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Abstract

The manufacture of joints between a base structure and a structure manufactured

via Fused Deposition Modeling (FDM) will be investigated. ULTEM 9085, a high

temperature plastic with potential aerospace applications, will be the material used.

The specific application this research is focused on is a robotic and mobile FDM

printer capable of building structures onto other structures in space. A joint will be

formed by fusing the base layer of the printed structure and the top of the base struc-

ture together. Tensile testing will be performed to determine the strength of the bond

between parts. Tensile specimens will be manufactured with variable printer settings,

including air gap and build volume temperature. In the orbital environment, lamps

could be used to heat the part in place of a heated build volume. A thermodynamic

model is used to estimate power required to heat the printed part in vacuum.

In addition, tensile and compression testing will be done on parts printed in various

orientations to validate material properties. The material properties of specimens

manufactured under normal conditions will be the standard that printed joints will

be compared against.
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MANUFACTURE OF FUSED DEPOSITION MODELING JOINTS USING

ULTEM 9085

I. INTRODUCTION

1.1 Background

Everything loaded onto a space vehicle must be designed to survive the launch en-

vironment. The payload is subjected to quasi-static acceleration loads and vibrations

during launch. As a result, the payload structure is more robust than its operational

tasks require. The loads that space vehicle structures must support in orbit are low

due to micro-gravity. If these structures could be manufactured in orbit, rather than

on Earth, the structure would not have to possess the strength to withstand launch

and could be made lighter.

Additive manufacturing (AM) may provide a feasible solution to this problem. A

robotic and mobile 3D printer could build structures onto other structures in space

(see Figure 1.1) . One of the problems presented by this concept is the strength of

the bond or attachment between the pre-existing structure and the new 3D printed

structure. Parts of the concept have already been proven, such as using additive

manufacturing techniques in micro-gravity.

The National Aeronautics and Space Administration (NASA) has shown interest

in AM because it allows parts to be manufactured in space rather than launching them

from Earth [1]. A potential use of AM technology for NASA is relying on AM for

replacement parts. This can reduce launch mass by reducing the number of spare parts

required to be launched in a mission [1]. In 2014, NASA launched the 3D printing in

1



Zero-G technology demonstration to the International Space Station [1]. This mission

focused on the ability of the Fused Deposition Modeling (FDM) process to produce

parts in the micro-gravity environment [1]. The results of the demonstration indicated

that FDM parts manufactured in orbit are similar in strength to parts manufactured

on Earth.

FDM is one method of AM that builds parts up layer by layer [2]. The FDM

method is one of the most commonly used AM methods. The FDM process requires

a 3D model from computer-aided design (CAD) software, and the geometry is broken

up into triangles before printing [3]. During the FDM process, the material is fed

through a heating element and extruded through a nozzle [3]. The material at this

stage is in a semi-molten state, allowing it to fuse to the material it comes into contact

with [3]. The print head normally moves in the x-y plane and the platform moves

vertically, allowing three-dimensional objects to be made by layering the material [3].

Figure 1.1. Inchworm robot concept art.
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1.2 Problem Statement

AM is of interest to the space community for use in producing structures in orbit.

ULTEM 9085 is a material with high strength, high temperature resistance, and low

out-gassing properties that make it a great candidate for space applications. To

implement ULTEM 9085 for use in space, the strength of the attachment between

the printed structure and the base structure must be considered. This research will

address the strength of joints constructed from ULTEM 9085 using FDM.

1.3 Assumptions/Limitations

Out of the numerous methods of AM, NASA selected FDM to be tested in the

in-space manufacturing (ISM) project. The ISM project produced successful test

specimens using FDM in orbit. As a result, FDM was chosen in this experiment

to further investigate the feasibility of using FDM in space applications. ULTEM

9085 appears to be the most promising material for use in FDM while in the space

environment due to its desirable out-gassing properties.

1.4 Scope

This research focuses on creating joints between a pre-existing base structure and

a new, fixed structure manufactured using ULTEM 9085 and the FDM method. The

method of attachment is fusing the base layer of the new structure to the pre-existing

layer using FDM. The results will help determine feasibility of using ULTEM 9085 to

print fixed structures on pre-existing structures in orbit using FDM.
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1.5 Standards

There is no International Standards Organization (ASTM) standard for AM ten-

sile specimens so ASTM D638-14, Standard Test Method For Tensile Properties of

Plastics, will be used as a reference. An ASTM dogbone specimen will be used to

validate the tensile properties of ULTEM 9085 in three print directions and using dif-

ferent printers. To test the strength of attachment between a pre-existing structure

and a new structure, a non-ASTM specimen was designed. ASTM D695-15 will be

used in the testing of compression specimens.

1.6 Research Objectives

This research aims to determine feasibility of printing a fixed structure onto a pre-

existing structure using ULTEM 9085. Specifically, the strength of the attachment

between the pre-existing structure and the new fixed structure will be investigated.

Printing a new structure on a pre-existing structure will be referred to as the compos-

ite print method. The following have been identified as research objectives: validate

ULTEM 9085 mechanical properties and determine the strength of joints manufac-

tured using the composite print method.

1.6.0.1 Validate ULTEM 9085 mechanical properties

The mechanical properties of ULTEM 9085 will be tested using specimens printed

in three different orientations. These specimens will be made by Stratasys and on

the Fortus 450mc at the Air Force Institute of Technology (AFIT). Tensile and com-

pression tests will be performed to obtain the mechanical properties of the specimens.

These data will be compared against other results, such as the results obtained by

Bagsik et al. [4].
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1.6.0.2 Strength of Joints Manufactured Using the Composite Print

Method

First, control column specimens will be manufactured using a Fortus 450mc. These

columns manufactured from a single print will provide a baseline for the composite

column specimens. Next, specimens will be manufactured by printing half of a com-

posite specimen on a pre-existing half part. The pre-existing halves will be printed

using the Fortus 450mc. Specimens will be completed using a Fortus 450mc or mod-

ified LulzBot TAZ 6 by printing ULTEM 9085 onto the pre-existing part. Specimens

will then undergo tensile testing to determine the strength of the attachment between

the two structures. Printing ULTEM 9085 on a pre-existing structure manufactured

using ULTEM 9085 is the method of attachment (the composite print method). The

temperature of the build volume will be varied to test its effect on the attachment

between new and pre-existing layers.

1.7 Materials and Equipment

The following equipment will be used:

1. Stratasys Fortus 450mc, for printing specimens

2. Modified LulzBot TAZ 6, for printing specimens

3. MTS Landmark Servohydraulic Test System, for tensile testing

4. MTS 810 with a 110 kip load frame, for compression testing

5. Zeiss microscope, for observing specimens

6. ULTEM 9085 Feedstock
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1.8 Other Support

AFIT lab technicians will provide support in the tensile laboratory, printing lab-

oratory, and microscope laboratory.

1.9 Thesis Overview

• Chapter 1: Provides a problem statement, assumptions, scope, standards, ob-

jectives, materials and equipment, and other support

• Chapter 2: Provides background in space based AM and need for characteri-

zation of joints between pre-existing structures and new fixed structures. Also

includes literature review

• Chapter 3: Discusses methodology for experimentation and data

• Chapter 4: Analyzes test results and discusses feasibility of printing new fixed

structures on pre-existing structures

• Chapter 5: Summarizes results and discusses recommendations for future re-

search

1.10 Summary

There are many aerospace applications for components built with ULTEM 9085

using FDM. One specific application is building structures in the space environment

onto existing structures using FDM. The joint connecting the new structure and the

base structure must be considered. The strength of the joint between a new structure

and a base structure will be tested using tensile specimens manufactured with ULTEM

9085 using FDM. The results will help determine the feasibility and requirements for

a FDM robot that can be used to build structures in orbit.
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II. BACKGROUND

2.1 Chapter Overview

To print a new structure on an existing structure, the FDM process must be

understood. There are many variables that may affect the strength of attachment

to the first layer of the print. This chapter will provide an overview of what is

important to the adhesion and strength of the base layer and work that has been

done to determine feasibility of using FDM in the space environment.

2.2 Additive Manufacturing Techniques

According to ASTM F42, ”Additive Manufacturing,” there are seven categories of

additive manufacturing. The first is Vat photopolymerisation. The Vat photopoly-

merisation technique uses a chamber filled with liquid resin and an Ultraviolet (UV)

light. The UV light moves in the x and y directions while the chamber filled with

liquid resin moves down in the z direction. The UV light cures the resin and the

chamber moves down, constructing each layer upon the previous layer [5].

The next method is material jetting. The material is jetted onto the build plate

and the layers are cured using UV light [5]. The material is deposited in drops, so

polymers and waxes are most commonly used in the material jetting process [5]. Each

layer is built on top of the last.

The third method is binder jetting, also known as 3DP. Most commonly, a liquid

binder is used to bind powder layers [5]. Alternating layers of binder and powder

build material are built up to form the part. Post processing is often required.

Method number four is material extrusion, or FDM, and will be discussed in detail

in Section 2.3.

The fifth method is powder bed fusion, encompassing several types of more specific
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techniques. A laser or electron beam is used to melt powder and fuse the material

together [5]. After a layer has been melted and fused, a new layer of powder is spread

on top of the last and then melted and fused to create the next layer.

