals present in the scenario.

• Overall background to object pixel ratio - This ratio is influenced by the number

of objects present in the scenario. A higher number of objects equate to a lower

ratio.
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• Number of scenarios - All scenarios are the same size: 32 frames, 32 pixel width,

and 32 pixel height. The number of objects within the scenario does not impact

the scenario size.

In total, four datasets were created for Phase 2. Each dataset was successively

designed based on the knowledge of ASSET to test the boundaries of an ANN’s

performance at detecting unresolved objects.

All datasets were generated to have 32x32 (row x column) pixels per image and

with 32 image frames per scenario. 32x32 pixels per image was chosen to reduce

ANN training times and reduce the overall background to object pixel ratio. For

example, a 64x64 image has 4,096 pixels, whereas a 32x32 image has 1,024 pixels.

Generation of the scenario backgrounds and object trajectories were determined by

ASSET’s randomization algorithm (see figure 11 for an example).

In addition, each dataset contains image masks identifying the locations of the

objects within the images. Image masks are needed by U-Net to perform training,

and they are the same dimensions as the input image. For this research, a 1-pixel

mask was created around the object using the object locations found in the .txt files.

Note: the image mask is not representative of the actual object signals found within

the scenario, objects are not 3x3 pixels in size. This naive solution simply serves to

decrease the background to object pixel ratio, thereby reducing the difficulty of the

problem. Figure 10 shows a visual of implementing this solution by increasing the

mask of the object from 1-pixel to 9-pixels.

Figure 11 shows the randomization of the image backgrounds and object motion

paths found in the scenarios. The datasets in the figure were aggregated based on

scenario generation parameters.

Here, the datasets are described in the order created:

1. Dataset 1 (500Scenarios 10-Objects 20SNR) - This was the initial, baseline,
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Figure 10. Phase 2: Object masking visual

Figure 11. Phase 2: Example backgrounds and object motion paths
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dataset containing 500 scenarios and was 86 MB in size. The intent was to

maximize the ANN’s probability of detecting objects. This was achieved by

setting the maximum number of objects generated to 10 and with each object

having a SNR of 20. The overall background to object pixel ratio was 14:1

(15,320,927:1,063,073 pixels).

2. Dataset 2 (500Scenarios 10-Objects 10SNR) - This was the second dataset cre-

ated and was created with the same generation parameters as Dataset 1, except

for the object’s SNR. The SNR was dropped from 20 to 10 to test if the ANN

could detect objects with a lower SNR. Dataset 2 was also 86 MB in size, and the

overall background to object pixel ratio was 14:1 (15,312,432:1,071,568 pixels).

3. Dataset 3 (3000Scenarios 0-5-Objects 20SNR) - This was the third dataset cre-

ated. This dataset lowered the maximum number of objects present from 10 to

5. Lowering the number of objects reduces the background to object pixel ratio,

thus increasing the difficulty of the problem. To compensate for the increased

difficulty, additional scenarios were created. Objects’ SNR remained set to 20.

• 500 scenarios were generated with zero objects

• 500 scenarios were generated with one object

• 500 scenarios were generated with two objects

• 500 scenarios were generated with three objects

• 500 scenarios were generated with four objects

• 500 scenarios were generated with five objects

In total, 3,000 scenarios where generated with the maximum number of objects

in any scenario being five. Dataset 3 was 472 MB in size, and the overall

background to object pixel ratio was 60:1 (96,637,352:1,666,648 pixels).
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4. Dataset 4 (600Scenarios 0-5-Objects 20SNR) - This was the fourth and final

dataset created. This dataset was created to determine if lowering the training

data would still provide enough information to train an ANN. Scenarios were

selected from Dataset 3 to create Dataset 4.

• 100 scenarios were selected with zero objects

• 100 scenarios were selected with one object

• 100 scenarios were selected with two objects

• 100 scenarios were selected with three objects

• 100 scenarios were selected with four objects

• 100 scenarios were selected with five objects

In total, 600 scenarios where selected with the maximum number of objects in

any scenario was five. Dataset 4 was 98 MB in size, and the overall background

to object pixel ratio was 57:1 (19,323,398:337,402 pixels).

Analysis Strategy.

