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Abstract 

Radiofrequency (RF) interference threatens the functionality of systems that increasingly 

underpin the daily function of modern society. In recent years there have been multiple 

incidents of intentional RF spectrum denial using terrestrial interference sources. Because 

RF based systems are used in safety-of-life applications in both military and civilian 

contexts, there is need for systems that can quickly locate these interference sources. In 

order to meet this need, the Air Force Research Laboratory Weapons Directorate is 

sponsoring the following research to support systems that will be able to quickly 

geolocate RF interferers using passive angle-of-arrival estimation to triangulate 

interference sources. 

 

This research studies the performance of angle-of arrival (AoA) estimation algorithms for 

an existing uniform linear antenna array. Four algorithms are presented, they are phase-

shift beamforming, Capon or Minimum Variance Distortionless Response (MVDR) 

beamforming, the Multiple Signal Identification and Classification (MUSIC) algorithm, 

and one instantiation of a Maximum Likelihood Estimation (MLE) algorithm. A 

modeling and simulation environment using MATLAB™ is developed and the 

performance of each algorithm is simulated as implemented on a uniform linear array. 

Performance is characterized under various non-ideal conditions.  
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Based on the results of the performance study and a computational complexity analysis of 

the four algorithms, a hybridized AoA estimation algorithm is recommended as an 

optimal solution for the given sensor and mission.
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PERFORMANCE ANALYSIS OF ANGLE-OF-ARRIVAL ALGORITHMS 

APPLIED TO RADIOFREQUENCY INTERFERENCE DIRECTION FINDING 
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I. Introduction 

Angle-of-Arrival (AoA) measurement of radiofrequency (RF) signal sources has many 

applications that include geolocation of interference sources, generation of jamming 

strobes, track-on-jamming applications for weapons, optimization of smart antennas in 

communication networks, and passive target tracking [1] [2] [3]. This thesis focuses on 

azimuthal AoA estimation to enable geolocation of interference sources; however, the 

AoA measurement techniques and algorithms studied in this thesis are relevant and 

applicable to the full symphony of AoA applications. 

RF systems serve the modern world through a broad array of applications including radar, 

navigation, internet connectivity and other communications networks. In the future self-

driving cars and high speed wireless 5G networks will almost certainly increase our 

dependency on RF systems for everyday productivity as well as safety of life applications.    

The successful proliferation of RF systems is undermined by their fragility. Because RF 

systems are almost always constrained by the power available to them and their transmit 

powers are carefully regulated by bodies such as the Feder Communications Commission 

[4], many RF systems can be denied through relatively accessible low-power interference 

systems [5] [6] [7] [8]. Given the importance of RF systems it is vitally important to 

protect the availability of the electromagnetic spectrum. One method to protect critical RF 

systems is the prompt detection and attribution of interferers using AoA-based 

geolocation.  

This thesis studies the capability of AoA algorithms to detect RF interferers and determine 

their AoA using a uniform linear array (ULA). This thesis is organized as follows: 
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 Section II develops the concept of geolocation of interference sources using 

AoA, and reviews the foundational theory behind phase-based AoA estimation. 

 Section III explains the modeling and simulation (M&S) environment used in 

this thesis, presents the four AoA algorithms that are studied, and compares the 

computational complexity of each algorithm. 

 Section IV explains the experiments and presents the results of this study. 

 Section V ranks the performance of each technique in each test, briefly 

comments on the most significant findings, presents a hybridized algorithm 

tailored to the antenna hardware, and recommends AoA algorithms that are 

best suited for the detection of RF interferers in specific applications.  
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II. Background 

One method for locating radiofrequency (RF) interferers is geolocation based on 

measuring the angle-of-arrival (AoA) of the interference sources. AoA-based geolocation 

uses multiple sensors to generate lines of bearing from known sensor locations to the 

unknown location of the interference source. These lines of bearing intersect at the 

location of an interference source. This thesis focuses on direction finding in azimuth 

only. However, all of the techniques studied in this effort can be extended to elevation 

given the appropriate sensors. Figure 1 shows a simple example where two AoA sensors 

generate AoA measurements, 𝜃1 and 𝜃2, that are used to triangulate a single interference 

source.  
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Figure 1. Interference Source Triangulated by Two AoA Sensors 

To accurately locate the interference source, precise measurement of AoA at each sensor 

is critical. For this effort the AoA is measured using a uniform linear array (ULA). A ULA 

is an antenna that is composed of multiple elements that are uniformly spaced at a known 

distance from one another. The foundational concepts behind ULA-based AoA estimation 

are provided in Section 2.1. 

2.1 Uniform Linear Array-based Angle of Arrival Estimation 

Classical array-based AoA methods are the straightforward applications of foundational 

antenna array concepts such as beam steering and null steering to detect energy sources in 

the environment [9]. More recently subspace or “super-resolution” methods have 

improved on these classical methods by capitalizing on digital system architectures and 

advanced signal processing  [10]. 
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Within this effort, four array-based AoA algorithms are employed: 

 The Phase-shift Beamformer (PSBF), which is a straightforward application of 

array beam steering to the AoA problem.  

 The Capon or Minimum Variance Distortionless Response (MVDR) 

beamformer, which measures the environment by sweeping a destructive 

interference pattern across the field of regard and measuring the decrease in 

signal level.  

 The Multiple Signal Classification (MUSIC) algorithm, which is a subspace 

technique based on deconstructing the field of regard into an orthonormal 

eigenbasis, separating the noise subspace from the signal subspace, and 

sweeping these enhanced orthogonal nulls across the field of regard. 

 The Maximum Likelihood Estimation (MLE) algorithm, which for an N-

element array will iteratively search the field of regard with N-1 beams in an 

attempt to maximize the amount of energy received by the sensor. 

In Section 3.2 each algorithm is briefly derived and in Section 3.3 their computational 

costs are compared. 

When an interference source is present in the far field, a plane wave is incident on the 

ULA. Figure 2 depicts a six element ULA with elements spaced a distance d apart and a 

planewave with AoA of 𝜃. 
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Figure 2. Plane Wave Incident on a Six Element ULA 

Let the planewave in Figure 2 be a simple tone with frequency 𝑓𝑐 = 1.575 GHz and 

amplitude 𝐴. Then the signal is described in (1) where 𝜙 is some random incident phase 

with respect to Element 1. 

 

𝑠(𝑡) =
𝐴

√(2)
𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙)     (1) 

 

Next, consider the time of arrival of the plane wave at the elements of the ULA pictured in 

Figure 2. Let the time of arrival at element one be zero; then the time of arrival at the 𝑁𝑡ℎ 

element, 𝜏𝑁 , is given by (2) where 𝑐 is the speed of light and 𝜃 is the AoA. 
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𝜏𝑁 =
𝑑 sin(𝜃)(𝑁−1)

c
      (2) 

 

Recalling the signal in (1), and combining with (2) gives the signal received at the 𝑁𝑡ℎ 

element, 𝑠𝑁(𝑡) according to (3). 

 

𝑠𝑁(𝑡) =
𝐴

√(2)
𝑐𝑜𝑠(2𝜋𝑓𝑐(𝑡 − 𝜏𝑁) + 𝜙)   (3) 

 

Considering the signal at each element and arranging them in an [𝑁 × 1] matrix gives the 

array response at RF as shown in (4). 

 

[𝑆𝐴𝑟𝑟𝑎𝑦(𝑡)] =  

[
 
 
 
 
 

𝐴

√(2)
𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙)

𝐴

√(2)
𝑐𝑜𝑠(2𝜋𝑓𝑐(𝑡 − 𝜏2) + 𝜙)

…
𝐴

√(2)
𝑐𝑜𝑠(2𝜋𝑓𝑐(𝑡 − 𝜏𝑁) + 𝜙)

]
 
 
 
 
 

   (4) 

 

To go any further we must define a receiver architecture for the sensor. For this effort the 

parameters of the simulation are set to be consistent with the antenna hardware that the 

research supports. The receive architecture uses a single down-conversion step with a 

mixing frequency of 1.565 GHz and an analog to digital converter (ADC) with a 65 MHz 

sampling rate. The band of interest is 1.575 ± .010 GHz; The number of samples is 1024; 

the sampling rate is 65 MHz; the intermediate frequency (IF) is 10 MHz; and each AoA 

sensor is a ULA with N=6 antenna elements that are spaced 94 mm apart. The hardware 

uses a block processing method, thus the length of real-time data processed for each AoA 
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solution is 
1024 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

65 𝑀𝐻𝑧
 =  15.75 𝜇𝑠. Figure 3 illustrates the modeled ULA, and Figure 4 

shows the receiver architecture. 

 

 

Figure 3. 6-Element ULA with 94 mm Spacing. 

 

Figure 4. Array Receiver Architecture 

After down-conversion let 𝜙 = 0 and 𝑡 = 0, then the signal sampled from each element is 

given by (5).  

 

[𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑑(𝑡)] =  [

𝐴𝑒(0)

𝐴𝑒(𝑖2𝜋𝑓𝐿1𝜏2)

…
𝐴𝑒(𝑖2𝜋𝑓𝐿1𝜏𝑁)

]    (5) 
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Finally, if we let the signal amplitude equal unity, and recall (2) to express the time delays 

across the array as a function of the AoA of the plane wave, 𝜃 from Figure 2, we derive 

the ULA’s response to a unit amplitude plane-wave as a function of the AoA of the wave; 

this is the calculated array manifold, 𝐴(𝜃). 

 

𝐴(𝜃) =  

[
 
 
 
 

𝑒(0)

𝑒(
𝑖2𝜋𝑓𝑐𝑑𝑠𝑖𝑛(𝜃)

𝑐
)

…

𝑒(
𝑖2𝜋𝑓𝑐𝑑(𝑁−1) sin(𝜃)

𝑐
)]
 
 
 
 

      (6) 

 

Often is it convenient to define the array manifold relative to the physical center of the 

array yielding (7) where 𝑑𝑛 is the distance of the 𝑛𝑡ℎ  element from the geometric center of 

the array.   