The sixth method listed in ASTM F42 is sheet lamination. Sheets are placed on

the previous layer and cut to size using a knife or laser [5]. Each layer is bonded to

the last using an adhesive. Resulting parts are not suitable for structural use [5].

The last method is directed energy deposition (DED), also known as 3D laser

cladding. DED is most commonly used to add material to existing parts or for repair

[5]. A nozzle mounted on a multi-axis arm deposits material from either a powder or

wire.

2.3 FDM Definition and Overview

FDM is a method of AM developed by Stratasys that builds parts by laying

down material one layer at a time. The FDM process requires a three-dimensional

model from computer-aided design (CAD) software, and the geometry is broken up

into triangles before printing [3]. The triangular surfaces are made using a standard

tessellation language (STL) file. During the FDM process, the material is fed through

a heating element and onto a build plate or onto the last layer extruded from the nozzle

[3]. The feedstock is fed through the nozzle by drive gears. There are two common

drive systems for the feedstock. Figure 2.1 (a) shows a Bowden drive system, where

the drive gears are located near the feedstock hopper. Figure 2.1 (b) is a direct drive

system, where the drive gears placed near the print head. The Bowden drive system

drives the filament through the nozzle from the hopper while the direct drive system

drives the filament through just before the print head. The Bowden drive system

allows for a lighter print head, but the feedstock must be prevented from buckling

between the drive gears and the hot end [6]. The material is in a semi-molten state as
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it is fed through the nozzle, allowing it to fuse to the material it comes into contact

with [3]. The print head moves in the x-y plane and the platform moves vertically,

allowing three-dimensional objects to be made by layering the material [3]. If there

are overhangs of more than 45 degrees, support material may be used to support the

part while it is being built.

FDM is the most feasible method for the application of printing structures in space.

Most of the other methods listed in Section 2.2 are not desirable due to the form of the

build material or the post processing required. Build material in powder or liquid form

would be difficult to implement in microgravity, eliminating Vat photopolymerisation

and powder bed fusion techniques. FDM is the only method that can be reasonably

implemented in a mobile printing unit in microgravity, especially because its feedstock

is in wire or filament form.

Figure 2.1. (a) Bowden Drive System and (b) Direct Drive System (figures from Cerri
et al.) [6]

There are many parameters that affect the properties of FDM parts. Parts built

using FDM have anisotropic properties that depend on the orientation of the print

[3]. The tool path used to form layers can be varied. One common method is a raster

fill, where the perimeter of the layer is printed first and then the rest of the layer is
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filled by roads normally oriented 45 degrees to the x-axis [4]. The next layer is then

filled with a raster in the opposite direction (see Figure 2.2). Figure 2.2 depicts a

layer with three perimeter roads and a raster fill in the center.

(a)

(b)

Figure 2.2. (a) Raster fill at 45 degrees (figure re-created from Bagsik et al. [4]) (b)
Example of a layer cross-section (figure re-created from Gebisa et al. [7])

The size of the bead, or road, that is laid down by the nozzle helps determine

the part’s mechanical properties. The air gap is the gap between roads. The air

gap can be adjusted to make roads tightly packed, resulting in a dense part, or set

for gaps between roads [3]. It was found that acylonitrile butadiene styrene (ABS)

P400 tensile specimens with a negative air gap are stronger than those with zero

air gap, and all specimens manufactured via FDM are weaker than injection molded

specimens [3].

Temperature also affects part quality. Both the model build temperature and en-

velope temperature are important in the FDM process. The model build temperature
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is the temperature of the heating element that heats the material prior to leaving the

nozzle. The envelope temperature is the ambient temperature around the part being

printed. Envelope temperature can be controlled by printing parts inside a chamber.

2.4 Material Testing

To characterize mechanical properties, tests can be performed. Mechanical stress

must be applied to a part to observe the mechanical behavior [4]. One of the most

common materials tests is the tensile test. Tensile test results provide key mechanical

properties such as ultimate strength, yield strength, and elastic modulus. In a tensile

test, a specimen is normally pulled axially until failure. Tensile specimens normally

consist of a grip section and a gage section. The resulting specimen geometry resem-

bles a dog bone (see Figure 2.3). The grip section is used to grip the specimen in the

test machine. The gage section is made smaller than the grip section so that most of

the reaction to mechanical stress occurs there. The testing machine produces a tensile

force on the specimen, and the elongation of the specimen is measured and recorded

as force is increased [8]. The relationship between the applied load and deformation

can be converted to a stress-strain diagram [8].

Figure 2.3. Illustration of a type IV dogbone specimen from ASTM D638.

An extensometer can be used to measure the elongation in the test specimen [8].

The extensometer is placed on the gage section of the test specimen (see Figure 2.4).
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Two knife-edges are placed in contact with the gage section, and the initial distance

between the knife-edges provides the gage length [8]. The specimen will elongate as

the applied load is increased, causing an increase in distance between the knife-edges.

Figure 2.4. Tensile Test Setup with Extensometer

The elastic modulus, or Young’s modulus, is the slope of the initial, linear portion

of the stress-strain curve [8]. The elastic modulus is a measure of stiffness, meaning it

determines how much bending or stretching will occur under load [8]. Yield strength

is the stress that will result in permanent deformation of a material and is normally

found at the end of the linear portion of a stress-strain curve. Ultimate strength

is the peak stress reached on the stress strain curve. These measures of strength

are important because they determine how much stress the material can take before

permanently deforming and the maximum amount of stress it can withstand.

The ductility of a material can also be determined using a tensile test. A brittle

material will yield little before fracture and a ductile material will withstand more
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strain before fracture [8] (see Figure 2.5).

Figure 2.5. Stress Strain diagram of ductile and brittle specimens printed on edge and
vertically respectively. Data is from ULTEM 9085 specimens manufactured via FDM.

2.5 Mechanical Properties of ULTEM 9085 Manufactured Using FDM

ULTEM 9085, a type of Polyethermide (PEI), is the material of interest for this

project. ULTEM 9085 is a high temperature plastic developed by Stratasys that

possesses high strength, high temperature resistance, and desirable out-gassing prop-

erties.

out-gassing occurs when gas is released from a material. Polymers can have volatile

products used in the manufacturing process trapped inside the material. When the

volatile material escapes from the material, it is known as out-gassing [9]. This is

most commonly due to high heat, high moisture, or low pressure [9]. In the vacuum

of space, the potential for out-gassing is increased. out-gassing is undesirable in the

space environment because the volatile products of out-gassing can accumulate on

electronic equipment, potentially causing failure of electronic components [9]. Out-

gassing can also cause products to accumulate on optics or solar panels, reducing
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their effectiveness. Stratasys has completed out-gassing tests on ULTEM 9085 de-

posited by a Fortus FDM printer [10]. Using ASTM Test Method E 595, it was found

that ULTEM 9085 had a total mass loss of 0.41% [10]. NASA’s standard for a low

out-gassing material is less than 1.0% Total Mass Loss, so ULTEM 9085 is classified

as a low out-gassing material.

Stratasys developed ULTEM 9085 to be used in the FDM process to create fully

functional parts or prototypes [11]. Certified ULTEM 9085 has unique certifications

that meet requirements for aerospace applications. The certification includes test

criteria and material traceability. Certified ULTEM 9085 comes with a certificate of

analysis for raw material and filament, along with identification for the manufacturing

lot number, allowing traceability back to the raw material [11]. These properties make

ULTEM 9085 a good candidate for space applications.

One resource for information regarding ULTEM 9085 used in FDM was the work

done by Bagsik et al. [4]. The FDM part quality of parts made with ULTEM 9085

was investigated, with a focus on print orientation. The print orientation affected

both the tensile and compressive properties of the specimens. Specimens were made

using a Fortus 450mc. Specimens printed in the X and Z directions have roughly

the same elastic modulus, while specimens printed in the Y direction have a lower

elastic modulus. X direction specimens had the highest ultimate strength because

of a larger plastic region. Specimens printed in the Z direction failed near the yield

strength between layers of the print. The X direction specimens had no raster fill,

so the tensile stress was parallel to the road direction in the gage section, unlike

the Z and Y directions with a raster fill. Bagsik also conducted compression tests

of ULTEM 9085 specimens printed in different orientations. Compression specimens

printed in the Z direction had the highest compressive strength, meaning that pressing

the layers together will support the highest load in compression [4]. The failure of
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compression specimens is illustrated in Figure 2.7.

Figure 2.6. Print Orientations used by Bagsik et al. [4] (figure from Cerri et al. [6])

Table 2.1. Bagsik Print Direction Mechanical Properties (Table taken from Cerri et al.

Print Direction (number tested) X(12) Y(12) Z(40)

Tensile Strength (MPa) 63.25 ± 1.07 45.87 ± 1.32 40.71 ± 2.07
Tensile Strain (%) 5.65 ± 0.08 4.99 ± 0.44 2.29 ± 0.19
Tensile Stress at Break (MPa) 61.34 ± 1.31 45.67 ± 1.38 40.75 ± 2.06
Tensile Strain at Break (%) 6.35 ± 0.28 5.0 ± 0.45 2.29 ± 0.19
Elastic Modulus (MPa) 2033.54 ± 64.73 1461.41 ± 194.4 2092.26±129.92

Bagsik et al. also tested reproducibility in terms of geometric tolerances of UL-

TEM 9085 parts made with FDM. Parts were found to have tolerances of 0.05 mm.