Similar to Phase 1, Phase 2 used ANN training loss plots and qualitatively eval-

uated the ANN predictions using plots. Quantitative evaluations were performed

using the DSC, accuracy, and calculating the precision-recall (PR) area under the

curve (AUC).

ANN Training Loss Plots.

ANN training loss plots provided insight into the training process. Of interest are

the number of epochs required for training and the minimum/maximum loss metrics

achieved. The validation line also a good indicator of test set performance.

33



Dice-coefficient Score and Accuracy.

Performance results were quantitatively evaluated by calculating the average DSC

(equation 4) or average accuracy (equation 5. A perfect prediction would have a DSC

or accuracy equal to 1.0. Accuracy was calculated using the TP, FP, true negative

(TN), and FN values.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(5)

When working with strongly imbalanced classes, it is good to note that using

accuracy to measure performance can be misleading. For example, here are the

results of calculating DSC and accuracy using representative values as seen from the

experiments.

• TP = 4,802

• FP = 12,277

• TN = 3,052,327

• FN = 207,394

DSC =
2 ∗ 4, 802

2 ∗ 4, 802 + 12, 277 + 207, 394
= 0.04

Accuracy =
(4, 802 + 3, 052, 327)

(4, 802 + 12, 277 + 3, 052, 327 + 207, 394)
= 0.93

This example shows how accuracy can be near 1.0, while DSC is near zero.
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Precision-recall AUC.

An ideal ANN would achieve a PR AUC calculation of 1.0, and worst case per-

formance would equate to a 0.0. PR AUC was chosen as the quantitative metric

over receiver operating characteristic (ROC) curves due to the strong class imbalance

present in all datasets.

ROC curves are created using the true positive rates (TPRs) and the false positive

rate (FPR)s (FPRs). Since 90%+ of the pixels is background, ROC AUC scores will

inherently score high. On the other hand, PR AUC calculations also account for the

false negative rates (FNRs), which account for miss-classifying objects as background.

TP, FP, TN, FN valuess were used to calculate PR AUC.

PR =
Precison

Recall
=

PositivePredictedV alue

TruePositiveRate
=

TP

TP + FP
TP

TP + FN

=
TP + FN

TP + FP

To calculate TP, FP, TN, and FN, predictions on the test set were repeatedly

made while adjusting the threshold from 0.0 to 1.0 in 0.01 increments. These numbers

were then stored in a dataframe. Table 2 displays the first five rows of an example

dataframe.

Table 2. Example Dataframe Values

threshold TP FP TN FN recall precision
0.00 68992 3863168 0 0 0.983 0.018
0.01 53592 1862234 2000934 15400 0.747 0.028
0.02 36202 909142 2954026 32790 0.502 0.038
0.03 27180 564903 3298265 41812 0.378 0.0457
0.04 22649 420006 3443162 46343 0.316 0.051

The PRC is then graphed after the dataframe is fully populated. AUC can then
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be calculated using the scikit-learn and NumPy libraries [23, 24] (see Algorithm 2 for

an example).

Algorithm 2 Code to calculate PR AUC using Python style notation

x = dataframe[‘recall’]
y = dataframe[‘precision’]
print(‘PR AUC (using trapezoid rule) =’, np.trapz(x,y))

Graph Predictions.

ANN prediction results were also qualitatively evaluated by graphing the predicted

and truth images side by side. Visual representations of the predictions provide

instant feedback into the ANN’s prediction performance.
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IV. Results & Analysis

4.1 Overview

This chapter describes the training results and presents the prediction results for

Phases 1 and 2. The results have been grouped by phases and will be presented

accordingly.

4.2 Phase 1

For Phase 1, the 3D ConvNet had the goal of predicting the object’s location

within each frame. The LSTM had a goal of predicting the object’s location in the

sixth image frame, given five previous image frame locations.

Both ANNs were initialized with the Keras callbacks EarlyStopping and Mod-

elCheckpoint. These two callbacks were used to pinpoint the required number of

epochs needed for training. During model training, ‘validation split’ was set to 0.1,

which reallocates 10% of the training set as the validation set. Creating the vali-

dation set from the training set allowed the testing set to remain untouched until

final performance evaluation. As a reminder, MSE was used as the loss function

between the training and validation sets. For the 3D ConvNet, EarlyStopping mon-

itored validation loss and patience was set to 300. For the LSTM, EarlyStopping

also monitored validation loss and patience was set to 20. This allowed us to set the

training epochs excessively high without having to guess a good number. For both

models, ModelCheckpoint monitored validation loss and only saved the best model,

which disregarded the unnecessary training epochs shown in figures 12 and 16.
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3D ConvNet Training Results.