 

𝐴(𝜃) =  

[
 
 
 
 𝑒

(
𝑖2𝜋𝑓𝑐𝑑1𝑠𝑖𝑛(𝜃)

𝑐
)

𝑒(
𝑖2𝜋𝑓𝑐𝑑2𝑠𝑖𝑛(𝜃)

𝑐
)

…

𝑒(
𝑖2𝜋𝑓𝑐𝑑𝑁 sin(𝜃)

𝑐
)]
 
 
 
 

      (7) 

 

All of the algorithms studied in this effort use this calculated ULA manifold as hypotheses 

for the AoA of incoming signals and measure the AoA by determining the commonality 

between the measured signal at the ULA and this expected array response. 
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2.2 AoA Estimation Background 

Many different methods of establishing AoA have been developed, this section briefly 

describes the most prevalent algorithms in each class of AoA estimation techniques. The 

techniques can be broadly classified into four main categories: 

 Physical Antenna Rotation 

 Beamforming Methods 

 Subspace Methods 

 Maximum Likelihood Methods 

 The first attempts at measuring AoA involved exploitation of directional antennas, most 

commonly relying on physical rotation of a directional, high-gain antenna to register an 

increase in power when pointed at a signal source  [11].  Advances on this concept 

included monopulse direction finding which uses multiple antenna elements to improve on 

the conventional approach by comparing the phase response and the amplitude sum and 

difference measurements of identical elements. The exact time of invention for monopulse 

direction finding is unknown, but it is believed to have been developed sometime before 

or during World War II.  Monopulse direction finding is sometimes still used but its 

effectiveness has remained reliant on physical rotation of the antenna over the field of 

view thus limiting its effectiveness in AoA applications [12].  

The advent of phased array radars made direction finding based on beam steering from a 

fixed antenna a possibility. Because the beams could be steered electronically, array-based 

sensing can be quickly swept over the field of view by adjusting the phase-shifts across 

the array. Beamforming using an array can correctly be interpreted as a spatial realization 
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of classic Fourier-based spectral analysis [3]. More recently software defined radios have 

enabled simultaneous beamforming in many directions with resolution limited only by 

computational burden. Two methods of beamforming are most often used for AoA 

estimation they are: the conventional phase-shift (or Bartlett) beamformer (PSBF), which 

maximizes the energy from the sum of the array elements at a given AoA, and the Capon 

or minimum variance distortionless response (MVDR) beamformer [9] which minimizes 

the energy from the sum of the array elements at a given AoA. As with Fourier spectral 

analysis there is an infinite number of variations on these basic themes which can improve 

some performance criteria at the expense of others [13] [14]. Beamforming performance 

relies heavily on the physical footprint of the antenna and the number of elements in the 

antenna array. For example, the PSBF method is dependent on the size of the array to 

produce narrow beams, in practice antenna must be several beamwidths long to achieve a 

sufficient angular resolution, additionally the elements of the array must be spaced no 

farther apart than 
𝜆

2
 to avoid the grating lobes, which are the spatial analog to aliasing. As a 

result, the desired angular resolution of the AoA system is a direct result of antenna size 

and the number of elements. Thus, performance is directly tied to the size and cost of the 

system. 

The most commonly used improvement to beamforming methods are subspace methods, 

often used subspace methods include Multiple Signal Identification and Classification 

(MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques 

(ESPIRIT) [15] [10]. Designed for use on uniform linear arrays (ULAs), these techniques 

rely on decomposition of the signal environment into a covariance matrix. Subspace 

techniques have been found to have asymptotically efficient performance when the 
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number of samples is large [16]. The immediate improvement offered by subspace 

methods is very fine angular resolution. For this reason, subspace methods are often 

referred to as “super-resolution” techniques. Additionally, they offer some decoupling of 

the algorithm performance from the size of the array. For example, MUSIC does not 

require large antennas, in practice MUSIC performance is tied more closely to calibration 

of the array manifold than the absolute size of the antenna, enabling fine angular 

resolution from smaller, potentially less expensive apertures.  

The primary drawback to subspace methods is that they require a relatively large number 

of samples and a sufficient signal to noise ratio (SNR) to realize very fine angular 

resolutions. When the best-possible performance is required with limited sampling 

information or low SNR precludes the use of subspace methods maximum likelihood 

estimation (MLE), methods may be used. MLE involves iteratively search through the 

data to find the most likely solutions. While exhaustive MLE methods have been shown to 

be the most accurate AoA estimation method they are not commonly used due to the 

relatively restricted conditions where they offer benefit over subspace methods and 

because of their increased computational burden [16]. 

2.3 The Cramer-Rao Lower Bound on AoA Estimation Errors 

The well-known Cramer-Rao bound (CRB), given in (8), has established the theoretical 

lower bound for the variance of AoA errors given a specific antenna, a number of samples, 

and a SNR [16] [17] [18]. The CRB applied to the AoA problem is given in (9) where 𝐿 is 

the number of samples processed in a block by the algorithm, SNR is the linear ratio of 
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signal to noise power for each of the samples, 𝐴(𝜃) is the array manifold given in (7), and 

𝐴̇(𝜃)is the derivative of the array manifold with respect to 𝜃. 

 

𝐶𝑅𝐵 =
1

𝐿 𝑆𝑁𝑅
+|𝐴(𝜃)|2

2𝐿 𝑆𝑁𝑅 |𝐴(𝜃)|2 |𝐴̇(𝜃)|
2      (8) 

 

The CRB is commonly simplified for the case where 𝐿 𝑆𝑁𝑅 ≫  1, yielding (9). 

 

𝐶𝑅𝐵 ≈
1

2 𝐿 𝑆𝑁𝑅 |𝐴̇(𝜃)|
2                                                          (9) 

 

The value for |𝐴̇(𝜃)|
2
 for the N-element ULA with array manifold described by (7) is 

given in (10). 

 

|𝐴̇(𝜃)|
2

= 
4𝜋2𝑓𝐿1

2 cos2(𝜃) ∑ (𝑑𝑛)2𝑁
𝑛=1      

𝑐2       (10) 

 

Applying (10) to (9) yields the commonly used estimation of the CRB for an N-element 

ULA. 

 

𝐶𝑅𝐵 ≈
𝑐2

8𝜋2𝐿 𝑆𝑁𝑅 𝑓𝐿1
2 cos2(𝜃) ∑ (𝑑𝑛)2𝑁

𝑛=1      
   (11) 
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2.4 AoA Performance Analysis 

Today it is commonly suggested that sub-degree angular resolution of interference sources 

is achievable in real world applications  [19] [20] [21] [22], and indeed the CRB seems 

indicate, provided sufficient samples or SNR, that infinitely precise AoA estimation 

accuracy is achievable. However, it is important to note that the CRB is a theoretical lower 

bound on error levels and not necessarily a prediction of performance.  

The performance of AoA estimation algorithms in real world systems is a complex topic, 

and choosing an algorithmic approach must be done carefully. The computational 

complexity and the performance characteristics of AoA estimation algorithms varies 

depending on the environment and hardware used. There exists a substantial body of work 

to characterize the performance of AoA estimators, particularly MUSIC and MLE [16] 

[23] [24] [25]. It has been noted that published literature that compares algorithm 

performance in challenging environments is scarce [16], and that in some cases the 

performance of subspace algorithms may be overstated. There is some body of work that 

directly compares, for a common set of hardware, the performance of subspace and 

beamforming techniques [26] [27] [28]. However, such studies are limited in scope with 

regard to the hardware considered and the error sources modeled.   

This research examines the limitations of array-based AoA algorithm performance and the 

degradation of performance due to non-ideal, real-world considerations for an existing 

ULA. Specific sources of error studied in this thesis include: 

 Cluttered signal environments 

 Wideband signals 

 Closely spaced signal sources 
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 Spatially-diverse, phase-coherent sources 

 Antenna manufacturing errors 

 Phase calibration errors 

 Low SNR 

 Strong multipath interferers 

 Algorithmic limitations to instantaneous dynamic range 

By considering algorithm performance in the presence of each of these errors, more 

informed decisions can be made for the development of AoA systems and realistic 

performance goals can be set. 
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III. Methodology 

The investigative method of this research is primarily software simulation. When 

available, data collections using the physical equipment shown in Section II are injected 

into the simulation to validate the simulation environment.  

To study angle-of-arrival (AoA) estimation algorithm performance, a novel simulation 

environment is developed using MATLAB™. This simulation environment uses 

continuous-time signal generation models and a first-order physics engine to simulate 

signal and antenna interaction in three-dimensional space and time. 

Given the location and sampling times of each receive antenna, as well as the location of 

each signal source, the simulator generates the RF signals from each source received by 

the antenna. After the RF samples are generated, each antenna’s receive chain is modeled 

from the antenna through frequency down-conversion, filtering, and signal digitization. 

After digitization, each AoA algorithm operates on a common data set and the results are 

reported.  

The remainder of the section is organized as follows: Section 3.1 provides an explanation 

of the modeling and simulation environment, Section 3.2 describes four AoA estimation 

algorithms, and Section 3.3 briefly compares the computational complexity of each 

algorithm.  

3.1 Simulation Environment Methodology 

To study the performance of AoA algorithms, a modeling and simulation (M&S) 

environment is developed. This section describes this environment and details the specific 

instantiation of the environment to support AoA algorithm trade studies. 
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3.1.1 General 

To simulate the AoA algorithms it is necessary to simulate electromagnetic waves. All of 

the AoA methods studied ultimately rely on using relative phase differences between the 

elements of a uniform linear array (ULA). Therefore, it is necessary simulate amplitude 

and phase information of all signals in the environment and to model a radiofrequency 

(RF) receiver including signal reception, mixing, filtering and digitization of the signals 

prior to presenting the measured information to an AoA algorithm. The simulator 

developed for this effort fulfills all of the stated goals; however, it should be noted that it 

does not take into effect various coupling effects between antenna elements or other 

second-order phenomena that would be present in a physical system. 

3.1.2 Antenna Definition 

Each antenna is defined according to its role in the simulation, these roles are:  

 Transmission sources 

 Reception antennas 

 Multipath sources  

Antennas in the simulation environment are treated as ideal isotropic sources and 

receivers. Every antenna is declared as a point in three-dimensional space - the antenna 

phase center. For example, the antenna from Figure 4 is modeled by defining six receive 

antennas along a straight line and that are spaced 94 mm apart. 

Additional parameters are defined according to the antenna’s role in the simulation. 

Transmission antennas are specified with a signal amplitude and a complex signal 

generation function that is continuous for all time. Every signal generation function must 
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use time as an input and output a complex signal at an RF frequency. For example, (12) 

shows a signal generation function, [S], for a simple tone with amplitude A, a center 

frequency, 𝑓𝑐, and an input timing vector [T] that represents the instants in time where the 

signal is sampled. If the simulation uses L samples, then [T] and [S] will be [L×1] vectors. 