Another important consideration for using ULTEM 9085 in the FDM process is

the humidity of the filament. Tensile strength was reduced by more than 60% over the

range of filament moisture levels tested by Zaldivar et al. [12]. Specimens manufac-

tured using filament with more than 0.4% moisture content have poor surface quality

compared to those manufactured with filament having a lower moisture content [12].

Image analysis showed an increase in porosity of manufactured parts as moisture con-
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Figure 2.7. Illustration of failure in XY and Z print directions observed by Bagsik et
al. (figure from Cerri et al. [4])

tent of filament was increased above 0.16% [12]. Tensile specimens printed in in the

XY direction (flat) with filament containing 0.4% moisture content or more exhibited

no plastic deformation, while specimens with a lower moisture content did [12]. In

the ZX direction, specimens printed using filament with 0.4% moisture content or

more were not suitable for testing due to the poor quality of the specimens [12]. The

moisture absorption behavior of ULTEM 9085 filament indicates that the filament

will reach unacceptable moisture levels in one hour at room temperature [12].

2.6 Thermal Analysis

Neck formation is one reason the thermal characteristics of a part are important.

The portion of two roads that fuse together is known as the neck. This neck is what

holds the roads and the resulting part together. Work done by Bellehemeur et al.

shows good agreement between models and experimental results. The models that

assume the properties of the neck are the same as the properties of each individual

road [13]. The size of the neck between roads, or filaments, is what Bellehumeur et

al. used to assess the integrity of the neck. The properties of the neck are driven by

the thermal energy of the material being printed. The heat required depends upon

several factors, including print speed and the diameter of the roads [13]. As a part

is printed, the roads are hot enough to fuse together. The roads then cool and the
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bond is complete. Bellehumeur et al. also investigated the effect of the envelope and

extrusion temperature on neck formation. It was found that both a higher envelope

and extrusion temperature results in a larger neck being formed between roads [13].

However, the extrusion temperature has a greater effect on neck formation than the

envelope temperature.

Figure 2.8. Roads fused together forming necks (figure from Cerri et al. [6])

Thermal modeling and experimentation of ULTEM 9085 parts manufactured via

FDM was accomplished by Cerri et al. ULTEM 9085 requires a higher print temper-

ature than other plastics, such as polylactic acid (PLA) (see Table 2.2). The room

temperature row refers to the ambient temperature around the part, and the model

temperature is the temperature of the material being extruded through the nozzle.

Table 2.2. Thermal table (from Boschetto et al. [14])

Material ABS ULTEM 9085 Polycarbonate

Room Temperature C° 75 195 145
Model Temperature C° 270 375 342
Support Temperature C° 270 420 330
Prototyping System Stratasys Bst768 Fortus 900mc Fortus 400mc

The thermal environment includes the temperature of the heating element and

the ambient temperature around the printed part. A thermal model of the space

environment using only conduction and radiation was developed by Cerri et al. [6].

The model is 1D, steady-state and assumes layer height is equal to nozzle diameter

and constant material properties. First, a terrestrial model including convective heat

transfer was used. Analysis was done on a hollow cylinder 40mm in height, 50mm in
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outer diameter, and 48mm in inner diameter. The cylinder was printed in the modified

TAZ 6 and thermal images were taken during the print using a FLIR microbolometer

camera. The FLIR images provide experimental temperature to compare the ter-

restrial model against and aid in calculating power required for heating the printed

part in orbit. Fourth order scaling was used to convert the FLIR image intensity

to temperatures, along with the assumption that the maximum temperature in the

image is the nozzle temperature and the minimum is the build volume temperature.

Temperature changes within the small wall thickness and in the nozzle travel direc-

tion are neglected. These temperature gradients are small compared to the gradient

traveling between layers in the z-direction. Numerical methods matched poorly with

experimental data, so a semi-analytic method was used. An energy balance including

convection, conduction, radiation, and energy storage terms was calculated. The en-

ergy balance along with the estimated direct contribution of radiated energy from the

lamps was used to gauge the accuracy of the model. The model was then extended

to the orbital environment by removing the convective heat transfer term. Using the

model with no convection, the additional power required from lamps to achieve the

desired part temperature was calculated [6]. These lamps would heat the part to the

desired temperature without a build volume in the orbital environment.

If the temperature of the part is too low, de-lamination will occur and part quality

will be reduced. The temperature profile during the printing process was also devel-

oped. A FLIR microbolometer camera was used to capture the temperature of the

part as it was being printed. Cerri et al. produced plots of temperature vs nozzle

distance to determine how the rate of road cooling changes with print speed.

More work has been done on interlayer cooling by Morales et al. [15]. To simulate

building large parts, delays were added between layers. Printing a large part means

the nozzle will not return to the same position in the next layer for longer time. A
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delay results in more cooling and a reduction in neck formation. ABS was the material

used in the testing, and no build volume temperature control was used. As the time

delay between layers was increased, the yield strength of the printed compression

specimens decreased [15]. The rate of cooling of a completed layer was determined

using a FLIR A655sc thermal camera.

2.7 NASA FDM Program in Microgravity

NASA has conducted testing of specimens manufactured in orbit on the Interna-

tional Space Station (ISS) using FDM. The ability for parts to be manufactured in

space may allow humans to work in space for longer periods of time [1]. Possible

applications for crews in space include part replacing and reducing launch mass by

reducing the number of spare parts that must be launched into orbit [1].

The material selected for testing by NASA during the experiment, known as Phase

I, is ABS [1]. The testing was completed to determine the feasibility of using FDM in

microgravity. The tensile, compressive, and flexural properties of specimens printed

on the ground and in orbit were compared. A summary of the results are shown

in Table 2.3. ”Gravimetric density, ultimate tensile strength, modulus of elasticity,

fracture elongation, compressive strength, compressive modulus, flexural strength,

and flexural modulus were significantly different for the ground and flight specimens”

[1]. The specimens printed in orbit also exhibited a higher variance in geometry.

Prater et al. provides several hypotheses for these results, one being a problem with

the build plate distance from the nozzle. In orbit, the build plate was closer to

the nozzle than it was on the ground. This could be the reason why the specimens

manufactured in orbit had poorer geometric tolerances and higher density.

Another potential cause of variation between flight and ground specimen mechan-

ical properties is the feedstock. The feedstock has a shelf life of one year, and there
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Table 2.3. Summary of tensile specimens printed on the ground and in orbit (from
Prater et al. [1]). Ground specimens were printed normally on Earth while the flight
specimens were printed aboard the ISS in microgravity.

Material Property Percent Difference
(With Respect to
Ground)

Coefficient
of Variation
(Flight) (%)

Coefficient
of Variation
(Ground) (%)

Ultimate tensile strength (ksi) 17.1 6.0 1.7
Modulus of elasticity (msi) 15.4 6.1 2.7
Fracture elongation (%) -30.4 26.3 9.9
Compressive strength (ksi) -25.1 3.1 5.0
Compressive modulus (msi) -33.3 9.4 4.2
Flexural strength (psi) 25.6 9.3 6.0
Flexural modulus (msi) 22.0 9.6 3.9

was a five-to six-month delay before the feedstock used to manufacture flight spec-

imens was used [1]. Aged feedstock may be more brittle, resulting in specimens of

higher strength [1].

The results of NASA’s Phase I experiment are promising. While NASA used ABS

plastic in the FDM process, other materials may produce similar results. The FDM

process for ULTEM 9085 is essentially the same, with the build volume temperature

being the biggest difference.

2.8 Summary

FDM can be used with ULTEM 9085 to produce fully functional parts. The

mechanical properties of the part depend greatly on print orientation and on the

model and envelope temperatures. The capabilities of FDM were also tested by NASA

in microgravity to determine the feasibility of printing parts in orbit. The experiment

aimed to isolate the effects of microgravity on the FDM process. Specimens printed

in orbit were slightly stronger and more dense than those printed on the ground. It

is expected that ULTEM 9085 will perform similarly to the ABS that NASA tested

aboard the ISS using the FDM process.
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Printing in the vacuum of space will present additional challenges, but the work

done by Cerri et al. [6] presents a reasonable estimate for the power required to

achieve the needed part temperature. To the author’s knowledge, no work has been

done to determine the strength of the joint between a pre-existing part and a newly

printed part using ULTEM 9085 via FDM.

21



III. RESEARCH METHODOLOGY

3.1 Chapter Overview

This chapter explains the research methods used to address each of the research

objectives. The first research objective is to validate the mechanical properties of

ULTEM 9085 printed using FDM in different print orientations. The second research

objective is to test joint strength between a pre-existing part and a newly printed part

manufactured via FDM (the composite print method). The results of the testing done

on normally printed specimens will be the standard that the composite print method

results will be compared against.

3.2 Tensile Specimens

Specimens were manufactured either by Stratasys or at the test location using

the Fortus 450mc. The first set of tensile specimens are standard dogbone specimens

manufactured to meet specifications for Type IV specimens described in ASTM D638-

14, Standard Test Method For Tensile Properties of Plastics (see Figure 3.2). These

specimens were printed in the XY, YX, and ZX directions (see Figure 3.1). Printed

specimens in these three directions were ordered directly from Stratasys. Specimens

were also printed to the same specifications at the test location using the Fortus

450mc. The specimen to specimen variation in width and thickness at the gage

section for all these specimens were less than 1%.

