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Abstract

There is a need for a robust and easy to use indoor truthing system based on

camera pose estimation. This research proposes a method for camera pose estimation

using a one-time use of Simultaneous Localization and Mapping (SLAM) with high

Size, Weight, Power and Cost (SWAP-C) sensors in order to enable future robust

localization of low SWAP-C cameras.

Determining position and orientation requires an accurate map of the environ-

ment. However, creating maps requires known positioning. Because indoor localiza-

tion is difficult, creating indoor maps is also difficult. SLAM is a common method

for resolving this paradox, solving for the position and map simultaneously. Using

low SWAP-C cameras alone presents an additional set of problems. Errors stemming

from repetitive patterns, featureless environments, or incorrect loop closures can all

result in unstable, or worse, completely divergent solutions.

The pivotal concept for this research is to combine the low SWAP-C cameras

with an easy-to-use high SWAP-C mapping method. This truthing solution becomes

feasible by making the initial SLAM pass as successful as possible, instead of trying

to perfect vision-only SLAM with every low SWAP-C camera during every test. The

problem of correct data association is solved by using uniquely-identifiable ArUco

markers, resulting in optimal loop closures and landmark identification. Since the

SLAM step is only performed once, additional sensors, in this case Light Detection

and Ranging (LIDAR), can be used to improve accuracy.

With an accurate map of images, the indoor navigation paradox is resolved. Vision

navigation using the mapped images can be done for any camera by recovering a rela-

tive translation and rotation between images. This enables position truthing without

iv



permanent infrastructure, and without the complications of performing vision-based

SLAM with low SWAP-C cameras.

In summary, this research demonstrates a method for a robust indoor truthing

system based on camera pose estimation. It is based on a one-time use of high

SWAP-C SLAM to enable future robust localization for low SWAP-C cameras.

v
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ASSESSMENT OF CAMERA POSE ESTIMATION USING GEO-LOCATED

IMAGES FROM SIMULTANEOUS LOCALIZATION AND MAPPING

I. Introduction

1.1 Background

There is a need for a robust, easy to use indoor truthing system based on cam-

era pose estimation. This truthing system would enable new advances in indoor and

alternative navigation. Alternative navigation methods have been a subject of signif-

icant research in recent years. These methods attempt to augment or replace systems

that rely on the Global Positioning System (GPS) and other satellite-based methods

for navigation. This is especially important for indoor environments, where satellite

signals are occluded by building infrastructure.

This thesis, along with the corresponding research at the Air Force Institute of

Technology (AFIT) Autonomy and Navigation Technology (ANT) Center, attempts

to develop a 6 Degree of Freedom (DOF) indoor navigation system for low Size,

Weight, Power and Cost (SWAP-C) cameras that fulfills several key requirements:

1. There is no permanent infrastructure required to implement the system.

2. Localization and navigation must be performed without GPS.

3. The method must be sensor-agnostic, compatible with different camera types,

brands, and characteristics.

The foundation of this method is an accurate map created by a robot, using

a high SWAP-C camera and Light Detection and Ranging (LIDAR) Simultaneous
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Localization and Mapping (SLAM). This map, which is difficult to make indoors,

is then used to determine the position and orientation of many types of low cost

cameras.

1.2 Problem Statement

This research answers several problems. First, can image features of known di-

mensions yield repeatably accurate range information using only monocular imagery?

Next, can the relative poses of cameras with very different intrinsic characteristics be

determined? Finally, can the true position and orientation of a camera in an envi-

ronment be calculated within a reasonable amount of uncertainty?

1.3 Research Goals

The goal of this research is to recover the pose of a mobile camera within the

environment, given an accurate map. The research attempts to collect monocular

imagery data, establish a method of extracting bearing and range measurements from

the data, and assesses the method’s accuracy. It also uses the measurements to create

a map using a SLAM solution. After data analysis, the thesis proposes methods for

improving and refining the truthing process.

1.4 Contributions

This research contributes to the fields of mapping, navigation, and computer vision

in these specific areas:

1. Monocular ranging. This research proposes a method for extracting range

data from an image of a known feature.
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2. Method validation. This research quantifies the accuracy of the distance

estimation method using real world measurements.

3. SLAM framework. A SLAM optimization framework with specific factors

and initial conditions is developed.

4. Indoor navigation. This research demonstrates an easily scalable navigation

method.

5. Computer vision feature algorithm evaluation. This work compares and

validates the use of different feature detection and matching algorithms to find

the optimal setup for indoor navigation.

1.5 Thesis Overview

Chapter 2 contains the basic concepts and principles necessary to understand the

thesis, including terminology and processes used for camera calibration, localization,

and mapping. Chapter 2 also provides a review of previous work on robotic mapping

and optical feature matching algorithms. Chapter 3 explains the specific equipment

and SLAM factors used for the experiment. It also outlines the experiment method-

ology for this research; including the range extraction algorithm, data collection, pose

optimization, feature detection and matching, and pose recovery.

Chapter 4 discusses and analyzes the results from the experiments in Chapter 3.

It compares different feature matching algorithms and evaluates the different models

for estimating range from feature size. Chapter 5 concludes this research by giving an

overview of results and conclusions. It also outlines future work, including proposed

equipment and methodology changes, that will develop and broaden the results of

this research.
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II. Background and Related Research

This chapter is divided into two parts. The first part is a study of relevant and

related research. Next, there is a detailed explanation of the underlying principles

and concepts used throughout the thesis, including SLAM, data collection, optical

feature descriptors, computer vision libraries, camera characteristics, and sensor syn-

chronization.

2.1 Relevant Research

Although the concept of using SLAM to determine localization using on-board

sensors in unknown environments is already a proven concept, the mapping results

from SLAM systems are not used often to enable localization with only optical sensors.

It is common to use many different sensors and systems to perform SLAM. These

sensor types include

1. Inertial Measurement Units (IMU) [10]

2. Wheel odometry [55]

3. Sound Navigation and Ranging (SONAR) [9]

4. Computer vision with stereo cameras [26]

5. LIDAR [1]

Bogoslavskyi, in [6] and [13], proposed new methods for improving the quality of

matching consecutive LIDAR scans. Additionally, [41], and [51] have demonstrated

the benefits of SLAM systems for robot localization.

Multiple methods of performing SLAM have been studied, including methods

based on Extended Kalman Filters (EKF) [3, 42], Extended Information Filter (EIF)
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SLAM [53], FastSLAM [34], grid-based SLAM [18], and graph-based SLAM [17].

Thrun, Montemerlo, and Stachniss have provided research papers on these SLAM

techniques. In [33], Thrun presents a new method of SLAM, featuring a factoring

algorithm to efficiently represent features. This factor graph approach is gaining

popularity because the algorithm’s complexity, compared to the Kalman-filter based

approach, is reduced from O(K2) to O(MlogK) time, where M is the number of

particles, K is the number of features, and O is the algorithmic complexity.

2.2 Simultaneous Localization and Mapping

SLAM is a method for solving the localization paradox. If a position and orien-

tation are precisely known, then generating a map of the local environment becomes

trivial. Conversely, position and orientation can be determined quickly if the map is

given. This interdependency can be circumvented by solving position updates con-

currently with map updates, which is the foundation of SLAM. The idea of SLAM

originated with Moravec and Elfes [40]. Smith, Self, and Cheeseman [49] improved the

grid-based approach, while Durrant-Whyte and Leonard developed the feature-based

SLAM method in [27].

SLAM can be separated into two sections. First, the “front end” comprised of

the sensor data, landmark and environment information, and data association. The

second section, or “back end”, is where the information is processed into a optimal

SLAM solution. Different front ends and back ends can be combined depending on

the specific needs.

The SLAM acronym was first coined in a mobile robotics survey paper presented at

the 1995 International Symposium on Robotics Research [15], where the mapping and

localization problems were combined into a single estimation problem. The SLAM

problem is a critical part of autonomous navigation. SLAM posits that it is possible
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for a mobile robot to build up a map of an unknown environment while simultaneously

determining its location within the map, with an unknown location in an unknown

environment. Durrant-Whyte and Bailey’s two tutorial papers on SLAM [54, 2] cover

the basic principles and algorithms of SLAM in detail.

One key part of the algorithm development was the importance of the correlations

between landmarks. The SLAM solution improves when the correlations between

landmarks are stronger. Csorba developed much of the initial proof and theory of

SLAM algorithm convergence in [11] and [12].

2.3 Iterative Closest Point (ICP) Matching

ICP is a method of matching two sets of corresponding point-clouds. The main

goal of ICP is to determine a translation and rotation that minimize the sum of the

squared error between corresponding point locations. The critical assumption behind

ICP is that the correct correspondences are known. Without correct correspondences,

the algorithm may terminate at a local minimum. If data association is an issue,

having an accurate guess of rotation and translation can make the local minimum

align with the global minimum.

ICP can trace its origins to the 2D template matching with the Singular Value

Decomposition [56]. This method used a tiered approach, where a coarse registration

reduced the computational intensity of the final cross-correlation calculation. The

full ICP algorithm was applied to matching 3D shapes, curves, and surfaces in [5],

and expanded to free-form shapes in [57]. A 2D example of ICP is shown in Figure 1.

In the example, a set of points is chosen from each line. One of the point sets is

iteratively moved and transformed to minimize the distance between each point set.

Note that any inaccuracy in points chosen degrades the quality of the match.
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LIDAR Scanners.

Laser scanners are a popular method for generating point clouds for SLAM, using

either phase-shift or time of flight (TOF) methods. Measuring the doppler shift has

the added benefit of providing the velocity of the reflecting surface along with the

distance. TOF systems offer simplicity, measuring the time a laser pulse takes to

travel to and from a surface. The travel time can be quickly converted to a distance

using the equation:

d =
1

2
ct (1)

where d is the distance, c is the speed of light, and t is the travel time of the

laser pulse. Laser scanners have fast and accurate measurements compared to other

sensors, each measurement only takes microseconds with an angular resolution of less

than 0.5◦. Angular resolution can be a disadvantage in feature-dense environments,

since the laser pulse may not detect every object. Additionally, materials such as

glass or water can have poor data returns. Sonar, which was originally an acronym

for SOund Navigation And Ranging (SONAR), uses sound wave TOF in a method

similar to the laser scanner.

