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Abstract

Event-based cameras are a new type of visual sensor that operate under a unique

paradigm. These cameras provide asynchronous data on the log-level changes in light

intensity for individual pixels, independent of other pixels’ measurements. Through

the hardware-level approach to change detection, these cameras can achieve microsecond

fidelity, millisecond latency, ultra-wide dynamic range, and all with very low power

requirements. The advantages provided by event-based cameras make them excellent

candidates for visual odometry (VO) for unmanned aerial vehicle (UAV) navigation.

This document presents the research and implementation of an event-based visual-

inertial odometry (EVIO) pipeline, which estimates a vehicle’s 6-degrees-of-freedom

(DOF) motion and pose utilizing an affixed event-based camera with an integrated

Micro-Electro-Mechanical Systems (MEMS) inertial measurement unit (IMU). The

front-end of the EVIO pipeline uses the current motion estimate of the pipeline

to generate motion-compensated frames from the asynchronous event camera data.

These frames are fed the back-end of the pipeline, which uses a Multi-State Constrained

Kalman Filter (MSCKF) [1] implemented with Scorpion, a Bayesian state estimation

framework developed by the Autonomy and Navigation Technology (ANT) Center

at Air Force Institute of Technology (AFIT) [2]. This EVIO pipeline was tested on

selections from the benchmark Event Camera Dataset [3]; and on a dataset collected,

as part of this research, during the ANT Center’s first flight test with an event-based

camera.

iv
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EVENT-BASED VISUAL-INERTIAL ODOMETRY ON A FIXED-WING

UNMANNED AERIAL VEHICLE

I. Introduction

1.1 Problem Background

Global Positioning System (GPS) signals and processing are critical to any mod-

ern navigation solution as, when fully functioning, no other single technology can

currently achieve similar performance. However, this peak performance is dependent

on receiving trustworthy, unobstructed signals from functioning satellites that remain

in orbit. To mitigate the risk of dependence on GPS-only solutions in critical situa-

tions, the Autonomy and Navigation Technology (ANT) Center at Air Force Institute

of Technology (AFIT), in partnership with Air Force Research Laboratory (AFRL),

has invested in research into a variety of solutions that aim to work together to achieve

similar performance as GPS-only solutions. One of these research avenues is visual

odometry (VO), which utilizes visual sensors to estimate pose and motion over time.

1.1.1 Visual Odometry (VO)

VO solutions require cameras affixed to a vehicle to provide imagery that enables

detection of unique landmarks in the camera’s field of view. These landmarks need to

be detected and tracked over multiple frames to estimate and/or correct the estimate

of the motion of the vehicle relative to those landmarks. The performance of VO is

limited by several aspects of the camera performance. A camera with a low sampling

rate restricts visibility into movement occurring between frames, while a camera
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with a high sampling rate requires more power for operation and for the back-end

processing of increased amounts of data, even if the majority of the data is duplicative.

Cameras can also suffer from blurring if the image capture time is too slow relative

to the movement of the camera or scene. Lastly, due to the synchronous nature of

their pixel’s functionality, cameras are limited in their dynamic range; meaning they

are restricted in the capability of adequately capturing very bright and very dim

landmarks in the same image.

1.1.2 Event-Based Cameras

Event-based cameras are a new type of visual sensor that operate under a unique

paradigm that helps address the shortfalls of classical cameras. These cameras provide

asynchronous data on the log-level changes in light intensity for individual pixels,

independent of other pixels’ measurements. Through the hardware-level approach to

change detection, these cameras can achieve microsecond fidelity, millisecond latency,

and ultra-wide dynamic range, all with very low power requirements. Furthermore,

the data rate is reflective of the changes in the scene. Rapid movement and/or highly

textured scenes generate more data than slow movement and/or more uniform scenes.

Proven VO approaches, based on classical frame-based cameras, require adaption

before incorporating the use of event-based cameras due to the unique operating

paradigm of event-based cameras. Additionally, the relative technological immaturity,

limited availability, and high-cost of the event-based cameras has hampered widespread

investigation into event-based camera applications. However, new event-based camera

companies are entering the market, improving the performance and availability of

event-based cameras, potentially stimulating a broader adoption of the technology.
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1.2 Research Objectives

The primary objective of this research is to estimate a vehicle’s 6-degrees-of-

freedom (DOF) motion and pose utilizing an affixed event-based camera with an

integrated Micro-Electro-Mechanical Systems (MEMS) inertial measurement unit

(IMU). The method consists of a front-end that generates frames from the event-

based camera output and a back-end that uses an Extended Kalman Filter (EKF) to

estimate the system states. This method is primarily inspired by Zhu’s implementation

of event-based visual-inertial odometry (EVIO) [4] which implemented Mourkis’ Multi-

State Constrained Kalman Filter (MSCKF) [1] for the back-end of the EVIO. This

research, however, deviates from Zhu’s approach by replacing the front-end that

uses event-based feature tracking with probabilistic data association [5] with an

implementation of Rebecq’s motion compensation methodology [6], which uses the

current motion estimation of the pipeline to generate motion-compensated frames

from the asynchronous event-based camera data to feed to the back-end of the

pipeline.

The ANT Center at AFIT has developed Scorpion, a plug-and-play Bayesian state

estimation framework to facilitate rapid development of reusable Bayesian estimators

[2]. The MSCKF implementation in this research utilizes Scorpion classes and functions,

aiming to be a solid stepping stone for the addition of a robust implementation of

the MSCKF to the Scorpion library as another tool for future navigation applications

and research.

Another objective of this research is to collect event-based camera data during

a flight test on a fixed-wing unmanned aerial vehicle (UAV). This is the first event-

based camera flight test data collection for AFIT. Collecting an event-based camera

dataset for EVIO research and analysis requires synchronized ground-truth, camera

intrinsic calibration, and camera-IMU extrinsic calibration.
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1.3 Document Overview

This document is organized as follows. Chapter I has laid out the problem this

research aims to solve and discusses the objectives of the research and the software

framework used in achieving those objectives. Chapter II provides an overview of

relevant background information and literature references, including the foundation

of VO and its applications, as well as the unique paradigm introduced with event-

based cameras and recent state-of-the-art research into their use. Chapter III details

the EVIO pipeline algorithm with a front-end generating motion-compensated frames

feeding the back-end MSCKF. Chapter III also describes the methodology for calibrating

event-based cameras and collecting data with event-based cameras on a flight test.

Chapter IV presents the results of testing various stages of the pipeline with various

parameters and the subsequent analysis, including tests on selections from the Event

Camera Dataset published by the Robotics and Perception Group (RPG), Institute

of Neuroinformatics (INI), University of Zürich (UZH) & Swiss Federal Institute of

Technology (ETH) Zürich [3]; and on a dataset collected, as part of this research,

on the ANT Center’s first flight test with an event-based camera. Lastly, Chapter V

discusses the conclusions drawn from the results, with emphasis on possible avenues

of improvement to the methodology and alternative approaches that could better

capitalize on the advantages of event-based cameras.
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II. Background and Literature Review

This chapter will provide the foundational concepts and literature required for

understanding subsequent chapters. It is organized as follows: Section 2.1 covers

basics of visual odometry (VO), including the foundational methodology and a sum-

mary of recent developments. Section 2.2 describes the foundational paradigm and

operating concept for event-based cameras and a summary of recent research with

these sensors.

2.1 Visual Odometry (VO)

Visual odometry (VO), a term coined in 2004 by Nister [7], is the calculation

of estimated egomotion of a platform (e.g. vehicle, robot, or human) relative to its

environment using visual information from one or more cameras attached to the

platform. Just as the Kalman Filter showcased its utility on the Apollo space launch

missions in the 1960s [8], VO has proven useful in its implementation on the Mars

rovers in the early 21st century [9, 10], which required tracking 6-degrees-of-freedom

(DOF) motion on uneven and rocky terrain, an impossible feat for simple wheel

odometry. Currently, VO is a useful supplement to other motion estimation sources

like Global Positioning System (GPS) signals and inertial measurement units (IMUs)

[11].

2.1.1 Camera Model

The foundation of VO requires modeling the geometry of the visual data. A simple

and effective method used in the majority of VO methods is perspective projection

with a pinhole camera model [11]. This model assumes that all light rays in the

camera’s field of view converge to a focal point and are projected onto a theoretical
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Figure 1: Perspective Pinhole Camera Model: objects in space are projected through
a single focal point onto an image plane

two-dimensional plane, as shown in Figure 1. This translates three-dimensional world

coordinates [x, y, z]T to pixel coordinates [u, v]T on the image plane via the perspective

projection equation:

1

z


u

v

1

 = K


x

y

z

 =


fx 0 cx

0 fy cy

0 0 1



x

y

z

 (1)

where λ is the depth factor calculated as 1/z, fx and fy are the focal lengths, and cx

and cy are the coordinates of the center of the image plane [11].

When addressing distortion from the camera lens not resolved through a simple
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Figure 2: Epipolar geometry uses camera focal points and points in space seen in both
images to establish an epipolar plane that defines the epipolar lines and epipoles that
lie upon each image plane. This model provides the necessary geometric relations
to define a matrix Tk−1

k to transform points between the (k) and (k − 1) frames of
reference.

pinhole projection, the camera matrix K relates to the distorted pixel locations

[ud, vd]
T via

λ


ud

vd

1

 = K


x

y

z

 (2)

and the relation between distorted coordinates [ud, vd]
T and undistorted coordinates

[u, v]T is described by the polynomial model

ud
vd

 = (1 + k1r
2 + k2r

4 + k3r
6)

u
v

+

2p1uv + p2(r
2 + 2u2)

p1(r
2 + 2v2) + 2p2uv

 (3)
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, where r2 = u2 + v2; k1, k2, and k3 are the radial lens distortion coefficients; and p1

and p2 are the tangential distortion coefficients.

The distortion coefficients, focal lengths, and image plane center coordinates are

calculated through the calibration method. Equations 1 and 3 are then used to

translate measured pixel coordinates into homogeneous (i.e. depth-free) coordinates.

2.1.2 Epipolar Geometry

Epipolar geometry, as shown in Figure 2, is defined when a specific point in space is

visible in two or more separate images. Epipolar geometry can be used to estimate the

relative rigid body transformation between the camera coordinate frames at discrete

time instants k − 1 and k, defined as

Tk−1
k =

Rk−1
k tk−1k

0 1

 , (4)

where Rk,k−1 is the direct cosine matrix (DCM) that rotates points in the k reference

frame into the k − 1 reference frame and where tk,k−1 is the translation vector that

describes the location of the focal point of Ck (i.e. origin of the k reference frame) in

k − 1 reference frame [11], so that



xk−1

yk−1

zk−1

1


= Tk−1

k



xk

yk

zk

1


, (5)
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or, similarly, 
xk−1

yk−1

zk−1

 = Rk−1
k


xk

yk

zk

+ tk−1k . (6)

2.1.3 Features

Unique identifying visual characteristics are required to identify points that can be

matched in multiple images. Points with numerically identifiable image patterns are

called features. There are many different types of features that can be extracted from

images, generally categorized as corners or blobs. Corners identify the intersection

of edges in the scene. Blobs describe an image pattern unique from the surrounding

area with regard to its intensity and texture [12].

SIFT (scale invariant feature transform [13]) is a popular blob detector that blurs

the image by convolving it with 2-D Gaussian kernels of various standard deviations,

taking the differences between these blurred images and then identifying extrema

[14]. Many other blob detectors follow a similar method, including SURF (speeded

up robust features [15]), CENSURE (center surround extremas [16]), and KAZE

(non-linear pyramid-based features [17]).