The lot number of the ULTEM 9085 feedstock used to manufacture parts was not

recorded. All prints completed in the Fortus 450mc used Stratasys Fortus feedstock

in both natural and black colors. All prints completed in the TAZ 6 used 3DX

Tech 1.75mm feedstock in natural color. Feedstock was fed directly from a PrintDry

filament drying system set to 70 C°into the TAZ 6.
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Figure 3.1. Print directions used for tensile specimens.

The settings are fixed for the Fortus 450mc and cannot be changed. Feedstock

type is recognized by the Fortus 450mc and the settings are locked in. For ULTEM

9085, the nozzle is set to 375 C°and the build volume temperature is set to 170 C°.

Settings for the LulzBot TAZ 6 can be found in Appendix A. The build volume

temperature is varied in the TAZ 6.

3.2.1 Column Tensile Specimens

The column specimens are rectangular (8mm x 19mm x 115mm) without a reduced

area gage section. The specimens were designed this way for ease of manufacturing.

Standard dogbone specimens were considered, but would not provide a large surface

area to create a joint in the gage section using the composite print method. A larger

surface area means more error is acceptable in aligning specimens. The specimens

are rectangular to allow a larger area for the base layer of the newly printed part.

Rectangular specimens are not normally desired because they do not have a gage
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(a)

(b)

Figure 3.2. (a) Dimensions for YX tensile specimens. (b) Dimensions for ZX and XY
tensile specimens.

section of reduced area. A gage section with a smaller area than the grip section

is desirable to prevent slippage of the specimen during testing and to control where

the failure occurs. If the grip section is wider, and therefore larger in area, more

gripping surface is available and the specimen will likely break in the gage section

before slippage in the grip section occurs. Since the joint layer is likely weaker than

the rest of the specimen, it serves as a gage section where the failure will likely occur.

To print these specimens, half specimens were printed batches of 30 using the

Fortus 450mc before the full specimens were printed. Full specimens were completed
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by printing a case for the half part and then continuing the print after the half part

was inserted into the case (see Figure 3.3). The Fortus 450mc has a function for

integrating non-printed parts into printed parts. The user specifies a layer of the

print for the Fortus 450mc to pause. During this pause, the print chamber can be

accessed and other parts can be placed on the printed part to be integrated into the

completed part. The print is then resumed and the part is completed.

(a) (b)

Figure 3.3. (a) Inserting the pre-printed part into the case inside the Fortus 450mc
during the pre-programmed pause. (b) Completed tensile specimen removed from case
part. Note the right side of the specimen is newly printed in the ZX direction and the
left side is the pre-manufactured insert part printed in the YX direction.

Column specimens completed in the LulzBot TAZ 6 were printed in a similar

manner. The TAZ 6 was modified to print ULTEM 9085 by replacing parts allowing

the printer to operate at a higher build volume temperature. An enclosure was con-

structed around the printer, and heat lamps controlled by a Watlow CV temperature

controller were added to increase the build volume temperature (see Figure 3.4). The

bulk of this work was accomplished by Cerri et al. [6], and modifications such as

insulation and cooling for the hot end were added for this research. The case used
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to hold the bottom half of the tensile specimen in place was printed separately and

secured in the center of the build plate using high temperature Kapton tape (see

Figure 3.4). The top half of the specimen was sliced in Repetier-Host V1.0.6 and the

resulting G-code was edited. An offset was added to the G-code in the z direction to

begin the print on top of the Fortus 450mc printed inserts. For specific procedures

used to operate the modified TAZ 6, see Appendix A.

To manufacture a tensile column specimen in the TAZ 6, the insert was placed

in the case after the auto-leveling process was completed. Inserts were stored in the

build volume for at least 20 minutes before printing began to heat them to build

volume temperature (see Figure 3.4). The build volume temperature at the start of

the print was recorded along with the measured height of the printed insert. Images

were captured using a FLIR Lepton v1.4 camera and a Raspberry Pi. The images

were processed in Matrix laboratory (MATLAB) to produce a temperature profile

of the part. Inserts were assumed to be at the build volume temperature and the

nozzle was assumed to be at the nozzle temperature indicated by the TAZ 6. These

temperatures were used as the maximum and minimum temperatures in the image for

calibration in the MATLAB script. Images were taken when the nozzle was the same

distance from the camera as the closest portion of the printed part so the intensity

is appropriately scaled (see Figure 3.5). This method of obtaining the temperature

profile in the modified TAZ 6, including the MATLAB script, was developed by Cerri

et al. [6].

In addition to the tensile specimens manufactured using inserts, tensile specimens

were also manufactured using a pause half-way through the print. This pause sim-

ulates printing on a pre-existing part by allowing the first half to cool to ambient

temperature before resuming. A pause was inserted halfway through the print and

the nozzle was moved away from the part throughout the pause. The G-code was
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obtained by slicing the part in Repetier-Host V1.0.6 and then writing the pause into

the resulting G-code. The modification to the G-code included movement in the Z

then Y direction to move the nozzle away from the part, retraction of the filament

to prevent it from seeping out of the nozzle, a five minute pause, and a re-priming

of the filament before resuming the print. During the five minute pause, the hot end

remains at printing temperature (355 C°). The filament seeps out during the pause

despite the retraction of the filament, so the extrusion motor must be commanded

to extrude near the end of the pause before the position is reset. Extruding filament

near the end of the pause keeps feedstock primed when the print resumes. Attempts

at normal air gaps failed (see Figure 3.6). The G-code was modified via MATLAB

to obtain a negative air gap at the joint (see Appendix B). Half way through the

G-code, every layer was shifted in the Z direction to achieve a negative air gap. A

shift of -100μm was used first, resulting in a weak tensile specimen. A shift of -150μm

was used next, resulting in a stronger tensile specimen. The coefficient of thermal

expansion of ULTEM 9085 is 65.27 μm
m°C [11]. With the half column parts measur-

ing 28.75mm, the change in height after cooling 60 °C throughout the part is about

113μm. The coefficient of thermal expansion is likely the reason the nozzle has to

be moved down at the joint layer in order to create a strong joint. After determin-

ing the offset required to achieve a good air gap at the joint layer, specimens were

printed at build volume temperatures of 110 °C, 130 °C, 150 °C, 170 °C. At least five

specimens were printed at each build volume temperature, and one print was used to

manufacture all five any given temperature.

Specimens were originally built up to 57.5mm, the same height as the inserts used

in the previous method of manufacturing tensile specimens. Many of the 57.5mm

specimens failed near the grip rather than at the joint. This is a result of the stronger

joint created with the pause print method. In the composite print method, the joint
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could be counted on to fail and act as a gage section. The stronger joint created

by the paused print method results in the specimen failing in the grips before the

joint because of the extra stress applied in and near the gripped part of the specimen.

Lighter grip pressures were tested, but slipping occurred in the grips. In an attempt to

fix the problem, longer specimens were manufactured to provide a larger grip surface.

A larger grip surface allows less grip pressure without slippage. The pause specimens

used are 80mm in length, taking advantage of the entire wedge gripping surface.

Some composite specimens were printed cold, meaning that the inserted pre-

existing part was at room temperature outside of the print chamber and then inserted

into the case part before finishing the print. Others were printed hot, meaning the

pre-existing parts were kept inside the print chamber while the case part was built.

Leaving the pre-existing part inside the chamber allows it to reach a temperature

assumed to be equal to the build volume temperature.

3.2.2 TAZ 6 Dogbone Tensile Specimens

The 80mm specimens also failed in the grip section, so the original type IV spec-

imens from ASTM D-638 were printed. The type IV geometry was not used in

the composite print method because inserts could not be precisely aligned, but the

alignment using the pause method is as precise as possible since the nozzle position

holds the same zero between the top and bottom halves. The modified TAZ 6 is not

equipped with support material, so supports were designed in SolidWorks. When

the print reached the gage section, the specimens were pulled around by the nozzle

because of the small cross sectional area. The supports were designed to minimize the

issue of the printed part moving under the nozzle. Dogbone specimens were printed

in batches of five (see Figure 3.7). A band saw was used to cut the specimens apart

and a Dremel tool was used to clean off excess material. The specimen to specimen
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variation in width and thickness at the gage section for dogbone specimens printed

in the TAZ 6 were more than 1%. The average gage section area was computed for

each set of five specimens printed at a given build volume temperature.

Several attempts were often required to obtain an acceptable batch of tensile

specimens. If defects were present in the gage section on multiple specimens in the

batch, the specimens were discarded and another print was completed.
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(a) (b)

(c) (d)

Figure 3.4. (a) Modified TAZ 6 interior. (b) Modified TAZ 6 exterior. (c) Shelf used to
warm specimen inserts, note thermocouple in background at approximately the same
height. (d) Composite column specimen being printed in in the TAZ 6.
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Figure 3.5. FLIR image (left) and cropped FLIR image (right) used to determine
temperature profile of part during printing.

(a) (b)

Figure 3.6. (a) Lower half printed before the pause with normal air gap. Only one
top half remained attached at the end of the print. (b) One of the top halves from
the failed print. The layer making up the joint between the two parts did not make a
strong bond and came off later in the print.
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Figure 3.7. ASTM D-638 Type IV tensile specimens printed in the modified TAZ 6.
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3.3 Compression Specimens

Prisms were manufactured in the Fortus 450mc to ASTM D695 specifications.

Two print directions, ZX and XY were tested. A raster fill was used in both specimens,

and the toolpath was set using Insight v.11.2 software.