A new method of ICP, proposed in [20], accounts for the local minimum trap

by searching the point cloud data for corresponding features. These geometric fea-

tures can be anything; including curvature, surface normal vectors, and point cloud

density. The results demonstrated that the augmented ICP algorithm improves the

convergence speed and the convergence interval, even without setting a proper initial

estimate.
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Figure 1: Illustration of the iterative closest point method to align two
lines [48].

Additional SLAM Methods.

Since the introduction of SLAM in 1995, many different methods have been in-

troduced. Some common types include Extended Kalman Filter (EKF) SLAM [50],

FastSLAM 1 [34], FastSLAM 2 [32], Occupancy Grid SLAM [35], Oriented FAST and

Rotated BRIEF (ORB) SLAM (ORB-SLAM) [37], and incremental Smoothing And

Mapping (iSAM) [23].

EKF SLAM models a map of sensor and landmark states using a Gaussian vari-

able. The two stages of EKF, prediction and correction, process the map. The

prediction stage propagates the Gaussian variable through the filter to estimate the

map at the next stage. The correction stage brings in sensor data to improve the

SLAM solution. EKF SLAM is causal, but a forward-backward smoother can be

added to improve the solution even further. Solà, in [50], presents a good tutorial of

EKF SLAM including practical examples.
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FastSLAM 1 and FastSLAM 2 were first introduced by [34] and [32], respectively.

They have quickly overtaken EKF SLAM in popularity. While very similar to EKF

SLAM, FastSLAM 1 substitutes a Rao-Blackwellised particle filter for the EKF. Fast-

SLAM 2 improves the SLAM solution by using a different proposal distribution than

the original FastSLAM algorithm. These algorithms converge well for linear problems,

but have difficulty representing highly non-linear systems [3].

Occupancy Grid SLAM reduces the impact of data-disassociation by representing

the environment as a block of cells. As the sensors traverse the environment, sensor

data is used to determine the probability that a cell is empty or full. These probability

maps, called occupancy grid maps, were introduced to SLAM in [35]. Millstein’s

research in [31] demonstrates a thorough application of Occupancy Grid SLAM.

ORB-SLAM, introduced in 2015 [37], is a camera-based SLAM approach that uses

image features for every aspect of SLAM, from mapping and localization to handling

loop closures. ORB-SLAM has several advantages besides using one sensor for the

entire system. It operates in real time, in a wide range of environments and scales,

and only increases in size if the camera environment changes.

The iSAM method was introduced in 2008 [23] as an exact and efficient SLAM

solution. It is very good for non-linear systems since all previous poses are kept as

part of the estimation stage. The four characteristics that are met by iSAM are:

1. Exactness: no approximations can be made, even with nonlinear measurements.

2. Efficiency: data processing speed must be adequate for real-time use

3. Data associations: information for data association must be readily available.

4. Applicability: iSAM must be able to solve a wide range of problems on many

different data types.

9



The effiency in iSAM is possible by only re-factoring when a large change is present,

instead of every time a measurement is made.

Georgia Tech Smoothing And Mapping (GTSAM) toolbox.

GTSAM is based The GTSAM toolbox was developed at the Georgia Institute

of Technology by Dellaert along with many of his students and collaborators [14].

GTSAM is a C++ library for solving factor-graph based problems. In addition to

modeling and solving SLAM problems, it can also solve Structure From Motion (SFM)

problems and more complex estimation problems. Along with the C++ library, GT-

SAM also provides a MATLAB interface, used extensively for this research, which

allows for algorithm development, modeling, visualization, and user interaction.

Factor graphs are bipartite graphs with two components, factors and variables.

Factors represent probabilistic information, derived from measurements or prior knowl-

edge. Variables represent random variables. Koller and Friedman provide tutorials on

factor graphs, along with other graph-based models including Bayes networks, in [24].

Georgia Tech has been making many strides in navigation and mapping, including

SLAM with 3D and 2D Sensors [52] and analyzing the impact of sensor precision on

SLAM accuracy [44].

Levenberg-Marquardt Optimization.

The Levenberg-Marquardt (LM) optimization algorithm has become a standard

method for solving non-linear least-squares problems. It is based on the work of

Levenberg [28] and Marquardt [30]. It is an iterative technique that locates the

minimum of a multivariate function that is expressed as the sum of squares of non-

linear real-valued functions. The LM algorithm can be considered as a combination

of the gradient descent method and the Gauss-Newton method. If the multivariate
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function is far from the optimal solution, the algorithm approximates the gradient

descent algorithm. If the function is close to optimal, it approximates the Gauss-

Newton method. The algorithm’s implementation and theory are described in detail

in [36].

2.4 Data Collection Methods

Different SLAM algorithms and methods can utilize a wide range of sensors. The

most common type are exteroceptive sensors including laser scanners, sonar, and

cameras. Combinations of these sensors are often used, or paired with interoceptive

sensors such as wheel encoders or inertial sensors. These sensors only measure posi-

tion indirectly, using velocity and acceleration, they do not interact with the external

environment. Exteroceptive sensors, while expensive compared with wheel odometry

and commercially-available inertial sensors, offer more accurate long-term measure-

ments. Often, both types of sensors are used together because of their complimentary

characteristics.

SLAM relies on an estimate of motion between successive poses, often referred

to as odometry. This motion is measured using the sensors above. Odometry from

wheel encoders measures the rotation of each wheel, using the wheel radius and

rotation to determine the vehicle’s motion. Inertial sensors include accelerometers

and gyrometers, which measure linear and angular acceleration. These sensors drift

significantly in the long-term, making them insufficient for SLAM by themselves.

However, they are very stable in the short-term, smoothing the jitter inherent to

many exteroceptive sensors.
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2.5 Optical Feature Descriptors

Optical feature descriptors are features that can be repeatably found in images

of a specific scene. These features can be identified even after changes in rotation,

scale, and lighting conditions. Many different algorithms have been developed, each

with their own benefits and problems. This section details the specific algorithms

used for this research along with the specific toolbox used to apply the detectors to

each image.

SIFT.

The Scale Invariant Feature Transform (SIFT) was developed by D. G. Lowe

in 2004 [29], it has since become a widely-used feature detection and description

algorithm. The SIFT detector uses an approximation of a Laplacian-of-Gaussian

(LoG) operator, called a Difference-of-Gaussians (DoG) operator: Feature-points are

detected by searching local maxima using DoG at various scales of the subject images.

A 1616 pixel box around each detected feature is then further analyzed and broken into

sub-sections or blocks, rendering a total of 128 bin values. SIFT is computationally

intensive, but is highly invariant to rotations, scale, and affine changes.

SURF.

The Speeded Up Robust Features (SURF) detector was introduced in 2008 [4].

it relies on a tiered Gaussian analysis of images and the determinant of a Hessian

Matrix. Feature detection speed is improved by using only using 64 bins. The main

advantage of SURF over SIFT is its lower computational cost. While SURF features

are also invariant to rotation and scale, they are not as invariant to affine changes.

The descriptor can be extended to 128 bin values to cope with affine variance at the

cost of computation time.
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ORB.

ORB, was developed by E. Rublee et al. in 2011 [46]. It is a combination of

two modified feature detection algorithms: Features from Accelerated Segment Test

(FAST) [45] for the feature detection, and Binary Robust Independent Elementary

Features (BRIEF) [8] for the feature description. FAST corners are detected at vary-

ing scales, then the detected corners are processed with a Harris Corner Detector to

select the most optimal points. The original BRIEF description method is unstable

with respect to rotation, so modification is required to make ORB features rotation

invariant. ORB features are also invariant to scale and some affine changes.

2.6 Open Source Computer Vision Library (OpenCV)

OpenCV is an open source computer vision and machine learning software library

1. It provides a framework for designing and testing multiple computer vision appli-

cations. OpenCV is a Berkley Software Distribution (BSD)-licensed library, which

makes it popular for academic and commercial settings alike. The library has been

downloaded over 14 million times, with an estimated 50 thousand users. This popu-

larity has built a large community of users and collaborators, and grown to include

over 2500 algorithms for computer vision and machine learning [7]. OpenCV Forums

are a resource for tutorials, operating instructions, and instructional manuals. Along

with the OpenCV Forums, [22] was used extensively to accomplish this research.

OpenCV supports Windows, Linux, Android and Mac OS operating systems. It

is written natively in C++, but it also integrates with Python, Java, and MAT-

LAB. OpenCV algorithms will be used specifically for image calibration and feature

matching in this thesis.

1https://opencv.org/
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2.7 Camera Characteristics

Camera models are used to describe the relationship between information from the

picture, on the image plane, and the actual world. The models enable comparisons

between different cameras. The camera model used for this research is the pinhole

camera model, which is widely used.

Pinhole Camera Model.

The most simplistic model of a camera is the Pinhole Camera model. A pinhole

camera has a single small aperture (a pinhole) and no lens. Light passes through the

aperture and projects an inverted image on the rear of the camera, or image plane.

The distance from the aperture to the rear of the camera is known as the focal length.

There is also a virtual image plane, one focal length in front of the aperture, which

contains the non-inverted image. Many cameras can be fully described by using

a pinhole camera along with additional intrinsic and extrinsic parameters. These

additional parameters, introduced in [21], vary from sensor to sensor.

Extrinsic Parameters.

Extrinsic parameters describe the position and orientation of the camera. This

can either be the relative to an origin point and axis in the environment, or relative to

a second camera or image. External parameters change whenever a camera is moved

or re-oriented. The extrinsic parameters transform world feature points into camera

coordinates, and from camera coordinates into world feature points.

Intrinsic Parameters and Calibration.

Intrinsic Parameters transform camera coordinates into the image plane. Some of

the parameters included are focal length, radial lens distortion, tangential lens distor-
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tion, and sensor skew. Because these parameters are different for each camera, image

matching algorithms require a calibration step to account for the camera differences.

Images from a camera can be rectified using the camera calibration parameters. Rec-

tifying an image corrects for the different types of distortion. There are two prominent

methods of calibration. The first, known as self-calibration or auto-calibration, takes

non-calibrated images from multiple views of an object to calculate the calibration

matrix [19].