 

[𝑆] =  𝐴𝑒𝑖2𝜋𝑓𝑐[𝑇]     (12) 

 

Multipath sources are modeled as a static transmission source located at the point where 

the incident signal will reflect. A power modulation factor and a fixed, randomly 

generated phase shift are also defined for a multipath source. The multipath source inherits 

the signal generation function of its incident source. Equation (13) gives the signal 

generation function of a multipath source that is reflecting from the same signal source 

that is defined in (12), where 𝑀 is the signal generation function of the multipath element, 

𝑃 is the amplitude modulation factor that is typically less than one, 𝜙 is a randomly 

generated - static phase-shift between 0 and 2𝜋, and 𝜏 represents the delay of the input 

timing vector that accounts for the extra distance that the reflected signal had to travel 

with respect to the direct signal. If [𝑇] is an [𝐿 × 1] vector then [𝑀] will also be a [𝐿 × 1] 

vector. 

 

[𝑀] = 𝑃𝐴𝑒𝑖2𝜋𝑓𝑐([𝑇]−𝜏)𝑒𝑖𝜙     (13) 
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3.1.3 Signal Generation and Reception 

This section will detail how the M&S environment simulates sample-level data with 

computational efficiency. Figure 5 shows a simple case where two sources and one 

receive antenna are present in the environment; the discussion in this section steps through 

the simulation process for this example. 

 

Figure 5. Signal Generation and Reception Example Scenario 

To achieve computationally efficient simulation of RF signals, the simulator begins by 

generating a time sampling vector, [𝑇], for each source and each receive antenna. These 

times begin at zero and increase according to a sampling rate, 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 = 
1

𝑓𝑠𝑎𝑚𝑝𝑙𝑒
, that is 

defined at the outset of the simulation according to the sampling rate of the analog to 
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digital converter (ADC). The general time sampling vector, [𝑇], for 𝐿 samples is shown in 

(14). 

 

[𝑇] = [0, 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 , 2𝑡𝑠𝑎𝑚𝑝𝑙𝑒 , … , (𝐿 − 1)𝑡𝑠𝑎𝑚𝑝𝑙𝑒]
𝑇
   (14) 

 

Next, the distances between each transmission source and each receiver location are 

calculated, divided by the speed of light, and subtracted from the timing vector; this 

process yields a vector of times for each transmission source for every receive element. 

For M transmission sources and N receive antennas M × N timing vectors are generated; 

these vectors have the naming convention: [𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,𝑠𝑜𝑢𝑟𝑐𝑒].  Equations (15-16) show the 

timing vectors for each transmission source in the example of Figure 5 where c is the 

speed of light. 

 

[𝑇1,1] = [𝑇] − Δ𝑃1,1/𝑐    (15) 

 

[𝑇1,2] = [𝑇] − Δ𝑃1,2/𝑐    (16) 

 

Once the timing vectors are calculated, the vectors that correspond to a given source are 

found according to the signal generation function that was defined for that source in the 

antenna definition. It must be a complex function that is continuous for all time. Let 𝑆1 

and 𝑆2 be the complex signal generation functions that have been defined for sources one 

and two, respectively. Also define the complex sample vectors that are generated by each 

source and are received by the receive antenna as [𝑺𝟏,𝟏] and [𝑺𝟏,𝟐] according to the 

convention: [𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓,   𝒔𝒐𝒖𝒓𝒄𝒆] = 𝑆𝑠𝑜𝑢𝑟𝑐𝑒[𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,   𝑠𝑜𝑢𝑟𝑐𝑒]; then the sample vectors for the 

receiver are calculated as shown in (17-18). 
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[𝑺𝟏,𝟏] = 𝑆1[𝑇1,1]     (17) 

 

[𝑺𝟏,𝟐] = 𝑆2[𝑇1,2]     (18) 

 

Finally, the sample vector received at the antenna is the sum of these two vectors 

according to the convention [𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓]. Therefore, the RF in-phase and quadrature sample 

data at the receive antenna is given by (19). 

 

[𝑺𝟏] = [𝑺𝟏,𝟏] + [𝑺𝟏,𝟐]     (19)  

 

This process is repeated for each receive antenna in the environment, Figure 6 shows the 

flow chart that is generalized to show the calculation of the RF sample data for M 

transmission sources and N receive antennas. 

 

Figure 6. Signal Generation Algorithm for M Sources and N Receive Antennas 

These RF samples can be manipulated for any desired application. For this effort the 

samples are downconverted to an intermediate frequency (IF) of 10 MHz and then low-

pass filtered before being sampled. 
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Figure 7. Receive Chain for a Single Antenna Element 

When multiple receiver locations are grouped into a receive array these vectors can be 

stored as an [𝑁 ×  𝐿] sampling matrix where N is the number of receive elements and L is 

the number of samples. For this research the sampling matrix, (20), is [6 𝑥 1024], and is 

assumed to be zero-mean. 

 

 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 = [

𝑥1,1 ⋯ 𝑥1,𝐿

⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝐿

]     (20) 

 

The sampling matrix can be modified to model thermal noise if desired, see (39) for the 

noise model in this effort. After the sampling matrix is obtained, the sampling covariance 

matrix, 𝐶, is estimated as follows: 

 

𝐶 = 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝐻      (21) 

 

The covariance matrix is a complex, symmetric [𝑁 ×  𝑁] matrix constructed of all of the 

samples in the sampling matrix. It has been shown that more samples can improve AoA 

performance and that the lower bound on the standard deviation of AoA errors from any 

unbiased AoA algorithm is inversely related to the square root of the number of samples 

used [17] [18].  
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3.2 Angle-of-Arrival Estimation Algorithms 

In this section four passive AoA algorithms are presented, and it is explained how each 

algorithm estimates the AoA of interference sources.  

3.2.1 Phase-shift Beam Forming 

The Phase-shift Beamformer (PSBF) is the most straight-forward method. It is described 

in (22), where 𝑃𝑃𝑆𝐵𝐹(𝜃) is the power output from the algorithm as a function of AoA, 

𝐴(𝜃) is the array manifold as a function of theta as calculated in (7), and 𝐶 is the 

estimated covariance matrix from (21). 

 

𝑃𝑃𝑆𝐵𝐹(𝜃) = 𝑎𝑏𝑠(𝐴(𝜃)H 𝐶 𝐴(θ))    (22) 

 

 For any given AoA, the samples of each element are phase-shifted to account for the 

difference in the time-of-arrival (ToA) for a plane-wave from that direction and are 

summed. If the phase-shifts are the inverse of the ToA-induced phase differences at the 

antenna elements, then the sum of the samples will be coherent. Therefore, each AoA in 

the field of regard (FOR) has a unique set of phase weights that can be treated as an AoA 

hypothesis. The PSBF applies each set of phase-shifts to the sampling covariance matrix 

to test each hypothesis. When a hypothesis closely matches the AoA of an interference 

source measurable peaks are produced, as shown in Figure 8. 



25 

 

Figure 8. PSBF Output for Sources at -26.6, 0.0, and 45.0 Degrees 

PSBF is the simplest method analyzed in this effort and has the lowest computational 

burden of any of the methods studied. Each angle hypothesis requires only two matrix 

multiplications to generate the output. In practice all angles in the FOR can be calculated 

in parallel which can further reduce computing time. 

3.2.2 Capon’s Beamformer 

Capon’s beamformer was originally proposed by J. Capon for applications in seismology, 

and is often called the Minimum Variance Distortionless Response (MVDR) beamformer 

[9]. Capon beamforming is described in (23), where 𝑃𝐶𝑎𝑝𝑜𝑛(𝜃) is the output of the 

beamformer as a function of the AoA hypothesis, 𝐴(𝜃) is the array manifold from (7), and 

𝐶−1 is the inverse of the estimated covariance matrix.  
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𝑃𝐶𝑎𝑝𝑜𝑛(𝜃) =  𝑎𝑏𝑠(𝐴(θ)H𝐶−1𝐴(𝜃))
−1

   (23) 

 

This method is derived by considering the angle hypothesis that will minimize the amount 

of energy entering into the receiver. To use Capon’s beamformer note that the covariance 

matrix must be invertible. This is generally the case so long as the covariance matrix 

estimate is based on a number of samples that is much larger than the size of the matrix. 

For the purposes of this study we can always assume the covariance matrix is invertible 

since 1024 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≫ 6 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. A derivation of the Capon beamformer is given 

below. 

For any given environment there exists an angle hypothesis that will minimize the energy 

received. Let b be a length N vector that represents the energy in the receiver from each 

receive element subject to phase-shifting from the angle hypothesis 𝐴(𝜃) that was derived 

in (7) that is also a length N vector. Then the antenna can be represented as the linear 

system: 

 

𝐶−1𝐴(𝜃) = 𝑏      (24) 

 

Then the least-squares minimization of the system is an angle hypothesis 𝐴(𝜃) that is a 

solution to: 

 

𝐶𝐻𝐶𝐴(𝜃) =  𝐶𝐻𝑏     (25) 

 

Since the covariance matrix, and therefore its Hermitian, is invertible this quickly reduces 

to: 
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𝐴(𝜃) = 𝐶−1𝑏     (26) 

 

To apply this result to the AoA problem, recall that entries of b are the samples at the 

individual antenna elements in the array. Therefore, when a plane wave is incident on the 

array for some 𝜃, and a real constant d: 

 

𝑏 = 𝑑𝐴(𝜃)̅̅ ̅̅ ̅̅      (27) 

 

For the AoA problem we can safely assume that the constant d is inconsequential to the 

result and can be set to unity, thus: 

 

𝑏 = 𝐴(𝜃)̅̅ ̅̅ ̅̅      (28) 

 

Next, consider the PSBF that is composed of these weights: 

 

𝑃(𝜃) = 𝑎𝑏𝑠 ((𝐶−1𝐴(𝜃)̅̅ ̅̅ ̅̅ )
𝐻
𝐶 𝐶−1𝐴(𝜃)̅̅ ̅̅ ̅̅ )   (29) 

 

= 𝑎𝑏𝑠( 𝐴(𝜃)̅̅ ̅̅ ̅̅ 𝐻(𝐶−1)𝐻𝐴(𝜃)̅̅ ̅̅ ̅̅ )    (30) 

 

=  𝑎𝑏𝑠 ( (𝐴(𝜃)̅̅ ̅̅ ̅̅ 𝐻(𝐶−1)𝐻𝐴(𝜃)̅̅ ̅̅ ̅̅ )
𝐻
)   (31) 

 

=  𝑎𝑏𝑠( 𝐴(𝜃)̅̅ ̅̅ ̅̅ 𝐻𝐶−1𝐴(𝜃)̅̅ ̅̅ ̅̅ )    (32) 

 
= 𝑎𝑏𝑠(𝐴(𝜃)𝐻𝐶−1𝐴(𝜃))    (33) 
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To be consistent with the convention that a measurement peak indicates a signal source, a 

constant is divided by the output of the beamformer, (34), yielding the Capon 

beamformer. 