There are also a variety of corner feature detectors and descriptors. The FREAK

(fast retina keypoint [18]) descriptor is used by the popular FAST (features from

accelerated segment test [19]) and Harris (the Harris-Stephens algorithm [20]) detec-

tors. The BRIEF (binary robust independent elementary features [21]) descriptor is

used by the ORB (oriented FAST and rotated BRIEF [22]) detector. BRISK (binary

robust invariant scalable keypoints [23]) is both a detector and descriptor that is a

hybrid of both corner and blob feature detection and description.
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2.1.4 Motion Estimation

After features are identified in the k− 1 and k images, the task is to match them

together to extract the motion of the camera. The homogeneous coordinates of a

matched feature j in each image, described as

p̄kj =


ukj

vkj

1

 , (7)

are related through

(p̄kj )
TEk−1

k p̄k−1j (8)

where Ek−1
k is the essential matrix that, up to a multiplicative scalar, is equivalent to

Ek−1
k ' btk−1k ×cR

k−1
k (9)

where, if tk−1k = [tx, ty, tz]
T , then we have a skew symmetric matrix equivalent to a

3D cross product:

btk−1k ×c =


0 −tz ty

tz 0 −tx

−ty tx 0

 . (10)

Groups of matched features between two images are used to calculate an estimate

of the essential matrix from which an estimate of the rotation matrix Rk−1
k and

translation vector tk−1k can be extracted [11]. However, since the essential matrix is

only a scaled representation of the relation between two poses, other sources and/or

methods are required to obtain properly scaled transformations.

One method of obtaining this scaling information is to use a pair of statically

linked cameras (i.e. stereo vision) with a known and calibrated relative transformation
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between them (i.e. baseline). Stereo vision, however, turns into monocular vision when

the distance to the features is significantly larger than the distance between the stereo

cameras. Depth information can be obtained for monocular vision by incorporating

measurements from other sensors, i.e. accelerometers, gyroscopes, magnetometer,

GPS, etc., and using the vision information to improve the accuracy of the estimates

from those sensors.

Applying the above procedure to a sequence of images results in successive trans-

formations between the coordinate frames of incremental camera poses. These trans-

formations combined with timing information result in relative 6-DOF motion es-

timation, i.e. odometry.

2.1.5 Related Research

Researchers from all over the world are using these underlying principles to explore

many avenues of research. The VO tutorials by Scaramuzza and Fraundorfer [11,

14] gives a respected foundational summary of concepts and research in this arena.

Progress continues to be made in these areas with improved monocular approaches

and algorithms [24, 25, 26, 27, 28] and increased research into vision navigation of

micro-aerial vehicles [29, 30, 31].

A plethora of research has been done on attacking VO and visual tracking related

problems using deep learning (e.g. convolutional neural networks) [32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43].

Other research has furthered progress with visual-inertial odometry (VIO) [1, 44,

45, 46, 47], where the loss of scale in visual information is addressed by incorporating

IMU information.
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2.1.6 Roadblocks

The quality of VO in high-speed scenarios is constrained by the temporal reso-

lution of “frame-based” cameras (i.e. “normal” cameras capturing intensity images)

due to the missed information between images from a limited frame rate. Increasing

the frame rate to capture more of this information not only requires more operational

power, but also more processing time and/or power to manipulate increased amounts

of data since relevant odometry information could be found anywhere within the data.

Furthermore, even high-quality frame-based cameras suffer from some level of mo-

tion blur in high-speed scenarios. It is impossible to instantaneously measure the light

intensity. Frame-based cameras require some length of integration time, i.e. exposure

time or shutter speed. The exposure time also impacts the ability of the camera

to capture both high-illuminated and low-illuminated objects in the same scene, i.e.

high-dynamic range (HDR). Some HDR scenes can be effectively captured with mul-

tiple images with different exposure times, however this is not feasible with a moving

camera.

These issues with VO also restrict the performance of other machine vision app-

lications, like object recognition/tracking or robotic controls.

2.2 Event-Based Cameras

The development of event-based cameras begins with the growth of neuromorphic

engineering, which aims to develop integrated circuit technology inspired by how

effectively and efficiently biological brains and associated sensory inputs are able

to interpret the natural world. Event-based cameras, also known as dynamic vision

sensors (DVSs), silicon eyes or neuromorphic cameras, resulted from efforts to emulate

the asynchronous nature of animal neurons and synapses [48]. These unique cameras

are effective in addressing the common performance roadblocks with VO and other
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machine vision applications [49, 50, 51, 52].

2.2.1 Operating Principle

Event-based cameras are a novel approach to sensing visual information. Arrays

of complementary metal-oxide semiconductor (CMOS) pixels in these sensors each in-

dependently and continuously sense light intensity (see Figure 3). A log-level change

in the light intensity at a given pixel triggers an asynchronous output of an event, e,

characterized by a timestamp, t, the pixel coordinates, (x, y), and the event polarity,

Figure 3: Abstract Schematic of a DVS pixel: the photoreceptor diode continuously
senses the light intensity, the differencing circuit triggers at an selected threshold,
and the comparators output (an ON or OFF signal) for a rise or fall in intensity [53]

Figure 4: DVS Principle of Operation: each pixel measures the log-level intensity and
outputs an ON or OFF event [53]
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p (i.e. ON/OFF or rise/fall, see Figure 4) [53]. This is represented as a quadruplet of

e(t, x, y, p). (11)

It can be noted that this type of information could certainly be calculated in

post-processing from the output of any conventional digital camera. However, by

utilizing a hardware approach to change detection, this sensor has the significant

advantage of extremely high temporal resolution (microsecond precision with tens of

microseconds reset) and latency on the order of a few milliseconds. The increased

temporal resolution is shown in Figure 5. For a conventional camera to achieve

similar temporal fidelity and latency, it would have to collect hundreds of thousands

of frames per second and process the entirety of each frame, relative to the previous

frame, within a millisecond.

Additionally, the independence of pixels in event-based cameras also enables a very

high dynamic range of around 120 dB of light intensity. This means the sensor can

capture both daylight illuminated items and the equivalent to full-moon-illuminated

Figure 5: High Dynamic Range of DVS: the independent and asynchronous nature of
event cameras on the right make it much more resilient dramatic difference in lighting
in the same scene, where a classical camera is unable to capture the shadowed area
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items simultaneously in its field of view. For example, a bright flashlight or even direct

sunlight won’t produce lens flare since neighboring pixels, not directly measuring the

bright light, will be able to continue detecting changes in their portions of the scene

with no impact on performance, as seen in Figure 5.

The output from a 128x128 resolution event-based camera has, on average, a very

low bandwidth requirement on the order of hundreds of KB/s due to only collecting a

relatively sparse portion of visual information in its field of view. Higher bandwidth

requirements, on the order of 1-10 MB/s, can temporarily result from extremely

rapid camera movement in close proximity to the environment or sudden changes in

a scene like an explosion. Much lower bandwidth requirements, on the order of tens

of KB/s, can be achieved during long-term overnight surveillance scenarios or space

observations [54]. For comparison, a high-speed camera that matches an event-based

camera’s temporal resolution with 1MHz frame rate with only 1/16 the resolution of

a 128x128 event-based camera requires a constant 1.5 GB/s. This is 100-1000 times

more than the highest bandwidth requirement from an event-based camera [55].

The high temporal fidelity of the data as well as the impact of rapid and slow

camera movement on the amount of events are illustrated in Figure 6.

2.2.2 Types of Event-based Cameras

The DVS and dynamic and active-pixel vision sensor (DAVIS) are event-based

cameras developed at the Institute of Neuroinformatics (INI), University of Zürich

(UZH) & Swiss Federal Institute of Technology (ETH) Zürich. They have a form

factor similar to a web camera and utilize Universal Serial Bus (USB) for commu-

nication and power [53, 56]. The DVS produces event data from a 128x128 pixel

array and operates at around 20 mW. The DAVIS 240C is an improved version that

produces event data from a 240x180 pixel array while also outputting greyscale frames
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Figure 6: DVS Events vs. Images. DVS events are shown as scatter plots, with
ON/OFF events representing rise/fall in intensity.

procured from integrated conventional camera pixels (i.e. active pixel sensor (APS))

as well as 6-DOF information from a built-in IMU. The DVS and DAVIS are still only

available as research prototypes, sold through the company iniVation. The company

Insightness sells a device similar to the DAVIS combined with evaluation kits used
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for micro-aerial vehicle navigation and collision avoidance. Starting fall of 2018, the

DVS was no longer available for purchase and an improved DAVIS 346 sensor with a

346x260 pixel array became available.

Another event-based camera was developed around the same time as the DVS. It

is called the Asynchronous Time-based Image Sensor (ATIS) [57, 58]. It incorporates

asynchronous intensity measurement circuitry at each pixel, which provides a slightly

different operating paradigm. The ATIS provides not only a polarity (i.e. rise/fall) for

each event but also an asynchronously sampled light intensity for that specific pixel.

While this provides more relevant information and an opportunity to more succinctly

encode intensity information, issues arise with its adaptive integration time which,

for low light pixels, can take up to 2 seconds. This integration can be interrupted

by a new event, making it effectively blind to quickly moving features in low light

scenarios [48] [59].

Prophesee and Pixium Vision, both companies based out of Paris, France, have

based their technology on the ATIS sensor. Prophesee has developed the commercially

available ONBOARD reference system, with manufacturing quality assurance (QA) as

their apparent targeted market. Pixium Vision has focused on the medical community

with bionic vision restoration systems supporting age-related macular degeneration

(AMD).

It must be noted that no event-based camera is mature enough to compete with

the price point and image or video quality of conventional charge-coupled device

(CCD) cameras. However, a DVS sensor does, at a low energy cost, provide visual

information at a very high temporal fidelity that can be quickly processed independent

from human interaction.
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2.2.3 Current Research with Event-Based Cameras

The current research utilizing this sensor primarily capitalizes on its many advan-

tages, i.e. the small form factor, low power requirements, high temporal resolution,

high dynamic range, and relatively low data bandwidth. A variety of disciplines take

advantage of its unique operating paradigm [60, 61], including support for the blind

[62, 63], and space situational awareness (SSA) [54].

2.2.3.1 Visualization Methods

Since event-camera data is so inherently different from APS cameras, significant

research has been done on various approaches to visualizing the information. This

includes reconstructing scene intensity, utilizing the fact that DVS events are effec-

tively samples of the log-level gradient of the light intensity [64, 65, 66, 67, 68, 69].

Others have built on the method of creating simulated images by a simple summation

of events at each pixel over some variable time period by improving the clarity of

those images through compensating for camera motion [70, 71]. Unique simulated

images have been developed by incorporating the timing information of the events to

affect the magnitude of value at each pixel [72, 73]. Further efforts have delved into

developing 3-D reconstruction and depth maps using stereo DVS [74, 75, 76, 77, 78,

79, 80].

2.2.3.2 Filtering and Analysis Methods

Due to the nature of these sensors, there is also occasional background activity

(BA) due to leaky currents or thermal noise in the pixel circuity. Several research

efforts have proposed solutions to address this issue [81, 82, 83, 84]. Other research

has introduced differing methods of analysis and filtering [82, 85, 86, 87].
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2.2.3.3 Feature and Object Detection and Tracking

A foundational concept of almost all machine vision objectives is the ability to

detect and associate features and objects in a scene. Due to the uniqueness of event-

camera data, several efforts have focused on the detection of features particular to

this asynchronous paradigm. There are a wide variety of approaches to this problem

[88], with no definitive ideal solution. Some efforts focus on detecting lines [89] or

corners [90, 91, 92] in the event data. Others incorporate the timing information into

the feature detection and description [93, 94, 73]. Further research has been done

generating optical flow from event-based cameras [95, 96, 97, 68, 98, 99, 100, 101] and

identifying features within that optical flow [102]. Other research identifies features

in the intensity images and uses the event-based camera data to track those features

between frames [103].