Figure 12 displays the training results carried out to 1,000 epochs. The training

curve decreases from 160 down to 10 MSE in under 100 epochs; however, it took an-

other 300 epochs before reaching near 0 MSE. Monitoring the validation loss provides

insight into the ANN’s performance on the test set. A near 0 MSE implies the ANN

will also perform well on the test set.

Finding the correct number of training epochs took several tries. The first few

training sessions had the max number of training epochs set to 200 and always produce

unusable results. A hint for future work: try increasing the training epochs first before

adjusting other hyperparameters.

Figure 12. Phase 1: 3D ConvNet training loss plot
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3D ConvNet Quantitative Evaluation.

Figure 13 shows the 3D ConvNet MAE results from all the test scenarios. MAE

was calculated using the predicted and truth coordinates. The calculated median

value found in the histogram was 0.31.

Figure 13. Phase 1: 3D ConvNet MAE histogram

For reference, had the 3D ConvNet always predicted the center pixel as the object’s

location, where x and y equaled 16, the calculated median value would have been 9.95

(see figure 14 for the side by side comparison of the 3D ConvNet and center pixel

prediction MAE histograms). The 3D ConvNet model outperforms the trivial solution

of always predicting the center pixel.

3D ConvNet Qualitative Evaluation.

Figure 15 displays the 3D ConvNet’s predictions on the first four test set scenarios.

The predicted coordinates are close to the truth coordinates, which supports the

calculated median MAE of 0.31.
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Figure 14. Phase 1: 3D ConvNet vs center pixel MAE histogram

40



Appendix C provides additional test set predictions.

Figure 15. Phase 1: 3D ConvNet visual of the predictions

LSTM Training Results.

Figure 16 displays the training results carried out to 63 epochs. The training

curve decreases to near 0 MSE at 43 epochs. The LSTM reaches near 0 validation

loss, which indicates the ANN will perform well on the test set.

The LSTM was trained in less time than the 3D ConvNet. This is due to the type

of input being fed into the two networks. LSTM received vector arrays, while the 3D

ConvNet received image pixels.
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Figure 16. Phase 1: LSTM training loss plot (log scale)
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3D ConvNet+LSTM Quantitative Evaluation.

Figure 17 shows the results of calculating the MAE between the 3D ConvNet+LSTM

predicted and truth coordinates for all test scenarios. Based on the histograms, the

3D ConvNet+LSTM MAE also maintains a skewed right distribution with a calcu-

lated median at 0.45. Adding the LSTM predictions resulted in an increase in MAE

by 45% (0.14), when compared to the 3D ConvNet MAE of 0.31. For comparison,

figure 18 displays 3D ConvNet and 3D ConvNet+LSTM side by side.

Figure 17. Phase 1: 3D ConvNet+LSTM MAE histogram

3D ConvNet+LSTM Qualitative Evaluation.

Figure 19 displays the LSTM’s predictions on the first four test set scenarios.

Appendix D provides additional test set predictions. The predictions made by the

LSTM continue the 3D ConvNet trajectories as expected. There is a noticeable drop

in performance when comparing the results to figure 15.
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Figure 18. Phase 1: 3D ConvNet and 3D ConvNet+LSTM MAE histogram
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Figure 19. Phase 1: 3D ConvNet+LSTM visual of the predictions
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4.3 Phase 2

U-Net was given the task of outputting a segmented image map when given an

IR image. As a reminder, Phase 2 was designed around the two research questions:

1. Which ANN architectures could be used?

2. How does the object SNR, overall background to object pixel ratio, and the

number of scenarios within the dataset impact ANN performance?

Experiments 1-3 used a control dataset to identify best ANN architecture, and

experiments 4-6 used a control ANN to identify dataset impacts to ANN performance

(see figure 8). The experimental combinations are shown in table 3. Please note the

ranges of the colorbar next to the graphs, as the ranges are not all zero to one.