3.4 Tensile Testing

Each tensile specimen was tested using a MTS Landmark 5-KIP machine. A MTS

Extensometer, model 632.26F-20, was used in the gage section of each specimen. A 1

mm/min strain rate control was used for all specimens except the Stratasys printed

YX specimens, where a strain rate of 5 mm/min was used. Strain rates were selected

to achieve failure between 30 seconds and 5 minutes of testing. ASTM D638-14 states

that the speed of testing should rupture the specimen between 0.5 and 5 minutes.

Marks were made on each specimen in the gage sections so the specimens are

always gripped in the same place. Tabs mounted to the grip wedges are used to

consistently grip the specimens without canting them. The center of the gage section

was also marked so the extensometer could be mounted there. The extensometer is

attached using rubber bands to the thin side of the gage section (see Figure 3.8).

Care must be taken to prevent damage to the gage section by the knife edges of the

extensometer. The size of the rubber bands used to mount the extensometer must

not be small enough to damage the specimen, but must be small enough to hold the

extensometer knife edges in place throughout the test. Once the specimen is gripped

and the extensometer is mounted, the grip displacement, extensometer displacement,

and force were offset. The tensile test was then started, and results from the tensile

test were used to produce stress-strain curves and obtain mechanical properties.
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Figure 3.8. Extensometer Setup

3.5 Summary

The methods used to address the research objectives were laid out in Chapter III.

Control tensile specimens were manufactured by a Fortus 450mc and at Stratasys

to obtain baseline material properties to compare other specimens against. Column

specimens and specimens manufactured with a pause were manufactured to test the

strength of joints. The results of testing done on printed specimens are provided in

Chapter IV.
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IV. Results

4.1 Chapter Overview

This chapter contains the results of experiments conducted to address the research

objectives. The first research objective is to validate the mechanical properties of

ULTEM 9085 printed using FDM in different print orientations. The second research

objective is to test joint strength between a pre-existing part and a newly printed part

manufactured via FDM (the composite print method). The results of the testing done

on normally printed specimens will be the standard that the composite print method

results will be compared against. Results for specimens manufactured using the pause

print method are also provided. In addition, thermal analysis was done to estimate

the power required to heat the printed part to the desired build volume temperature

in vacuum.

4.2 Tensile Tests

4.2.1 Stratasys Manufactured Tensile Specimens

Three different specimen geometries were tested (two dogbone specimen geome-

tries and one column specimen geometry) and three separate FDM printers were used

to manufacture the specimens. First, data were analyzed for the Stratasys printed

specimens (see Figure 4.2 and Table 4.1). Each of the three specimen types was tested

five times. The 2% offset method was used to determine yield strengths. Specimens

printed in the YX direction had the highest strength, followed by XY and ZX spec-

imens respectively. ZX and XY specimens broke at maximum stress. XY specimens

have a fault in the gage section due to the nozzle path during printing, and all speci-

mens failed at that point. A similar fault was observed by Bagsik et al. for specimens

printed in that direction. The nozzle started and ended its path along the perimeter
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in the gage section, allowing the filament to cool and resulting in a weak bond at

that point (see Figure 4.1). The modulus of elasticity was higher for YX specimens

than the others and about the same between YX and ZX specimens. Bagsik et al.

also found that specimens were strongest printed in the YX, XY, and ZX directions

respectively [4]. However, the modulus of elasticity is the same between the YX and

ZX specimens in Bagsik’s results. The higher ZX modulus found in Bagsik’s research

may be the result of a different raster fill or a different specimen geometry.

ZX specimens failed between layers in the gage section (see Figure 4.1). Failure

between layers is expected in the ZX print direction because the tensile force is or-

thogonal to the layer direction. YX specimens exhibited a large elastic region (see

Figure 4.2). The large elastic region in YX specimens can be attributed to the lack of

a raster fill. The entire gage section consists of material laid in the direction of tensile

force, so the force is resisted by strands of material rather than adhesion between

roads or layers.

Table 4.1. Stratasys Tensile Specimen Data

Print Direction XY YX ZX

Mean Ultimate Stress (MPa) 58.9 87.1 44.2
Ultimate Stress Standard Deviation 1.08 0.435 3.30
Ultimate Stress Coefficient of Variation (%) 1.83 0.499 7.47
Strain at Failure (mm/mm) 0.0917 0.415 0.0532
Strain at Failure Standard Deviation 0.00670 0.0165 0.00547
Strain at Failure Coefficient of Variaion (%) 7.30 3.97 10.27
Mean Yield Stress (MPa) 29.8 36.6 28.3
Yield Stress Standard Deviation 0.718 3.11 0.459
Yield Stress Coefficient of Variation (%) 2.40 8.50 1.62
Mean Modulus of Elasticity (GPa) 1.03 1.53 1.03
Gage thickness (mm) 4.14 1.33 4.22
Gage width (mm) 6.02 19.12 6.16
Speed of Testing (mm/min) 1 5 1
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1. Side and cross-sectional views at the point of failure on tensile specimens
manufactured at Stratasys. (a) Side view of XY specimen failure location due to
the nozzle path. Note there was no neck formation in the boxed section. (b) Cross
sectional view of XY specimen (c) Side view of YX specimen (d) Cross-sectional view
of YX specimen (e) Side view of ZX specimen (f) cross-sectional view of ZX specimen
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Figure 4.2. Stress-strain curves from specimens manufactured at Stratasys.

4.2.2 Composite Specimens

The data for ZX control specimens manufactured in the Fortus 450mc are shown in

Table 4.2 along with Stratasys printed ZX specimens. Each specimen type was tested

five times. A two-tailed t-test was done using the Stratasys dogbone mean ultimate

strength as the assumed mean value. At a 95% significance level, the null hypothesis

that the means are the same cannot be rejected for the column specimens but it

can be rejected for the Fortus 450mc dogbone specimens. The Fortus 450mc column

specimens can be considered part of the same distribution as the Stratasys specimens

but the Fortus 450mc dogbone specimens cannot. These results demonstrate that

column specimens manufactured in the Fortus 450mc have the same ultimate strength

as Stratasys printed ZX specimens at a 95% significance level.

The results for all ZX specimens manufactured in the Fortus 450mc are sum-

marized in Table 4.2. The 2% offset line did not intersect with the curve for cold
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specimens, so the yield stress is listed as N/A. Specimens labeled ”Cold” were manu-

factured using inserted parts left at room temperature prior to the print. Specimens

labeled ”Hot” used inserted parts left in the build chamber during the manufacture

of the case, allowing them to reach the build volume temperature. For hot specimens,

build volume temperature can be thought of as the same as part temperature at the

start of the print. The composite specimens that were manufactured with pre-heated

inserts had 65.8% the ultimate tensile strength of the column specimens while the

strength of column specimens with inserts kept at room temperature prior to the

print were 51.8% as strong. At a 95% significance level, the mean strength of the

hot specimens is part of a different distribution than the mean of the cold specimens.

These results suggest that the strength of the joint created using the composite print

method depends on the temperature of the inserted part.

Table 4.2. Column Specimen Data

Specimen Type Column Dogbone Cold Com-
posite

Hot
Composite

Mean Ultimate Stress (MPa) 45.2 41.3 23.1 29.8
Ultimate Stress Standard Deviation 3.21 1.36 1.78 0.721
Mean Yield Stress (MPa) 32.1 29.9 N/A 28.7
Yield Stress Standard Deviation 0.425 2.19 N/A 1.24
Mean Modulus of Elasticity (GPa) 1.06 1.06 1.02 1.06

The strength of column specimens manufactured in the TAZ 6 at various build

volume temperatures are summarized in Table 4.3. Parts are left in the build volume

to reach ambient temperature. Again, build volume temperature can be thought

of as the same as part temperature at the start of the print. Four specimens were

successfully printed and tested at 130 °C, five at 150 °C, and six at 160 °C. The mean

ultimate strength increases as the build volume temperature increases, but the large

standard deviation and number of samples make the results inconclusive. On a 90%

confidence interval, the data from all three build volume temperatures tested can be
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considered part of the same distribution.

Table 4.3. TAZ 6 Composite Column Specimen Data

Build Volume Temperature (°C) 130 150 160

Mean Ultimate Stress (MPa) 15.0 19.1 21.4
Ultimate Stress Standard Deviation 10.21 9.71 6.31

The variability is likely due to the placement of the inserted part prior to the

print and the moisture content of the ULTEM 9085 filament. The height of each

insert varied by ± 0.03 mm, enough to make a difference as was discovered when

printing tensile specimens with a pause half way through the print. The inserts

were not completely secured, and could move during the first few layers if the nozzle

made contact with the inserts initially. In addition, the bed leveling process the

TAZ 6 utilizes to obtain a zero for the nozzle introduces some variability. The large

standard deviation shows how important process control is in creating a strong joint.

Another possible factor is the moisture content of the inserts. The inserts were printed

days before the tensile specimens were completed in the TAZ 6, giving them ample

time to absorb moisture [12]. A high moisture content in the inserts could result in

steam becoming trapped between the insert and the first layer of the new part. While

the composite print method did not produce consistent results, it demonstrated the

importance of alignment and air gap in the strength of the interlayer bond at the joint.

To obtain more conclusive data, the pause method of printing column specimens was

used.