Object identification/classification and tracking, which is tightly coupled with

feature tracking, has also had significant improvements [104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114], though primarily with focus on a stationary camera and

movement occurring in the field of view. Some of these efforts have incorporated

machine learning [115, 116, 117], which helps address the significant paradigm shift

required for working with this type of information.

Significant success with these processes has been showcased with gesture recogni-

tion [118, 119], including efforts using IMB’s neuromorphic chip, TrueNorth [120], as

well as micro particle tracking [121], star-tracking [122], and slot car racing [123].

2.2.3.4 Motion Estimation

Building off the foundation of estimating the position and motion of objects

seen by a camera, other research has addressed estimating egomotion, or motion

of the viewing body. Some efforts focused on improving angular velocity estimation
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(i.e. no translational movement) with event-based camera data [65, 124, 125]. For

full 6-DOF Event-based Visual Odometry (EVO), early research focused on map-

based localization [126, 127] and/or utilizing depth information [128, 129]. Progress

continued with research into a variety of methods only utilizing event-based camera

data [130, 131, 132, 67, 133, 134, 135, 136]. More recent research has incorporated

IMU information to accomplish event-based visual-inertial odometry (EVIO) [4, 76],

with state-of-the-art Hybrid-EVIO utilizing both event-based camera data and intensity

images [137], improving robustness in both stationary and rapid-movement scenarios.

2.2.3.5 Datasets

The limited availability of event-based cameras, due to their current high cost, is

an obstacle to widespread investigations into applications for these unconventional

sensors. To alleviate this issue, several research organizations produced event-camera

datasets, supporting performance evaluation of available algorithms. The Robotics

and Perception Group (RPG) at INI has made available a dataset with a couple

dozen scenarios collected with a DAVIS camera. They include indoor and outdoor

environments viewing simple shapes, varied surfaces, or just a simple office. The

datasets include both simple rotational or translational movement as well as more

erratic rapid movements. All collections include events, camera calibration informa-

tion, IMU, and the frame images from the integrated CCD camera. For the indoor

collections in controlled environments, they also include ground truth data from a

motion capture system [3].

A more recent dataset, the Multi-Vehicle Event Camera Dataset, is provided by

the General Robotics, Automation, Sensing and Perception (GRASP) Laboratory at

the University of Pennsylvania. It includes stereo event-camera data and intensity

images fused with LIDAR, IMU, motion capture, and GPS, making pose and depth
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available as ground truth baselines [138]. There is also the Poker-DVS dataset focused

on identification of playing cards [139], the RoShamBo (Rock-Paper-Scissors game)

DVS Dataset for human gesture recognition [140], as well as simulators [3] and emu-

lators/converters [141, 142] to more easily create custom datasets.
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III. Methodology

Preamble

The methodology described in this chapter is primarily inspired by Zhu’s use of

the Multi-State Constrained Kalman Filter (MSCKF) [1] as the back-end of an event-

based visual-inertial odometry (EVIO) pipeline [4]. Section 3.4 contains a detailed

description of the MSCKF. The front-end used in this work diverges from Zhu’s EVIO

implementation by incorporating Rebecq’s motion-compensated event images [76],

with the implementation described in Section 3.3. The MSCKF was implemented

utilizing MATLAB and the Autonomy and Navigation Technology (ANT) Center’s

Scorpion library described in Section 3.2. These methods were tested on select

datasets from Robotics and Perception Group (RPG)’s Event-Camera Dataset, men-

tioned previously in Section 2.2.3, as well as on a dataset collected with a dynamic

and active-pixel vision sensor (DAVIS) 240C event camera on a flight test utilizing

a fixed wing unmanned aerial vehicle (UAV) conducted on the airfield at Camp

Atterbury, Indiana. Additional details on the format of RPG’s Event-Camera Dataset

are described in Section 3.5.1. Details on the format and the methodology used to

collect the Camp Atterbury dataset, including the calibration methods used, are

described in Section 3.5.2.

3.1 Notation

To clarify the notation used throughout this methodology description, pBk is the

position of point k in the frame B, pBA is the position of the origin of frame A in the

frame of B, and RB
A is the direct cosine matrix (DCM) that rotates points from frame

A to frame B so that

pBk = RB
A(pAk ) + pBA. (12)
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Quaternions are in the Jet Propulsion Laboratory (JPL) format [143], which is

[
qw qx qy qz

]T
≡ qw + qxi + qyj + qzk (13)

where

i2 = j2 = k2 = ijk = −1. (14)

0M×N is a null, or zero, matrix with M rows and N columns. IN is an identity

matrix of dimension N .

For a given position p in frame A, i.e.

pA =


x

y

z

 , (15)

then the skew symmetric matrix is defined as

bpA×c =


0 −z y

z 0 −x

−y x 0

 (16)

3.2 Scorpion Library

The Scorpion library is a Bayesian state estimation framework developed by the

ANT Center at Air Force Institute of Technology (AFIT) [2] to more easily deve-

lop sensor modules and system descriptions used to estimate system states through
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stochastic estimation. This framework can be used on multiple developmental envi-

ronments including Python, Kotlin, Java or within MATLAB. The MATLAB imple-

mentation is used in this work. Scorpion provides a clear structure for developing

custom state blocks, sensors and measurements in addition to having “off-the-shelf”

modular components available for commonly used system states like position, velocity,

orientation and system biases as well as commonly used sensors like cameras, Global

Positioning System (GPS), and rangefinders.

3.3 Motion-Compensated Event Frames

Visual odometry (VO) requires identifying, locating, and matching features in the

camera’s field of view. In order to capitalize on the many feature identification and

matching methods discussed in Section 2.1.3, this work combined batches of events

into high-contrast greyscale images. The simplest approach to generating images

from events is through event integration, which accumulates events at each pixel

location over some time window or for some contiguous batch of events. The polarity

characteristic of each event (i.e. whether it was a rise or fall in light intensity) as well

as the specific timing of the event provided by the camera is discarded. This generates

an image that highlights changes in light intensity (i.e. intensity gradient). However,

these images do not provide an instantaneous sample of the light intensity gradient,

as the nature of event-based cameras is capturing the change in light intensity over

time. This creates some issues with generating quality visualization depending on the

speed of movement of the camera. If too short of a time window and/or too few events

are used, which can easily occur with a slowly moving camera, an integrated image

can be too sparse and effectively noisy, resulting in insufficient information about the

scene, as illustrated in the top right image of Figure 7. If the time window is too long

or too many events are selected for the speed of the camera and the richness of the
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Figure 7: Integrated vs. Motion-Compensated Event Frames. Top left: intensity
image. Top right: integrated event frame with 5,000 events. Bottom left integrated
event frame with 50,000 events. Bottom right: motion-compensated event frame with
50,000 events

scene, then the integrated image has significant motion blur, as shown in the bottom

left frame of Figure 7.

A motion-compensated event image uses an alternative method, described in [76]

and inspired by [124], which takes into account the specific event time and the

estimated pose to generate event images that compensate for camera movement,

resulting in images with stronger contrasting edges.

A motion-compensated event frame is constructed using the INS measurements

and timestamps, through mechanization [144], and the timestamps of the individual

events. The process is to estimate the actual physical location of each event in the
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world frame and then to project the locations back onto a single camera image frame

that occurs (in time) either before or after the event occurred, as if all the events had

been “taken” at the same time. A start time is selected, which corresponds to some

camera pose from the mechanization and is designated as the targeted reference frame.

Utilizing the interpolated camera pose at each event’s time (obtained through inertial

navigation system (INS) mechanization), each event’s location in the navigation frame

is estimated using a best guess for depth. The guess for depth can come from averaging

and/or interpolating the depth of tracked features or simply using some other external

measurement like a barometer. The event location in the navigation frame is then

transformed into the targeted reference frame and, through camera intrinsics, projec-

ted onto a pixel location. The events at each pixel are accumulated then scaled by the

maximum number of events at any pixel, resulting in a sparse greyscale image, shown

in the bottom right frame of Figure 7. This method is fully described in Algorithm

1.

Improvements in speed can be obtained by precomputing a look-up table for the

undistorted homogeneous coordinates for each pixel location and by vectorizing the

frame-of-reference and camera intrinsic transformations. Additionally, due to the

events’ microsecond fidelity, further efficiency can be obtained by rounding event

timestamps to some nearest ∆t (e.g. 10 µs or 100µs or some other value, defined as a

system parameter) and reusing interpolated reference frame transforms for identical

timestamps. This helps since the interpolation can be computationally expensive.

However, it can also result in less accurate estimations with a large ∆t.
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Algorithm 1 Motion-Compensated Event Image

1: function MCimage(e, ins, filt, N)
2: . N events in e, at pixel locations [e.x, e.y] at time e.t . INS ins and Kalman

Filter filt
3: RC0

W ,p
W
C0
← ins.getPose(e0.t) . Target pose for motion-compensated events

4: for k ← 1, N do . Loop over all events

5:

[
xH
yH

]
← undistHomogPos(ek.x, ek.y) . Pixel location to position

6: z ← filt.depth(ek.t) . Expected depth of features

7: pCk
k ←

xHyH
1

 z . Estimated 3-D event position

8: RCk
W ,pWCk

← ins.getPose(ek.t) . Camera pose at time ek.t

9: RW
Ck
← (RCk

W )T

10: pWk ← pWCk
+ RW

Ck
(pCk

k ) . Transform into navigation frame

11:

xC0
k

yC0
k

zC0
k

← RC0
W (pWk − pWC0

) . Transform into target frame

12:

xC0
Hk

yC0
Hk

1

← 1

z
C0
k

xC0
k

yC0
k

zC0
k

 . Homogeneous coordinates

13:

xikyik
1

← K

xC0
Hk

yC0
Hk

1

 . Position to undistorted image pixel location

14: image(xik, y
i
k)← image(xik, y

i
k) + 1 . Accumulate for image

15: end for
16: image← image

max(image)

17: return image . The motion-compensated image
18: end function

3.4 Multi-State Constraint Kalman Filter

The MSCKF was introduced by Mourikis [1] and implemented with event-based

cameras in Zhu’s EVIO [4]. The MSCKF implemented in this research is primarily

inspired by the description in [1], though with several adjustments made to improve

integration with AFIT’s ANT Center’s Scorpion library (see Section 3.2). The essence

of the MSCKF is to update vehicle states from features tracked across multiple

frames.
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3.4.1 Primary States

The primary propagated states are

XIMU =



pGI

vGI

q̄IG

ba

bg


(17)

where pGI is the position of the inertial measurement unit (IMU), in meters, relative

to the north-east-down (NED) navigation reference frame, {G}; vGI is the velocity of

the IMU, in meters per second, relative to the navigation reference frame; q̄IG is the

IMU orientation relative to the navigation reference frame described as a quaternion

that rotates vectors from the navigation frame to the IMU reference frame {I}; and

ba and bg are the accelerometer biases and gyroscope biases, respectively.