The second method is a batch approach which uses at least 10 images of a planer

pattern with measured feature sizes, for instance a chess board. This method is more

accurate and more common than self-calibration. First, specific points or corners are

identified, Then the coordinates in real-world space and the coordinates in each image

are used to solve for the distortion coefficients. Because of the method’s popularity

there are many applications and tutorials detailing its procedures. Lambers presents

a calibration approach using OpenCV [25].

2.8 Multiple-Camera Registration

Images of unique features taken from multiple cameras can be used to determine

the extrinsic parameters of the cameras. That is, the rotation and translation that

separate the sensor coordinate frames. This process works through the use of epipolar

geometry, shown in Figure 2. The variables used, listed in Table 1, are as follows:

Point q is an optical feature that appears in both cameras. O1 and O2 are the

camera’s optical centers, separated by some baseline. The epipolar plane is the plane

that contains the points q, O1, and O2. The lines l1 and l2 are where the epipoplar

plane intersects each image plane. Each camera also has an epipole, or the point

where the baseline intersects the image plane. These epipoles are e1 and e2 for sensor

1 and sensor 2, respectively. The point q appears in each image plane at point p1
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and p2. This works well for applications such as stereo-vision navigation and ranging,

when the baseline is either fixed or measurable.

Figure 2: Epipolar geometry.

Table 1: Epipolar geometry variables.

Variable Definition

q optical feature point
O1 camera 1 optical center
O2 camera 2 optical center
l1 intersection of epipolar plane and image plane 1
l2 intersection of epipolar plane and image plane 2
e1 camera 1 epipole
e2 camera 2 epipole
p1 q projected onto image plane 1
p2 q projected onto image plane 2

Essential and Fundamental Matrices.

Epipolar geometry can be expressed in camera coordinates using the Essential

matrix E, a 3 × 3 matrix that only depends on the extrinsic parameters R and T .
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The Essential matrix consists of five parameters (three rotation parameters and two

translation parameters). It has two constraints:

1. the determinant is zero.

2. the two non-zero singular values are equal.

E = R


0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 (2)

Epipolar geometry can also be can be expressed in image coordinates by using the

Fundamental matrix F , which depends on the extrinsic and the intrinsic parameters.

The Fundamental matrix always has a rank of two, and contains seven parameters

(two for each of the epipoles and three for the homography between the two epipolar

lines). If the cameras are calibrated, then the point location from each sensor is given

with respect to its camera’s coordinate frame and the Essential matrix can be used.

The Fundamental matrix can be used with uncalibrated cameras.

To recover a relative pose between two cameras, the Essential matrix must be de-

rived from sets of corresponding points in images from two calibrated cameras. Using

the Essential matrix and the pose estimation algorithm, introduced by David Nistér

in 2004 [39], the relative R and T matrices can be recovered. Although Nistér’s algo-

rithm only requires five data points to be tractable and convergent, it often requires

many more to account for noise and co-planar features [43].
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2.9 Sensor Synchronization

When using multiple sensors, it is necessary to synchronize the data between

sensors. To minimize timing errors, the signals can be triggered by a single signal,

or synchronized using frames with feature common to all sensors. This thesis uses

the frame synchronization method which, while less accurate than using single timing

sources, is much simpler to implement.

Frame Synchronization.

When using frame synchronization, timing differences between sensors are calcu-

lated by interpolating between sets of data. This is done by identifying a temporal

feature at the start and end of each data set. It can be as simple as observing the

start and end of movement, or using specific movements at determined frequencies.

This method is practical for short tests with a limited number of sensors and if a

timing error of 1
framerate

is acceptable.

External Timing.

External timing sources can trigger data collection on most sensors. They can run

on their own internal frequency generator, or be synchronized to a global reference

such as GPS time if required. Sensors can have very different signal requirements,

ranging from a single low-voltage pulse to an Ethernet data packet, oftentimes through

a dedicated synchronization port. Depending on the type of signal and the accuracy

of the timing circuit, synchronization within 10 ns is possible.
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III. Methodology

3.1 Objective

The purpose of this research is to test the efficacy of using LIDAR and camera

sensors to generate a reference database of images (taken from SLAM-derived posi-

tions) and use that database to determine the location and orientation of a new image.

The experiment execution necessitates the use of multiple sensors, so calibration and

image rectification will be used to properly characterize the sensor-to-sensor relation-

ships and sensor-to-feature relationships. The specific experiments aim to accomplish

several goals:

1. Measure the accuracy of calculating range data from an image with known

feature sizes.

2. Generate a set of geo-referenced images using SLAM techniques.

3. Collect sets of images using the same environment as the SLAM dataset.

4. Solve for the 3D position and orientation of an camera using the SLAM dataset.

This chapter begins with the setup and factors used by GTSAM. Then an overview

of the important markers, equipment, and sensors used in the experiments. Next,

there is a description of the different coordinate systems and frames, followed by the

physical relationships between sensor frames. Finally, there are overviews of each

experiment.

3.2 GTSAM Setup

This thesis uses a 2D landmark-based SLAM problem, with prior factors, odom-

etry factors, and landmark measurement factors. Figure 3 is an example of a factor
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graph for a landmark-based SLAM problem. The variables are listed in Table 2.

There is one landmark l1, along with three pose variables: x1, x2, and xn, represent-

ing the poses of the platform over time. As shown in the example, there is a factor

p on the pose x1 that encodes prior knowledge about x1, two factors that relate suc-

cessive poses: o1 and o2, and two factors that relate poses to the landmark: br1 and

br2.

Figure 3: Example factorgraph with pose and landmark factors.

Prior Factors.

Prior factors are unary factors that encode the prior knowledge of each pose or

landmark. They describe a probability of an initial condition. In this thesis, there

is a prior factor based on the approximate starting location of the platform, as well

as the approximate locations for each of the landmark features. These are passed

to GTSAM as PriorFactorPose2 functions. The PriorFactorPose2 function requires

certain parameters, including the pose or landmark ID and the position constraint.
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Table 2: GTSAM example factorgraph variable definitions.

Variable Factor Used Definition

p PriorFactorPose2 prior factor
x1 - 1st pose
x2 - 2nd pose
xn - nth pose
l1 - landmark
o1 BetweenFactorPose2 odometry factor from x1 to x2
o2 BetweenFactorPose2 odometry factors from x2 to xn
br1 BearingRangeFactor2D factor from x1 to l1
br2 BearingRangeFactor2D factor from xn to l1

Each prior factor also has an associated noise model which can account for measure-

ment uncertainty. This is an Example of a prior factor in MATLAB that adds a prior

from pose 1 to the origin:

PriorFactorPose2(x1, Pose2(0, 0, 0), noiseModel.Diagonal.Sigmas([1; 1; 0.1]));

Odometry Factors.

Odometry factors are binary factors that relate two poses. This is expressed in

GTSAM by the BetweenFactorPose2 function, which is expressed in MATLAB using

the command:

BetweenFactorPose2(x1, x2, odometry, noise))

The function input parameters are described in detail in Table 3. This thesis only

uses the odometry factors to relate consecutive platform poses. For example: pose

1 to pose 2, pose 2 to pose 3, pose n-1 to pose n. The parameters required for an

odometry factor are shown in Table 3.
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Table 3: GTSAM odometry factor parameters.

Parameter Definition

x1 1st pose ID
x2 2nd pose ID

odometry relative translation and rotation from the 1st pose ID to the 2nd pose ID
noise diagonal Gaussian noise model for the x position, y-position, and orientation

Bearing-Range Factors.

Binary factors can also be used to relate a pose and a landmark. This uses a dif-

ferent GTSAM function, the BearingRangeFactor2D function, which uses the relative

bearing and range from a pose to a specific landmark. Ensuring that measurements

are associated with the correct landmark is crucial to SLAM. Incorrect matches be-

tween measurements and landmarks can have a detrimental impact on the SLAM

result. This research simplifies the data association problem by using the ArUco

marker ID to assign a unique identifier to each landmark.

This function is expressed in MATLAB using the command:

BearingRangeFactor2D(x1, l1, Rot2(angle), range, noise)

each parameter is described in detail in Table 4.

Table 4: GTSAM bearing-range factor parameters.

Parameter Definition

x1 Pose ID
l1 Landmark ID

Rot2(angle) Relative bearing to landmark
range Range to landmark
noise diagonal Gaussian noise model for the bearing and range
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Optimizer.

The GTSAM factors and variables, in a factor graph structure, are compiled into a

an optimizer along with any initial conditions. Because the odometry factors involve

the orientation and movement of the platform, which are not linear, the optimizer also

needs to be non-linear. The optimizer class linearizes the factor graph multiple times

to minimize the non-linear squared error specified by the factors. The Levenberg-

Marquardt algorithm, described in detail in Subsection 2.3, is a good choice because

it often converges, even if it starts very far off the final minimum. The MATLAB

command for the Levenberg-Marquardt optimizer is:

LevenbergMarquardtOptimizer(graph, initial);

3.3 Equipment and Sensors

ArUco Markers.

Because loop closures and revisits are such a critical part of SLAM, there is a need

to create unambiguous data associations between multiple views of a single feature.

The features in this case are ArUco markers, which have unique IDs that can be

detected and processed using OpenCV. ArUco markers are available in a wide range

of libraries, depending on how many unique features are available and how many

bits each marker has. For this thesis, the 6x6 library of 250 unique markers provides

enough unique IDs without having a higher bit density. Only the first 25 6x6 markers,

shown in Figure 4, are used. Each marker was printed at a scale of 82 mm by 82 mm

with the unique ID below each marker, as shown in Figure 5, since the markers are

not human-readable.
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Figure 4: ArUco markers used as unambiguous features.
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Figure 5: ArUco marker printed with marker ID.
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Velodyne HDL-64E S2 LIDAR.

The LIDAR used for the experiments is the HDL-64E, version S2, from Velodyne.

The HDL-64E has 64 lasers, mounted in pairs of 32 lasers on upper and lower blocks.

Both blocks are mounted onto a rotating platform, spinning at 600 rotations per

minute. This design provides a much richer point cloud than previous designs in which

a singe laser is fired through a rotating mirror. The HDL-64E has the specifications

listed in Table 5. Several methods have been studied for improving the accuracy

of the HDL-64E [16]. Velodyne also provides software for viewing, calibrating, and

parsing the raw LIDAR data into other formats. An example of the velodyne viewer

is shown in Figure 6, compared to the MATLAB point cloud viewer in Figure 7.