Table 3. Phase 2 Experimental Combinations
Experiment/Combination Train set (60%) Val set (20%) Test set (20%) Total (100%)

1.) Dataset 1 + ANN 1 10,240 2,560 3,200 16,000 images
2.) Dataset 2 + ANN 2 320 80 100 500 scenarios
3.) Dataset 3 + ANN 3 320 80 100 500 scenarios
4.) Dataset 4 + ANN 2 320 80 100 500 scenarios
5.) Dataset 5 + ANN 2 1,920 480 600 3,000 scenarios
6.) Dataset 6 + ANN 2 384 96 120 600 scenarios

U-Net Training Results.

For organization, this section displays all six experimental training results to-

gether; however, Experiments 1-6 were trained and evaluated chronologically. The

Keras callbacks EarlyStopping, ReduceLROnPlateau, and ModelCheckpoint were im-

plemented for the training process. The benefits of EarlyStopping and ModelCheck-

point was previously discussed in Phase 1 results section. ReduceLROnPlateau was

used to improve the training process and helped prevent stagnant learning.

The training loss and performance metric graphs are shown for each experiment

in figures 20 and 21. Experiments 1, 2, 4, 5, and 6 used the Dice-coefficient as
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the training metric, and Experiment 3 used BCE as the training metric. For the

experiments using the Dice-coefficient, an ideal model would have validation loss of

0 and a DSC of 1.0. For BCE, an ideal model would also have a validation loss of 0

and an accuracy of 100%.

In Experiment 1, ANN 1 completed 53 training epochs before EarlyStopping (pa-

tience = 8) stopped it. In 45 epochs, validation loss declined from 1.1 to 0.65, and

the validation Dice-coefficient increased from 0.1 to 0.56.

In Experiment 2, ANN 2 completed 71 training epochs before EarlyStopping (pa-

tience = 8) stopped it. In 63 epochs, validation loss declined from 1.1 to 0.17, and

the validation Dice-coefficient increased from 0.1 to 0.9. The training results from

experiments 1 and 2 were promising and indicated image segmentation is possible

using data generated by ASSET. Using the Dice-coefficient as a metric, Experiment

2 outperforms Experiment 1 by 62%. Based on this, the remaining experiments used

3D U-Nets as opposed to 2D U-Nets.

In Experiment 3, ANN 3 completed 18 training epochs before EarlyStopping (pa-

tience = 8) stopped it. In 10 epochs, validation loss declined from 0.25 to 0.23, and

the validation accuracy remained constant at 0.935. Experiment 3 showed training a

model using BCE with highly imbalanced classes does not work well. A naive solution

of predicting all pixels as background pixels would also produce an accuracy of 93%.

In the training and validation sets, there were 12,256,323 background and 850,877

object pixels. This gave a 14:1 ratio of background to object pixels. Experiment 3

proved using 3D U-Nets with the Dice-coefficient as the loss function will outperform

3D U-Nets using BCE as the loss function.

In Experiment 4, ANN 2 completed 88 training epochs before EarlyStopping (pa-

tience = 8) stopped it. The validation loss decreased from 1.3 to 1.1 and validation

Dice-coefficient increased from 0 to 0.16 in 10 epochs. The slight improvements
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to validation loss from epochs 10-80 prevented the training process from ending it

sooner. Based on the training graphs, setting the objects’ SNR to 10 was too low,

and future experiments kept objects’ SNR at 20.

In Experiment 5, ANN 2 completed 149 training epochs before EarlyStopping (pa-

tience = 32) stopped it. EarlyStopping patience was increased and the Adam learn-

ing rate was decreased for this experiment to compensate for the increased amount

of training data. The validation loss decreased from 1.0 to 0.2 and validation Dice-

coefficient increased from 0 to 0.9 in 117 epochs. Experiment 5 increased the training

and validation sets’ background to object pixel ratio to 58:1 (15,460,230:268,410 pix-

els), while also increasing the training data to compensate. Experiment 5’s training

results were comparable to Experiment 2, which provided confidence an ANN was

still able to detect objects when the background to object pixel ratio increased.

