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Abstract 

Human-autonomous system teaming is becoming more prevalent in the Air Force and in 

society. Often, the concept of a shared mental model is discussed as a means to enhance 

collaborative work arrangements between a human and an autonomous system. The idea 

being that when the models are aligned, the team is more productive due to an increase in 

trust, predictability, and apparent understanding. This research presents the Dual-Process 

Model using multivariate normal probability density functions (DPM-MN), which is a 

cognitive architecture algorithm based on the psychological dual-process theory. The dual-

process theory proposes a bipartite decision-making process in people. It labels the intuitive 

mode as “System 1” and the reflective mode as “System 2”. The current research suggests 

by leveraging an agent which forms decisions based on a dual-process model, an agent in 

a human-machine team can maintain a better shared mental model with the user. Evaluation 

of DPM-MN in a game called Space Navigator shows that DPM-MN presents a successful 

dual-process theory motivated model.  
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IMITATING HUMAN RESPONSES 
 

VIA A DUAL-PROCESS MODEL APPROACH 

 

Chapter 1. Introduction 

 

Any corporation or group with common goals includes teams in some capacity. The 

effectiveness of these teams depends greatly on their teamwork abilities. Teamwork 

between agents of any kind, humans or computers, requires fundamental elements to act 

effectively, this includes both know-how related to the task at hand, as well as the 

knowledge to cooperate (Lemoine, et al., 2002). Fundamental elements of knowing how to 

cooperate include communication, organization, ability to build trust, and a shared mental 

model (SMM) to facilitate understanding. An SMM is the concept of “knowledge 

structures held by members of a team that enable them to form accurate explanations and 

expectations for the task, and, in turn, coordinate their actions and adapt their behavior to 

demands of the task and other team members” (Jonker, et al., 2010). 

SMMs are a paramount factor for the success of cooperative work (Hanna, et al., 

2018). An abundant amount of existing research explores SMMs, but the research mainly 

focused on teams only comprised of humans (Grim, et al., 2016; Tarola, et al., 2018; Wang, 

et al., 2009; Yen, et al., 2003).With the increase in the number of and complexity of 

computer agents interacting with human teams, an increased focus has risen in having the 

computer agent build a shared mental model to strengthen teamwork. The computer agent 

must somehow algorithmically formalize the SMM. Some of the benefits of a shared 



 

2 
 

mental model include an increase in trust, the creation of a shared goal, significant 

improvement on team effectiveness (Hanna, et al., 2018), a shared knowledge perspective 

(Abdulrahman, et al., 2018), a shared understanding of the task and team roles (Jonker, et 

al., 2010), and enhanced team communication (Wang, et al., 2009). Without an SMM, the 

computerized agent becomes situationally unaware of its teammates’ decision-making 

process. As a result, the agent will make ineffective decisions solely based on its own 

cognitive model with no consideration of possible teammate desires. 

One way to formalize an SMM in a computer is through developing a cognitive 

architecture to simulate the mental model of the human teammate. Jonker, et al. (Jonker, et 

al., 2010) investigates the notion of an SMM and designs an ontological model using UML. 

The explained rules and concepts of an SMM then motivate an example implementation in 

the Blocks World for Teams (BW4T) problem domain. Hodhod and Magerko (Hodhod, et 

al., 2016) bolster an SMM representation through the Co-creative Cognitive Architecture 

(CoCoA). CoCoA is built on the principles of a minimalistic design, a confidence factor, 

the use of fuzzy logic, and the construction of knowledge rules. It ultimately creates an 

SMM between two improvisational agents to co-create stories. Fan and Yen (X. Fan, et al., 

2011) created an architecture called Shared Mental Models for all (SMMall). It implements 

a hidden Markov model to predict a person’s cognitive workload. SMMall is not only able 

to maintain an SMM of the whole team, but it can also divide the team members into sub 

teams each with their own subgroup SMM. 

The Dual-Process Model using multivariate normal probability density functions 

(DPM-MN) algorithm instantiates the dual-process theory as an SMM. The presented 

DPM-MN behaves similar to one notion of how psychologists believe people think – dual-



 

3 
 

process theory. To limit the scope of the work, DPM-MN only includes dual-process 

learning characteristics (Sun, 2015). Future work could extend DPM-MN to include dual-

process accounts of reasoning (J. S. B. T. Evans, 2003). The dual-process accounts of 

reasoning use a belief-logic framework to describe the task of each system. System 1 

represents an associative, belief-based, and instinctual problem-solving method. System 2 

corresponds to a general intelligence, abstract, and higher-level thinking approach, which 

enables it override System 1 when System 1 reaches a conclusion with low confidence.  

Some of the key dual-process learning characteristics DPM-MN implements 

include memory preservation, balance between implicit and deliberate systems, 

aggregation of experiences to form a general concept, online learning, overwriting previous 

knowledge, retaining past experience through memory, concept drift, and outlier sensitivity. 

DPM-MN characteristics are not a full solution, but it is a starting point for the 

knowledge representation and search concept. By selecting a limited number of important 

cognitive elements to functionalize in the DPM-MN algorithm, DPM-MN leaves some 

cognitive elements out. Conversely, the interaction between the chosen cognitive elements 

will implicitly emerge into new functions. It is possible to ally DPM-MN with other 

cognitive architectures to come up with an artificial general intelligence (AGI) solution. 

Also, because of the modularity of the learning concepts, DPM-MN may adjust in the 

future to gain a closer representation of the most critical thinking and learning components 

of a human.  

1.1 Hypothesis 

The need for autonomous systems to align with a human teammate’s mental model 

motivates the DPM-MN architecture. DPM-MN and all of its functions orient towards the 
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simulation of a target human’s learning process. After enough experiences with the human 

teammate, the autonomous agent should possess an approximation of the human’s mental 

model. This research hypothesizes that a human-machine teaming agent motivated by a 

dual-process learning theory model maintains a more accurate mental model of the user. 

1.2 Research Goals 

The evaluation of the hypothesis is broken into two research goals: the development 

of DPM-MN and the evaluation of DPM-MN with human participants.  

The development of DPM-MN is made of two separate systems that each utilize 

multivariate normal probability density functions to make predictions. System 1 makes 

associative predictions while System 2 makes reflective predictions. DPM-MN also 

implements many different cognitive learning functions such as the aggregation of 

experiences to form general concepts and the overwriting of previous knowledge. 

Evaluation of DPM-MN uses the Space Navigator dataset. The measure for a 

mental model match is that the DPM-MN model outputs a trajectory that is most similar to 

those output by the human.  

The main goal is to build a cognitive architecture that functions similarly to a 

human mind by learning the associated mental model. Succeeding in this goal would 

greatly benefit human-machine teams and AGI. Many future AI solutions will most likely 

involve correct management of human-robot teams. As a result, it is important that the 

relationship between human and robot teammates improves. One way to do this is by 

capacitating robots with the ability to anticipate and imitate human behavior by building a 

replica of their shared mental model. This gained ability, in turn, improves 

anthropomorphism and predictability which are key components for trust in teams 



 

5 
 

(Bindewald, et al., 2018). Human-robot teams have the potential to be more enjoyable and 

perform better if trust is improved through increased perceived reliability. 

An example of the game chess illustrates the main behavioral research goal. Given 

a single state instance of a game of chess, the desired AI’s next move should not necessarily 

be the most optimal or rewarding move. It should be the move a specific human player 

would make. DPM-MN should allow a person to feel like they are playing against the 

individual that participated in training.  

Similarly, in a team setting, assume two people named Chris and Joe have been 

pilot and co-pilot partners for a year. Joe has to move away, so a DPM-MN utilizing AI 

that was trained on Joe replaces Chris’s co-pilot. The co-pilot AI will imitate Joe’s 

operational behaviors so that Chris feels like he is still flying with Joe. Instead of aiming 

for the most optimal functionality, DPM-MN aims to capture the behavioral idiosyncrasies 

of unique people.  

1.2.1 DoD Goals. 

The next push in AI research will involve algorithms dealing with explainable AI 

and unexpected queries (Launchbury, 2017). DPM-MN’s structure favors these two 

concepts. DPM-MN can be visualized through dimensionality reduction to allow a real-

time learning process demonstration. DPM-MN’s gathering and learning of knowledge are 

intuitively understood with a visualization. Independent observations in System 1 get 

transferred to System 2 as a generalized concept once there exists a large enough grouping 

of instances in System 1. A separation of concepts is shown with the DPM-MN visuals in 

Chapter 3. 
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DPM-MN also covers unexpected queries. In this case, an unexpected query is 

when the system has never seen an observation before. System 2 responds to the new 

observation first, but it is also added as an individual instance in System 1. When DPM-

MN encounters the same observation again, there is more information to rely on. This 

process is similar to how a human learns.  

An algorithm with cognitive flexibility is also important for autonomy. Volatile 

mapping of observations to the search space achieves cognitive flexibility in DPM-MN. 

Once a concept drift of a class occurs, DPM-MN quickly relearns the meaning of the class 

concept. This aims to achieve a constant evolution of meaning as DPM-MN gathers new 

information. When a person is learning a new task, they may react differently to the same 

situation depending on their level of proficiency or experience.  

One of DPM-MN’s goals is peer flexibility. If the robot in a human-machine team 

can accurately predict the action the human will take, then it can rapidly adjust its level of 

involvement. If a specific person reacts tragically to a given situation, DPM-MN may 

foresee the outcome and alert the robot to start taking a supervisor role.  

Each of these goals not only further the Air Force’s vision on the future of AI, but 

they enable better human-machine teaming. From a practicality standpoint, human-

machine teaming will be the primary application all the previous goals aid in ultimately 

achieving. An AI assistant in a fighter aircraft can potentially revolutionize the way pilots 

fly (Schutte, 2015). Machines’ constant vigilance will better defend against cyber-attacks 

when the AI can understand context. Drones may become capable of starting and 

completing missions autonomously. These examples are the future of warfare. Many 

different countries envision AI to become the “third revolution in warfare, after gunpowder 
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and nuclear arms” (Russell, et al., 2015). News sources reported Russian leader Putin 

saying “whoever leads in artificial intelligence will rule the world” (Meyer, 2017). They 

want to potentially have an advantage over the US in military power. China, Russia, and 

the US are all key players in the new arms race of AI. The use cases for AI in war involve 

complex and difficult problems. The vision for AI warfare heavily depends on research in 

the concepts previously mentioned such as cognitive flexibility, peer flexibility, human-

machine teaming, explainable AI, and unexpected queries 

1.3 DPM-MN High Level Overview 

Psychologist William James (Colman, 2008), in 1890, proposed the idea of dual-

process theory and linked it to social information processing. The dual-process theory 

involves two different systems that countervail each other. Automation characterizes 

System 1 while the use of working memory characterizes System 2 (J. Evans, et al., 2013). 

Additionally, System 2 is a domain for more abstract, explicit knowledge that is adjustable. 

System 1, on the other hand, harbors implicit individual knowledge pieces that are harder 

to alter.  

DPM-MN represents the demonstrated knowledge of the observed human through 

state-response pairings. It is difficult to determine the exact thought process of a person 

when making decisions, but the mapping of patterned responses to a scenario encapsulate 

any possible rational, or lack thereof, that lead the human to their decision. Klein’s Natural 

Decision Making (Klein, 2008) paradigm says people do not generate and compare options. 

Rather, they rely on prior experience. Klein’s research validates the choice to build DPM-

MN through a stream of experiences. Additionally, Klein described a recognition-primed 

decision model that asserts an intuitive component and an analytical component. The 
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intuitive component attempts to rapidly compare the situation to a previously similar 

situation. The analytical component finds a satisfactory option among different prospective 

solutions. DPM-MN’s structure aligns with this model through the automatic response 

given if a state is close enough to an individual experience in System 1. If no similar 

previous experience exists in System 1, then System 2 determines the decision by 

considering multiple generalized concepts.   

A dual-process model approach exploits the bias/variance tradeoff in machine 

learning for balancing benefits. System 1 implements the high variance component via 

importance of singular experiences, and System 2 implements the high bias component via 

a mapping of the generalized concepts. With both systems, the dual-process model can be 

sensitive to outliers while still accounting for the general solution when needed. By 

transitioning datapoints between these systems, a dual-process model recognizes and 

properly deals with concept drift. A change in the average feature values of a class over 

time defines concept drift. 

DPM-MN uses Gaussian kernels to represent the area of influence each individual 

point in System 1, or each concept in System 2, possesses. Within the model of System 1 

individual points’ Gaussian kernels resemble a radial basis function. The probability 

density function inference solely depends on the distance from the center. On the other 

hand, System 2 Gaussian kernels are made utilizing the individual points from System 1 

that compose the underlying concept distribution. When DPM-MN predicts a new input 

datapoint, each Gaussian kernel adds its own influence on the prediction relative to the new 

point’s placement in the kernel’s probability density function. Chapter 3 presents more 

information on the DPM-MN algorithm.  
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1.3.1 Input-Output. 

DPM-MN functions by accepting a state input and outputting a response. This is 

considered a state-response pairing. The input maps to a position in the state space. After 

that, nearby observations are found using distance measurements. A class labels each 

observation, and each class represents a fixed response. The selected response class 

ultimately provides a response pertaining to the specific scenario. 

As an example, imagine a situation where a person decides what mode of 

transportation they should use to get to work for a given day. Weather, the availability of 

transportation methods, the day of the week, and the number of traveling companions are 

factors that might shape the state space. These are examples of features which determine 

the state-space position. Some response examples may include riding a bike, taking the bus, 

carpooling, driving a personal car, and walking.   

Although the experimental data comes from a specific state-response scenario, any 

situation with a state-response structure can theoretically use DPM-MN. Anywhere a 

decision is made based on the current circumstances is a high-level example. Because 

DPM-MN fits many generic problem spaces, there is a lot of responsibility to appropriately 

represent both the circumstantial knowledge and the response actions. 

1.3.2 DPM-MN Characterized as a Dual-Process Model 

DPM-MN is different from previous dual-process theory approaches because it 

heavily focuses on dynamic information such as concept drift and non-redundant 

information between System 1 and System 2. Furthermore, DPM-MN allows one-off 

instances to determine future decisions if the circumstance is nearly similar. This lets 

concept drift occur quickly and appropriately accommodates anomaly situations.  
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Figure 1: Abstraction of System 1 and System 2. 

Figure 1 illustrates the basic concept of System 1 and System 2. System 1 is 

reactionary while System 2 depends on some processing. In DPM-MN, the processing 

needed to form a generalized representation in System 2 using the conglomeration of 

individual observations from System 1 satisfies the working-memory characteristic of a 

System 2 described in dual-process theory.  

1.4 Evaluation 

The evaluation of an SMM comparison is based on mimicking the human response. 

Better human predictions indicate a closer SMM between the algorithm and the human. It 

is possible for the SMM to develop based on a human that performs poorly on the specified 

task. DPM-MN creates an SMM which will lead to higher performance in the prediction 

of trajectories in the Space Navigator environment. This SMM will give statistically 

significant and better results in Space Navigator than baseline tests. In the future, a test 

should be conducted with humans to see if the DPM-MN algorithm creates a correct SMM.  
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1.5 Thesis Outline 

Chapter 1 introduces the motivation to imitate human responses in a human-

machine team. Imitation of a human teammate relies on the creation of an SMM. The dual-

process theory provides a cognitive framework to help align an autonomous system with a 

human teammate’s mental model. The dual-process theory inspires the DPM-MN 

implementation (Appendix B). The DPM-MN evaluation in the Space Navigator 

experiment shows that DPM-MN improves imitation of human player trajectory generation.   

The following chapter presents related work on how other researchers have tackled 

a similar goal. The next chapter is an overview of the DPM-MN algorithm. Since there are 

many intricately related functions in DPM-MN, Chapter 3 individually illustrates each 

functionality. Chapter 4 discusses the methodology of the experiment. The setup of the 

experiment, the Bayesian optimization parameter search method, and the DPM-MN 

parameters are discussed. In Chapter 5, we analyze the results. Chapter 6 concludes the 

findings and guides potential future research.  
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Chapter 2. Literature Review 

Dual-Process Model using multivariate normal probability density functions 

(DPM-MN) is a cognitive architecture inspired by the dual-process theory. Its purpose is 

to functionalize the human cognitive process during decision making and the storing of 

memory. DPM-MN should map the strategic learning process of a person to subsequently 

enable computer agents to interact with others in a human-like manner.   

This chapter presents several topics related to different aspects of DPM-MN. The 

topics include machine learning focused topics of human-machine teaming, concept drift, 

novelty detection, and more psychological focused topics that include cognitive 

architectures, social cognition models, and dual-process theory model implementations. 

Afterwards, three specific papers that motivated much of the DPM-MN research are 

individually explored.  

2.1 Human-Machine Teaming 

A reliable cognitive architecture would bring about many practical effects in 

human-machine teams. Theoretically, DPM-MN or another cognitive architecture is 

trained on a specific person to learn their behavior. After it learns their behavior, the DPM-

MN wielding robot can either better predict how the individual will react to a given 

situation, or the robot can take on and act with that unique personality. In order to guess 

the benefits that come from DPM-MN, it is assumed that personality, human-imitation, and 

teammate predictiveness all follow from the implementation of the proposed algorithm.   

The first example of a socially cognitive robot being useful comes from Bindewald, 

et al. (Bindewald, et al., 2018). Trust between members of a team greatly affects the 

performance. In a human-robot team, a couple influencers of trust include the predictability 
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and the anthropomorphism amount of the robot. A personality provided through DPM-MN 

enhances both of these components. The robot will behave in a way more easily noticed by 

the human, and the robot would seem more human-like since it is imitating a human it used 

for training.   

Personality can also affect the behavior of the human partner. Salam, et al. (Salam, 

et al., 2017) conducted an experiment to determine group engagement based on the 

human’s personality and the robot’s personality. Personality in this experiment was defined 

as either extroverted or introverted in order to make a clear distinction. They found that the 

most group engagement arises when both the human and robot are extroverted, and the 

worst results occurred when the human and robot are both introverted. Previous studies 

have suggested a different effect; humans enjoy working with robots with a similar 

personality (Park, et al., 2012). The extroversion results would align with this study, but 

the introverted results would not. Salam, et al. figured that different experimental settings 

caused the disagreement in findings between the two studies. Regardless of the ground 

truth, it becomes apparent that the human-robot teams differ depending on the personality 

type of the robot. This indicates the importance of including a robot personality to achieve 

a higher performance potential.  

Choi, et al. (A. Choi, et al., 2015) had similar findings on the importance of robotic 

personality. This study focused on positive emotions from the robot versus negative 

emotions from the robot. They used physiological measures such as electrodermal activity 

and heart rate to objectively measure both arousal and psychological valence. The results 

showed the robot’s capability to affect the inferential processes and the affective processes 

of a human participant. The inferential processes are where “emotion expressions provide 
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information about other’s mental states” and affective processes are where “emotion 

expressions elicit emotion in the receiver which, in turn, impacts his or her decisions” (A. 

Choi, et al., 2015). This research found that more emotional humans cooperated more with 

and formed positive opinions of computers which exhibited positive emotion. Also, people 

who experienced less emotion were more likely to exploit the computers that showed 

submissive expressions such as regret. Other behavioral patterns were also noticed across 

different human personality and robot personality matchings (A. Choi, et al., 2015). Overall, 

it is noticeable how human-robot interactions can change and be manipulated depending 

on the personality of the human and the personality of the robot.    

Other research experiments have found almost contradictory results. Lee, et al. (Lee, 

et al., 2006) discovered a complementarity attraction effect in their research where the 

human-robot team with complementary personalities performed best. The participants 

favored and enjoyed interacting with a robot with a complementary robot. Extroverts liked 

the social company of an introverted robot while introverts liked the social company of an 

extroverted robot. Lee, et al. (Lee, et al., 2006) makes note of different social rules 

emerging from the multiple AI social tests. The authors claim a similarity attraction rule 

occurs when the robot is a disembodied social actor and the opposite occurs when the robot 

is an embodied social actor. With embodied actors, people tend to treat the robot with the 

same social rules as a normal human. Their mind does not perfectly differentiate the fact 

that they are interacting with a robotic social agent. Lee, et al. in the end asks for more 

research to be completed to better uncover the human-robot social rules. Even though many 

of the social AI research seemingly conclude different results, there is a common 
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agreement among all of them: robots with personality significantly affect human behavior 

and attitudes. 

AI will not be accepted into the general society unless the AI can be trusted. Sarkar, 

et al. (Sarkar, et al., 2017) show that the human perception of the robot more heavily 

depends on the personality of the robot rather than the performance of the robot. The 

researchers tested human-likeliness, likeability, trustworthiness, and perceived competence. 

The experiment was executed with an industrial setting in mind. The robotic co-worker 

was meant to aid humans in manufacturing tasks. The result showing the importance of the 

robot’s personality opens a pathway of understanding for the acceptance of commercial AI 

products. Sooner or later, human-robot teams will need to implement a robot with a 

personality.    

It is important to test human-robot teams against human-human teams to better 

understand what benefits a robot may bring to a team. Harriott, et al. (Harriott, et al., 2015) 

conducted a few experiments to observe the performance and mental workload of human-

robot teams versus human-human teams. Their results showed a lowering of mental 

workload when the human-robot team performed the task, but performance between the 

two teams did not vary by too much. Though, the authors concluded some observations 

about the human-robot team. It is important for the human and robot to understand the 

other’s perspective, goals, and decision-making process. Being able to predict what the 

other team agent is going to do can greatly improve a team’s dynamic. Lastly, human-robot 

teams need to leverage the advantages humans have and the advantages robots possess in 

order to efficiently allocate tasks. Experimental limitations hindered these potential 

performance improvements. If these areas were improved, performance most likely would 
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have improved along with workload. DPM-MN attempts to target some of these 

performance areas. 

Along with lowering the mental workload of a human-robot team, robots with a 

personality can also affect stress coping abilities (Lohani, et al., 2016). The idea is that a 

human-robot team where the human trusts and relies more on the robot can impact the 

human’s perceived ability to cope with stress in a positive manner. Socially intelligent 

robots can provide their human teammate with socioemotional support through successful 

social interaction.  

Robots can display their intelligence through proper mathematical calculations and 

choices, but some AI enthusiasts argue that “primate intelligence primarily evolved in 

adaptation to social complexity” (Dautenhahn, 2007). This is the social intelligence 

hypothesis (Gavrilets, et al., 2006). In essence, robots need to start with social intelligence 

to gain intellectual attributes such as interpretation, prediction, and manipulation of 

information. The acceptance of social intelligence as a crucial element for AI further 

validates the need for cognitive architectures such as DPM-MN. One way to capture social 

intelligence is through copying humans, like DPM-MN, through imitation learning. There 

is a lot to learn from the “richness and depth of human experiences” (Dautenhahn, 2007). 

Specifically, contextual adaptation depends on human experiences and the ability to 

restructure the meaning of a situation to fit the context of recent events. Many optimization 

and analytical problems are solved through traditional AI, but human intelligence will 

require a solid model of social intelligence.  

The benefits from equipping robots with a personality will spread throughout 

human-robot teams found in normal society. The healthcare sector can use AI to fight 
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against labor shortages, the educational sector can use AI to reduce costs and improve 

quality, and the marketing sector can use AI to persuade shoppers in buying certain brands 

(Gonzalez-Jimenez, 2018). However, with improvement comes an expansion of human 

factors issues. Before socially intelligent AI can utilize their full potential, a few other 

problems will need to be better studied. These problems include deciding what role AI 

should play in the allocation of tasks, avoiding negative emergent behavior when teaching 

robots, correctly combining robot models with human models, and fighting against 

irrational fears (Sheridan, 2016) 

With the spread of socially intelligent robots, it is important to distinguish the roles 

a human should have versus the roles a robot should have. Fitts list proposes that humans 

appear to surpass computers at tasks requiring judgement and inductive reasoning while 

computers appear to surpass humans at tasks requiring routine repetition, highly complex 

operations, and deductive reasoning (De Winter, et al., 2015). However, Sheridan brings 

up the following question: “If a job can be more efficiently done by a robot, should that 

job always be automated?” (Sheridan, 2016). In a future setting, the robot may possibly be 

able to perform better than the human in every sector. This requires the team designer to 

more deeply define the purpose of a human in a human-robot team (Schutte, 2015). One 

suggestion is to utilize AI to allow the human to perform optimally within the classic 

Yerkes-Dodson inverted U theory of performance (Diamond, et al., 2007). 