Table 5: Velodyne HDL-64E S2 Specifications.

Parameter Value Unit

Spin Rate 300-1200 RPM
Vertical Field Of View 26.8 degrees

Horizontal Field Of View 360 degrees
Sensing Range 120 m

Range Accuracy 15 mm
Output Capture Format PCAP -

FLIR Ladybug3 1394b Spherical Camera.

The camera used to capture the geo-located images is the FLIR Ladybug3 camera.

It is a comination of six 2 MP sensors with global shutters that enable the system to

collect video from more than 80% of a full sphere. The data from each camera is col-

lected and transmitted over an IEEE-1394b (FireWire) interface. JPEG-compressed

12MP resolution images can be captured up to 15fps. The Ladybug3 was designed for

weather-resistant high-resolution, direct FireWire, and synchronized image capture.

These specifications are listed in Table 6.
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Figure 6: Velodyne point cloud viewer.

Figure 7: Matlab point cloud viewer.
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Table 6: FLIR Ladybug3 1394b Specifications.

Parameter Value Unit

Spherical Coverage 80 percent
Resolution 2 MP
Frame Rate 15 fps

Interface IEEE-1394b -
Output Capture Format JPEG -

Mobile Cameras.

To collect the images that compare against the geo-referenced image set, three

mobile cameras are used. These are a Digital Single Lens Reflex (DSLR) camera, a

mobile phone camera, and a high-speed action camera. This combination represents

a wide range of sensors. The DSLR used is a Nikon D7000 with a wide angle lens,

collecting 2.074 MP at 30fps. The mobile phone sensor is an Apple iPhone 6s, collect-

ing 2.074 MP at 60fps. Finally, the action camera is a GoPro Hero4 Silver collecting

2.074 MP at 60fps.

All three cameras are connected together using the camera rig shown in Figure 8.

Recording is started for the cameras and the rig is pointed at the color calibration

card in Figure 9, which is used as a reference for white balance and color correction.

Finally, the rig is moved through the hallways, following the path travelled by the

geo-referenced camera at a maintained height of approximately 1.5 meters. The rig

is oriented straight ahead for one pass, 45◦ right for one pass, 45◦ left for one pass,

and straight ahead for the final pass.

3.4 Coordinate Systems and Reference Frames

The experiments conducted in this research require cooperation between several

different sensors and environments, which have their own unique frames of reference.
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Figure 8: Camera capture rig.
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Figure 9: Camera color and white balance calibration card.

These different reference frames, such as the environment frame, the mobile camera

frame, and the platform frame, encompassing the LIDAR frame and the spherical

camera frame. Although there is also some global reference frame, it is unused since

every sensor can be related to a common local environment. The environment cov-

ers the area of AFIT in which the experiments are conducted. The environment is

mapped by overlaying a 3-dimensional right-handed Cartesian coordinate system onto

the hallways where the positive x-axis is West, the positive y-axis is South, and the

positive z-axis is up. This orientation is shown along with the test environment in

Figure 10.

The mobile camera frame follows common convention as shown in Figure 11, where

the sensor lays on the x-y plane and the z-axis is out the front of the camera. This is

the same for all three cameras. The frame of the motorized platform that houses the

LIDAR and the camera is simplified by sharing a common origin, namely the center
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Figure 10: Test environment with origin point.

of the LIDAR sensor. The x-axis is oriented in front of the platform, the y-axis to the

left, and the z-axis up. The raw LIDAR data is given with the y-axis out the front

of the sensor, the x-axis to the right, and the z-axis up. The LIDAR can therefore

be related to the platform by a yaw of 90◦, or by the DCM:

Rplatform
LIDAR =


0 1 0

−1 0 0

0 0 1

 (3)

Applying this DCM to the LIDAR data orients both frames, making the primary

motion of the platform and the LIDAR fall along the x-axis.

The spherical camera is rigidly affixed to the platform. Since the panoramic image

is comprised of six individual sensors, each sensor has its own coordinate frame,

following the convention used on the mobile cameras above. These sensors will be
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denoted as s0 through s5, and their rotational offsets from the LIDAR frame will be

discussed in Subsection 3.5.

Figure 11: Camera reference frame.

The camera and LIDAR are both attached to an aluminum platform, shown in

Figure 12, so the offsets remain constant throughout the experiment. To maintain

a constant height, the platform traverses the environment on a motorized ground

vehicle. The vehicle carries the power supply and data recorder for the sensors. This

vehicle is shown with the platform attached in Figure 13.

3.5 Physical Characterization

The first step of each experiment is to determine the physical characteristics of the

system, namely the translation and rotation from one frame of reference to another.

To generate a set of geo-referenced images using SLAM, the corresponding relation-

ships between LIDAR, camera, and landmark features must be well-understood. Ad-

ditionally, the intrinsic parameters of each camera must be determined to account for

effects such as focal length and lens distortion.
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Figure 12: Camera and LIDAR mounted together.
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Figure 13: Camera and LIDAR platform on motorized ground vehicle.34



LIDAR to Camera.

Determining the relationship between the LIDAR frame and the camera frame is

a combination of physical measurements and data analysis. The relationship remains

constant throughout the experiment because the LIDAR and the camera are rigidly

affixed to the same structure, as shown in Figure 14. The translational offset between

frame origins is calculated by the lateral, longitudinal, and vertical distance between

the sensor origins.

Calculating the rotational offset between sensors requires identifying a feature in

both sensor data sets. This is accomplished by finding an object in an image that is

separate from any background objects.

The calibration rod can be seen in Figure 15. When the platform is rotated, it

appears in each sensor frame as shown in Figure 16. The tall and thin rod has enough

data to determine relative roll and yaw. Since the LIDAR and combined sensors

both have 360 degree horizontal fields of view, relative pitch can be calculated by

measuring the roll of the other image sensors. The resulting rotational offset for the

sensor capturing landmark data is −86.0279◦, shown in Figure 17. Table 7 shows the

offsets for each individual sensor.

Table 7: Bearing offsets between the spherical camera and LIDAR.

camera sensor cam-marker LIDAR-marker LIDAR-sensor

0 -0.110◦ -17.040◦ -16.93◦

1 -3.123◦ -89.151◦ -86.0279◦

2 -2.372◦ -165.350◦ -162.978◦

3 -4.450◦ 117.432◦ 121.8812◦

4 3.489◦ 59.928◦ 56.4392◦
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Figure 14: Translational offset between the LIDAR and the camera.
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Figure 15: Calibration object used for finding relative rotation offsets.
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Figure 16: Calibration object in each camera sensor.

Figure 17: Rotational offset between the LIDAR frame and the s1 frame.
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Camera to Camera.

The intrinsic differences in cameras must be accounted for to properly determine

the relative position of two or more cameras. The camera parameters for each camera

are measured prior to each data collection using MATLAB’s camera calibration tool,

along with at least 20 images of the calibration checkerboard shown in Figure 18. By

importing images at different skew angles and positions, as in Figure 19, MATLAB

returns the calibration matrix in Equation 4, with the variables in Table 8.

C =


F ∗ sx 0 0

s F ∗ sy 0

cx cy 1

 (4)

Table 8: Matlab calibration matrix variable definitions.

Variable Definition

cx optical center x component
cy optical center y component
s skew parameter
F focal length in mm
sx number of pixels per world unit x
sy number of pixels per world unit y

For instance, the calibration of the mobile phone camera, shown in Figure 20,

resulted in this intrinsic matrix:

C =


3486 0 0

3.3238 3501.7 0

1995.6 1528.2 1

 (5)
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Figure 18: Checkerboard for determining intrinsic camera parameters.

This calibration method is performed before each test and for each camera.

Experiment Overview.

The following sections detail the experiments and procedures used to enable the

camera pose estimation. The first experiment explores the efficacy and accuracy

of using monocular images to create range and bearing measurements. The second

experiment uses vision and LIDAR SLAM, along with the bearing and range data

from Experiment 1, to generate geo-referenced images. The third experiment creates

a collection of test images from different cameras. The final experiment uses the

findings from the first 3 experiments to determine the position and orientation of the

mobile cameras.

3.6 Experiment 1 - Calculate Range Data from an Image

The objective of the experiment was to demonstrate that range can be calculated

to a fair degree of accuracy based only on the relationship between the number of
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Figure 19: Subset of calibration images.

Figure 20: Camera calibration.
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pixels of a feature with a known feature size, and the feature’s distance from the

sensor.

SLAM uses landmark measurements to improve the mapping solution. Since the

spherical camera is already capturing data along with the LIDAR, it follows that

images should be used to measure range and bearings to landmarks. While a single

camera can easily tell the bearing to the landmark, that is insufficient for the SLAM

algorithm. By using features of a known size, a range estimate can be calculated from

a single camera. This experiment is designed to relate the distance of the camera to

image features of known sizes, in this case ArUco markers.

The objective of the experiment is to demonstrate that range can be calculated

based on the relationship between feature size in pixels and feature distance. Images

of the ArUco marker shown in Figure 21 are taken at a series of known distances

at the same height as the camera, as shown in Figure 22. After being rectified, the

images are processed to identify the marker in each image and calculate the marker

corner locations. A short MATLAB script takes the corner locations and calculates

the marker area. The MATLAB Curve Fitting Toolbox is used to process the data

and create a model of the pixel-distance relationship. Root mean squared error is

used to evaluate the goodness-of-fit for each curve fitting model, through which the

rational model in Equation 6 provides the least error.

y =
p1x+ p2

x2 + q1x+ q2
(6)

3.7 Experiment 2 - Generate a Set of Geo-Referenced Images

The first step for this experiment is to set up ArUco markers at known locations

so that s1 of the spherical camera will pass directly in front of them. The bearing and
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Figure 21: ArUco marker number 1, 6x6.
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Figure 22: Test setup for capturing images of ArUco markers at different
distances.
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range factors to these landmarks will improve the end result of the factor graph opti-

mization method. To simplify the bearing and elevation measurements, each feature

is placed at a height of 0.934 m, the height of the camera, as shown in Figure 23. Ad-

ditionally, each range measurement is only taken when the camera passes directly in

front of the marker, limiting the bearing measurements to a 5◦ window. This method

of sorting markers and identifying the most suitable measurements to use as bearing

and range factors is listed in detail in Appendix A.

