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Abstract

Instances of Global Positioning System (GPS) jamming and spoofing have identified

the vulnerabilities of using GPS as a sole means of positioning, navigation, and tim-

ing (PNT) for the world’s critical systems. A fusion of alternative positioning meth-

ods is necessary to replace the characteristics of GPS the world has become reliant

upon. Aerial navigation using magnetic field crustal anomalies is a globally avail-

able, passively sensed, and nearly unjammable GPS-alternative positioning method.

The Earth’s outer core produces a magnetic field which is perturbed by magnetically

susceptible materials in the Earth’s crust. The resulting deviation from a core field

reference model is a world-wide magnetic anomaly field shown to be a viable sig-

nal for navigation. This method required prior-surveyed magnetic anomaly maps of

sufficient quality. Aerial geomagnetic surveys require more grid lines to fully sam-

ple the higher spatial variation of the magnetic anomaly field at low altitudes. This

makes producing high-quality low-altitude magnetic maps expensive and therefore

less common. The miniaturization of scalar magnetometers opened the potential for

magnetic navigation on low-flying unmanned aerial vehicles (UAVs), which operate

at altitudes lacking high quality magnetic maps. This motivated a method to remove

magnetic navigation’s dependency on a magnetic map. Indoor robotic and pedestrian

magnetic navigation have employed simultaneous localization and mapping (SLAM)

techniques to overcome this obstacle. This research extends SLAM concepts to elimi-

nate the map dependency in aerial magnetic navigation. This research presents three

main contributions. An aerial magnetic SLAM filter was designed which constrained

the drift of an aircraft’s inertial navigation system (INS) on a real flight-test dataset

from 1 kilometer to tens of meters over a 100 minute flight without a prior magnetic

iv



map. A commercial off-the-shelf (COTS) fixed-wing magnetic surveying UAV was

configured and produced six consistent magnetic maps at various altitudes over a

2 kilometer area. The UAV’s magnetic measurements were used to constrain three

simulated INS grades to tens of meters over a 14 minute flight. Together, these three

contributions demonstrated the viability of aerial magnetic navigation as a GPS al-

ternative for manned aircraft and UAVs without requiring prior-surveyed magnetic

maps.
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AERIAL SIMULTANEOUS LOCALIZATION AND MAPPING USING

EARTH’S MAGNETIC ANOMALY FIELD

I. Introduction

1.1 Overview

This document presents the progression of three research objectives aimed at

conducting magnetic navigation on an unmanned aerial vehicle (UAV) without the

aid of a prior magnetic map. The first step was the development of a navigation filter

which simultaneously created a magnetic map and constrained inertial navigation

system (INS) position errors. The second step was to configure and calibrate a UAV

to collect magnetic measurements of the Earth’s magnetic anomaly field using new

miniaturized scalar magnetometers. The resulting UAV consistently measured the

magnetic anomaly field within 2 nano-Teslas over a 2 kilometer by 1 kilometer area.

The third step was to apply the navigation filter to the UAV magnetic measurements

for simultaneous localization and mapping (SLAM).

The document is organized as follows. Chapter 1 explains the background of

the problem, research objectives, and the limitations and assumptions made in this

research. Chapter 2 is split into two parts. The first part is a review of previous

works in relevant literature which has led to this research. The second part presents

background information on Earth’s magnetic field, aeromagnetic calibration, SLAM,

non-linear stochastic state estimation, INS error modeling, and scattered data inter-

polation. Chapters 3, 4 and 5 are three papers. The first paper presents the results of

aerial magnetic SLAM on a real flight test dataset with a full-sized manned aircraft.
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The second paper presents the development, calibration, mapping capabilities of a

UAV built by Air Force Institute of Technology (AFIT)’s Autonomy and Navigation

Technology (ANT) center. The third paper presents the results of aerial magnetic

SLAM on the UAV flight data. Chapter 6 is a brief recap of these developments,

with a focus on their potential application and areas of future research. An appendix

includes relevant implementation and calibration details that escaped the brevity of

a succinct paper.

1.2 Problem Background

The world has become increasingly reliant on global navigation satellite systems

(GNSSs) for positioning, navigation, and timing (PNT) applications. Many critical

military and commercial systems have become solely dependent on the unparalleled

characteristics of the Global Positioning System (GPS). Persistent world-wide avail-

ability, passive sensing, and sub-meter accuracy are difficult attributes to replace by

any other navigation method. A fusion of alternative methods is necessary to main-

tain navigation capabilities without GPS. Airborne magnetic navigation uses spatial

information from the Earth’s magnetic anomaly field to constrain errors in an INS.

Aerial magnetic navigation is passively sensed, globally available, impervious to jam-

ming or spoofing, and accurate to tens of meters. However, magnetic anomaly maps

become increasingly under-sampled, inaccurate, or just unavailable at lower altitudes,

preventing applications in small unmanned aerial systems (sUAS) [4].

1.3 Research Objectives

This research extended the work of Canciani and Raquet [5], where extensive

research into airborne magnetic navigation identified a large dependency on the accu-

racy and availability of prior-surveyed crustal magnetic anomaly maps. This research
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first identified how SLAM had been used in magnetic navigation using man-made

magnetic anomalies for robots and pedestrians without a map, and set the following

research objectives:

• Apply SLAM techniques to remove aerial magnetic navigation’s dependency on

prior crustal magnetic anomaly maps.

• Design, calibrate, and deploy a UAV capable of collecting navigation-quality

measurements of Earth’s magnetic anomaly field.

• Determine the feasibility of magnetic navigation on a UAV.

1.4 Limitations and Assumptions

This research prioritized the demonstration of combining aerial magnetic naviga-

tion and SLAM as a proof-of-concept. As a result, simplistic methods were chosen

without stressing computational efficiency.

Assumptions of airborne magnetic SLAM.

1. There is a measurable and spatially varying magnetic field.

2. A barometric altitude measurement is available.

3. A source of dead-reckoning is available.

4. A vehicle trajectory exists which intersects or overlaps itself providing loop

closures.

5. Revisiting a the same point in space yields the same magnetic intensity mea-

surement.

Magnetic navigation applies to a well-calibrated vehicle which traverses an area

with a measurable and spatially varying magnetic field. Loop closures are a powerful
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constraint in SLAM, which occur when current measurements are correlated to previ-

ously observed points in a vehicle’s path. As a result, magnetic SLAM is specific to a

calibrated vehicle which measures a spatially variant magnetic field while traversing

a path over previously visited areas.

The typical uses of sUASs and autonomous underwater vehicles (AUVs) often result

in trajectories that are likely to revisit over time. This makes magnetic SLAM a niche

but relevant area of research with the most obvious application being sUASs or AUVs

loitering near the Earth’s surface where the spatial variance of the crustal magnetic

anomaly field yields the most navigation potential, but navigation quality magnetic

anomaly maps are especially unavailable.

1.5 Primary Contributions

This research produced Three primary contributions.

1. 1 Aerial magnetic navigation was demonstrated without a prior magnetic map

on a full-sized aircraft.

2. 2 A UAV capable of producing compensated magnetic intensity measurements

during flight was configured and flown.

3. 3 UAV magnetic navigation was demonstrated without a prior magnetic map

with real magnetic intensity measurements and simulated UAV INSs solutions.

The methods demonstrated in this research provide full-sized and miniature aircraft

a new globally-available and passively-sensed GPS-alternative navigation capability

which does not require prior map data.
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II. Background and Literature Review

This chapter provides a literature review and conceptual background for reference

in the subsequent standalone papers. Section 2.1 reviews GNSS alternative navigation

methods, map-based magnetic navigation, SLAM, magnetic vector field SLAM, and

the open research area of aerial SLAM using the Earth’s magnetic anomaly scalar field.

Section 2.2 introduces Earth’s magnetic intensity anomaly field, aircraft magnetic

calibration, FastSLAM, Rao-Blackwellized particle filters, a probabilistic motion error

model for an INS, and sparse data interpolation.

2.1 Literature Review of GPS Denied Navigation

This section identifies key literary works in GPS-denied navigation, magnetic nav-

igation, and simultaneous localization and mapping (SLAM).

Key civilian and military infrastructure systems have become increasingly reliant

on GPS for positioning and timing information and are therefore vulnerable to GPS

unavailability [6, 7]. Occurrences of GPS jamming and spoofing have shown that

critical systems require backups for when GPS is unavailable [8]. Modern navigation

typically uses GPS positioning information to correct for drifting inertial measure-

ment errors through Kalman filtering, resulting in systems which combine long-term

and short-term navigation to improve navigation [9]. The global availability, passive

sensing, and accurate positioning characteristics of GPS are difficult to replace by any

one system. When GPS position updates are made unavailable, other sensors are re-

quired to supplement an inertial system to bound the drifting errors in accelerometers

and gyroscopes. For example, some current alternative methods include: machine vi-

sion, terrain following, star tracking, and exploiting signals of opportunity. Each GPS

alternative has it’s own benefits and downsides, but the most valuable characteristics
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of GPS to replace are its persistent global availability, position accuracy, indepen-

dence of prior data, and passive use. We discuss the weaknesses of each approach in

the following subsections.

2.1.1 Machine Vision.

Machine vision is a technique which correlates features in calibrated imagery with

known locations in the environment. The relative orientation of the platform can be

determined using stereo cameras or with a single camera observing a known feature

from different angles. Camera-based navigation relies on the recognition of stable

visual features which may vary depending on seasons, times of day, weather, or local

topography, and are especially unavailable over featureless landscapes like water,

snow, desert, or forests. [10, 11, 12].

2.1.2 Terrain Following.

Terrain following involves the use of range and bearing sensors to match mea-

surements of the environment to a map. Active sensing methods used in terrain

navigation such as laser range-finders, radar, or sonar [13, 14, 15] are often undesir-

able in discrete operations since they require emitting detectable energy [16]. This

method is limited by the presence of distinguishable terrain, which can be a problem

when considering that over two-thirds of the planet is covered with water.

2.1.3 Star Tracking.

Stars triangulation has been a means of global navigation for centuries. Modern

celestial or satellite tracking using optical equipment requires an unobstructed line

of sight and precise trajectory knowledge of the satellite or celestial object, as well

as precise and expensive equipment. Cloud cover is more detrimental in aircraft
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than for ships because intermittent position fixes from sporadic star spotting will

still aid a slow-moving ship with an INS over a long journey [17]. Although flying

above the clouds can remove cloud obstruction problems, this is not always feasible

for low-altitude aircraft or surveillance platforms requiring a clear line-of-sight to the

ground.

2.1.4 Signals of Opportunity.

Using signals of opportunity for trilateration has been shown as a viable method

for positioning but requires prior knowledge of available and cooperative signals in

the desired areas of operations [18]. An obviously problematic area would be over

the oceans, which cover the majority of the Earth and where signal availability is an

issue.

2.1.5 Map-based Magnetic Navigation.

Magnetic fields have been exploited for navigation since the invention of the com-

pass. Goldenberg’s Geomagnetic Navigation Beyond the Magnetic Compass [19] pro-

vided an in-depth discussion regarding the concept of referencing the geomagnetic

field for navigation. He concluded that the geomagnetic field is a viable, globally-

available navigation signal for positioning. He also concluded that magnetic sensing

technologies are mature enough for geomagnetic positioning by the Earth’s magnetic

field. Pasku [20] surveyed more recent applications of magnetic navigation to include

passive and active magnetic sources. Navigation by matching magnetic measurements

to a map of the magnetic anomaly field is an advantageous GPS-denied method that

boasts global signal availability, resistance to jamming, passive sensing, technological

maturity, and effectiveness in INS aiding in the air [21], space [22], on land [23], and

underwater [24]. The largest weakness of map-based magnetic navigation is the de-
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pendence on the availability and accuracy of previously-surveyed geomagnetic maps.

Unlike the magnetic signal, maps may not be globally available at high-enough qual-

ity for precise localization [25]. Aerial and underwater magnetic navigation use the

magnetic anomaly field which is most spatially variant near the ground. Indoor mag-

netic navigation focuses instead on structural man-made magnetic disturbances in

the Earth’s magnetic field. We discuss various applications of map-based magnetic

navigation in the following subsections.

2.1.5.1 Land-Based Magnetic Navigation.

Magnetic map matching with an INS can reduce navigation errors for GPS-denied

ground vehicle navigation. Shockley demonstrated that using magnetic field variation

in ground vehicles achieves adequate performance for road level navigation [26]. This

method leveraged local magnetic field perturbations caused from ferrous materials

in urban infrastructure as well as the crustal anomaly field. Kauffman and Raquet

demonstrated that combining the global positioning accuracy of magnetic navigation

with the short term precision of an INS improves navigation quality [23].

2.1.5.2 Aerial Magnetic Navigation.

Aerial magnetic navigation matches measurements of the Earth’s magnetic anomaly

field to a prior-surveyed magnetic anomaly map. Canciani and Raquet have thor-

oughly covered aerial magnetic navigation in the literature [4, 21, 27]. They demon-

strated the viability of using the Earth’s magnetic anomaly field as a time-invariant

GPS-alternative system by achieving aerial navigation using a three-year old geomag-

netic anomaly map, scalar magnetic intensity measurements, an INS, and barometer-

sourced altitude measurements to achieve distance root mean squared (DRMS) errors

of 13 meters over the span of a one hour flight. Liu et al. also demonstrated that
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scalar magnetic intensity measurements can be used to aide an INS using contour

constraints to a magnetic anomaly map and coarse-fine searching methods [28]. Yang

et al. simulated that incorporating magnetic anomaly measurements into a coopera-

tive localization framework extends the method to improving the navigation accuracy

in UAVs [29].

2.1.5.3 Underwater Magnetic Navigation.

The concept of utilizing magnetic intensity maps like a terrain map underwater

has been around for a long time [30, 24]. More recently, Quintas et al. demonstrated

underwater magnetic navigation to position an AUV with less than 5 meters error

[31]. Interestingly, magnetic navigation outperformed terrain navigation due to the

lack of local topological variation; showcasing the ability of magnetic navigation to

supplement existing navigation methods underwater. They also determined the im-

provement of magnetic navigation when simulated closer to the sea-floor where the

spatial variation of the magnetic field increases. Lager, Topp, and Malec simulated

a mean error of below 13 meters by fusing depth and magnetic measurements to

poor quality maps to estimate drifting INS errors using a particle filter [32]. Zhou,

Zhang, and Guo also show that an integration of an inertial system and magnetic

map matching corrects for drifting INS errors [33].

2.1.5.4 Orbital Magnetic Navigation.

Satellites can use vector magnetometers and a model of Earth’s core field to deter-

mine position and orientation through Kalman filtering approaches [34, 22, 35, 36, 37].

Earth’s crustal anomaly field attenuates rapidly with increasing altitude and is neg-

ligible for satellites in orbital navigation [38].
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2.1.5.5 Indoor Magnetic Navigation.

Indoor ambient magnetic anomaly fields have been used in conjunction with micro

electro-mechanical systems (MEMS) vector magnetometers for pedestrian and robot

localization using prior magnetic maps [39, 40, 41, 42, 43, 44]. Brzozowski et al. in-

troduce a concept of a low-cost vector magnetometer array on a small UAV to survey

a magnetic map for future indoor localization of cooperative UAVs. They attempted

to map the interior of a building at three different elevations, placing permanent

neodymium magnets along corridors as additional magnetic disturbance signal, while

focusing on the development of the measuring platform without producing any at-

tempt at navigation.

2.1.6 Simultaneous Localization and Mapping.

Mapping an environment involves applying sensor data to a known vehicle posi-

tion. Vehicle localization compares current observations of the environment to infor-

mation from a map. SLAM solves the mapping and localization problems concurrently

using probabilistic techniques. SLAM can be used for making maps and navigating

in unknown or changing environments. Recognizing a previously observed part of the

environment is called a loop closure and corrects the entire trajectory history. This

reduces estimation errors in both the vehicle trajectory estimate and environment

map model. SLAM has been commonly implemented using Kalman filters, advanc-

ing with particle filters, and most recently through the application of graph-based

methods [45, 46]. While the study of SLAM is daunting in it’s range of application,

a comprehensive introduction into the subject is provided by [47]. Some common

SLAM applications are discussed in the following subsections.

10



2.1.6.1 Machine Vision SLAM.

SLAM is commonly used in the robotics community where machine vision is heav-

ily leveraged. Stereo and monocular vision have been successfully used to navigate in

a variety of environments with stable features. Correlating the large amount of spatial

information in calibrated images with vehicle positions provides an information-rich

front end to many implementations of SLAM filters [48]. Increasing interest in virtual

reality and the popularity in airborne camera platforms have naturally transitioned

SLAM from being used in ground robotics to hand-held devices and airborne vehicles

[11, 49, 50]. The drawback of using camera-based SLAM is the ability to detect and

identify features requires good visibility and a stable, feature-rich environment. This

technique would fall short for aircraft looking at featureless landscapes like desert,

grass, or water.

2.1.6.2 Laser/Sonar SLAM.

Laser and sonar range finders have been another primary focus in SLAM. Bearing

and range sensors leverage scan matching algorithms like iterative closest points to

incorporate measurements into the odometry proposal and identify revisiting map

features to close loops [51, 52, 50]. Pose-graph methods are considered the most

advanced to date [53]. A relevant example for this thesis is in underwater bathy-

metric sensing which has far less information available than a scanning lidar sensor.

Chaves et al. discusses the concepts of pose-graph SLAM for underwater navigation.

Bichucher et al. apply factor-graph slam with a sparse point cloud comprised of

Doppler velocity log (DVL) measurements which sense the local water column depth

[54]. This sparse sensing paradigm is more analogous to SLAM using a scalar field,

thereby demonstrating the potential in factor-graph approaches with sparse measure-

ments and ambiguous data association. An important contribution from [54] is the
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method of associating sub-maps based on the heuristics that sub-maps should align

using dynamic covariance scaling to handle erroneous data association. Their experi-

mental implementation of the filter on an actual AUV constrained the dead-reckoning

solution with a navigation accuracy of less than 5 meters over a 1 hour collection. The

major drawback to using these sensors is that they are actively emitting, which may

not be desired in all cases, and require observable features which may be unavailable.

2.1.6.3 Vector Field MagSLAM.

Vector magnetometers provide a measurement of the magnetic gradient in three

directions. These three magnetic measurements have been used in SLAM with various

robotics and pedestrian dead-reckoning systems. SLAM using a magnetic instrument

to aide a dead-reckoning estimator has been referred to in literature as MagSLAM [55]

which will be used for the duration of this paper. The following subsections present

the successful use of magnetic navigation using vector magnetometers without prior

magnetic field maps.

Ground Vector MagSLAM. Ground-based MagSLAM utilizes structural

ferromagnetic anomaly fields common in industrial settings [46, 40]. Commercial

MEMS grade vector magnetometers have been used in magnetic localization and

SLAM for small robots and pedestrians with a variety of SLAM frameworks for effi-

ciency [56].

Vallivaara, Haverinen, and Kemppainen implemented indoor magnetic vector field

SLAM with a roomba-style robot using a Rao-Blackwellized particle filter (RBPF)

and Gaussian process regression (GPR) to constrain odometry errors with a posi-

tioning accuracy of less than one meter [57, 58]. Their GPR model treated each

component of the magnetic vector measurement independently. They defined a path

revisit using a euclidean distance threshold. Their expected measurement function
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used in the residual weighting function of the RBPF modeled a particle’s local mag-

netic map as a Gaussian process which was used to interpolate expected magnetic

measurements. This filter structure benefited from it’s simplicity and presented a

valid framework for demonstrating the SLAM potential of the indoor magnetic field.