The primary error states are ordered to match the “off-the-shelf” Pinson-15 state

block available in the Scorpion library, which is a 15-state representation of the error

model of an INS in a localized NED frame [144] organized as

X̃IMU =



p̃GI

ṽGI

δθ

b̃a

b̃g


, (18)

where p̃GI , ṽGI , b̃a, and b̃g are the errors for position, velocity, accelerometer bias, and

gyroscope bias. δθ is the tilt error associated with the error quaternion, δq̄, which
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corrects the estimated rotation, ˆ̄q, to the true rotation q̄, i.e. q̄ = δq̄ ⊗ ˆ̄q, where ⊗ is

quaternion multiplication [1]. For small values of δθ, a decent approximation of δq̄

can be efficiently estimated as

δq̄ '

 1

1
2
δθ

 . (19)

Normalizing the magnitude of δq̄ (so that q2w + q2x+ q2y + q2z = 1) resulting from the

δθ approximation in (19) ensures there are no unintended magnitude changes during

quaternion correction. Further accuracy in calculating δq̄ can be obtained at a loss of

efficiency by fully converting the tilt errors, represented in radians as (θx, θy, θz) for

rotations around the X, Y , and Z axes respectively for roll, pitch, and yaw, into the

quaternions [145] via



qw

qx

qy

qz


=



cos(θz) cos(θy) cos(θx) + sin(θz) sin(θy) sin(θx)

cos(θz) cos(θy) sin(θx)− sin(θz) sin(θy) cos(θx)

sin(θz) cos(θy) sin(θx) + cos(θz) sin(θy) cos(θx)

sin(θz) cos(θy) cos(θx)− cos(θz) sin(θy) sin(θx)


. (20)

3.4.2 State Augmentation

For each new image, the current camera pose (orientation q̄Ci
G and position p̃WCi

)

is calculated using the IMU pose estimate (from the INS mechanization output with

corrections from the extended Kalman Filter (EKF)’s current error states) by

q̄Ci
G = q̄CI ⊗ q̄

Ii
G (21)

and

pWCi
= pGIi + RG

Ii
(pIC), (22)
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where q̄CI is the quaternion representing the rotation from the IMU reference frame to

the camera reference frame, and pIC is the position of the camera in the IMU reference

frame.

q̄IiG is the quaternion representing the rotation from the navigation frame to the

IMU frame with a DCM of RIi
G, with RG

Ii
= (RIi

G)T as the DCM for the rotation from

the IMU frame to the navigation frame.

Each of these poses are augmented onto the IMU state so that the system state

vector is

Xk =



XIMUk

q̄C1
G

pWC1

q̄C2
G

pWC2

...

q̄
Ci−1

G

pWCi−1

q̄Ci
G

pWCi



. (23)

The associated error state, δθCi
and p̃WCi

, for this pose is augmented onto the
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existing states

X̃k =



X̃IMUk

δθC1

p̃WC1

δθC2

p̃WC2

...

δθCi−1

p̃WCi−1

δθCi

p̃WCi



(24)

The covariance matrix is also augmented through

Pk|k ←

I6N+15

J

Pk|k

I6N+15

J


T

(25)

where

J =

03×3 03×3 RC
I 03×6 03×6N

I3 03×3 bRW
Ci

pIC×c 03×6 03×6N

 . (26)

Due to the structure of the Scorpion SensorEKF class used to track the IMU states,

these error states and their associated covariances are saved as separate variables–not

added as additional state blocks–for future filter propagation and updates.

3.4.3 Detect and Match Features

Features are detected in each image utilizing detectors available in MATLAB,

including SURF [15] or KAZE [17] blob detectors or FAST [19] or Harris [20] corner
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detectors. The image is separated into individual regions and features are detected

in each region. If the MSCKF, due to memory constraints, allows a maximum of N

features to be detected in each image and the image is broken into a 4 by 4 grid of

regions, then the strongest N/16 features in each of the 16 regions would be used for

matching. This ensures that if weak features need to be discarded, then the remaining

features are generally still spread out over the entire image, providing a wider field of

information to use in motion estimation.

These new features are first matched to tracked features, which are features

detected in a sufficient number of images to be included in the EKF update described

in Section 3.4.6. If new features do not match any tracked features, they are matched

to candidate features, which are recently detected features with too few samples to

be included in the EKF update. New features not matched to existing tracked or

candidate features are added to the candidate features list, retaining the features

descriptor for future matching. Candidate features not seen in some set number of

images (e.g. 2 or 3) are discarded. Pose and features relations are tracked as explained

in Section 3.4.7.

3.4.4 Propagating States

During propagation, the camera pose states, q̄Ci
G and pWCi

, with their associated

error states, δθCi
and p̃WCi

, and covariances, remain unchanged.

The primary states, described in Equation 17, are propagated with an instanti-

ation of an INS mechanization object, using the accelerometer and gyroscope meas-

urements from the IMU. This INS mechanization takes as input ∆V s and ∆θs, i.e.

discrete changes in velocity and Euler angles, which are the rotation about each three-

dimensional axis. These come from scaling the IMU measurements by the applicable

∆t. The INS mechanization calculations are accomplished in a local-level NED frame
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that is initialized with a latitude-longitude-altitude (LLA) that enables the INS object

to internally account for gravity, removing the need to separately account for gravity

when passing on IMU measurements.

The primary error states, X̃IMUk
, and the associated covariance matrix, PIIk|k , at

initial time tk are propagated to X̃IMUk+1
and PIIk+1|k at a new time tk+1 using the “off-

the-shelf” measurement model provided by the Scorpion Pinson-15 error state block,

which simply requires the current solution and force from the INS mechanization

object and the new time to propagate to, tk+1.

The overall system covariance, Pk|k, is then

Pk|k =

PIIk|k PICk|k

PT
ICk|k

PCCk|k

 , (27)

where PCCk|k is the covariance matrix for the camera pose error states and PICk|k is

the correlation between the primary error states and the camera pose error states.

Using the state transition matrix, Φ(tk+1, tk), generated from the Pinson-15 state

block established in the Scorpion SensorEKF filter object, the overall system covari-

ance is propagated as

Pk+1|k =

 PIIk+1|k Φ(tk+1, tk)PICk|k

PT
ICk|k

Φ(tk+1, tk)
T PCCk|k

 . (28)

Note that PCCk|k does not change during propagation, and, since

(PT
ICk|k

Φ(tk+1, tk)
T )T = Φ(tk+1, tk)PICk|k , (29)

only Φ(tk+1, tk)PICk|k requires calculation outside of the Scorpion SensorEKF filter

object during propagation.
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3.4.5 Least Squares Estimate (LSE)

The 3D location of each feature, expressed in the NED navigation frame, must

be known before that feature can be used in the measurement update process in

Section 3.4.6. We estimate the 3D position of the feature using a least-squares

estimation approach, which utilizes Montiel’s intersection approach [146] with an

inverse-depth parametrization [147], as briefly described as follows.

The 3D position of the jth feature, expressed in the Cith camera frame, where it

is observed, is

pCi
j = RCi

Cn
(pCn

j ) + pCi
Cn

(30)

where Cn is the camera pose at the earliest observation of the feature with RCi
Cn

and

pCi
Cn

as the rotation and translation between Cn and Ci. The position of feature j in

the Cnth frame is defined as

pCn
j =


XCn
j

Y Cn
j

ZCn
j

 = ZCn
j



(
XCn

j

ZCn
j

)
(
Y Cn
j

ZCn
j

)
(

1

ZCn
j

)

 = ZCn
j


αj

βj

ρj

 . (31)

Equation 30 is then rewritten as

pCi
j = ZCn

j

RCi
Cn



(
XCn

j

ZCn
j

)
(
Y Cn
j

ZCn
j

)
1

+
1

ZCn
j

pCi
Cn

 (32)

= ZCn
j

RCi
Cn


αj

βj

1

+ ρjp
Ci
Cn

 (33)
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= ZCn
j


hi1(αj, βj, ρj)

hi2(αj, βj, ρj)

hi3(αj, βj, ρj)

 (34)

where

hi1(αj, βj, ρj) = ri,1,1αj + ri,1,2βj + ri,1,3 + ρjXi (35)

hi2(αj, βj, ρj) = ri,2,1αj + ri,2,2βj + ri,2,3 + ρjYi (36)

hi3(αj, βj, ρj) = ri,3,1αj + ri,3,2βj + ri,3,3 + ρjZi, (37)

using

RCi
Cn

=


ri,1,1 ri,1,2 ri,1,3

ri,2,1 ri,2,2 ri,2,3

ri,3,1 ri,3,2 ri,3,3

 (38)

and

pCn
Ci

=


Xi

Yi

Zi

 . (39)

The feature’s normalized location measurement from each frame, meaning the

(x, y) portion of the homogeneous location of feature j in the Cith reference frame,

not image (pixel) coordinates, is also rewritten as

zij =
1

hi3(αj, βj, ρj)

hi1(αj, βj, ρj)
hi2(αj, βj, ρj)

 =

gij1(αj, βj, ρj)
gij2(αj, βj, ρj)

 (40)

where

gij1(αj, βj, ρj) =
hi1(αj, βj, ρj)

hi3(αj, βj, ρj)
(41)
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and

gij2(αj, βj, ρj) =
hi2(αj, βj, ρj)

hi3(αj, βj, ρj)
. (42)

These descriptions are then used in a least-squares minimization, with the error

as

ei = ẑij − zij (43)

where zij is the feature’s measured normalized location and ẑij is the normalized

location result from Equation 40 after iteratively optimizing the estimated quantities

(α̂j, β̂j, ρ̂j) using 
∆αj

∆βj

∆ρj

 = H−1b (44)

where

H =

Mj∑
i=n

(Ji(αj, βj, ρj))
−1ΩJi(αj, βj, ρj), (45)

bT =

Mj∑
i=n

eiΩJi(αj, βj, ρj). (46)

The information matrix Ω is

Ω =

σ2
im 0

0 σ2
im


−1

, (47)

and the Jacobian is

Ji(αj, βj, ρj) =

∂gij1∂αj

∂gij1
∂βj

∂gij1
∂ρj

∂gij2
∂αj

∂gij2
∂βj

∂gij2
∂ρj

 (48)

where

∂gij1
∂αj

=
ri,1,1

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− ri,3,1(ri,1,3 + αjri,1,1 + βjri,1,2 +Xiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(49)
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∂gij1
∂βj

=
ri,1,2

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− ri,3,2(ri,1,3 + αjri,1,1 + βjri,1,2 +Xiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(50)

∂gij1
∂ρj

=
Xi

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− Zi(ri,1,3 + αjri,1,1 + βjri,1,2 +Xiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(51)

∂gij2
∂αj

=
ri,2,1

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− ri,3,1(ri,2,3 + αjri,2,1 + βjri,2,2 + Yiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(52)

∂gij2
∂βj

=
ri,2,2

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− ri,3,2(ri,2,3 + αjri,2,1 + βjri,2,2 + Yiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(53)

∂gij2
∂ρj

=
Yi

ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj
− Zi(ri,2,3 + αjri,2,1 + βjri,2,2 + Yiρj)

(ri,3,3 + αjri,3,1 + βjri,3,2 + Ziρj)2
(54)

Each iteration generates a new values for ∆αj, ∆βj, and ∆ρj to be applied to α̂j,

β̂j, and ρ̂j on the next iteration. Once ∆αj, ∆βj, and ∆ρj fall below some defined

threshold, α̂j, β̂j, and ρ̂j are sufficiently optimized to generate and least-squares

estimate (LSE) of the the position of the feature in the navigation frame as

p̂Gj =
1

ρ̂j
RG
Cn


α̂j

β̂j

1

+ pGCn
(55)

to be used in the update state described in Section 3.4.6.