Once the markers are placed throughout the environment, their position must be

recorded. First, the marker position in the environment frame is measured using a

surveying tape. Next, the measurements are converted from the tape, with gradua-

tions in 1
10

of a foot, into meters to correspond with the other distance measurements

throughout the thesis. Finally, the marker positions are added to the environment

map, as shown in Figure 24.

After the measurements are made, the LIDAR and camera are activated and the

data capture programs begin recording. When the individual programs are operat-

ing correctly, several correlation movements are performed by moving the platform

slightly. This makes it possible to temporally align the camera and LIDAR to within

one frame. Then the platform is moved around the environment, moving camera s1

past the landmark features. This loop is traversed three times, stopping after a final

pass of landmark 1 which acts as a loop closure for the final pass. Again, several

movements are made with the platform to account for drift between the sensors. The

data from both sensors is synchronized as described in subsection 2.9. The recti-

fied images from s1 are passed through an ArUco marker detection algorithm which

returns the frame number, marker ID, and marker corner location in pixels. The

algorithm detects many different images for each pass. However, only the picture

when the marker is closest to the image center is used. This recreates the conditions
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of Experiment 3.6, where the marker was centered in the image and only the range

was changed, maximizing the range measurement accuracy.

The following process is used to find the optimal frame for each landmark pass,

while still creating landmark measurements for successive passes. First, the center of

the marker in each image is calculated using the corner locations, and the absolute

distance from image center to marker center is passed into the function that deter-

mines the key frames for each marker ID. Then the pixel area of each marker in a key

frame is passed into the distance estimation model from subsection 3.6 to calculate

the estimated range. Finally, the relevant information for creating bearing and range

factors is compiled and stored.

The original LIDAR data is processed in several steps. First, running the propri-

etary calibration program corrects for distortion and other factors that are inherent

in the data. Then the points for each LIDAR frame are exported into MATLAB,

where the frames are stored as point cloud objects. Performing ICP-based point

cloud registration on consecutive frames determines a relative change in position and

orientation which is used to generate odometry factors.

GTSAM is used to process all of the information into an optimal trajectory es-

timate. The platform starting location and heading, along with all of the landmark

positions, are added to the factor graph as constraints. These constraints have some

prior noise model associated with them to allow for some adjustment during optimiza-

tion. Next the odometry factors are added, consisting of the change in rotation and

translation from ICP, a pose ID, and a noise model of the measurements. Then the

bearing-range factors from the ArUco marker images are added, using the odometry

pose that is closest to the image capture time. The noise models for the odometry

and bearing-range factors are tunable parameters. In this case, the noise models are

adjusted so that the position covariance for each pose and landmark encompasses the
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true positions.

After GTSAM compiles the noise models and factors into a factor graph, it is

optimized using a non-linear Levenberg-Marquardt optimization. Once the optimal

pose locations and bearings are found, the extracted measurements are linked to each

camera frame. Since the camera frame is not directly synchronized with odometry

poses, the measurement is an interpolation of the two nearest pose measurements.

Figure 23: ArUco marker placed at camera height.

3.8 Experiment 3 - Collect Imagery in the Same Environment

To prove the concepts put forward in Section 1.2, there must be images to test.

Three different cameras were used to take images to ensure that different cameras can

still be localized. The image sets from the three cameras are collected simultaneously.

First, all three cameras are calibrated using the method outlined in Subsection 3.5.
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Figure 24: Test environment, with landmark feature locations.

3.9 Experiment 4 - Extract Relative Pose from Matched Images

The first part for this experiment is to build a database of image feature descriptors

from the geo-referenced camera data. For this, the rectified images from s0 to s5

are passed through an OpenCV image processing algorithm to find all of the SIFT

features. The SIFT feature descriptors for the different sensors are then compiled

into a single list. This is repeated for each geo-referenced image frame. The feature

lists, organized by image frame, are stored in a database.

Test images are selected from the mobile camera data, and processed using the

same image feature algorithms. Then, the image features are compared to the feature

database using RANSAC to determine if the mobile image has some overlap with a

geo-referenced image. To reduce the possibility of having a false match, the three

most likely matches are displayed to the user who can select a match that has two

overlapping images.

After a matching image set is found, specific image features in both images are

found and ranked based on likelihood. The essential matrix is calculated for both
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images using the principles in Section 2.8. Next, the essential matrices are used to

recover the relative R and T matrices, which describe the orientation of the mobile

camera relative to spherical camera and the location of the mobile camera relative to

spherical camera, respectively.

The pose recovery algorithm returns a translation in the form of a unit vector.

To determine the actual translation, additional steps are required. First, the pose

recovery calculation is repeated for the poses 15 frames before and after the selected

pose. Next, the intersection of the three translation vectors is calculated. Each vector

v has an origin point a and the intersection point c is the closest point of intersection

for all three vectors. The distance of this point to the line is:

H =
‖(c− a)× d‖

‖d‖
(7)

With the identity (a× b) · (a× b) = ‖a‖2‖b‖2 − (a · b)2 the distance of this point

to the line becomes:

H2 =
‖c− a‖2‖d‖2 − ‖(c− a) · d‖2

‖d‖2
(8)

H2 = ‖c− a‖2 − ‖(c− a) · d‖2

‖d‖2
(9)

To find a c such that the sum is minimized, the derivative with regard to c should

be zero:

0 =
3∑

i=1

c− a(i) − d(i)
(c− a(i)) · d(i)
‖d(i)‖2

(10)

The final stage is to convert the mobile camera pose from the camera coordinate

frame back to the local environment frame using the relative rotations and translations

described in Section 3.4. The first step is to calculate the Direction Cosine Matrix
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(DCM) C from the mobile camera to the environment using Equation 11. R1 is the

DCM from the spherical camera to the environment, and R2 is the DCM from the

mobile camera to the corresponding spherical camera sensor. The camera position is

calculated using Equation 12, where V is the position of the mobile camera in the

environment frame, and V1 is the position of the spherical camera in the environment

frame.

C = R1R2 (11)

V = V1 + CT (12)
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IV. Results and Analysis

This Chapter reviews and analyzes the results from the four experiments from

Chapter 3. First is the efficacy and accuracy of calculating range data from monoc-

ular image data. Second is generating geo-referenced images using vision-based and

LIDAR-based SLAM using the range data from Experiment 1. The third experi-

ment is the collection of mobile image sets using different cameras. The final exper-

iment combines the images from Experiment 3 with the geo-referenced images from

Experiment 1 and Experiment 2 to determine the position and orientation of the

non-localized sensor.

4.1 Experiment 1 - Calculate Range Data from an Image

Initial Test.

The objective of the experiment was to demonstrate that range can be calculated

to a fair degree of accuracy based only on the relationship between the number of

pixels of a feature with a known feature size, and the feature’s distance from the

sensor. The marker area and distance from each image are tabulated in Table 9.

When the marker distance is plotted as a function of pixel area, as in Figure 25, a

correlation becomes apparent.

The MATLAB Curve Fitting Toolbox has many different models that can be

used to describe variable relationships. When each curve model was tuned to fit the

training data, the Exponential 2, Power, and Rational models all appeared to fit

the data correctly. To quantitatively determine the optimal model, the RMSE was

calculated. The equations for each fit model, as well as the RMSE when using that

model, are listed in Table 10. This approach to calculate goodness of fit provided a

definitive answer: the 1-2 rational fit model had the lowest RMSE error of 0.0200.
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Table 9: Marker distance and area used to create a distance estimation
model for a 82mm×82mm marker.

Marker Distance (m) Marker Area (pixels)

0.4159 8145.5
0.5683 5587.5
0.6445 4128
0.7207 3136
0.7969 2450.5
0.8731 1958
0.9493 1601
1.0255 1350.5
1.1017 1139
1.1779 977
1.2541 841
1.3303 729
1.4065 663
1.4827 564.5
1.5589 517.5
1.6351 462
1.7113 410
1.7875 370.5
1.8637 351.5
1.9399 315
2.0161 289
2.0923 256
2.1685 256
2.2447 232.5
2.3209 217.5
2.3971 203
2.4733 182
2.7019 144
2.7781 144
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Figure 25: Training data used to model the area-distance relationship for
an 82mm×82mm marker.

This was less than half of the error produced by using the Exponential model, and

slightly better than the Power model. Figure 26 shows the tuned fit model overlaid

on the training data set.

The accuracy of using a model with these tuning parameters was unknown. Addi-

tional tests using images taken with known marker distances were required to deter-

mine the accuracy of the method. More images of the marker were taken using two

different distance intervals. The true distances with respect to pixel area from the

new images were compared to the estimated distance calculated by using the model.

As hypothesized, the new data follows the same relationship as the training data and

the rational fit model. These three data sets are shown in Figure 27. The measure-

ment error, shown in Figure 28, is the estimated distance from the model subtracted

from the measured distance. All of the distances calculated when using this method

were within 0.055 m of the measured value.

The error from using this method has to be described to account for it when
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Table 10: Goodness of fit for different curve models based on RMSE of
the 82mm×82mm marker data.

Fit Model Fit Equation RMSE

Polynomial 1 y = p1x+ p2 0.4518
Polynomial 2 y = p1x

2 + p2x+ p3 0.3235
Polynomial 3 y = p1x

3 + p2x
2 + . . .+ p4 0.2232

Weibull y = abxb−1 × e−axb 1.7612
Exponential 1 y = aebx 0.2661
Exponential 2 y = aebx + cedx 0.0427

Fourier 1 y = a0 + a1cos(xp) + b1sin(xp) 0.4481

Gaussian 1 y = a1e
−(

x−b1
c1

)2
N/A

Power 1 y = axb 0.0226
Power 2 y = axb + c 0.0230

rat12 y = p1∗x+p2
x2+q1∗x+q2

0.0200

Figure 26: Curve fitting results with rational model for an 82mm×82mm
marker.
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Figure 27: Marker distance as a function of pixel area for training data
and verification data using an 82mm×82mm marker.

Figure 28: Distance error as a function of marker distance for
82mm×82mm marker.
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using graph-based SLAM. The Gaussian noise model that describes this error is also

determined using MATLAB. First, a histogram of the distance error is generated.