Human-robot teams would gain a barrage of advantages if the robot could 

reconstruct the functions of a human teammate’s mind. DPM-MN tries to simulate the 

commonly adopted dual-process theory to create a well-performing cognitive architecture. 

A dual-process theory inspired algorithm may not be a standalone end solution, but it may 
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become a tool used with other algorithms to construct an AGI. Either way, it is an attempt 

to get closer to reaching the goal of AGI. 

2.2 Concept Drift 

Concept drift “primarily refers to an online supervised learning scenario when the 

relation between the input data and the target variable changes over time” (Gama, et al., 

2014). It is sometimes referred to as adaptive learning. Another perspective is to think of 

concept drift as a change in the underlying distribution of data given a context. Problems 

involving a data stream over a long period of time are sometimes concerned with concept 

drift. A data stream describes when the input is sequential and temporal.   

  There are various types of concept drift including sudden, gradual, and reoccurring 

(Bifet, et al., 2011). Webb, et al. (Webb, et al., 2016) attempt to provide a framework for 

functionalizing the categorization of different types of concept drift. They use data 

descriptions such as drift magnitude, drift frequency, drift duration, drift recurrence, and 

drift predictability to formulate the equations for determining the concept drift type.  

Gama, et al. (Gama, et al., 2014) created a taxonomy to help understand the 

differences between concept drift algorithm implementations. The taxonomy split the 

algorithms along the individual lines of memory, change detection, learning process, and 

loss estimation. Each of the axis provide in-depth explanations about the sub-categories 

and research examples for each.  

Many solutions for the problem of concept drift take a monitoring approach. An 

example is ADWIN which oversees the raw sensor data or streaming error and provides a 

concept drift warning whenever it detects a large enough change (Gama, et al., 2014). 

These approaches performed well for their purpose, but they fail when a high input data 



 

19 
 

rate exists. Today, data can stream so quickly that it is improbable to label all of it (Woźniak, 

et al., 2016).   

A concept drift algorithm that takes advantage of a dual-store structure is the Self-

Adjusting Memory (SAM) algorithm (Losing, et al., 2017). Dual-store models involve a 

balance between short-term memory (STM) and long-term memory (LTM). SAM provides 

a general structure that deals with various types of concept drift without needing any 

hyperparameterization. The STM tracks the most recent concepts while the LTM tracks 

concepts previously revoked from the STM as time advances. Predictions are balanced 

between the memory types dependent on the recent accuracy rate. The prediction provided 

by each memory type uses a kNN classifier with a distance weighting. SAM is primarily 

different from DPM-MN because SAM focuses on building memory based on different 

types of sliding windows while DPM-MN focuses on building each system based on 

human-like cognitive learning characteristics.   

Many recent concept drift algorithms focus on dealing with concept drift in the face 

of the increasing velocity of data. Some other concept drift solutions include using an 

ensemble of simple classifiers (Woźniak, et al., 2016), an algorithm that only requires 15% 

of the data to be labeled (Lindstrom, et al., 2010), and an algorithm taking advantage of 

probabilistic graphical models to capture context through a latent variable(Borchani, et al., 

2015). Other real-world applications of concept drift modeling are provided by 

CDCStream (Ienco, et al., 2014) and two overviews covering the topic (Bifet, et al., 2011; 

Gama, et al., 2014). Some of the real-world applications of concept drift examined in the 

overviews are a movie recommender system, food sales prediction, and real-time mass 

flow prediction.  
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2.3 Novelty Detection 

The goal of outlier/novelty/anomaly detection is to determine which data 

observations do not belong to the “normal” data distribution. The presence of normal data 

constructs the normal data distribution. After the distribution is created, new points are 

usually given something similar to a novelty score. The novelty score is checked against a 

subjective threshold to determine if the new point is an outlier or not (Pimentel, et al., 2014). 

A predominant issue for contemporary novelty detection is the “curse of 

dimensionality”. High-dimensionality can become the source of many different problems 

including the need to search a large space, distances between points becoming less 

informative, and the existence of a difficult relationship between “hubness” and a true 

outlier degree (Zimek, et al., 2012). Many novelty detection algorithms focus on 

overcoming the curse of dimensionality (Erfani, et al., 2016; Radovanović, et al., 2015). 

A myriad number of outlier detection algorithms exist. Pimentel, et al. (Pimentel, 

et al., 2014) divide the algorithm types into the categories of probabilistic detection, 

distance-based detection, reconstruction-based detection, domain-based detection, and 

information-theoretic detection. Ahmed, et al. (Ahmed, et al., 2016) instead classify 

novelty detection algorithms into classification-based detection, statistical detection, 

information-theory detection, and clustering-based detection. Additionally, Agrawal 

organizes novelty detection algorithms into classification-based detection, clustering-based 

detection, and hybrid detection (Agrawal, et al., 2015). Each of these three survey papers 

provide several examples and comprehensive explanations for their categorizations. 

Although the survey papers are sourced from different academic backgrounds, there is 

obvious overlap in their grouping of novelty detection algorithms. Even though there are 
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many different algorithms, the fundamental goal is to differentiate between the “normal” 

and “abnormal” distribution locations. 

The definition of “normal” is somewhat subjective. Thus, Lavin (Lavin, et al., 

2015) came up with a benchmark for anomaly detection algorithms(Lavin, et al., 2015). 

The goal is to evaluate real world anomaly detectors in an objective manner. Real-world 

situations that caused an anomaly instance to occur motivated the hand-labeled dataset true 

values. The benchmark also takes the real-world performance measure of detection timing 

into consideration. It is important for an algorithm to quickly reveal anomaly observations 

in time critical settings such as during intrusion detection.   

A real-world application of outlier detection can be seen in Djenouri’s research 

(Djenouri, et al., 2018). Djenouri detects traffic outliers using three different methods: 

statistical models, distance-based models, and pattern analysis. The experiment highlighted 

critical problems with Djenouri’s applied outlier detection. First, computation time can get 

very expensive, especially when during pattern analysis. Second, a temporal dataset 

constrains the scope of outlier detection. Djenouri could detect single-point extreme 

outliers, but had difficulty detecting a larger outlier window of time. Third, researchers 

should utilize speed improvement architecture through high-performance computing, 

database systems, and computational intelligence. Finally, it may be useful to repurpose an 

existing, more complex outlier detection method to fit Djenouri’s research problem. 

2.4 Cognitive Architectures 

Cognitive architectures in artificial intelligence are meant to model human 

cognition. A concrete example of a cognitive architecture is CogPrime (Goertzel, et al., 

2013). CogPrime tries to serve as an Artificial General Intelligence (AGI) solution. It 
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acknowledges the complicated and complex nature of the AGI problem. CogPrime focuses 

on learning through pattern finding and the evolution of a network of memory-based 

hierarchies and heterarchies. The key to this model is the proclaimed cognitive synergy 

between the vast network. The network modules are interlocked enough to provide 

efficiency in the search for a solution but specialized enough to engender new 

functionalities. The authors believe beginning with possibly complicated and complex, but 

sound, models and applying a sustained effort towards building it will greatly improve AGI.  

CogPrime and other cognitive architectures receive their engineering advantage 

through functionalizing the human thought, decision-making, and learning process. 

Historically, researchers have created cognitive architectures for three purposes: “to 

capture…the functions of reasoning, control, learning, memory, adaptivity, perception, and 

action”, to design the basic building blocks necessary for the evolution of capabilities over 

time, and to reach human level intelligence (Lieto, Bhatt, et al., 2018). A variety of 

psychological and biological theories inspire cognitive architectures. Distributed Adaptive 

Control theory of mind and brain is the basis for DAC-h3 (Moulin-Frier, et al., 2017), the 

Functional Systems Theory is the basis for Vityaev’s cognitive architecture (Vityaev, et al., 

2018), and a physical symbol system hypothesis and the heuristic search hypothesis propel 

the Icarus cognitive architecture (D. Choi, et al., 2018).  

Two progenitor cognitive architectures, Adaptive control of thought-rational 

(ACT-R) (Anderson, et al., 2004) and state, operator, and result (Soar) (Lehman, et al., 

2006) inspire many modern cognitive architectures. Collaborating many different 

submodules to produce a single, functional module is the main idea of ACT-R. When the 

model needs a new component, it creates the component as a specialized module and fits 
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it into the grand scheme. Some examples of modules are the perceptual-motor module, the 

goal-module, and the declarative memory module. Soar is more structural. It works through 

designated memory segments. The memory representations are long-term memory 

(divided into procedural, semantic, and episodic memory), and short-term working 

memory. The working memory holds the current state. Similar to most cognitive 

architectures, both ACT-R and Soar contain learning mechanisms.  

Cognitive architectures are not only meant for studying humans or creating a 

human-like robot. Recently, researchers proposed to implement cognitive architectures 

into self-driving cars and transportation systems (Chen, et al., 2018; Deng, et al., 2017; 

Jämsä, et al., 2013; Saucer, et al., 2018). Even though architectures mimic human cognition, 

the functions gained through the architecture are also beneficial to cars. Cars act similar to 

human-like agents that communicate with the driver and each other. The theory of 

cognitive psychology describes “sense and perception, memory and learning, reasoning, 

judgement and problem solving” (Deng, et al., 2017). The cognitive architecture provides 

the higher-level functioning that allows the car to perform tasks such as determining the 

human driver’s mental or emotional state, pay attention to important information in the 

surrounding environment, and weigh decisions against each other.   

Despite major advancements in cognitive architectures, researchers still need to 

solve certain critical issues. Lieto, et al. (Lieto, Lebiere, et al., 2018) outline the two 

primary problems of knowledge size and knowledge homogeneity. In relation to 

knowledge size, current cognitive architectures lack a solid knowledge base. Humans are 

able to learn and memorize an enormous amount of generalized information for everyday 

tasks while artificial intelligence typically remains limited in its problem space. Knowledge 
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homogeneity is an issue because of the theoretically high number of problem domains an 

AI agent needs to understand. It is difficult to encode every object and idea down to a 

common form for processing purposes.    

For a plethora of examples of cognitive architectures, refer to Ye’s survey of 

cognitive architectures in the past twenty years (Ye, et al., 2018).  

2.4.1 Social Cognition Models. 

Social cognition models are a subset of cognitive architectures. Social cognition 

models are unique because they are cognitive architectures where the environment is 

primarily a social setting. The endowed agent is meant to increase their social and 

emotional intelligence. A socially aware agent would especially be useful in human-robot 

teams (Baxter, et al., 2016; Infantino, et al., 2018).  

Affective computing is “computing that relates to, arises from, or influences 

emotions” (Picard, 1995), and it heavily influences the social capability of AI. Schuller 

offers three sectors of emotion that are necessary for improving the affective computing 

ability of socially intelligent AI. These three areas are emotion recognition, emotion 

generation, and emotion augmentation (Schuller, et al., 2018). Emotion recognition allows 

a robot to determine what emotions a human is displaying while emotion generation allows 

a robot to display those same emotions so a human can relate. Researchers scarcely discuss 

emotion augmentation, but it means to use emotion as a factor in the cognitive process of 

planning, reasoning, and learning.  

  One of the more important social values relating to affective computing is trust. In 

human-robot teams, it is worthwhile to figure out how the robot can influence the trust of 

their teammate. Some factors that promote trust include reliability, validity, utility, 
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robustness, and false-alarm rate of the agent (Siau, 2018). An enhancement in trust of a 

robot also enhances the effectiveness of a human-robot team (Siau, 2018; Weiss, et al., 

2017). 

In a team, the robot must be able to socially read humans to act appropriately. Social 

intelligence includes the ability to understand the social setting. Social cues such as vocal 

laughs, visual smiles, and facial expressions can permit the robot to comprehend emotional 

states (Krakovsky, 2018; Weber, et al., 2018). Once the physical features are determined, 

an autonomous agent should deliberate the internal state of the human (Görür, et al., 2017). 

It could be possible for the robot to correctly understand the human’s current ostensible 

emotional state but misunderstand their true hidden desires. After an emotional state 

prediction is made, a robot can emotionally influence the human  (Bera, et al., 2018; Pereira, 

et al., 2015). 

There already exists various complex social cognitive architectures (Azarnov, et al., 

2018; J. Fan, et al., 2017; Lazzeri, et al., 2018; Lemaignan, et al., 2017; Rodríguez-Lera, 

et al., 2018; Sinclair, et al., 2017; Wiltshire, et al., 2017). The FACE humanoid robot 

(Lazzeri, et al., 2018) has a “believable facial display system based on biomimetic 

engineering”. HiMoP creates a social cognitive architecture to structure a hierarchy of 

needs, and it also executes behaviors by using an assortment of finite-state machines 

(Rodríguez-Lera, et al., 2018). A final notable implementation feature is Wiltshire’s 

(Wiltshire, et al., 2017) recommendation to embed a dual-processing theory module in an 

agent to account for type 1 and type 2 processes during social interactions. 
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2.4.2 Dual-Process Theory Implementations.  

Cognitive architectures inspired by the dual-process theory all follow the same tenet 

of using some form of System 1 and System 2, or type 1 and type 2, modules. System 1 

represents the implicit process while System 2 represents the explicit process. The implicit 

process is intuitive and defined by autonomy while the explicit process is reflective and 

requires working memory (J. Evans, et al., 2013). Each of the systems should interact in 

some manner to achieve positive cognitive functions. However, each implementation will 

surely contain a somewhat unique execution of the dual-process theory. 

Augello (Augello, et al., 2016) uses System 1 and System 2 to obtain a multimodal 

quadrant of processing. Implicit and explicit processing and convergent or divergent 

processing split the quadrants. These give the states of “exploratory”, “reflective”, “tacit”, 

and “analytic”.  

The MECA cognitive architecture has System 1 and System 2 as primary 

subsystems (Gudwin, et al., 2017). Within System 1 and System 2 exists many smaller 

components. In MECA, the dual-process theory harmonizes with Dynamic Subsumption, 

Conceptual Spaces, and Grounded Cognition.  

As the dual-process theory architectures are iteratively analyzed (Augello, et al., 

2017; Blythe, 2012; Dennis, et al., 2018; Lieto, et al., 2017; Potamianos, 2014; Strannegård, 

et al., 2013), some common themes become more apparent. System 1 and System 2 

frequently represent low-level and high-level goal subsystems. The more abstracted 

calculations and intensive resource allocation occur in System 2 while the almost instant 

and near-obvious predictions occur in System 1. The researchers often exploit the nonlinear 

behavior that comes with dual system processing when interacting between System 1 and 
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System 2. Some authors activate System 2 only when System 1 cannot provide an answer 

while other authors infer in parallel and then compete the two answers. Sometimes this 

competition of answers serves as a check to see if System 2’s reasoned answer agrees with 

System 1’s intuitive answer.    

2.5 DPM-MN Building Blocks   

The dual-process theory also inspires a few more cognitive architectures such as 

CLARION (Helie, et al., 2011) and QMF (Vaughan, et al., 2016). These models each 

attempt to simulate human cognition in their own unique algorithm. There are differences 

between which cognitive functions are most prominent. They also notably differ on the 

knowledge representation, the data processing pipeline, and the interaction between their 

own System 1 and System 2 implementations. Dual-process theory does not inspire 

Bindewald’s Clustering-Based Online Player Modeling (Bindewald, et al., 2017), but 

Bindewald, et al. deals with the same Space Navigator dataset that DPM-MN also attempts. 

CLARION, QMF, and Bindewald’s algorithm inspired the creation and structure of DPM-

MN. Ideas from the three inspirational models pervade the DPM-MN model.  

2.5.1 CLARION.  

CLARION (Helie, et al., 2011) breaks apart System 1 and System 2 into implicit 

and explicit knowledge. The aggregation of bottom-level implicit knowledge forms the 

top-level explicit knowledge. The model consists of two different subsystems, each with 

their own System 1 and System 2. The first subsystem is the Non-Action-Centered 

Subsystem (NACS) that builds the declarative long-term memory. The other subsystem is 

the Action-Centered Subsystem (ACS) which deals with procedural memory and executive 

function. These two subsystems represent the short-term versus long-term processing 
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duality. The NACS and ACS, along with their respective System 1 and System 2 

architectures, interact with each other through activation nodes.  

 

Figure 2: High-level CLARION representation (Helie, et al., 2011). 

CLARION exhibits its own special topology for a cognitive architecture. It seems 

as though the cognition theory came first, and then the model reflects the desired functions. 

Instead of gaining an engineering advantage through mathematical theory, CLARION 

gains an engineering advantage through cognitive theory. Many prominent characteristics 

exist. The System 1 and System 2 sections are split via a distinction between implicit and 

explicit knowledge. The model learns implicit knowledge “through gradual trial-and-error 

learning” (Helie, et al., 2011). Bottom-up learning from System 1 builds the explicit 

knowledge in System 2. There also is a respect for an interaction and balance between both 

levels instead of treating them as completely independent functions. 

Decision Field Theory (DFT) is the basis for the primary psychological idea. DFT 

places great importance on understanding the evolution of the model rather than only caring 
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about the end-state. Two main features encompass DFT: valence and preference. Valence 

is the “momentary advantage/disadvantage of an option in relation to the other options 

being considered” while preference of an option “refers to the accumulation of all the 

valences that this option has received in the past”. In essence, DFT examines the path to 

the end-state at distinct points in time while many other models only use the process as a 

means to an end. For example, in neural networks, nobody cares about the parameter values 

of the network half-way through training. 

CLARION elucidates other pivotal progression points for cognitive architectures. 

It advocates for a minimalism structure. The cognitive architecture should start out initially 

bare and “internal structures and representations should also be kept to a minimum” (Helie, 

et al., 2011). Rule-based reasoning and similarity-based reasoning are utilized to make 

decisions based on previous experiences. People make decisions based on simplified 

mental modeled concepts built up over time, and they also can make decisions based on 

how similar a current experience is to a previous experience they encountered. CLARION 

also realizes the need to decide which cognitive functions should be encoded in the 

cognitive architecture. There are so many psychological effects and people are different in 

general. It is crucial to include enough cognitive functions to simulate a human’s mind, but 

not too many where the functions impede the effectiveness of each other because of 

complexity. For example, CLARION attempts to simulate “similarity effects, the attraction 

effect, the compromise effect, and the complex interaction between these phenomena” 

(Helie, et al., 2011).    

Another important cognitive attribute is a decision-making confidence level. 

CLARION uses confidence levels to determine if a possible decision is sufficient. The 
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parameter search for the best performing confidence level gives information about the 

problem. The researchers exemplified how the training process of a cognitive architecture 

can give explanatory information. CLARION was able to model the cognitive theories of 

the unpacking principle and ascertainment bias. The unpacking principle occurs in a 

medical setting when a doctor gives a patient their diagnosis before all pertinent 

information is revealed. CLARION can achieve the unpacking principle through setting 

the decision-making confidence threshold to a low value. Ascertainment bias occurs when 

the doctor’s diagnosis is based on prior beliefs. It is a form of stereotyping. This form of 

subjective decision making is important to capture when dealing with cognitive 

architectures. Even though it can lead to a poor diagnosis, the goal is to capture the human-

decision making process itself which is inherently flawed.  

CLARION is a primary influencer of DPM-MN. DPM-MN implements similar 

ideas and functions as CLARION such as bottom-up learning through trial-and-error 

experiences, the temporal aspect of valence and preference, a minimalist structure, rule-

based reasoning, the expectation for lower level functions to enable higher level emergent 

behaviors, and the use of a confidence level in support of decision making. Many of these 

ideas and functions also come straight from the dual-process theory. CLARION gives 

DPM-MN the benefit of a clear example and explanation of which dual-process theory 

parts to focus on.  

2.5.2 Qualia Modeling Framework. 

The dual-process theory directly influences the Qualia Modeling Framework 

(QMF) (Vaughan, et al., 2016). It separates System 1 as an imitation of the autonomous 

mind while System 2 is an imitation of the reflective mind. The model utilizes two separate 
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ACT-R models to build the System 1 and System 2 implementations. A new input first 

encounters System 1. If the model provides a suboptimal answer, the input is transformed 

into a new state space using hypernetwork mathematics. After the state space 

transformation, the System 2 ACT-R model passes through the input. The final prediction 

accepts the resulting answer and uses it to update the System 1 autonomous ACT-R model.   

 

Figure 3: High-level representation of QMF (Vaughan, et al., 2016). 

QMF possesses multiple unique properties that may be useful for other cognitive 

architectures. Vaughan, et al. believe experiences can model consciousness and qualia. In 

other words, data points representing distinct experiential points in time are sufficient 

enough to simulate the consciousness used in human decision making. Other cognitive 
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architectures often use a similar approach, but do not explicitly state this point. Dual-

Process theory as the inspiration for the cognitive architecture serves as another explicit 

statement in the research paper. Psychological research inspires many other cognitive 

architectures, such as CLARION, that have a framework similar to the dual-process theory; 

however, researchers do not directly label it as a dual-process theory topology. 

QMF also tries to serve as a generic structure for many different problems. As a 

result, QMF is flexible with its input and output. The target attribute and number of 

dimensions in the data can change in real time. Also, the model can still process data with 

incomplete feature information. QMF can look for spatial and temporal relationships. 

Transfer learning is possible for quick implementation. Humans can make use of previous 

knowledge for new tasks or new domains. This idea influenced QMF’s attempt at model 

generalization.  

Two other crucial components of a dual-process theory inspired cognitive 

architecture model are found in QMF: the algorithmic mind and real-time training. System 

1 and System 2 are already known as the subsystems of the dual-process theory, but QMF 

adds one more with the algorithmic mind. The intended purpose of the algorithmic 

subsystem is to create a process for interaction between System 1 and System 2. The 

algorithmic module in QMF primarily acts as the gate-keeper of information flow. It 

decides whether the prediction consults System 2 or not. This can save computational time 

and increase speed since the information does not always reach System 2. The real-time 

training aspect of QMF imitates the continuous development of consciousness in a human. 

There is no point where a person stops learning. A cognitive architecture should be able to 
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take in experiences one at a time to constantly update rather than only functionalizing past 

data for current inference. 

Even though QMF succeeds in creating an engineering advantage, confirmed 

during a malware classification experiment, it poses one major flaw in shaping itself after 

a dual-process theory. QMF can be flattened out and function exactly the same way. 

System 2 acts as a backup inferencing model in case System 1 fails rather than having a 

dependent interaction between the two. QMF is contrasted by CLARION which creates 

explicit concepts in System 2 through the build-up of singular instances in System 1. 

CLARION also has direct activation ties between the two sub systems. 

QMF provides DPM-MN with the notion that human consciousness can be 

modeled through experiences. This is an important component since DPM-MN begins and 

builds its knowledge base solely on datapoints that represent experiences. Additionally, 

DPM-MN utilizes an algorithmic mind similar to QMF. System 1 and System 2 complete 

independent tasks within their own system, and then the algorithmic mind determines the 

effect each system has on the other. DPM-MN also imitates QMF by intending to operate 

in a real-time manner for the purpose of continuous learning. DPM-MN assembles the 

cognitive functions with the expectation of a constant flow of input.  