Kok and Solin corrected accumulating drift errors from a visual-inertial smart-

phone pedestrian dead-reckoning solution using a RBPF with hierarchical hexagonal

magnetic maps [59]. Each particle’s map was defined as an underlying Gaussian

process prior by leveraging Maxwell’s equations and the relationship between the

components of magnetic vector measurements and the scalar potential field. This

essentially defined a set of rules which better modeled the underlying physics of a

scalar potential field and increased the filter performance. Although their method of

pedestrian travel leveraged guaranteed path overlaps from walking path constraints,

they obtained accurate position and orientation estimates of a pedestrian using vector

magnetometer measurements from a smart-phone without a prior surveyed magnetic

map. The framework for their filter made magnetic field SLAM scalable in both

computational complexity and map storage; a major obstacle in map-based SLAM.

Of key interest was their use of pre-computed eigen-functions of the negative Laplace

operator in the hexagonal domain; numerically solving the eigendecomposition of

the Laplace operator in the two-dimensional hexagonal domain before extending into

the three-dimensional domain. Their implementation of the RBPF partitioned the

phone’s position and orientation as nonlinear states, with 256 nonlinear states per

map tile to represent the combination of pre-computed eigenbasis expansions of the

Gaussian process magnetic map. This method proved to be complex in it’s map

model but attractive in it’s scalability and robustness with low cost sensors.

Jung, Oh, and Myung implemented a more recent pose-graph SLAM approach

with a wheeled robot by associating sequences of magnetic vector field measurements
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in overlapping paths to achieve sub-meter level accuracy [60]. Unfortunately, this

method required overlapping path segments.

Chow uses a Gaussian Process SLAM framework to achieve a drift-free naviga-

tion solution with millimeter-level accuracy by exploiting the anomaly field created

by indoor magnetic disturbances. This approach was a maximum a posteriori esti-

mation problem which naturally performs loop closures, feature-to-feature distance

minimization, global trajectory optimization, and magnetic field map estimation.

This method boasted a navigation solution which is never worse than the inertially

proposed navigation solution [61].

Aerial MagSLAM. The research field of magnetic navigation is quickly

growing [23]. However, aerial vector MagSLAM has not been widely researched or

demonstrated. One of the major obstacles with vector-field UAV MagSLAM lies in

the hypersensitivity of vector magnetometer readings with regard to vehicle attitude

errors. Inertial measurement units (IMUs)s with accumulating attitude errors create

variations in reference frame transformations that drown out the useful magnetic

vector components of the Earth’s magnetic anomaly field. Future improvements in

vector magnetometers and MEMS INSs may make this more feasible.

Autonomous Underwater Vehicle Magnetic SLAM. SLAM is espe-

cially useful under water since GNSS is typically unavailable under the surface and

prior oceanic geomagnetic field maps may be unavailable [13, 62]. The use of mag-

netic sensors to aide an INS is attractive because low-light conditions deter the use

of imaging sensors and active sensors often announce the presence of the vehicle or

disrupt wildlife [63]. There has not been a successful implementation of underwater

MagSLAM on a AUV using the Earth’s magnetic crustal anomaly field. Liu et al.

[64] come closest by simulating the potential application of using the geomagnetic
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field using geomagnetic cues between a starting and target position. The large area

AUV MagSLAM perspective is analogous to the UAV MagSLAM paradigm and the

advances in methodology in the literature are applicable.

2.1.6.4 Scalar Field SLAM.

SLAM has traditionally been applied with cameras or scanning lasers which use

the dense set of data-points in a single measurement to accurately model changes in

the environment at a distance. A magnetic intensity measurement is an observation

of a scalar field at a single point in space. The sparse amount of information from a

single measurement of a scalar field is insufficient for localization because of its spatial

ambiguity [60]. A sequence of scalar measurements and a moving platform’s dead-

reckoning estimate is required over time to provide unique position information. This

combines short-term vehicle dynamic constraints and loop closures from revisiting

scalar observations to provide global constraints.

Robertson et al. [55] implemented a scalable large-area indoor pedestrian SLAM with

a foot-based inertial measurement unit and scalar magnetic intensity measurements.

They used hierarchical magnetic intensity grid maps, particle filtering, and spatial

measurement binning methods to constrain the drift in a pedestrian dead-reckoning

system. They achieved pose-estimation accuracy on the decimeter level by addressing

common filtering implementation challenges with various tuning methods. This is

the first known instance where a scalar magnetic field has been used in SLAM with

a RBPF. The significance of this success cannot be understated. The closest similar

instance is [65], where the signal strengths of WiFi signals are used as continuous

scalar maps to perform pose-graph SLAM.

One of the greatest challenges in using a scalar field for SLAM is the extremely little

information regarding a vehicle’s position or orientation in a single scalar magnetic
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measurement. A valid dynamic motion model, high-quality dead-reckoning solution,

and substantial scalar field variation is required to correct drifting errors. Scalar field

navigation methods can be extended to gravitational fields, ambient lighting, wireless

signal strength, and other continuous scalar fields. To our knowledge, no instance of

scalar-field SLAM has been successfully simulated nor demonstrated with real data

in the air or underwater.

2.2 Background

The purpose of this section is to introduce the concepts of Earth’s magnetic field

components, calibrating magnetic survey aircraft, SLAM, and nonlinear state estima-

tion. The intent is to provide the reader with the basic tools required to understand

the methodology and results discussed in the rest of this thesis.

2.2.1 Earth’s Magnetic Field.

This section will briefly introduce some fundamental characteristics of the Earth’s

magnetic field and more importantly, the anomalies used as a navigation signal as

explained by Reeves and Hinze et al. [66, 38].

Earth’s magnetic field is a scalar potential field. It may provide some intuition

to remember that Earth’s gravitational field is also a potential field. There exists

a singular value of magnetic potential at each point in three dimensional space. A

scalar potential field is curl and divergence free, without any discontinuities or instan-

taneous drop-offs. The spatial gradient of the potential field is a vector field, where

each Cartesian component’s magnitude is the gradient of the potential field in that

direction. The familiar magnetic compass is used to indicate the horizontal magnetic

vector components, but there exists a vertical component which generally points up

at the South pole, down at the North pole, and approximately level at the equator.
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Magnetic intensity measurements measure the magnitude of the vector field. In short:

A scalar magnetic intensity is the vector norm of the gradient of the scalar potential

field.

Bintensity = ||∇Bpotential|| (1)

The total terrestrial magnetic field consists of various contributing fields within

and outside the Earth. The geomagnetic field within the Earth is often considered to

have three parts: core, mantle, and crust. Earth’s liquid iron core contains convection

processes which generate a bipolar field, roughly along the Earth’s rotation axis.

The outer core of the Earth generates electromagnetic currents which account for

around 98% of the geomagnetic field. The mantle has a negligible interaction with

Earth’s magnetic field and is therefore often ignored in magnetic models. The crustal

field comes from large distributions of magnetically susceptible mineral formations

perturbing the Earth’s core field. The resulting deviation from the core-field model

is called the crustal anomaly field. External magnetic interactions between the core

field and solar plasma from space contribute a highly time-varying component to the

rest of the terrestrial magnetic field. The summation of the external fields can be

grouped together as temporal space-weather effects.

2.2.1.1 World Magnetic Model.

The World Magnetic Model (WMM) is one current community-accepted model

of the Earth’s core magnetic field. The WMM models Earth’s magnetic field as the

gradient of Earth’s scalar potential field as a function of time. The WMM can be used

to calculate an expected Earth magnetic field vector based on latitude, longitude, and

date. The WMM model also accounts for time varying secular variations in Earth’s

magnetic field. The WMM is periodically remodeled based on new observations from

ground based observatories and satellites.
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Figure 1. The 2015 World Magnetic Model Intensity [1]

2.2.1.2 Temporal Variations.

Earth’s magnetic field changes from the summation of diurnal variations, micro-

pulsations, magnetic storms, and secular variations. Diurnal variations are periodic

affects from the solar wind’s interaction between the day-night cycle and the magne-

tosphere of Earth [66]. Micro-pulsations are small, higher frequency variation from

atmospheric interactions [67]. Magnetic solar storms vary over the course of days but

can be of great magnitude. Secular variation reflects internal changes in the Earth’s

core field which vary slowly over the span of many years. A ground station mag-

netometer can measure these temporal variations and remove them from a survey

flight dataset. An example of observed temporal variations from a stationary ground

station is shown in figure 2.
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Figure 2. Magnetic variations as measured at a survey station near Louisa Virginia
(WMM and mean removed).

2.2.1.3 Earth’s Magnetic Anomaly Field.

The observable Earth field (BEarth) is considered as the vector sum of Earth’s

core field, modeled by the WMM, and a crustal anomalous component (BAnomaly).

The WMM vector field is oriented according to the Earth core field model, whereas

the anomalous vector component points in any direction. As long as Earth’s core

field vector component is around two orders of magnitude higher than the anomalous

component, it is accepted in literature to approximate the ||Banomaly|| as ||Bobserved||−

||BWMM ||. Total field magnetic anomaly maps record the projection of the anomaly

vector onto the Earth’s main field. The anomalous component is the summation of

induced and remnant magnetic fields caused by ferrous materials in the Earth’s crust

[66]. Figure 3 illustrates the magnitude assumption used by models of the Earth’s

magnetic anomaly intensity scalar field.
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Figure 3. The magnitude of the anomaly field is approximated as the magnitude of the
anomaly vector projected onto the total field ||BAnomaly|| = ||BTotal|| − ||BWMM || when
||BEarth|| >> ||BAnomaly||.

2.2.2 Aeromagnetic Calibration.

Magnetic intensity scalar measurements need to be compensated for a survey vehi-

cles magnetic disturbance field. The aircraft’s magnetic field is a disturbance, denoted

here as Bdist. The vehicle disturbance field is a major consideration of magnetic nav-

igation and can be determined through vehicle calibration maneuvers. Similar meth-

ods are used for the calibration of underwater surveying vehicles [68]. This section

provides a background on how a three-axis magnetometer and vehicle disturbance

coefficient model can predict an aircraft’s disturbance field.
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2.2.2.1 Aircraft Calibration Flight.

A typical aircraft calibration flight is conducted at high altitude in an area of

low magnetic gradient to minimize variation in the true magnetic field. Two square

patterns are flown in opposite directions while exercising variations in roll, pitch,

and yaw maneuvers along the straight legs of each square. It is assumed that any

variation in the magnetic measurement will be caused by aircraft maneuvers and

can therefore be identified as the aircraft s field. Solving for 18 coefficients using a

calibration dataset provides an aircraft-specific characterization model as long as the

aircraft configuration does not change. Flying a cloverleaf pattern and measuring

the difference in calibrated magnetic measurements at the center provides a figure

of merit for a survey flight which is often less than one nano-Tesla in professional

surveys.

2.2.2.2 Tolles And Lawson Model.

Flux-gate vector magnetometer readings can capture the correlation between air-

craft orientation (with regard to the Earth’s magnetic field), and the aircraft’s dis-

turbance in the scalar intensity measurement [66]. A vector magnetometer returns

three magnetic intensities, Bx, By, and Bz, in the directions of the sensor’s Cartesian

reference frame. The vector sum of all three components gives a measurement of the

total field B =
√
B2
x +B2

y +B2
z . The normalized direction cosines (2) of the main

vector field and their derivatives in conjunction with an 18 coefficient characterization

vector (3) can model an aircraft’s contributing field as first introduced by Tolles and

Lawson in 1950 [69].

cos(x) =
Bx

B
, cos(y) =

By

B
, cos(z) =

Bz

B
(2)
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η =


e1
...

e18

 (3)

The aircraft disturbance field is modeled as the summation of three primary

sources: permanent field, induced field, and eddy currents.

Bdist = Bperm +Bind +Beddy (4)

1. Permanent magnetization: The inherent static magnetic field of the survey

aircraft components.

Bperm = e1 cosx+ e2 cos y + e3 cos z (5)

2. Induced magnetization: The magnetic field induced on the aircraft components

by the Earth’s magnetic field. The relative orientation of the aircraft to the

geomagnetic field will determine the magnitude and direction of the induced

magnetization. This component will be dependent on the position and orienta-

tion of the aircraft.

Bind = B× [e4 +e5 cosx cos y+e6 cosx cos z+e7 cos y2 +e8 cos y cos z+e9 cosx2]

(6)

3. Eddy Currents: The motion of the aircraft structure through the Earth’s field
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will induce eddy currents according to Biot-Savart’s Law.

Beddy = B × [e10 cosx ˙cosx+ e11 cosx ˙cos y + e12 cosx ˙cos z...

+e13 cos y ˙cosx+ e14 cos y ˙cos y + e15 cos y ˙cos z...

+e16 cos z ˙cosx+ e17 cos z ˙cos y + e18 cos z ˙cos z]

(7)

The disturbance component of a time-series dataset can be written as the t× 18

matrix of direction cosine components A times a 18× 1 coefficient vector η.

Bdist ≈ Aη (8)

The coefficients are the solution to minimizing the difference between the model and

the aircraft disturbance measurements:

argmin(
η

Aη − z) (9)

In practice, isolating aircraft disturbance correlations involves applying band-pass

filters which block out contributing noise sources outside of the bandwidth of an

aircraft’s manuevers. These filters are specific to an aircraft’s rates of roll, pitch, and

yaw. Equation 9 becomes:

argmin(
η

Xη − Y ) (10)

where X and Y are the finite impulse response (FIR) band-passed or high-passed A

matrix and measurements z, respectively, during the calibration flight. Note how the

FIR filter applied to both A and z is a linear transformation which maintains the

correlation between the coefficients and aircraft effects in the bandwidth of the filter.
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2.2.2.3 Accounting for Vector Magnetometer Errors.

Vector magnetometer measurement errors have a direct impact on the quality of

an aeromagnetic calibration [70]. The imbalance in precision is accounted for by in-

corporating magnetometer error terms in the aircraft calibration process as discussed

and demonstrated through simulation by [70, 71].

2.2.3 FastSLAM.

SLAM is a method by which a mobile vehicle can build a map of an environment

and use this map to determine it’s location concurrently [45]. This method allows a

vehicle to estimate its trajectory and environment online without the need for a map.

While the concept of SLAM has been around since 1986 [72], FastSLAM was first

introduced by Montemerlo in 2003 as a factored solution to SLAM with unknown

data association [73]. Until the early 2000’s, online SLAM for robotic navigation was

mainly implemented using extended Kalman filters. The two major downsides to

extended Kalman filter (EKF) SLAM were quadratically scaling memory and time

complexity, as well as sensitivity to incorrect data association. The key contribution

in FastSLAM is that the full SLAM posterior can be factored into a product of

recursive estimators: vehicle trajectory, and landmark positions conditioned on the

same trajectory estimate. FastSLAM estimates the vehicle path using a particle filter,

with the remaining N conditional landmark posteriors using EKFs. The following is

an explanation of the FastSLAM algorithm as presented by Montemerlo [73].

2.2.3.1 Posterior Factorization of Map and Vehicle Trajectory.

A key, yet subtle, difference between traditional SLAM approaches and FastSLAM

is that SLAM approaches are based on estimating the posterior over maps and vehicle

position: p(xt, θ|z1:tu1:t, n1:t), whereas FastSLAM is conditioned on the entire vehicle
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path estimate: p(x1:t, θ|z1:tu1:t, n1:t). Murphy [74] first presented the factorization of

the full SLAM posterior into a product of N+1 recursive estimators: one estima-

tor over robot paths, and N independent estimators over landmark positions, each

conditioned on the path estimate as described in equation (11).

p(x1:t, θ1:n|z1:t, u1:t, n1:t) = p(x1:t|z1:t, u1:t, n1:t)︸ ︷︷ ︸
trajectory posterior

ΠN
n=1p(θn|x1:t, z1:t, u1:t, n1:t)︸ ︷︷ ︸

landmark estimators

(11)

This factorization can be efficiently approximated with a particle filter where each

sample path of the vehicle is a particle. Each particle has a bank of EKF landmark

estimators; one EKF for each landmark. This method becomes a RBPF with a

number of (N landmarks) times (M particles) Kalman filters. This method boasts

two major advantages:

1. Logarithmic Complexity

Organizing each particle as a binary tree of landmark estimators instead of an

array removes redundant EKF landmark estimators since particle resampling

leads to shared path history segments between particles.

2. Multi-Hypothesis Data Association

With each particle representing a specific vehicle path, data associations can

be made on a per-particle basis. Particles that choose correct data associations

should naturally receive higher weights and be more likely to survive resampling.

particles that choose incorrect associations will receive low weights over time.

2.2.3.2 FastSLAM Disadvantages.

FastSLAM is an implementation of a RBPF. Particle resampling consists removing

low-probability particles while duplicating particles with high probability many times.

This process keeps the target distribution most dense around the latest observations,
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but gradually eliminates diversity in the trajectories represented by the particles.

Consequently, all particles will eventually share a common trajectory. This can be

thought of as the filter ’forgetting’ correlation information smoothly over time. This

creates an underestimated covariance, and can cause issues for closing loops. Both

problems are the result of the relationship between convergence speed and loss of

correlation information in FastSLAM.

2.2.4 Rao-Blackwellized Particle Filter.

Navigation algorithms commonly implement some form of stochastic state esti-

mators called filters. These filters attempt to estimate a system’s state based on

a dynamics model and by applying measurement updates. The RBPF is a system

state estimator which extends a basic particle filter by combining non-Gaussian and

linearly Gaussian state variables. The RBPF is also known as a marginalized parti-

cle filter since the linear state variables are marginalized about the non-linear state

variables. The non-linear states are represented as particles and the linear states are

represented by Kalman filters. This technique allows for the feasible computation of

high-dimensional state variables without encountering the dimensionality problem of

particle filters. The following is a generalized form of the RBPF as shown and further

derived by Schon, Gustaffson, and Nordlund [75].

2.2.4.1 General State-Space Model.

The problem of non-linear, non-Gaussian filtering recursively computes the pos-

terior distribution of a state vector using observed measurements. The general form
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is:

xt+1 = f(xt, wt), (12a)

yt = h(xt, et) (12b)

where xt is the state variable at time t, wt is the process noise, yt is the measurement

at time t, et is the measurement noise, f(·) is the system dynamics model, and h(·)

is the measurement equation. The output of the function f(·) is the state variable at

the next discrete time step xt+1.

2.2.4.2 Posterior Distribution.

The posterior distribution p(xt|Yt), where Yt is the history of previous measure-

ments yi
t
i=0, is given by the measurement recursion and time recursion equations:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(13a)

p(yt|Yt−1) =

∫
p(yt|xt)p(xt|Yt−1)dxt (13b)

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt (13c)

If these were Gaussian distribution models, then a Kalman filter would optimally

model the system with the propagation of the state means and covariances. Non-linear

and non-Gaussian models which are mathematically intractable require numerical

approximations of the integrals in equation (13).
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2.2.4.3 State Partitioning.