Then a Gaussian probability density function (PDF) is fit to the histogram. Figure 29

shows the histogram and resulting PDF for the distance estimation function. The

PDF is described in Equation 13, with the tunable parameters of µ and σ being

the mean and standard deviation in meters, respectively. Equation 14 describes the

specific PDF for the test.

Figure 29: Histogram and corresponding PDF when using the
82mm×82mm marker estimation function.

N (µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (13)

N (−0.0042167, 0.031104) (14)
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Verification Test.

The entire experiment was repeated a second time to ensure that the principles

were still valid when using markers with a different feature size. To reduce feature size

without changing bit size, the 6x6 ArUco marker was substituted for a 4x4 marker

with the same bit dimensions. This created a 55mm×55mm marker. The steps of

collecting, plotting, fitting, and verifying the data are all the same as the initial test.

The data collection resulted in the distances and areas in Table 11. When graphed,

as in Figure 30, the shape of the distribution remained the same as when using the

larger marker. As expected, the marker distance was closer for a given area. This

resulted in different values for the curve fitting models, along with the different RMSE

values shown in Table 12.

Figure 30: Training data used to model the area-distance relationship for
an 55mm×55mm marker.

As with the larger marker the Rational 1-2 model had the lowest RMSE, with the

Power model and Exponential model also fitting the data well but with slightly more
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Table 11: Marker distance and area used to create a distance estimation
model for a 55mm×55mm marker.

Marker Distance (m) Marker Area (pixels)

0.2921 7432
0.3683 4275.5
0.4445 2849.5
0.5207 2034
0.5969 1427
0.6731 1116
0.7493 895.5
0.8255 708.5
0.9017 509
0.9779 409
1.0541 424
1.1303 356.5
1.2065 305
1.2827 267
1.3589 229
1.4351 200
1.5113 190.5
1.5875 170
1.6637 157
1.7399 153

Table 12: Goodness of fit for different curve models based on RMSE of
the 55mm×55mm marker data.

Fit Model Fit Equation RMSE

Polynomial 1 y = p1x+ p2 0.3124
Polynomial 2 y = p1x

2 + p2x+ p3 0.2197
Polynomial 3 y = p1x

3 + p2x
2 + . . .+ p4 0.1547

Weibull y = abxb−1 × e−axb 1.1656
Exponential 1 y = aebx 0.1808
Exponential 2 y = aebx + cedx 0.0425

Fourier 1 y = a0 + a1cos(xp) + b1sin(xp) 0.2706

Gaussian 1 y = a1e
−(

x−b1
c1

)2
N/A

Power 1 y = axb 0.0317
Power 2 y = axb + c 0.0287

rat12 y = p1∗x+p2
x2+q1∗x+q2

0.0274
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error. The Rational model had an error of 0.0274. Figure 31 shows the fit model

overlaid on the training data set for the smaller marker.

Figure 31: Curve fitting results with rational model for an 55mm×55mm
marker.

Another two data sets with the 4x4 marker were collected to validate the model.

As with the larger marker, the actual and estimated distances are plotted in Figure 32

with an overlay of the Rational model. The error, shown in Figure 33, is calculated

as before: the distance estimate from the model is subtracted from the measured

distance.

The Gaussian noise model that describes this error is also determined using MAT-

LAB. First, a histogram of the distance error is generated. Then a Gaussian PDF

is fit to the histogram. Figure 34 shows the histogram and resulting PDF for the

distance estimation function. The PDF is described in Equation 15, with the specific

characteristics in Equation 16. Table 13 shows the noise model parameters for both

marker tests.
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Figure 32: Marker distance as a function of pixel area for training data
and verification data using an 55mm×55mm marker.

Figure 33: Distance error as a function of marker distance for
55mm×55mm marker.
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Figure 34: Histogram and corresponding PDF when using the
55mm×55mm marker estimation function.

N (µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (15)

N (0.0013525, 0.02289) (16)

Table 13: Noise models for both marker sizes.

Marker Size µ σ

82mm -0.0042167 0.031104
55mm 0.0013525 0.02289

4.2 Experiment 2 - Generate a Set of Geo-Referenced Images

This experiment combines the range estimation method from Experiment 1, ICP-

based odometry from LIDAR data, and the factor graph optimization of GTSAM to

generate position and orientation measurements for a set of images. Instead of the
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single marker from Experiment 1, markers with IDs ranging from 1-24 were captured

in the camera footage. Figure 35 shows how markers are placed, and how they appear

in the panoramic camera.

Figure 35: ArUco marker placement in the environment (left), and marker
as viewed from s1 (right).

Data Collection.

After the measurements are made, the LIDAR and camera are activated and the

data capture programs begin recording. When the individual programs are operat-

ing correctly, several correlation movements are performed by moving the platform

slightly. This makes it possible to temporally align the camera and LIDAR to within

one frame. The running frequency of the camera was slightly higher than the LIDAR,

although they were both initialized to record at 10 FPS. Following the assumptions

laid out in Chapter 1, where the oscillator drift in the sensors is approximately linear,

Figure 36 shows the timing error induced by this interpolation method.
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Figure 36: LIDAR and camera frame synchronization.

After the initial calibration movements, the platform is moved through the envi-

ronment in a counter-clockwise path so each marker appears in s1. After three passes

the calibration movements are repeated before the sensors are safely disconnected.

Image Processing.

The rectified images from s1 are passed through an ArUco marker detection al-

gorithm which returns the frame number, marker ID, and marker corner location in

pixels. The center of the marker in each image is calculated using the corner locations.

Since the range estimation function was created using centered markers parallel with

the image plane, a minimizing function is used to determine the optimal frames for

each marker ID. This function is best demonstrated by Figure 37, where the marker

center and image center are shown for three consecutive frames. In this example the

center frame is chosen as a keyframe.

The results of this minimizing function are shown in Figure 38, where the dis-

tance from marker center to image center first decreases and then increases after
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Figure 37: ArUco marker images, showing image center in green and
marker center in red. The center image is selected as a keyframe.
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some minimum value. Note the threshold in center-to-center distance that separates

each marker pass. This threshold value, which is dependent on image resolution,

ensures that new keyframes are created for new passes, without creating multiple

measurements in a single pass.

The loop-closure effect of having one measurement per pass is better understood

when looking at a single marker ID, as in Figure 39. Each time the marker is passed, a

keyframe is created (in red). This unambiguous feature association results in strongly

defined loop closures for the pose constraints in GTSAM.

Figure 38: Output of the keyframe calculation function for all markers in
the first pass.

The pixel area of each marker for each keyframe is passed into the distance estima-

tion model from subsection 3.6 to calculate the estimated range. This range data is

shown in Figure 40. The relevant information for creating bearing and range factors

is then compiled and stored.

LIDAR Processing.

The original LIDAR data is processed in several steps. First, running the propri-

etary calibration program corrects for distortion and other factors that are inherent
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Figure 39: Output of the keyframe calculation function for marker 1.

Figure 40: Estimated distance to each marker for each keyframe.
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in the data. Then the points for each LIDAR frame are exported into MATLAB,

where the frames are stored as point cloud objects. Performing ICP-based point

cloud registration on consecutive framesdetermines a relative change in position and

orientation which is used to generate odometry factors.

Optimization and Pose Extraction.

GTSAM is used to process all of the information from ICP and the keyframe func-

tion, creating an optimal trajectory estimate and covariance. The platform starting

location and heading, along with all of the landmark positions, are added to the

factorgraph as constraints. Since these positions are measured in the physical envi-

ronment, they help the optimization function to converge. These constraints have

some prior noise model associated with them to allow for some adjustment during

optimization. The noise on the prior constraints is estimated at less than 12mm, since

there is very little variance in physical measurements.

Once the prior constraints are added, each odometry factor from the ICP function

is added. These factors include pose deltas, but they can be integrated without any

additional factors to view the initial odometry path. This initial odometry is shown

in Figure 41. Although it starts in the correct location with a proper heading, the

accumulation of error becomes apparent. After roughly 1100 frames the position

estimate is not even bounded by the hallway.

To account for the accumulating error in the odometry, the noise model must be

altered. Since the trajectory is known, while the noise of ICP is unknown, the noise

model is determined empirically. Starting with a very small noise value, the noise

is slowly increased until the covariance of each pose encompasses the true position.

Figure 42 shows the covariance ellipses and odometry poses after the noise model is

properly adjusted.
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Figure 41: Plot of platform odometry in GTSAM without covariance.
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Figure 42: Plot of platform odometry in GTSAM with noise model prop-
erly tuned.
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With properly tuned odometry, the landmarks and bearing-range factors can be

added. Landmarks are initialized to the locations measured, with a small amount of

noise to account for some measurement error during optimization. The initialization

of landmarks is shown in Figure 43. Each bearing and range constraint from the

keyframe function is attached to the pose of the LIDAR frame that is closest to the

keyframe. The Gaussian noise model from Experiment 1 for the 6x6 ArUco marker

is used as the noise model for all of the bearing-range factors.

Figure 43: Initialization of landmark factors in GTSAM.
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When all of the factors are added, GTSAM can find the optimal pose solution using

a range of optimization algorithms. This research uses the Levenberg-Marquardt

algorithm which works well for handling non-linear optimization. The optimized

trajectory, shown in Figure 44, is much more accurate than the integrated odometry

solution.

Figure 44: GTSAM factorgraph after Levenberg-Marquardt optimization.

Figure 45 shows the initial landmark location estimate and location covariance

along with the optimized landmark location and covariance. Because of the loop-

closure constraints detailed in Subsection 4.2, the odometry uncertainty no longer

grows unchecked. Instead, the highest uncertainty occurs when the platform is

equidistant from two landmarks. This phenomenon, shown in Figure 46 demonstrates

the importance of having unambiguous landmarks.

Once the position and orientation for each pose have been translated into the

environment frame, the information can be used to determine the location of the

panoramic camera for each image. The pose for each image is calculated using the

sensor synchronization data. The pose is determined by interpolating between the
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Figure 45: Landmark location and marginal before (solid line) and after
optimization (dashed line).
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Figure 46: Pose uncertainty decreases when passing a landmark.
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nearest two poses. Figure 47 shows an example image from s1 and its corresponding

position and orientation.

Figure 47: Position and orientation of s1 for frame 3189.