2.5.3 Bindewald Clustering-Based Online Player Modeling. 

Bindewald, et al. created the Clustering-Based Online Player Modeling (CBOP) 

(Bindewald, et al., 2017) approach. This model type initially develops a state-trajectory 

mapping through clustering. A weighting algorithm dependent on certain criteria such as 

existing cluster population and cluster variance then updates the model. 
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Figure 4: CBOP paradigm (Bindewald, et al., 2017). 

CBOP is a predominantly relevant algorithm since it attempts to solve the same 

problem as DPM-MN. The data gathering, and data processing steps are very similar to the 

DPM-MN steps. Additionally, CBOP provides trajectories as whole items instead of 

providing the response point-by-point (Bindewald, et al., 2015). CBOP predicted the Space 

Navigator trajectories with a mean Average Coordinate Distance (ACD) of 0.2036 using 

specific player modeling.  

Through their research, Bindewald, et al. discovered a few issues with the Space 

Navigator problem. First, the state-space representation could be more detailed. Some 

probably important features are left out such as the trajectory of other ships. Second, the 

experimental participants seemed to loosely keep a strategy. Given the same scenario, they 

would not draw the same trajectory. Finally, the CBOP model’s learning mechanism did 

not necessarily change the underlying state-response mapping. It acted more as an update 

to the foundational model rather than a transition due to concept drift. As a result, any 

learning was minimally captured (Bindewald, et al., 2015). 
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CBOP’s clustering methods motivated DPM-MN to take advantage of k-means 

clustering to find similar datapoints to make up the underlying distribution of a new System 

2 concept. Also, CBOP found the importance in viewing the Space Navigator trajectories 

as a whole. This influenced the idea in DPM-MN to treat the responses as classes with 

attached prediction representations.  

2.6 Summary  

The lessons learned and discoveries found during these related research 

undertakings motivated DPM-MN. Overall, the dual-process theory cognitive architecture 

approaches share similarities with regard to the structure and the goal. All the models 

attempt to simulate human cognition through the distinction of System 1 and System 2 

processes. There may be disagreements on the exact algorithm features or what is important, 

but each method has its own special way of trying to provide cognitive capabilities.  

The paramount research related to DPM-MN includes the functionalization of 

cognitive processes, previously created models to actualize the functions, and research that 

directly motivates the DPM-MN architecture. Concept drift and novelty detection are 

critical cognitive functions specifically targeted during the inception of DPM-MN. 

Cognitive architectures in general, and those focused on social cognition or the dual-

process theory, serve as completed examples of human decision-making models. 

Furthermore, cognitive architectures with a dual-process theory core such as CLARION, 

QMF, and CBOP are recent models with goals comparable to DPM-MN. 
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Chapter 3. Dual-Process Model using Multivariate Normal Probability Density 

Functions 

The Dual-Process Model using multivariate normal probability density functions 

(DPM-MN) is a multifaceted algorithm. It has several interwoven functionalities to 

produce an outcome similar to the cognitive processes of a person (Appendix C). DPM-

MN constructs a shared mental model (SMM), evaluated by prediction similarity, through 

explicitly stated cognitive learning functionality. The DPM-MN algorithm enables 

memory preservation, balance between implicit and deliberate systems, aggregation of 

experiences to form a general concept, online learning, overwriting previous knowledge, 

retaining past experience memory, concept drift, and outlier sensitivity.  

This chapter first provides an overview of the DPM-MN algorithm. Then, the 

chapter explains each individual component of DPM-MN. These components include the 

refreshing of System 2 concepts, the addition of new points to System 1, the creation of a 

new System 2 concept, the windowing function, the overwriting of another concept in 

System 2, the revocation of points from System 2 to System 1, and concept drift. Finally, 

Chapter 3 illustrates examples of novelty detection, prediction using System 2 abstraction, 

and inference.  

3.1 DPM-MN Overview 

Figure 5 shows an overview of the DPM-MN model. The dotted line represents the 

learning path. The input can consist of multiple datapoints to reduce the computational cost. 

Once System 2 determines insufficient predictions of the input, System 1 updates with 

those insufficient predictions. System 1 discovers new generalized concepts to place into 

System 2. If System 2 needs to remove previous concepts to accommodate the newly 



 

37 
 

discovered concepts, a fraction of the underlying points that made up the newly deposed 

concepts return to System 1 to promote long term memory. The interrelation unit handles 

the specific interaction between System 1 and System 2.  
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Figure 5: DPM-MN overview. 

The solid arrow path shows the prediction process used for validation and testing. 

The input is simultaneously inserted into System 1 and System 2. Each system provides 

their prediction along with a confidence value. Within each system, the chosen prediction 

is the class with the highest confidence value. After each system predicts the input, the 

most confident of the two systems determines the final prediction that is ultimately output 

from DPM-MN.  

3.2 DPM-MN Learning Characteristics 

The DPM-MN algorithm builds an SMM via dual-process theory learning 

characteristics. These learning characteristics include memory preservation, balance 

between implicit and deliberate systems, aggregation of experiences to form a general 



 

38 
 

concept, online learning, overwriting previous knowledge, retaining past experience 

memory, concept drift, and outlier sensitivity. 
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Figure 6:DPM-MN flowchart. 

Figure 6 is the flowchart for DPM-MN at a high level. This chapter explains all of 

the processes. The training path in the flowchart is made of the various cognitive-like 

functions. DPM-MN allows additions or subtractions from the training path functions. It 

has a modular design so DPM-MN can easily accommodate any dual-process theory 

implementation change.  
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Algorithm Dual-process model using multivariate normal probabi l i ty densi ty functions (DPM-MN)
1: input: Ct =  confidence threshold; Et =  entropy threshold; Nc =  number of clusters during k-mean clustering; St =  size  

threshold; Sone =  system 1 influence; Stwo =  system 2 influence; Ws =  system 2 window size
2: initialize: system1Points =  empty; system2Concepts =  empty; data =  SpaceNavigator data
3: for point in data do

Ws

if Training then
refreshThreshold = C t > (Refresh System 2 Rules)
if ((concept ∈ system2Concepts) >  refreshThreshold) ∧ (concept is max prediction confidence for class group) then

refresh concept
if  (point prediction <  Ct) ∨ (point prediction is wrong) then >(Add new System 1 points)

4:
5:
6:
7:
8:
9: add the point to system1Points

kMeans ← the system1Points groupings af ter k-means clustering where k = Nc >(add new System 2 concepts)
newConcepts = empty
for group ∈ kMeans do

groupSize = size(group)
groupEntropy = mostFrequentClass

groupSize
if (groupSize > St) ∧(groupEntropy > Et) then

mostFreqPoints =  points ∈ group that belong to the most frequent class

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:

add mostFreqPoints to system2Concepts  
remove mostFreqPoints from system1Points  
newConcepts ← mostFreqPoints

rebukedPoints = empty
t

0.5
Ws

numRevoke = integer value from (S × ( ))
for conceptClass ∈ sys2Concepts classes do >(System 2 Windowing)

if size(conceptClass) >  Ws then

20:

21:

22:
23:
24:
25:

window the older concepts in conceptClass
rebukedPoints ← numRevoke of the points in the windowed concepts that are closest to the distribution mean

26:
27:
28:
29:

for  newConcept ∈newConcepts do >(System 2 Overlapping)
if overlapping of other concept happens (determined by Ct) then

remove the overlapping points of the other concept from system2Concepts  
rebukedPoints ← numRevoke of the overlapped points of the other concept

30: system1Points ← rebukedPoints > (Revocation of points to System 1)

if Inference then31:
32:
33:
34:
35:
36:
37:

system1PredictionClass, system1PredictionConfidence =  point prediction from system1Points using Sone  
system2PredictionClass, system2PredictionConfidence =  point prediction from system2Concepts using Stwo  
if system2PredictionConfidence >  system1PredictionConfidence then

finalPrediction = system2PredictionClass
else

finalPrediction = system1PredictionClass
 

Algorithm 1:DPM-MN algorithm. 
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Figure 7: Addition of new points to System 1. 



 

40 
 

DPM-MN begins in a tabula rasa, or “blank slate”, state. This initial state conforms 

to the dual-state process model traits described by Sun (Sun, 2004). Specifically, DPM-

MN maintains a minimalistic approach that grows through bottom-up learning. Beginning 

in a tabula rasa state empowers DPM-MN to learn new concepts through new experiences 

rather than beginning with a presupposed knowledge base.   

The addition of new points to System 1 maintains a balance between the implicit 

and deliberate systems. Figure 7 shows how DPM-MN learns from new datapoints. The 

individually illustrated datapoints represent a new input and their color reveals their true 

classification. Step 1 shows the position and class of each of the points from the new input. 

Step 2 highlights the confidently correct points yellow and highlights the new System 1 

points red. The confidence level and the correctness are the basis for the new System 1 

points. The new System 1 points include a point that is correctly classified but has a low 

confidence (the green point turned red), and a point with high confidence but incorrectly 

predicted (the blue point turned red). Another way to think about the process in Figure 7 is 

to identify which new points are not highly confidently correct. The points that are not 

correct with high confidence become new System 1 points. Through this training process, 

DPM-MN maintains the correct concepts learned in System 2, while building the 

potentiality of new concepts in System 1.   
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Figure 8: Creation of a new System 2 concept. 

Bottom-up learning, or the aggregation of experiences to form a general concept, 

inspires the method of adding a new concept to System 2. Once enough outlier experiences 

occur, the new state-response pairings individualized in System 1 can become a generalized 

concept in System 2.  

Figure 8 presents the formation of a new System 2 concept. The initial view is first 

shown. After that, System 1 groups individual points together using k-means clustering 

where k is equal to the number of clusters (Nc) hyperparameter. In this case, it is three. 

Once the clustered groups are assigned, System 1 tests each group for their size and their 

consistency. The size must at least be the size threshold (St) and the consistency must be at 

least the entropy threshold (Et). The number of individual points in the group determines 

the size. The percentage makeup of the most frequently occurring class determines the 

consistency. If both the thresholds are met, the points belonging to the most frequently 

occurring class compose the underlying distribution for the new System 2 concept’s 

Gaussian probability density function.  
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Figure 9: Windowing. 

The windowing functionality in DPM-MN caters to an online learning environment. 

It also helps capture the balance between old concepts and new concepts in memory. The 

number of concepts per class in System 2 depends on each unique SMM’s optimal learning 

style. 

Figure 9 displays the idea of windowing for System 2 concepts. This is a memory 

controlling process. If the windowing hyperparameter is a large value, System 2 exhibits 

long-term memory. Windowing gives DPM-MN an ability to favor recent concepts over 

older concepts. The process acts as a conventional sliding window. When it comes time to 

remove a concept, the oldest concept is forgotten.   
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Figure 10: Refreshing of System 2 concepts. 

Figure 10 exhibits an additional memory preservation function. System 2 

remembers concepts that still hold relevance. A concept’s frequency of being the correct 

prediction source determines the amount of relevancy. The prediction stage in Figure 10 
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shows the green concept on top as the provider for the correct prediction. Each training 

stage, System 2 refreshes a new concept from each class if they are sufficiently confident. 

In Figure 10, the top green concept meets the requirements to be refreshed. As a result, 

System 2 pushes the top-left green concept to the front of the window for the green class. 

Subsequently, the other green concept moves twice in a row.  

Windowing and refreshing maintain the important memory in System 2. System 2 

uses new samples to determine the relevancy of the System 2 concepts. With the addition 

of new System 2 concepts through aggregation of unique experiences in System 1, System 

2 ‘forgets’ older unused concepts while refreshing the correct concepts. 
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Figure 11: Overwriting of another concept. 

Figure 11 illustrates the overwriting of previous knowledge process in System 2. 

This process is an algorithmic implementation synonymous to the decision-making 

function of changing a routine. Given the same scenario, System 2 can update an old 

concept for decision-making to a new concept. If this process is not implemented, old 

behavioral concepts do not approprietaly deteriate and persistently interfere with newly 

incoming concepts.   

Step 1 shows the process of taking the new concept’s (B1) underlying distibution, 

and testing them against all existing concepts (G1 and G2). The highlighted points are the 
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B1 underlying points which would trigger a confident guess from an existing concept. 

Since G1 and G2 both trigger a confident response to at least one underlying point from 

B1, System 2 tags them as possible existing concepts to overwrite. Step 2 shows the reverse 

occuring: System 2 tests the existing concepts’ underlying points against the new concept. 

System 2 removes any points from G1 or G2 which B1 confidently responds to.   
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Figure 12: Revoking. 

Figure 12 shows the revoking process which retains past experience memory. 

Assume a windowing value of two. In Step 1, the points in System 1 are able to become a 

concept. Because they become a new concept in System 2, as illustrated in Step 2, a 

windowing effect occurs. The windowing effect deposes one of the green concepts. As a 

result, System 2 tags its underlying points as subject to revocation. In this case, System 2 

only revokes one of the underlying distribution points into System 1.  

The overall number of points that make up the underlying distribution of a System 

2 concept determines the number of points that are revoked. The number of revoked points 

also depends on the window size (Ws) because if concepts from the same class are quickly 

being windowed and a lot of points are revoked, it could be possible for a thrashing effect 

to occur where outdated System 2 concepts create new System 2 concepts through the 



 

45 
 

buildup of revoked points existent in System 1. Finally, the most central points of the 

dismantled concept are the points chosen for revocation into System 1.  

 

      

System 2 System 2

 

Figure 13: Concept drift. 

Figure 13 displays concept drift via the green concepts. Over time, the green 

concept response is given in different scenarios. System 2 intrinsically detects the concept 

drift through windowing. The detection of concept drift is important because humans learn. 

Their ideas and behavior are not static. Concept drift indicates a change of behavior in a 

person. With most learning tasks, people begin with a rudimentary understanding and 

strategy. As time passes, they will learn about the problem and update their strategy to 

become more optimal.  

3.3 DPM-MN Behavior Examples 
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Figure 14: Novelty detection example. 
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Figure 14 is a simple example of DPM-MN’s ability for novelty detection. The red 

point represents a new input that needs a prediction. In this scenario, the blue class 

infrequently occurs so it only shows up in System 1. However, a nearly similar situation to 

the previous blue class response’s situation has occurred. An effectively zero confidence 

prediction is given by System 2, but System 1 provides a highly confident blue class 

prediction since this anomalous situation has happened before.     
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Figure 15: Abstract answer example. 

By creating concepts, System 2 can determine situations where an intuitively 

unknown answer arises. Figure 15 is an example that shows System 2 providing a concept-

based answer to the alternatively unknown situation. Even though System 1 previously 

held datapoints that would have been close to the new datapoint, those System 1 datapoints 

create the System 2 concept distribution. As a result, System 1 is less crowded and allows 

for more precise novelty detection and better prediction competition. Furthermore, System 

2 represents a generalized prediction mapping of the problem.  
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Figure 16: Inference. 

Figure 16 illustrates the inference of points during validation and testing. The red 

datapoint indicates a new input with an unknown truth value. System 2 outputs two 

different confidence readings from two concepts with different classes. System 1 also 

outputs two competing confidence readings, but the green class involves two significant 

green class influencers. Each influencing point in System 1, or concept in System 2, 

provides its own confidence value. DPM-MN adds the confidence values from the same 

class to form a full confidence value for the class prediction. Once the System 1 and System 

2 predictions with their associated class are provided, DPM-MN compares the confidence 

values from each system. The higher confidence level determines the final prediction. In 

this case, the red point is predicted (with 0.45 confidence) as a green class response.   

3.4 Summary 

This chapter presented the DPM-MN algorithm via illustrations and description. 

The individual functionalized cognitive functions are independently introduced. A high-

level perspective of DPM-MN and an overview of the interconnection between processes 

is shown. With an awareness of the DPM-MN functionality, the following chapters are set 

in context.   
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Chapter 4. Methodology  

The Dual-Process Model using multivariate normal probability density functions 

(DPM-MN) is expected to at least exhibit the dual-process learning characteristics of 

concept drift, overwriting of previous concepts, windowing, and refreshment of frequently 

needed concepts. A notional dataset specifically designed with these characteristics in mind 

is tested to determine effectiveness. The optimal hyperparameters empower the desired 

capabilities.  

A second test evaluates DPM-MN on a human user dataset with data gathered 

through the Space Navigator experiment. Space Navigator is proposed as a shared mental 

model (SMM) system to specifically evaluate the performance of DPM-MN to learn the 

participants’ mental models. DPM-MN performing well on the Space Navigator trajectory 

predictions is akin to proper mental modeling of the players. The baseline tests are also 

attempting to map the players’ mental models. The straight-line predictor and the medoid 

predictor act as simplistic SMMs. The Space Navigator tests are conducted in two ways: 

the individual player test and the generic player test. 

4.1 Notional Dataset Experiment 

The experimental goal of the notional dataset is to ensure DPM-MN can handle 

learning situations that involve the dynamic temporal dual-process learning characteristics 

of concept drift, overwriting of previous concepts, windowing, and refreshment of 

frequently needed concepts. The first evaluation of DPM-MN leverages a notional dataset 

specifically designed to test the dual-process learning cognitive functions within the DPM-

MN architecture. 
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4.1.1 Notional Environment/Data. 

The notional dataset is made of multiple conceptual steps. Each step contains 

multiple class groupings synthesized through normal distributions. Within every step, the 

individual datapoints are randomly shuffled to imitate response variation. The notional 

dataset is two-dimensional so it easily can be visualized for understanding.  

 

Figure 17: Notional dataset step one. 
Step one in the notional dataset creates two mostly separated classes. DPM-MN 

will quickly make a concept of these two distributions.  

 

Figure 18: Notional dataset step two. 

Step two is a concept drift of the blue class. The blue class moves from the right of 

the green class to above the green class. DPM-MN will either remember both blue class 

distribution locations or reject the first blue class distribution via the window functionality 

in favor of the new blue class concept.  
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Figure 19: Notional dataset step three. 

Step three eventually forces the orange class to become the predominant class at 

the location shared with the newest blue class concept. If necessary, the orange class 

overwrites the blue class.  

 

Figure 20: Notional dataset step four. 

The blue class returns to its original location once the orange class removes it from 

its current location.  
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Figure 21: Notional dataset step five. 

Finally, the blue and green classes start mixing closer together to provide any 

machine learning algorithm with more difficulty. The DPM-MN algorithm will adapt to 

the narrowing of space between the means of the green class and the blue class. 
   

 

Figure 22: Notional dataset step two and three. 

Figure 22 illustrates steps two and three combined. The orange class and blue class 

overlap is shown. The different class distributions are not completely on top of each other, 

but they are extremely close.  
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Figure 23: Notional dataset all data. 

All of the steps together show a difficult classification problem. If the data is not 

processed temporally, it is a more difficult task than if characteristics such as concept drift 

are considered.  

4.1.2 Notional Test Strategy. 

DPM-MN and a support vector machine (SVM) train, validate, and test on the 

notional dataset. DPM-MN, a temporal algorithm, has an advantage over the SVM because 

the SVM trains on all of the data at once.  

Bayesian optimization determines the hyperparameters for both DPM-MN and the 

SVM. The DPM-MN Bayesian optimization search space is the same as the search space 

for Space Navigator to allow comparison of optimal hyperparameters between the notional 

dataset and the Space Navigator dataset. The Bayesian optimization algorithm searches 

between 0.001 and 20 for the SVM penalty parameter C of the error term. Bayesian 

optimization also searches between 0.001 and 20 for the kernel coefficient gamma. Finally, 

the search algorithm also optimizes a decision between using a linear kernel or a radial 

basis function (rbf) kernel.  
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Figure 24: Test points zoomed out. 

 

Figure 25: Test points zoomed in. 

Table 1: DPM-MN parameter optimization. 

Parameter Value Range 

Ct 0.001 to 3.0 

Et 0.05 to 1.0 

Nc 2 to 50  

St 2 to 50 

Sone 0.1 to 2.0 

Stwo 2.0 to 10.0 

Ws 2 to 50 

Number of trajectory classes 20  

K-folds 5 

Train/Validation and Test data split 90%/10% (of all the data) 
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Train and validation data split 75%/25% (of the train/validation data) 

Bayesian optimization hyperparameters 10 random search points followed by 100 

calculated search points 
 

The training/validation/testing split of the notional dataset is the same as the Space 

Navigator experiment (Table 1). The points per batch iteration is switched to a more precise 

value of three, instead of ten, since the computational complexity is less for the notional 

dataset. Figure 24 and Figure 25 show the test points from two different perspectives. The 

ideal final concept model determined the test points. At the end of DPM-MN, there will 

exist a System 2 concept rule at each of the three unique distributions corresponding to the 

correct class. 

4.1.3 Notional Measures. 

Classification accuracy is the test metric for the notional dataset experiment. It is a 

percentage out of 100%. A 100% is perfect classification accuracy. Because of the 

synthesized class groupings, each algorithm will test closer to 100%. However, the 

intentional overlap of distributions at the end will be difficult for both algorithms. 

Additionally, for the SVM algorithm, the orange class and blue class overlap will cause a 

prediction difficulty.  

4.2 Space Navigator Dataset 

This experiment reveals the success of DPM-MN in using cognitive learning 

functions to better predict human responses via an SMM. Space Navigator is a strategic 

game environment where a decision-making mental model is developed. DPM-MN will 

determine the mental model of the players. The mean average coordinate distance (ACD) 

test metric correlates to the extent DPM-MN correctly maps the mental model because 
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SMM can be tested through output similarity. DPM-MN takes advantage of dual-process 

theory learning characteristics to produce an SMM for more accurate user trajectory 

predictions. 

4.2.1 Space Navigator Data.  

The raw data comes from an experiment completed in Bindewald, et al. (Bindewald, 

et al., 2015). Thirty-five players were tested in sixteen levels each on a game called Space 

Navigator. The player draws trajectories from a spaceship to a corresponding planet of the 

same color while avoiding obstacles and picking up bonuses. The recorded data includes 

the trajectory drawn along with the location of the destination planet, bonus points, and 

obstacle areas. 

The data is preprocessed into a nineteen-feature input describing the state space 

(Appendix E) and an output class mapped to a trajectory response (Bindewald, et al., 2015), 

(Appendix J). The test metric is the average Euclidean distance per point error. The average 

Euclidean distance per point error is also called the Euclidean error or the average 

coordinate distance (ACD). See Appendix H for details on the error calculation given a 

predicted trajectory and a true trajectory. See Appendix E for an in-depth walkthrough of 

the data preprocessing steps. 

The experiment was conducted on a tablet computer. Participants used their finger 

to draw trajectories. The game itself was created in Unity game engine version 2017.1.0f3.  

The data processing and analysis happened in Jupyter Notebook. The 

hyperparameter search and model building was conducted using Eclipse version 20171108 

on Windows 7 operating system. The hardware was an intel Core i5 CPU at 2.60GHz and 
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8GB RAM. The most prominent libraries included NumPy and Scikit-learn. For the 

computer language, Python 3.6 was used.  

Two tests are performed. The first test treats each player as an individual dataset to 

train, validate, and test. The second test groups all of the players’ data together to train, 

validate, and test as a collection. Both tests include a comparison to results in Bindewald, 

et al. (Bindewald, et al., 2017). 

4.2.1.1 Irreducible Error in Space Navigator. 

Irreducible error are data errors that are due to inherent variability of the data and 

for which other measurement or fitting could not remove. There are two sources of 

irreducible error in the Space Navigator data. The first source of irreducible error comes 

from the trajectory representation for each class. Because the medoid of each class cluster 

becomes the trajectory representation when that class is predicted in DPM-MN, error will 

still exist even if the DPM-MN class accuracy is one-hundred percent. This irreducible 

error can be pre-measured though by taking each observation and determining the 

Euclidean error relative to the matching class representative trajectory.    