3.4.6 Updating States

3.4.6.1 Update Trigger

An update to the system error states, which aims to improve the accuracy of the

pose error states, occurs in one of two cases:

� When one or more features are no longer detected after a certain number of

frames (set as a tunable parameter), these features are used in an EKF update

then subsequently discarded. After this type of update, each pose is checked to

37



see if there are any other remaining features in those poses. If there are none,

then that pose and the corresponding error states are discarded.

� When the number of retained poses reaches some set maximum, Nmax. In this

case, select poses (and associated information) are discarded after utilizing their

measurement information. This methodology followed the practice in Mourikis’

MSCKF in discarding one third of all poses, starting with the second oldest

pose and removing every third pose.

3.4.6.2 Measurement Model

For each feature j to be used in the update and for each pose Ci where that feature

is detected, the LSE position in the navigation frame from Section 3.4.5, p̂Gfj , is used

to generate the LSE location in each camera frame

p̂Ci
j = RCi

G (p̂Gfj) =


X̂Ci
j

Ŷ Ci
j

ẐCi
j

 . (56)

The normalized coordinates of the LSE location in each camera frame is

ẑij =

 X̂
Ci
j

Ẑ
Ci
j

Ŷ
Ci
j

Ẑ
Ci
j

 . (57)

The measurement residual is then computed through

rij = zij − ẑij (58)

where ẑ and z are the LSE and measured normalized coordinates of the feature in

the given pose’s reference frame described in Section 3.4.5.
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This measurement residual is approximated [1] as

rij ' HXijX̂ + Hfijp̃
G
j + nij (59)

where nij is the zero-mean, white Gaussian measurement noise; the Jacobians are

Hfij = JijR
Ci
G , (60)

and

HXij =

[
02×15 02×6 . . . 02×6 Jijbp̂Ci

j ×c −Hfij 02×6 . . . 02×6]

]
(61)

with the Jacobian matrix as

Jij =
1

ẐCi
j

1 0 − X̂
Ci
j

Ẑ
Ci
j

0 1 − Ŷ
Ci
j

Ẑ
Ci
j

 . (62)

To note, [
Jijbp̂Ci

j ×c −Hfij

]
(63)

is the Jacobian with respect to pose i.

Vertically concatenating the residuals rij into rj and the Jacobians HXij and Hfij

into HXj
and Hfj results in

rj ' HXj
X̃j + Hfj p̃

G
j + nj (64)

where X̃j are the relevant error states, nj has a covariance matrix of Rj = σ2
imI2Mj

with Mj as the number of poses that contain the jth feature.

In order to utilize this relationship in the EKF update, a new residual is required
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to avoid the issue of how p̃Gj is correlated with X̃j due to the state estimate, X, being

used to calculate the LSE feature position p̂Ci
j . This new residual, r0j, is defined as

r0j = H0jX̃j + n0j (65)

where

H0j = ATHXj
(66)

and

r0j = AT rj (67)

where A is the U portion of a singular value decomposition of Hfj , so that r0j is

formed by projecting rj on the left nullspace of Hfj .

3.4.6.3 Update Equations

Further concatenating r0j and H0j from each feature in the update into r0 and

H0 results in

r0 = H0X̃ + n0 (68)

Since H0 can be exceptionally large, computational complexity is reduced by

taking the QR decomposition of H0, denoting it as

H0 =

[
Q1 Q2

]TH

0

 (69)

where Q1 and Q2 are unitary matrices whose columns form bases for the range and

nullspace of H0 and TH is an upper triangular matrix.
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This enables Equation 68 to be rewritten as

r0 =

[
Q1 Q2

]TH

0

 X̃ + n0 (70)

which can become QT
1 r0

QT
2 r0

 =

TH

0

 X̃ +

QT
1 n0

QT
2 n0

 (71)

Since QT
2 r0 is just noise (QT

2 n0), a new residual is defined using this decomposition

as

rn = Q1r0 = THX̃ + QT
1 n0 (72)

where QT
1 n0 is a noise vector with covariance Rn = σ2

imIr, where r is the number of

columns in Q1.

The EKF update can then be completed with a Kalman gain

K = PTT
H(THPTT

H + Rn)−1, (73)

a state correction

∆X = Krn, (74)

and an updated state covariance matrix

Pk+1|k+1 = (I6N+15 −KTH)Pk+1|k(I6N+15 −KTH)T + KRnK
T . (75)

3.4.7 Bookkeeping

Due to the fact that features or poses are not permanently tracked and that

features and poses can be somewhat arbitrarily related, a clear and efficient method
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of tracking which features correspond to which poses is required. An Nmax x Mmax

logical relation index matrix is established, due to the efficiency of MATLAB logical

indexing; Nmax is the maximum number of retained poses, and Mmax is the maximum

number of retained features. Additionally, at any point, only the NxM upper left

submatrix is used, where N is the current number of retained poses, and M is the

current number of retained features. Nmax, Mmax, N , and M are also used to define

the sizes and relevant portions of the variables storing feature descriptors, poses, and

pose errors.

When a pose or feature is removed because it no longer provides relevant infor-

mation, the retained features/pose and related logical indices are reordered so all are

maintained consecutively in the first N or M elements of a relevant list (e.g. the first

M feature descriptors) or in the first NxM submatrix of a relevant matrix (i.e. the

logical relation matrix).

3.5 Datasets

Multiple datasets collected under a variety of scenarios were utilized to evaluate

the performance of the VO pipeline. The RPG Event-Camera Dataset [3] discussed

in Section 3.5.1 is a public dataset utilized by many recent research efforts [135,

66, 124, 4, 125, 76, 137]. The Camp Atterbury dataset discussed in Section 3.5.2

is a contribution of this work and is the pioneering use of Event-Based Cameras

for AFIT’s ANT Center and is the first known instance of a flight test on-board a

fixed-wing UAV.

3.5.1 RPG UZH Event Camera Dataset

The Robotics and Perception Group (RPG) at University of Zürich (UZH) has

been at the forefront of event-based camera research. As discussed in Section 2.2.3,
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they released the Event Camera Dataset [3]. The calibration parameters are provided

as a text file with (fx, fy, cx, cy, k1, k2, p1, p2, k3) which provides the camera matrix

parameters and distortion coefficients explained in Section 2.1.1. The DAVIS output

is available either as text files for events, IMU measurements, and image timestamps

with a folder of ”.png” images or as a rosbag binary file compatible with Robot

Operating System (ROS), a multi-purpose robotic software framework. The company

iniVation has also provided a toolbox on GitHub [148] for MATLAB that can convert

rosbag binary files to an custom ”address-event data” (.aedat) binary file with tools to

easily accomplish various tasks, including loading custom selections of the data into

a MATLAB struct, reorienting the images or event data, normalizing timestamps

off the first timestamp, and various visualizing/plotting methods.

3.5.2 Camp Atterbury Flight Test

An additional contribution of this thesis is an event-based camera dataset captured

with a DAVIS attached to the belly of a 14-foot fixed wing Aeroworks 100CC Carbon

CUB UAV. Other sensors also recording on the same flights were 1280x960 color

camera running at around 30 frames per second, a Piksi multi-GNSS module, a

magnetometer, and a Pixhawk autopilot flight controller. These sensors enabled

high-fidelity ground truth data for the flight as well as generating multiple datasets

to support future research efforts at the ANT Center.

The other sensor drivers on board the UAV all used Lightweight Communications

and Marshalling (LCM) messaging protocols, where messages are passed through a

publish/subscribe paradigm optimized for real-time systems with high-bandwidth,

low latency requirements. Due to the prototype nature of the event-based camera,

this was the first known instance of using LCM messaging with event-camera data.

Adjustments were made to the popular dynamic vision sensor (DVS) ROS package
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developed by RPG [133, 53] to enable publishing event-camera data in LCM. Future

efforts could directly utilize libcaer, a minimal C library to access, configure and

get data from the DAVIS, to broadcast event-camera LCM messages with possibly

lower latency.

3.5.2.1 Calibration

The DAVIS camera and its integrated IMU were calibrated using the Kalibr visual-

inertial calibration toolbox [149, 150, 151, 152, 153].

The camera intrinsic calibration took advantage of the integrated greyscale frame-

based camera output. Images were taken of a checkerboard pattern, like the one shown

in Figure 8.

The Kalibr tools were used to automatically find the corners in each image.

These corners were used to generate estimates of the camera calibration parameters

discussed in Section 2.1.1. These parameters were then optimized across all images

with sufficient number of identified corners.

The camera matrix and distortion parameters were then used to by Kalibr’s

camera-IMU calibration tool to estimate the camera-IMU extrinsic calibration, which

is the transformation matrix between the camera’s reference frame and the IMU

reference frame.
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Figure 8: Calibration Checkerboard: the easily identifiable corners with multiple
straight lines in this pattern are used to estimate camera matrix and distortion
coefficient parameters
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IV. Results and Analysis

4.1 Preamble

Using the methodology described in Chapter III, the event frame front-end and

Multi-State Constrained Kalman Filter (MSCKF) back-end were developed and tested

separately prior to merging into one cohesive event-based visual-inertial odometry

(EVIO) pipeline. The motion-compensated frames from various datasets using ground

truth motion information are shown in Section 4.2. The results of the MSCKF using

virtual feature points and standard greyscale frames are shown in Section 4.7.

The back-end MSCKF needs viable features fed from the front-end frames. The

results of testing various types of feature detection are shown in Section 4.3.

To ensure the initial event frames are properly motion-compensated until a filter

update, the accelerometer and gyroscope biases for each dataset were manually esti-

mated, as shown in Section 4.6.

While calibration parameters were provided with the Robotics and Perception

Group (RPG) Event Camera Dataset [3], the Camp Atterbury dataset required

independent calibration. The results of the camera calibration using the Kalibr

toolbox are shown in Section 4.5.

The results of final pipeline, including both motion-compensated event frames and

the MSCKF, are shown in Section 4.7.

4.2 Motion-Compensated Event Frames

The RPG’s Shapes dataset [3] is a simple scenario to easily verify and troubleshoot

compensating for motion. The sample greyscale image in Figure 9 shows how this

dataset only has a handful of high-contrast features with distinct edges. The impact of

motion compensation on the quality of the event frames is shown in Figure 10. With
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Figure 9: Greyscale Image Sample from Shapes dataset: simple black images on a
white background

Figure 10: Shapes dataset: Motion-Compensated With Ground Truth. The top three
images are created with only simple accumulation with 1,000, 5,000, or 50,0000 events.
The bottom three accumulate the same events except with motion compensation using
ground truth data

only 1,000 events, both integrated and motion-compensated event frames are quite

sparse with ill-defined edges. Due to the minimal movement over time for this frame,

5,000 events only shows moderate improvement when using motion compensation,

with only slight blurring occurring in the simple integrated frame. Using 50,000

events shows dramatic blurring in the simply-integrated frame, while the motion-
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Figure 11: Greyscale Image Sample from Boxes dataset: pseudo-randomly placed
highly textured boxes of variety sizes

Figure 12: Boxes dataset event-frames motion-compensated with ground truth. The
top four images are created with only simple accumulation with 5,000, 20,000, 50,0000,
or 100,000 events, from left to right. The bottom four accumulate the same events
except with motion compensation using ground truth data

compensated frame provides very distinct outlines of every shape.