The state variable is partitioned as a combination of non-linear states xnt and

conditionally linear states xlt:

xt =

xnt
xlt

 . (14)

The combined system can be expressed as the combination of the two parts. The

general form of equation 12 becomes:

xnt+1 = fnt (xnt ) + Ant (xnt )xlt +Gn
t w

n
t , (15a)

xlt+1 = f lt(x
n
t ) + Alt(x

n
t )xlt +Gl

tw
l
t, (15b)

yt = ht(x
n
t ) + Ct(x

n
t )xlt + et (15c)

where the non-linear and linear states are propagated forward in time by some func-

tion of the non-linear states f(·) and some linear combination of the linear states

conditioned on the non-linear states represented by Ant (xnt ) and Alt(x
n
t ). The mea-

surement model is a function of both the non-linear states denoted by ht(x
n
t ) and a

linear combination of the conditionally linear states; defined by the matrix Ct(x
n
t ).

The case where the system dynamics model is linear and the measurement model is

a non-linear function dependent on only the non-linear states is a direct use of model

4 from [75]. This means that equation (15) can be rewritten as:

xnt+1 = Ann,tx
n
t + Anl,t(x

n
t )xlt + wnt , (16a)

xlt+1 = Aln,tx
n
t + All,t(x

n
t )xlt + wlt, (16b)

yt = ht(x
n
t ) + et. (16c)
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The state noise is assumed to be white Gaussian noise defined as

wt =

wnt
wlt

 ∼ N (0, Qt) , Qt =

 Qn
t Qnl

t

(Qnl
t )T Ql

t

 . (17)

The measurement noise et can be an arbitrary distribution but is assumed to be

known.

2.2.4.4 Filter Algorithm.

The general sequence of the marginalized particle filter is:

Algorithm 1: Marginalized particle filter

1 Initialization

2 Particle filter measurement update

3 Kalman filter measurement update (if applicable)

4 Particle filter time update

5 Kalman filter time update

6 Reiterate from step 2

2.2.4.5 Initialization.

The initial condition of the linear states is assumed Gaussian

xl0 ∼ N
(
x̄l0, P̄0

)
. (18)

The initial condition of the nonlinear states xn0 can be any distribution but is assumed

to be known. The expected means and covariances of the linear state variables are
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given by

x̂lt|t =
N∑
i=1

q̃
(i)
t x

l
t|t ≈ Ep(xlt|Y |t)

[
xlt
]

(19a)

P̂t|t =
N∑
i=1

q̃
(i)
t

(
P

(i)
t|t +

(
x̂
l,(i)
t|t − x̂

l
t|t
)(
x̂
l,(i)
t|t − x̂

l
t|t
)T)

(19b)

≈ Ep(xlt|Yt)

[(
(xlt)

2 − Ep(xlt|Yt)
[
(xlt)

2
])2]

(19c)

where q̃
(i)
t are the normalized particle importance weights. When Ant , Alt, G

n
t , and Gl

t

are independent of xnt , it implies:

P
(i)
t|t = Pt|t ∀i = 1, ..., N. (20)

This provides massive computational savings in that only one Riccati recursion is

necessary in (19).

2.2.4.6 Particle Filter Measurement Update.

The particle filter uses a weighted set of particles to approximate p(xt|Yt) from

equation (13) with an inference function g(·) described as

I(g(xt)) = Ep(xt|Yt)[g(xt)] =

∫
g(xt)p(xt|Yt)dxt. (21)

A common inference function is the Gaussian residual weighting function where the

i-th particle’s weight at time t , q
(i)
t is determined by:

q
[i]
t = q

[i]
t−1exp

(
− (zt − ẑ[i]t )2

2R

)
(22)

After particle weights are assigned, the set is normalized according to: q̃t = q∑
q

as

to create a valid probability mass function (PMF) such that the sum of the weights
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equals 1. A standard selective resampling criteria from Liu [76] determines when to

resample:

Neff =
1∑N

i=1 (q̃(i))2
, Resample If Neff <

N

2
(23)

Where N is the total number of particles. The first and second moment of the

posterior distribution can be then approximated as

x̂nt|t =
N∑
i=1

q̃
(i)
t x

n
t|t ≈ Ep(xnt |Yt)

[
xnt
]

(24a)

P̂ n
t|t =

N∑
i=1

q̃
(i)
t

((
x
n,(i)
t|t − x̂

n
t|t
)(
x
n,(i)
t|t − x̂

n
t|t
)T)

(24b)

≈ Ep(xnt |Yt)

[(
(xnt )2 − Ep(xnt |Yt)

[
(xnt )2

])2]
. (24c)

2.2.4.7 Kalman Filter State Measurement Update.

The Kalman filter states are conditional on the nonlinear states. These linear

states are updated in three parts: a measurement update using information available

in yt, a measurement update using information available in the nonlinear state dis-

tribution x̂nt+1|t, and a time update. In the general case, the conditional probability

distributions for xlt and xlt+1 are:

p(xlt|Xn
t , Yt) = N

(
x̂lt|t, Pt|t

)
(25a)

p(xlt+1|Xn
t+1, Yt) = N

(
x̂lt+1|t, Pt+1|t

)
(25b)
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where information from the measurement yt and x̂nt+1|t enters the Kalman states

p(xlt|Xn
t , Yt) through a Kalman Filter measurement update:

x̂lt = x̂lt +Kt(yt − ht − Ctx̂lt|t−1) (26a)

P l
t|t = P l

t|t−1 −KtMtK
T
t (26b)

Mt = CtP
l
t|t−1C

T
t +Rt (26c)

K = P l
t|t−1C

T
t M

−1
t . (26d)

2.2.4.8 Particle Filter Time Update.

Each particle’s nonlinear state experiences a time update according to the system’s

dynamics equations. In the case of a linearized dynamics model, the particle set is

drawn by discretizing the linear dynamics equation in (16) and adding state noise

according to the noise model Qn
t :

xnt+1|t = N
(
Ann,tx

n
t + Anl,tx

l
t, A

n
l,tP

l
t (A

n
l,t)

T +Qn
t

)
(27)

2.2.4.9 Kalman Filter State Time Update.

The Kalman filter time update then propagates the linear states according to

x̂lt+1|t = Āltx̂
l
t|t +Gl

t(Q
nl
t )T (Gn

tQ
n
t )−1 + f lt + Lt(zt − Ant x̂lt|t) (28a)

Pt+1|t = ĀltPt|t(Ā
l
t)
T +Gl

tQ̄
l
t(G

l
t)
T − LtNtL

T
t (28b)

N = Ant Pt|t(A
n
t )T +Gn

tQ
n
t (Gn

t )T (28c)

L = ĀltPt|t(A
n
t )TN−1t (28d)
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where

zt = xnt+1 − fnt (29a)

Ālt = Alt −Gl
t(Q

nl
t )T (Gn

tQ
n
t )−1Ant (29b)

Q̄l
t = Ql

t − (Qnlt)
T (Qn

t )−1Qnl
t . (29c)

When G is the identity matrix I, and the cross covariance Qnl
t between noise sources

wnt and wlt is zero, Ālt = Alt and Q̄l
t = Ql

t. Additionally, if there is no linearized

relationship between the measurement and the linear states, Ct is zero. This means

that the only way for information from yt to enter the linear states is implicitly

through the time update. A separate Kalman filter measurement update can still

occur with the availability of a strictly linear measurement.

2.2.5 Pinson INS Error Dynamics Model.

An INS can be a source of dead-reckoning by providing short-term vehicle dy-

namics constraints. INSs are used to measure the relative motion between a vehicle’s

local body frame and an inertial reference frame. The dynamic motion of the vehicle

can be determined by integrating acceleration and angular rate disturbances, correct-

ing for Coriolis and gravitational effects, and then determining position and velocity

estimates resolved in the local navigation frame. Twice-integrated accelerometer and

gyroscope biases and noise inevitably lead to a navigation estimate that drifts over

time. State space estimation models can use an INS solution to estimate the whole

state, or the accumulating errors in the INS instead. This section introduces a fun-

damental nine state INS error model from [9].
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2.2.5.1 Pinson Nine-State Error Model.

The state variable used in the generic nine-state Pinson error model is:

x =


δp

δv

δε

 (30)

where δp δv, and δε are three dimensional position, velocity, and tilt error vectors re-

spectively. The Pinson error model states propagate according to the linear dynamics

equation:

ẋ = Fx + w, E[w2] = Q, (31)

where F is the system dynamics matrix, and w is the process noise. The model adds

white Gaussian noise into the velocity and tilt states which becomes integrated as

random walk errors. The white noise strength is characterized by the matrix:

Q = diag
([

0 σ2
VRW σ2

ARW

])
9x9

(32)

The F matrix can be broken up into nine sub-matrices relating position, velocity, and

tilt errors to each other: 
˙δp

˙δv

δ̇ε

 =


Fpp Fpv Fpε

Fvp Fvv Fvε

Fεp Fεv Fεε



δp

δv

δε

 (33)

The following notation described in table 1 will remain consistent throughout the

remainder of this section.

Titterton and Weston express North and East position errors in radians for lati-

tude and longitude, and vertical position error as positive upward altitude error [9],
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Table 1. Pinson Nomenclature

Variable Description Value
L Latitude
vn North velocity
ve East velocity
vd Down velocity
Re Earth radius 6353000 m
fn Measured specific force (North direction)
fe Measured specific force (East direction)
fd Measured specific force (Down direction)
Ω Earth rotation rate 7.2921151467 ×10−5 rad/s
g vertical component of gravity

resulting in the following nine F sub-matrices:

Fpp =


0 0

−vn
R2
e

ve tanL

Re cosL
0

ve
R2
e cosL

0 0 0

 (34)

Fpv =


1

Re

0 0

0
1

Re cosL
0

0 0 −1

 (35)

Fpε = 03x3 (36)

Fvp =


ve(2Ω cosL+

ve
Re cos2 L

) 0
v2e tanL− vnvd

R2
e

2Ω(vn cosL− vd sinL) +
vnve

Re cos2 L
0
−ve(vn tanL+ vd)

R2
e

2Ωve sinL 0
v2n + v2e
R2
e

 (37)

Fvε =


vd
Re

−2(Ω sinL+
ve tanL

Re

)
vn
Re

2Ω sinL+
ve tanL

Re

vn tanL+ vd
Re

2Ω cosL+
ve
Re

−2vn
Re

−2(Ω cosL+
ve
Re

) 0

 (38)
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Fvε =


0 −fd fe

fd 0 −fn

−fe fn 0

 (39)

Fεp =


−Ω sinL 0

−ve
R2
e

0 0
vn
R2
e

−Ω cosL− ve
Re cos2 L

0
ve tanL

R2
e

 (40)

Fεv =


0

1

Re

0

− 1

Re

0 0

0
tanL

Re

0

 (41)

Fεε =


0 −Ω sinL+

ve
Re tanL

vn
Re

Ω sinL+
ve tanL

Re

0 Ω cosL+
ve
Re

−vn
Re

−Ω cosL− ve
Re

0

 (42)

2.2.6 Sparse Data Interpolation.

One of the shared challenges between MagSLAM and traditional aerial magnetic

navigation is the interpolation of an expected magnetic value from a noisy map cre-

ated from sparse and non-gridded measurements. This problem is considered sparse

data interpolation and is represented by the h(xt, et) function in equation (12). There

are various mathematical approaches available, but the method used in this thesis are

described in this section. Solin derived a Bayesian modeling approach for interpola-

tion and extrapolation of the magnetic field by imposing a Gaussian process prior on

the potential of the magnetic field [43]. Although his method applied additional con-

straints with the availability of vector measurements, a Gaussian process regression

method is applicable to interpolating and extrapolating the magnetic scalar field as
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well. This subsection will follow a simple derivation from Ebden [77] explaining the

basic use of Gaussian process regression and introduce the squared exponential kernel

used in this research.

2.2.6.1 Gaussian Process Regression.

Ebden defines Gaussian Processes as extending multi-variant Gaussian distribu-

tions to infinite dimensionality; generating data located throughout some domain such

that any finite subset of the range follows a multivariate Gaussian distribution [77]. A

Gaussian distribution is defined completely by it’s first two moments, namely mean

and variance. A method only needs to determine a mean and covariance between

any two points in a Gaussian distribution to characterize it entirely. Establishing an

assumption that the mean of a Guassian process is zero everywhere, each observation

can be related to another observation with a covariance function denoted as k(x, x′).

The squared exponential kernel is describe the distance relationship between some x

and x′ elements in a covariance matrix K:

k(x, x′) = σ2
fexp

[−(x− x′)2

2l2
]

(43)

where σ2
f is the maximum allowable covariance between observations, and l is a length

parameter which determines the relative distance at which observations become un-

correlated. This function k can be used iteratively to populate a full set of relative

observation covariance terms and therefore describe a dataset as following a multivari-

ate Gaussian distribution. As x approaches x′, then f(x) should be highly correlated

with f(x′). Since each observation also contains measurement noise, the underlying

function f(x) we are trying to represent must account for Gaussian noise through the

noise model:

y = f(x) +N (0, σ2
n) (44)
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Folding the noise component into the k(x, x′) function results in the equation:

k(x, x′) = σ2
fexp

[−(x− x′)2

2l2
]

+ σ2
nδ(x, x

′) (45)

where δ(x, x′) is the Kronecker delta function and adds measurement noise to each

observation such that the interpolation function does not have to reside exactly at

each observation point. The first step of GPR is to construct three matrices:

K =



k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


(46)

K∗ =

[
k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)

]
(47)

K∗∗ = k(x∗, x∗) (48)

The intended use of GPR is to represent a dataset as a sample from a multivariate

Gaussian distribution, which can then be represented as:

y

y∗

 ∼ N(0,

K KT
∗

K∗ K∗∗

) (49)

where y is the previous set of observations in the data, and y∗ is the expected value

we are trying to predict. The conditional probability becomes:

p(y∗|y) ∼ N
(
K∗K

−1y, K∗∗ −K∗K
−1KT

∗

)
(50)
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This means the estimate of the value at observation x∗ has a mean of:

ŷ∗ = K∗K
−1y (51)

and an uncertainty of:

var(y∗) = K∗∗ −K∗K
−1KT

∗ (52)

2.2.6.2 Determining GPR Hyper-parameters.

GPR is only as valid as the hyper-parameters Θ = {σf , σn, l}. The performance

of using GPR as an expected measurement function on a scalar field is directly tied to

the choice of parameters. The maximum a posteriori estimate of Θ is when p(Θ|x,y)

is at it’s largest. An application of Bayes’ theorem corresponds this to maximizing

log p(y|x,Θ). In the case of GPR, this can be written as:

log p(y|x,Θ) = −1

2
yTK−1y− 1

2
log |K| − n

2
log 2π (53)

An instance of Θ can be found to characterize a sample dataset by running a

multivariate optimization algorithm like conjugate gradients, Nelder-Mead simplex,

etc. on equation (53).
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III. Aerial Simultaneous Localization and Mapping by the
Earth’s Magnetic Anomaly Field

3.1 Abstract

Instances of global navigation satellite system (GNSS) spoofing and jamming have

emphasized the need for alternative navigation methods. A fusion of methods is re-

quired to fill the resulting gaps from Global Positioning System (GPS)-denied cir-

cumstances. Aerial navigation by magnetic map-matching has been demonstrated

as a viable GPS-alternative inertial navigation system (INS)-aiding technique, but

requires an accurate magnetic map which is not always available. Magnetic map

availability and resolution varies widely around the globe. Removing the dependency

on prior survey maps extends the benefits of aerial magnetic navigation methods to

small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are

especially under-sampled or unavailable. In this paper, a common simultaneous lo-

calization and mapping (SLAM) algorithm known as FastSLAM was modified to use

scalar magnetic measurements to constrain a drifting navigation-grade INS to tens of

meters in a one-hundred minute flight without the use of a prior magnetic map. Aerial

SLAM using Earth’s magnetic anomaly field provides a GPS-alternative navigation

method that is globally persistent, impervious to jamming or spoofing, stealthy, and

locally accurate to tens of meters without the need for a magnetic map.

3.2 Introduction

GPS-alternative navigation technology is a high-interest area of recent commercial

and military research. GPS jamming and spoofing is a threat to the use of GPS as a

sole means of positioning for the world’s critical systems [8, 7]. A fusion of alternative

positioning methods is necessary to replace the characteristics of GPS the world has
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become addicted to: global availability, passive sensing, absolute positioning, and sub-

meter level accuracy. Navigation by matching magnetic measurements to a magnetic

map is an advantageous GPS-denied method for INS aiding in the air [21, 19], space

[22], on land [23], and underwater [24]. Aerial navigation was demonstrated on a long

distance flight with 13 meters of accuracy using a magnetic anomaly map, precision

scalar atomic magnetometer, barometer, and an INS [78]. Indoor ambient magnetic

anomaly fields have also been used in conjunction with vector magnetometers for

pedestrian and robot localization using prior magnetic maps [39, 40, 41, 42, 43, 44].

Navigation using magnetic field anomalies is an attractive GPS-alternative positioning

method, but requires prior surveyed magnetic maps. Indoor robotic and pedestrian

magnetic navigation methods have utilized SLAM techniques to remove the depen-

dency on a prior magnetic map [58, 55, 59].

3.2.1 Magnetic Maps.

The Earth’s outer core produces a magnetic field which is then perturbed by

magnetically susceptible materials in the Earth’s crust. The resulting deviation from

a core field reference model is a world-wide magnetic anomaly field which is stable over

time and can be used as a navigation signal. Earth’s magnetic anomaly field varies

both horizontally and vertically. The spatial variation of the anomaly field increases as

altitude decreases, and therefore cannot be mapped from space. High-resolution maps

are therefore created with aircraft, where the expense scales with the length of the

survey flight. There are two sources of magnetic maps. Individual surveys cover small

areas at a single altitude. Compilation products fuse many individual surveys into

larger map products. The North American Magnetic Anomaly Database (NAMAD)

is built by fusing thousands of individual surveys of varying quality and incorporating

satellite and ground observations to resolve long magnetic field wavelengths.
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3.2.1.1 Map Sampling.

A fully sampled magnetic map satisfies the Nyquist criteria to capture all fre-

quency components of the magnetic field’s spatial variation with the proper spacing

of magnetic measurements. Survey grid lines must be closer at lower altitudes in

order to fully sample the magnetic field, which makes survey flights longer and more

expensive. In general, the spacing of survey grid lines must be at most the survey

height [79]. Figure 4 illustrates two individual surveys on the left. Survey (B) is

fully sampled at 100 meters altitude with 100 meter line spacing. Survey (A) is

under-sampled at 300 meters altitude with 500 meter spacing.

3.2.1.2 Map Continuation.

Potential fields can be modeled as a function of distance through a mathematical

transformation called continuation. Assuming magnetic sources are below a survey

map of infinite size, a magnetic anomaly map can be upward-continued to higher alti-

tudes, but cannot be accurately downward-continued very far. This prevents magnetic

navigation at altitudes lower than the survey map. In the maps to the left of figure 4,

(A) can be modeled as the upward continuation of (B), but (B) cannot be sufficiently

modeled as the downward continuation from (A), even if (A) was fully sampled [79].

3.2.1.3 Map Unavailability.

The World Digital Magnetic Anomaly Map (WDMAM) [80] on the right of figure

4 highlights a few of the many un-surveyed regions of the world as uncolored sections

of the map. The colored sections of the WDMAM still contain errors from fusing

under-sampled individual maps.
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Figure 4. Two individual surveys are illustrated on the left: (B) fully sampled at 100
meters altitude and (A) under-sampled at 300 meters altitude. (B) Can be upward-
continued to (A), but (A) cannot be downward-continued to (B). The World Digital
Magnetic Anomaly Map on the right highlights a few of the many vast un-surveyed
regions of the world [80].