Machined ULTEM was also tested since all other composite specimens were man-

ufactured using a printed insert. ULTEM 9085 was only available in filament form,

so extruded ULTEM 1000 was used. Inserts were machined from ULTEM 1000 and

used to manufacture tensile specimens by printing ULTEM 9085 onto the inserts.

The specimens were poorly attached despite using the same procedures as specimens

manufactured with the printed ULTEM 9085 inserts. The different blend of ULTEM
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is likely the cause of poor strength at the joint.

4.2.3 Joints Manufactured via Pause

To reduce variability in the manufacture of tensile specimens, a pause was used

during the middle of the print to simulate printing on a pre-existing part. A pause was

manually inserted halfway through the print and the nozzle was moved away from the

part throughout pause. The G-code was modified via MATLAB to obtain a negative

air gap at the joint layer. Half way through the G-code, every layer was shifted in the

Z direction to achieve a negative air gap. A shift of -100μm produced weak tensile

specimens and a shift of -150μm produced stronger specimens. A -150μm shift was

used to manufacture all specimens with the pause method.

A pause of ten minutes was used to simulate printing on a pre-existing part with

the 80mm specimens. Thermal images were captured during the pause with the

57.5mm specimens, where a pause of five minutes was used. The five minute period

allowed the part to reach ambient temperature (see Figure 4.3). The top of the

area captured is at the edge of the part, so it has a lower intensity. A maximum

temperature of 145 °C and a minimum temperature of 125 °C was assumed for the

cropped area. Bed temperature was set to 145 °C, and the heating from the bottom

of the part can be seen in the plot. Since the top of the part is cooler than the

middle, five minutes is sufficient to assume the top layers have cooled to ambient

temperature. For added assurance that the part has had adequate time to cool to

ambient temperature, a pause of ten minutes was used instead of five minutes for the

80mm tensile specimens.

The column specimens consistently failed in the grip section, so the type IV dog-

bone geometry was used for the pause print method. The dogbone specimens printed

in the TAZ 6 failed in the gage section, but none at the joint layer. The middle of
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the gage section is where the pause was done during the print, so it is easy to tell if

the failure occured at the joint layer. Reducing the air gap makes the joint at least as

strong as other parts of the print. One possible contributing factor to these results is

the number of specimens printed during one print. Since five specimens were printed

at a time, the dogbones had more time to cool between layers than if one specimen

was printed at a time. Each layer takes one minute and 37 seconds (slightly less time

in the gage section layers). The part likely has time to cool close to ambient tem-

perature between prints, especially in the gage section where there is a smaller cross

section. An image was taken during a print at a build volume temperature of 170 °C

in the gage section (see Figure 4.4). The figure shows that the part temperature is

higher below the most recent layer, suggesting that the top layer has cooled to ambi-

ent temperature before the nozzle returns. A maximum temperature of 170 °C and

a minimum of 160 °C were assumed for the cropped image. If the parts were cooled

close to ambient temperature between layers, then the longer ten minute pause will

have similar properties as all other layers. These results suggest that if the base part

is heated to 170 °C, the joint will be as strong as the part being printed.

Since the failures did not occur at the joint layer, these data can be used to

determine the relationship between strength and build volume temperature and to

compare against specimens manufactured in the Fortus 450mc. Ideally, five specimens

would have been tested for each build volume temperature. Due to print quality

issues, sometimes multiple prints were tested for each build volume temperature.

Five specimens were tested at build volume temperatures of 110 °C and 170 °C. Ten

specimens were tested at build volume temperatures of 130 °C and 150 °C. One of the

five tested at 170 °C was excluded from the data due to a print fault in the specimen

that was determined to be a likely failure point before the tensile test was conducted.

Fracture surfaces of the specimens manufactured using the pause print method
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can be seen in Figure 4.5. A clean failure between layers can be seen in each image,

and there are not any significant differences visible between the fracture surfaces at

different build volume temperatures.

The mean ultimate strength of specimens manufactured in the TAZ 6 at a build

volume of 170 °C was 36.0 MPa and those manufactured in the Fortus 450mc (also

at a set build volume temperature of 170 °C), was 41.3 MPa. In addition, the di-

mensional accuracy of specimens manufactured in the TAZ 6 was less than specimens

manufactured in the Fortus 450mc. Ultimate tensile strength increased as build vol-

ume temperature increased with the exception of specimens printed at 150 °C (see

Table 4.4 and Figure 4.6). Similarly, the standard deviation decreased as build volume

temperature increased except for specimens printed at 150 °C.

The dip in the strength plot at 150 °C may simply be due to variability in print

quality at build volume temperatures below 170 °C. Specimens with defects or batches

with multiple defects were discarded, so major defects are likely not the cause of the

dip in strength at a build volume temperature of 150 °C. Residual stresses could

be present when a build volume temperature of 150 °C is used that are not present

when printing at 130 °C and 170 °C. 3DX Tech, a supplier of ULTEM 9085 filament,

recommends annealing completed parts in an oven at 150 °C to relieve stress [16].

Competing effects of increased neck growth as build volume temperature increases

and residual stress could be the reason for the drop in strength at the 150 °build

volume temperature. If the residual stress is a factor, it means that more residual

stress occurs in parts printed at a build volume temperature of 150 °C than at the

surrounding temperatures. Another reason the residual stress could be a factor is the

time parts were left in the oven after printing in the TAZ 6. Prints were done overnight

due to the long print time, so completed tensile specimens were removed from the

oven some time the next day. The oven remained on until manually turned off, and
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most specimens were removed from the oven hours after the print was completed.

The different lengths of time left in the oven after the print was completed could have

changed the residual stresses in the specimens and could be a reason for the drop

in strength at build volume temperatures of 150 °C. It was expected that strength

would increase as build volume temperature increases. Necks between roads have

more time to develop the higher the build volume temperature is because it keeps the

roads above their glass transition temperature for a longer period of time [13].

The standard deviation of strength at a build volume of 170 °C is an order of mag-

nitude smaller than the other build volume temperatures tested. The small variability

in strength of specimens manufactured at a 170 °C build volume temperature has im-

portant implications for validating FDM parts for use in aerospace applications. If

build volume temperatures of less than 170 °C are used, a higher safety factor would

need to be implemented in the design of components due to the higher standard devi-

ation in strength. If design strength was based on three standard deviations from the

mean, the design strength would be 20.5 MPa and 35.3 MPa for 110 °C and 170 °C

respectively. The different temperature gradient between specimens in a batch may

have had an effect, but the small standard deviation given by the specimens printed

at a build volume temperature of 170 °C suggest that this effect was small.

Table 4.4. TAZ 6 Dogbone Specimen Data

Build Volume Temperature (°C) 110 130 150 170

Mean Ultimate Stress (MPa) 29.6 33.7 28.4 36.0
Ultimate Stress Standard Deviation 3.03 2.69 3.01 0.250
Ultimate Stress Coefficient of Variation (%) 10.2 7.98 10.6 0.695
Elastic Modulus (GPa) 0.966 1.02 0.903 0.987

The moisture content of the filament is also important. Three sets of dogbones

were manufactured within one week of the spool of filament being replaced and stored

in the PrintDry filament drying system. These dogbones were printed again at their
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respective build volume temperatures after the filament was stored for more than

two weeks in the PrintDry system. Specimens manufactured using filament that was

stored for more than two weeks in the PrintDry system were stronger than those that

were stored for less than one week (see Figure 4.7). Any filament used in orbit must

be kept dry to obtain nominal strength of printed components. The moisture content

of the filament was not measured, but Zaldivar et al. found that moisture levels of

ULTEM 9085 filament above 0.4% result in weaker parts and that these moisture

levels can be reached within one hour of room temperature exposure [12]. Zaldivar

et al. measured moisture content by weighing filament after being exposed to humid

environments and comparing to the dry weight of the filament [12]. In space, the

moisture will likely not be an issue.

Density of column specimens manufactured via pause in the TAZ 6 at build vol-

ume temperatures of 130°C and 150°C were compared using computed tomography

(CT) scanning. A Nikon XT H 225 ST was used to gather a series of X-ray images

at different angles. A voltage of 142 kV and a current of 125μA were used to collect

the images. In total, 720 images were collected, and each image was averaged four

times. The effective pixel size that could be measured was 8μm. The images were re-

constructed into a vgl file that could be analyzed using the Volume Graphics software

package.

The porosity was 2.72% and 2.39% for build volume temperatures of 130 °C and

150 °C respectively. The higher build volume temperature resulted in a lower porosity.

While only one sample was tested for each build volume temperature, the results align

with what was expected. A higher build volume temperature means the filament

spends a longer time above its glass transition temperature after being extruded,

allowing more time for neck growth to occur [13]. For the specimen printed at a build

volume temperature of 130°C, the porosity appears to be concentrated to a vertical
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section on the right of the specimen as pictured (see Figure 4.8(a)). Porosity also

seems to be concentrated in a vertical section of the specimen manufactured at a

build volume temperature of 150°C (see Figure 4.8(b)). It can be seen from viewing

the images from different orientations that the majority of the porosity is located in

the raster filled interior of the specimens (see Figure 4.8(c)). A higher infill density

and infill overlap may reduce porosity in the raster fill, the settings used for infill

density and infill overlap can be seen in Appendix A.
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(a)

(b)

Figure 4.3. (a) Area cropped for analysis during a print done on column pause spec-
imens. The print head is white in the image due to its higher temperature. Note
the print head is moving to begin its first layer after the pause on the far left column
specimen. (b) Temperature plot of designated area.
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(a) (b)

Figure 4.4. (a) Area cropped for analysis from a print at a build volume temperature
of 170 °C. The print head has moved left to right and is on its way back left in the
image. (b) Temperature plot of designated area.