 

𝑃𝐶𝑎𝑝𝑜𝑛(𝜃) =
1

𝑎𝑏𝑠(𝐴(θ)H𝐶−1𝐴(𝜃))

    (34) 

 

In more direct terms, Capon’s method works by projecting a hypothesis onto the inverse 

of the covariance matrix; this steers a destructive interference or “null” at the hypothesized 

location. When the null coincides with the direction of an energy source the power 

received dramatically decreases. To put this into common terms with PSBF and maintain 

the convention of a local maxima indicating the presence of an energy source, the inverse 

of the estimate is presented as a pseudo power. An example of the output of the Capon 

algorithm is shown in Figure 9.  



29 

 

Figure 9. Capon Output for Sources at -26.565, 0.0, and 45.0 Degrees 

The local maxima of this function are compared to a threshold and if they are large 

enough compared to the noise floor, they are considered legitimate detections. The Capon 

method yields much sharper peaks than the PSBF indicating improved potential for fine 

resolution of closely spaced sources. In practice, the angle hypotheses can be computed in 

parallel for increased computing speed. The drawback of the Capon beamformer relative 

to the PSBF is the inverse of the estimated covariance matrix must be computed. 

3.2.3 Multiple Signal Identification and Classification 

Multiple Signal Identification and Classification (MUSIC) was introduced as an array 

signal processing technique for finding AoA by R.O. Schmidt [10]. The MUSIC algorithm 

expands on the null-steering theme of the Capon beamformer by applying a singular value 

decomposition of the covariance matrix to separate it into an orthonormal basis of 
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eigenvectors and their associated eigenvalues. This process is described in (35) where the 

matrix U is a unitary matrix representing the orthonormal basis of eigenvectors and ∑ is a 

diagonal matrix containing the eigenvalues of the covariance matrix. 

 

𝑆𝑉𝐷(𝐶) = 𝑈∑𝑉𝐻 = 𝑈∑𝑈𝐻     (35) 

 

The matrix U can be partitioned to separate the signal subspace from the noise subspace. 

This partition is accomplished by examining the size of the eigenvalues and thresholding 

them against the established level of the noise floor. By establishing a threshold for the 

eigenvalues, the U matrix can be separated into a space that corresponds to the 

interference sources and a space that corresponds to background noise. The number of 

columns of 𝑈𝑠𝑖𝑔𝑛𝑎𝑙 also serves as an estimation of the number of signal sources present. 

 

𝑈 = [𝑈𝑠𝑖𝑔𝑛𝑎𝑙 , 𝑈𝑛𝑜𝑖𝑠𝑒]     (36) 

 

Finally, the MUSIC spectrum is formed by projecting each AoA hypothesis onto the noise 

subspace. When the beam approaches the area where the signal sources reside, the power 

received by the projection drops dramatically; in a noiseless environment it will approach 

zero. As with the Capon method the output of the MUSIC algorithm, given in (37), is 

inverted to create a sharp peak to indicate the presence of a signal source at a given angle 

𝜃.  

 

𝑃𝑀𝑈𝑆𝐼𝐶(𝜃) = 𝑎𝑏𝑠(
1

𝐴(𝜃)𝐻𝑈𝑛𝑜𝑖𝑠𝑒𝑈𝑛𝑜𝑖𝑠𝑒
𝐻 𝐴(𝜃)

)   (37) 
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An example of the output of the MUSIC algorithm is shown in Figure 10. 

 

Figure 10. MUSIC Algorithm with Sources at -26.65, 0.0, and 45 Degrees 

Relative to the Capon method, the MUSIC algorithm has a greater peak-to-null ratio and 

similarly sharp peaks which indicate capability for fine resolution of closely spaced 

sources. MUSIC as presented in this thesis involves some increased computational 

complexity over the Capon beamformer, it requires some increased logic to separate the 

signal and noise subspaces, and it requires one additional matrix multiplication. In practice 

the angle hypotheses can be computed in parallel, which may increase computing speed. 

3.2.4 Maximum Likelihood Estimation 

The Maximum Likelihood Estimation (MLE) algorithm is a straightforward concept. Any 

N-element array is capable of steering N-1 beams or nulls simultaneously [29]. MLE as 
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implemented in this study simultaneously steers N-1 beams to maximize the power 

received. This technique attempts to solve an N-1 dimensional optimization problem; it is 

an iterative process that will search the N-1 dimensional beamspace to maximize power. 

This research uses the alternating projection algorithm proposed by I. Ziskind and M. Wax 

as a computationally efficient way to handle the multidimensional optimization problem  

[30]. This method varies the solution in one dimension at a time finding the local 

maximum in that dimension. Each dimension is varied in this way until the local maxima 

for the solution is reached. Because of the iterative “hill climbing” nature of the algorithm, 

it may not find the global maximum and may instead settle on a local maximum. 

Therefore, intelligent initialization of the MLE algorithm is vital to finding the correct 

solution. For this effort, the algorithm was initialized by taking N-1 largest values 

produced by the output of the PSBF algorithm. Additionally, the practical resolution of the 

beams being used must be considered to avoid multiple beams settling on the strongest 

source and the algorithm becoming blind to weaker signal sources in the environment. A 

flow-chart description of the MLE alternating projection algorithm is shown in Figure 11. 
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Figure 11. MLE Alternating-Projection Algorithm Flowchart 

Where the matrix 𝐴Θ, given in (38), is a [𝑁 × (𝑁 − 1)] matrix with columns that 

represent the array manifold for a single beam directed at an angle 𝜃 as defined in (7). 

 

𝐴Θ = [𝐴(𝜃1), … , 𝐴(𝜃𝑁−1)]    (38) 

 

As an iterative algorithm, MLE is much more computationally complex than any of the 

others presented. Iteration continues until the solution converges below some established 

threshold. In practice, the number of iterations must be limited according to the constraints 
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of the implementation. For all the results in this research, the number of iterations is 

arbitrarily limited to ten. 

The output of the MLE algorithm is a list of angles that are most likely to have 

interference sources. As implemented, it does not deliver an estimate of the number of 

sources present in the environment but instead always searches for N-1 individual power 

sources. 

3.3 Algorithm Complexity Analysis 

While performance is the focus of this study it is valuable to assess the complexity of the 

solutions as context for comparing their performance. For comparison purposes the co-

variance matrix, which is computed in firmware in real-time, is neglected because it must 

be accomplished for all algorithms; for the same reason the function for finding the local 

maxima of the output of the AoA algorithm is also neglected. What is compared is the 

number of operations required to compute the output of the algorithm for a given angle. 

Also compared are setup operations; these being operations that must be accomplished 

before the solutions can be computed for each angle. Table 1 summarizes the complexity 

comparisons for the four algorithms based on implementation for a six element ULA. 

Operations are reported as complex floating-point operations. This analysis is only a direct 

comparison of complexity and does not consider possible optimization. For example, 

matrix inversion is counted as 𝑁3 operations when it may be less depending on the 

implementation and the size of the matrix. The MUSIC algorithm will vary slightly 

depending on the size of the noise subspace; this comparison shows a worst-case example 

where the noise subspace is large. 
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Table 1. Algorithm Complexity Comparison 

Algorithm 
Setup 
Operations 

Setup 
Operations 
per Solution 

Operations per θ 
Hypothesis 

# Operations 
per θ 
Hypothesis  

 

PSBF N/A N/A 
2 Matrix 
Multiplications 
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Capon 
1 Matrix 
Inversion 

216 
2 Matrix 
Multiplications, 
1 Division 

43  

      

MUSIC 

1 SVD, 
1 Matrix 
Multiplication, 
1 Thresholding  

402 
2 Matrix 
Multiplications, 
1 Division 

43  

      
MLE N/A N/A N/A 630 – 6300*  

 

To use this table consider using the MUSIC algorithm with a 1° resolution over a ±60° 

FOR. The number of setup operations is 402 and the number of operations for all 

hypothesis is 121 ×  43 = 5,203 , thus the total number of operations is 5,245. At finer 

resolutions, the number of setup operations becomes small compared to the total number 

of operations. For example, using MUSIC with .1° resolution over a ±60° FOR requires 

51,643 operations to calculate every hypothesis and 402 setup operation for a total of 

52,045 operations. 

Computationally, PSBF is the simplest algorithm requiring only two matrix 

multiplications. The Capon beamformer adds a single division for each angle and requires 

a matrix inversion prior to computation. The MUSIC algorithm requires the singular value 

decomposition, a matrix multiplication as well as thresholding prior to determining the 
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angles; it also requires an additional matrix multiplication and division for each angle, 

compared with the PSBF. MLE is by far the most complex. Due to the iterative nature of 

the algorithm, the complexity of MLE is unpredictable but will generally vary from one to 

two orders of magnitude above the other methods. This is due to the large amount of 

“guess and check” computing that is required to solve the optimization problem. None of 

the closed-form algorithms (i.e. PSBF, Capon and MUSIC) are complex enough to 

significantly influence algorithm choice. However, MLE may be too cumbersome 

depending on the resources available at implementation. 
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IV. Results 

This section details the test results for the Phase-shift Beamformer (PSBF), the Capon 

beamformer, the Multiple Signal Identification and Classification (MUSIC) algorithm, and 

the Maximum Likelihood Estimation (MLE) algorithm. Each section describes the test, 

shows the results, and briefly comments on the results. All results in this thesis are 

simulated by modeling the antenna and hardware described in Section II with the 

modeling and simulation (M&S) environment described in Section III. Studies that 

include significant random factors, such as the signal to noise ratio (SNR) test and the 

multipath test are displayed as Monte` Carlo simulations. Results that had no significant 

random elements are displayed in tables. Each test is designed to exclude other sources of 

error when possible. For example, the SNR Monte` Carlo in Section 4.2 will show SNR 

induced errors are very close to zero when the SNR is greater than 10 dB; every 

subsequent test set SNR to at least 20 dB in order to examine the effects of other error 

inducing phenomena. 