The second source of irreducible error is due to the fact that humans are non-

deterministic. Their behavior may suddenly change for no apparent reason whatsoever if 

revisiting a state. If the Space Navigator screen is the exact same during two different 

instances, a person may decide to draw an up-curve during the first encounter and a down-

curve during the second encounter. If the same person the DPM-MN model was trying to 

mimic were to make every trajectory prediction, they would still achieve a certain amount 

of error. This irreducible error exists, but there still exists an underlying pattern. It is the 
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reason people have attributable personalities rather than everyone existing as randomized 

robots.  

 

Figure 26: Example of irreducible error curve. 

DPM-MN uses classes that correspond to a trajectory representation. When DPM-

MN predicts a specific class, the response supplies the trajectory representation. The 

number of class trajectory representations is manually set. For each experiment, there were 

twenty different trajectory classes. The number of trajectory classes needs to be selected to 

reduce irreducible error, but at the same time allow DPM-MN to effectively learn. A high 

number of trajectory classes greatly reduces the irreducible error and introduces a diverse 

sample of trajectory representations, but it becomes more difficult to learn System 2 

concepts because similar trajectory representations will have different class labels.  

Assuming a perfect class prediction accuracy finds the irreducible error. Inherently, 

there will exist some irreducible error since DPM-MN can guess the correct class, but the 

true trajectory will still slightly be different from the trajectory representation. Finding the 
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irreducible error at each point of a parameter sweep of the number of cluster (Nc) centers 

for finding the trajectory representations creates Figure 26. The Nc centers, in this case, is 

the same as the number of trajectory class representations. Figure 26, created from an 

individual player, helps to understand the relationship between irreducible error and the 

number of trajectory representations. The relationship determines a point that fulfills the 

necessary balance. As seen by Figure 26, the exponential relationship converges to zero 

error once the number of trajectory representations equals the number of trajectories 

present.  

 

Figure 27: Median irreducible error curve of all players. 

Figure 27 shows the median irreducible error curve. It only goes up to one-hundred 

because after about fifteen classes, the irreducible error reduced per additional cluster 

center drastically reduces.  
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Figure 28: Close up of median irreducible error curve. 

Figure 28 zooms in on the beginning values of Figure 27. The initial, and 

predominant, drop-off of error happens within the first five classes. This indicates a pattern 

of low variance in drawn trajectories. A handful of trajectory representations account for 

the irreducible error introduced through using a classification method.  

4.2.2 Hyperparameter and Validation Process. 

1) Number of clusters (Nc) during System 1 group sizing – When System 1 
searches for large groupings, it is completed through clustering. This 
determines how many clustering groups are used in System 1 to split up the 
totality of points. 
 

2) Size threshold (St) for System 1 groups to enter System 2 – To get into System 
2 as a concept, the clustered groups must meet the size threshold to be 
determined as “big enough”.  

 
3) Entropy threshold (Et) for System 1 groups to enter System 2 – After System 2 

determines “big enough” groups, the percentage of points of the same class 
must meet the entropy threshold.  

 
4) Window size (Ws) for System 2 – The System 2 concepts of the same class can 

become too stale. Therefore, Ws determines how many concepts of one class 



 

60 
 

can exist in System 2 at the same time. If System 2 has six class one concepts, 
and the Ws is five, then System 2 revokes the oldest class one concept. 

 
5) System 1 influence (Sone) – This is the smoothing factor of the multivariate 

normal probability distribution function. It determines the reach from a point. 
Because the state space is sparse in many areas if the influence is too small, 
increasing the influence will most likely improve the rate of guess acceptance 
from whichever system’s influence DPM-MN raises.  

 
6) System 2 influence (Stwo) – This is the same idea as the Sone hyperparameter, but 

for System 2. 
 

7) Confidence threshold (Ct) – This is one of the most important hyperparameters. 
It is the arbiter of the prediction confidence level. Ct determines if a new query 
should be added into System 1 or not. At zero, DPM-MN only places the wrong 
System 2 guesses into System 1. At a very high number, DPM-MN places 
almost all of the new queries into System 1. The confidence level also plays a 
part in deciding if a new System 2 concept overlaps an existing System 2 
concept. A new System 2 concept uses the confidence as a way to measure 
which sublevel points overlap each other.  

 
It would be better if DPM-MN determined Ct as a percentage out of one-hundred. 

Other possible alternatives included major problems. The infinite number of distribution 

possibilities disallows a static base number of the theoretical highest value. The maximum 

value always moves. It is possible to know the absolute max value when retrospectively 

analyzing existing data, but it is not an option when online data that is continuously arriving 

is meant to eventually become part of the process. An option is to scan all of the System 2 

problem space to get a dynamic max value for every class. However, it is too 

computationally intensive – especially when talking about nineteen dimensions, many 

different classes, and an unknown boundary.  

Another option is to judge the confidence based on the first closest point of the 

same class and the first closest point of a different class. This does not behave as intended 

when a new query has a high prediction value from a class because of the summation from 
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multiple distributions. It also becomes relative based on the distance between the two 

points being used to judge the confidence. Both of the judging points could be very far 

away, but because one class is relatively closer than the other, the confidence of the new 

point could return as high confidence even though it should be near zero.  

The intention of the last two paragraphs is to show that a consistent percentage scale 

was diligently sought after. It would be easier to explain the algorithm functionality if it 

could be said, as an example, that new queries get placed into System 1 if they do not have 

a guess above a fifty percent confidence rating. Because of the mixture model format, the 

confidence level is relative to the problem space. Thus, Ct is a hyperparameter and a raw 

number rather than a percentage between zero and one-hundred. 

There are three viable options to discern between: a restricted grid search, a 

Bayesian optimization search (Snoek, et al., 2012), and a genetic algorithm search. 

Bayesian optimization was ultimately selected to leverage the harmony between 

exploration and exploitation. Bayesian optimization can efficiently navigate the 

hyperparameter search space to counter the long computational time for a single 

hyperparameter testing of DPM-MN.  

The Bayesian optimization attempts to guide the hyperparameter search in a correct 

direction depending on the previous hyperparameter search. Each hyperparameter search 

reveals information about the hyperparameter optimization probabilities. For example, 

imagine that Ct was set to ten and the following model returned a hypothetical error of one-

hundred. Now, everything else is kept the same but Ct is set to five and the following model 

returned a hypothetical error of fifty. It is safe to assume that the next best hyperparameter 

guess would be to continue lowering Ct. Bayesian optimization also tries to balance the 
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benefits of both exploration and exploitation. The primary difficulties of Bayesian 

optimization are the challenging code implementation and the requirement to greatly 

narrow the search space so the exploration can be taken advantage of rather than turning 

into a random search. 

During Bayesian optimization, a range of values must be supplied for the algorithm 

search space. If a non-integer value is chosen when the DPM-MN algorithm requires an 

integer value, such as size threshold because you cannot count half of a datapoint, the non-

integer value is rounded to the nearest integer before being input into the algorithm.  

Bayesian optimization carefully considers each hyperparameter’s range to allow 

for various algorithm behaviors to emerge. One example is guaranteeing that Sone will be 

equal to or less than Stwo. Since System 2 acts as a generalizer and System 1 acts as the 

anomaly finder, it does not seem intuitive for the System 1 points’ kernel probability 

density estimations to be more smoothed than the System 2 points’ kernel probability 

density estimations.  

Another example is the Nc parameter during the System 1 group sizing. The range 

maxes at fifty because it is a little over twice the number of existing trajectory classes 

(twenty). The reason the Nc groups exists, is to find groups of individual observations that 

share the same class. If the data is strongly separated by class, the value of Nc should 

theoretically be the number of unique classes in System 1. In this testing instance, Nc should 

be between zero and twenty. The search is between two and fifty, inclusive, because it 

allows space on each margin of twenty (the number of unique trajectory classes possible) 

to explore possible algorithm behaviors. The Bayesian optimization algorithm may find it 

is best to have a quick flow of points between System 1 and System 2. In this case, the Nc 



 

63 
 

parameter is low, the entropy threshold (Et) parameter is low, and the size threshold (St) 

parameter is low. 

DPM-MN interleaves the supervised training and evaluation. This method has to 

do with the online training capability. Realistically, once DPM-MN is online training, there 

must be an interruption where the evaluation occurs. It is improper to test the model with 

data used for training, so the process separates these two steps. In addition, the temporal 

aspect of DPM-MN is better fit for interleaved evaluation and training periods.  

     
    

train validate

k-fold cross validation| k=5

       
    

 

Figure 29: K-fold cross validation. 
Figure 29 is an image of the training, validation, and testing process. Each cell in 

the figure is a batch. The proportions in the image match with the actual proportions from 

the experiment. Training and validation use 90% of all data. Of that 90%, training uses 

75% and validation uses 25%. During the training and validation sequence, training uses 

three batches, and then a single batch takes the validation measurement. This interleaved 

process occurs until all the training and validation data is completed. After a model is ready 

to be tested, the k-fold cross validation (k=5) occurs with the test data. Each time the search 

algorithm assigns new hyperparameters to a model, the data must process temporally to 

appropriately build the hidden state. Once the model exhausts the observation data, the 

final accuracy measurement uses the ACD. 
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4.2.3 Individual Player Test. 

The first test individually evaluates each of the thirty-five players. Previous 

experiments on the Space Navigator data, such as the experiment conducted by Bindewald 

(Bindewald, et al., 2015), indicated an improvement in performance when learning on 

specific players rather than learning on the data as a whole. Coagulating all the data 

together masks the idiosyncrasies of individual players and forms general concepts 

common among players.  

For each player, their data executes the training, validation, and testing pipeline. 

None of one player’s data mixes with another player’s data. As a result, thirty-five different 

tests will use thirty-five separate DPM-MN models and their optimal hyperparameters.  

Each player’s data consists of roughly two-thousand datapoints. Because of the 

relatively low number of datapoints, the batch size is set to ten. 

4.2.4 Generic Player Test. 

After the completion of the unique tests of each individual, the average 

hyperparameter values of all the players create a DPM-MN model. This test groups all the 

player data together since the hyperparameters originate from the average of all the 

individual player hyperparameter sets. This test explores the volatility of the 

hyperparameters. 

The next test places all of the player data together for training and validation in 

addition to testing. The resultant DPM-MN mental model captures generalities among all 

players.  

Interleaving the individual player data by the Space Navigator level constructs the 

generic player database’s temporal order. For instance, player one, level one data forms the 
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head of the dataset. Next, the master dataset adds player two, level one data. Once the 

master dataset contains all the players’ level one data, the same pattern occurs except with 

level two data. This continues until all of the data is added to the master dataset. It could 

have been possible to add all of each player’s data at once (player one, level one; player 

one, level two; …; player thirty-five, level sixteen), but since DPM-MN is mapping a 

learning process of a human player, it is better to start with easier levels and end with the 

harder levels. Also, constantly interleaving the different players, the last player will have 

less of a chance to greatly impact the final DPM-MN result through the possible importance 

of recent data. 

The entire dataset consists of 68,500 points. For this test, each batch contained two-

thousand points. Depending on the hyperparameters, this many points per batch could have 

a considerable impact on the building of the DPM-MN model. For one, windowing in 

System 2 will probably occur more often.  

Future tests concerned with bootstrapping can use the optimal generic player DPM-

MN. Loading a model with the generic player DPM-MN model, and then learning from 

that point may cause faster learning. Theoretically, the generic player model bootstrap 

could supply the general behaviors before any learning specific to an individual transpired.   

Each test keeps most of the design the same. Most notably, the tests do not change 

the hyperparameter search space. By maintaining consistency of the search space, the two 

tests will vary less which allows a fairer comparison between the two outcomes.   

DPM-MN competes against other baselines: Bindewald, et al.’s (Bindewald, et al., 

2017) Clustering-Based Online Player Modeling, a neural network (Appendix L), and a 

straight-line baseline. The Bindewald baseline comes from the same experiment where all 
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the data used in this experiment was collected. It had an average individual error of 0.2036. 

The neural network leverages a long short-term memory (LSTM) neural network that 

produces trajectories given a state.  

The straight-line baseline is a straight trajectory from each ship to the destination 

planet. Outperforming the straight-line trajectory baseline indicates better than blind results.  

4.2.5 Space Navigator Measures. 

The individual player test and the generic player test both use the same metrics for 

evaluation. Using the same metrics permits comparisons between the tests. The test metric 

is the average coordinate distance (ACD) (Appendix H). The various statistics used to 

analyze the results include the D’Agostino and Pearson’s Normality Test, a Student’s t-

Distribution to find a confidence interval, the mean and standard deviation, and the 

Wilcoxon Rank-Sum Test (WRST). 

For comparison purposes, the test metric is the ACD (Bindewald, et al., 2015). The 

ACD describes the average difference between the true trajectories and the predicted 

trajectories.  

The ACD also corresponds to the degree of similarity between the artificially 

created mental model and the human’s actual mental model. It acts as the performance 

measure for the claimed SMM. An abstract concept like the SMM cannot be directly 

measured. A few eminent SMM researchers have correlated the mental model similarity to 

the situational response similarity in some way (X. Fan, et al., 2011; Jonker, et al., 2010; 

Perelman, et al., 2017). Likewise, the DPM-MN mental model accuracy corresponds to the 

ACD performance metric since the ACD measures the average difference between the 

DPM-MN response and the human response to the given situation.  



 

67 
 

As for statistical decisions, the D’Agostino and Pearson’s Normality Test is used 

to concretely determine if the distribution of result values is normal or not. This 

discernment guides which types of statistical tests are utilized. The results are not normally 

distributed according to Appendix K and preliminary testing. 

Non-normally distributed results can still use a Student’s t-Distribution because it 

is robust if the number of observations is high. Since roughly 6,800 observations exist, the 

Student’s t-Distribution for finding the confidence interval is considered robust. Additional 

testing using a nonparametric confidence interval finder such as the bootstrapped 

confidence interval confirms the robustness of the Student’s t-Distribution confidence 

interval.  

The investigation of the two-sided p-value for each hypothesis test uses WRST. 

The statistics test applies a two-sided p-value over a one-sided p-value because it does not 

assume that DPM-MN’s results perform better than a compared algorithm’s results. WRST 

is a nonparametric algorithm. It is primarily advantageous when the samples are non-

normal and when the samples are unpaired. In this research, WRST is a worthwhile 

hypothesis testing algorithm.  

For the individual test results, the statistics are analyzed by grouping all the tested 

datapoints from each individual. This allows a comparison to Bindewald, et al.’s 

(Bindewald, et al., 2015) results which display the average ACD across all players. The 

individual test still tests each player separately, but the analyzed results are grouped 

together for a more complete depiction of the final results. 
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4.3 Summary 

The notional dataset tests the applied algorithm’s characteristics. If DPM-MN’s 

asserted dual-process theory motivated functions exist, it will perform well on the notional 

dataset.  

With each of the Space Navigator experiments, the goal is to figure out if the DPM-

MN algorithm performs better or worse than each baseline. DPM-MN tries to create the 

best model so it can successfully map an individual’s mental model. DPM-MN consists of 

seven hyperparameters that harmonize for the most effective mental model learner. The 

ordering and selection of the data also plays an important role. It determines the mental 

model DPM-MN learns. The individual player test and the generic player test both 

elucidate the performance and characteristics of DPM-MN. 
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Chapter 5. Results 

The experimental results reveal the success of the Dual-Process Model using 

multivariate normal probability density functions (DPM-MN) algorithm as a cognitive 

architecture for generating a shared mental model (SMM). Concluding the evaluation 

hypothesis achieves the success determination. Is DPM-MN better or worse at building an 

SMM than the baseline models? The many human-robot teams pervading society rely on 

the development of an SMM.  

This chapter presents experimental results evaluating DPM-MN’s ability to 

develop a user mental model. Presented first are results from the notional dataset 

comparing DPM-MN to a support vector machine (SVM). Next, a Bayesian optimization 

of optimal hyperparameters is performed. Following this, are comparison results of DPM-

MN versus three baseline algorithms on individual users. Finally, evaluation of DPM-MN 

versus the same three baseline algorithms on the entire dataset concludes the findings.  

5.1 Notional Dataset Results 

The notional dataset test determines the ability of DPM-MN to handle learning 

situations that involve dual-process motivated learning characteristics of concept drift, 

overwriting of previous concepts, windowing, and refreshment of frequently needed 

concepts. A notional dataset requires the desired learning behaviors for success. The 

notional dataset test compares a model that utilizes the learning characteristics (DPM-MN) 

to a model that processes the dataset as a whole (support vector machine).  
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Table 2: SVM optimized hyperparameters. 

Hyperparameter Optimized Value 

C  19.6390 

gamma 0.2382 

Kernel rbf 

 

Table 3: DPM-MN optimized hyperparameters. 

Hyperparameter Optimized Value 

confidence 

threshold (Ct)  

3.0 

entropy threshold 

(Et) 

1.0 

number of clusters 

(Nc) 

40.66 

size threshold (St) 2.0 

System 1 influence 

(Sone) 

2.0 

System 2 influence 

(Stwo) 

2.0 

window size (Ws) 2.0 

 

Table 2 and Table 3 show the parameterized optimization values for each model 

type. The SVM hyperparameters allow for a moderately soft-margin and a nearly linear 
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gaussian decision boundary. These parameters align with a dataset created from normal 

distributions. All of the DPM-MN hyperparameters except one are either the possible 

maximum or possible minimum value. The extreme hyperparameter choices probably 

correspond to the nature of the synthesized data. The notional dataset contains mostly 

separated class groupings, and the dataset stages the data in discrete steps.  

Table 4: Notional dataset accuracy results. 

Algorithm Accuracy 

DPM-MN  0.896 

SVM 0.769 

As expected, the DPM-MN algorithm outperformed the SVM algorithm. DPM-

MN’s learning characteristics allows it to properly process the data in a temporal manner 

to end with an SMM that reflects the relative dataset behavior. SVM is not situationally 

aware of the learning process embedded in the notional dataset. 

 

Figure 30: SVM and DPM-MN correct points. 

The red points are incorrectly predicted test points and the green points are correctly 

predicted test points. In the SVM picture, the edges of the orange class and the mixing 

between the green and blue classes are the most difficult areas. DPM-MN also struggled 
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with the blue class and green class mixing zone, but it performed much better than the 

SVM on the orange class test points.  

 

Figure 31: SVM and DPM-MN orange class correct. 

SVM encountered trouble with the orange points on the edge of distribution. These 

misclassified points exist in areas near a blue class distribution source. The orange class 

conflicts with the blue class distribution source because SVM is unaware of the concept 

drift event. DPM-MN only misclassified a single orange class test point. DPM-MN credits 

its success to the concept drift operation.  

 

Figure 32: SVM and DPM-MN non-orange class correct. 

As stated before, trouble exists between the blue class and the green class in the 

mixing zone. If the mixing zone contained points where the state space correlated to the 

response, DPM-MN may have successfully classified those points as well through novelty 

detection. However, the mixture of the blue class and green class is randomized so it is an 
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area of irreducible error. Even still, DPM-MN outperformed the SVM classifier in the 

mixed zone. DPM-MN utilized concept drift to strengthen the boundary between the blue 

and green classes. Sometimes SVM misclassifies non-outlier points within each 

distribution while DPM-MN only misclassifies most of the randomized outliers.  

5.1.1 Additional DPM-MN notional dataset analysis  

 

Figure 33: Immediate class groupings. 

DPM-MN quickly conceptualized the green and blue classes in System 2 during 

the first dataset step. 
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Figure 34: Blue class concept drift. 

DPM-MN performed the concept drift operation of the blue class when the blue 

class moved from the right of the green class to above the green class. 
  

 

Figure 35: Orange class predominance and blue class return. 

The orange class eventually predominated the area previously taken by the blue 

class. Furthermore, the blue class successfully returned back to its original location.  
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Figure 36: Windowing of orange concept. 

The left image shows the beginning position for the orange class concept. In the 

middle image, because Ws = 2, the top orange concept moves to the left of the bottom 

orange concept. From the middle image to the right image, the previously moved orange 

concept remains in place while the older concept moves further up.  
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Figure 37: Refreshing of blue concept. 

Looking at System 2, one of the blue concepts remains in place despite the 

occurrence of two concept shifts and a Ws of 2. This happens because System 2 refreshes 

the leftmost blue concept which allows it to stay since it is important.  

  

 

Figure 38: Final DPM-MN notional dataset trained model. 
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The three distinct class concepts are visualized in the final model. The orange class, 

the blue class, and the green class are all conceptually located where they are supposed to 

exist as predefined by the creation of the notional dataset.  

5.1.2 Notional Dataset Hypothesis Closure. 

The notional dataset represents a synthesized mental model of a human that 

experiences abstract learning during their state-response task. This dataset specifically 

provides an advantage to algorithms that utilize cognitive learning characteristics such as 

concept drift, overwriting of previous concepts, windowing, and refreshment of frequently 

needed concepts. Therefore, algorithms that build an SMM through learning characteristics 

outperform algorithms that exclude an SMM during notional dataset training.  

The notional dataset experiment confirms that DPM-MN can handle learning 

situations that involve dynamic temporal data containing characteristics. DPM-MN 

performed significantly better than the high-performing SVM algorithm. The learning 

characteristics of DPM-MN cause the performance increase. Also, figures visually 

demonstrate the learning characteristics of concept drift, overwriting of previous concepts, 

windowing, and refreshment of frequently needed concepts.  
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5.2 Space Navigator Dataset Results 

5.2.1 Hyperparameter Search Results. 

5.2.1.1 Individual Player Hyperparameter Results. 

Table 5: Hyperparameters selected for each player and individual results.  

 

Table 5 shows the hyperparameter values per individual during their best 

performing DPM-MN model. The most optimal hyperparameter settings found through the 

Bayesian optimization process describe the learning style of each player. For example, 

player 31’s idiosyncrasies and learning pattern is best functionalized with a low Ct of 0.001, 

the highest Et of 1.0, the highest Nc used in the k-means clustering process in System 1 of 
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50.0, the lowest Stwo of 2.0, and the lowest Ws of 2.0. This combination of parameters 

explains a dependence on a few initial points in System 1. Player 31’s play patterns were 

quickly defined with an initial set of points that are difficult to change. They played with a 

more reactive behavior since the System 2 concept structure did not need to mature. 

Conversely, player 1 heavily depends on the deliberate System 2 concept structuring with 

a high Ct of 2.91, a low Et of 0.19, a high Stwo of 9.16, and a large Ws of 37.96. These 

variable values allow a considerable System 2 concept-set to form. 

Even though the Bayesian optimization parameters can be analyzed to determine 

general learning patterns for each player, it is important to remember the complexity 

between the seven parameters and the overall behavior of the model. Sometimes it is 

difficult to connect the parameter values to a concrete learning theme.    

5.2.1.2 Averaged Player Hyperparameter Results. 

The average of each hyperparameter in the individual player hyperparameter results 

creates the averaged player hyperparameter results. 

Table 6: Average of variables across players. 

Variable Average Value Across Players 

Ct 1.1792 

Et 0.5560 

Nc 23.7822 

St 23.8027 

Sone 0.8648 

Stwo 6.1648 
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Ws 27.7243 

 

Table 6 distinguishes the average parameters to obtain a general sense across all the 

players after individually testing them.  

5.2.1.3 Generic Player Hyperparameter Results. 

Table 7: Hyperparameters selected for the generic test. 

 

The Table 7 values can be compared to the average individual player values in 

Table 6. Ct and Et are extremely close. The rest of the parameters greatly differ. It would 

be surprising if everything matched up because the average values for the individual 

players experiment are calculated from the hyperparameters of thirty-five unique 

individuals. The hyperparameters also do not act independently, so the unique 

hyperparameter sets include interdependent influence. If more closely analyzed, second or 

third level functions probably correlate to a greater extent. For example, it could be true 

that either a combination of low Sone and high Stwo or high Sone and low Stwo is typical. These 

higher order relationships may reveal the learning process that a specific human 

experiences when creating their own mental model.  