(a) (b)

(c) (d)

Figure 4.5. Cross-sectional views at the point of failure on tensile specimens manufac-
tured in the modified TAZ 6 at the following build volume temperatures: (a) 110 °C
(b) 130 °C (c) 150 °C (d) 170 °C. A clean failure between layers can be seen on each
specimen pictured.
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Figure 4.6. Ultimate tensile strength vs build volume temperature of dogbone speci-
mens.

Figure 4.7. Percent loss of ultimate tensile strength of specimens using filament stored
in a PrintDry filament drying system for more than two weeks and less than one week.
Specimens made with filament dried in the PrintDry for more than two weeks were
stronger at each build volume temperature than specimens dried for less than one week.
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(a) (b)

(c)

Figure 4.8. Images of column specimens manufactured via pause in the TAZ 6 taken
using a Nikon XT H 225 ST Computed Tomography system. The amount of porosity in
a particular part of the image is represented by its color. (a) Specimen manufactured
at a build volume of 130 °C viewed from the side (b) Specimen manufactured at a build
volume of 150 °C viewed from the side (c) Cross-section of specimen manufactured at
a build volume of 150 °C 50



4.3 Thermal Analysis

To calculate the power required from lamps to achieve the desired part temper-

ature in orbit, the methods that Cerri et al. developed were used [6]. First, the

terrestrial thermal model developed by Cerri et al. was used to estimate the tem-

perature profile of the part as it is being printed. Table 4.5 includes the values used

in the model. The model assumes the layer height is the same as the nozzle diame-

ter (0.4mm), constant material properties, and is steady state. Energy required for

phase change was neglected along with temperature gradients in the X and Y di-

rections (see Figure 4.9). Temperature in the Y direction is neglected because it is

assumed there is negligible temperature change in within the 2mm thickness of the

cylinder. Temperature in the X direction is neglected because the nozzle moves fast

enough for differences in temperature in the X direction to be small. The 1D model

does not capture interactions with the heated bed, so the part of the print used for

experimental data is far enough away from the bed for this assumption to be accu-

rate. The model is given by Equation 4.1 and is plotted against experimental data

in Figure 4.11. T0 is nozzle extrusion temperature in °K, T is ambient temperature

in °K, z is distance down from the nozzle in meters, P is the circumference of the

cylinder in meters, k is thermal conductivity of ULTEM 9085 in W
mK

, and Ac is the

cross sectional area of the cylinder in square meters (see Table 4.5). A new value of

K is calculated for each increment (see Equations 4.1-4.3).

T (x) = (T0 − T∞) · e−mz + T∞ (4.1)

m =

√
KP

kAc

(4.2)
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K = h+ εσ(T 2 + T 2
∞) · (T + T∞) (4.3)

Figure 4.9. Coordinate system used in the thermal model. Figure from Cerri et al. [6].

Next, the cylinder that was used by Cerri et al. was printed in the modified TAZ

6 at a 170 °C build volume temperature and a print speed of 15 mm
s
. Transience

was neglected for the model, and the print speed of 15 mm
s

was best suited for this

assumption out of the print speeds that were tested by Cerri et al. Thermal images

were taken of the part as it was being printed. The thermal images were mapped

to temperature using the fourth order scaling method used by Cerri et al. and by

assuming the maximum temperature in the cropped image is the nozzle temperature

and the minimum temperature is the build volume temperature (see Figure 4.10).

The temperature profile of the part can be seen in Figure 4.11. The wide bars

representing the experimental data in Figure 4.11 are a result of the resolution of the

microbolometer FLIR camera. The nozzle distance was determined by counting the

pixels of an object of known dimensions in the image and scaling appropriately. A two-

term exponential was fit to the experimental data, and the slope of the exponential

fit was used in the power requirement calculation.
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Figure 4.10. Thermal image of test cylinder printed at a build volume temperature of
170 °C.

Table 4.5. Values of terms used in the thermal model of a cylinder as it is being printed.
These values are used in Equation 4.5

T0 313 °C
Tinf 170°C
Emissivity (ε) 0.8
Perimeter (P) 308mm
Cross Sectional Area (Ac) 2.5 ∗ 10−7m2

Thermal Conductivity (k) 0.25 W
mK

Convection Coefficient (h) 20 W
m2K

An energy balance was done for the orbital environment without a convection term

(see Equation 4.4). The first term is radiation out of the part where T∞ is assumed

to be zero, the second is conduction into the top of the layer, the third is conduction

out of the bottom of the layer, and the last term is energy stored in the printed part.

T0, the initial part temperature, is the average between the nozzle temperature and

the temperature just below the nozzle determined by the FLIR microbolometer image

data. The first two terms are evaluated using the slope of the experimental fit curve

in Figure 4.11 at a distance of 0mm from the nozzle and 0.4mm (nozzle diameter and

assumed layer height) from the nozzle respectively. The balance indicates that an
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additional 0.7 W
cm2 into the part is needed to achieve the desired temperature profile

that resulted from a build volume temperature of 170 °C. If the temperature profile

can be replicated in space, the strength between layers will likely be the same. The

power requirement is a rough order of magnitude, as there was error in the energy

balance done on the terrestrial model. Positive 0.3 W
cm2 , meaning additional power

lost by the part, were unaccounted for in the terrestrial energy balance (see Equation

4.5). In other words, 0.3 W
cm2 was the result of subtracting the energy storage term

and the contribution from the lights from the left side of Equation 4.5. This indicates

an additional 0.3 W
cm2 needs to be added into the part for the energy balance to sum to

zero. If the additional 0.7 W
cm2 are supplied to the part while in the space environment

by lamps or other means, the part quality will be the same as one printed in a 170

°C build volume.

σεAs(T
4
0 − T 4

∞)− kAc
∂T

∂z

∣∣∣∣∣
0mm

+ kAc
∂T

∂z

∣∣∣∣∣
0.4mm

= ρCpV ol
∂T

∂z

∂z

∂t
(4.4)

σεAs(T
4
0 −T 4

∞)+hAs(T0−T∞)−kAc
∂T

∂z

∣∣∣∣∣
0mm

+kAc
∂T

∂z

∣∣∣∣∣
0.4mm

= ρCpV ol
∂T

∂z

∂z

∂t
(4.5)
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Figure 4.11. Thermal profile of hollow cylinder print at a build volume temperature of
170 °C.

4.4 Compression Tests

Tests were completed at 22-23 °C on a MTS 810 with a 110 kip load frame.

The compression rate was 1.3 mm/min and specimens were compressed 15.4mm.

Global strain is used, defined as the change in height divided by the overall original

specimen height. Specimens manufactured in the ZX direction are stronger than those

manufactured in the XY direction. XY specimens failed at 165.7 MPa (see Figure

4.12 and Table 4.6). ZX specimens did not fail, but continued to be compressed until

the pre-determined final displacement of 15.4mm (see Figure 4.13). Failure in the XY

specimens is a buckling outward from near the center. The gap is a result of the layers

separating near the center, allowing the halves to buckle in opposite directions. These
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findings are different than those of Bagsik et al. [4], where the research found lower

compressive strengths and a failure mode for ZX specimens. The concave shape of

the stress-strain curve after the yield point may be a result of the perimeter road and

raster fill of the specimens in both print directions. Bagsik et al. also had a concave

shape in the stress-strain curve for the ZX direction specimens, but not for the XY

direction specimens. These differences may be attributed to printer settings such as

layer height and air gap and the differences between the Fortus 450mc and Fortus

400mc used by Bagsik et al. The increasing stress seen in the ZX specimens after

they separate from the YX specimens in the stress-strain plot is due to the increasing

cross-sectional area as the ZX specimens are compressed.

The compression testing results show that parts printed in the XY direction will

reach the ultimate tensile strength well before yield in compression. The compression

yield strength is more than 1.5 times the ultimate tensile strength in the XY direction.

It is expected that the tensile stress on one side of a beam in bending will be equal to

the compression stress on the other, so only tensile strength needs to be considered in

design for beam bending. In the ZX direction, yielding never occurs in compression,

so tensile stress will be a larger concern than compression stress in ZX as well.

Table 4.6. Compression Specimen Data

Mean Ultimate
Stress (MPa)

Ultimate Stress
Standard Devia-
tion

Yield
Stress
(MPa)

Yield Stress
Standard Devia-
tion

Mean Elastic
Modulus (GPa)

XY 166 2.97 92.4 1.24 1.93
ZX N/A N/A 91.8 1.32 1.65
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Figure 4.12. Stress-strain curves from compression specimens generated in MATLAB.

Figure 4.13. ZX compression specimen (left) and XY compression specimen (right).
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Figure 4.14. Compression specimen print directions.
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4.5 Recommendations

To produce parts as close to nominal strength as possible, energy will need to

be put into the part as it is being printed. The amount of energy put into the part

while in the space environment is analogous to build volume temperature, and a 170

°C build volume temperature produced the strongest specimens. A heat lamp is one

possible means of adding energy to the part.