4.3 Experiment 3 - Collect Imagery in the Same Environment

The mobile camera imagery is collected using the sensors described in Chapter 3.

The path follows the same counter-clockwise trajectory as the platform in Section 4.2,

as shown in Figure 48. Since the camera footage from each sensor was collected

simultaneously, image frame interpolation can be performed to account for camera-

to-camera timing. This correlation is possible using the same method as the LIDAR-
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camera correlation in Section 4.2 since there are changes in motion at the beginning

and end of the collection runs that appear in all three sensors.

Figure 48: General path taken to capture mobile camera imagery.

Figure 49 shows an image from each sensor. There are significant variations in

focal length, white balance, and image clarity. Although all of the sensors have rolling

shutters, the increased frame-rate of the GoPro and iPhone resulted in much sharper

images when compared to the DSLR. The DSLR was initialized using standard video

capture settings, instead of capturing high-resolution, high-sensitivity still images at

a lower framerate.

4.4 Experiment 4 - Extract Relative Pose from Matched Images

Linked Image Database.

The first part for this experiment is to build a database of image feature descriptors

from the geo-referenced camera data. For this, the rectified images from s0 to s5 are

passed through an OpenCV image processing algorithm to find all of the SIFT, SURF,

and ORB features. Figure 50 shows the SIFT features detected in an example image,
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Figure 49: Images captured from the DSLR (top), iPhone (middle), and
GoPro (bottom).
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while Figure 51 and Figure 52 show SURF and ORB features, respectively. Note that

there are several features detected on the edges of the images, along with some on

the actual platform. These features are compiled into the reference list as a matter

of convenience. While they will at best not be used at all, there is a possibility that

they could cause a mismatch later. The feature descriptors for the different sensors

are then compiled into a single list. This is repeated for each geo-referenced image

frames. The feature lists, organized by image frame, are stored in a database.

Matching a Test Image.

A test image is selected from each of the mobile camera images to test the feature

matching and pose recovery functions of this research. The test image selected, shown

in Figure 53, contains some unique hallway features that would be apparent to a

human observer. First, it is one of only two intersections where one hallway ends at a

‘T’ intersection with another hallway. Second, it is the only location in the test area

that has certain safety equipment, including an Automated External Defibrillator

(AED) station, a fire extinguisher, and a fire alarm. These provided enough unique

image features to provide a good match to the geo-referenced image database.

The test image, after being rectified, is processed using the same three image fea-

ture algorithms. Figure 54 shows the SIFT features in the test image, while Figure 55

shows the SURF features and Figure 56 shows the detected ORB features.

Once the test image has been processed, the image features are compared to the

feature database using RANdom SAmple Consensus (RANSAC) to determine if the

mobile image has some overlap with a geo-referenced image. The fit statistics from

the RANSAC algorithm are used to determine the likelihood of a match and amount

of image overlap. To reduce the possibility of having a false match, the three most

likely matches are displayed to the user. The user can then select a match between
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Figure 50: Camera s0 image with SIFT algorithm features shown.
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Figure 51: Camera s0 image with SIFT algorithm features shown.
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Figure 52: Camera s0 image with ORB algorithm features shown.
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Figure 53: Rectified image from mobile camera, used to test image match-
ing and pose recovery.

Figure 54: Detected SIFT features in the test image.
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Figure 55: Detected SURF features in the test image.

Figure 56: Detected ORB features in the test image.
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two overlapping images. In this case, as pictured in Figure 57, the top three matches

are all from the correct area, and appear very similar.

Figure 57: Top three image matches returned by computer.

The features between the geo-referenced image and the test image were compared

for all three feature descriptors. The SIFT and SURF algorithms provided plenty of

comparable features, but the ORB descriptor did not have enough matched features

to recover a relative pose. Figure 58 shows the matched SIFT features in both images.

The SURF feature matches, shown in Figure 59, had very similar results. As pictured

in Figure 60, there are not enough ORB features to recover a pose.

Pose Recovery.

After a matching image set is found, the essential matrix is calculated for both

images. Next, the essential matrices are used to recover the relative R and T matrices

shown in Equation 17 and Equation 18, respectively.
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Figure 58: SIFT features matched between images.

Figure 59: SURF features matched between images.
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Figure 60: ORB features matched between images.

R =


0.9647697 −0.2630994 −0.0006935

0.2630952 0.9647983 0.0002675

0.0005987 0− 0.0004458 0.9999997

 (17)

T =


0.7370602

0.6758260

0.0011784

 (18)

As discussed in Subsection 2.8, R and T describe the rotation and translation that

would move the mobile camera into the spherical camera frame. Following the pro-

cedure in Section 3.9, the translation and orientation were calculated as shown in

Figure 61. The final step was to convert the mobile camera pose from the camera

coordinate frame back to the local environment frame using the relative rotations and

translations.

For the test image, the first matching image was frame 2086 from the SLAM

85



Figure 61: Recovery of pose translation using three intersecting vectors.
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dataset. The geo-located image has a location of x = 2.874 m, y = 19.090 m, and

z = 0.975 m. After calculating the transformations for frames 2071, 2086, and 2101,

and applying the transformation in Equation 12 and Equation 11, the final position

of the mobile camera is given as x = 4.645 m, y = 18.6957 m, and z = 0.989 m.

87



V. Conclusion

5.1 Overview

This chapter completes the thesis by drawing conclusions, and outlining the re-

search significance and areas for further study. Section 5.2 details notable conclusions

drawn from the results and analysis. Section 5.3 emphasizes the impact that the re-

search has on the fields of mapping, navigation, and computer vision. It also describes

the research impact to the USAF, AFIT, and the ANT Center. Finally, Section 5.4

outlines recommended experiment changes and future work that can be made to

improve the results.

5.2 Conclusions

As hypothesized, the results demonstrated that a high SWAP-C SLAM system

can be used to determine the position and orientation of low SWAP-C cameras.

Additionally, images taken at different times from different sensors can be located in

the environment without geo-referencing individual features.

Each component of the thesis was successful. First, the accuracy of range estima-

tion based on an image of known feature sizes is sufficient for improving the results

factor graph SLAM. Next, sets of images were matched to location and orientation

data created using SLAM. Bearing and range factors derived from imagery dramati-

cally improved the optimized pose solution. Imagery, from multiple mobile systems,

was taken and calibrated using the same environment. Finally, the data from the first

three experiments was successfully combined. The camera positions relative to the

geo-located sensor were used to find the camera position in the overall environment.
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5.3 Research Significance

This two-step process of building a map of geo-referenced images, and then match-

ing mobile images to the map, combines the best practices of fixed infrastructure

tracking and SLAM. This results in an improvement on the currently available solu-

tions. The SLAM solution becomes much more accurate by using a high SWAP-C

system instead of trying to do optical SLAM with every sensor. Additionally, the

SLAM method of building a map enables truthing in a much larger environment than

localization methods with like Vicon systems.

By demonstrating that common image sensors can be localized in an environment

based on relative positioning of other image sensors, this research had a significant

impact to the indoor navigation community. The methods, processes, and data can

be used as a foundation for more focused research projects involving SLAM, sensor

positioning, or autonomous navigation. These methods can be used in combination

with other methods and sensors to increase accuracy and enable projects that aren’t

currently feasible. For instance, if current low-cost cameras can be localized in large

indoor environments without setting up permanent infrastructure, then these methods

could be used for navigation of robotic swarms or arrays of sensors.

The independence of the mobile data collection and the geo-referencing stages

support a noteworthy application of this research. Namely, this method can be ap-

plied to determine camera position in environments that have never been properly

mapped or associated with calibrated imagery. If there is video or imagery data of a

specific event, along with some knowledge of the camera’s intrinsic parameters, the

geo-referencing and pose recovery can be performed afterward. This has resounding

implications in the Department of Defense as well as in public environments for events

that require physical reconstruction. For instance, imagery from bystanders and first

responders to fires, earthquakes, active shooter situations, and other emergencies can
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be used to determine locations of personnel and other points of interest.

5.4 Future Work

Equipment Changes.

There were several obstacles and issues with the equipment and its implementation

that presented themselves while executing the experiments. The most apparent was

the way that the odometry factor data was collected, but issues with the camera and

platform also deserve mentioning.

Gathering each odometry pose with the current ICP technique is far too noisy,

varying in accuracy by several meters just by varying the ICP parameters slightly.

This could be an artifact of the specific LIDAR sensor, or just a result of data disasso-

ciation when the ICP algorithm associates different places on a flat plane as being the

same point. The variance may be mitigated by making one of more of the following

changes:

1. Substitute ICP odometry for wheel movement measurements.

2. Add an inertial sensor to provide an initial estimate to help alleviate local

minimums.

3. Add side-facing ultrasonic range sensors to improve the side-to-side positioning

data.

4. increase LIDAR resolution or frame rate to negate data disassociation.

The panoramic camera used to create the geo-referenced imagery has a very low

sensor resolution, having an individual sensor resolution of 2MP. Additionally, the

legacy IEEE-1394b interface severely limits the bandwidth and therefore frame rate.

Switching to a different global-shutter camera that has a much higher resolution would
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improve the image feature matches in Experiment 4. A higher-resolution camera

would also improve the range and bearing estimation because the angular resolution

will also improve. Geo-located imagery could also be collected with non-spherical

or non-panoramic cameras if multiple cameras are synchronized or the hallways are

traversed in multiple passes with a single camera pointed at different angles for each

pass.

The LIDAR sensor, while adequate, was designed as an outdoor LIDAR for au-

tonomous vehicle navigation. Switching to a sensor designed specifically for indoor

use, with a shorter minimum range, would likely have a significantly different SLAM

result. One alternative that should be explored is the switch to a 2D LIDAR that

has either a much faster scan rate or a higher angular resolution. Finally, adding

additional compensation to the LIDAR data to correct for the distance traveled by

the sensor during each revolution may also improve the accuracy of the ICP algo-

rithm. One method for testing this improvement would be to perform each LIDAR

scan while the platform is stationary, only moving between frame measurements.

The platform design and its use likely introduced a significant amount of error.

First, the operator stands behind the platform to guide it, interfering with both the

LIDAR data and the camera images. Mounting the platform above the operator would

negate a majority of the interference, without impacting sensor height if the operator

is seated. This mobile platform design has appeared in other LIDAR navigation

projects, including Schwesinger’s warehouse navigation project [47].