4.1 Chamber Data Test 

This test ensures that the simulation environment and the algorithms function properly. 

Data captured by the antenna array in an anechoic chamber is introduced to the model, and 

replaces the simulated sample data. The data used is the in-phase and quadrature sampled 

output of the array after it has been calibrated by the manufacturer. The goal of this test is 

to show that the M&S environment created for this research is a realistic, usable tool that 

is compatible with the hardware that the angle-of-arrival (AoA) algorithms will support. 



38 

4.1.1 Chamber Data Test Results 

The chamber data test results show three separate AoA measurements in an anechoic 

chamber. The true AoAs of the sources in the chamber are -45°, 0°, and 45°. The results 

are shown in Table 2. 

                                                                                                                                                                                

Table 2. Chamber Test Data Results 

AoA Truth -45.0° 0.0° 45.0° 

PSBF -44.9° 0.0° 42.9° 

Capon -47.1° 0.0° 40.8° 

MUSIC -48.3° 0.0° 42.5° 

MLE -52.3° 0.0° 42.8° 

 

The chamber test verifies the simulation environment and shows the algorithms created 

are capable of measuring AoA using data collected from the physical antenna. It also 

underscores the importance of measuring, rather than calculating, the array manifold; 

ideally all of the measurements would be perfect considering this data was collected in a 

pristine environment. However, because of non-ideal conditions within the array, the true 

array manifold does not perfectly match the one calculated in Section II; creating 

significant AoA measurement errors. 
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4.2 Signal to Noise Ratio Monte’ Carlo 

Every algorithm will require some minimum SNR to function correctly. To establish the 

SNR required a Monte` Carlo simulation is accomplished. To be consistent with the 

hardware definition presented in Section II the number of antenna elements is 𝑁 = 6 and 

the number of samples, 𝐿, was held constant at 1024, which represents 15.75 𝜇𝑠 of 

sampled data, all sensitivities found here could be improved with more samples and a 

longer integration time. Each algorithm solved the AoA of three sources in the FOR. Each 

source had an SNR value that varied from -20 to +10, with one hundred runs 

accomplished at every SNR. The outputs of this study are the error mean, error standard 

deviation and the algorithm failure rate. Algorithm failure occurs when an algorithm 

reports too many or too few sources in the environment, in this case the run is not used to 

calculate error statistics. For this research an algorithm is considered robust at a given 

SNR so long as its algorithm failure rate remains below fifty percent and its mean error is 

below one degree. Equation (39) shows the signal model used for this simulation where 

𝑋𝑠𝑎𝑚𝑝𝑙𝑒 is the [𝑁 × 𝐿] block of samples used to estimate the AoA and each ϵ is a zero-

mean gaussian random variable. 

 

𝑋𝑠𝑎𝑚𝑝𝑙𝑒+𝑒𝑟𝑟𝑜𝑟 = 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 + 10−
𝑆𝑁𝑅

20 ([

ϵ1,1 ⋯ ϵ1,𝐿

⋮ ⋱ ⋮
ϵ𝑁,1 ⋯ ϵ𝑁,𝐿

] + 𝑖 [

ϵ1,1 ⋯ ϵ1,𝐿

⋮ ⋱ ⋮
ϵ𝑁,1 ⋯ ϵ𝑁,𝐿

])    (39) 

 

The standard deviation of the random variables, as it relates to the power of the noise 

signal, is treated as the independent variable and the AoA solutions from each algorithm 
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are treated as dependent variables. Three sources are present in the environment and are 

located at 45, 0, and -30 degrees.  

4.2.1 Signal to Noise Ratio Monte’ Carlo Results 

The results for the PSBF are shown in Figure 12. 

 

Figure 12. PSBF SNR Monte' Carlo Results 

The failure mode for the PSBF was mean error greater than one degree. Failure occurred 

at SNRs below 0 dB; the algorithm failure rate was 32% at this level. AoA error standard 

deviation exceeded one degree at SNRs lower than 1 dB; algorithm failure rate was 20% 

at this level. The PSBF algorithm performance became usable around 0 dB and excellent 

above 5 dB. The results for the Capon beamformer are shown in Figure 13. 
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Figure 13. Capon SNR Monte' Carlo Results 

The failure mode for the Capon was mean error greater than one degree. Failure occurred 

at SNRs below 0 dB; the algorithm failure rate was 16% at this level. AoA error standard 

deviation exceeded one degree at SNRs lower than 3 dB; algorithm failure rate was 0% at 

this level. The Capon beamformer performance became usable around 0 dB and excellent 

above 3 dB. The results for the MUSIC algorithm are shown in Figure 14. 
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Figure 14. MUSIC SNR Monte' Carlo Results 

The failure mode for the MUSIC was algorithm failure rate greater than fifty percent. 

Failure occurred at SNRs below 3 dB; mean error was negligible at this level. AoA error 

standard deviation exceeded one degree at SNRs lower than 4 dB; algorithm failure rate 

was 0% at this level. The MUSIC algorithm performance became usable at 3 dB and 

excellent above 3 dB. The results for the MLE algorithm are shown in Figure 15. 
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Figure 15. MLE SNR Monte' Carlo Results 

Since MLE does not report the number of sources in the environment it does not have an 

algorithm failure rate. Instead it may point a beam in an erroneous location and report a 

detection. This causes the mean and standard deviation error statistics to appear as though 

they degrade faster than the other algorithms when that may not be the case when 

considering the algorithm failure rate of the other methods. Therefore, accurate 

comparisons of one of the other algorithms with the MLE is most valuable when the 

algorithm failure rate is near to zero. Failure occurred at error SNRs lower than 2 dB. AoA 

error standard deviation exceeded one degree at SNRs lower than 4 dB. In general, MLE 

was usable with SNR levels greater than 2 db. It is worthwhile to mention that the PSBF 

has relatively graceful degradation until SNR near 0 dB.  
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4.2.2 Signal to Noise Ratio Monte` Carlo Test Summary 

In general, the methods that use constructive interference patters, PSBF and MLE, were 

more sensitive due to the antenna gain realized by the constructive patters. The destructive 

interference techniques, Capon and MUSIC, were less sensitive. In general SNR levels of 

6 dB or greater were sufficient for AoA estimation. These results are consistent with 

previous works comparing PSBF, MUSIC and Capon [27] with the exception of the 

Capon algorithm. In this simulation it outperforms MUSIC in the low-SNR region while 

in the previous work it performed much worse. The previous works did not detail the 

noise model used, and so conclusions are difficult to draw. One possible explanation is 

that thesis models thermal noise present in the receiver rather than environmental noise. 

Environmental noise is attenuated by antenna gain, and subspace decomposition while 

thermal noise is omnipresent. This may also explain differences in MUSIC performance 

vs SNR curves described in other published works [16]. 

4.3 Complex Environment Test 

It has been shown that there is a limit to the number signal sources that can be 

unambiguously resolved from an N-element antenna array is limited to N-1  [29]. This 

limitation applies to all of the algorithms analyzed in this effort. To test the failure states 

when the environment becomes too complex, each algorithm is run with an increasing 

number of sources in the field of regard (FOR). Each source is inserted into the 

environment with 40 dB signal to noise ratio (SNR) and with adequate spatial separation 

for each algorithm to resolve each individual source. 
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4.3.1 Two source Test 

For the first test, two sources are placed within the FOR and are placed at -30 and 30 

degrees. The results are included in Table 3. 

Table 3. AoA Solutions with Two Sources in the Environment 

AoA Truth -30.0° 30.0° 

PSBF 
-26.8° 26.8° 

Capon -30.0° 30.0° 

MUSIC -30.0° 30.0° 

MLE -30.0° -29.9° 

 

All algorithms were able to detect both sources, the PSBF had the most error; its power as 

a function of angle is shown in Figure 16. 
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Figure 16. PSBF Output for the Complex Environment Test with Two Sources 

Figure 12 shows that the solutions for the PSBF are drawn towards one another due to 

energy from the off-angle source entering through the sidelobes of the beam. This 

phenomenon is a known issue with the PSBF. An unexpected issue in this test is the false 

alarm at zero degrees. The two sources each created a sidelobe and the two sidelobes 

constructively added at zero degrees to create a peak that registered as a false detection 

since it is only 6.89 dB below the actual peaks. In contrast, Figure 17 shows the output of 

the MUSIC algorithm for the same test. 
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Figure 17. MUSIC Output for the Complex Environment Test with Two Sources 

The output for the MUSIC algorithm shows that the two peaks are unaffected by the 

energy from the other. At zero degrees there is some noticeable increase in output power, 

but it is -46.6 dB from the peaks and well below the detection threshold for the algorithm. 

4.3.2 Three Source Test 

For this test, three sources are placed within the FOR and are placed at -45, 0 and 45 

degrees. The results are included in Table 4. 
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Table 4. AoA Solutions with Four Sources in the Environment 

AoA Truth -45.0° 0.0° 45.0° 

PSBF -46.0° 0.4° 46.0° 

Capon -45.0° 0.0° 45.0° 

MUSIC -45.0° 0.0° 45.0° 

MLE -45.6° 0.2° 45.9° 

 

4.3.3 Four Source Test 

For this test, four sources are placed within the FOR and are placed at -45, -15, 15 and 45 

degrees. The results are included in Table 5. 

Table 5. AoA Solutions with Four Sources in the Environment 

AoA Truth -45.0° -15.0° 15.0° 45.0° 

PSBF -45.8° -14.4° 14.3° 45.8° 

Capon -45.0° -15.0° 15.0° 45.0° 

MUSIC -45.0° -15.0° 15.0° 45.0° 

MLE -44.78° -14.35° 15.05° 46.1° 
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4.3.4 Five Source Test 

For this test, five sources are placed within the FOR and are placed at -58, -30, 0, 30 and 

58 degrees. The results are included in Table 6. 