Un-surveyed regions, under-sampled surveys, and downward continuation insta-

bility are major obstructions to a world-wide magnetic anomaly map for navigation

[25]. This paper applied SLAM techniques from robotics literature to aerial magnetic

navigation to remove the dependency on magnetic maps. This paper presents the

methodology, flight test results, and a discussion of future areas of improvement.

3.3 Methodology

We modified the common FastSLAM algorithm to estimate INS errors and use

them to correct an aircraft state estimate as illustrated in figure 5.
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Figure 5. The system loosely coupled an INS solution to magnetic intensity measure-
ments to correct for state errors.

SLAM estimates a path and map concurrently. While the concept of SLAM has

been around since 1986 [72], FastSLAM was first introduced by Montemerlo in 2003

as a factored solution to SLAM with unknown data association [73]. Murphy [74]

first presented the factorization of the full SLAM posterior into a product of N+1

recursive estimators: one estimator over robot paths, and N independent estimators

over landmark positions, each conditioned on the path estimate:

p(x1:t, θ1:n|z1:t, u1:t, n1:t) = p(x1:t|z1:t, u1:t, n1:t)︸ ︷︷ ︸
trajectory posterior

ΠN
n=1p(θn|x1:t, z1:t, u1:t, n1:t)︸ ︷︷ ︸

landmark estimators

. (54)

This factorization can be efficiently approximated with a Rao-Blackwellized parti-

cle filter (RBPF) where each sample path of the vehicle is a particle. Each particle

maintains it’s own hypothesized map and determines when it revisits a portion of it’s

path. We present an extension of the FastSLAM algorithm used by [58], shown in

algorithm 2 to the flight test dataset used by [21] for aerial magnetic navigation.

We will now describe each step of algorithm 2 for a single time-step. On line 2,

the i-th of N particles uses it’s previous state x
[i]
t−1 and control input ut to propa-

gate to it’s current state x
[i]
t according to the nine state Pinson INS error dynamics

and noise model further described in the appendix. On line 3, a particle compares
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it’s current state x
[i]
t and measurement zt to it’s map model m

[i]
t−1 and returns an

updated weight q
[i]
t and list of currently revisiting particles ActiveList. On line 4,

a particle updates it’s individual map m
[i]
t−1 with the latest measurement x

[i]
t and

trajectory estimate zt. The weights of the particles that did not hypothesize a re-

visit are multiplied by the mean of particle weights on the ActiveList as shown in

line 5. Line 7 states that if the number of effective particles falls below half of the

total number of particles, systematic resampling occurs to replace poorly weighted

particles with duplicates of highly weighted particles. The process concludes one it-

eration with an updated set of particles Xt approximating the current state estimate.

Algorithm 2: Aerial Inertial-Magnetic FastSLAM

Input: Xt−1, ut, zt

Output: Xt

1 for i = 1 to N do

2 x
[i]
t = INS motion model(ut, x

[i]
t−1)

3 [ActiveList, q
[i]
t ] = update particle weight(zt, x

[i]
t ,m

[i]
t−1, q

[i]
t−1, ActiveList)

4 m
[i]
t = update particle map(zt, x

[i]
t ,m

[i]
t−1)

5 q
[∼ActiveList]
t = mean(q

[ActiveList]
t ) · q[∼ActiveList]t

6 if 1∑N
i=1(q

[i]
t )2

< N
2

then

7 Resample particles that have revisited since the last resample

8 return Xt

Our contributions primarily involve the particle weighting function in line 3 of

algorithm 2, and resampling in line 7. The update particle weight(·) function is

further expanded with a flow chart in figure 6.
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Figure 6. Updating each particle weight depends on if it hypothesizes a revisit or not

We will now step through each part of the process outlined in figure 6.

3.3.1 Detect Particle Revisit.

A particle detected a path crossing when there was more than two points from it’s

previous trajectory called trigger points within a trigger radius. This is illustrated by

figure 7a where colored dots represent the magnetic intensity measurements along a

particle’s trajectory, squares represent trigger points as tracked points in a particle’s

trajectory, and asterisks indicate recent points to be ignored. A trigger radius of 18

meters was determined experimentally such that a particle would neither miss nor

apply two particle weight updates to the same revisit.

3.3.2 Interpolate An Expected Measurement.

Instead of maintaining an entire map, each particle used a subset of point indices

s of it’s position history and measurements as inputs into an expected measurement

function ẑ[i] = h(x
[i]
s , zs). The interpolation points were selected from within a thresh-

old distance as shown in figure 7b. [t − τ : t] represents a sequence of recent values
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that were ignored as to prevent recent measurements from affecting the result of

interpolation [58].

(a) (b)

Figure 7. Particles individually detect revisits and select interpolation points condi-
tioned on their own path histories. (a) Detecting a line revisit when # of trigger points
withing a threshold radius >2. (b) Data selection for interpolation used a larger radius.

The expected measurement function ẑ[i] = h(x
[i]
s , zs) interpolated an expected

magnetic intensity measurement from a subset of the non-gridded particle history

and magnetic measurements. Two methods were evaluated to interpolate the data.

The first method was called ScatteredInterpolant (SI) which determined if the query

point was inside the interpolation points. If the query point was inside, a natural-

neighbor interpolation was used [81]. Otherwise, a nearest-neighbor interpolation was

used to prevent the extrapolation of noisy data. This method is illustrated in figures

8a and 8b.
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(a) (b)

Figure 8. Scattered Interpolant (SI) function estimating a grid given some circled input
points. (a) Nearest neighbor around a line of points. (b) Natural or nearest neighbor
data interpolation

The second interpolation method used was Gaussian process regression (GPR).

GPR evaluated the input coordinates and their associated magnetic measurements as

a realization of a zero-mean multivariate Gaussian process according to parameters

which characterize the magnetic field. This created a regressive fit function which

returned an expected value and covariance for a query point [77]. This method is

illustrated in figures 9a and 9b.

(a) (b)

Figure 9. Gaussian process regression estimating a grid of points given some circled
input points. (a) GPR prediction around a line of points. (b) GPR prediction around
a set of scattered points
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Magnetic intensity scalar fields are guaranteed to be continuous. GPR had the

benefit of modeling the field as a smoothed best fit of measurements, whereas nat-

ural and nearest neighbor interpolation only guaranteed piece-wise continuity at the

training points. However, as the filter interpolation area gets smaller, both methods

were approximately modeling a linear plane as visualized in figures 8 and 9.

3.3.3 Calculate Weight.

Gaussian residual weighting evaluated the quality of a particle’s hypothesis by

contrasting the expected magnetic intensity with the actual measurement:

q
[i]
t = q

[i]
t−1exp

(
− (zt − ẑ[i]t )2

2R

)
, (55)

where q
[i]
t was an active particle’s weight at the current time t, q

[i]
t−1 was the parti-

cle’s previous weight, zt was the current measurement, ẑ
[i]
t was the particle’s expected

magnetic intensity from the measurement function h(·), and R was the filter mea-

surement covariance term experimentally tuned to 100 nano-Teslas. The weighting of

particles posed challenges when not all particles hypothesized revisiting at the same

time. Haverinen and Vallivaara [58] addressed this by weighting the non-visiting

particles by the average weight of the visiting particles. We expanded on this by

only resampling from particles which appeared on the ActiveList since the previous

resampling step. Since information only enters the system during line revisits, this

technique prevented the disproportionate favoring of particles which hypothesized

many revisits over equally valid particles which were not revisiting as often.
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3.3.4 Resampling.

The standard particle filter criteria from Liu[76] was used to determine when to

resample:

Neff =
1∑N

i=1 (q(i))2
, Resample If Neff <

N

2
(56)

Where N is the total number of particles. Only particles which appeared on the

ActiveList since the previous resampling step were resampled.

3.4 Flight Test

A Cessna 208B like the one shown in figure 10 collected magnetic intensity mea-

surements, barometric altitude measurements, an un-aided INS solution, and a GNSS-

aided INS truth trajectory. This dataset was collected by Sander Geophysics Limited

under United States Air Force contract in July of 2015.

Figure 10. Sander Geophysics Limited (SGL) Cessna 208B [2]

Two flight patterns were flown over a 9 km by 12 km area, 150 meters above ground

level (AGL) in Louisa Virginia as shown in figure 11a. The first was a gridded survey

to map the magnetic intensity field. The second was a looping flight pattern. These

flights originally demonstrated map-based aerial magnetic navigation in [4] achieving

accuracies of 13 meters distance root mean squared (DRMS) over a one-hour flight.

The second flight’s many loops and path crossings made it a viable dataset to apply

50



SLAM techniques. Figure 11b illustrates the magnetic anomaly intensity varying

horizontally over the flight area.

(a) (b)

Figure 11. Gridded and SLAM flight patterns. (a) Flight patterns in latitude and
longitude. (b) Flight paths in relative horizontal distance over an interpolated magnetic
anomaly field intensity.

3.4.1 Isolating Earth’s Magnetic Anomaly Field.

The navigation signal used in this filter was created by perturbations in the Earth’s

core magnetic intensity field from ferrous crustal formations. Magnetic intensity

measurements primarily include the Earth’s core field, the crustal anomaly signal,

aircraft disturbances, and temporally varying space-weather affects known as diurnal

magnetic variations.

Bmeasured = BCore +BDiurnal +BAircraft +BAnomaly (57)

The anomaly signal was approximated by removing the World Magnetic Model (WMM)

core model, diurnal variations, and aircraft affects from the magnetic measurements.

The WMM is sponsored by the U.S. National Geospatial-Intelligence Agency (NGA)

and the U.K. Defense Geographic Centre (DGC), and is produced by the U.S. Na-
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tional Oceanic and Atmospheric Administrations National Geophysical Data Center

(NOAA/NGDC) and the British Geological Survey (BGS). It is the standard model

used by the U.S. Department of Defense (DoD), the U.K. Ministry of Defence, the

North Atlantic Treaty Organization (NATO) and the International Hydrographic

Organization (IHO), for navigation, attitude and heading referencing systems using

the geomagnetic field. It is also used widely in civilian navigation and heading sys-

tems [1]. The Earth’s core magnetic intensity field was planar over the flight areas

as the WMM shows in figure 12a. Diurnal measurements observed at a separate

ground station were recorded during the SLAM flight as shown in figure 12b. Air-

craft disturbance affects were determined through prior aircraft characterization by

the geo-surveying company and are shown in figure 12c. The crustal anomaly field

provides most of the variation of the magnetic intensity field as shown by contrasting

the WMM in figure 12a, with figure 12d.
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(a) (b)

(c) (d)

Figure 12. Components of the magnetic intensity measurements. (a) 2015 WMM model
over survey area. (b) Diurnal variations during SLAM flight. (c) Aircraft disturbance
effects. (d) Isolated magnetic anomaly field.

3.4.2 Drifting INS State Estimate.

INSs measure the relative motion between the local vehicle body frame and the

inertial reference frame. Vehicle dynamics are estimated by integrating measured

acceleration and angular rate disturbances in the body frame and then transform-

ing them to the local navigation frame to determine position and velocity estimates.

Multiple integrations of measurement noise in the INS inevitably leads to a drifting

navigation solution. State estimation uses linearized models to estimate the accu-

mulating error states in the INS. The Pinson INS error model from Titterton and
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Weston [9] was used to shape additive Gaussian white noise into angular and velocity

random walk errors, which are coupled to form drifting horizontal and vertical posi-

tion estimates. A navigation grade INS provided a real time navigation solution. The

drifting horizontal position errors in northing and easting components are shown in

figure 13.

Figure 13. Northing and easting drift of actual INS

3.5 Results

SLAM estimates a vehicle path and map concurrently. The filter performance

can be illustrated in its ability to correct the magnetic map. The INS, filter, and

truth trajectories are plotted in figure 14. The colors correspond to the same set

of magnetic intensity measurements with the mean removed. Comparing the INS

estimate, SLAM solution, and GPS truth trajectories overlaid with the same set of

zero-mean magnetic intensity measurements illustrates the how position errors lead

to measurement inconsistencies at path intersections.
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Figure 14. Comparing the INS estimate, SLAM estimate, and GPS truth trajectories
overlaid with the same set of zero-mean magnetic intensity measurements emphasizes
the correlation between position errors and measurement inconsistencies.

Although SLAM provides both a map and path estimate, this research focused on

it’s navigation potential. The filter converged to a relative position solution with a

self-consistency of less than twenty meters as seen in table 2 and figure 15. Table 2

compares original error of the INS to the performance of the filter using the two dif-

ferent interpolation methods. In this instance, GPR slightly outperformed SI in both

root mean square (RMS) error and the standard deviation of the error which indi-

cates the self-consistency of the filter. Interestingly, the filter performed around only

15% worse when using raw instead of compensated measurements. This can be partly

attributed to small heading errors and relatively minor aircraft disturbances in the

magnetic measurements. Additionally, the short time between revisiting trajectories

relative to the time varying components of diurnal variation and WMM fluctuation

kept the actual magnetic field time-invariant for this flight. In other words, the spa-

tial variation in the magnetic anomaly field dominated the time variant components

of space-weather effects over a short time-span.
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Table 2. Filter performance after convergence

Method Npart North RMS /σ(m) East RMS/σ(m) DRMS/σ (m)

INS ∼ 320.6/170.2 438.8/176.5 543.5/239.3

GPR 1000 9.4/9.4 14.2/14.1 17.0/9.1

SI 1000 18.46 /11.35 24.11/17.97 30.36/10.46

(a) (b)

(c)

Figure 15. Filter errors and 1σ bounds using 1000 particles and R=100. (a) Northing
position error. (b) Easting postion error. (c) Euclidean distance error.

The filter converged on self-consistent solutions using both methods with errors

and standard deviations in the tens of meters. Although this research does not present

an in-depth trade-space analysis of using one version of interpolation over the other,
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some trade-offs between interpolation models were apparent. GPR had the poten-

tial to more realistically model a scalar magnetic field since it produced a smoothly

varying value estimate from noisy measurements, but required some knowledge about

the magnetic intensity correlation over distance. The nearest and natural neighbor

interpolation methods did not require any previous knowledge about magnetic cor-

relations, but were more sensitive to measurement noise since the method was an

interpolation and not a regressive best-fit model. A more obvious opportunity for im-

provement would be to incorporate a more realistic INS error model which includes

accelerometer and gyroscope bias terms which are a significant source of INS drift.

A better INS error model would provide a better proposal distribution and provide a

more accurate filter. There is significant potential for computational improvements as

this research did not leverage the binary tree particle history structure of FastSLAM.

It is worth exploring graph-based methods, which have had promising results in WiFi

SLAM in [65].

3.6 Conclusion

There are many research efforts to provide viable GPS-alternative navigation

methods. Magnetic navigation shows promise as one such method, but is limited

by the requirement for globally available and accurate magnetic maps. These maps

greatly vary in quality and altitude. Low altitude magnetic maps are the most un-

common and innacurate which presents a barrier to using magnetic navigation on

low-flying unmanned aerial vehicles (UAVs). SLAM uses previous measurements and

a revisiting trajectory to create a map and use it to navigate at the same time. This

removes the dependency on a prior magnetic map for aerial magnetic navigation,

especially for low-flying UAVs or in areas without magnetic maps. This paper intro-

duced a RBPF that loosely coupled magnetic intensity measurements with an INS
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solution to constrain drifting errors to a relative position solution of tens of meters.

This research has shown that the map dependency in aerial navigation can be re-

moved by leveraging magnetic SLAM techniques in robotics. Aerial magnetic SLAM

is a globally-available, passively sensed, and unjammable GPS-alternative navigation

method that does not require a prior-magnetic map.
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IV. Flight Test Results for an Unmanned Aerial Magnetic
Surveying Vehicle

4.1 Abstract

Recent advances in manufacturing technologies have reduced the size and power

requirements of atomic magnetometers by orders of magnitude while maintaining

measurement precision. The size, weight, and power requirements of magnetic sur-

veying vehicles can now also be reduced. Typical magnetic surveying aircraft utilize

long mounting booms or stingers to extend the sensors away from the aircraft to

reduce vehicle magnetic disturbances. Special calibration considerations are needed

to configure a miniaturized survey vehicle without booms where aircraft disturbances

become a dominant source of error. This research had two objectives. The first

was to design a low-cost magnetic surveying unmanned aerial vehicle (UAV) from

commercial off-the-shelf (COTS) components. The second was to collect spatially

consistent magnetic measurements from low-altitude survey flights. A COTS fixed-

wing UAV magnetic surveying configuration produced six consistent maps at various

altitudes over a 2 kilometer area. Two orthogonally-mounted and co-located Geomet-

rics micro-fabricated atomic magnetometerTM (MFAM) sensor modules guaranteed

a dead-zone-free magnetic intensity measurement regardless of aircraft position, al-

titude, or orientation. Measurements from an uncalibrated micro electro-mechanical

systems (MEMS) compass and precision scalar magnetometer from low-altitude cali-

bration flights in the presence of a spatially-varying magnetic field were used to create

a magnetic disturbance model for the UAV. The disturbance model corrected pro-

ceeding flights for significant heading-correlated errors to produce spatially consistent

maps within 1 nano-Tesla. A low-cost, unmanned magnetic surveying aircraft con-

figuration is a precursor to aerial magnetic navigation for UAVs at low-altitude as a
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Global Positioning System (GPS)-alternative navigation method.

4.2 Introduction

Recent advances in manufacturing technologies have reduced the size and power

requirements of atomic magnetometers by orders of magnitude while maintaining

measurement precision. The comparison of two Geometrics atomic magnetometers

in table 3 shows the reduction in size weight and power (SWAP) between an opti-

cally pumped cesium scalar magnetometer (G-823A), and self-oscillating MFAM. The

MFAM requires significantly less SWAP without suffering in precision. Although the

miniaturized sensors only have one dead zone, heading errors and dead-zone size are

significantly larger than the G-823-A. To combat this trade-off, combining measure-

ments from two sensor heads can either reduce heading errors or eliminate dead-zones,

depending on the sensor configuration. Figure 16 illustrates the recent reduction in

scalar magnetometer manufacturing [3].

Figure 16. Geometrics MFAM [3]
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Table 3. Magnetometer Comparison

Magnetometer G-823A MFAM

Size 41259 cc 15 cc

Weight 450 g 30 g

Power 12-16 W 2 W

Sensitivity 4 pT/
√
Hz 1 pT/

√
Hz

Heading Error ±0.15 nT ±30 nT

Dead Zones (2) Equilateral, Polar, 10 ◦ (1) Polar, 35 ◦

Geomagnetic surveying aircraft use scalar magnetometers and gridded survey pat-

terns to create maps of the Earth’s magnetic anomaly field for geological analysis of

the Earth’s crust. These maps can be used for mineral and petroleum exploration, lo-

cating orphaned oil wells [82], and characterizing fault zones [83]. Magnetic anomaly

maps have also been used for aerial and marine navigation [4, 24, 32].

4.2.1 Magnetic Surveying Aircraft Configuration.

Long mounting booms or suspended platforms are traditionally used to reduce

vehicle magnetic disturbances by extending the sensors as far away from the air-

craft as possible. Figure 17 shows a professional magnetic surveying aircraft config-

uration with magnetometers mounted with stingers and wing outboard extensions.