In Experiment 6, ANN 2 completed 52 training epochs before EarlyStopping (pa-

tience = 32) stopped it. The validation loss decreased from 1.15 to 1.04 and vali-

dation Dice-coefficient increased from 0.025 to 0.051 in 13 epochs. Experiment 6’s

training results were similar to experiment 4’s. The graphs quickly converged and

then slightly improved until EarlyStopping ended the training process. Based on the

training results, there is not enough information/scenarios present in Dataset 4 to

train an ANN.

U-Net Quantitative Evaluation.

Phase 2 ANN test sets performance were quantitatively measured by plotting the

PR curves and then calculating the AUCs using the trapezoid rule. An ideal ANN

would achieve a PR AUC calculation of 1.0, and worst case performance would equate

to 0.0.

Table 4 displays the ANNs’ performance on the test sets for each experiment.
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Figure 20. Phase 2: Experiments 1-3 training loss plots

Table 4. Phase 2: Summary of ANNs’ Performance

Experiment/Combination Avg. Dice Avg. Accuracy Avg. PR AUC
1.) Dataset 1 + ANN 1 0.567 N/A 0.553
2.) Dataset 2 + ANN 2 0.906 N/A 0.900
3.) Dataset 3 + ANN 3 N/A 0.935 0.085
4.) Dataset 4 + ANN 2 0.161 N/A 0.083
5.) Dataset 5 + ANN 2 0.894 N/A 0.878
6.) Dataset 6 + ANN 2 0.061 N/A 0.027
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Figure 21. Phase 2: Experiments 4-6 training loss plots
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Figure 22 displays the results of plotting and calculating the PR AUC from all six

experiments.

Figure 22. Phase 2: ANN PR AUC graph

In Experiment 1, ANN 1 had an average Dice-coefficient of 0.567 and average PR

AUC of 0.553 on the test set scenarios. In Experiment 2, ANN 2 had an average Dice-

coefficient of 0.906 and average PR AUC of 0.900 on the test set scenarios. Based

on the average PR AUC, it is expected the model used in Experiment 2 will predict

61% more pixels correctly than the model used for Experiment 1.

In Experiment 3, ANN 3 had an average accuracy of 0.935 and average PR AUC of

0.085 on the test set scenarios. Experiment 3 confirmed using BCE as a loss function

is not a viable U-Net variant when using data with strong class imbalances. Using

the average PR AUC as a metric, Dice-coefficient was 10x more effective than BCE.

In Experiment 4, ANN 2 had an average Dice-coefficient of 0.161 and average PR

AUC of 0.083 on the test set scenarios. This experiment reduced the objects’ SNR

in half, from 20 to 10. This resulted in ANN 2 being unable to correctly predict
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the category of the pixels. The prediction results after reducing the object SNR

were comparable to those of Experiment 3. There were no attempts to adjust the

hyperparameters of ANN 2 to improve the prediction results.

In Experiment 5, ANN 2 had an average Dice-coefficient of 0.894 and average

PR AUC of 0.878 on the test set scenarios. This experiment raised the object SNR

back up to 20 and showed that increasing the dataset size compensates for the in-

creased background to object pixel ratio. The prediction results of Experiment 5 were

comparable to Experiment 2.

In Experiment 6, ANN 2 had an average Dice-coefficient of 0.061 and average PR

AUC of 0.027 on the test set scenarios. This experiment showed that the increase

in dataset size/number of scenarios are necessary when there is a high background

to object pixel ratio. There were no attempts in improving ANN 2’s performance on

Dataset 4.

U-Net Qualitative Evaluation.

The ANN test set performance is also visually shown in figures 23 and 24. The

figures were created by randomly sampling predictions using the test set scenarios

and displaying the corresponding images of the truth masks. Note: figures 23 and

24 display the raw pixel value outputs from the ANNs. The raw pixel value outputs

represent the probability of that pixel being an object. Lower values equate to lower

probability.