Table 6. AoA Solutions with Five Sources in the Environment 

AoA Truth -58.0° -30.0° 0.0° 30.0° 58.0° 

PSBF N/A -29.6° °0.0 29.6° N/A° 

Capon -58.0° -30.0° °0.0 30.1° 57.9° 

MUSIC -58.0° -30.1° °0.0 30.1° 57.9° 

MLE -56.4° -30.2° °0.0 31.6° 60.0° 

 

Here the PSBF failed to find the sources at +/-58° this is due to the peaks becoming 

obscured at the edges of the field of view. Figure 14 shows the output of the PSBF 

algorithm. 
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Figure 18. PSBF Output for the Complex Environment Test with Five Sources 

The energy in the PSBF in Figure 18 at +/-58° does not fall at +/-59° or +/-60°; this is 

most likely due to sidelobe energy from the other sources bleeding into the solution. As a 

result, the algorithm is unable to determine the presence of a peak despite the local 

increase in energy.  

It is noteworthy that the MLE algorithm accurately detected these sources because it seeks 

to maximize energy when simultaneously steering five beams and therefore it does not 

rely on peak detection in the same way as the other algorithms. 



51 

4.3.5 Six Source Test 

For this test, six sources are placed within the FOR and are placed at -50, -30, -10, 10, 30 

and 50 degrees. Each source has a SNR of 40 dB. The results are included in Table 7. 

Table 7. AoA Solutions with Six Sources in the Environment 

AoA Truth -50.0° -30.0° -10.0° 10.0° 30.0° 50.0° 

PSBF 
-41.9° N/A -13.6° °13.2 N/A 41.6° 

Capon -41.8° N/A -14.9° °14.7 N/A 41.6° 

MUSIC -41.6° -18.4 -1.1° °18.0 N/A 41.6° 

MLE -41.5° -16.4° -1.1 °18.0 N/A 41.6° 

 

Errors for all four algorithms grow massively for the six-source case. Analysis of the 

output of each algorithm makes it unclear as to whether the outputs have any meaning. 

Figures 19-21 show the output of the PSBF, Capon, and MUSIC techniques. 
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Figure 19. PSBF Output for the Complex Environment Test with Six Sources 

The PSBF algorithm shows clear peaks near +/-13, and +/- 42 degrees. The number of 

sources has caused the system to become underdetermined and no trustworthy 

measurement can be made. Because the MLE algorithm is an N-1 dimensional 

implementation of the PSBF, it is also affected by the same phenomena as the PSBF and 

therefore it was also unreliable in this scenario. 
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Figure 20. Capon Output for the Complex Environment Test with Six Sources 

The Capon beamformer bears a resemblance to the PSBF in Figure 15 that is 

uncharacteristic of its typical performance. The location of the peaks suggests that no 

trustworthy measurement can be obtained in this case. 
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Figure 21. MUSIC Output for the Complex Environment Test with Six Sources 

The MUSIC algorithm generates peaks that are characteristic of typical performance 

however each peak is significantly offset from the actual source and, as expected, no sixth 

peak is present. This suggest that the MUSIC algorithm is also unreliable in this scenario. 

This result is expected, recall (37), in the case where six sources are present the noise 

subspace, 𝑈𝑁 , is rank zero – the algorithm as implemented attempts to estimate the noise 

subspace as rank one, causing algorithm failure. 

4.3.6 Complex Environment Test Summary 

Each algorithm showed capability to detect the AoA of up to five sources in the 

environment. However, when a sixth source is presented, all algorithms report erroneous 
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solutions. This is consistent with established bounds on the number of co-channel sources 

that can be simultaneously located [29]. 

4.4 Wideband Signal Test 

Each of the algorithms operates under the assumption that the signal is narrowband and 

that the frequency is close to the array manifold’s center frequency 1.575 GHz. When this 

assumption is violated it results in some error in the AoA solution. Since the array 

manifold, see (6-7), is calculated for the center of the frequency band, a signal that is not 

centered in the band will have a different phase response across the face of the array than 

what is anticipated. For example, consider Figure 22. 
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Figure 22. A Plane Wave Incident on Two Elements of a ULA 

The blue lines represent two wavefronts from the same signal that are co-incident on the 

array.  The propagation delay between the two wavefronts is given by (40).  

 

𝜏 =
𝑑 sin(𝜃)

𝑐
      (40) 

 

Recalling the relationship between frequency and phase, the phase difference between the 

coincident samples of the two antenna elements can be expressed as (41). 

 

𝑑𝑒𝑙𝑡𝑎 𝑝ℎ𝑎𝑠𝑒 =  ∫ 2𝜋𝑓𝑑𝑡
𝜏

0
 =

2𝜋𝑑 sin(𝜃)𝑓

𝑐
   (41) 
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Since the array manifold is calculated to offset these phase shifts, there is error present 

when the frequency of the signal does not match the assumption implicit in the array 

manifold. Considering the parameters FOR and bandwidth of the array used for this 

research, it is possible to find that the phase error for a signal that is 10 MHz from the 

center frequency will have a phase error: |ϵphase| = .017 radians at 60°, which is the edge of 

the FOR. This phase error corresponds to a maximum angle error: |ϵangle|= .63°. Therefore, 

wideband signal error has the potential to drive significant AoA errors; all AoA solutions 

are ambiguous so long as they are solutions to (42). 

 

sin(𝜃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝑓𝐿1 = sin(𝜃𝑡𝑟𝑢𝑡ℎ) 𝑓𝑡𝑟𝑢𝑡ℎ   (42) 

 

Wideband signal error could be mitigated by measuring the frequency of the incoming 

signals and adjusting the array manifold; however, in the case where multiple signals are 

present it may not be possible to assign specific frequencies to each signal. To test the 

likely impacts of wideband signal error, two tests are constructed: the Frequency Offset 

Test and the Sawtooth Waveform Test. 

4.4.1 Frequency Offset Test 

In the Frequency Offset Test, each source emits a continuous tone with SNR = 20 dB. The 

signal parameters and the algorithm AoA results are shown in Table 8. 
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Table 8. AoA Solutions for a Source with a Frequency Offset 

Source 
AoA 

Truth° 
𝑓𝑐𝑒𝑛𝑡𝑒𝑟  

(MHz) 
PSBF° CAPON° MUSIC° MLE° 

1 -45 1575+1 -47.9 -45.1 -45.0 -44.9 

2 0 L1 -2.6 -0.1 -0.1 0.4 

3 45 1575+10 47.0 44.7 44.7 44.9 

 

4.4.2 Sawtooth Waveform Test 

In the Sawtooth Waveform Test, each source emits a periodic sawtooth swept frequency 

modulation (FM) waveform that is typical of RF interferers  [31]; all sources have SNR = 

20 dB. The signal parameters and AoA results for the first test are shown in Table 9 where 

𝑓𝑐 = 1575 MHz. 

Table 9. AoA Solutions for Sources Employing RF Jamming Waveforms 

Source 
AoA 
Truth° 

𝑓𝑠𝑡𝑎𝑟𝑡   
(MHz) 

𝑓𝑠𝑡𝑜𝑝  

(MHz) 
Period 
(μs) 

PSBF° CAPON° MUSIC° MLE° 

1 -45 𝑓𝑐-4.4 𝑓𝑐+9.6 9 -45.4 -44.6 -44.6 -44.8 

2 0 𝑓𝑐-21.4 𝑓𝑐+19.6 12 -0.4 0.0 0.0 0.0 

3 45 𝑓𝑐-8.4 𝑓𝑐+10.6 9 45.3 44.4 44.4 44.6 
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4.4.3 Wideband Signal Test Summary 

In the Frequency Offset Test, the algorithms showed the expected susceptibility to AoA 

error induced by a frequency mismatch with the frequency assumed by the array manifold. 

Consider source three from the Frequency Offset Test; considering (43) as specific case of 

(42) it is possible to solve for the expected error in AoA solution for all the algorithms if 

the true frequency of the signal source is known. Therefore, the AOA error present in the 

MUSIC and the Capon solutions is expected. 

 

sin(44.7°) (𝑓𝑐) ≈ sin(45°) (𝑓𝑐 − 10𝐸6)    (43) 

 

The larger errors present in the PSBF and MLE methods are very likely due energy 

entering into the sidelobes of the AoA hypotheses. In the Sawtooth Waveform Test all 

algorithms performed well and all errors are within |.63|°, as predicted by (40-42). 

4.5 Angular Resolution Test 

Angular resolution is defined as the ability to accurately measure two closely spaced 

sources. It has been shown that the angular resolution of the PSBF is approximately 

equivalent to half of one beamwidth. However, previous findings do not include a 

restriction on the accuracy of the measurement; only the ability to resolve two individual 

sources. This research examines how closely two sources can be to one another while 

calculating AoA to within one degree of error.  

For this experiment, two sources with varying SNR are moved closer to one another, in 1° 

increments, until each algorithm is either unable to measure two individual sources, or the 

error for the solution exceeds one degree. The first source is held constant at an AoA of 
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zero degrees while the other source begins at -45 degrees and is moved closer to the first 

until each algorithm is either unable to resolve the two individual signal sources or the 

error in the solutions is larger than one degree. Each source radiates a continuous tone 

near 𝑓𝑐 and with a SNR of 20 dB, 30 dB, 40 dB, and infinity. The finest resolution 

achieved by each algorithm before failure at each SNR is reported in Table 10.  

Table 10. Angular Resolution Test Results 

Algorithm SNR = 20 dB SNR = 30 dB SNR = 40 dB SNR = Inf. 

PSBF 20° 19° 19° 19° 

Capon 7° 3° 3° 1° 

MUSIC 3° 1° 1° 1° 

MLE 19° 17° 17° 17° 

 

4.5.1 Angular Resolution Test Summary 

The results show that the PSPF and MLE methods are far less capable of fine AoA 

resolution than Capon and MUSIC. Considering the results as a function of SNR it is clear 

that with high SNR the PSBF algorithm’s resolution approaches 19°, which is 

approximately one-half of the beamwidth of the mainbeam for the array. The beampattern 

for the antenna pointing a beam at zero degrees azimuth is shown in Figure 23. 
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Figure 23. Antenna Pattern for a Beam Steered to Zero Degrees 

It is interesting that the MLE algorithm is able to improve on this result slightly with an 

AoA resolution that approaches 17° at high SNR levels. The results for Capon and 

MUSIC show that they approach one degree of AoA accuracy when SNR is high, with 

MUSIC outperforming Capon at any given SNR. These results are consistent with the 

findings in a previous study [28]. 

4.6 Coherent Source Test 

A known issue with passive AoA systems is spatially distributed, phase-coherent sources. 