Remaining heading-correlated magnetometer errors can be characterized with cali-

bration flights and an aircraft disturbance coefficient model for removal during post-

processing. Incorporating miniaturized magnetometers into magnetic surveying re-

duces the SWAP requirements of survey aircraft.
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Figure 17. Sander Geophysics Limited (SGL) Cessna 208B [2]

4.2.2 Unmanned Aeromagnetic Systems.

There are obvious benefits to using UAVs in place of full-sized aircraft for mag-

netic surveying. Surveys using UAVs could be automated, flown by several aircraft

simultaneously at differing altitudes at lower safety risk, require less access to airports,

and become significantly more profitable. As a result, Geosurveying companies have

begun to incorporate UAVs into their magnetic surveys [84, 85, 86, 87, 88].

4.2.2.1 UAV Configuration.

The configuration of magnetically susceptible aircraft components in proximity to

a magnetometer determines the severity of the resulting aircraft noise in the mea-

surements. The use of booms and stingers on light-weight fixed-wing UAV can be

impractical due to the additional structural weight and detriment to aircraft control.

Special considerations are needed to configure a miniaturized survey aircraft without

booms or tow-lines where aircraft disturbances become a dominant source of error.

Huq conducted an extensive analysis of a servo actuator’s magnetic disturbance in

a UAV [89]. Zhiwen introduced a better power-supply design specifically to reduce the

magnetic disturbance of unmanned aeromagnetic system (UAMS) electronic compo-

nents on magnetic measurements [90]. Cherkasov, Kapshtan and Sterligov attempted

to make aircraft magnetic effects negligible through aircraft configuration only, with-
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out the need for a vector magnetometer identified the challenges of minimizing UAV

magnetic footprints with the motors and servos being the primary source of aircraft

magnetic field disturbances [91, 92]. They used a combustion engine, placed mag-

netic sensors at the wing-tips, and positioned servo actuators in the central body of

the aircraft to reduce the aircraft’s magnetic disturbance to less than 2 nano-Teslas.

Although their UAV did not fly successfully, their analysis concluded that designing

an UAMS requires deliberate consideration on UAV configuration and magnetometer

placement to minimize the magnetic influence of the aircraft and its components on

the magnetic measurements.

4.2.2.2 UAV Calibration.

Tolles and Lawson modeled an aircraft’s magnetic disturbance as a function of

aircraft orientation relative to the surrounding magnetic field [69]. UAVs can use this

aircraft model with tri-axis vector magnetometer measurements to remove aircraft

effects from scalar magnetic intensity measurements [93, 70]. A high-altitude flight

with various aircraft maneuvers excites a full range of aircraft orientations in an area

of assumed zero magnetic gradient. It is assumed that any changes in the scalar

measurement are from aircraft maneuvers. Direction cosine terms from a vector

magnetometer can be correlated with a set of characterization coefficients to what

is assumed to be a scalar measurement of the aircraft disturbance field. This set of

aircraft coefficients describes the relationship between the orientation of the aircraft

and the aircraft disturbance. These coefficients are valid for modeling the aircraft

disturbance field during following flights as long as the aircraft configuration does not

change.
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4.2.3 Configuring a UAV for Magnetic Navigation.

Magnetic surveys conducted with UAVs for the purpose of generating magnetic

maps include extensive data processing after the flight [79, 86]. Aircraft disturbances

are first minimized by placing magnetic sensors far from magnetically susceptible ve-

hicle components, and then removed from survey data using post-processing methods.

Magnetic disturbances must be estimated and removed from magnetic measurements

during flight in order to conduct aerial magnetic navigation with a UAV.

This paper presents a magnetic surveying UAV configuration, calibration method-

ology, flight test results, and discusses future applications of calibrated UAVs with

magnetic sensors.

4.3 Methodology

This experiment built, calibrated, and flew a low-cost UAV to near industry

magnetic surveying standards with commercially available components. This sec-

tion presents the aircraft disturbance characterization model, how to use an aircraft

characterization to compensate measurements from subsequent flights, and the UAV

configuration.

4.3.1 Aircraft Disturbance Model.

A modified Tolles-Lawson model closely following [70] was used to incorporate

the spatial gradient of the magnetic field at low-altitude and account for some of

the difference in precision between the three-axis magnetometer and atomic scalar

magnetometer. The method implemented to solve for a set of calibration coefficients

is detailed here.
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4.3.1.1 Modified Tolles Lawson Model.

A vector magnetometer produced three magnetic intensity measurements along

it’s Cartesian axes, Bx, By, and Bz. They were normalized by the total intensity

Bm =
√
B2
x +B2

y +B2
z to produce the vector u of direction cosine terms:

cos(x) =
Bx

Bm

, cos(y) =
By

Bm

, cos(z) =
Bz

Bm

, u =


cos(x)

cos(y)

cos(z).

 (58)

An atomic magnetometer produced a measurement of the total magnetic intensity Bs.

The difference in precision between the tri-axis and scalar magnetometers produces

different magnetic intensity measurements: Bm 6= Bs. This imbalance was captured

by the term:

λ =
Bm

Bs

. (59)

The aircraft magnetic disturbance field is modeled in [70] as:

Bdist = δθ + τs, (60)

where

δ =

[
λūi, λūiūj, λ ˙̄uiūj

]{i,j=1,2,3}

t×21
. (61)

θ denotes of the column vector consisting of 21 coefficient terms, and τs represents

the compass’s Gaussian wide-band noise and null-shift error. τs is ignored in this

application but scale-factor, non-orthogonality, and misalignment compass errors with

respect to the aircraft axes were captured in θ cross terms.
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4.3.1.2 Accounting for the Spatial Gradient.

The assumption of a non-varying earth magnetic field for a calibration flight at

low altitudes is invalid. When a calibration flight is flown over a relatively small area,

the variation of the magnetic anomaly field can be approximated as linearly sloped,

and accounted for in the coefficient model. Horizontal position measurements were

appended to θ to account for the effects of a planar spatial gradient model from a

dataset at a constant altitude.

η =


θ

e1

e2


23×1

(62)

The additional terms e1 and e2 correspond to easting and northing position in meters

appended to the end of δ.

M=

[
δ Easting Northing

]
t×23

(63)

4.3.1.3 Accounting for Space-Weather Effects.

The interaction between the magnetosphere and solar wind creates small varia-

tions in Earth’s magnetic field and are present in a survey vehicle’s magnetic mea-

surements. These magnetic temporal variations can be observed using a base-station

magnetometer on the ground and later removed from the measurements.

4.3.1.4 Correcting Magnetic Measurements.

The process for correcting UAV magnetic measurements can be summarized as

follows:

1. Solving For Aircraft Characterization Coefficients
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(a) Use a calibration dataset to generate a t × 23 matrix M according to [70]

to include horizontal position measurements.

(b) Use a non-linear least squares solver to solve for the 23 coefficients: argmin(
η

Mη−

(Bs −mean(Bs))).

(c) The first 21 coefficients θ characterize the aircraft configuration’s distur-

bance field.

2. Compensating Real Measurements On Separate Flights

(a) A row-vector δ from compass direction cosines, their derivatives, and the

magnitude ratio between the compass and the scalar magnetometer λ was

constructed at each time step.

(b) The row vector δ was multiplied by the calibration coefficients to produce

the aircraft disturbance signal.

(c) The aircraft disturbance signal was subtracted from the raw measurements.

(d) The corrected raw measurements were passed through a 1Hz low-pass filter

fLP (Bs − δθ)

4.3.2 Aircraft Configuration.

An Aeroworks 40% scale Carbon-Cub kit was used as the base air-frame and

outfitted with a 120cc, two-cylinder, two-stroke engine in addition to an open-sourced

Pixhawk autopilot for autonomous surveying capabilities.
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Figure 18. 40% scale Aeroworks Carbon-Cub survey aircraft

Table 4. Example Surveying Aircraft Comparison

Integrator Thompson Aviation AFIT

Airframe Cessna 210 UAM II 40% Carbon Cub

Endurance 5 Hrs 90 min 45 min

Survey Velocity 100 m/s 20 m/s 22 m/s

Wingspan 11.2 m 2.4 m 4.3 m

Minimum Safe Alt 100 m AGL 30 m AGL 30 m AGL

Coverage (Flat Terrain) 1300 Line km 110 Line km 60 Line km

4.3.2.1 Sensor Payload.

A sensor payload was assembled and flown by Air Force Institute of Technology

(AFIT)’s Autonomy and Navigation Technology (ANT) center. These components

were chosen with special consideration to commercial availability and interoperability.

The sensor payload consisted of:

1. Geometrics MFAMTMdevelopment kit

(a) Scalar atomic oscillating magnetometer x2
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(b) MEMS gyroscope and accelerometer: BMI160

(c) MEMS vector magnetometer: HMC5983

(d) GPS module: Adafruit Shield

2. Cameras

(a) Proscilica HD camera

(b) DAVIS event-based vision sensor

3. Navigation solutions

(a) Piksi global navigation satellite system (GNSS) navigation unit

(b) VectorNav unaided inertial navigation system (INS)

(c) PixHawk 2 GPS-aided autopilot - flight controller

(d) PixHawk 2 GPS-independent - standalone autopilot

4. HMR2300 vector magnetometer

The Piksi GNSS navigation unit provided a differential-GPS solution accurate to

tens of centimeters through post-processing methods. Two Pixhawk autopilots were

included: one active GPS-aided flight controller, and one GPS-disabled standalone

autopilot. The active autopilot was used to conduct the flight test autonomously

from a mission profile of GPS waypoints at a desired altitude. The passive autopilot,

VectorNav inertial measurement unit (IMU), cameras, and HMR vector magnetome-

ter were included for future navigation-related research. The sensor payload board

was placed in the main cockpit aligned with the aircraft’s body axes. An on-board

Linux computer and precision time protocol (PTP) server provided time-synchronized

data collection from all components except for the MFAM development kit which was

independently clock-disciplined from the Adafruit GPS module.
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4.3.2.2 Micro-Fabricated Atomic MagnetometerTM.

Until recently, traditional atomic magnetometers like the ones used in geomag-

netic surveying or submarine detection aircraft have been too heavy, expensive, and

impractical for small UAVs. This experiment chose to use the MFAM from Geomet-

rics because it was small, lightweight, efficient, eliminated measurement dead-zones

with two sensors, and offered interoperability conveniences with it’s development kit.

The MFAM specifications and data analysis is presented in this section.

MFAM Specifications. The Geometrics MFAM development kit included

two scalar magnetometers, MEMS compass, MEMS accelerometer, MEMS gyroscope,

and GPS time-synchronization to 400 nanoseconds. The kit was configured to record

time-stamped measurements to an on-board micro-sd card. Figure 19 shows a top

view diagram of the sensor electronic box and one of the two sensor heads attached

by a 20 inch ribbon cable. The specifications for the major components in the devel-

opment kit [94] are listed in table 5.

Figure 19. MFAM sensor head, 20 inch ribbon, and electronics box [94]
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Table 5. MFAM Dev Kit Specifications

MFAM module Accuracy Range Sensitivity BW Fs

Scalar Magnetometers 5 pT/
√
Hz 17-100 µT 0.05 pT 400 Hz 1 kHz

Compass: HMC5983 1-2 ◦ ±0.88 Gauss 73 nT ∼ 100 Hz

Accelerometer: BMI160 1.5 mg ±2 g ∼ 80 Hz 200 Hz

Gyroscope: BMI160 0.7◦/s ±2000◦/sec 0.06◦/s 74.6 Hz 200 Hz

Adafruit GPS module 3m ∼ 165 dBm ∼ 1 Hz

MFAM Analysis. The first step to minimize the UAV magnetic disturbance

was by characterizing the aircraft components’ proximity effects on the magnetic mea-

surements. This section provides familiarity with the MFAM data and the qualitative

analysis conducted in order to determine the placement of the sensors on the aircraft.

MFAM Diurnal Data Collection. The MFAM and a full-sized GEM

optically-pumped scalar magnetometer co-collected measurements for an 18 hour du-

ration on the 15th of September 2018. The sensor setup is shown in figure 20 with

both sensors co-located in a suburban environment. Although intermittently dis-

turbed by local rural disturbances, measurements covering most of a daytime cycle

are compared in figure 21a. This collection illustrated the slowly-varying components

of the space-weather affects as well as a performance comparison between the MFAM

and traditional full size scalar magnetometers. A close look at commonly observed

micro-pulsations is shown in figure 21b. It was observed that common large spikes in

the magnetic measurements corresponded to vehicle traffic approximately 30 meters

away. It was also observed that the opening of a refrigerator door approximately

15 meters away corresponded with a 2 nano-Tesla change in the measurements. This

data collection validated the performance comparison between a traditional optically-
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pumped atomic magnetometer and the MFAM with significantly smaller size, weight,

and power.

Figure 20. GEM Systems GSMP-35 and Geometrics MFAM magnetometer setup

(a) (b)

Figure 21. 18 hours of stationary zero-mean measurements with a full-size and MEMS
sized scalar magnetometer. (a) The full 18-Hour collection of 1 GEM ground magne-
tometer and 2 MFAM sensors show the long term consistency. (b) A 10 minute period
shows the consistency between all three magnetometers.

MFAM Raw Data Collection. The MFAM magnetic measurements on

the ground exhibit diverse frequency content. The power grid in the United States
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operates at 60Hz, inducing magnetic noise at 60, 120, 180, 240, 300, and 360 Hz

in proximity of electrical power infrastructure. These power components were not

as prevalent when flying at 450m above ground level (AGL), but still needed to be

filtered out. The sample rate of the MFAM was 1 kHz, but the practical bandwidth

was 400 Hz based on sensor specifications [95]. A series of notch filters were designed

to remove the 60 Hz saw-tooth-like noise which was drowning out meaningful signal

from the tests. A 50 Hz low-pass filter was also implemented to isolate the lower

bandwidth of interest.

Figure 22. Raw MFAM data frequency content on the ground

MFAM Engine Effect Analysis. An engine proximity analysis was con-

ducted in order to qualitatively determine the best placement of the MFAM on the

aircraft. The MFAM was secured in place on the ground under the aircraft with the

two sensor heads side by side. The engine was run through a typical throttle pro-

file for a flight in three different positions. The general sequence was: startup, idle,

25 percent throttle taxi, full-throttle takeoff, half-throttle level flight, idle-throttle
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landing, 25 percent throttle taxi, and finally engine shutoff. The magnetic intensity

measurements from sensor 2 were subtracted from sensor 1 to form a gradient mea-

surement. Figure 23 illustrates relative engine proximity next to corresponding time

and frequency domain plots of the gradient measurement. A significant magnetic gra-

dient was observed in all three positions, especially at full acceleration. The difference

between the two sensors varied by around 10 nT near the tail section, and but varied

by almost 70 nT near the front. significant engine disturbance at maximum throttle

in all three positions, with most of the power around 300 to 310 Hz. Although placing

the sensor heads farther away from the engine should have reduced the interference,

there remained throttle-related magnetic disturbances from the engine. Being farther

away from the varying magnetic disturbances near the front of the aircraft would

allow the engine effects to be captured by the calibration coefficients, or filtered out

with a low-pass filter.
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Figure 23. From left to right: Three aircraft positions relative to the two sensor heads.
Time and frequency domain of mag1-mag2. The engine proximity analysis identified a
significant engine disturbance at maximum throttle in all three positions, with most of
the power around 300 Hz.

MFAM Camera Effect Analysis. The MFAM kit was set stationary on a

plastic cart. The effects of moving the activated cameras closer to the magnetometers

were evaluated. The magnetic measurements and video of the experiment indicated

that the human movement caused more of a disturbance than the payload at relevant

distances. It was determined that a human body moving in close proximity can

measurably perturb the magnetic field and the cameras did not noticeably cause high

frequency noise in the magnetic measurements.
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Figure 24. The camera proximity test shows that the person waving a hat in front of
the camera caused more magnetic disturbance than the camera shutter.

MFAM Battery and Servo Effect Analysis. The MFAM kit was set

stationary to analyze the disturbance from varying the proximity of: two types of

batteries (with and without a current-drawing load), a functioning flight control servo,

and twisted pair servo wire under load. The battery proximity test determined that

the Lithium-Ferrite battery introduced a significantly larger magnetic disturbance

than a Lithium-Polymer battery at the same distances 25.
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Figure 25. Li-Fe versus Li-Po battery disturbances

The servo proximity test determined that a passive flight servo was disruptive to

the magnetometer readings when placed within six inches of the sensor head or ribbon

cable as shown in figure 26.
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Figure 26. Powered digital servo disturbance comparison at 2 and 6 inches

Actuating the digital servo six inches away from the sensor head produced a

measurable digital component to the magnetic field such that changes in the servo

were especially notable in the magnetic gradient in figure 27. This test showed how a

digital servo could become a significant source of error when actuated or when under

load.
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Figure 27. Commanding control versus placing a load on a servo at 6 inches separation

Moving a segment of three twisted servo wires within two inches of the ribbon

cable and sensor head caused a minor fluctuation in the magnetic gradient as shown

in figure 28. It was determined that servo-wires should be secured away from the

sensors, but the disturbance was negligible.
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Figure 28. Twisted Servo Wire Disturbance

Dead Zones and Heading Errors. One of the largest challenges in pro-

ducing high-grade magnetometers is reducing heading-correlated errors. The MFAM

scalar magnetometers experience a range of ± 30 nano-Teslas of error outside of their

dead zones. The two scalar magnetometers could cancel out heading errors by mount-

ing them opposite each other and averaging the measurements. However, this project

intended to correct for heading errors using compass measurements and an aircraft

compensation method, and therefore focused on a collection configuration impervious

to dead-zones. The one polar dead-zone of each MFAM sensor is approximated as

any orientation of the optical axis within ±35◦ of the local magnetic field vector. The

two sensor heads were mounted such that their optical axes were perpendicular to

each other to ensure that at least one sensor would be out of the dead zone at all
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times. In this case, the local magnetic field was primarily oriented with the Earth’s

core field. Using the World Magnetic Model (WMM) to determine the local Earth

magnetic field vector, an approximation of the dead zones can be resolved in the local

navigation frame as illustrated by figure 29. Future research could use a compass to

determine when each magnetometer is oriented in a dead-zone.

(a) (b)

Figure 29. Normalized MFAM polar dead zone for an example earth magnetic vector:
red, green, and black arrows correspond to north, east, and down unit vectors. (a)
East view, (b) South view

4.3.2.3 Final UAV Configuration.

It was determined from the MFAM proximity analysis that the sensor heads

needed to be distanced from any disruptive components on-board the aircraft such

as the engine, batteries, wires, servos, and other sensors as summarized in table 6.
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The aircraft’s frame was primarily made of balsa wood, with a polymer skin which

did not interfere with the magnetometer. The MFAM sensor heads were mounted

on vibration-dampening foam pads on a wooden mounting plate at an 8 degree pitch

such that the optical axes were aligned with the longitudinal and lateral body axes

as shown in figure 30. During level flight, the optical axes were parallel to the ground

and pointing out the nose/tail and wings. This configuration ensured that at least

one sensor’s optical axis would be out of a dead-zone at all times and the sensors’

optical axes would align with the compass’s Cartesian frame.

Table 6. MFAM Proximity Analysis Summary

Error Source Observation Lessons Learned

Diurnal Variation Minimal short-term variation Ground observation station

Power Grid Power at 60 Hz harmonics Notch or low pass filter

Engine Worst near front Place sensors far away

Cameras Camera effects were minimal Place sensors far away

Batteries LiFe are worse than LiPos Prefer LiPo

Servos Servos are worse under load Place sensors far away

Twisted Wires Current carrying wires are bad Secure wires far away

Dead Zones Invalid data at some orientations Mount sensors orthogonally
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Figure 30. The MFAM sensors aligned with the aircraft body axes

Figure 31 shows the MFAM development kit mounted in the rear of the cockpit,

with the ribbon cables extending to the sensor heads fixed on the belly plate. The

development kit’s aluminum casing was removed to save weight.