5.2.2 Individual Player Test Results. 

Table 8: Individual players results (lower is better). 

Algorithm Mean (ACD) 

± SD 

Confidence 

Interval (99%) 

Normality 

Test 

p-value 
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DPM-MN 

(unique) 

0.181 ± 0.170 (0.176, 0.186) 0.0 N/A 

DPM-MN 

(averaged 

player) 

0.188 ± 0.173 (0.182,193) 0.0 0.0081 

DPM-MN 

(generic) 

0.191 ± 0.176 (0.186,0.197) 0.0 0.0006 

Straight-Line 0.197 ± 0.178 (0.192,0.203) 0.0 4.507e-10 

Medoid 0.185 ± 0.151 (0.180, 0.190) 0.0 2.982e-18 

Bindewald, et 

al., 2015 

0.204 

 

 

(0.202,0.206) N/A N/A 

The DPM-MN (unique) algorithm results are from thirty-five unique individual 

hyperparameter tests. The individual player test results in Table 8 show that DPM-MN 

performs better than the straight-line, medoid, and Bindewald baselines with statistical 

significance. However, the DPM-MN performance increase is relatively minor compared 

to the medoid baseline performance. The normality tests show all the tested distributions 

as being non-normally distributed.   
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Table 9: Individual player DPM-MN (unique) additional data.  

 

 

Table 10: Average of variables across players additional data. 

Variable Average Value Across Players 

irreducibleError 0.0621 

test result -0.181 

straightLineDiff -0.196 

medoidDiff -0.185 
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Figure 39: Correlation heatmap. 

Figure 39 is a correlation heatmap of certain variables including the Bayesian 

optimization values and the various results. A few interesting correlations can be pointed 

out. Aligning with intuition, each of the result types are positively correlated with each 

other. The irreducible error present has a sizable negative correlation with the result types. 

When an inherent handicap is present, the results end up suffering. Most of the Bayesian 

optimization variables have little to no correlation with each other. The harmonizing of 

hyperparameters to characterize the learning process is nonintuitive. DPM-MN is needed 

to find the delicate balance of hyperparameters specific to each person. 
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The most peculiar correlation is between the number of unique predictions made 

during the test (uniquePred) and Sone. These two variables are strongly negatively 

correlated. The cause of this could have been the anomaly detection provided by a smaller 

area of influence. A low Sone causes points in System 1 to cover less space, but they have a 

stronger effect in their localized space due to less of a smoothing factor. Unique, or possibly 

one-off, predictions are more likely to occur with a low Sone if a similar unusual state-space 

is encountered more than once. If the localized, but non-smoothed, points are activated 

multiple times, they have more of a chance of giving a more confident response than the 

System 2 response which enables the diversity of predictions. Thus, DPM-MN manipulates 

the value of Sone to produce a high performing number of unique predictions. 

 

Figure 40: High performance predictions. 

Figure 40 displays some of the predictions that performed really well. In these 

examples, the y-axis is significant; these are actually heavily curved trajectories.  
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Figure 41: Low performance predictions. 

Figure 41 displays some of the lowest performing predicted trajectories. As seen, 

low performance usually occurs when the true trajectory is extremely unique. Unless the 

mapping between the specific game state and the specific response is very clear in order to 

predict the true trajectory through anomaly detection, these true trajectories are not going 

to be predicted through a generalization method. The poor performance also can be 

attributed to the extreme distances the points reach. The top right image in Figure 41 has a 

trajectory going almost twice the distance needed to reach the x-value of the destination 

planet.  
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Figure 42: Unique examples. 

Figure 42 show some unique occurrences during trajectory prediction. The top left 

trajectory highlights the instance where the class medoid representation is encountered in 

the test and correctly predicted. The predicted and true trajectories match up exactly. The 

top right image is an example of the case where the player draws a stunted line. Both the 

x-axis and y-axis are on an extremely small scale. The player most likely clicked on the 

selected ship, and then changed their mind about drawing a trajectory. The bottom left 

trajectories highlight the importance of distance in the x-axis. Even though they diverge on 

the y-axis, sometimes the ACD more greatly depends on where the predicted trajectory 

ends on the x-axis. The bottom right image is another example of two straight lines even 

though on a smaller scale they look curvy.  



 

87 
 

 

 

Figure 43: Trajectories unaware of important information. 

Figure 43 is about examples where the prediction needed to consider the 

surrounding important information but could not because of limitations due to the selection 

of recorded features or the trajectory representation process. The top left predicted 

trajectory was close to the true trajectory, but the true trajectory goes through the nearby 

bonus and avoids the no-fly zone. The top right image’s true trajectory and predicted 

trajectory both take a direct path to the destination planet, but the true trajectory collides 

with the bonus on the way through a very slight path alteration. The bottom left and bottom 

right images show the true trajectory prioritizing the bonuses instead of directly moving to 

the destination planet.  

5.2.3 Generic Player Test. 

Table 11: Generic player results (lower is better). 

Algorithm Mean (ACD) 

± SD 

Confidence 

Interval (99%) 

Normality 

Test 

p-value 

DPM-MN 

(generic) 

0.170 ± 0.174 (0.165, 0.175) 0.0 N/A 
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DPM-MN 

(averaged 

player) 

0.173 ±0.174 (0.167,0.178) 0.0 1.0 

Straight-Line 0.174 ± 0.175 (0.169,0.180) 0.0 0.01404 

Medoid 0.184 ± 0.153 (0.179, 0.188) 0.0 1.297e-62 

Bindewald, et 

al., 2015 

0.2186 (0.217,0.220) N/A N/A 

Grimm LSTM 

(Appendix L) 

0.22 N/A N/A N/A 

 

The generic player test combines all of the player data before training and 

evaluation. Table 11 consists of the results from the generic player experiment. A couple 

notable observations are apparent. First, DPM-MN (generic) performed the best out of all 

the algorithms. Second, the generic player DPM-MN model performed better than the 

individual player DPM-MN (unique) model. The second observation seems unintuitive. 

Possible explanations are given in the discussion section. Both the DPM-MN models, 

generic and averaged player, tested with the grouped generic data statistically performed 

equally (p=1.0).  

Table 12: DPM-MN (generic) test additional data. 
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Figure 44: Predicted trajectories in the generic experiment. 

Since the generic player DPM-MN model is a generic model, it is compelling to 

illustrate the predicted trajectories use during the tests. Figure 44 shows which types of 

responses are given once the Space Navigator generic mental model is finished. The titles 

of each sub-graph illuminate the number of times they are utilized. It is interesting to see 

that basically a straight line is used in most cases. The generic categories of trajectories can 

be described as “straight-line”, “extremely short line”, “curve-up”, and “curve-down”. The 

most effective mental model primarily uses straight-lines but knows when to sometimes 

use the alternative trajectories.  

5.2.4 Space Navigator Results Initial Discussion. 

Out of all the DPM-MN models, DPM-MN (unique) improved the most with 

respect to its corresponding straight-line predictor. DPM-MN (unique) successfully 

implemented its learning characteristics to align its model with the relevant player’s SMM. 

It is important to target the decision-making of individual players instead of masking the 

idiosyncrasies during training by grouping player data together. This effect is also 
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noticeable when looking at the individual player test medoid predictor. Each unique player 

independently influences the medoid predictor. Subsequently, the medoid predictor 

outperformed the generic-based hyperparameters in the individual player test. However, 

the DPM-MN (unique) model still performed the best out of all the models in the individual 

player test.  

In the generic test, the averaged player DPM-MN model performs as well as the 

generic DPM-MN model. The resultant distributions are statistically the same. 

Unfortunately, the generic player Space Navigator test reduced to mostly straight lines as 

demonstrated by the straight-line predictor results. Consequently, the averaged player 

DPM-MN model learned to mostly predict straight lines. Because the averaged player 

DPM-MN model performed as well as the generic DPM-MN model, the average 

hyperparameters of the individual player unique tests result in a satisfactory model.  

The LSTM neural network model poorly performed, but it resulted in the most 

unique predictions. The ACD test statistic declares other models as better, but unique 

predictions might make the autonomous agent seem more human-like. The LSTM model 

is more advantageous in scenarios where the test metric does not solely rely on the output 

difference.   

5.2.5 Space Navigator Dataset Hypothesis Closure. 

DPM-MN overall performs the best when compared to the baselines by a 

statistically significant margin. The DPM-MN model more closely predicts the response of 

a human player in every experimental instance. The straight-line predictor, the medoid 

predictor, and the Bindewald, et al. (Bindewald, et al., 2015) model did not perform as well 

as DPM-MN.   
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Since the DPM-MN model outperforms the baseline predictors in Space Navigator, 

experimental evaluation demonstrates that DPM-MN builds a better shared mental model 

of a human teammate. DPM-MN gained an advantage by utilizing cognitive learning 

functions. As a result, the dual-process theory provides a successful motivation for creating 

a human’s mental model.  

5.3 Summary 

The notional dataset intended to demonstrate that DPM-MN equips dual-process 

theory motivated cognitive learning characteristics to build an SMM. The Space Navigator 

dataset intended to demonstrate that DPM-MN performs better than the baseline tests in 

the proposed learning environment. DPM-MN successfully achieved both intentions. 
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Chapter 6. Conclusions 

Chapter 6 provides an overall discussion of each test, suggestions for future work, 

and future application recommendations. The overall discussions focus on additional 

examination of the findings. The future work explains the problems concerning DPM-MN. 

Finally, the future application section proposes areas where DPM-MN might be useful.  

6.1 Discussion 

6.1.1 Overall Space Navigator Results Discussion. 

The results overall are an improvement on previous attempts. DPM-MN’s 

sensitivity to outliers and dual-process theory design materialized an engineering 

advantage. Within the DPM-MN tests, the generic player DPM-MN model performed 

better than the individual player DPM-MN model. The vast majority of instances in all 

tests involve drawing a straight-line. 

The speculated reason the generic player DPM-MN model outperformed the 

individual player model is because the test consisted of more trajectories approximate to a 

straight-line. Because of the way the generic player database structures the data (from level 

one data to the last level data), the test trajectories only included trajectories from the last 

level. The last level in Space Navigator is extremely hectic and difficult compared to the 

beginning levels. As a result, perhaps players drew straighter trajectories to ease their 

mental workload.  

The idea that the generic player DPM-MN model performed well because of the 

increased number of straight-lines is supported by multiple pieces of evidence. First, the 

generic player straight-line baseline predictor performed better than the individual player 

straight-line baseline predictor. Second, the generic player DPM-MN model performed 
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2.3% better than its respective straight-line predictor while the individual player DPM-MN 

model performed 8.1% better than its own straight-line predictor. Last, the performance 

during the validation stage is 0.195. This points towards a more difficult dataset during the 

earlier stages.  

Even though all the tests do not perfectly match up with each other, the tests overlap 

enough to learn from the results. The methodology for the tests in this experiment is reliable 

and robust since it focused on testing for the main goal of building the best human mental 

model via DPM-MN learning characteristics. Even though the generic player experiment 

contained easier test trajectories, the dataset maintained the learning intention. It makes 

sense to build the dataset by level rather than by player or some other measure. The basic 

assumption is that the players will learn better strategy over the course of the experiment. 

Regardless of the imperfections between experiments, each experiment can also relate 

using the performance increase from the shared baselines.  

The generic player DPM-MN experiment, the individual player DPM-MN 

experiment, and the Bindewald, et al. (Bindewald, et al., 2015) experiment all performed 

better than a straight-line baseline. The generic player DPM-MN model performed 2.3% 

better (mean ACD) than the straight-line predictor, the individual player DPM-MN 

experiment performed 8.1% better than the straight-line predictor, and Bindewald, et al. 

performed 12.2% better than the straight-line predictor. Each straight-line predictor used 

for calculations corresponded to the same test. Bindewald, et al.’s straight-line predictor 

performed relatively poorly at 0.2319 mean ACD. Bindewald, et al. has the largest increase 

from the straight-line predictor, but it also has the most room to improve. Additionally, a 

more assuredly revealing test would involve more strategy.  
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The Grimm LSTM (Appendix L) performed the worst out of all models including 

every baseline predictor except Bindewald, et al.’s straight-line predictor (Bindewald, et 

al., 2015). Although the Grimm LSTM model performed the worst, it arguably predicted 

the most unique trajectories. By using a neural network, the trajectory is built by 

determining each individual point. Consequently, the predicted trajectories do not belong 

to a representative class but are instead each unique. Though, as demonstrated by the other 

trajectory predicting models, sometimes the best answer is the simple one. 

6.1.2 DPM-MN Notional Dataset Results Discussion. 
  

 

Figure 45: Notional dataset final model revisited. 

Figure 45 introduces a couple interesting visual observations. First, the green 

concept and the blue concept in System 2 are relatively close to each other rather than 

covering an area closer to their respective true class distribution mean. This is because 

System 2 acts with high volatility due to a small Ws and a high Ct. With a small Ws, System 

2 acts as a short-term memory storage. Since the training set ends with the mixing of the 

blue and green classes, System 2 reflects the border distribution. With a high Ct, datapoints 

continuously add to System 1. System 2 rarely is satisfactory in its composition. Also, 
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System 2 concepts rarely refresh since the concept distributions have trouble meeting the 

necessary refresh threshold which is based on Ct.  

The blue and green classes can border each other and still achieve a high-

performance rate because they act as a shield to the true distribution center existing behind 

the displayed class concepts. For example, any blue class test points located around an “X0” 

value of 35+ will still be correctly predicted as blue, even though the prediction confidence 

value is really low, because the green and orange concepts are even further away. At the 

moment, DPM-MN only cares about accuracy as a performance metric. Intuitively, a 

cognitive mental model may value confidence in the predictions. To enhance DPM-MN, 

the dual-process accounts of reasoning (J. S. B. T. Evans, 2003) should be further applied.  

Further DPM-MN enhancements need to take advantage of the dual-process learning 

mechanisms. 

Next, it may seem unusual for the System 1 points to reflect the concepts in System 

2. If System 2 covers the concept, why would points in the area covered by the concept 

need to be added to System 1 as outliers? In this case, Ct is high, so it is difficult to verify 

System 2 as a sufficient model. In some dual-process theory inspired algorithms, a 

reflection of concepts between System 1 and System 2 is intended (Helie, et al., 2011). In 

DPM-MN, a reflection of System 2 concepts in System 1 may happen when there exists an 

oversaturation of points in an area, a volatile System 2, and a high Ct. In the notional dataset, 

it makes sense for the reflection to occur since the class groupings are straightforward. 

DPM-MN primarily utilizes the System 2 concepts for a quick concept drift advantage to 

have the performance edge over other hyperparameter sets.   
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One primary advantage of DPM-MN is its flexibility in the creation of an SMM. 

The problem space, or the specific human DPM-MN is imitating, likely requires a change 

in the learning parameters. DPM-MN offers a robust foundation for dual-process learning, 

but it needs to better utilize ideas from the dual-process accounts of reasoning to enhance 

mental model mapping accuracy  

6.2 Future Work  

DPM-MN excels as a cognitive architecture for human behavior imitation, but it 

can benefit from some possible improvements. DPM-MN can be used as an additional tool 

in the near future where multiple algorithms are utilized to come up with a fuller solution. 

It reveals certain properties about symbolic representation and processing of psychological 

functions such as human learning, memory, and decision-making. DPM-MN also brings 

about discussion of appropriate cognitive architecture structure. In this case, the dual-

process theory motivated the overall algorithm. The algorithmic implementation of the 

dual-process theory raises further speculative discussion about the correct approach. The 

version of DPM-MN in this research is a prototype, but it holds a lot more potential with 

future iterations or future applications.   

6.2.1 Algorithm Optimizations. 

DPM-MN’s computational cost hinders extensive training or a vast hyperparameter 

search space. There are a few considerations which could be explored to improve the 

computational cost. These suggestions include parallelizing the algorithm, bettering the 

sequential methods, and implementing scaling solutions. 

The first coding iteration of DPM-MN is initially concerned with properly coding 

the functionalities. However, a more parallelized implementation would help the training 
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computation time. With parallelization, GPU’s can be utilized to simultaneously run 

portions of the code. Because of the temporal nature of DPM-MN, it may be difficult to 

find parallelizable parts of the code.  

Even if some parts could be parallelized, it would be worth improving the 

sequential parts. The slowest part of DPM-MN is the constant k-means clustering of 

System 1 points. With every new input, the System 1 points are clustered. The execution 

time is slow and suffers even more when the hyperparameters allow a tremendous amount 

of points to exist in System 1. For example, if the size threshold and the entropy threshold 

(Et) are both high, many points will gather in System 1. Some suggestions for improving 

the sequential timing are to use a more intrinsically efficient clustering algorithm, to save 

the previous k-means centroids for a starting point of the next k-means clustering iteration, 

to only use k-means clustering for new System 2 concepts once a certain number of new 

points enter System 1, or to run this process semi-offline on a different processor.   

The computation cost becomes most apparent when the number of datapoints grows. 

Maybe scaling solutions can speed up the DPM-MN algorithm when it most needs a boost. 

A couple possibilities include using a fraction of the available input values to create the 

concepts and raising the number of input points per iteration. Using a larger batch size may 

have side effects with how DPM-MN learns, but it may be worth it for the speedup. 

Preliminary testing shows a possibility for a slight relationship between the number of 

points per training iteration and the test error. An official experiment could be beneficial 

to determine the behavior of altering the number of points per iteration value to improve 

computation time.  
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Another possibility is to group hyperparameter behaviors together to shrink the 

hyperparameter search space. The hyperparameters could represent concepts rather than 

direct variable changes. For instance, the concept of volatility could encompass Ws and Nc 

for System 1 k-means clustering. Volatility describes how quick System 1 points and 

System 2 concepts move. Another concept could be the ratio between Sone and Stwo rather 

than directly stating them both. Lastly, the concept of System 2 concept size could include 

the St and the Et. There are various higher-level concepts that could act as hyperparameters 

to extend the possible search space. 

At the moment, a critical weakness of DPM-MN is the time it takes to train. Even 

if DPM-MN is superior in performance, it may be worth it to use other learning algorithms 

if the DPM-MN computation time does not reduce. However, there is high confidence that 

DPM-MN can improve with slight modifications.  

6.2.2 Narrow Application. 

One issue with DPM-MN is the narrow range of application. The state-response 

mapping is currently meant for a single problem. There needs to be a way to include other 

problems or a way to create a chain of decision making. Especially because DPM-MN is 

created to help handle the extremely complex problem of mapping a human’s mental model, 

DPM-MN must have a potential to become broader. Also, the potential responses to choose 

from is limited to a predetermined amount.  

A possible solution to the narrow problem application of DPM-MN could be to 

create a hierarchy of DPM-MN models. These multi-level DPM-MN models would be 

nested to allow recursive decision making. For instance, take two DPM-MN models: D-1 

and D-2. D-1 decides which activity to do while D-2 decides which sport to play. Given a 
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scenario, if D-1 decides the person will play a sport, it can then consult D-2 to decide 

exactly which sport to play. In effect, D-1 decides which lower-level DPM-MN model to 

use. 

Another problem limiting DPM-MN is the inability to explore new responses. 

DPM-MN learns mental models through experience where the response types are fixed. 

The set of available responses must be preprogrammed. Thus, DPM-MN’s prediction is 

limited to a specific assortment of actions. There would need to be some way to create 

explorative behavior to make it a proper artificial general intelligence (AGI). Motor 

learning is just as important as declarative learning. If an agent using DPM-MN can never 

explore responses outside of the programmed responses, there can be no progress through 

exploration and discovery. 

6.2.3 Section Feature Value Collisions. 

As seen in some comparison pictures between predicted and true trajectories, the 

true trajectory seems more aware of the exact location of items of interest compared to the 

predicted trajectories. It could be an artifact from the trajectory prediction process, but it 

also could be an artifact of errored feature engineering. The feature engineering goal should 

include an ability to ‘see’ where components exist in a state instance. Using bonuses as an 

item example, the zone five bonuses feature value is a latent code for information about 

bonuses in zone five. This information includes the location and number of bonuses in zone 

five so a trajectory can be drawn through them, or at least near them in a similar way the 

human subject would have drawn the trajectory.  

The issue arises with the inability to exactly pinpoint the location of the bonuses. 

Information is lost by merely recording a weighted density of objects within each zone. 
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The current features tell the algorithm the relevance of each type of object in each zone, 

but there is missing information on the coordinates of each item. For example, as long as a 

bonus in zone five is the same straight-line distance from the center line connecting the 

selected ship and the destination planet, the bonus will apply the same value to zone five. 

The variance of position on the x-axis does not matter. This lack of information explains 

why sometimes a predicted trajectory will be similar to the true trajectory, but the predicted 

trajectory will miss the obvious bonus or enter the obvious no-fly zone.  

A possible improvement to the features is to manipulate the final trajectory with 

rules to alter the trajectory so bonuses are on the path if near the predicted trajectory and 

the predicted trajectory would avoid no-fly zones. However, this assumes that every player 

will make good trajectories. It restricts the ability for DPM-MN to learn the mental model 

of horrible players that miss bonuses and go through no-fly zones. Accordingly, the 

problem is difficult, but it still exists.  

6.2.4 Problems with State-Response True Correlation. 

For DPM-MN to be effective, the human’s mental model needs to have some 

semblance of strategy. If there is little to no correlation between the state space and the 

human’s response, then the mental model mapped by DPM-MN will have little value. 

DPM-MN will correctly map a seemingly random mental model, but it does not offer an 

advantage over other model types.  

A possible source of ‘randomness’ within strategic environments is the free will a 

human has when making decisions. In some cases, given the same state space, a person 

will choose between multiple response types based simply on a “feeling”. An example in 

Space Navigator is the way a person draws a second-degree polynomial curve between the 
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selected ship and the designated destination. If no significant items are near the pathway, 

a person may not use strategy when deciding to draw the curve either to the left or to the 

right of the center line path. The random behavior problem can be remedied by adding 

additional features to the state space that correlate to a decision-making strategy. Although, 

sometimes no such additional features exist.    

A prime example is the Space Navigator experimental domain. It is difficult to 

make massive improvements on the naïve straight-line predictor model. Most people 

playing Space Navigator simply drew straight lines between the selected source and the 

destination planet. No clear strategy existed for many of the drawn trajectories. Even 

further, no clear and consistent strategy prevailed. DPM-MN takes advantage of the little 

strategy involved in Space Navigator as seen by the statistically significant improvement 

in the results, but DPM-MN would be more beneficial in problems where the human forms 

a unique strategy. 

A person’s strategic mental model requires some form of rationalization for DPM-

MN to properly find correlations between the state space and response. Space Navigator 

somewhat encouraged a disengaged approach from the participants; in many cases the 

human player simply drew a straight-line trajectory from the source to the destination. It 

would be beneficial to explore DPM-MN’s capability in a more strategic intense 

environment.    

6.2.5 System Two Multicollinearity.  

When a concept is created in System 2, a probability density function that closely 

represents the underlying points needs to be calculated with a non-singular matrix. A 

singular matrix occurs when there is perfect multicollinearity. In the case of DPM-MN, it 
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will occur if the number of observations is not greater than the number of dimensions of 

the state space. The state space is made of nineteen features, so nineteen features need to 

make up the underlying distribution for any concept in System 2. As a result, there are 

many different options that could be used to overcome this multicollinearity necessity. 

Each option has its own associated positives and negatives. 

1) Use a probability density function that does not require the covariance matrix – 
This approach is scalable, quicker to calculate, and less restricting. A probability 
density function can be determined with as little as a single point. Although, the 
simplicity comes at a price. The probability density function is less precise in 
representing the underlying data than other methods.  
 