In the event that two coherent wavefronts are present on the antenna, the wavefronts 
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combine to produce one wavefront potentially rendering all of the studied algorithms 

ineffective.  

To test the vulnerability of coherent sources this study asks the question “How coherent 

must the sources be to defeat passive AoA”? For the Coherent Sources Test, two sources 

radiating the same waveform are inserted into the environment with some offset in their 

center frequency. This frequency offset is reduced until each algorithm fails to resolve the 

individual sources.  

4.6.1 Coherent Sources Test Results 

This test found that a frequency offset as little as 1 Hz is sufficient to enable AoA 

solutions from every algorithm. However, it does degrade algorithm performance as the 

offsets are reduced. Figure 24 shows the output of the MUSIC algorithm when the 

frequency offsets are 10 kHz, 1 kHz, 1 Hz, and zero. 
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Figure 24. AoA Results for Two Coherent Sources 

Clearly as the two sources approach one-another in frequency the algorithm performance 

degrades. The reduced height of the peaks peak below 10 kHz suggests that the algorithm 

will have reduced dynamic range, and may not perform well at low SNR levels when 

spatially distributed coherent sources are present.  

Note that this applies only to sources that are “phase locked” or approaching a phase lock. 

Sources that are not correlated in phase but possess complex, overlapping frequency 

spectra are tested in the Wideband Signal Test and did not significantly degrade algorithm 

performance. This result is consistent with previous findings for the MUSIC algorithm. 
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Some implementations of the MLE and MUSIC algorithm are reportedly able to better 

deal with coherent signal sources [3], however due the to technical difficulty in achieving 

a phase-lock between two spatially diverse signal sources this thesis does not study the 

issue any further. 

4.7 Antenna Position Error Monte’ Carlo 

In practice every array is calibrated. Typically, this includes physical measurement of the 

array manifold, as opposed to idealized calculation presented in Section II. After one 

article is measured it is desirable to apply this calibration to other identical units, thus 

eliminating the need for robust calibration on every individual sensor unit. This calibration 

always involves some error. This error may be from many sources including differences in 

electrical properties of the components used, thermal expansion of the antenna itself, or 

manufacturing accuracy limitations in the placement of the antenna radiators creating 

errors in the distances between elements. Ultimately, these phenomena introduce variation 

from the calibration that cause errors in the AoA solution. 

To study these errors a Monte` Carlo simulation examines the effect of erroneous antenna 

phase center locations. The ideal antenna placements are varied by a random, gaussian, 

zero-mean error term in three dimensions as described in (43) where 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑥, 

𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑦, and 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑧 are the true locations of each antenna element and 𝜖𝑋 , 𝜖𝑌, 𝜖𝑍 

are the error terms. 

 

[𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑋 , 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑌, 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝑍] + [𝜖𝑋 , 𝜖𝑌, 𝜖𝑍]   (43) 
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The standard deviation of 𝜖𝑋 , 𝜖𝑌, and 𝜖𝑍 is increased from 1 mm to 30 mm, and 100 runs 

are accomplished at each standard deviation. For every set of random errors, each AoA 

algorithm calculates the AoA to three ideal sources located at 45, 0, and -30 degrees in the 

FOR. The outputs of this study are the error mean, error standard deviation and the 

algorithm failure rate. Algorithm failure is considered to have occurred if the algorithm 

reports too many or too few sources in the environment. When an algorithm failure 

occurs, the AoA results for that run are thrown out and are not used to calculate the error 

mean or standard deviation. For this research an algorithm is considered robust to a level 

of calibration error so long as its algorithm failure rate remains below fifty percent and its 

mean error is below one degree. All three sources have 40 dB SNR.  

4.7.1 Antenna Position Error Monte’ Carlo Results 

The PSBF results are shown in Figure 25.  
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Figure 25. PSBF Antenna Position Error Monte' Carlo Results 

The failure mode for PSBF is mean error greater than one degree. Failure occurs at error 

standard deviations greater than 27 mm; algorithm failure rate is 28% at this level. AoA 

error standard deviation exceeds one degree at position error standard deviation levels 

greater than 6 mm; algorithm failure rate is 2% at this level. The Capon results are shown 

in Figure 26.  
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Figure 26. Capon Antenna Position Error Monte' Carlo Results 

The failure mode for Capon is mean error greater than one degree. Failure occurred at 

error standard deviations greater than 27 mm; algorithm failure rate is 22% at this level. 

AoA error standard deviation exceeded one degree at position error standard deviation 

levels greater than 6 mm; algorithm failure rate was 20% at this level. The MUSIC results 

are shown in Figure 27.  
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Figure 27. MUSIC Antenna Position Error Monte' Carlo Results 

 The failure mode for MUSIC was mean error greater than one degree. Failure occurred at 

error standard deviations greater than 27 mm, algorithm failure rate was 19% at this level. 

AoA error standard deviation exceeded one degree at position error standard deviation 

levels greater than 6 mm, algorithm failure rate was 5% at this level. 

The MLE results are shown in Figure 28. 
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Figure 28. MLE Antenna Position Error Monte' Carlo Results 

Failure occurred at error standard deviations greater than 11 mm. AoA error standard 

deviation exceeded one degree at position error standard deviation levels greater than 4 

mm. 

4.8 Phase Calibration Error Monte’ Carlo 

In practice each receiver chain is independently calibrated to match its phase response to 

the others; however, there is always residual error present.  This test measures the AoA 

error as a function of error in the phase calibration of the array. For this simulation an 

error term is applied to each antenna in the receive array; the error term is constant for 

every sample of each antenna. Equation (44) shows the alteration to the sampling matrix 
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used for this test where each ϵ is a zero-mean, Gaussian random variable between 0 and 

2𝜋, and 𝑡𝑖𝑚𝑒𝑠( ) is the element-wise multiplication function. 

 

𝑋𝑠𝑎𝑚𝑝𝑙𝑒+𝑝ℎ𝑎𝑠𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑖𝑚𝑒𝑠 (𝑋𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑙𝑒𝑎𝑛, [
𝑒𝑖𝜖1

⋮
𝑒𝑖𝜖𝑁

])  (44) 

 

The standard deviation of the error, ϵ, terms is treated as the independent variable and the 

AoA solutions from each algorithm are treated as dependent variables. Three sources are 

present in the environment and are located at 45, 0, and -30 degrees. All three sources 

have 40 dB SNR. The outputs of this simulation are mean error, error standard deviation, 

and algorithm failure rate. 

4.8.1 Phase Error Calibration Results. 

The results for the PSBF algorithm are shown in Figure 29. 
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Figure 29. PSBF Phase Calibration Error Monte' Carlo Results 

The failure mode for the PSBF algorithm was mean error greater than one degree. Failure 

occurred at error standard deviations greater than .06π radians. AoA error standard 

deviation also exceeded one degree at phase error standard deviation levels greater than 

.06π radians, algorithm failure rate was 4% at this level. The results for the Capon 

beamformer are shown in Figure 30. 
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Figure 30. Capon Phase Calibration Error Monte' Carlo Results 

The failure mode for the Capon algorithm was mean error greater than one degree. Failure 

occurred at error standard deviations greater than .05π radians, algorithm failure rate was 

12% at this level. AoA error standard deviation exceeded one degree at position error 

standard deviation levels greater than .08π radians, algorithm failure rate was 8% at this 

level. The results for the MUSIC algorithm are shown in Figure 31. 
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Figure 31. MUSIC Phase Calibration Error Monte' Carlo Results 

The failure mode for the MUSIC algorithm was mean error greater than one degree. 

Failure occurred at error standard deviations greater than .05π radians, algorithm failure 

rate was 0% at this level. AoA error standard deviation exceeded one degree at position 

error standard deviation levels greater than .08π radians, algorithm failure rate was 0% at 

this level. The results for the MLE algorithm are shown in Figure 32. 

 



74 

 

Figure 32. MLE Phase Calibration Error Monte' Carlo Results 

Failure occurred at error standard deviations greater than .08π radians. AoA error standard 

deviation exceeded one degree at position error standard deviation levels greater than .08π 

radians. 

 

4.9 Multipath Interferer Monte’ Carlo 

This test studies each algorithms’ response to multipath interference in the environment. 

Two multipath interference sources are introduced into the environment. Each source in 

placed at a random location in a 20 × 20 𝑘𝑚2 box in front of the antenna. The multipath 

interferers reflect the signal from each interference source with a random phase shift that 



75 

is different for each source. In this test the power of the multipath signal is treated as the 

independent variable; the locations of the interferers are random variables, the phase shift 

for each source is a random variable, and the AoA solutions are the dependent variables. 

The results are presented as a function of multipath to direct path ratio (M/D) which is 

defined according to (45). 

 

𝑀

𝐷
(𝑑𝐵) = 20 log10(

𝑀𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ 𝑉𝑜𝑙𝑎𝑡𝑎𝑔𝑒

𝑆𝑜𝑢𝑟𝑐𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒
)     (45) 

 

The power of each multipath interferer varies from -40 dB to -6 dB with respect to the 

power of the sources. One hundred runs are accomplished at each power level and the 

error mean, error standard deviation, and algorithm failure rates are reported.  

4.9.1 Multipath Interferer Monte’ Carlo Results 

The results for the PSBF are shown in Figure 33. 
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Figure 33. PSBF Multipath Interferer Monte' Carlo Results 

Mean error greater than one degree is the failure mode for the PSBF. Failure occurs at 

M/D ratios greater than -14.89 dB, algorithm failure rate was 34% at this level. AoA error 

standard deviation exceeds one degree at M/D ratios greater than -18.42 dB, algorithm 

failure rate was 23% at this level. The results for the Capon algorithm are shown in Figure 

34. 
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Figure 34. Capon Multipath Interferer Monte' Carlo Results 

Mean error greater than one degree is the failure mode for the Capon algorithm. Failure 

occurs at M/D ratios greater than -15.9 dB, algorithm failure rate was 0% at this level. 

AoA error standard deviation exceeds one degree at M/D ratios greater than -7.7 dB, 

algorithm failure rate is 15% at this level. The results for the MUSIC algorithm are shown 

in Figure 35. 
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Figure 35. MUSIC Multipath Interferer Monte' Carlo Results 

Mean error greater than one degree is the failure mode for the Capon algorithm. Failure 

occurs at M/D ratios greater than -10.2 dB, algorithm failure rate is 30% at this level. AoA 

error standard deviation exceeds one degree at M/D ratios greater than -15.9 dB, algorithm 

failure rate is 13% at this level. The results for the MLE algorithm are shown in Figure 36. 
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Figure 36. MLE Multipath Interferer Monte' Carlo Results 

Failure occurred at M/D ratios greater than -11.7 dB. Error standard deviation occurred at 

M/D ratios greater than -18.4 dB. 