83



Figure 31. MFAM development kit mounted with the aluminum case removed. The
ribbon cables leading to the sensor heads mounted to the belly plate are also visible.

A final subsystem layout is shown in figure 32.

Figure 32. The MFAM sensor heads were separated from sources of magnetic distur-
bance

4.4 Results

This section presents the approximation of space-weather effects, determining a set

of calibration coefficients from raw data, map consistency between subsequent survey

flights, and quantifying measurement consistency using a figure of merit calculation.
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4.4.1 Approximating Space-Weather Effects.

Attempts to measure locally varying diurnal affects with a base-station magne-

tometer were unsuccessful. The placement of the ground station magnetometer was

likely corrupted by nearby man-made magnetic sources. Instead, magnetic intensity

measurements from three observatories for the day of the flight were downloaded from

the INTERMAGNET website. The diurnal variations for the day of the flights at

Camp Atterbury were approximated by averaging measurements from observatories

at similar latitudes in Boulder Colorado (BOU) and Fredricksburg Virgina (FRD).

Since the flight durations were tens of minutes, the low frequency diurnal variation

was only 1 nano-Tesla as shown in figure 33a. The raw measurements for only the

gridded 100 meter flight were adjusted according to the diurnal trend at the corre-

sponding time of day for to better isolate and solve for the aircraft disturbance field

parameters.

(a) (b)

Figure 33. A ground observation magnetometer required the use of national observa-
tory data. (a) Measurements from INTERMAGNET magnetic observatories in Boul-
der Colorado (BOU) and Fredricksburg Virginia (FRD) were averaged to give a rough
diurnal trend for the gridded flight used to determine the aircraft characterization co-
efficients. (b) A zoomed-in view of the observatory data shows the diurnal variation of
around 1 nT over the whole flight
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4.4.2 Determining Coefficients With Real Data.

A calibration dataset was collected using a gridded trajectory at 100 meters AGL

with approximately 50 meter vertical line spacing and 160 meter horizontal tie-line

midsection spacing as seen in figure 34a. The colors in figure 34a reflect the zero-mean

uncompensated magnetic intensity measurements. The gridded trajectory was used

to characterize a set of aircraft coefficients θ by solving

argmin(
η

Mη − (Bs −mean(Bs))) (64)

and then dropping e1 and e2 from the vector η. The disturbance field model com-

ponents are shown in figure 53b. The planar disturbance field was probably more

significant than the eddy currents since the aircraft construction was primarily balsa-

wood and plastic.
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(a) Raw Measurements (zero mean) (b) Disturbance Components

(c) Disturbance Model (d) MTLL-Calibrated (zero-mean)

Figure 34. Using the gridded trajectory measurements provided self-consistent cal-
ibration coefficients. (a) Gridded survey trajectory at 100m AGL with 50 and 160
meter horizontal and vertical line spacing. (b) The disturbance model components. (c)
Predicted magnetic field and 1Hz low-passed residual from actual measurements. (d)
Magnetic measurements with aircraft effects removed

4.4.2.1 Evaluating the Disturbance Field Model.

The total disturbance field model including the spatial variation and diurnal vari-

ation was removed from the raw measurements Bs − Mη to form a residual. The

distribution of this residual is well modeled as a Gaussian distribution N (0, 3 nT ).

This appears characteristic of white Gaussian noise. Frequency analysis of the resid-

ual illuminated distinctive high-frequency components as seen in figure 35c. These

were likely from sensor noise, or locally-propagating magnetic fields from nearby elec-

87



tronics. A 60 Hz saw-tooth component of the raw magnetic signal explained the

multiples of 60 Hz in the power spectral band. These periodic noise terms lay outside

the magnetic anomaly field bandwidth, suggesting they could be filtered out using a

low-pass filter.

4.4.2.2 Applying a 1 Hz Low Pass Filter.

The spatial frequency content of Earth’s crustal anomaly field is very low. Ac-

cording to aerial magnetic surveying practices [79], the shortest expected wavelength

of the crustal magnetic anomaly field in the measurements can be approximated as

the following relationship between aircraft height AGL and velocity

Fmax
time <

1

h
Vac, (65)

where Fmax
time is the highest time-frequency content of the anomaly field within

magnetic measurements taken from a vehicle moving at a velocity of Vac at a height

h above the ground. This UAV flew at a maximum velocity of around 23 meters per

second, which means the highest frequency content would be 0.23 Hz. The corrected

magnetic measurements were passed through a 1 Hz low-pass Butterworth filter to

isolate the Earth’s magnetic field from high frequency aircraft and sensor noises. The

filtered magnetic measurements are shown in figure 34d. The remaining residual

after filtering is within the expected errors from the approximation of short-term

space weather effects. Any remaining heading error is likely limited by the resolution

of the vector magnetometer, or un-modeled aircraft effects like servo actuation or

low-frequency engine disturbances.
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(a) (b)

(c) (d)

Figure 35. The residual difference between the disturbance model and raw measure-
ments is dominated by white gaussian noise at high frequencies. (a) Residual histogram
suggests white Gaussian noise with a variance of 3 nano-Tesla. (b) 1Hz Low-passed com-
pensation residual removed high frequency contributions which appear Gaussian. (c)
Frequency domain of unfiltered residual shows distinctive structured noises outside the
expected bandwidth of the anomaly field. (d) Frequency response of 1 Hz low-passed
data demonstrated the resulting residual is of the magnitude of space-weather effects.

4.4.3 UAV Magnetic Surveying Flights.

We performed a single calibration flight and used its calibration coefficients to

correct a series of subsequent flights. Below we show the magnetic maps for all
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flights. We would expect the corrected measurements to be spatially consistent. Each

pattern in figure 36 overlays the same satellite image of Himsel Army Airfield (HAAF).

The colors of the trajectories are the magnetic intensity measurements corrected for

aircraft affects with relative biases removed to better illustrate the local magnetic

field. Indeed, the values of the measurements are similar between line crossings,

regardless of the aircraft direction as shown in figure 36.

Diurnal measurements from the GEM sensor ground station were unusable due

to a local industrial magnetic disturbance drowning out the space-weather affects.

Although this leaves a slowly varying offset between flights conducted at different

times, each flight was short enough to provide relatively time-invariant magnetic

measurements.

The first flight, shown in 36a, was an attempt at a high altitude calibration flight.

The aircraft was recovered before the flight profile was complete due to high winds in

excess of a safety threshold which were causing the aircraft to drift north. Nonetheless,

valid magnetic intensity measurements were collected and presented.

The second flight resulted in a successful calibration flight pattern at 450 meters

altitude 36b. The aircraft then surveyed the area at 400 meters AGL 36c. A necessary

aircraft configuration change after this flight made the coefficients only valid for the

preceding flights.

The third flight was a gridded survey at an altitude of 100 meters AGL with an

approximate horizontal line spacing of 50 meters with a tie line spacing of roughly

150 meters. Future gridded surveys would benefit from longer overshoot and lead-in

grid line distances, as well as alternating tie-line approaches like how the main grid

lines were flown instead of a sequential tie-line flight pattern. The aircraft could not

turn sharp enough to fly parallel tie lines as seen in the trajectory in figure 36d.

The fourth flight began with a gridded survey at 250 meters AGL as shown in
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36f. This was immediately followed by a drifting figure-eight style flight pattern at

100 meters AGL to simulate an un-aided loitering UAV attempting an altitude hold

pattern 36e.

It is observable that the gradient of the magnetic field was the same between the

common areas of 36d and 36e. Notably, some anomalies were observable at 100 meters

AGL which related to the location of structures East of the runway. These anomalies

were only observable at low altitudes as the higher frequency components were lost in

the upward continuation of the anomaly field. These anomalies were also consistent

between the gridded and figure-eight trajectories. Otherwise, the main variation in

the field was planar towards magnetic north with a slope of around 1 nano-Tesla per

22 meters.
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(a) 450m (b) 450m (c) 400m

(d) 100m (e) 100m (f) 250m

Figure 36. UAV flights and relative magnetic intensity maps corrected for aircraft
effects and biases. (a) First calibration flight attempt in strong winds at 450m AGL.
(b) Successful calibration flight at 450m AGL: two squares in opposing directions, and
a cloverleaf. (c) Gridded flight at 400m AGL. (d) Gridded flight at 100m AGL. (e)
SLAM flight pattern at 100m AGL. (f) Gridded flight at 250m AGL.
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4.4.4 Self-Consistent Magnetic Intensity Measurement Analysis.

A figure of merit (FOM) is a metric to evaluate the self-consistency of scalar

magnetic measurements at path intersections. We define FOM for this analysis in

units of nano-Teslas as

FOM =

√∑N
{x,x∗} (z − z∗)2

N
(66)

where x and x∗ are any two points in the flight within 1 meter of each other, disre-

garding points within 1 second. z and z∗ are the corresponding magnetic intensity

measurements to points x and x∗, and N is the number of point pairs. Figures 37 and

38 illustrate the calibration corrections made for each flight pattern and determining

the FOM. Pairs of black circles indicate non-sequential measurement pairs within 1

meter of each other: x and x∗. Black lines indicate the difference between paired

measurements z − z∗.
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Figure 37. Determining figure of merit before (left) and after (right) aircraft compen-
sation. Pairs of black circles indicate non-sequential measurement pairs within 1 meter
of each other, black lines indicate the difference between paired measurements. (Top)
First 450m AGL calibration flight attempt in strong winds. (Middle) Successful 450m
AGL calibration flight: two squares in opposing directions, and a cloverleaf. (Bottom)
400m AGL grid.
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Figure 38. Determining figure of merit before (left) and after (right) aircraft compen-
sation. Pairs of black circles indicate non-sequential measurement pairs within 1 meter
of each other, black lines indicate the difference between paired measurements. (Top)
100m grid. (Middle) 100m SLAM flight. (Bottom) 250m grid.
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Table 7 shows the reduction in FOM from uncompensated measurements to mea-

surements with just at the aircraft disturbance model removed. The table also indi-

cates the source of each flights calibration coefficients. Of note is how two different

aircraft configurations were characterized on two flights with different sets of coeffi-

cients, which were used to remove aircraft effects on four other flights with a FOM of

less than 2 nano-Teslas.

Table 7. Aircraft Coefficients Reducing Measurement Inconsistency

Flight Raw FOM (nT) Calibrated FOM (nT) N Cal Flight

(a) 31.52 1.26 533 (b)

(b) 33.97 0.56 3272 (b)

(c) 67.23 1.9 13 (b)

(d) 63.44 0.92 297 (d)

(e) 93.65 1.08 376 (d)

(f) 60.52 1.42 50 (d)

4.5 Conclusion

This research sought to build and fly a low-cost magnetic surveying UAV from

COTS components to magnetic navigation standards. A 40% scale Carbon Cub model

aircraft was deliberately configured with an autopilot, magnetometer, and combus-

tion for magnetic surveying. Calibration flights characterized the aircraft disturbance

field within 2 nano-Teslas. The model was used to provide spatially consistent mea-

surements on separate flights. This platform demonstrated the viability of collecting

precise magnetic intensity measurements on a UAV, which enabled further research

into small unmanned aerial systems (sUAS) navigation using magnetic measurements.
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V. Flight Test Results for a Magnetic Anomaly SLAM
System

5.1 Abstract

Earth’s magnetic anomaly field has been used for aerial navigation. The minia-

turization of atomic magnetometers enables the extension of magnetic navigation to

small UAVs. Map-based magnetic navigation methods are impractical with small

UAVs due to the lack of high-resolution magnetic maps at low-altitudes. Aerial mag-

netic Simultaneous localization and mapping (SLAM) techniques have been used to

remove the dependency on map quality and availability. This paper presents an imple-

mentation of a magnetic SLAM filter to constrain three different grades of simulated

INS solutions to tens of meters over a 14-minute UAV flight using real magnetic in-

tensity measurements without a prior magnetic map. The combination of low-cost

miniaturized atomic magnetometers and SLAM methods enabled magnetic naviga-

tion on small UAVs without a map as a globally available and stealthy GPS-denied

navigation method.

5.2 Introduction

Recent advances in manufacturing technology has reduced the size and power re-

quirement of atomic magnetometers by orders of magnitude while maintaining mea-

surement precision. This reduction in sensor footprint, cost, and power requirements

reduces the size requirements of magnetic surveying vehicles as well as broadens

the commercial uses of atomic magnetometers. The comparison of two Geometrics

atomic magnetometers in table 8 shows the reduction in SWAP between an opti-

cally pumped cesium scalar magnetometer (G-823A), and self-oscillating MFAM. The

MFAM requires significantly less SWAP without suffering in precision. Although the
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miniaturized sensors only have one dead zone, heading errors and dead-zone size are

significantly larger than the G-823-A. To combat this trade-off, combining measure-

ments from two sensor heads can either reduce heading errors or eliminate dead-zones,

depending on the sensor configuration. Figure 39 illustrates the recent reduction in

scalar magnetometer manufacturing [3].

Figure 39. Geometrics MFAM [3]

Table 8. Magnetometer Comparison

Magnetometer G-823A MFAM

Size 41259 cc 15 cc

Weight 450 g 30 g

Power 12-16 W 2 W

Sensitivity 4 pT/
√
Hz 1 pT/

√
Hz

Heading Error ±0.15 nT ±30 nT

Dead Zones (2) Equilateral, Polar, 10 ◦ (1) Polar, 35 ◦
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5.2.1 Magnetic Maps.

The Earth’s outer core produces a magnetic field which is then perturbed by

magnetically susceptible materials in the Earth’s crust. The resulting deviation from

a core field reference model is a world-wide magnetic anomaly field which is stable

over time and can be used as a navigation signal. Earth’s magnetic anomaly field

varies both horizontally and vertically. The spatial variation of the anomaly field

increases as altitude decreases, and therefore cannot be mapped from space. High-

resolution maps are therefore created with aircraft, where the expense scales with the

length of the survey flight. Geomagnetic surveying aircraft use scalar magnetometers

and gridded survey patterns to create maps of the Earth’s magnetic anomaly field

for geological analysis of the Earth’s crust. These maps can be used for mineral and

petroleum exploration, locating orphaned oil wells [82], and characterizing fault zones

[83]. Magnetic anomaly maps have also been used for aerial and marine navigation

[4, 24, 32]. There are two sources of magnetic maps. Individual surveys cover small

areas at a single altitude. Compilation products fuse many individual surveys into

larger map products. The North American Magnetic Anomaly Database (NAMAD)

is built by fusing thousands of individual surveys of varying quality and incorporating

satellite and ground observations to resolve long magnetic field wavelengths.

5.2.1.1 Map Sampling.

A fully sampled magnetic map satisfies the Nyquist criteria to capture all fre-

quency components of the magnetic field’s spatial variation with the proper spacing

of magnetic measurements. Survey grid lines must be closer at lower altitudes in

order to fully sample the magnetic field, which makes survey flights longer and more

expensive. In general, the spacing of survey grid lines must be at most the survey

height [79]. Figure 40 illustrates two individual surveys on the left. Survey (B) is
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fully sampled at 100 meters altitude with 100 meter line spacing. Survey (A) is

under-sampled at 300 meters altitude with 500 meter spacing.

5.2.1.2 Map Continuation.

Potential fields can be modeled as a function of distance through a mathematical

transformation called continuation. Assuming magnetic sources are below a survey

map of infinite size, a magnetic anomaly map can be upward-continued to higher alti-

tudes, but cannot be accurately downward-continued very far. This prevents magnetic

navigation at altitudes lower than the survey map. In the maps to the left of figure 40,

(A) can be modeled as the upward continuation of (B), but (B) cannot be sufficiently

modeled as the downward continuation from (A), even if (A) was fully sampled [79].

5.2.1.3 Map Unavailability.

The World Digital Magnetic Anomaly Map (WDMAM) [80] on the right of figure

40 highlights a few of the many un-surveyed regions of the world as uncolored sections

of the map. The colored sections of the WDMAM still contain errors from fusing

under-sampled individual maps.
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Figure 40. Two individual surveys are illustrated on the left: (B) fully sampled at 100
meters altitude and (A) undersampled at 300 meters altitude. (B) Can be upward-
continued to (A), but (A) cannot be downward-continued to (B). The World Digital
Magnetic Anomaly Map on the right highlights a few of the many vast un-surveyed
regions of the world [80].

5.2.2 Map-Based Aerial Magnetic Navigation.

Aerial magnetic navigation matches sequences of magnetic intensity measurements

to prior-surveyed magnetic anomaly maps as a globally-available gps-alternative to

INS aiding [4]. More spatial variation in the magnetic anomaly fields at lower alti-

tudes increases the navigation potential in magnetic navigation. However, navigation-

quality maps are often unavailable at the desired resolution or height for low-altitude

aerial magnetic navigation. Un-surveyed regions, under-sampled surveys, and down-

ward continuation instability are major obstructions to a world-wide magnetic anomaly

map for navigation [25].

5.2.3 Magnetic Simultaneous Localization and Mapping.

Magnetic SLAM approaches have been used in robotics and smart-phones with

vector magnetometers and man-made magnetic anomalies without maps of the mag-

netic environment [58, 55, 59]. This method requires a trajectory that is guaranteed

to overlap over time and revisit areas with a stable but spatially variant magnetic
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anomaly field. Lee and Canciani [96] first extended magnetic SLAM to a full-sized

aircraft using an atomic scalar magnetometer and navigation-grade INS. Figure 41a il-

lustrates an INS trajectory estimate with position errors (left) and a SLAM correction

(right) which share the same set of magnetic intensity measurements (colors). Con-

trasting the trajectories illustrates how incorrect path estimates result in inconsistent

magnetic intensity measurements at path intersections. Magnetic SLAM can correct

INS drifting position errors by minimizing magnetic measurement inconsistencies at

line crossings.

5.2.4 Configuring a UAV for Magnetic Navigation.

Magnetic surveys conducted with UAVs for the purpose of generating magnetic

maps include extensive data processing after the flight [79]. Aircraft disturbances are

first minimized by placing magnetic sensors far from magnetically susceptible vehi-

cle components, and then removed from survey data using post-processing methods.

Magnetic disturbances must be estimated and removed from magnetic measurements

during flight in order to conduct aerial magnetic navigation with a UAV. We pre-

viously configured, calibrated, and flew a UAV capable of compensating magnetic

intensity measurements during flight within 2 nano-Teslas [97]. This aircraft flew a

wandering figure-eight style pattern to represent a UAV in an altitude holding pattern

with a drifting position estimate. Figure 41b shows the flight pattern of the UAV

whose color corresponds to the compensated zero-mean magnetic intensity measure-

ments.

103



(a) INS trajectory → SLAM solution
(b) Real UAV trajectory and
magnetic intensity measure-
ments

Figure 41. Extending previous work to UAV MagSLAM. (a) The demonstration of
magnetic SLAM on a loitering aircraft illustrates how correcting measurement incon-
sistencies also correct position errors. (b) The collection of spatially consistent magnetic
measurements from a UAV motivated an evaluation of MagSLAM on a UAV

The combination of a magnetic navigation method which does not require prior

maps and a viable UAV magnetic intensity dataset sets the stage for low-altitude UAV

magnetic SLAM. This paper demonstrates SLAM on a sUAS scale with roughly one-

tenth the flight area of the previous full-scale survey aircraft [96]. Three INSs grades

were simulated to demonstrate the capabilities of magnetic SLAM on a UAV with

real magnetic intensity measurements and a practically-sized INS. The contributions

of this research include discriminatory resampling of subsets of revisiting particle

paths and weights, in addition to incorporating covariance information from Gaussian

process regression (GPR) into a Gaussian residual weighting function.