2) Deal with a probability density function that requires the covariance matrix – The 
positives include an accurate and precise mapping of the underlying points. The 
primary, and substantial, negative is the scalability issue regarding the number of 
dimensions. Since a covariate matrix is necessary, the number of points used to 
create the probability density function needs to be proportionate to the number of 
dimensions of the datapoints. With overlapping functionality, this negative greatly 
affects the model as a whole. System 2 points will be constantly revoked due to not 
having enough points necessary for the distribution rule. It also creates a problem 
with choosing the size threshold and Et. The St multiplied by Et would have to be 
at least the necessary number of points. Thus, a new hyperparameter constraint is 
added to the already complex DPM-MN functionality.  

 
3) Revocation on error – If a probability density function requiring a covariance 

matrix is used, an error frequently occurs when the overlapping functionality occurs. 
This requires the entire concept to be revoked since a distribution cannot be 
calculated anymore. By following this method, the System 2 concepts will more 
closely reflect the comprising points, but the existence of concepts becomes greatly 
restricted.   

 
4) Dimensionality Reduction of State Space – Instead of revocation, the number of 

features for each datapoint can be reduced through dimensionality reduction. Less 
covariance matrix errors would occur, and the scaling problem would be fixed, but 
a potentially massive amount of information would likely be lost.   

 
5) Adjust algorithm to accommodate covariance matrix error – The DPM-MN 

algorithm could be constrained in certain areas to create an environment where the 
error rarely happens. The first suggestion is to enforce a DPM-MN hyperparameter 
rule. If the number of points that initially make up a System 2 concept is well past 
the threshold, it is more likely that any overlapping will not instantly create an error. 
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Another suggestion is to take out the overlapping functionality. Once a concept is 
in System 2, it will not have a high chance of creating a covariance matrix 
calculation error because the satisfactory number of points will be stable. However, 
the scaling problem still exists and the hyperparameter search is still constrained. It 
also creates an absence of a vital DPM-MN functionality. 

 
Ultimately, DPM-MN uses the first option. Weighing the positives and negatives 

of each option, the precision loss of the first option is minimal compared to the plethora of 

issues related to a probability density function that requires the covariance matrix. In fact, 

options three to five are all alternatives for dealing with an algorithm that uses the second 

option. Those negatives add to the initial intimidating negatives of option two by itself. 

Introducing the possible covariance matrix error causes too many issues that negatively 

influence current and future algorithm decisions.  

6.2.6 DPM-MN Priority Improvements. 

The resultant DPM-MN model and corresponding framework rests on solid 

foundation. However, there are many possible improvements like those already discussed 

in this section. Through analyzation of DPM-MN results, a couple areas of interest emerged 

that should be first progressed before moving to other additions. These goals are to obtain 

more fitting state-response data and to further implement the dual-process accounts of 

reasoning.  

Space Navigator provides clear strategic objectives for the state instance and a 

straightforward response. However, the strategy is seemingly absent. It is difficult for any 

model to map a learning process if no learning is happening. The straight-line baseline 

performs well because most of the drawn trajectories are close to the straight-line response. 

Each experiment, including DPM-MN, that attempts to functionalize the state-response 

pairing of the Space Navigator data correctly predicts mostly straight-lines with relatively 
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few correct predictions of curvy lines. A game with an evident, perhaps explicitly stated, 

strategy is better fit for a mental model mapping process such as DPM-MN.  

Next, DPM-MN currently possesses the necessary mental model mapping tools for 

imitating human cognitive functions. DPM-MN adequately develops the dual-process 

theory of learning, but DPM-MN must place more stress on the dual-process accounts of 

reasoning. DPM-MN chooses the hyperparameters to simply produce the most accurate 

responses. This seems desirable at first, but the primary goal is to create the best mental 

model mapping of a human. While a high response accuracy is a component to finding a 

correct mental model, it is not the only factor. The goal of DPM-MN is to create a general 

intelligence in System 2 while supporting novelty detection in System 1. As seen in the 

optimal DPM-MN model for the notional dataset, the mental model building occurring in 

System 1 utilizes System 2 more-so as a complex support. This outcome greatly affects the 

efficacy of outlier detection in System 1 and the effective interaction between the systems. 

It does not help understanding of the algorithm when the experiments rely on datasets that 

are either synthesized, like the notional dataset, or saturated with a single response like the 

straight-line response in Space Navigator.  

To assist DPM-MN in fulfilling its complete potential, DPM-MN can develop a 

few apparent changes. A different testing process may help DPM-MN build a better mental 

model in System 2. Because System 1 is an outlier detector, perhaps the testing of points 

can exclusively rely on System 2 or perhaps System 1 growth size can receive penalization 

in some way to force regularization. That way, System 2 must play a critical role in finding 

the general data distributions of the data. At the moment, System 1 routinely holds too 

much power and influence. It is not unusual for System 2 to have under ten concept 
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distributions while System 1 has over five-hundred concentrated, individual points. System 

1 ceases its function as an outlier detector and System 2 cannot compete with a relatively 

low prediction confidence. Also, in a high-dimensional space, since System 2 is more 

smoothed out, the concept distributions may get spread too thin. Some possible solutions 

are to provide System 2 rules with a strength boost and to place a higher standard on the 

addition of new points into System 1 if a System 2 distribution already exists for the class 

in the prediction state space.  

A more learning intensive environment should experiment with DPM-MN. Also, 

DPM-MN should further consider the dual-process accounts of reasoning. The basic idea 

is that System 2 should be capable of overriding System 1’s prediction if it is likely wrong. 

In order to achieve this functionality, System 2 needs more competence. Once DPM-MN 

enhances the dual-process accounts of reasoning, the interrelation unit between the systems 

can become more complex with a balance in the duality of deductive and inductive 

reasoning.  

6.3 Future Application 

DPM-MN possesses a considerable amount of potential for future applications. 

Since it aids in the ability to map a human’s mental model, human-machine teams can 

develop a shared mental model (SMM). Through an SMM, the computerized agent can 

utilize its simulation capability to a greater extent. Without an SMM, the motives and 

behavior habits of the human teammate are not fully leveraged in a computerized agent’s 

prediction simulation. Now, the computerized agent can more optimally structure its own 

decisions to increase team performance.  
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The benefits to human-machine teaming will permeate the Air Force and society. The 

expansion of teams will, and in some cases currently do, greatly integrate a computerized 

agent teammate. DPM-MN improves performance anywhere a team is present. Teams can 

positively apply DPM-MN to enhance teamwork in many operating areas including pilots 

for their AI co-pilot or wingman, the cyber division for intrusion detection, medical 

professionals for insight on patient mental models regarding their treatment, and air traffic 

controllers for alleviating workload during high stress situations. With a better SMM, the 

autonomous agent in a team becomes more aware of the decision-making of its human 

teammates. The cognitive and learning design of DPM-MN even promotes the Air Force 

idea that “flexibility is the key to airpower”.  

DPM-MN does not need to be a standalone model. It would be useful to incorporate 

it as a module within a larger architecture structure. DPM-MN’s primary function is to 

create a mental model of human teammates. Other architectures that specialize in different 

functions may be better suited for encountered problems rather than expecting DPM-MN 

to change to handle the problem as well. For instance, DPM-MN’s learning of new 

procedures is problematic. There could be a separate module that learns the set of available 

responses and then those responses can be provided to DPM-MN for the creation of a 

shared mental model. Additional potentially useful modules to synergize with DPM-MN 

include an attention mechanism module, a deductive module using formal logic, and an 

action reinforcement module. Another problem that could be solved by cooperating with 

other modules is the issue DPM-MN has with unexpected queries. DPM-MN assumes that 

the incoming data will be complete and unchanged from the expected format. Perhaps a 

preprocessing module can take raw data and transform it into a consistent, embedded 
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feature space. Mixing DPM-MN with other model types can advance the creation of a 

holistic cognitive system used in AGI. 

6.4 Summary 

Teams work more efficiently and perform better with the presence of an SMM. 

Human-machine teaming is becoming more prominent throughout society. As a result, 

there needs to be a way for machine teammates to create a mental model of their human 

teammates. As demonstrated in the Space Navigator experiment, DPM-MN is a solution 

for the formulation of a human’s mental model.  

The DPM-MN architecture excels in building a human teammates mental model 

because of its implementation based on the dual-process theory. DPM-MN accounts for 

various cognitive concepts such as concept drift, sensitivity to outliers, flexibility in the 

learning method, and the balance between explicit and implicit decision-making. If the Air 

Force and society want to progress in human-machine teaming, they should analyze the 

lessons learned from the implementation of DPM-MN and be open to a dual-process theory 

motivated approach like DPM-MN.  
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Appendix A: Research Community Goals 

AI first started out as handcrafted software for narrow problems which was useful 

for finding a reasonable answer to a new query. An example would be linear regression. 

The next wave of AI began to incorporate feedback, so the AI models could “learn” from 

new observations. This second wave is where we currently progressed to with Deep Neural 

Networks and Reinforcement Learning (Launchbury, 2017). The third wave, which a lot 

of research is currently directed, will partake in widening the scope of possible problems 

to solve and learn from. In short, researchers wish to endow AI with better critical thinking 

and problem-solving skills when coming across a new problem. 

A proper starting point in solving the narrow scope of current AI would be to 

determine if anything exists that currently exhibits excellent generalized problem-solving 

skills. There might be something that uses past experiences or relatable problem sets to 

solve a new problem existing in a completely different task space. It just so happens that 

such a phenomenal object exists: the human brain. Several propositioned AI algorithms, 

including DPM-MN, attempt to imitate biological solutions. A couple examples include 

genetic algorithms (Gnanaprasanambikai, et al., 2018) and neural networks. The new 

frontier for biological imitation is the brain/mind. DPM-MN specifically targets the mental 

model of a human teammate to boost teamwork.  

Cognitive architectures try to copy the functions of the mind. It is a field of research 

which is hopeful in solving the narrowness of problems a single AI agent can handle. 

Currently, an AI can be programmed and can learn a contained problem space such as 

figuring out the best move in a game of chess. However, if that same AI were tasked with 

deciding the best move in a game of checkers instead, it would fail tremendously. Suddenly, 
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all the rules have changed, and the AI may not even be able to process the situation, let 

alone figure out an optimal choice. 

A few of the concepts surrounding cognitive architectures are ways to learn new 

problems, how to produce a solution if there is no “right” choice, and the combining of 

different algorithms to figure out an answer. These concepts relate to the operation of a 

person. When encountering any problem, multiple processes are occurring at the same time. 

For example, if a person needs to kick a soccer ball to their teammate, they are: thinking 

about the best teammate to kick it to, deciding if it is better to keep dribbling instead, using 

their eyes to determine where the ball is located, keeping proper balance to perform the 

kick, and paying attention to possible opposing players challenging the kick. All of these 

separate processes ultimately determine the final action. 

Improving cognitive architectures is a first step in the creation of a general AI. AGI 

is the sci-fi fantasy of creating a human-like robot such as R2D2 or C3PO from Star Wars. 

AGI is “aiming to build agents that encompass the whole breadth of human intellectual 

faculties and more”(Schaul, et al., 2011). If the end goal is to make a human-like robot, 

then a cognitive architecture can be used to make decisions that are similar to how a human 

would decide. This increases the similarity between an AGI agent and a human. There is 

skepticism as to whether or not an AGI, sometimes referred to as “strong AI”, is fully 

possible (De Ruiter, 2006). However, with research development in cognitive architectures, 

there may exist a close enough solution.  

DPM-MN is categorized as a cognitive architecture. It may possibly push the 

boundaries that AI researchers as a whole consider important such as the realization of the 
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third wave of AI, cognitive architectures, and AGI. These three primary concepts are 

motivation for DPM-MN from a research community perspective.  

DPM-MN advances the third wave of AI by discovering the mental model of a 

person. Once a shared mental model is obtained, an autonomous agent can understand an 

individual human through a teamwork viewpoint. The autonomous agent should be able to 

predict what the human teammate will do in a given situation. It should also be able to 

imitate the human from which the mental model was obtained. DPM-MN will have 

correctly copied a person’s mental model when the prediction of the autonomous agent is 

measurably similar to the actual response the person would have given in the same scenario. 
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Appendix B: Dual-Process Theory Influence on DPM-MN 

The following is a list of knowledge sources supporting why DPM-MN is a dual-

process theory-based cognitive architecture:  

1) Dual-Process Theory attempt – A dual-process cognitive architecture should 
attempt to capture the implicit versus explicit framework of decision making, even 
though it is difficult to concretely define these ambiguous concepts (Sun, 2015). 
DPM-MN uses two distinct systems in parallel to aid in decision making. These 
two systems interact with each other and have their own unique prediction process 
corresponding to previous researchers’ ideas about the dual-process theory. The 
primary point is that the dual-process theory is philosophically based so there is no 
exactly true definition of System 1 or System 2. Although, that does not preclude a 
growing understanding of the concepts.  

 
2) Computational complexity difference – System 1 represents an automatic, or 

implicit, system while System 2 represents an explicit system, or rather a system 
utilizing working memory (Frankish, 2010)(Wiltshire, et al., 2017). DPM-MN’s 
System 1 directly adds observations. There is no prior process involved to 
determine the representation of an observation in System 1. However, System 2 
uses working memory through an eager learning scheme. The prediction querying 
of new observations may be similar in System 1 and System 2, but the System 2 
concepts are built through calculating an appropriate distribution through a 
Gaussian kernel prior to the addition of a new concept.  

 
3) Reasoning difference – The System 1 processes are more associative, or similarity-

based, while the System 2 processes are more rule-based (Frankish, 2010). In DPM-
MN, System 1 predictions derive from new observations being close to former 
individual observations. System 2 predictions come from new observations being 
close to concepts created over time through a build-up of individual observations.  

 
4) Sequentiality – The model learns over time. Human learning and behavior is 

temporal in nature (Sun, 2004). DPM-MN reads new observations on a timeline. In 
order to learn behaviors, the observations should be seen by the model in sequential 
order.   

 
5) Trial-and-error  – Humans learn reactively to routines and they adapt according to 

the empirical results (Sun, 2004). DPM-MN maintains the model structure when 
new predictions are highly confident and correct.   

 
6) Synergistic interaction – A dual-process model should synergistically interact the 

explicit and implicit processes (Sun, 2004). Instead of simply being two different 
models, the two components should harmonize their functionality to aid one 
another. DPM-MN contains several functional features that cause interaction 
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between the two systems. For example, when a System 2 concept is retracted, some 
of the underlying distribution are sent back to System 1.  
 

7) Bottom-up learning – The research among psychologists indicates a tendency for 
humans to build implicit knowledge first before explicitly creating concepts (Sun, 
2004). This describes the “a posteriori” knowledge pattern. DPM-MN creates its 
concepts in System 2 from the implicit knowledge built through System 1. A top-
down approach contends with the bottom-up learning. This perspective focuses on 
the idea that basic concepts are first intuitively consulted, and then the specific 
situation is considered if an incomplete answer is provided. This is similar to other 
dual-process approaches that first consult the obvious solution before considering 
the in-depth analytical solution. Although, the top-down approach is different 
because, in relation to the rule-making process, it is assumed that the top-level 
concepts are already known. Therefore, the top-down learning perspective is dual-
process related because of the inference computational cost rather than because of 
the process for accumulating knowledge. It is worth noting that Sun (Sun, 2004) 
acknowledges a top-down dual-process approach is prevalent in dual-process 
implementations. However, it requires “a priori” explicit knowledge of some form. 
Implicit knowledge can be gained through explicit knowledge and vice-versa. The 
scope of DPM-MN is currently narrowed to dual process learning characteristics.  

 
8) Modularity  – The cognitive architecture should have functional modularity (Sun, 

2004). The model should be capable of evolving through the addition of important 
functionalities. Functional modularity of simple functions facilitates the emergence 
of higher-ordered functions. In DPM-MN, learning volatility can be seen as the 
interaction between the System 2 window size (Ws) for a class and the requirements 
for System 1 points to become a System 2 concept distribution. Another example 
is shown in CLARION where the unpacking principle and ascertainment bias are 
revealed through the basic interactions of lower-ordered functions (Helie, et al., 
2011). 

 
9) Minimalism  – Minimalism can refer to either minimal initial structure or minimal 

knowledge representations (Sun, 2004). DPM-MN utilizes both to try and keep a 
minimalist approach. The model starts out blank and begins to learn once new 
observations are trained on. The knowledge representations are comparatively 
minimal as well since the learned experiences are represented as state-space 
mapping through a Gaussian kernel.  

 
10) Confidence levels – Similar to human thinking, DPM-MN contains an element of 

confidence. As also observed in CLARION, confidence levels allows for an 
element of uncertainty (Helie, et al., 2011).  

 
11) Memory – There are many different types of memory that a cognitive architecture 

may capture. These include declarative memory (further sub-divided into episodic 
memory and semantic memory), procedural memory, and working memory 
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(Goertzel, et al., 2013). In DPM-MN, episodic memory and working memory are 
primarily applied since the model attempts to functionalize experiences and the 
created concepts of System 2 maintain a working memory of the individual 
experiences that make up any given concept. 
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Appendix C: DPM-MN Dual-Process Theory Functions 

Concept Drift. 

Learning and reacting to situations develops over time. People gain new 

experiences, learn from the past, and explore new options. It would be asinine to assume 

that people will forever react to a situation the same way as the way they acted during their 

first experience. People will evolve their understanding of a problem and as a result develop 

their reaction. A person may learn that a state-response pair in the early stages of a new 

problem may cause a better outcome if the response was actually given during a different 

situation. Alternatively, it could be possible that a state instance is not encountered for such 

a long period of time that it seems like new again when revisited.  

When first hired, a person may start taking the bus to work every time they are 

running late. They begin to learn that if they take the bus to work when they are running 

late, they will never make it to work on time. As a result, the person starts only taking the 

bus when they are running early with their schedule. 

Overwriting Previous Knowledge. 

Concept drift deals with the change of a state location for a certain response. 

Overwriting previous knowledge deals with the change of a response for a certain state 

location. Given the same state, people will usually evolve their response over time. A 

common cause of this effect is learning. Usually a non-optimal response will be given when 

someone first encounters a problem. Over time, a different and more optimal response 

becomes the norm for the problem.  

Relating the overwriting of previous knowledge to the analogy, the person first 

started off taking the bus to work every time they were running late. Once they learned that 
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they would not give to work on time, they instead substitute the bus response with a 

different one. The person instead may decide to start taking their personal car when they 

are running late. They are rewarded for finding a better response to the running late 

situation, and now they are sometimes on time for work when running late.   

A new response has taken the place of an old response for a given state. It is 

important for the new response to overwrite the old response rather than merely adding to 

it. If the old response is not erased, it starts to cause irreducible error in the response. The 

stale reaction creates randomness between multiple decisions given a state. Now imagine 

the effect over a long period of time. Many different responses would overlap each other, 

and the model would become no better than random chance.  

Retaining Past Experience Memory. 

Dual-Process Model using multivariate normal probability density functions 

(DPM-MN) parameterizes the memory capacity of the model even though it is artificially 

limiting the capability of the computer. Why force the computer to ‘forget’ certain concepts 

or experiences when it possibly has the capacity to remember every experience – either 

individualized in System 1 or aggregated somewhere in System 2?  To achieve the goal of 

human behavior, rather than rational optimality, these artificial limitations are meant to 

mimic the limitations of the human behavior. By limiting capacity, it is a way to enhance 

the importance of relevancy.  

Even though some memory capacity is limited, there are parts which try to keep 

certain memories for functional purposes. The first example is the perpetual outlier. An 

outlier in System 1 will stay in System 1 if no other identical class responses are placed 

near it. This captures the idea of one-off scenarios. People may remember singular 
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instances of certain experiences. Many people can answer if they have ever traveled to a 

location better than how many times they have traveled to a location. The former highlights 

the ability to remember outlier situations while the latter shows the memory leakage of 

remembering specifics about everything in their life.  

Another concept related to the retainment of past experiences is the revocation of 

System 2 knowledge concepts. If a System 2 concept, represented by a multivariate normal 

probability density function, is erased, a fraction of the underlying points which make up 

that erased concept are sent back to System 1. This keeps the harmony between updating 

knowledge concepts and holding onto memories of past experiences. Only a fraction of the 

points is sent back to System 1 to reduce thrashing between both systems.   

Aggregation of Experiences to Form a General Concept. 

System 1 represents the individual experiences and System 2 represents the general 

concepts of knowledge gained from the conglomeration of individual experiences. When 

growing the knowledge base, if a response to a handful of similar situations occurs enough 

times, it then moves from System 1 and into System 2. The new System 2 knowledge 

concept is created through processing all of the individual responses moving from System 

1 to System 2. The System 1 points influence close-by queries. On the other hand, because 

the System 2 concepts are mapped by multiple System 1 points, the System 2 concepts 

cover a larger area which allows for more generalization; the new query states do not have 

to be extremely close to a previous point for System 2 to provide a confident response.  

A specific concept can be refreshed if it provides confident and correct responses 

to new information. This ensures the most relevant concepts to stay in System 2 while the 

outdated concepts are the ones that get revoked. System 2 concepts also determine if DPM-
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MN needs to learn the incoming information. If System 2 cannot provide a correct response 

with high confidence, the new input is placed into System 1. When a new input does not 

need to be learned, it acts as an indication that the System 2 generalizations are currently 

correct. Once enough points of the same class are in System 1, a new concept can be created 

to cover the newly found pattern. 

Outlier Sensitivity. 

When encountering a new situation, a person either has to recall on past experiences 

or discern an action based on applicable life experiences. The second time a person 

encounters a new situation, they have at least the first time to recall. DPM-MN wants to 

capture that first experience to possibly use in the second encounter. As a result, 

observations which are seldom encountered are still stored in System 1 for later use. If a 

new observation is close enough to that previous outlier situation, then it will provide the 

same response learned from before. The advantage of outlier sensitivity is to allow for 

variance in responses when the setting is appropriate. DPM-MN uniquely prevents an 

onslaught of new observations from causing the decision-making process to trend away 

from that one-off scenario. It usually is an appropriate choice to make since in most cases, 

the one-off scenario will not be visited again. However, DPM-MN allows the reuse of the 

response from the outlier experience if the scenario is nearly similar. The scenario has to 

be extremely close in order to activate the observation in System 1, or else it will be 

generalized on by System 2.  

Along with the behavior of outliers in System 1, DPM-MN prioritizes the 

population of outliers in System 1. When a new observation point is queried, System 2 is 

first consulted to determine if a confidence answer can be given. If System 2 cannot 



 

127 
 

confidently generalize on a new observation, the new observation is placed into System 1. 

This process allows outliers to almost always make an appearance in System 1 even if it 

near-randomly receives a correct prediction from DPM-MN.  

Online Learning.  

The final form of a DPM-MN model should process live observations in real-time. 

After it has been trained on previous data, it can accept datapoints as they arrive. A 

continuation of learning and model updating takes it from a functionalization of the past 

and turns it into a functionalization of the present.  

Bootstrapping the model with previous information is important to get a baseline 

and to quicken the whole process. Even though the data is temporal, or the data is processed 

according to a timeline, the previous information will still capture ground truths and recent 

behaviors. It is also this model characteristic that allows the possible alteration from a 

general model using all available data into a specific model using a specific person’s data 

alone. The generalized model would first capture common state-response pairs shared by 

everyone, and then the specific person’s data would capture idiosyncrasies. 

Overall, the most important aspect of online learning is the passive continuation of 

the model in real-time. DPM-MN has the capability to learn as time continues through 

every new observation. The model is flexible enough to allow this online learning; DPM-

MN can slowly change shape over time to reflect knowledge that prioritizes recent 

observations. It acts like a sliding window function that fades out most of the information 

from the distant past while keeping key outlier observations.    
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Balance Between Implicit and Deliberate Systems. 