The RPG’s Boxes dataset [3], with a sample greyscale images shown in Figure

11, is much more varied in texture and depth than the Shapes dataset. This variety

causes a much higher rate of events from an event-based camera compared to the

Shapes dataset. Figure 12 shows that much many more events are necessary to

cause the blurring issues in the simply-integrated event frames and that the motion-

compensated frames ensure well-defined edges for all features.
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The varied depths of all the features in the camera’s field of view in the Boxes

dataset did prevent the entire motion-compensated event frame from having perfectly

defined edges. The difference is most noticeable when comparing the texture on

the top right box in the foreground to the checkerboard in the background on the

top left. The quality difference occurs because the current algorithm only uses

a constant average depth to initialize three-dimensional positions of tracked and

candidate features in each pose.

The Camp Atterbury dataset is from a 14-foot-wingspan fixed-wing UAV flying at

around 20 m/s at an altitude of about 250 m over an airfield surrounded by a handful

of buildings and fields with a few roads. The sparseness of the scene resulted in a rate

of events comparable to the Shapes dataset. The initial location for features in the

Camp Atterbury dataset used the altitude measurement to estimate depth, avoiding

the need to initialize feature positions with a manually estimated depth. A motion-

compensated image does correct some of the blurring seen in the plain integrated

image, Figure 14, but still fails to achieve the clarity obtained with a greyscale image

in Figure 13.

Figure 13: Greyscale Image Sample from Camp Atterbury dataset: downward facing
camera aboard a 14-foot wingspan fixed-wing UAV flying at 250 meters above the
ground in this image
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Figure 14: A Camp Atterbury dataset integrated frame, on the left, compared to
a motion-compensated event frame, on the right. Both frames begin at around 18
minutes into the final flight in the dataset and use 30,000 events that occur over 481
milliseconds

This poor performance, when compared to the sharp images obtained with the

Shapes dataset, is primarily because the ground truth data from the PIKSI Multi-

Global Navigation Satellite System (GNSS) only provided high-fidelity position infor-

mation; the ground truth orientation had much less accuracy, preventing the creation

of highly-contrasted motion-compensated images.

4.3 Feature Detection

The KAZE [17] and SURF [15] blob feature detection methods as well as the FAST

[19] and Harris [20] corner feature detection methods, as discussed in Section 3.4.3,

were tested on motion-compensated event frame samples from the Shapes and Boxes

datasets from the RPG Event Camera Dataset [3] and these are shown in Figures 15

to 22.

The SURF methods, shown in Figures 15 and 16, detected the fewest features,

with only around 10-20 features detected in each frame in the Shapes dataset and

100-200 features detected in each frame in the Boxes dataset. More important than

the number of features detected on each image are the numbers of features that can
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Figure 15: Shapes dataset SURF feature detection using 30,000 events starting at
0.195 seconds into the dataset. Top left: 15 detected SURF features. Top right: 3
new features matched to tracked features. Bottom left: 8 new features matched to
candidate features. Bottom right: 4 new candidate features.

be consistently matched and tracked from image to image. For the SURF Features,

around half of the newly detected features matched to recently detected features, i.e.

candidate features, but only around 5-10% matched to consistent features, i.e. tracked

features, which is insufficient to generate quality feature tracks required for reliable

visual odometry (VO).

The Harris feature detection method, with results shown in Figures 17 and 18,

was able to detect around twice as many features than the SURF detection method,

but Harris feature matching had even worse results than SURF feature matching,

with only 5-20% of detected features matched to candidates and only 1-2%, if any,
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Figure 16: Boxes dataset SURF feature detection using 50,000 events starting at
0.197 seconds into the dataset. Top left: 125 detected SURF features. Top right: 5
new features matched to tracked features. Bottom left: 73 new features matched to
candidate features. Bottom right: 47 new candidate features.

matched to tracked features.

FAST corner feature detection was the method used by Zhu’s [4] and Rebecq’s

EVIO implementations. The results from testing with FAST corner feature detection,

shown in Figures 19 and 20, illustrate how this method was able to detect many more

features, with around 100 features detected in the Shapes dataset frames and around

500-600 in the Boxes dataset frames. However, the matching rate was still only around

20-30% for candidate features and 1-2% for tracked features. Low rates of matching do

not generate long feature tracks, which are essential for quality measurement updates

to the MSCKF.
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Figure 17: Shapes dataset Harris feature detection using 30,000 events starting at
0.195 seconds into the dataset. Top left: 39 detected Harris features. Top right: 1
new feature matched to tracked features. Bottom left: 8 new features matched to
candidate features. Bottom right: 30 new candidate features.

Lastly, the KAZE feature detection, with results shown in Figures 21 and 22,

was employed with much better performance, detecting slightly more features than

the FAST method, with around 100-200 detected on the Shapes dataset frames and

around 600-800 detected on the Boxes dataset frames, but with incredibly better

performance on matching over time, with 30-40% matched to candidate features and

20-30% matched to tracked features.
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Figure 18: Boxes dataset Harris feature detection using 50,000 events starting at
0.246 seconds into the dataset (no tracked features were matched earlier). Top left:
187 detected Harris features. Top right: 1 new feature matched to tracked features.
Bottom left: 11 new features matched to candidate features. Bottom right: 175 new
candidate features.
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Figure 19: Shapes dataset FAST feature detection using 30,000 events starting at
0.245 seconds into the dataset (no tracked features were matched earlier). Top left:
132 detected FAST features. Top right: 3 new features matched to tracked features.
Bottom left: 36 new features matched to candidate features. Bottom right: 93 new
candidate features.
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Figure 20: Boxes dataset FAST feature detection using 50,000 events starting at
0.296 seconds into the dataset (no tracked features were matched earlier). Top left:
514 detected FAST features. Top right: 4 new features matched to tracked features.
Bottom left: 91 new features matched to candidate features. Bottom right: 419 new
candidate features.
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Figure 21: Shapes dataset KAZE feature detection using 30,000 events starting at
0.195 seconds into the dataset. Top left: 149 detected KAZE features. Top right: 50
new features matched to tracked features. Bottom left: 52 new features matched to
candidate features. Bottom right: 47 new candidate features.
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Figure 22: Shapes dataset KAZE feature detection using 50,000 events starting at
0.197 seconds into the dataset. Top left: 651 detected KAZE features. Top right: 194
new features matched to tracked features. Bottom left: 254 new features matched to
candidate features. Bottom right: 203 new candidate features.
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4.4 Feature Tracking

To troubleshoot the feature tracking matching and bookkeeping system discussed

in Sections 3.4.3 and 3.4.7, artificial features were generated and fed to the MSCKF.

The results are shown in Figure 23. This illustrates how a third of poses are discarded

Figure 23: Feature tracks from simulated feature detection: simulated feature
detection locations with simplified descriptors were fed to the MSCKF for each pose in
a simulated trajectory. The ground truth detections not included in tracked features
(i.e. the circles without pink Xs between circles with pink Xs in a single feature track)
is due to removal of a third of poses when the maximum number of retained poses is
reached.
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Figure 24: Feature tracks for greyscale images from Shapes dataset: the pink x is
the first detection in a given track, with asterisks for each subsequent detection until
the circle at the final detection. The image displayed is the last in the sequence
and many of the features marked with circles were found on this image. The several
dozen feature tracks indicate movement in the positive-X direction, though with some
outliers.

when a set limit is reached, as well as how candidate features are properly initialized,

separately accounted for, and then transitioned into tracked features to be used in

state updates.

The MSCKF feature tracking methodology was then tested using greyscale im-

ages as well as on motion-compensated event frames from Shapes, Boxes, and Camp

Atterbury datasets. Both greyscale images and motion-compensated frames features

were detected using the KAZE feature detector, as that appeared to have the greatest
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Figure 25: Feature tracks for greyscale images from Boxes dataset: the pink x is
the first detection in a given track, with asterisks for each subsequent detection until
the circle at the final detection. The image displayed is the last in the sequence and
many of the features marked with circles were found on this image. The several dozen
feature tracks indicate some negative yaw rotation with some possible movement in
the negative-X direction in the camera’s frame of reference, though with some outliers.

number of matched features over time in Section 4.3. Most of the feature tracks

generated from the greyscale images, as shown in Figures 24 to 26, as well as the

for the feature tracks generated from motion-compensated event frames, as shown in

Figures 27 to 29, are consistent in indicating the same general movement of the scene.

The Shapes dataset with motion-compensated event frames in Figure 27 showed

a significant clustering of feature tracks around the black shapes, which limits the

amount of samples in significant portions of the scene. The Boxes dataset with

61



Figure 26: Feature tracks for greyscale images from Camp Atterbury dataset: The
pink x is the first detection in a given track, with asterisks for each subsequent
detection until the circle at the final detection. The image displayed is the last in
the sequence and many of the features marked with circles were found on this image.
The several dozen feature tracks indicate some positive roll rotation and/or some
movement primarily in the positive-Y direction in the camera’s frame of reference,
though with some outliers.

motion-compensated event frames in Figure 28 also has features clustered more than

with the greyscale images, though not as severely as with the Shapes dataset event

frames. The Boxes dataset with event frames also tended to lose track of features

sooner, i.e. shorter feature tracks, than with greyscale images in Figure 25, which

would result in a narrower sample available for the MSCKF update. The Camp

Atterbury dataset with event frames in Figure 29 had the severest performance
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Figure 27: Feature tracks for event frames from Shapes dataset: the pink x is the
first detection in a given track, with asterisks for each subsequent detection until the
circle at the final detection. The frame displayed is the last in the sequence and
many of the features marked with circles were found on this frame. The features are
more clustered than with a greyscale image. The couple dozen feature tracks indicate
movement in the positive-X direction, though with some outliers.

reduction compared to the greyscale images in Figure 26. One reason for this is that

the vast majority of the scene did not cause enough events to create detectable features

in the event frames, as shown by the half a dozen feature tracks. Furthermore, it was

difficult to sufficiently estimate accurate accelerometer and gyroscope bias estimates,

and the depth estimate only came from the altitude measurements without accounting

for the orientation of the vehicle. These constraints hindered the ability to create crisp

motion-compensated event frames, since the inertial measurement unit (IMU) quickly
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Figure 28: Feature tracks for event frames from Boxes dataset: the pink x is the
first detection in a given track, with asterisks for each subsequent detection until the
circle at the final detection. The frame displayed is the last in the sequence and
many of the features marked with circles were found on this frame. The features are
more clustered than with a greyscale image. The couple dozen feature tracks indicate
movement in the positive-X direction, though with some outliers.

drifted away from truth over the time window of the batch of events used to create

the event frame.

With both greyscale images or motion-compensated event frames, significant out-

liers on feature tracks were avoided in the feature matching step by ensuring feature

matches were within a threshold distance of the latest detected feature, but some

minor outliers still remained that could introduce errors into the VO pipeline. Though

not implemented in this work, the remaining outliers could be addressed through 2-
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Figure 29: Feature tracks for event frames from Camp Atterbury dataset: the pink
x is the first detection in a given track, with asterisks for each subsequent detection
until the circle at the final detection. The frame displayed is the last in the sequence
and many of the features marked with circles were found on this frame. There are
far fewer features detected compared to the greyscale images. The half dozen feature
tracks indicate some positive roll rotation and/or some movement primarily in the
positive-Y direction in the camera’s frame of reference. At least one of the 6 tracks
appears to be an outlier.

point random sample consensus (RANSAC) [154] and/or Mahalanobis distance checks

[155].