Since the camera and LIDAR were not designed to be compatible, several hardware

trade-offs were made. Several of the aluminum pieces supporting the camera obstruct

some of the LIDAR signals. Also, the plate that the camera is attached to is very

large to avoid touching the LIDAR, but it blocks a portion of the camera images.

Switching to a camera and LIDAR combination that was specifically designed to
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work together would remove most of the obstructions.

The number of ArUco markers used was not analyzed. There may be some benefit

to accuracy by either increasing or decreasing the number of landmarks used in the

SLAM process. Since the ArUco marker dictionaries can cover thousands of unique

identifiers, many more features could be labeled with markers. In any case, their ease

of application and removal, coupled with their ability to identify non-ambiguous loop

closures, makes them a good choice.

The mobile camera images were collected using standard settings on sensors that

are several years old. Testing different combinations of framerate, resolution, and

sensor sensitivity may improve the image results. Although the cameras used repre-

sent a wide range of commercially available sensors, testing additional sensors with

different features may be warranted.

Code Optimization.

This thesis used different programming languages for subsections of each problem.

For instance, Python 3.6 was used to run openCV, while running ICP and plotting

data was done in MATLAB 18b. Additionally, the LIDAR and camera data was

initially processed with proprietary software. Although this was faster to develop, it

is slower to execute and more confusing. Ideally, all the program functions would be

merged into a common programming language. This language would most likely be

C++, since openCV, GTSAM, and ICP are already supoorted. The end result would

be a unified code structure where images, LIDAR data, and noise characteristics are

passed as inputs, and images with position and orientation are passed as outputs.

The image-based range estimation method may be too slow if the SLAM solution

needs to operate in real time. Although using the Rational 1-2 model has the lowest

RMSE, the Power 2 or Power 1 models would result in a more computationally efficient
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range estimation function. The 5% to 15% increase in RMSE may be worth the faster

speed.

Another improvement would be to make the localization stage easier to use. The

process of matching images to the high SWAP-C SLAM results should be optimized

and compiled into a stand-alone phone or computer application. This would allow

for localization of a wider range of cameras and be available to a larger set of users.

Machine Learning Approach.

This research used a RANSAC approach to find geo-referenced images with the

most data in common with the test data as possible. Another approach to matching

would be to use machine learning to detect and match unique frames. Machine

learning may find patterns and matches faster or better than the RANSAC approuch.

UcoSLAM.

UcoSLAM is a library for Simultaneous Localization and Mapping using matched

keypoints between frames. This is an extension of SPM-SLAM [38], with the addition

of optical odometry using KeyPoints. It is able to operate with monocular cameras,

stereo cameras, or RGB-D cameras. It uses frame-to-frame keypoint matching to

determine odometry, combined with the ArUco library for detecting ArUco markers,

which can be placed in the environment to improve tracking. It has many features

that make it an interesting option for future work:

1. SLAM solutions can be processed in real-time.

2. Includes a graphical user interface for processing videos, visualizing maps, and

calibrating cameras.

3. Save and load the generated maps.
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4. Using ArUco markers enhances the initial trajectory estimates and provide loop-

closures.

5. Using ArUco markers allows for estimating the map scale from monocular cam-

eras.

6. A arallelized KeyPoint detector improves tracking speed.

7. Operates on Windows, Linux and Android.
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Appendix A. ArUco Marker To Bearing and Range Factor
Script

function keyframes = calcKeyframes(centerMin,frames,threshold,plotEnable,marker)

% This function returns the key frames, images likely to have the optimal

% landmark data, from a list of the frames, the distance from the center of

% the marker to the center of the image, and the threshold value to allow

% for landmark re-visits

% Find out where the distance is within threshold.

nonZeroElements = centerMin < threshold; % Logical vector of 0’s and 1’s

% Find out indexes where it goes from 0 to 1 or 1 to 0.

diffPattern = diff(nonZeroElements);

% Find out where every subset starts and stops.

subsetStarts = strfind(diffPattern, 1);

subsetEnds = strfind(diffPattern, -1);

% Loop through all humps extracting each segment into a cell

for subset = 1 : length(subsetEnds)

indexRange = subsetStarts(subset) : subsetEnds(subset);

data(subset).subset = [indexRange;centerMin(indexRange)];

[M(subset),I(subset)] = min(centerMin(indexRange));

%data(subset).minFrame = square_data(frames(I(subset))).framenumber;

end

% return

for k = 1:size(data,2)

keyframes(k) = frames(data(k).subset(1,I(k)));

end

% Should this function return plots?
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if plotEnable == 1

% Plot frame centers, with keyframes

figure()

%plot(frames,centerMin, ’bo-’)

hold on

for j = 1:size(data,2)

plot(frames(data(j).subset(1,:)),data(j).subset(2,:),’bo-’)

end

grid on

% Give a name to the title bar.

set(gcf, ’Name’, num2str(marker), ’NumberTitle’, ’Off’)

% Show selected keyframes:

for k = 1:size(keyframes,2)

scatter(keyframes(k),data(k).subset(2,I(k)),40,’r’,’filled’)

end

end

end
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Appendix B. GTSAM Script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SLAM USING GTSAM

%

% AIR FORCE INSTITUTE OF TECHNOLOGY

% ---------------------------------

%

% Author: Capt David Beargie

%

% ---------------------------------

%

% GTSAM Copyright 2010, Georgia Tech Research Corporation,

% Atlanta, Georgia 30332-0415

% All Rights Reserved

% GTSAM Authors: Frank Dellaert, et al.

% See LICENSE for the license information

%

% Factors used:

% -- Bearing and Range Factors

% -- BetweenFactorPose2 Odometry Factors

% -- Priors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% MATLAB Setup

clc

close all
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clear

import gtsam.*

%% Load Data

load(’C:\Users\User\odometryData.mat’);

load(’C:\Users\User\LandmarkData.mat’);

load(’C:\Users\User\bearingRangeFactors.mat’);

% make Deltas

[DeltaDcm,DeltaP] = RetrieveDeltas(dcmTotal,S);

% rotate odometry to global reference:

[absoluteDcm_test,absoluteP_test] = IntegrateDeltas([1,0,0;0,-1,0;0,0,-1],S(:,1),DeltaDcm,DeltaP);

for make_pose=1:size(DeltaP,2)

delta_rpy = DcmToRpy(DeltaDcm(:,:,make_pose));

delta_poses(make_pose,:) = [DeltaP(1,make_pose),DeltaP(2,make_pose),delta_rpy(3)];

end

for make_pose=1:size(dcmTotal,3)

absolute_rpy(:,make_pose) = DcmToRpy(dcmTotal(:,:,make_pose));

end

% Initial starting location and orientation

initial_pose = [0.0,1.2,0.0];

% create path from absolute poses
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absolute_poses = [S(1:2,:)’,absolute_rpy(3,:)’];

%% Create keys for variables

for p_keys = 1:size(delta_poses,1)

i(p_keys) = symbol(’x’,p_keys);

end

for lm_keys = 1:size(Landmarks_m,1)

j(lm_keys) = symbol(’l’,lm_keys);

end

%% Create graph container and add factors to it

fg = NonlinearFactorGraph;

%% Add starting prior

priorMean = Pose2(0.0,1.2,0.0); % prior at origin

priorNoise = noiseModel.Diagonal.Sigmas([0.025; 0.025; deg2rad(1)]);

fg.add(PriorFactorPose2(i(1), priorMean, priorNoise));

%% Add odometry factors

odometryNoise = noiseModel.Diagonal.Sigmas([0.15; 0.15; deg2rad(0.5)]);

for odometry = 1:(size(delta_poses,1)-1)

fg.add(BetweenFactorPose2(i(odometry), i(odometry+1), ...

Pose2(delta_poses(odometry,1)+0.0*randn(),delta_poses(odometry,2)+0.0*randn(),delta_poses(odometry,3)+0.0*pi/180*randn()), odometryNoise));

end

%% Add bearing/range measurement factors
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brNoise = noiseModel.Diagonal.Sigmas([deg2rad(0.005); 0.2]);

for markers = 1:size(outputFactor,2)

for add_BR = 1:size(outputFactor(markers).pose,2)

fg.add(BearingRangeFactor2D(i(outputFactor(markers).pose(add_BR)),...

j(markers), ...

Rot2(outputFactor(markers).bearing(add_BR)),...

outputFactor(markers).range(add_BR), ...

brNoise));

end

end

%% Add Landmark Priors

LmPriorNoise = noiseModel.Diagonal.Sigmas([0.25; 0.25]);

for lm = 1:size(Landmarks_m,1)

fg.add(PriorFactorPoint2(j(lm), Point2(Landmarks_m(lm,1),Landmarks_m(lm,2)), LmPriorNoise));

end

%% Create Initial Guesses

initialEstimate = Values;

% initialize poses with some noise

init_noise = 0;

for init_pose=1:size(delta_poses,1)

initialEstimate.insert(i(init_pose),Pose2(absolute_poses(init_pose,1)+0.00*randn(),absolute_poses(init_pose,2)+0.0*randn(),absolute_poses(init_pose,3)+0.0*pi/180*randn()));

end

100



%initialize landmarks

for init_lm=1:size(Landmarks_m,1)

initialEstimate.insert(j(init_lm),Point2(...

Landmarks_m(init_lm,1), ...

Landmarks_m(init_lm,2)));

end

% print initial estimate

initialEstimate.print(sprintf(’\nInitial estimate:\n’));

%% Optimize using Levenberg-Marquardt optimization

optimizer = LevenbergMarquardtOptimizer(fg, initialEstimate);

result = optimizer.optimizeSafely();

% print result

result.print(sprintf(’\nFinal result:\n’));

%% Plot Covariance Ellipses

% Calculate marginals

InitialMarginals = Marginals(fg, initialEstimate);

marginals = Marginals(fg, result);

figure()

% Plot initial estimate trajectory

plot2DTrajectory(initialEstimate, ’k’, InitialMarginals);

% Plot initial estimate of landmarks

101



plot2DPoints(initialEstimate, ’c’, InitialMarginals);

figure()

% Plot result trajectory

plot2DTrajectory(result, ’k’, marginals);

% Plot result landmarks

plot2DPoints(result, ’c’, marginals);

%% END
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