When a person participates in decision-making, they have many alternative choices. 

There are two primary, and competing, decision-making processes: the implicit process 

and the deliberate process. These two processes are otherwise known as System 1 and 

System 2 (or Type 1 and Type 2) in the dual-process theory (J. Evans, et al., 2013). 

Depending on the circumstances, one process overcomes the other when coming to an 

ultimate decision. Dividing the decision-making process into two different and distinct 

processes is a trademark of the dual-process theory and subsequentially DPM-MN.  

In DPM-MN, System 2 symbolizes the deliberate thought process and System 1 

symbolizes the implicit thought process. There is a balance between each of these systems. 

Given a new query, each system returns their own prediction and a number indicating the 

confidence of their prediction. Because the knowledge representation of the System 2 

concepts and System 1 points are created through the use of multivariate normal probability 

density functions, granularity is provided. It is extremely unlikely that System 1 and 

System 2 tie in their confidence numbers. The balance between System 1 and System 2 is 

controlled by a hyperparameter which determines the influence reach of all the points in a 

particular system. If System 1’s influence reach is high, then more points in System 1 will 

be confident on predicting a response for a new observation. The probability density 

function of each point smooths out to reach a larger area. 
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Appendix D: Bias-Variance Tradeoff in Experimental Design 

The dataset includes thirty-five different players. When the goal is to create a model 

that maps the behavior of a specific individual, noise is introduced in the idiosyncrasy 

detection when using thirty-five different players’ data. At the same time, generalized 

behavior becomes the dominating quality in the model. The behavior common to all the 

players will be reinforced while the peculiar actions of a single player will get concealed 

by the rest of the data.  

All of the data will be tested as a relative statistic, but more success will most likely 

come from weighting the single player data in some way. Since the goal is to map an 

individual’s behavior, it is better to prioritize detecting idiosyncrasies. The weighting of a 

single player can be done in two different ways: only the single player data is used, or the 

single player’s data is weighted as more important than the other behavior. Technically, 

only using a single player’s data is weighting that data as one-hundred percent and the rest 

of the data as zero percent. If only the single player’s data is used, the model will directly 

reflect the chosen player’s state-response pairs. Although, a lot of the data will be 

essentially thrown out.  

One method to utilize all the available data while still focusing on the single player 

would be to find generalized behaviors through everyone else’s data, and then focus on the 

single player’s data. Because recency is important in DPM-MN when training, simply 

looking at the chosen player’s data last should allow idiosyncrasies to emerge. The 

generalized behavior should agree with the chosen player and the idiosyncrasies that 

disagree with the starting model should move out any other state-responses occupying 

similar state locations as long as the model is volatile enough. This method may also 
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quicken training in general since the model is being bootstrapped with common behaviors. 

Another possibility is to give extra attention to the single player by running through their 

data twice. The chosen player’s data will be accentuated because of multiple encounters.    
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Appendix E: Data Preprocessing 

The state-response data comes from a Space Navigator experiment conducted in 

2015 by Major Bindewald. The study participants simply played Space Navigator. 

Whenever they drew a path between a planet and the intended goal, various game state 

features and the points which make up the trajectory were recorded.  

 

Figure 46: Raw data input example. 
After capturing the data from an experiment, Figure 46 is what the raw data looks 

like. 35 players completed 16 levels each and generated a total of 68,538 different trajectory 

instances. Every line starting with a number is a single example of a drawn trajectory given 

the state instance. 

 

 

Figure 47: A Space Navigator screen capture highlighting important game objects. 
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Algorithm 2: State-space feature vector creation. 

After the data is gathered, it needs to be preprocessed to become suitable for 

training (Figure 47). Each feature value in the data becomes normalized between zero and 

one. Without normalizing the features, the straight-line trajectory length (s[19] in 

Algorithm 4) will overshadow the other features because of the large scale it exists on.  

In addition to Algorithm 2, the Gaussian weight function is multiplied by the 

relevance variable for the other ship object types. This was added to the algorithm because 

it is important to capture which direction the other ships are going. Intuitively, if the other 

ships are moving away from the direct path between the selected ship and the destination 

planet, it poses less of a threat than other ships moving straight toward. If a non-selected 

ship is moving straight towards the area of interest, its Gaussian weight function is 

multiplied by two. If a non-selected ship is moving away from the area of interest, its 
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Gaussian weight function is multiplied by zero. All of the values in between towards and 

away act on a continuous function between two and zero. For instance, a ship in zone two 

moving parallel to the line of interest has its Gaussian weight function multiplied by one. 

For more information on this additional metric, see Appendix F. 

 

 

Figure 48: Important parts of Space Navigator. 
There are 68,538 observations. Each state includes nineteen features. Algorithm 2 

shows how these features are computed. Figure 48 shows what each state object looks like. 

The bonuses give extra points, the no-fly zones take away points whenever a ship exists 

within it, and a lot of points are given when a spaceship reaches a planet of the same color. 

Each of the six zones contains three features. That accounts for eighteen of the nineteen 

features. The last feature is the non-transformed straight-line trajectory length. This last 

feature represents the straight-line distance between the spaceship and the planet.   
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The output variable will be a trajectory sequence. The accuracy performance 

measurement will be the average Euclidean distance between the trajectory points guessed 

by the AI and the state transformed trajectory points actually drawn by the experiment 

participant. Part of the trajectory normalizing process includes standardizing the number 

of points in each trajectory by interpolating the points. Every trajectory is interpolated to 

contain twenty-five points. See Appendix G for possible problems with this interpolation 

method.  

A graphical example of the state capture and trajectory is shown below. The red 

squares are the no-fly zones. The green plus signs are the bonus points, the red stars are the 

other ships, a trajectory coming from a red star is a straight-line trajectory for that ship, the 

black “X” is the destination planet, the black “O” is the selected ship, the black line 

connecting the two is the straight-line trajectory, and the blue line is the user-drawn path.  

 

Figure 49: Initial data capture and graphical representation. 
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Figure 50: Translation of objects. 

 

Figure 51: Rotation of objects. 
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Figure 52: Scaling of objects and addition of zone lines. 
The initial data state is first translated so the selected ship is at coordinate (0,0). 

Then, all objects are rotated so the selected ship and the destination planet are on the same 

Y-coordinate plane. Finally, everything is scaled so the distance between the selected ship 

and the destination planet is equal to one. This transformation is pictured with Figure 49 to 

Figure 52. 
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Figure 53: Example of non-normalized feature values for a normalized state space. 
Figure 53 is an example of the non-normalized values for a random state. The 

weighting variable was at 0.7. “os1” stands for “other ships in zone 1”. “bon” is short for 

“bonuses”. “nfz” is short for “no-fly zone”. Finally, “linlen” is the original straight-line 

length between the selected ship and destination planet. Looking at random examples along 

with their variables allows a quick sanity check on the algorithm to see if the values are in 

the general vicinity of expectations. This example from player 29 on level 5 contains a few 

ships in zone 2, with one of them extremely close to the line-of-interest and also heading 

towards it. It is expected that “os2” will have a high value and as seen above, it does. There 

are no bonuses in zones 1,2,3,5, or 6, so they are expected to be at a value of zero -- which 

they are.  
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Figure 54: Scatter matrix of features. 

 Because of the number of features, Figure 54 is best viewed on a computer so 

zooming in is possible. As seen above, most of the features have near zero correlation. This 

is expected since the features are virtually independent of each other. A bonus in zone two 

has no effect on the likelihood of a no-fly zone spawning in zone five. An interesting 

feature of the data is the sparsity of high values. It is most likely for each feature, except 

the straight-line length, to have a near zero value.  
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Figure 55: Data Euclidean distance. 

Figure 55 shows the full data trajectory average Euclidean distance from the center 

line. The first trajectory point is almost always completely accurate. The trajectories begin 

on the selected ship so that makes sense. The distance grows as the points progress until a 

slight dip at the very end. The error in the trajectory points compound over the space. If 

point one is messed up, that will also mess up point two, and so on. The end dips a little 

because most trajectories end at the destination planet. However, a substantial number of 

trajectories are nowhere near the destination planet, so it still has a high average point 

distance. 



 

140 
 

 

Figure 56: Data trajectory X value residual error averages.    

The residual error is calculated as the truth minus the prediction. In this case, the 

prediction is always a straight line from the selected ship to the destination planet. Because 

of this standard trajectory, the trajectories can be analyzed across the whole dataset. As 

seen in Figure 56, the true trajectories, on average, are shorter than the middle line. The x-

values for each trajectory point are not progressing across the x-axis as fast as the straight-

line.  
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Figure 57: Data trajectory Y value residual error averages. 

Looking at Figure 57,the true trajectories are placed, on average and for most of the 

point locations, underneath the middle line. In fact, there even exists a parabola-like shape 

indicating a fall and rise in the trajectory 
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Appendix F: Other Ship Gaussian Weight Function Multiplier 

 

Figure 58: Relevance factor calculation. 
The red line symbolizes the line of interest. The black circle is the selected ship and 

the small black ‘X’ is the destination planet. 

The main idea in Figure 58 is to illustrate the relevance weighting depending on 

which zone the other ship is located. Basically, if the ship is headed towards the line of 

interest, its zone value contribution is multiplied by two. If the ship is headed away from 

the line of interest, its zone value contribution is multiplied by zero. Every area space in-

between these two points is interpolated on a continuous scale. For instance, if a ship is in 

the center of the “+” in zone 2 and is headed in a 45-degree angle (where straight towards 

the line of interest, or where the “2” is printed, is 0 degrees), the relevance factor will be a 

1.5 for that ship.  

This part of the algorithm exists because a player will most likely dismiss the effect 

of another ship’s trajectory if it is headed away from the line of interest. Another ship 
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heading away from the line of interest mainly is relevant only if the player wants to collect 

a bonus situated off-course from the line of interest. However, players primarily attempt to 

send the selected ship towards the destination planet, so it is safe to assume the relevance 

factor is a beneficial algorithm item. 
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Appendix G: Interpolation Method 

Each initial trajectory is resampled to achieve a specific number of points per 

trajectory while maintaining the original trajectory shape. The interpolation method evenly 

spaces out the twenty-five trajectory points across the X-axis. When sampling trajectories 

during the experiment, the mouse speed was captured. If the player held the mouse down 

at the selected ship, and then quickly swiped to the destination planet, the majority of the 

sampled points would be cluttered around the selected ship with a couple points between 

the clutter and the destination planet. By resampling evenly across the X-axis, the mouse 

speed characteristic is lost. This is an attempt to produce less noisy trajectories by 

eliminating a seemingly unnecessary characteristic which causes extra difficulty. By 

evenly spreading out the trajectory points, the shape of the trajectory is saved while also 

becoming more robust with a fewer number of points. If the mouse speed was maintained 

in the trajectory, it would take more points to capture the original trajectory.   



 

145 
 

 

Figure 59: Interpolation example. 

Figure 59 shows an example of the interpolation method. The top image represents 

a trajectory drawn by a user. The bottom image is the transformed, interpolated trajectory. 

The interpolation function basically evenly spreads out the trajectory points to eliminate 

the speed effect during the drawing of a trajectory. 

Within Dual-Process Model using multivariate normal probability density 

functions (DPM-MN), the interpolation gives an inherent advantage since the 

standardization of points and the elimination of the speed effect causes less types of 

trajectories to exist. As long as the trajectory follows the same path, two trajectories 

differentiated by speed will be classified as the same trajectory. DPM-MN performance is 

influenced by the number of classes present. Outside of DPM-MN, the interpolation’s 

effect is dependent on the algorithm used. It could be the case that interpolating the 

trajectory creates more error. The spreading out of a trajectory’s individual points may 
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cause each individual point to be further away from the true value than if the trajectory was 

left untouched. Other experiments using the same trajectory dataset exploit other 

preprocessing methods such as eliminating the most eccentric trajectories altogether. The 

results of this experiment are still comparable to other experiments in the Space Navigator 

problem domain because the same straight-line predictor baseline is used. Any extreme 

differences in preprocessing can be inferred through the straight-line predictor results. 

Table 13: Generic straight-line results (lower is better). 

Algorithm Mean (ACD) 

± SD 

Confidence 

Interval (99%) 

DPM-MN (generic 

straight-line) 

0.174 ± 0.175 (0.169,0.180) 

Bindewald, et al., 

2015 (generic 

straight-line) 

0.232 (0.223,0.234) 

Table 13 shows the difference between two Space Navigator results when using a 

naïve straight-line predictor. DPM-MN most likely has an advantage since most lines 

drawn are straight lines from the source to the destination. Also, the DPM-MN generic test 

used the final level data. This level is more difficult than the rest and players probably 

became overwhelmed by the hectic level. As a result, most people used the most efficient 

line: a straight-line. With a straight-line, the source is at least heading to the destination, 

and no strategy needs to be involved. If time is spent thinking, ships will probably collide, 

and points will be lost. The two experiments can still be compared with each other, and the 

two experiments can also compare within the experiment through baseline tests. DPM-MN 
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still consistently outperformed both the straight-line and medoid baselines which also used 

the interpolated data. Furthermore, DPM-MN outperformed the LSTM experiment 

(Appendix L) as well. 

The proclaimed reason for keeping the speed effect in the trajectory dataset is the 

idea that it better captures a human-like response. This false assumption is the motivation 

for using an interpolation method. The Space Navigator player imitation goal is split into 

two sub-goals: the trajectory path and the trajectory drawing. The experimental data 

collection method allows the former sub-goal to be explored, but not the latter. A multitude 

of problems disconnects the data collection with the pragmatic application. First, a user 

could hold their finger down on the selected ship before actually drawing the desired 

trajectory. The collected data would show an intentional speedup between the source and 

destination. However, the true intention of the user is to draw a trajectory with uniform 

speed. Second, the data collection occurs when the user lifts their finger. This process 

tacitly implies an instantaneous decision and drawing of the trajectory. In reality, the 

players make their trajectory choices in a temporal space. Finally, different trajectory 

sampling speeds will give different trajectory speed characteristics. Even the trajectories 

with the speed effect do not properly characterize the changes of speed during the trajectory 

drawing. Eliminating the trajectory speed effect allows the experiment to focus on the 

trajectory path. The way the computerized agent draws the determined path is important, 

but it is a separate experimental question altogether; it is not concretely determined through 

this experiment. The spatial and temporal trajectory aspects should be separated. 
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Appendix H: Trajectory Euclidean Average Algorithm Computed 

 

Algorithm 3: Trajectory difference calculation. 

The above algorithm is applied to finding the difference between one test 

observation and the corresponding prediction. The final values displayed in the results 

chapter are the average of the error when the above algorithm was applied to all the test 

observations and all the corresponding predictions. The final values more concretely 

represent the average Euclidean distance between a test trajectory point and the 

corresponding predicted trajectory point. The meanDistance output of Algorithm 3 is also 

referred to as the average coordinate distance (ACD). 
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Appendix I: Parameters Assumed 

The assumed DPM-MN parameters limit the number of hyperparameters that are 

searched. Because the parameters are assumed, a bias is introduced. This introduces bias 

but allows for a finer search granularity of the parameters anticipated as being more output 

sensitive.  

1) Number of points that make up a trajectory – The trajectories are all set to twenty-
five points. This allows for each trajectory to keep the original trajectory’s shape, 
without being too computationally expensive. The trajectories also maintain even 
spacing on the X-axis to control the total number of dependent variables for each 
trajectory. See Appendix F for a discussion on this decision. 

2) Number of trajectory classes – The number of trajectories chosen was twenty. 
When grouping the trajectories during the data processing to get the class 
representatives, the number of clusters (Nc) matters. If one cluster was chosen, there 
would only exist one usable prediction trajectory. This would stabilize the DPM-
MN algorithm class-wise but would be awful for prediction since there exists no 
variation in predictions. On the other hand, if there was a cluster for every trajectory, 
the DPM-MN algorithm would not be very reliable, and the trajectory predictions 
would be very specific. The DPM-MN algorithm would end up getting 100% of the 
class predictions wrong since every class would be different. There is a clear bias-
variance tradeoff occurring with the choosing of this parameter. This variable needs 
to be high enough to support many unique types of trajectories, but low enough to 
allow DPM-MN to learn the class representations. The tradeoff is further discussed 
later in this chapter in the perspective of irreducible error. 

3) Number of points in training and evaluation iterations – For the experiment, the 
number of points per batch depended on the total amount of data per 
hyperparameter iteration. A 0.75/0.25 split was chosen for the training and 
validation batches. During the training/validation stage, three batches of data would 
be used for training and then a batch would be used for validation. This cycle would 
continue until the appropriated data was exhausted.  

4) Revocation Amount from System 2 – The revocation amount is positively 
correlated with the size threshold hyperparameter and negatively correlated with 
the Ws parameter. When a System 2 concept is erased, a portion of the underlying 
points (in the sublayer of the concept) that agglomerated to make that concept are 
revoked back into System 1. As discussed before, this is an attempt to functionalize 
keeping remnants of past experiences when they become outdated. The size 
threshold positive correlation allows for a proportional number of underlying points 
to be revoked back into System 1. The negative correlation to Ws disincentivized 
new concepts from being created solely through many System 2 concept 
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revocations happening in a short time span. To reduce thrashing between the 
systems, only a small subset of the points should return to System 1. Imagine if 
one-hundred percent of the points returned to System 1. They would turn around 
and end right back into System 2 since there would be a large enough amount to 
gain access into System 2 as a concept again. However, there should exist a 
disparity between concepts with a large sublayer of agglomerated points, and 
concepts with fewer points in the sublayer to stay consistent with the size of the 
System 2 concept.    
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Appendix J: Trajectory Representations 

 

Figure 60: t-SNE trajectory class visualization. 

Each trajectory exists in a 50-dimensional space (X1, Y1, X2, Y2, …, X25, Y25). 

The Figure 60 visualization is a clustered dimensionality reduction of the trajectory space. 

A k-means clustering algorithm, where ‘k’ equals twenty, is used to find the trajectory 

clusters in the 50-dimensional space. Afterwards, each trajectory is dimensionally reduced 

to a 2-dimensional space through t-SNE (Van Der Maaten, et al., 2008). The trajectory 

classes are then displayed using different colors and shapes. Overall, the clustering and 

dimensionality reduction seems consistent. There are twenty classes in Figure 60, but a few 

unequally represented classes contain most of the trajectory data values.  
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Figure 61: First example of characteristic medoid trajectory. 

Figure 61 is the medoid trajectory representation from player 9 where only 

trajectory class exists. In other words, it is the medoid of all of player 9 trajectories. This 

medoid trajectory is an example of the medoid trajectory used in finding the medoid 

prediction difference. Player 9, along with two other players, are prominent examples of 

recognizing playstyle trends through visualizing the medoid trajectory. Player 9’s medoid 

is the most common type of trajectory drawn by the thirty-five players. The usual trajectory 

is a simple straight line from the selected ship to the destination planet. It is crucial to notice 

the scaling of the y-axis and the x-axis. Even though the medoid trajectory looks somewhat 

curvy, the y-scaling illuminates the truth. If seen on a computer screen during a playthrough, 

this medoid would be perceived as a straight line.  
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Figure 62: Second example of characteristic medoid trajectory. 

Player 17’s medoid trajectory in Figure 62 shows a routine of drawing short 

trajectories. Because the selected ship continues to follow the trajectory on a straight path 

after the end is reached, this user probably felt it was unnecessary to connect the selected 

ship with the destination planet. Even though the two are not connected with the drawn 
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trajectory, the selected ship will continue a straight path towards to destination planet as 

though a straight line was drawn between the selected ship and the destination planet.  

 

Figure 63: Third example of characteristic medoid trajectory. 

Figure 63 illustrates player 23 as someone that more often pursues points other than 

matching the selected ship with its designated destination planet. The medoid trajectory 

sends the selected ship on a path away from the destination planet. It can only be assumed 

that the player was attempting to achieve a different strategy.   
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Appendix K: Data Distribution Non-Normality 

The following graphs are mostly representative of all the average coordinate distance 

(ACD) tests as far as the identity of the results distribution.  

 

Figure 64: Log-normal distribution of test. 

 

Figure 65: Cumulative distribution function. 
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Figure 66: Boxplot of trajectory difference. 
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Appendix L: Grimm LSTM Machine Learning Project 

Abstract: 

Human-robot teaming is becoming more prevalent in the Air Force and in society. 

To enhance the trust and effectiveness in the team environment, it is necessary to develop 

algorithms enabling the robot to predict and imitate human behavior. The game 

environment Space Navigator [1] provides a state-response scenario for data collection. 

Deep learning is proposed and tested as a solution for human-like playing. The deep 

learning algorithm’s objective is to create a trajectory in response to a given Space 

Navigator state instance similar to what a human would have created. When the deep 

learning architecture learned from the data gathered from multiple players, it did not 

perform better than the baseline simple response. In this case, a perfect performance 

would be making the exact same trajectory the human player made in the same scenario.  

Introduction: 

The research domain will be a video game called Space Navigator. Users must 

guide spaceships towards designated planets while avoiding obstacles and collecting 

bonuses. The Space Navigator source code is accessible which allows for detailed data 

gathering. Specific details such as the exact location and number of objects are used to 

capture features that describe the Space Navigator state at any time. 

The specific goal of this research is to create an artificial intelligence (AI) which 

plays the game like a human would play it. In the game, players draw trajectories to 

control the movement of the spaceships. The targeted behavior for the AI to imitate is the 

drawing of trajectories. Given the game state, the AI should draw a trajectory in a human-

like way instead of exclusively in an optimal manner. The performance measure is the 
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distance between the AI response and the human response to a perceived game state. It is 

predicted that an AI model can outperform the baseline model. 

The expanded purpose is to develop AI that act similar to humans and that predict 

a person’s actions. The larger domain is a state-response situation which could possibly 

occur in a variety of settings. Human-robot teams are becoming increasingly important in 

the Air Force and society. These teams can better perform if the robotic teammate excels 

in understanding the human’s thoughts.  

Deep learning artificial neural networks are the chosen tool for this attempt at 

functionalizing a human-like AI. Specifically, a long short-term memory (LSTM) 

architecture will be the primary applied component and supervised training will be used 

to learn the regression problem. LSTMs are often used for sequential outputs. The 

generated trajectories in Space Navigator are made up of many points which follow one 

another. As a result, the inherent ordering of points that make up the trajectory allows the 

location of a previous point to be exploited for guessing the location of the current point. 

The estimation error emerges from the difference in distance between the predicted 

trajectory and the true trajectory.  

A one-to-many recurrent neural network is frequently used as one of the primary 

topologies for sequential data along with many-to-many and one-to-one topologies. An 

image captioning LSTM architecture inspired the Space Navigator proposed solution. For 

image captioning, a single input (a picture) and a sequential output (a string of words) 

make up the input and output format. The Space Navigator LSTM also has a single input 

(the state instance) and a sequential output (multiple points that make up a trajectory).  
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The results show poor AI performance when the training data includes multiple 

players’ data. However, when a single player’s data is trained on, the AI performs better 

than the baseline straight-line trajectory competitor. This reveals an importance of the 

idiosyncrasies of each player. Each player’s unique playstyle is not only a contributing 

factor but a primary element in creating an AI which acts like a human.  

The related work section will provide an opportunity to learn about previous 

endeavors in similar machine learning tasks. Next, the data gathered from Space 

Navigator will be explained and the custom LSTM architecture will be examined. The 

results will show what overarching themes were learned from the experiment. The 

conclusion and future work section will describe the mixed findings and give suggestions 

for future possible directions. 

Related Work:  

 Bindewald et al. first worked with imitating individual players in the space 

navigator domain [1]. They gathered the trajectory data through initial experimentation. 

Bindewald utilized a cluster-based algorithm to retrieve responses given a specific state. 