5.3 Methodology

In this section we present the real UAV measurements and trajectory, generation

of realistic INS errors, and the aerial-inertial magnetic SLAM algorithm.
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5.3.0.1 Magnetic Intensity Measurements.

An Aeroworks 40% scale Carbon-Cub UAV made of wood, plastic, carbon fiber,

aluminum was used as the main air-frame. A Geometrics MFAM collected magnetic

intensity measurements and compass measurements used for calibration. Magnetic

intensity measurements were spatially consistent within two nano-Teslas after com-

pensating for aircraft effects. The process to isolate and remove aircraft magnetic

disturbances was covered in [97].

5.3.0.2 Truth Trajectory.

A true UAV location was provided by a post-processed differential-GPS solution

from a Piksi GNSS with a reference receiver on the ground. The Piksi truth data was

corrupted with simulated INS errors, and the ability of the SLAM system to identify

and correct the INS errors determined the system’s performance.

5.3.1 Inertial Navigation System Error Simulation.

Inertial navigation systems combine sensed acceleration and angular rates of change

to determine specific forces in a navigation frame of reference. These corrected forces

are integrated to produce position updates over time. All un-aided inertial systems

have long term drifting position errors as a result of the repetitive integration of

tiny accelerometer and gyroscope noises over time. The classification of INS grades

is subjective to the application of their intended use. For guidance purposes, they

can be generally classified into five grades: space, marine, navigation, tactical, and

commercial. Honeywell’s HG9900 and HG1700 inertial systems are examples naviga-

tion and tactical grade INSs respectively. These are common grades used in aircraft

navigation because of their quality with respect to size and an aircraft’s typical flight

duration. Commercial grade IMUs are often used for attitude and heading refer-
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ence system (AHRS) references but are typically too noisy to determine position over

time. This section describes the effective differences between navigation, tactical, and

commercial grade INSs by comparing their noise terms and resulting drift rates.

5.3.1.1 Characterizing Different Grades of INSs.

Simulated trajectory estimates from navigation, tactical, and commercial grade

INS systems were generated to analyze the ability of magnetic SLAM to correct for

INS errors. A 15 state Pinson error model from Titterton and Weston [9] was used

to generate realizations of realistic INS errors by using real INS noise terms seen

in table 9. The contrasting noise strengths come from grades of manufacturing and

calibration. The difference is orders of magnitude in position drift.

Table 9. INS Simulation Terms

Terms Navigation HG9900 Tactical HG1700 Commercial

Vel Rand Walk σV RW (m/s
3
2 ) 1e-12 0.003302 0.0043

Accel Bias σA (m/s2) 2.4525e-04 9.81e-3 0.1960

Accel Bias τA (s) 3600 3600 3600

Ang Rand Walk σARW (m/s
3
2 ) 5.8178e-07 3.6361e-05 6.5e-04

Gyro Bias σG (m/s2) 1.4544e-08 4.8481e-06 0.0087

Gyro Bias τG (s) 3600 3600 3600

5.3.1.2 15 State Pinson INS Error Model.

The 15 state Pinson INS error model’s states are:

x15×1 =

[
δp δv δε ba bg

]T
(67)
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which correspond to position, velocity, tilt, accelerometer, and gyroscope errors re-

spectively in three-dimensional space. The model also generates a linearized dynamics

matrix F from an approximate latitude, three-dimensional velocities, specific forces in

the navigation frame, and direction cosine matrix which defines the coordinate frame

transformation from the body frame to the navigation frame (68). See [9] for further

details about generating a linearized error dynamics matrix.

F15×15 = fPinson15(lat, vn, ve, vd, fn, fe, fd,Cnb) (68)

A realization of INS errors can be obtained by propagating the state model according

to:

ẋ = Fx+Gw, E[w2] = Q (69)

where w15×1 is a vector of white noise, and Q is the diagonal matrix of shaping filter

terms according to the INS grade.

Q = diag
([

0 σ2
V RW σ2

ARW
2∗σ2

AccelBias

τAccel

2∗σ2
GyroBias

τGyro

])
15×15

(70)

5.3.1.3 Generating Simulated INS Errors.

Initial errors were randomly generated with a mean of zero and an uncertainty

determined by the grade of INS:

x̂0 = 0, P0 = diag
([

σ2
p σ2

h σ2
v σ2

α σ2
AccelBias σ2

GyroBias

])
15x15

(71)

The uncertainties were set as described in table 10 to reflect more uncertainty with

poorer quality INSs.
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Table 10. Simulation Initial Conditions

Position σp Height σh Velocity σv Tilt σα Acc Bias Gyro Bias

0 (m) 5 (m) σAccelBias σGyroBias σAccelBias σGyroBias

Discrete realizations were generated using:

xt+1 = Φxt + wt, (72)

where Φ was the transition matrix obtained by taking the matrix exponential of

the linearized dynamics model Φ15×15 = eF∗dt, and wt was a sample drawn from an

additive-white-Gaussian source of strength Q. 100 realizations were generated for

each grade, and the realization with the tenth largest distance root mean squared

(DRMS) position error was selected as a representative INS sample for each grade.

Figures 42 and 42b show the 3σ bounds and the chosen realizations of the various

grades over a flight time of 14 minutes.

(a) (b)

Figure 42. Different grades of manufacturing and calibration precision leads to orders
of magnitude differences between drifting INS errors. The HG9900 is considered navi-
gation grade, the HG1700 is considered tactical grade, and commercial grade refers to
common MEMS IMUs. (a) 3σ bounds of possible errors for each INS grade. (b) One
sampled realization of each INS grade
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5.3.2 Aerial Inertial-Magnetic FastSLAM.

This navigation filter was an extension of the aerial magnetic SLAM filter demon-

strated with a full-size magnetic surveying aircraft in [96]. We loosely coupled a

FastSLAM filter to estimate and correct INS errors for an improved aircraft state es-

timate as outlined in figure 43. The major changes included an improved state space

model to more realistically model INS errors, the use of GPR’s covariance information

in updating particle weights, and only resampling subsets of particle paths and their

weights.

Figure 43. The system loosely coupled an INS solution to magnetic intensity measure-
ments to correct for state errors.

SLAM estimates a path and map concurrently. While the concept of SLAM has

been around since 1986 [72], FastSLAM was first introduced by Montemerlo in 2003

as a factored solution to SLAM with unknown data association [73]. Murphy [74]

first presented the factorization of the full SLAM posterior into a product of N+1

recursive estimators: one estimator over robot paths, and N independent estimators

over landmark positions, each conditioned on the path estimate:

p(x1:t, θ1:n|z1:t, u1:t, n1:t) = p(x1:t|z1:t, u1:t, n1:t)︸ ︷︷ ︸
trajectory posterior

ΠN
n=1p(θn|x1:t, z1:t, u1:t, n1:t)︸ ︷︷ ︸

landmark estimators

. (73)

This factorization can be efficiently approximated with a Rao-Blackwellized particle
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filter (RBPF) where each sample path of the vehicle is a particle. Each particle

maintains it’s own hypothesized map and determines when it revisits a portion of it’s

path. We present an extension of the FastSLAM algorithm used by [58], shown in

algorithm 3 to the flight test dataset used by [21] for aerial magnetic navigation.

We will now describe each step of algorithm 3 for a single time-step. On line 2, the

i-th of N particles uses it’s previous state x
[i]
t−1 and control input ut to propagate to

it’s current state x
[i]
t according to the nine state Pinson INS error dynamics and noise

model further described in the appendix. On line 3, a particle compares it’s current

state x
[i]
t and measurement zt to it’s map model m

[i]
t−1 and returns an updated weight

q
[i]
t and list of currently revisiting particles ActiveList. On line 4, a particle updates

it’s individual map m
[i]
t−1 with the latest measurement x

[i]
t and trajectory estimate zt.

The weights of the particles that did not hypothesize a revisit are multiplied by the

mean of particle weights on the ActiveList as shown in line 5. Line 7 states that

if the number of effective particles falls below half of the total number of particles,

systematic resampling occurs to replace poorly weighted particles with duplicates of

highly weighted particles. The process concludes one iteration with an updated set

of particles Xt approximating the current state estimate.
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Algorithm 3: Aerial Inertial-Magnetic FastSLAM

Input: Xt−1, ut, zt

Output: Xt

1 for i = 1 to N do

2 x
[i]
t = INS motion model(ut, x

[i]
t−1)

3 [ActiveList, q
[i]
t ] = update particle weight(zt, x

[i]
t ,m

[i]
t−1, q

[i]
t−1, ActiveList)

4 m
[i]
t = update particle map(zt, x

[i]
t ,m

[i]
t−1)

5 q
[∼ActiveList]
t = mean(q

[ActiveList]
t ) · q[∼ActiveList]t

6 if 1∑N
i=1(q

[i]
t )2

< N
2

then

7 Resample particles’ states and weights that were on the ActiveList since

the last resampling.

8 return Xt

Our contributions primarily involve the particle weighting function in line 3 of

algorithm 3, and resampling in line 7. The update particle weight(·) function is

further expanded with a flow chart in figure 44.

Figure 44. Updating each particle weight depends on if it hypothesizes a revisit or not

We will now step through each part of the process outlined in figure 44.
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5.3.2.1 Detect Particle Revisit.

A particle detected a path crossing when there was more than two points from it’s

previous trajectory called trigger points within a trigger radius. This is illustrated by

figure 45a where colored dots represent the magnetic intensity measurements along a

particle’s trajectory, squares represent trigger points as tracked points in a particle’s

trajectory, and asterisks indicate recent points to be ignored. A trigger radius of 18

meters was determined experimentally such that a particle would neither miss nor

apply two particle weight updates to the same revisit.

5.3.2.2 Interpolate An Expected Measurement.

Instead of maintaining an entire map, each particle used a subset of point indices

s of it’s position history and measurements as inputs into an expected measurement

function ẑ[i] = h(x
[i]
s , zs). The interpolation points were selected from within a thresh-

old distance as shown in figure 45b. [t− τ : t] represents a sequence of recent values

that were ignored as to prevent recent measurements from affecting the result of

interpolation [58].

(a) (b)

Figure 45. Particles individually detect revisits and select interpolation points condi-
tioned on their own path histories. (a) Detecting a line revisit when # of trigger points
withing a threshold radius >2. (b) Data selection for interpolation used a larger radius.
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The expected measurement function ẑ[i] = h(x
[i]
s , zs) interpolated an expected

magnetic intensity measurement from a subset of the non-gridded particle history

and magnetic measurements. GPR evaluated the input coordinates and their asso-

ciated magnetic measurements as a realization of a zero-mean multivariate Gaussian

process according to σse = 5, σn = 5, and l = 100 hyper-parameters which charac-

terize correlation the magnetic field through the squared exponential function. The

correlation between individual measurements at some points x1 and x2 is:

k(x1, x2) = σ2
seexp(

(x1 − x2)(x1 − x2)T

2l2
) + σ2

nδ(x1, x2) (74)

This created a regressive fit function which returned an expected value and covariance

for a query point

[ẑ[i], R
[i]
t ] = h(x[i]s , zs, σse, σn, l). (75)

This method is illustrated in figures 46a and 46b.

(a) (b)

Figure 46. Gaussian process regression estimating a grid of points given some circled
input points. (a) GPR prediction around a line of points. (b) GPR prediction around
a set of scattered points

Magnetic intensity scalar fields are guaranteed to be continuous. GPR had the

benefit of modeling the field as a smoothed best fit of measurements, and produced
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an uncertainty value.

5.3.2.3 Calculate Weight.

Gaussian residual weighting evaluated the quality of a particle’s hypothesis by

contrasting the expected magnetic intensity with the actual measurement:

q
[i]
t = q

[i]
t−1exp

(
− (zt − ẑ[i]t )2

2R
[i]
t

)
, (76)

where q
[i]
t was an active particle’s weight at the current time t, q

[i]
t−1 was the parti-

cle’s previous weight, zt was the current measurement, ẑ
[i]
t was the particle’s expected

magnetic intensity from the measurement function h(·), and R
[i]
s was the covariance

output of GPR. The weighting of particles posed challenges when not all particles

hypothesized revisiting at the same time. Haverinen and Vallivaara [58] addressed

this by weighting the non-visiting particles by the average weight of the visiting par-

ticles. We expanded on this by only resampling from particles which appeared on the

ActiveList since the previous resampling step. Additionally, subsets of particles that

underwent resampling together also resampled their weights. Since information only

enters the system during line revisits, this technique prevented the disproportionate

favoring of particles which hypothesized many revisits over equally valid particles

which were not revisiting as often.

5.3.2.4 Resampling.

The standard particle filter criteria from Liu [76] was used to determine when to

resample:

Neff =
1∑N

i=1 (q̃(i))2
, Resample If Neff <

N

2
(77)

114



Where N is the total number of particles. Only particles which appeared on the

ActiveList since the previous resampling step had their states and weights resampled

and then the entire set of particles’ weights were normalized according to q̃t = q∑
q
.

5.4 Results

A filter’s SLAM performance should be measured by it’s measurement and tra-

jectory errors, as it’s path and map estimates are relative to each other. A SLAM

filter that accumulates a bias error in it’s solution but is bounded over time is still

considered a successful SLAM filter. This means that standard deviations in the

error provide a measure of effectiveness along with root-mean-squared errors. The

UAV canvassed a relatively small flight area. As a result, the spatial variation of

the magnetic measurements was highly-planar. The resulting navigation information

laid primarily along the slope of the plane in the northwest direction. However, there

was some anomalous magnetic variation in the northeast corner of the flight area

as seen in 41b. The filter estimate converged faster when the aircraft traveled near

this anomaly. This might suggest that an actively exploring SLAM algorithm should

attempt to revisit areas with identifiable magnetic variance for better convergence.

Even with a limited amount of magnetic spatial variance, the filter still maintained

valid position estimates below one hundred meters over a 1km by 1km area for all

simulated INS grades. Table 11 shows the simulated INS errors according to grade, as

well as errors after the SLAM filter was applied. The filter was unable to significantly

improve the simulated navigation grade INS. The INS errors did not drift quickly

enough for there to be diversity in the particles’ maps for the short flight duration.

The filter successfully constrained the simulated tactical grade INS to tens of meters.

This is the same level of performance as previous work on a professional geomag-

netic surveying aircraft over ten times the area [96]. The filter also constrained the
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simulated commercial grade INS to around one-hundred meters DRMS error. Some

tuning adjustments made the filter more robust to the erratic errors of a commercial

grade INS. The earlier assumption which based the revisit trigger radius on an aver-

age translational velocity and sample rate was invalid with rapidly changing velocity

errors. This was causing particles to miss or double-count revisits. The trigger radius

shown in figure 45a was increased to 50 meters and the l hyper-parameter in equation

(75) increased to 300 meters in order to include more measurements in hypothesized

loop closures. This change was intended to prevent poor revisits from being missed, as

this caused some particles to never hypothesize loop closures, and subsequently never

experience resampling. Additionally, the number of particles was increased form 1000

to 3000 to better sample the proposal distribution before convergence.

Table 11. MagSLAM with real measurements and simulated INS grades

INS Grade North Error (m) East Error (m) Radius Error (m)

RMS σ RMS σ DRMS σ

Navigation (HG9900) 12.29 8.63 1.24 0.75 12.35 8.51

Navigation+SLAM 4.74 4.43 10.35 7.76 11.38 8.22

Tactical (HG1700) 434.27 257.39 41.37 41.02 436.24 287.69

Tactical+SLAM 24.74 17.98 31.12 24.10 39.76 24.54

Commercial 8792.26 6072.78 5279.09 3752.11 10255.37 7094.89

Commercial+SLAM 77.34 62.24 114.71 108.52 138.35 68.24

The ability of the filter to estimate and correct the INS position errors can be

seen by contrasting the error plots in figure 47. The left column shows the drifting

INS northing and easting position errors. All three grades of INSs along the left

column show drifting errors. The right column shows the SLAM position estimate

errors and the three-sigma bounds, which most noticeably constrained the tactical
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and commercial grade INSs. Sudden decreases in the three-sigma bounds in the right

column correspond to particle resampling where particles with inconsistent magnetic

measurements were reassigned the paths and weights of particles with more self-

consistent measurements.

Figure 47. Contrasting INS errors (left) and SLAM errors (right) illustrates the filter’s
ability to constrain drifting position errors.The left column shows simulated navigation,
tactical, and commercial INS errors. The right column shows the corresponding SLAM
filters’ errors being contrained.

The improvement in the filter’s trajectory estimate can be seen in the map com-

parisons between the three INS grades in the left column, and the average trajectories

of the surviving particles in the right column of figure 48. The truth trajectory should

look like the one in figure 41b. The top row shows that measurements, illustrated

as colors, are similar at path crossings in both the INS and SLAM path estimate.
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This is because the simulated navigation grade INS did not accumulate a significant

position drift in 14 minute flight. In the middle row, we can start to notice color

inconsistencies at path intersections in only the tactical grade INS estimate to the

left. There is significant northing position drift in the left column, but the SLAM

path on the right is still similar to the true path. The most drastic illustration of filter

performance is in the bottom row, where the commercial grade INS path estimate on

the left drifted over 30 km away, and the SLAM path estimate on the bottom-right

still shows resemblance to the flight path in figure 41b.
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Figure 48. The average surviving particles show a smooth self-consistent map after
SLAM. The left column shows simulated navigation, tactical, and commercial INS
trajectories with magnetic intensity measurements. The right column shows the corre-
sponding SLAM trajectories with self-consistent measurements at path intersections.
The colors of the flight lines represent the UAV magnetic intensity measurements.
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A FOM is a metric to evaluate the self-consistency of scalar magnetic measure-

ments at path intersections. We define FOM for this analysis in units of nano-Teslas

as:

FOM =

√∑N
{x,x∗} (z − z∗)2

N
, (78)

where x and x∗ are any two non-sequential points in the flight within 1 meter of

each other. z and z∗ are the magnetic intensity measurements corresponding to point

pair x and x∗, and N is the number of point pairs. Figure 49 illustrates the tactical

grade INS trajectory (left) and corresponding SLAM corrected trajectory (right) with

the same magnetic intensity measurements producing different FOM. Pairs of black

circles indicate non-sequential measurement pairs at line crossings: x and x∗. Black

lines connecting black circles indicate the difference between paired measurements

z − z∗.

Figure 49. Calculating figure of merit for different path estimates sharing the same
magnetic intensity measurements. (Left) Tactical grade INS trajectory FOM = 10.15
nT. (Right) Corresponding SLAM estimated trajectory FOM = 1.52 nT

It is expected that measurements with an incorrect INS path estimate would

produce a larger FOM, and a SLAM correction which decreases position errors should

subsequently show a reduction in the FOM. Table 12 tabulates the FOMs for the truth
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trajectory, each INS grade trajectory, and each corresponding SLAM filter sequential

output x̂t. Interestingly, SLAM reduced the FOM more than the truth trajectory for

the navigation-grade INS since the truth trajectory did not have perfectly consistent

measurements.