The visual graphs show that the training results were good indicators of the ANNs’

performance on the held-out test sets. The visual graphs also show there is a rela-

tionship between low average PR AUC and poor prediction performance. It can be

seen the 3D U-Net performed better than the 2D U-Net, and the loss function using

Dice-coefficient provides better ANN predictions than BCE.
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Figure 23. Phase 2: Experiments 1-3 visual results
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Figure 24. Phase 2: Experiments 4-6 visual results
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Figure 23 shows the ANN predictions from Experiments 1 and 2 had comparable

average PR AUC. The ANN in Experiment 1 correctly predicted 55% of pixels, while

the ANN in Experiment 2 correctly predicted 90% of the pixels. The visual graphs

showed that the ANN in Experiment 3 essentially predicted all pixels as background

pixels to achieve the 93.5% average accuracy score.

Figure 24 shows the ANN predictions for Experiments 4 and 6 were not successful.

The visual results also support the claim average PR AUC calculations are good

indications of visual performance. Experiment 5 ANN predictions were on par with

Experiment 2 ANN predictions. Both ANNs were able able to correctly label the

pixels 88% of the time. Again, the additional scenarios compensated for the increased

background to object pixel ratio.

4.4 Results Summary

For Phase 1, the 3D ConvNet was able to generally predict the object’s location

in each image frame, and adding the LSTM into the pipeline degraded the overall

performance. More importantly, Phase 1 showed ANNs will work with ASSET. This

is a successful first step towards transfer learning to real sensor data.

For Phase 2, three U-Net variants were created. The 3D U-Net using the Dice-

coefficient as the loss function (ANN 2) performed the best on the control dataset.

Using ANN 2, the impacts of adjusting dataset parameters were evaluated. Object

SNR, number of scenarios in the dataset, background to object pixel ratio all play an

important role when generating IR datasets. Increasing the number of scenarios in

the dataset compensates for an increase in the background to object pixel ratio. It

was also shown PR AUC is a good measure of performance when determining ANN

performance on the test set.
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V. Conclusion

5.1 Overview

This chapter provides a summary of the research, the results of the experiments,

and potential future work.

5.2 Research Conclusions

The research presented in this thesis used a Spiral model approach and two phases

were completed. Phase 1 was the initial attempt in training ANNs using ASSET to

generate synthetic EO/IR data. Phase 1 explored using 3D ConvNets and LSTMs

to perform object detection and prediction. This phase showed a 3D ConvNet and

3D ConvNet+LSTM were generally able to solve the small scaled problem of EO/IR

unresolved object detection and prediction with MAE medians of 0.31 and 0.45 re-

spectively. The results also show the 3D ConvNet outperforms the trivial solution

of always predicting the center pixel, which had a MAE median of 9.95. Combining

the 3D ConvNet and LSTM degraded the overall performance. Improving the per-

formance of Phase 1 was not pursued as the goal of proving the viability of using

ASSET to train ANNs was accomplished. In summary, Phase 1 showed ASSET is a

viable source of EO/IR data, which can be used to train ANNs to perform EO/IR

unresolved object detection and prediction.

The assumptions were then relaxed for Phase 2, which created a harder problem.

Mainly, the previous assumption of guaranteeing an object in every image frame no

longer applied. Objects were allowed to appear and disappear randomly within the

scenarios. This increased the difficulty of the problem and required a new ANN

solution, and U-Net was chosen as the ANN solution. In addition, Phase 2 explored

the impacts EO/IR datasets had on ANN performance. The results from Phase 2
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demonstrated the number of scenarios needed to train an ANN correlates with the

background to object pixel ratio of the dataset. The higher the ratio, the more

scenarios needed to achieve the same performance on the test set. Experiment 2

and 5 resulted in the best ANN performance with average PR AUCs of 0.900 and

0.878 respectively. Experiment 2 had a background to object pixel ratio of 14:1 and

the dataset used contained 500 scenarios. Experiment 5 increased the background

to object pixel ratio to 60:1 and also increased the dataset scenarios to 3,000. In

summary, Phase 2 showed these four items:

• U-Net is a viable ANN architecture to detect EO/IR objects using semantic

image segmentation.

• 3D U-Nets outperform 2D U-Nets. Due to the strong class imbalance between

background and object pixels, 3D U-Nets should also be compiled using the

Dice-coefficient as the loss function.

• ANN performance is influenced by the number of scenarios in the dataset, the

object’s SNR, and the overall background to object pixel ratio of the dataset.

• Calculating the PR AUC is a good quantitative measure of how well the ANN

performs on the test set.