4.5 Camera-IMU Calibration

Camera intrinsic calibration and camera-IMU extrinsic calibration for the Camp

Atterbury dataset followed the process explained in Section 3.5.2.1 using a checker-
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Table 1: Camera Intrinsic Parameters
Description Variable Value
Focal lengths fx 198.444

fy 198.826
Image Center cx 104.829

cy 92.838
Radial Distortion k1 −0.394

k2 0.156
k3 0

Tangential Distortion p1 −0.125× 10−3

p2 −1.629× 10−3

board pattern. The camera intrinsic calibration was able to generate the parameters

shown in Table 1, leading to an intrinsic camera matrix of

K =


198.444 0 104.829

0 198.826 92.838

0 0 1.000

 . (76)

These camera intrinsic parameters were used in several steps of this research. The

distortion parameters were used to undistort greyscale images or simply-integrated

event frames. The camera matrix in (76) was used to map features’ image plane

locations in the camera’s reference frame. For motion-compensated event frames, the

camera matrix and distortion parameters were used to precompute a look-up table

for the undistorted homogeneous coordinates for each discrete pixel location, used

in Line 5 of Algorithm 1, and the inverse camera matrix was used to re-project the

motion-compensated events onto discrete pixels of an event frame, as shown in Line 13

of Algorithm 1.

To generate the camera-IMU extrinsic parameters used in (26), the camera intrin-

sic parameters were used with a sequence of checkerboard images and the correspond-

ing IMU measurements by Kalibr to generate estimates of the transformation between
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the IMU and camera frames of reference. The results from this transformation shows

how the camera and the IMU are very nearly aligned. The rotation matrix from the

camera reference frame to the IMU reference frame is

RIMU
C =


1.000 5.880× 10−3 −7.712× 10−3

−5.790× 10−3 1.000 11.557× 10−3

7.779× 10−3 −11.512× 10−3 1.000

 , (77)

which corresponds to Roll-Pitch-Yaw Euler angles of [0.662°,0.442°,0.337°]. The trans-

lation, being the position of the origin of the camera frame of reference in the IMU

reference frame, from the transformation matrix, in meters, is

pIMU
C =


4.451× 10−3

−8.024× 10−3

−20.438× 10−3

 . (78)

4.6 Initial Bias Estimates

Biases were manually estimated for each dataset to minimize the impact of bad

initial motion estimates on the creation of motion-compensated images. Figure 30

shows that, without applying any biases, the Shapes dataset quickly diverges in roll

by nearly 90°; pitch and yaw are also inaccurate, though remaining within the same

order of magnitude. Position and velocity for the Shapes dataset, without any bias

applied, radically diverge from the truth data by one to two orders of magnitude.

Utilizing a gyroscope bias of [−0.05;−0.010;−0.001]T rad/s and an accelerometer bias

of [0.05; 0.245;−0.225]T m/s2, provides the results shown in Figure 31. The error in

orientation was drastically reduced over the entirety of the Shapes dataset, remaining

within 1° of the ground truth. The position and velocity estimates were also improved,

compared to results without bias correction applied, with velocity errors remaining
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Figure 30: Shapes dataset, INS propagation without bias correction: Pitch and yaw
start out relatively close, but roll quickly diverges from truth; all velocities diverge
from truth within the first couple seconds, resulting in completely unreliable position
estimates.

within the same order of magnitude as the changes in velocity, and position errors

remaining under tens of centimeters after several seconds.

The Boxes dataset had similar performance, with Figure 32 showing that, without

applying any biases, roll diverged the most out of all orientation states. Position and

velocity for the Boxes dataset, without any bias applied, also radically diverge from

the truth data by one to two orders of magnitude. Utilizing a gyroscope bias of

[−0.05;−0.010;−0.001]T rad/s and an accelerometer bias of [−0.04; 0.14;−0.1425]T

m/s2, provides the results shown in Figure 33. The error in orientation was drastically

reduced over the entirety of the Boxes dataset, remaining within 1° of the ground
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Figure 31: Shapes dataset, INS propagation with bias correction applied: Applying
gyroscope bias corrections of −0.050 rad/s, −0.010 rad/s and −0.001 rad/s to X,
Y and Z axis measurements, respectively, enables INS mechanization to track the
orientation even during rapid movement. Applying accelerometer bias corrections of
0.050 m/s2, 0.245 m/s2 and −0.225 m/s2 enables improved tracking of vehicle position
for 5 to 10 seconds, after which it again starts to diverge.

truth. The position and velocity estimates were also improved, compared to results

without bias applied, with velocity errors remaining within the same order of magni-

tude as the changes in velocity, and position errors keeping within tens of centimeters

after several seconds.

It proved much more difficult to find accurate biases for the Camp Atterbury

dataset. Position information was the only ground truth data with the level of ac-

curacy on par with the ground truth from the other datasets. The roll and pitch
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Figure 32: Boxes dataset, INS propagation without bias correction applied: Pitch
and yaw start out relatively close, but roll quickly diverges from truth; the X and Z
velocities appear to track the rise and fall of truth but the Y velocity quickly diverges
from truth within the first couple seconds, resulting in unreliable position estimates.

were taken from the PIXHAWK flight controller but the yaw measurement from the

PIXHAWK was unreliable, so the heading was calculated from the ground course

position information and used in place of the yaw measurement. The velocity was

calculated as the gradient of position. The results from propagating the IMU meas-

urements through INS mechanization without any bias corrections applied are shown

in Figure 34. Estimating the biases manually, generally through hand tuning, for

the Camp Atterbury dataset proved much more difficult than with Shapes or Boxes

dataset, as shown in INS mechanization generated the results in Figure 35. The error

during the first 5 seconds was generally reduced for all metrics, but the error diverged

significantly after 15 to 20 seconds, which is about as good as can be expected for

a cheap, commercial-grade Micro-Electro-Mechanical Systems (MEMS) IMU sensor.
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Figure 33: Boxes dataset, INS propagation with bias correction applied: Applying
gyroscope bias corrections of −0.050 rad/s, −0.010 rad/s and −0.001 rad/s to X,
Y and Z axis measurements, respectively, enables INS mechanization to track the
orientation even during rapid movement. Applying accelerometer bias corrections
of −0.040 m/s2, 0.140 m/s2 and −0.143 m/s2 enables improved tracking of vehicle
position for 5 to 10 seconds, after which it again starts to diverge. The Y axis had
the worst performance, though still an improvement of only diverging by about 30
meters over 30 seconds versus over 1500 meters without any bias correction applied.

Further analysis on the Camp Atterbury dataset not undertaken in this work may

find more accurate initial bias estimates that yield better performance.

These estimated biases were used with the MSCKF, but only by propagating the

primary states as described in Section 3.4.2, and without incorporating any feature

measurements as described in Section 3.4.3, or applying any update steps as described

in Section 3.4.6. The results of this application are shown in Figures 36 to 38 as

the baseline to evaluate the performance when using feature tracks from images or

motion-compensated event frames.
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Figure 34: Atterbury dataset, INS propagation without bias correction applied: Roll
and yaw start out tracking truth relatively well, but yaw quickly is unable to track
truth; the Y velocity appears to track the initial fall of truth but the X and Z velocities
immediately diverge from truth, resulting in unreliable position estimates.
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Figure 35: Camp Atterbury dataset, INS propagation with bias correction applied:
Applying gyroscope bias corrections of −0.050 rad/s, −0.050 rad/s and 0.005 rad/s to
X, Y and Z axis measurements, respectively, enabled INS mechanization to track the
orientation for the first few seconds before diverging. Applying accelerometer bias
corrections of 3.000 m/s2, −1.000 m/s2 and −1.500 m/s2 enables improved tracking of
vehicle position for 5 to 10 seconds, after which it again starts to diverge.
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Figure 36: Shapes dataset MSCKF results with only propagation: as shown in
Figure 31, the tilt estimate remained within 0.1 to 0.2 radians (5° to 10°) on all
axes over the length of the dataset (60 seconds) and the velocity diverges from truth
after about 10 seconds. Since this is propagation only, the errors states remain at
zero since no update step is applied.

Figure 37: Boxes dataset MSCKF results with only propagation: as shown in
Figure 33, the tilt estimate remained within about 0.05 to 0.1 radians (2° to 5°)
on all axes over the length of the dataset (60 seconds) and the velocity diverges from
truth after about 10 seconds. Since this is propagation only, the errors states remain
at zero since no update step is applied.
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Figure 38: Camp Atterbury dataset MSCKF results with only propagation: as shown
in Figure 35, the tilt estimate remained within about 0.1 radians (5°) on all axes for
only the first couple seconds and the velocity radically diverges from truth after about
10 to 15 seconds, ending with position estimated several kilometers from truth. Since
this is propagation only, the errors states remain at zero since no update step is
applied.
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4.7 MSCKF with Updates

The complete MSCKF was first tested using the greyscale images. Each image

was undistorted using the parameters generated in Section 4.5, then enhanced by

equalizing the tonal histogram of the image. Feature detection was then conducted

as described in Sections 3.4.3 and 3.4.7, using a KAZE feature detector and retaining

the strongest 48 features in each region for a maximum of 768 new features detected

for each image. The results from these tests are shown in Figures 39 to 41, which

actually show a dramatic decrease in performance after incorporation of the update

step. It can also be noted that, in the Shapes and Boxes Datasets, the latter half of

the dataset had an increased amount of rapid and sporadic camera movement which

caused significant image blurring and less overlap in sequential images, hindering

feature detection and matching, and preventing any updates from occurring.

Testing with motion-compensated event frames on the MSCKF is shown in Figures 42

to 44, and demonstrates dramatically worse performance than with greyscale images,

which was already worse than simple INS mechanization. Furthermore, once reasonably

accurate tracking of the system states is lost, the motion-compensated event frames

become completely corrupted and add no value with no matchable features, preventing

any chance at recovery.

Other parameter adjustments, described below, were also tested though still with

poorer performance than the results shown in this chapter. A sampling of the results

from implementing these parameter adjustments are included in Appendix A.

� Vary the value of σim used in the least-squares estimate (LSE) in (47) and for the

noise components discussed in Sections 3.4.6.2 and 3.4.6.3. The results shown

in this chapter used 1× 10−3.

� Vary the distance threshold for feature matching. The results shown in this
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Figure 39: Shapes dataset MSCKF results with greyscale images: the incorporation
of the update step does not improve the performance of the MSCKF, but rather
makes it dramatically worse compared to the propagation-only results in Figure 36.
Further parameter and/or algorithm adjustment is required. Additionally, there is a
lack of updates during the latter half of the dataset, as can be easily seen in flat-lining
of the accelerometer bias estimates. This is likely due to the increase in rapid and
sporadic movements which caused blurring in the images, hindering feature detection
and matching.

chapter used a distance of 5 pixels. Increasing the threshold captured more

outliers. Decreasing the threshold reduced the number of feature matches

especially with rapid movement while using greyscale frames.

� Apply feedback and vary the thresholds used when applying feedback. Feedback

is applied when the vector norm of MSCKF position error states surpassed or

the vector norm of the of MSCKF tilt error states surpassed π/4 rad, the INS

mechanization states were reset to the corrected position using the MSCKF

filter error states. The results shown in this chapter did not apply feedback.

Results using feedback with a position error threshold of 1 m and a tilt error
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Figure 40: Boxes dataset MSCKF results with greyscale images: the incorporation
of the update step does not improve the performance of the MSCKF, but rather
makes it dramatically worse compared to the propagation-only results in Figure 37.
Further parameter and/or algorithm adjustment is required. Additionally, there is a
lack of updates during the latter half of the dataset, as can be easily seen in the flat-
lining of accelerometer bias estimates. This is likely due to the increase in rapid and
sporadic movements which caused blurring in the images, hindering feature detection
and matching.

threshold of π/4 rad increased the rate of divergence for the system states.