Table 12. Trajectory Measurement Inconsistency

Trajectory Estimate Map FOM (nT)

Grade Navigation Tactical Commercial

Truth 1.079 1.079 1.079

INS 1.40 10.15 7.90

x̂t 1.073 1.52 2.46

5.5 Conclusion

A aerial magnetic SLAM filter shown to work on a single-engine manned aircraft

over a large area was applied to a UAV flight one-tenth of the size and duration. Three

grades of inertial systems were simulated to determine the feasibility of using real

magnetic intensity measurements to constrain a practically-sized INS on a UAV. The

simulated navigation grade INS did not drift enough during the short flight to produce

inconsistent magnetic measurements. The simulated tactical and commercial grade

INS solutions were constrained to tens of meters and one-hundred meters respectively.

Overall, the filter maintained trajectories with self-consistent magnetic measurements.

A primarily planar magnetic intensity field showed how the filter better constrained

position errors in the direction of magnetic variation. Flying lower or over a larger

area should capture more magnetic variation and improve filter performance for lower

quality INSs.
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VI. Thesis Conclusions

This research presented three contributions. First, aerial magnetic navigation’s

dependency on the availability and accuracy of prior-surveyed magnetic maps was

removed. Secondly, a UAV capable of to collecting precise and spatially-consistent

magnetic intensity measurements during flight was designed and flown. Lastly, low-

altitude magnetic navigation was demonstrated on a UAV without a prior magnetic

map.

A FastSLAM filter was shown to remove the requirement for a prior-surveyed mag-

netic map by constraining INS errors with magnetic intensity measurements during

flights that repeatedly overlapped their own trajectories. A real dataset on a Cessna

208 magnetic surveying aircraft was shown to constrain an actual navigation-grade

INS solution to tens of meters on a 100 minute flight. A COTS UAV was configured

and a magnetic disturbance model was determined within two nano-Teslas using a

calibration flight. The aircraft disturbance model was used on six subsequent flights

to produce spatially consistent magnetic intensity measurements. A SLAM filter was

applied to real UAV magnetic intensity measurements with various simulated INS

grades and constrained the UAV drift to tens of meters; demonstrating the feasibil-

ity of UAV magnetic SLAM with practical INS grades. The methods demonstrated

in this research provide aircraft with a new globally-available and passively-sensed

GPS-alternative navigation capability which does not require prior map data. The

most beneficial application of these methods would be on aircraft loitering over large

areas, at low altitude, or both.
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6.1 Future Work

Challenges remain to implementing aerial magnetic SLAM on a UAV in real-time.

This section presents current challenges as opportunities for future research.

6.1.1 Flight Patterns.

Aerial magnetic navigation’s dependency on prior magnetic map data can be al-

leviated on the condition that the aircraft covers a wide area and revisits previously

traversed areas frequently. The dependency on a magnetic map can be removed at

the expense of requiring a large but loitering flight pattern. This raises questions

about an autonomous schema to identify and actively balance mission priorities with

navigation accuracy. It may be possible to identify magnetic anomalies as landmarks

and actively seek them out to improve filter performance, as well as systematically

exploring new areas to build a map and travel longer distances with it. Improving the

GPR covariance kernel to better incorporate correlations from magnetic field physics,

altitude, and time into generating expected measurements could extend this method

to longer flights in three dimensions.

6.1.2 Time-Varying Magnetic Fields.

The methods in this filter have minimized time-varying components of the mag-

netic field through short flight times or by correcting the measurements for diurnal

variations beforehand. Although the techniques still work with diurnal variations

present in the specific data-sets collected here, this will not always be the case in

real-world applications. A method to account for time-varying magnetic measure-

ments still needs to be addressed. Such research could incorporate a time-correlation

component to GPR’s correlation function, or passively receive diurnal data transmis-

sion updates from local observatories in real time.
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6.1.3 Filter Stability.

Particle filters can be unstable without significant attention to somewhat ad hoc

tuning practices. Modern SLAM techniques have largely evolved past the use of

causal particle filters and could be the subject of future research. This filter could

greatly benefit from graph-based methods or from incorporating a maximum likeli-

hood algorithm into the proposal distribution using current magnetic measurements.

124



Appendices

125



Appendix A. MagSLAM Implementation Details

This appendix presents implementation details pertaining to the filter design,

GPR prior mean correction, and sensor description.

A.1 Filter Design

This RBPF implemented a linearized dynamics model and non-linear measure-

ment equation from [75] algorithm I: model 4. Only the modified portions of this

filter for SLAM are discussed in this paper for brevity. The filter began with a known

global position as assumed to be the case in the loss of GPS availability. Particles

were drawn as potential aircraft paths based on the nine-state Pinson INS error model

from [9]. Particle propagation provided a proposal distribution of INS errors. When

particles hypothesized loop closures, they interpolated expected intensities from a

shared set of measurements conditioned to their individual paths, compared it to the

current actual measurement, and were weighted using a Gaussian residual weighting

function. Over time, particles with the most self-consistent measurements at path

crossings survived re-sampling to approximate the errors in the overall flight path.

The INS solution was adjusted by the weighted sum of the particles’ position errors to

provide a new position estimate. This filter’s simplicity was deliberate as a straight-

forward extension of work done by Vallivaara et al. with a Roomba-style robot using

an indoor magnetic vector disturbance field [57].

A.1.1 State Partitioning.

The state variable x was partitioned into two horizontal position error particle

states xn, and seven linearized error states xl: altitude, three-dimensional velocity,

and three-dimensional tilt in the body reference frame.
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x =

xn
xl

 (79)

The matrix Φ was created at every time step by discretizing the linearized Pinson error

dynamics model F which was then partitioned into nonlinear and linear components

for the linear dynamics model in equations 81a and 81b. The nonlinear measurement

function is represented in equation 81c.

Φ =

Φn
n Φn

l

Φl
n Φl

l

 = eF ·dt (80)

xnt+1 = Φn
n,tx

n
t + Φn

l,tx
l
t + wnt , (81a)

xlt+1 = Φl
n,tx

n
t + Φl

l,tx
l
t + wlt, (81b)

yt = h(xnt ) + et (81c)

The driving noise was defined by wnt = N (0,Qn), wlt = N
(
0,Ql

)
, and et = N (0, R).

The measurement equation ht(x
n
t ) in 81c only provided information about the linear

states xlt implicitly via the proceeding Kalman filter time update [75].

A.1.2 Gaussian Process Regression as an Expected Measurement Func-

tion.

Instead of maintaining an entire map, each particle used a subset of point indices

s of it’s position history and measurements as inputs into an expected measurement

function ẑ[i] = h(x
[i]
s , zs). The GPR expected measurement function is written as

follows:

[ẑ
[i]
t , R

[i]
t ] = GPR(x

[i]
t , [x

[i]
s , zs], σse, l, σn) (82)
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GPR returned an expected value ẑ
[i]
t for a query point, in this case a particle’s current

position x
[i]
t , as well as a covariance R

[i]
t for the individual particle at that point in

time. In the Louisa Virginia flight test [96], the hyper-parameters σse, l, and σn were

used by the squared exponential kernel function and were experimentally determined

to be 50, 150, and 1 respectively. For the UAV magnetic SLAM demonstration, values

were chosen to be 5, 100, and 5. The function estimated:

ẑ
[i]
t |(x

[i]
t , x

[i]
s , zs) = N

(
K∗K

−1zs, K∗∗ −K∗K
−1KT

∗
)

(83)

where K, K∗, and K∗∗ were built by a squared exponential function as described in

[77]. The function to compute the individual cross terms between some x1 and x2 in

K was:

k(x1, x2) = σ2
seexp(

(x1 − x2)(x1 − x2)T

2l2
) + σ2

nδ(x1, x2) (84)

GPR assumes a zero mean multivariate Gaussian process. Therefore, a prior-mean

correction was applied by removing the mean of the measurements at each particle’s

interpolation points. This turns equation 83 into:

ẑ
[i]
t |(x[i]s , zs) = N

(
(K∗K

−1(zs − E(zs)) + E(zs), K∗∗ −K∗K
−1KT

∗
)

(85)

A.2 Sensor Description

Magnetic intensity measurements were collected with a self-oscillating split-beam

Cesium-pumped vapor scalar magnetometer. These precision magnetometers are able

to precisely resolve the intensity of a magnetic field with heading errors on the order

of tenths of nano-Teslas. A scalar magnetometer similar to the one used in the survey

is shown in figure 50 and whose characteristics are listed in table 13.

128



Figure 50. Geometrics Scalar Magnetometer [98]

Table 13. Scalar Magnetometer Characteristics

Characteristic Value

Size 41,259 cc

Weight 450 g

Type Self-Oscillating split-beam Cesium vapor

Operating Range 20,000 to 100,000 nT

Heading Error ± 0.15 nT

Absolute Accuracy < 3 nT

Sensitivity 0.003 nT at 10Hz
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Appendix B. Calibration Method Comparisons

This appendix presents the investigation of the best calibration data-set and

method combination in order to generate a set of aircraft disturbance coefficients

from the UAV flights. This appendix describes the different calibration data collec-

tions and how well each calibration model fit each dataset. Applying the models to

separate flights and observing self-consistency ultimately determined which dataset

and model was the most consistent under the same aircraft configuration. Three

calibration datasets were compared in conjunction with five aircraft disturbance field

model variations.

B.1 Calibration Methodology

Five variations of the seminal Tolles-Lawson aircraft disturbance model [69] were

evaluated. These include the standard 18-coefficient model, a modified 21 coefficient

model accounting for compass errors, and models accounting for the spatial gradient

of magnetic field.

B.1.1 Tolles and Lawson Disturbance Model.

A traditional Tolles and Lawson disturbance model as defined in section 2.2.2.2

was included to compare traditional aeromagnetic surveying methods to low-altitude

UAV applications. This model assumes the calibration flight as described in 2.2.2.1 is

at a high enough altitude that the spatial gradient of the magnetic field is negligible

and that the vector magnetometer is calibrated.

B.1.2 Removing Spatial Gradient.

In reality, a calibration flight will have some spatial gradient as discussed in [99].

The local spatial gradient of a calibration flight can be modeled as a plane and
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removed from a calibration dataset. The general form of a three-dimensional planar

surface is defined as:

0 = ax+ by + cz + d. (86)

Defining x, y, and z to be easting, northing, and magnetic intensity, respectively, any

horizontal planar variation in magnetic intensity is modeled by solving for z:

z = −ax+ by + d

c
,

[
x y 1

]
a1

a2

a3

 (87)

Adding three horizontal terms, x, y, and 1 to the X matrix isolates the first 18

coefficients from the affects of a spatially varying planar component. This becomes

more important when calibrating a small UAV at low altitude where the spatial

variance will be greater. This can be extended to model the spatial variance as a

quadratic plane:

z = −ax+ by + cxy + dx2 + ey2 + f

g
,

[
x y xy x2 y2 1

]



a1

a2

a3

a4

a5

a6


(88)

These additional terms account for the spatial variation only when solving for coeffi-

cients. Only the first 18 out of 24 coefficients were used to remove the aircraft effects

on other datasets.
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B.1.3 Modified Tolles And Lawson Model.

The 18-coefficient Tolles and Lawson calibration model assumes calibrated vector

magnetometer readings, and a non-varying total field. These premises are invalid

when attempting to calibrate a UAV with a noisy MEMS compass at relatively low

altitudes where the magnetic field is spatially varying. Han et al. developed an aero-

magnetic surveying calibration method robust to strap-down vector magnetometer

errors [70]. They incorporate the ratio between the vector norm of the vector magne-

tometer and the scalar magnetometer measurement, use finite-impulse response (FIR)

filtering to isolate correlations in the frequency bandwidth of interest, and include po-

sition terms to account for the presence of a spatially varying field. Using a FIR filter

is essentially a linear operation which allows correlations to be made between air-

craft maneuvers and corresponding signal introduced in the magnetic measurements

frequency band of interest. Importantly, the relationship between the calibration co-

efficients that result from solving a linear equation of FIR band-passed measurements

is maintained for whole measurements which can be applied in real time without

band-pass filtering. The major contributions from [70] was a 50Hz low pass FIR fil-

ter to capture the disrupting frequency components of the aircraft maneuvers with

a slow-moving aircraft at low altitudes and the 23 coefficient model used to include

compass error terms and spatial gradient.

B.1.4 Determining the Best Model With Real Data.

The traditional Tolles-Lawson method, modified Tolles-Lawson model, and correc-

tions for a spatial gradient were compared using several calibration datasets. The cal-

ibration datasets were a ground hand-tumble, a traditional square calibration flight,

and using a gridded flight pattern. Figures 51, 52, and 53c compare the magnetic

disturbance field to the application of: Tolles and Lawson 18 coefficient model (TL),
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modified Tolles and Lawson 21-coefficient model (MTL), Tolles and Lawson account-

ing for planar field (TLL), Tolles and Lawson accounting for quadratic field (TLQ),

and modified Tolles and Lawson accounting for a planar field (MTLL). Biases of 200,

100, 70, 40, 20, and 0 were added to the residual signals to separate them for com-

parison. The residual signal with the least variance after correction determined the

best method to explain the magnetic measurements in that dataset. Any remaining

signal which is neither correlated to aircraft orientation nor a linear gradient is the

resulting anomalous signal.

B.2 Calibration Datasets

The following subsections describe the three data collections used for calibration

using the previously mentioned methods: a stationary ground tumble, a geomagnetic-

surveying calibration flight, and a gridded survey flight.

B.2.1 Ground Tumble Dataset.

The first dataset attempted to characterize the aircraft magnetic disturbance field

was a ground tumble. The assembled aircraft in it’s flight configuration was carried

out to a field. All systems were activated except for the engine for obvious safety rea-

sons. A drastic range of aircraft orientations were exercised at three separate physical

locations in the field in an attempt to capture a full range of analogous aircraft ma-

neuvers. The technique consisted of three people physically moving the aircraft in

roll, pitch, and yaw over a stationary point in a magnetically-quiet area. The con-

cept sought to isolate the aircraft orientation affects in the presence of a non-varying

magnetic environment. This method failed to capture the effects from a running en-

gine as well as the electromagnetic servo actuators during aircraft maneuvers. This

collection was also likely corrupted from the presence of three people manipulating
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the orientation of the aircraft. Figure 51 shows the result of using the tumble calibra-

tion to produce coefficients where each method attempts to model the measurements

under the assumption that the measurements changed only with aircraft orientation.

A perfect model under perfect assumptions should produce a constant value.

(a) Tumble Cal Method Residuals
(b) Disturbance Components

Figure 51. Ground Tumble Disturbance Modeling

B.2.2 Calibration Flight Squares, Circle, and CloverLeaf.

The second attempted method was a standard industry calibration flight 52a.

First, a square flight path was flown at the highest altitude allowed at the time,

which was 450 meters AGL according to our safety plan, while actuating control inputs

called doublets on each of the straight legs of the square. Next, the square pattern was

reversed and control variations were again actuated on each side of the square. This

technique seeks to exercise the practical variation of the aircraft’s orientation with

respect to Earth’s magnetic field vector. A loitering circle pattern was held until the

cloverleaf mission profile was loaded remotely. Finally, a clover leaf pattern was flown

as a means to validate a self-consistent center of the cloverleaf regardless of heading

or aircraft orientation. Figure 52 shows the results of each calibration method applied

to the entire calibration flight at 450 meters altitude AGL. The band-passed signal
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was predicted by the modified Tolles-Lawson method with a standard deviation of

0.63 nano-Teslas. The components of the disturbance field model are shown in figure

52b. Of note is the negligible eddy current contribution and significant planar spatial

variation. This makes sense due to the wood structure of the aircraft and low-altitude

flight. Unfortunately, an aircraft configuration change was required after this flight

which made the calibration coefficients invalid for the next flights. The resulting

inconsistency in the magnetic field for the gridded flight was observably correlated

with heading.

(a) Calibration Trajectory with Raw
Measurements (Zero-Mean)

(b) Disturbance Components

(c) Calibration Method Residuals (d) MTLL-Calibrated CloverLeaf

Figure 52. Calibration Flight Disturbance Modeling
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B.2.3 Gridded Flight Dataset.

Even with disturbance model coefficients solved from the calibration flight, head-

ing correlated irregularities in the gridded trajectory indicated a remaining heading-

dominant error. This was likely due to an aircraft configuration change that occurred

between the calibration flight and the gridded flight where aluminum engine mounting

bolts were replaced with steel bolts. Since it was observable that the magnetic field

for this area was planar, the gridded trajectory data could be used as a calibration

dataset instead. This method produced more spatially self-consistent results in the

remaining flights than any of the previous calibration datasets. It is possible that

using the gridded survey flight to characterize the aircraft coefficients may have given

greater distinction between the local planar field and heading errors, in addition to

the fact that it was a longer collection.
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(a) Raw Measurements (zero mean) (b) Disturbance Components

(c) Calibration Method Residuals (d) MTLL-Calibrated (zero-mean)

Figure 53. Using the gridded trajectory measurements provided self-consistent calibra-
tion coefficients. (a) Gridded survey trajectory at 100m AGL with 50 and 160 meter
horizontal and vertical line spacing. (c) Compensation residuals shifted by method

B.3 Calibration Dataset and Method Comparison

The best disturbance model was determined by comparing the standard deviation

of the difference between the disturbance measurements and the models as summa-

rized in table 14. The modified Tolles-Lawson method in conjunction with modeling

the field as a linear plane had the lowest residual variance and is proposed as the

better model in this case. Another indicator of a valid calibration method is when it

produces spatially self consistent maps from other sets of measurements. Each dataset

was produced a set of MTL coefficients which then attempted to correct the SLAM

137



flight measurements. The 1 Hz low-passed aircraft compensated measurements can

be compared visually in figure 54.

Table 14. Calibration Method Residuals

Disturbance Model Tumble Residual σ Cal Flight Residual σ Grid Residual σ

Raw Mag1 51.621 nT 50.014 nT 50.515 nT

TL 6.590 nT 5.946 nT 14.774 nT

MTL 6.576 nT 5.946 nT 14.764 nT

TLL 2.985 nT 0.661 nT 1.049 nT

TLQ 2.983 nT 0.6588 nT 1.007 nT

MTLL 2.984 nT 0.6586 nT 0.975 nT
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(a) Tumble Cal Coefficients (b) Cal Flight Coefficients

(c) Gridded Flight Coefficients

Figure 54. Magnetic intensity measurements for SLAM flight after calibration with
different sources of coefficients and 1 Hz low-pass filter

B.3.1 Chosen Calibration Approach.

The modified Tolles-Lawson calibration approach was chosen based on slightly

superior performance as can be seen in table 14. Raw measurements were used to

solve for the calibration coefficients.

1. Solving For Aircraft Characterization Coefficients

(a) Use a calibration dataset to generate a t × 23 matrix M according to [70]

to include horizontal position measurements.
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(b) Use a non-linear least squares solver to solve for the 23 coefficients: argmin(
η

Mη−

(Bs −mean(Bs))).

(c) The first 21 coefficients θ characterize the aircraft configuration’s distur-

bance field.

2. Compensating Real Measurements On Subsequent Flights

(a) A row-vector δ from compass direction cosines, their derivatives, and the

magnitude ratio between the compass and the scalar magnetometer λ was

constructed at each time step.

(b) The row vector δ was multiplied by the calibration coefficients to produce

the aircraft disturbance signal.

(c) The aircraft disturbance signal was subtracted from the raw measurements.

(d) The corrected raw measurements were passed through a 1Hz low-pass filter

fLP (Bs − δθ)
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