5.3 Future Work

Future work can be driven in a number of different directions. Below are the

recommended paths of improving the work presented in this thesis:

1. Adjust hyperparameters to detect objects with less than 20 SNR. Currently,

U-Net has been optimized to detect objects with at least 20 SNR. Real world

videos will contain objects with a SNR less than 5. Another option here is to

also increase the dataset size to supplement the lowered object SNR.
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2. Investigate how background and bias subtraction, implemented during the pre-

processing steps, impact ANN performance.

3. Create accurate object masks. The current implementation uses naive approach

of adding one object pixel around the object. This is not very accurate; however,

it was good enough for the goals of Phase 2.

4. Expand area of interest (AOI) to 64x64 image pixels. This will increase both the

ANN training times and the background to object pixel ratios. This path allows

higher resolution videos to be processed quicker. The videos can be segmented

into 64x64 pixels, instead of segmenting the video into 32x32 pixels.

5. Incorporate addition classification categories. U-Net can be modified to in-

corporate additional classification categories. The new categories (i.e. kites,

planes, and birds) can be based on object area/size, SNR, speed, and accelera-

tion. The number of input/output channels will need to be increased to match

the number of categories.

6. Compare U-Net performance to a proven traditional detection and tracking

algorithm. First obtain a real world EO/IR video, and use ASSET to generate

similar types of objects found in the video. Use the ASSET dataset to train

U-Net. Finally, compare the object detection results of U-Net to a traditional

detection and tracking algorithm.
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Appendix A. ASSET Default Background Image
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Appendix B. ASSET Object (.txt) File
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Appendix C. Phase 1: 3D ConvNet Predictions (First 24
Test Scenarios)

61



Appendix D. Phase 1: 3D ConvNet+LSTM Predictions
(First 24 Test Scenarios)
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Appendix E. Phase 2: Background Image Generation
Parameters

Save Name Zulu Hour Julian Day Initial Aimpoint Temperature Satellite Longitude
Planes1 11.7 58 [0 -74] 283 29
Planes2 10.8 264 [5 14] 286 -42
Planes3 13.8 146 [12 -81] 307 16
Planes4 12 73 [-87 94] 305 24
Planes5 10.2 132 [-9 -51] 314 -41
Planes6 13 355 [57 -67] 289 15
Planes7 10 339 [-20 62] 316 -29
Planes8 10.6 217 [35 56] 307 -45
Planes9 14.5 339 [-74 -35] 317 -37

Planes10 15.3 2 [73 -13] 311 -30
Planes11 10.1 148 [-72 -92] 299 5
Planes12 9.3 208 [62 -66] 315 -29
Planes13 15.1 204 [86 -55] 288 14
Planes14 13.4 360 [68 -99] 316 -11
Planes15 12.6 160 [52 -33] 302 -2
Planes16 14.3 190 [-15 82] 282 23
Planes17 10.2 168 [-75 -20] 316 2
Planes18 12.5 123 [57 -51] 308 11
Planes19 9.9 250 [-92 49] 291 42
Planes20 10.2 341 [-69 49] 298 -39
Planes21 11.8 136 [-17 80] 301 -42
Planes22 10.7 69 [-38 -2] 298 26
Planes23 10.4 212 [54 -57] 303 -4
Planes24 13.5 102 [-45 -99] 302 16
Planes25 12.7 44 [48 -78] 303 14
Planes26 10.7 6 [51 -56] 282 -42
Planes27 12.8 47 [13 20] 311 13
Planes28 15.3 309 [78 -17] 309 7
Planes29 15.2 49 [-35 -72] 316 6
Planes30 10.1 65 [91 9] 280 1
Planes31 9 39 [18 -9] 290 37
Planes32 13.8 269 [93 70] 283 -40
Planes33 11.3 79 [2 80] 310 -26
Planes34 13.4 225 [-59 14] 313 32
Planes35 14.9 66 [-76 -29] 289 -11
Planes36 12.8 139 [-35 68] 315 18
Planes37 11.7 102 [-1 58] 299 -25
Planes38 15 70 [-64 53] 317 -32
Planes39 14.8 54 [-100 25] 305 29
Planes40 15.5 346 [-22 -64] 313 -41
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Appendix F. Phase 2: ANN 2 and 3 Architecture
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