A generic player model was trained offline with the majority of the data, and then 

specific players achieved their individual player models through online training. The 

generic player model acted as a base model, and the online training updated the generic 

player model to reflect the specific player’s idiosyncrasies. The individual player models 

achieved a mean Average Coordinate Distance (ACD) of 0.2036 which improved on the 

straight-line generator mean ACD of 0.2319. Specified units are not attached since the 

comparisons are calculated after the state space and features are normalized. However, 
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the original state space units depended on the screen resolution. It is best to think of the 

state space domain as a generic grid. 

 From chapter 10 of the Deep Learning textbook [2], recurrent neural networks are 

explained as useful in sequential problems. The main idea is to not only use individual 

inputs for each timestep but also to use the previous output for current decisions. An 

LSTM architecture is a progression of the recurrent neural network (RNN) architecture. 

The LSTM format modifies the RNN model to enhance the possible context influence. 

LSTMs are traditionally used instead of RNNs when a larger influencing context window 

is desired. Dense layer gates are added to the cell to influence a memory bus which 

transmits throughout each timestep. This allows the neural network to remember 

important features as time passes instead of only utilizing immediately previous points.  

 Karpathy et al. developed a method for generating captions from images [3]. This 

problem represents a one-to-many RNN architecture; a single input and a sequential 

output both exist. 

 

Image 1: Image caption generator architecture 

 The basic idea of Karpathy’s architecture [4] is to take an image and condense it 

down into a single vector (Image 1). This vector (along with the START tag) make up the 

input for the first RNN timestep. When the state vector is added to the START tag, the 
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state vector will be produced. The training phase takes advantage of teacher forcing. The 

input of each timestep is the output from the previous timestep. Thus, the training phase 

assumes the correct previous output at each timestep to optimize learning. During testing, 

each timestep input uses the predicted output from the previous timestep until the END 

token is reached. 

Approach/Methodology: 

The state-response data comes from a Space Navigator experiment conducted in 

2015 by Major Bindewald. The study participants simply played Space Navigator. 

Whenever they drew a path between a planet and the intended goal, various game state 

features and the points which make up the trajectory were recorded.  

 

Image 2: Raw data input example 

After capturing the data from an experiment, Image 2 is what the raw data looks 

like. 35 players completed 16 levels each and generated a total of 68,538 different 

trajectory instances. The highlighted part is a single example of a drawn trajectory given 

the state instance. 
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Image 3: A Space Navigator screen capture highlighting important game objects 

 

Algorithm 4: State-space feature vector creation 

After the data is gathered, it needs to be wrangled to become suitable for training 

(Image 3). Each feature value in the data becomes normalized between zero and one. 
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Without normalizing the features, the straight-line trajectory length (s[19] in Algorithm 

4) will overshadow the other features because of the large scale it exists on.  

In addition to Algorithm 1, the Gaussian weight function is multiplied by the 

relevance variable for the other ship object types. This was added to the algorithm 

because it is important to capture which direction the other ships are going. Intuitively, if 

the other ships are moving away from the direct path between the selected ship and the 

destination planet, it poses less of a threat than other ships moving straight toward. If a 

non-selected ship is moving straight towards the area of interest, its Gaussian weight 

function is multiplied by two. If a non-selected ship is moving away from the area of 

interest, its Gaussian weight function is multiplied by zero. All of the values in between 

towards and away act on a continuous function between two and zero. For instance, a 

ship in zone two moving parallel to the line of interest has its Gaussian weight function 

multiplied by one. For more information on this additional metric, see Appendix B.   
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Image 4: Important parts of Space Navigator 

There are 68,538 observations. Each state includes nineteen features. Algorithm 1 

shows how these features are computed. Image 4 shows what each state object looks like. 

The bonuses give extra points, the no-fly zones take away points whenever a ship exists 

within it, and a lot of points are given when a spaceship reaches a planet of the same 

color. Each of the six zones contains three features. That accounts for eighteen of the 

nineteen features. The last feature is the non-transformed straight-line trajectory length. 

This last feature represents the straight-line distance between the spaceship and the 

planet.   

The output variable will be a trajectory sequence. The accuracy performance 

measurement will be the average Euclidean distance between the trajectory points 

guessed by the AI and the state transformed trajectory points actually drawn by the 

experiment participant. See Appendix C for more detail. Part of the trajectory 
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normalizing process includes standardizing the number of points in each trajectory by 

interpolating the points. Every trajectory is interpolated to contain twenty-five points. See 

Appendix A for possible problems with this interpolation method.  

A graphical example of the state capture and trajectory is shown below. The red 

squares are the no-fly zones. The green plus signs are the bonus points, the red stars are 

the other ships, a trajectory coming from a red star is a straight-line trajectory for that 

ship, the black “X” is the destination planet, the black “O” is the selected ship, the black 

line connecting the two is the straight-line trajectory, and the blue line is the user-drawn 

path.  

 

Image 5: Initial data capture and graphical representation 
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Image 6: Translation of objects 

 

 

Image 7: Rotation of objects 
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Image 8: Scaling of objects and addition of zone lines 

The initial data state is first translated so the selected ship is at coordinate (0,0). 

Then, all objects are rotated so the selected ship and the destination planet are on the 

same Y-coordinate plane. Finally, everything is scaled so the distance between the 

selected ship and the destination planet is equal to one. This transformation is pictured 

with Image 6 to Image 8. 
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Image 9: Example of non-normalized feature values for a normalized state space 

Image 9 is an example of the non-normalized values for a random state. The 

weighting variable was at 0.7. “os1” stands for “other ships in zone 1”. “bon” is short for 

“bonuses”. “nfz” is short for “no-fly zone”. Finally, “linlen” is the original straight-line 

length between the selected ship and destination planet. Looking at random examples 

along with their variables allows a quick sanity check on the algorithm to see if the values 

are in the general vicinity of expectations. This example from player 29 on level 5 

contains a few ships in zone 2, with one of them extremely close to the line-of-interest 

and also heading towards it. It is expected that “os2” will have a high value and as seen 

above, it does. There are no bonuses in zones 1,2,3,5, or 6, so they are expected to be at a 

value of zero -- which they are.  



 

169 
 

 

Figure 1: Scatter matrix of features 

 Because of the number of features, Figure 1 is best viewed on a computer so 

zooming in is possible. As seen above, most of the features have near zero correlation. 

This is expected since the features are virtually independent of each other. A bonus in 

zone two has no effect on the likelihood of a no-fly zone spawning in zone five. An 

interesting feature of the data is the sparsity of high values. It is most likely for each 

feature, except the straight-line length, to have a near zero value.  
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                          Figure 2: Data Euclidean distance 

Figure 2 shows the full data trajectory average Euclidean distance from the center 

line. The first trajectory point is almost always completely accurate. The trajectories 

begin on the selected ship so that makes sense. The distance grows as the points progress 

until a slight dip at the very end. The error in the trajectory points compound over the 

space. If point one is messed up, that will also mess up point two, and so on. The end dips 

a little because most trajectories end at the destination planet. However, a substantial 

Point Position 
Error 
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number of trajectories are nowhere near the destination planet, so it still has a high 

average point distance. 

 

                            Figure 3: Data trajectory X value residual error averages 

The residual error is calculated as the truth minus the prediction. In this case, the 

prediction is always a straight line from the selected ship to the destination planet. 

Because of this standard trajectory, the trajectories can be analyzed across the whole 

dataset. As seen in Figure 3, the true trajectories, on average, are shorter than the middle 
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Error 
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line. The x-values for each trajectory point are not progressing across the x-axis as fast as 

the straight-line.  

 

 

                                     Figure 4: Data trajectory Y value residual error averages 

Looking at Figure 4,the true trajectories are placed, on average and for most of the 

point locations, underneath the middle line. In fact, there even exists a parabola-like 

shape indicating a fall and rise in the trajectory. 

Point Position 

Error 
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A simple validation set is used because of computation constraints. A limited grid 

search is conducted on the learning rate, capacity, generalization rate, and optimizer type. 

Twenty training epochs with early stopping was implemented to save on time. Ten 

percent of the data will be set aside for validation purposes and ten percent of the data 

will be set aside for testing purposes. The performance results are based on the average 

Euclidean distance between each predicted trajectory point and the ordinally matched 

actual trajectory point drawn by the player. The baseline will be a prediction of all 

straight-line trajectories. Major Bindewald’s implementation results can also be used as a 

baseline [5]. 

 

Figure 5: Hyperparameters searched 

 The hyperparameters searched are shown in Figure 5. Every possible combination 

of the above hyperparameters was tried. The learning rate and optimizer are self-

explanatory. The capacity determines how wide the dense layers and LSTM layers are 

while the generalization rate determines the dropout rates. Only a single validation set 
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was administered due to computational constraints. A k-fold cross-validation where k is 

greater than one would take too much time.  

 

Figure 6: Hyperparameters picked 

 The best hyperparameters are a low learning rate, a high capacity, a low 

generalization rate, and the Adam optimizer (Figure 6). See Appendix E for a detailed 

decomposition of the validation process. 

 

Figure 7: Best model validation and training 

The model improved most in the first couple epochs ( 

Best Model Validation/Training Curve 

Loss (m
se) 

Epoch 
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Figure 7). After that, the improvement slightly decreased until it leveled off. An 

early stopping callback was used with a patience of five, so the model definitely 

continued improving after the easily seen initial drop-off. 

 

Image 10: Deep learning LSTM architecture 
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Image 11: Deep learning LSTM architecture – graph form 

The target sequence for the LSTM will be the state transformed trajectory. The 

LSTM input will be the state space features. The LSTM is a one-to-many architecture. 

An approach similar to that of the image caption generator is used [3]. Due to 

computation capacity restrictions, the LSTM is limited in the number of parameters and 

layers. Although, it should not matter too much since the output is a sequence of 2D 

points. Most of the relative attributes of a trajectory will most likely be found at a low 

level.  
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Image 12: Deep learning LSTM architecture – higher level visual form 

 Image 10, Image 11, and Image 12 are all visual representations of the LSTM 

architecture producing trajectories for Space Navigator. For this problem, a start tag is 

not readily apparent. The null-valued start tag cannot be (0,0) since that coordinate maps 

to an actual data point that may be predicted. In this case, an additional assumption would 

need to be taken if the start tag was (0,0). That would be assuming every trajectory’s start 

point as (0,0). That is a close guess, and all the trajectories start very close to (0,0), but it 

would not be exact to assume that. As a result, the start tag is learned using an additional 

dense layer. It is of length two because it needs to be concatenable with the previous 

output which is twenty-four two-dimensional (X, Y) coordinates.  
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 The time distributed layer is a dense layer that independently acts on each 

timestep output. In this situation, that means each second layer LSTM output goes 

through the same dense layer before becoming an official trajectory point output. 

 To take advantage of the state input, it goes through a couple of dense layers 

before becoming the first layer LSTM’s initial hidden state input and initial cell memory. 

A similar initialization method is exploited in the image caption generator architecture 

[4]. 

 

 

Image 13: Inspirational architecture analogous functionality -- input 
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Image 14: Inspirational architecture analogous functionality – LSTM layers 
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Image 15: Inspirational architecture analogous functionality – output 

Image 13 to Image 15 placed the inspiring RNN image captioning architecture 

next to the Space Navigator LSTM architecture. The corresponding functionality is 

highlighted in each image to better understand how the new architecture was influenced. 
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Image 16: Training and testing process 

 Image 16 illustrates teacher forcing. This will allow the model to be trained with 

the correct input vector size. In reality, all of the “x(t)” inputs will be the “y(t-1)” value. 

Teacher forcing lets the model learn as if it obtained the correct guess at each point. 

Incorrect guesses can possibly throw off the learning because errors can compound over 

time. During the prediction stage, the input trajectory slowly grows with each timestep. If 

the test is on timestep five, the prediction will occur all the way through the end, but only 

the first five timesteps are kept and entered in as the new input trajectory for the next 

timestep. The next timestep will give the sixth predicted point. This will go on until 

twenty-five points are retrieved. After the twenty-fifth point, a trajectory has been 

produced given a state. Perhaps a more customizable library such as PyTorch would 

allow for a more straightforward implementation of training and testing, but this 

workaround is needed for Keras.  
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Results:  

The testing phase used ten percent of the data after it was shuffled. A single test 

iteration provided the final results. It would have been advantageous to get more reliable 

results through a k-fold test process, but that necessitates more data and a longer 

computation time.  

 

 

Figure 8: Test results 

Figure 8 shows the test results of the LSTM architecture against the baseline. The 

value represents the mean Euclidean Distance an estimated trajectory point is from the 
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corresponding true trajectory point. As seen above, the LSTM architecture performed 

worse than simply drawing a straight line every time. 

 

 

 

Image 17: Best predictions 

The best predictions made by the LSTM architecture are shown in Image 17. This 

level of accuracy was initially expected from all of the predictions, but that was not the 

overall case. 
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Image 18: Average predictions 

The average performance predictions are showcased above. A generalization 

problem becomes noticeable. The top left prediction in Image 18 best exemplifies this. 

The true trajectory is curvy, but the prediction still scores satisfactorily by predicting 

through the middle. Eccentric curves will be difficult to accurately predict. Most of the 

predictions are third-order curves at most. 
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Image 19: Worst predictions 

These are instances of the worst-case predictions. As seen in Image 19, if the user 

draws a very unique trajectory that spans a large distance, the neural network has a tough 

time predicting it.  

This highlighting of player idiosyncrasies illustrates why the neural network did 

not perform better than the baseline. It is difficult enough to handle outlier trajectories 

from a single player, but now every player has the possibility to conflict with each other 

in their responses. As a result, the neural network has a tough time learning how a human 
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would draw since each player has their own characteristic playstyle. I decided to delve 

further with a quick look at using a dataset made with only a single player’s data. 

 

 

 

Figure 9: LSTM predicted residuals on the x-axis 

 
Figure 9 is a plot of the residuals at each positional location from all of the 

trajectories. 
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Figure 10: LSTM predicted average residuals on the x-axis 

Figure 10 is the average of all the values at each point location in  
Figure 9. 
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Figure 11: LSTM predicted residuals on the y-axis 
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Figure 12: LSTM predicted average residuals on the y-axis 

 

 

 

Figure 13: LSTM predicted Euclidean error 
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Figure 14: LSTM predicted average Euclidean error 

The two primary characteristics from Figure 11 to  

Figure 14 are the strictly monotonic increasing and the almost fully positiveness of each 

averaging plot. The strictly monotonic increasing represents the error compounding over 

time. The predicted trajectory will add error on top of all the previous error made before. 

This mostly occurs because of difference in length of trajectories. The almost fully 

positiveness results indicate a shorter and lower predictor trajectory on average compared 

to the true trajectory. 
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Figure 15: Single player test results 

Figure 15 reveals successful results through a new process. Instead of grouping all 

the data together and having the neural network learn, improvement occurs when a single 

player’s data is learned on and tested against. See Appendix D for result comparisons 

with additional models. 

Conclusion & Future Work: 

A neural network which learned unique predictions was successfully built. The 

predicted trajectories that the LSTM produces look like plausible trajectories that a 

human would draw. The individual points sequentially flow, and the trajectory aims from 

a selected ship towards a destination planet. Many different looking trajectories are 

produced given different states. This behavior signifies a sensitivity to the input features.  
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Even though the LSTM generated trajectories look human-like, they initially did 

not perform well. It was difficult for the AI to frequently draw a trajectory similar to what 

the human player actually drew. Although, the result was not awful considering the 

difficulty of the problem when grouping every player’s data together. Multiple 

completely different trajectories could be produced for the same state instance. Different 

players usually give different responses. Even the same player might give two different 

responses to the same state input due to effects from learning the game.  

The inherent difficulties of copying human behavior now have been exposed. The 

problem space is demonstratively unusual with the conflicting personalities of different 

players. The comparison with the baseline straight-line prediction displays the conflict of 

personalities. The heavily trained LSTM architecture performed worse than a straight-

line prediction when all players’ data were grouped together, but the LSTM architecture 

performed better than a straight-line prediction when only a single player’s data was 

learned and tested. Moreover, the LSTM neural network was lightly trained on the single 

player data and a validation process was not administered to reoptimize the 

hyperparameters. 

An LSTM that can achieve a better performance than the baseline with the full 

original dataset was not created. However, it was not due to a shortage of capacity or a 

failure in finding an optimal tradeoff between bias and variance in the model. The 

original dataset was too noisy when combining all the players’ data. Too much 

irreducible error, specific to the engineered features and the LSTM model, was present.  

 As shown by the quick single player data test which easily outperformed the 

baseline, it is necessary to prioritize the difficulty presented by variation in responses due 
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to human factors. Simply addressing this issue determines success while optimizing the 

LSTM model on the original dataset resulted in failure. The differences between players 

were originally thought to be minimal, but it actually is a major concern. 

 The next research step should involve further exploring the previously touched on 

single player dataset solution. A faster computer should be used to eliminate the 

computational constraint when optimizing. This research was conducted with limited 

resources so the searchability of hyperparameters and unique augmentations was vastly 

restricted.  Faster computation would allow a widening of the grid search space which 

has a better chance of enhancing optimization of the incorporated model. 

 Other solutions also exist for differentiating the players’ behavior. Perhaps adding 

more features would allow the neural network to recognize which player drew in the 

observed state space. Maybe taking a similar direction to Bindewald et al. [1] could prove 

fruitful where most of the data is used as a bootstrap model to learn general tendencies, 

and then a single player’s data heavily augments the baseline model to target a specific 

player’s behavior. The answer could be to create a cognitive architecture which is 

sensitive to the recency of each data observation. This method would also focus attention 

on the idiosyncratic behavior of the last player’s observed data. All of these are possible 

answers that would be worth taking a look at in future research.  
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Appendix A: Interpolation Method 

Each initial trajectory is resampled to achieve a specific number of points per 

trajectory while maintaining the original trajectory shape. The interpolation method 

evenly spaces out the twenty-five trajectory points across the X-axis. When sampling 

trajectories during the experiment, the mouse speed was captured. If the player held the 

mouse down at the selected ship, and then quickly swiped to the destination planet, the 

majority of the sampled points would be cluttered around the selected ship with a couple 

points between the clutter and the destination planet. By resampling evenly across the X-

axis, the mouse speed characteristic is lost. This is an attempt to produce less noisy 

trajectories by eliminating a seemingly unnecessary characteristic which causes extra 

difficulty. By evenly spreading out the trajectory points, the shape of the trajectory is 

saved while also becoming more robust with a fewer number of points. If the mouse 

speed was maintained in the trajectory, it would take more points to capture the original 

trajectory.   

Even though this interpolation method is useful, it assumes that capturing the 

mouse speed during each portion of the trajectory is unnecessary. After production of the 

algorithm, it was discovered that users actually enjoyed a robotic teammate that drew 

trajectories with the mouse speed conserved. It added a more human-like element when 

the AI was actually integrated into Space Navigator. For now, the interpolation method 

will be kept the same, but it may be revamped in the future to recapture the original 

mouse speed trait.    
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Appendix B: Other Ship Gaussian Weight Function Multiplier 

 

Image 20: Relevance factor calculation 

The red line symbolizes the line of interest. The black circle is the selected ship 

and the small black ‘X’ is the destination planet. 

The main idea in Image 20 is to illustrate the relevance weighting depending on 

which zone the other ship is located. Basically, if the ship is headed towards the line of 

interest, its zone value contribution gets multiplied by two. If the ship is headed away 

from the line of interest, its zone value contribution gets multiplied by zero. Every area 

space in-between these two points is interpolated on a continuous scale. For instance, if a 

ship is in the center of the “+” in zone 2 and is headed in a 45-degree angle (where 

straight towards the line of interest, or where the “2” is printed, is 0 degrees), the 

relevance factor will be a 1.5 for that ship.  
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This part of the algorithm exists because a player will most likely dismiss the 

effect of another ship’s trajectory if it is headed away from the line of interest. Another 

ship heading away from the line of interest mainly is relevant only if the player wants to 

collect a bonus situated off-course from the line of interest. However, players primarily 

attempt to send the selected ship towards the destination planet, so it is safe to assume the 

relevance factor is a beneficial algorithm item. 

 

 

 

 

 

 

 

 



 

198 
 

Appendix C: Trajectory Euclidean average algorithm computed 

 

Algorithm 5: Trajectory difference calculation 

The above algorithm is applied to finding the difference between one test 

observation and the corresponding prediction. The final values displayed in the results 

section is the average of the error when the above algorithm was applied to all the test 

observations and all the corresponding predictions. The final values more concretely 

represent the average Euclidean distance between a test trajectory point and the 

corresponding predicted trajectory point. 
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Appendix D: Extensive Results Comparison 

 

Figure 16: Comparison of results 

0.2200

[]0

0.1512
0.1644

0.2036

0.2319

M
ea

n 
Eu

cl
id

ea
n 

Di
st

an
ce

 B
et

w
ee

n 
Co

or
di

na
te

 P
oi

nt
s

Model Type

Results Comparison



 

200 
 

Figure 16 at face value shows the “Grimm-LSTM Single Player Data” model 

performing the best out of all the models. It also shows different results for the “Grimm- 

Straight Line All Data” and “Bindewald- Straight Line [All Data]” even though it was on 

the same set of data. The difference can be at least partially attributed to testing on 

different parts of the data, and the resampling method of trajectories.  

The “Grimm – LSTM Single Player Data” performed very well. However, the 

isolated single player did not draw very complicated trajectories as seen by the 

corresponding straight-line model achieving the second-best performance. 

The Bindewald models also involved their own unique advantage. During the 

preprocessing stage, 25% of possible responses deemed as outliers are pruned. The 

“Grimm” LSTM model still has the possibility of providing an outlier-like response. 

Another primary difference is that the “Bindewald Specific Player Model” creates 

a model for each specific player and averages the performance of each. The “Grimm 

LSTM Single Player Data” focuses on one player.  

Because of the differences in methods, Figure 16 is not the ultimate distinguisher 

of different model types, but an early predictor. Further research is necessary to more 

evenly compare each model such as the “Grimm LSTM Single Player Data” model not 

isolating a relatively easily learned dataset.  
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Appendix E: Validation Details 

 

Figure 17: Learning Rate Comparison 

 The top graph shows a comparison of each hyperparameter instance. It is a way of 

looking at how each hyperparameter performed in general. The bottom graph shows the 

mean of the values to get a higher-level overview. However, extreme outliers are 

excluded so the averages are not greatly skewed if one of the instances involved an 

exploding gradient. This description of the layout for Figure 17 will be the same as the 

layout for Figure 18, Figure 19, and Figure 20. 

 The learning rate of 0.001 in Figure 17 usually outperformed the other two 

learning rates on a consistent basis. The 0.1 learning rate never performed very well.  
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Figure 18: Capacity Comparison 

Figure 18 has both 32 and 128 performing well; however, a capacity of 128 

reliably is a little better besides a few instances. The average for 128 is much better since 

the exploding gradients are not included. 

V
al

id
at

io
n 

Er
ro

r (
M

SE
) 



 

203 
 

 

Figure 19: Generalization Comparison 

The generalization rates in Figure 19 indicates a low generalization rate as usually 

better. A higher variance in the learned model leads to a higher performance in the 

validation set.  
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Figure 20: Optimizers Comparison 

Figure 20 has the Adam and RMSProp optimizers as almost equal in the averages 

graph. Though, Adam was less likely to result in an outlier due to poor performance.  

Overall, these general views of how each hyperparameter performed in each 

validation model instance just gives a survey of performance. In the end, the single model 

with the best performance became the chosen model. There was no individual selection 

of hyperparameters, but rather a selection of the single best combination of 

hyperparameters. Each hyperparameter’s performance depends on the other temporarily 

selected hyperparameters in this case since the hyperparameter performances are not 

independent of each other.  
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