4.10 Instantaneous Dynamic Range Monte’ Carlo 

To determine each algorithms’ dynamic range a Monte` Carlo simulation is accomplished. 

Noise power level is held steady at -20 dB relative to the smallest signal in the 

environment. Two signals are present in the environment, the second signal in the 

environment is introduced with a signal power that varies from 0 to 20 dB relative to the 

first signal. Each dynamic range level is simulated 100 times. Dynamic range is calculated 

according to (46). 
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𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 (𝑑𝐵) = 20 log (
𝑆𝑜𝑢𝑟𝑐𝑒1 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑆𝑜𝑢𝑟𝑐𝑒2 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
)  (46) 

 

The outputs of this study are the error mean, error standard deviation and the algorithm 

failure rate. For this research, an algorithm is considered usable at a given dynamic range 

so long as its algorithm failure rate remains below fifty percent. 

4.10.1 Instantaneous Dynamic Range Results 

The results for the PSBF are shown in Figure 37. 

 

Figure 37. PSBF Instantaneous Dynamic Range Monte` Carlo Results 

The PSBF has an instantaneous dynamic range of 8 dB. In practice the dynamic range of 

the PSBF is determined by the algorithm implementation, in this case the threshold for 

detection was any signal greater than –9 dB from the main peak; this threshold was used 
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to attempt to limit false detections the coherent addition of sidelobes that is shown in 

Figure 12. The results for the Capon beamformer are shown in Figure 38. 

 

Figure 38. Capon Instantaneous Dynamic Range Monte` Carlo Results 

The Capon algorithm has an instantaneous dynamic range of only 2 dB. This is due to the 

fact that a second strong source in the environment is always raising the effective noise 

floor of the algorithm when the null is not steered in its direction. This phenomenon 

desensitizes the Capon algorithm making it unable to find sources that are significantly 

weaker than the strongest source in the environment. The results for MUSIC are shown in 

Figure 39. 
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Figure 39. MUSIC Instantaneous Dynamic Range Monte` Carlo Results 

The MUSIC algorithm has an instantaneous dynamic range of 6 dB. So long as the 

eigenvalues of the signal subspace are significantly larger than those from the noise sub-

space MUSIC is able to detect both sources. The results for MLE are shown in Figure 40. 
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Figure 40. MLE Instantaneous Dynamic Range Monte` Carlo Results 

The MLE algorithm shows instantaneous dynamic range through 20 dB so the experiment 

is extended to test dynamic range through 40 dB. The outstanding performance of the 

MLE algorithm is due to its iterative nature. Even if the weaker source exists below the 

sidelobes of the stronger source the algorithm will an additional beam at the weaker 

source, thus changing the sidelobe structure and revealing the second source. These 

simulations show that the MLE algorithm is exceptional at sorting through the FOR to 

find additional sources even when they are much weaker than the strongest signal in the 

environment. 
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V. Conclusion 

This section recaps the goals of the research, summarizes and briefly comments on the 

results, and offers an algorithm recommendation for an angle-of-arrival (AoA) algorithm 

to radiofrequency (RF) interferers. 

5.1 Algorithm Results Summary 

The first goal of this research was to examine AoA methods in the context of real-world 

challenges to algorithm performance. Four AoA algorithms were studied in this effort: 

 The Phase-shift Beamformer (PSBF)  

 The Capon or Minimum Variance Distortionless Response (MVDR) 

beamformer  

 The Multiple Signal Identification and Classification (MUSIC) algorithm 

 The Maximum Likelihood Estimation (MLE) algorithm 

Each algorithm was examined to characterize the computation burden of each method. All 

of the closed-form solutions: MUSIC, PSBF and Capon, had similar computational 

burdens. However, MLE, since it is an iterative algorithm, had a computational burden 

that was 1-2 orders of magnitude greater than the other methods.  

The performance of each of these algorithms was studied in the presence of non-ideal 

conditions. The conditions studied were: 

 Cluttered signal environments 

 Wideband signals 

 Closely-spaced signal sources 
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 Spatially-diverse, phase-coherent sources 

 Antenna manufacturing errors 

 Phase calibration errors 

 Low signal-to-noise ratio (SNR) 

 Strong multipath interferers 

 Signal sources with large differences in signal power (Instantaneous Dynamic 

Range) 

To accomplish the study a modeling and simulation (M&S) environment was developed 

using MATLAB™. The M&S environment models the radio frequency signal 

environment from the antenna, through mixing, filtering and analog to digital conversion 

where the data can then be presented to the AoA algorithms for processing. Table 11 ranks 

algorithm performance in each test from one to four, one being the best. 
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Table 11. AoA Algorithm Results Rankings 

Test PSBF Capon MUSIC MLE 

Complex 
Environment 

4 1 (tie) 1 (tie) 3 

Wideband Signals 4 1 2 3 

Angular Resolution 4 2 1 3 

Phase Coherent 
Sources 

1 (tie) 1 (tie) 1 (tie) 1 (tie) 

Antenna Position 
Errors 

2 4 1 3 

Phase Calibration 
Errors 

2 4 3 1 

SNR 2 3 4 1 

Multipath 
Interference 

4 1 2 3 

Instantaneous 
Dynamic Range 

2 4 3 1 

 

This table, broadly agrees with previous work on the topic [3]. The notable exception is 

the MLE algorithm, which does not achieve the best result in every category as some 

literature would predict, this is certainly due to the implementation chosen for this thesis 

which exchanged the exhaustive MLE techniques for a faster implementation that is more 

susceptible to errors but has reduced computational costs [30].  A few results deserve 
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some discussion. The angular resolution of the destructive interference methods, MUSIC 

and Capon, were one degree with sufficient SNR; this is a very large improvement over 

the constructive interference methods, PSBF and MLE. The MLE method was by far the 

best method for finding signals with significantly different power levels; it was able to 

detect two signals with 40 dB difference in their power levels. The next best-performing 

method was PSBF with 8 dB of instantaneous dynamic range. 

5.2 Algorithm Recommendations 

The second goal for this research was to determine the best algorithm for determining the 

AoA of RF interferers in civilian and military applications. For applications where the 

number of RF interferers is likely to be low, the MUSIC technique is best suited. 

Examination of the results in Table 11 and the computational complexity analysis in 

Section 3.3 suggests that, assuming a serial algorithm implementation, a hybridized 

algorithm would be equally effective as MUSIC while being more computationally 

efficient. The hybridized algorithm runs in two stages. The first stage uses a coarse PSBF 

algorithm where the AoA hypothesis is applied every 5°. When a signal source is detected 

that region will be searched more finely by the second stage. The second stage of the 

hybridized algorithm is the MUSIC algorithm with an AoA resolution of .1°. This 

algorithm is a carefully constructed implementation of a derivative of the MUSIC 

algorithm known as Beamspace MUSIC when it is carefully tailored to the characteristics 

of the available ULA [3]. Figure 41 shows a flow chart of the hybrid algorithm with the 

number of operations for each stage shown. 
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Figure 41. Hybrid Algorithm Flowchart 

Because the PSBF algorithm has better dynamic range and low SNR performance than the 

MUSIC algorithm, no performance is lost by using it as the initial detection stage so long 

as the resolution is not so coarse that the beam is significantly off-target of the signal 

source. In this case 5° resolution was chosen because it is within the 3dB beamwidth of 

the array. 

Once the first-stage algorithm detects the possibility of a signal in a region of the field of 

regard (FOR), that region is scanned by the second-stage algorithm. The second stage uses 

the MUSIC algorithm to optimize accuracy and resolution of the final AoA measurements. 

In cases where there is only one source in the environment the computational advantage of 

the hybrid algorithm compared to the MUSIC algorithm is greatest, while in more 

complex scenarios the advantage will be reduced.  

Consider the case where one source is present in the environment at -3.5°. The first stage 

reports a detection at -5°. This initial detection narrows the FOR searched by the second 

stage to: -25° - +15°. The size of the FOR in this case is driven by the Angular Resolution 
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Test in Section 4.4 which shows that the PSBF has an angular of resolution ±20°. Figure 

42 shows the output of the first stage of the algorithm. 

 

Figure 42. First Stage Hybrid Algorithm Output for a Source at -3.5° 

Next, the second stage operates over the narrowed FOR, the output of the second stage is 

shown in Figure 43. 
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Figure 43. Second Stage Hybrid Algorithm Output for a Source at -3.5° 

In this second stage the resolution and accuracy of the MUSIC algorithm is achieved at 

greatly reduced computational cost. The first stage required 966 operations and the second 

stage required 17,243 operations for a total of 18,209 operations. Recall Section 3.3 where 

the computational cost of the MUSIC algorithm over the entire FOR with .1° angular 

resolution was calculated to require 52,045 operations. Hence, in this case, the hybrid 

algorithm reduced computational burden by 65% when compared to the MUSIC algorithm 

while retaining the performance of the MUSIC algorithm. 

Alternatively, consider the computational burden of the worst-case scenario where the first 

stage fails to narrow the FOR and the second stage requires the full cost of the MUSIC 

algorithm (i.e. 52,045 operations), in addition to the 966 operations spent in the first stage. 
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In this case the computational burden is increased by 1.9% relative to the full MUSIC 

algorithm. 

The final case to consider is one where instantaneous dynamic range of the sensor is the 

most important consideration. In this case the MLE algorithm should be used since it 

significantly outperformed the closed-form algorithms when multiple signal sources had 

significantly different power levels. 

5.3 Summary 

This research has examined AoA algorithms for the purpose of locating RF interference 

sources using a ULA. Four AoA algorithms were compared for performance in the 

presence of error sources when implemented on an existing sensor. Altogether the 

simulation results show the sensitivity of AoA estimation systems to sources of error. 

These results can be used to better estimate the performance of AoA measurement systems 

in challenging conditions. 

Algorithm recommendations were made, subject to system requirements. Using the results 

of the performance analysis, an optimized hybrid algorithm that makes use of the desirable 

attributes of the PSBF and MUSIC algorithms was presented. The hybrid algorithm retains 

the performance characteristics of the MUSIC algorithm but with a reduced computational 

cost. 
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