� Vary the time threshold ∆tIMU in the motion-compensation algorithm where

events are considered to be in the same pose. Recomputing an interpolated pose

for a 1 µs difference between events is especially inefficient and unnecessary for

creating quality motion-compensated event frames, but too large of a threshold

for rapid movement causes blurring. The results shown in this chapter used a

threshold of 100µs.

� Vary the maximum number of events Nbatch,max and/or the maximum time

window length ∆tbatch,max for the batches of events for motion-compensated
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Figure 41: Camp Atterbury dataset MSCKF results with greyscale images: the
incorporation of the update step does not improve the performance of the MSCKF,
but rather makes it dramatically worse compared to the propagation-only results in
Figure 38. Further parameter and/or algorithm adjustment is required.

event frames. The results shown in this chapter for the Boxes dataset used

at most 50,000 events or at most a 500 ms time window for each motion-

compensated frame. The results shown in this chapter for the Shapes and

Camp Atterbury dataset used at most 50,000 events or at most a 500 ms time

window for each motion-compensated frame.

� Vary the time and/or event overlap between motion-compensated event frames.

For the results shown, a time overlap was used to ensure a maximum time

step ∆tstep,max between the start of each event frame of 50 ms, and each event

overlapped by at least Nstep,max. If the event rate, due to rapid movement,

resulted in more than Nmax events in ∆tstep,max, then the subsequent frame

would overlap by Nstep,max events. For low event rates, an issue arose when the
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Figure 42: Shapes dataset MSCKF results with event frames: utilizing event frames
for measurements does not improve the performance of the MSCKF, but rather
makes it dramatically worse than even the poor performance with greyscale images in
Figure 39. Further parameter and/or algorithm adjustment is required. Additionally,
once reasonably accurate tracking of the system states is lost, the motion-compensated
event frames become completely corrupted and add no value, preventing any chance
at recovery.

number of events occurring over the maximum time window ∆tbatch,max was less

than the minimal overlap Nstep,max.

� Apply a threshold for the residual calculated in (58) from feature tracks where

feature tracks exceeding the threshold are discarded as outliers.

� Execute analysis on the evolution of the covariance through state augmentation,

propagation, and updates. The results shown implemented P = (P + P T )/2;

and P = P + εI to help maintain symmetry and positive semi-definite nature

of the covariance matrix.

� Skipping the QR decomposition described in (69) to (72).
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Figure 43: Boxes dataset MSCKF results with event frames: utilizing event frames
for measurements does not improve the performance of the MSCKF, but rather
makes it dramatically worse than even the poor performance with greyscale images in
Figure 40. Further parameter and/or algorithm adjustment is required. Additionally,
once reasonably accurate tracking of the system states is lost, the motion-compensated
event frames become completely corrupted and add no value, preventing any chance
at recovery.
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Figure 44: Camp Atterbury dataset MSCKF results with event frames: utilizing event
frames for measurements does not improve the performance of the MSCKF, but rather
makes it dramatically worse than even the poor performance with greyscale images in
Figure 41. Further parameter and/or algorithm adjustment is required. Additionally,
once reasonably accurate tracking of the system states is lost, the motion-compensated
event frames become completely corrupted and add no value, preventing any chance
at recovery.
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V. Conclusions

In this thesis, an event-based visual-inertial odometry (EVIO) pipeline, primarily

motivated by Zhu’s [4] and Rebecq’s [6] state-of-the-art research, was implemented

and tested. The front-end of this pipeline was fed by the output of a new type of

visual sensor, called an event-based camera. An event-based camera operates under

a unique paradigm, where each pixel in the sensor independently and asynchronously

outputs ON or OFF events for each rise or fall in light log intensity past an established

threshold. Batches of event output from the event-based camera were compiled into

frames by accumulating events occurring at each pixel. The clarity of these frames

was improved by compensating for the motion of the camera calculated through

an integrated Micro-Electro-Mechanical Systems (MEMS) inertial measurement unit

(IMU). KAZE features [17] were detected on each frame and matched to previously

detected features to generate feature tracks to be used by the back-end of the EVIO

pipeline.

The back-end of the EVIO pipeline implemented the Multi-State Constrained

Kalman Filter (MSCKF) [1] using the Scorpion library of classes and functions

developed by the Autonomy and Navigation Technology (ANT) Center at Air Force

Institute of Technology (AFIT). The MSCKF estimates errors for the vehicle states

calculated by an inertial navigation system (INS) mechanization of the IMU. The

feature tracks feed a least-squares estimation of a feature position, which is then used

to calculate the residual for Kalman filter update equations.

Additionally, this research conducted the ANT Center’s first data collection using

an event-based camera, accomplished on a flight test of a fixed-wing unmanned aerial

vehicle (UAV). This event-based camera dataset included event-based camera data,

greyscale images, and IMU output, all synchronized with high-resolution position

information from a PIKSI Multi-Global Navigation Satellite System (GNSS) and
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orientation information from the UAV flight controller.

Results for the implementation of motion-compensated frames show clearly contrasted

images with well-defined edges, where other methods often result in either sparse

and/or blurred imagery. This solution to event-based camera visualization is a viable

avenue for clear interpretation of this unique type of data.

The results for this implementation of the MSCKF, fed with greyscale images

from a classical “frame-based” camera, resulted in poorer vehicle state estimation

than INS mechanization alone. The results were particularly poor for rapid camera

movement that resulted in few matched features between scenes. The results of

testing the MSCKF with motion-compensated event-based frames resulted in even

worse results, as minor errors in the vehicle state corrupted any clarity to be gained

from motion-compensation.

Various parameter adjustments and simple outlier rejection methods were attempted,

including varying σim for the Kalman filter update equations, and adjusting the

various parameters included in the motion compensation algorithm. However, none

of these adjustments provided the performance improvements expected from this

implementation.

5.1 Future Work

Other adjustments to the motion-compensation and MSCKF implementation in

this work that were considered but not fully implemented in this research due to time

constraints include the following.

� Incorporate 2-point random sample consensus (RANSAC) [154] on the feature

tracks to remove outliers.

� Implement a Mahalanobis distance threshold check [155] during feature matching.
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� Utilize Zhu’s Robot Operating System (ROS) version of the MSCKF [4].

� Utilize dynamically adjusted threshold parameters for motion-compensated event

frames: the time window ∆tIMU for pose interpolation; the event batch size

thresholdsNbatch,max and ∆tbatch,max; and the event batch step thresholds ∆tstep,max

and Nstep,max.

� Extended evaluation of the application of QR decomposition described in (69)

to (72) and singular value decomposition in (66) and (67) in Section 3.4.6.2.

� Retain all descriptors for a given matched feature, instead of only the initial

descriptor, for possibly higher feature matching rates.

� Implement a method to recognize when motion-compensation causes the majority

of events to be more blurred than aligned, and correct the vehicle states accordingly.

5.1.1 Event-Based Feature Detection

Separate from improving the implementation of the EVIO pipeline described in

this work, alternative approaches to feature detection on the stream of events require

more investigation. Other state-of-the-art avenues of research for utilizing event-based

cameras for visual odometry (VO) implement feature detection on a stream of events

while recognizing that combining batches of events into images and then detecting

features is likely not the most optimal method [70]. While motion compensation

does take some timing information into account, an ideal feature detection would be

independent of any other sensor and would take into account the polarity, timing, and

pixel location of each event but only relative to temporally and spatially neighboring

events, instead of operating on a complete frame of events. An obstacle to this

avenue of research is that it cannot capitalize on the various feature detection methods

available for classical frames, and care needs to be taken to avoid computationally

85



expensive operations on every event and instead focus on efficiently identifying the

relevance of each event.
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Appendix A. Additional Results

Figure 45: Shapes dataset MSCKF results with greyscale images, discarding outlier
features
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Figure 46: Boxes dataset MSCKF results with greyscale images, discarding outlier
features

Figure 47: Camp Atterbury dataset MSCKF results with greyscale images, discarding
outlier features
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Figure 48: Shapes dataset MSCKF results with event frames, discarding outlier
features

Figure 49: Boxes dataset MSCKF results with event frames, discarding outlier
features
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Figure 50: Camp Atterbury dataset MSCKF results with event frames, discarding
outlier features

Figure 51: Shapes dataset MSCKF results with greyscale images, not using QR
decomposition
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Figure 52: Boxes dataset MSCKF results with greyscale images, not using QR
decomposition

Figure 53: Camp Atterbury dataset MSCKF results with greyscale images, not using
QR decomposition
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Figure 54: Shapes dataset MSCKF results with event frames, not using QR
decomposition

Figure 55: Boxes dataset MSCKF results with event frames, not using QR
decomposition
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Figure 56: Camp Atterbury dataset MSCKF results with event frames, not using QR
decomposition

Figure 57: Shapes dataset MSCKF results with greyscale images, using feedback
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Figure 58: Boxes dataset MSCKF results with greyscale images, using feedback

Figure 59: Camp Atterbury dataset MSCKF results with greyscale images, using
feedback
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Figure 60: Shapes dataset MSCKF results with event frames, using feedback

Figure 61: Boxes dataset MSCKF results with event frames, using feedback
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Figure 62: Camp Atterbury dataset MSCKF results with event frames, using feedback

Figure 63: Shapes dataset MSCKF results with greyscale images, using σim =
1× 10−6
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Figure 64: Boxes dataset MSCKF results with greyscale images, using σim = 1× 10−6

Figure 65: Camp Atterbury dataset MSCKF results with greyscale images, using
σim = 1× 10−6
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Figure 66: Shapes dataset MSCKF results with event frames, using σim = 1× 10−6

Figure 67: Boxes dataset MSCKF results with event frames, using σim = 1× 10−6
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Figure 68: Camp Atterbury dataset MSCKF results with event frames, using σim =
1× 10−6

Figure 69: Shapes dataset MSCKF results with greyscale images, using σim = 1
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Figure 70: Boxes dataset MSCKF results with greyscale images, using σim = 1

Figure 71: Camp Atterbury dataset MSCKF results with greyscale images, using
σim = 1
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Figure 72: Shapes dataset MSCKF results with event frames, using σim = 1

Figure 73: Boxes dataset MSCKF results with event frames, using σim = 1
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Figure 74: Camp Atterbury dataset MSCKF results with event frames, using σim = 1

Figure 75: Shapes dataset MSCKF results with greyscale images, using σim = 10
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Figure 76: Boxes dataset MSCKF results with greyscale images, using σim = 10

Figure 77: Camp Atterbury dataset MSCKF results with greyscale images, using
σim = 10
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Figure 78: Shapes dataset MSCKF results with event frames, using σim = 10

Figure 79: Boxes dataset MSCKF results with event frames, using σim = 10
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Figure 80: Camp Atterbury dataset MSCKF results with event frames, using σim = 10
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Event-based cameras are a new type of visual sensor that operate under a unique paradigm. These cameras provide
asynchronous data on the log-level changes in light intensity for individual pixels, independent of other pixels’
measurements. Through the hardware-level approach to change detection, these cameras can achieve microsecond fidelity,
millisecond latency, ultra-wide dynamic range, and all with very low power requirements. The advantages provided by
event-based cameras make them excellent candidates for visual odometry for UAVs. A visual odometry pipeline was
implemented with a front-end algorithm for generating motion-compensated event-frames feeding a Multi-State
Constraint Kalman Filter (MSCKF) back-end implemented using Scorpion. This pipeline was tested on a public dataset
and data collected from an ANT Center UAV flight test.

event-based cameras, event-based visual-inertial odometry (EVIO), neuromorphic engineering, visual odometry (VO),
visual-inertial odometry (VIO), multi-state constraint Kalman Filter (MSCKF), Extended Kalman Filter (EKF)
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