When both the variables of alignment and air gap are fixed at their best, the joint

is at least as strong as other parts of the print. The joint is at least as strong as

other joints in the gage section because there was never a failure at the joint layer. If

alignment alone is fixed, the joint is weaker. Alignment is as accurate as it will get

when using the pause print method. When no changes were made to the air gap using

the pause print method, the joint was weak. These findings will aid in determining

requirements for an inchworm printer. One recommended requirement will define

alignment accuracy and another will define air gap accuracy between layers. An

inchworm printer would need to determine the print surface position with an accuracy

on the order of tens of microns. Accuracy in the z direction on the TAZ 6 is 1.25

microns based on the stepper motor step angle and the pitch of the lead screws [17]

[18]. The G-code specifies z position to the micron. The angle is also critical, so an

inchworm would have to be carefully aligned orthogonally to the print surface. As

the inchworm robot moves along the print, this accuracy must be maintained.

Another recommended requirement for an inchworm robot is a nozzle cleaning

action. A nozzle wipe in between layers or between several layers will improve print

quality and strength. Many of the faults in the dogbones printed on the modified

TAZ 6 are a result of nozzle buildup that was dragged through material from previous

layers. When the buildup drags on previous layers, it can remove material from the

layer and reduce part strength and quality. The nozzle buildup grows until it is
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stripped off, sometimes causing a print failure. These issues were not present in the

specimens manufactured with the Fortus 450mc because it employs a nozzle wiping

action between each layer.

A dovetail joint was also considered as an alternative to the composite print

method. The dovetail joint would have a reduced usable cross-sectional area, and

would be more difficult to manufacture. The nozzle would likely have to extrude

material into the socket and would not be able to build a tail up layer by layer (see

Figure 4.15). Assuming the most narrow part of the tail accounts for 40% of the

surface area that could be used, the best strength that can be achieved is 40% of a

column. The strength of a printed tail would likely be less than the joint built using

the composite print method, and less reliable to manufacture.

Figure 4.15. Illustration of dovetail joint.

4.6 Summary

Results from testing done to address the research objectives were laid out in

Chapter IV. Tensile testing data showed that a strong joint can be made by printing
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a new part on a base part using FDM if the air gap and build volume temperature

are set properly. In addition, thermal analysis was used to estimate the amount of

power needed to heat a part in vacuum to obtain the desired equivalent build volume

temperature. Conclusions are given in Chapter V.
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V. Conclusions and Recommendations

5.1 Summary

The problem of creating a joint between a new printed structure and a base

structure can be resolved by heating the base structure and setting the proper air

gap. If the base structure is heated to the desired build volume temperature, 170

°C, and the correct air gap is set at the base layer, the joint should be as strong as

the rest of the printed part. The significance of the part temperature and air gap

were discovered from the data from specimens manufactured using the pause print

method. The air gap was varied until a strong joint was achieved and the build

volume temperature was plotted against the ultimate tensile strength of pause print

specimens. Further testing must be done on other aspects of the mobile FDM printer

concept to determine its feasibility.

5.2 Conclusions

The goal of this thesis was to determine the feasibility of creating a joint between

parts by fusing the base layer of a new part to a pre-existing part. It was found

that if the air gap is properly adjusted, the joint layer is at least as strong as other

layers in the part. None of the tensile specimens manufactured via the pause method

failed at the joint layer. The composite print method demonstrated the importance

of alignment and air gap in manufacturing a strong joint. If the nozzle is not properly

aligned or the air gap is not set with an accuracy in the tens of microns, the joint will

be made weak. Aligning the print axis to the base structure will be a difficult design

problem for a mobile FDM robot.

Since the dogbones manufactured via pause did not fail at the joint layer, the data

was used to determine a relationship between strength and build volume temperature.
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Specimens manufactured at a build volume temperature of 170 °C were stronger than

specimens manufactured at lower build volume temperatures. The strength of parts

built at a 170 °C build volume temperature also exhibited a lower standard deviation

in strength, meaning the parts are more consistent at that temperature. In space, it

will be important to keep the part heated as it is being printed to achieve nominal

strength. Constructing a build volume around the part is not feasible, so heat lamps

are suggested as the means to heat the printed part in place of a heated build volume.

It was estimated that an additional 0.7 W
cm2 needs to be absorbed by the part being

printed to achieve a temperature of 170 °C.

The mechanical properties of ULTEM 9085 printed in various print orientations

were also determined. Results from these tests varied from others who have tested

ULTEM 9085 printed in various print directions, but the trends of the data were

largely in agreement.

It is recommended that the same blend of ULTEM is used between the base and

the filament since the composite specimens manufactured with a ULTEM 1000 base

and ULTEM 9085 filament were weak. A machined base would likely result in a bond

at least as strong as a base manufactured via FDM, as long as the same blend of

ULTEM is used between the base and the filament. In addition, the moisture content

of ULTEM 9085 filament affects part quality and strength and must be kept in mind

as the mobile FDM printer concept is developed.

5.3 Future Work

The composite print method should be revisited using inserts kept in a filament

dehydration system. The moisture content of ULTEM 9085 filament affects strength,

so the moisture content of the base part may also have an impact. In addition, a

system capable of determining the position and orientation of the base part with
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an accuracy on the order of tens of microns must be designed. More work needs

to be done to determine the best air gap and other printer settings to use on the

base layer. Zeroing the print head off of the base part is a difficult design problem,

but is necessary in order to attach a new printed structure to a base structure with

consistent joint strength.

The feasibility of using lamps to heat printed parts must also be investigated. In

order to keep the printed part at the desired build volume temperature of 170 °C,

testing should be done using heat lamps in vacuum.
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Appendix A. Modified LulzBot TAZ 6 Information and
Procedures

Specific procedures were required to print tensile specimens in the modified TAZ

6. An auto bed level is done at the beginning of each print to determine the nozzle

position relative to the bed. The process is done by touching the nozzle to each

corner of the bed. When the nozzle comes into contact with a corner, it is electrically

grounded and the position is determined. For consistent prints, the nozzle must be

clean during the automatic bed leveling process. Before each print, the nozzle was

heated to 355 C°and then shut off. As soon as the TAZ 6 is shut off, a brass brush

was used to clean the nozzle. If the power is on while brushing, the brush can cause

a short.

The automatic bed leveling will also fail if any portion of the bed is grounded by

something inside the print chamber. Aluminum backing for the insulation installed

inside the print chamber can cause grounding issues, so it is important to keep the

bed separated from the insulation.

To achieve good bed adhesion, Kapton tape is placed on the bed surface and the

bed temperature is set to 145 C°. The Kapton tape was sanded by hand with 120

grit sand paper. A vacuum cleaner was used to clean the bed and chamber before

each print. Over time the bed develops low and high spots, so extra tape must be

placed in areas where the first layer does not adhere (see Figure A.1). A glue stick is

not recommended to aid in bed adhesion because it is burned off when it comes into

contact with the nozzle.

Printing at build volume temperatures above 130 °C in the TAZ 6 could not be

accomplished until a cooling jacket was added to the B3 Innovations hot end. The

problem was likely filament melting above the hot end, clogging the feeding system.

A cooling jacket was added to the hot end to prevent this problem (see Figure A.2).
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Figure A.1. First layer of raft, areas missing material require more Kapton tape for
bed adhesion.

Pressurized air was ran through the cooling jacket via high temperature hose. After

the addition of the cooling jacket, prints were completed at higher build volume

temperatures.

Linear bearings also melted at a build volume temperature of 170 C°. The linear

bearings that were originally installed on the TAZ 6 are made of a polymer, and the

bearings mounted on the x-axis gantry melted. The original 12mm bearings were

replaced with steel linear bearings. The z and y-axis bearings did not fail at 170 C°.

When printing type IV dogbone specimens to ASTM D-638 standards, the print

must contain more than one dogbone. Attempts were made to print a single dogbone,

but the gage section gets too hot and droops during the print. If more than one

dogbone is printed at a time, there is adequate time for the previous layer to cool in

the gage section before the next layer is added.
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Figure A.2. Cooling jacket for the B3 Innovations hot end.
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(a) (b)

(c)

Figure A.3. CuraEngine Settings in Repetier-Host V1.0.6 used for all prints completed
by the modified LulzBot TAZ 6 with the exception of the cylinder. (a) Speed Quality
Tab (b) Structures Tab (c) Extrusion Tab
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The following is a checklist for printing with the modified LulzBot TAZ 6:

1. Ensure all hoses are attached to their respective cooling jackets

2. Ensure all grounding wires, limit switch wires, and motor wires are connected

(they frequently become loose or break)

3. Ensure print bed is clean and the right amount of Kapton tape is placed down

and sanded at the print site

4. Set nozzle temperature to 355 °C and bed temperature to 135 °C manually

5. Once nozzle temperature reaches 355 °C, shut the printer off and clean the

nozzle with a brass brush

6. Turn on heating lamps and set build volume temperature

7. Turn printer back on, connect printer to Repetier Host and start print

8. If the home button does not work, check button wires under bed

9. If auto bed leveling fails, ensure nozzle is clean, then check grounding wires

under bed. If problem persists, check to see if insulation backing or anything

else could be grounding the bed.

10. After auto bed leveling is completed, turn air on 1/16-1/4 of a turn (1/4 turn

valve) as required. Too much air at low build volume temperatures will cool

the nozzle and result in a print failure.

11. If base layer does not adhere to the print bed, add or remove Kapton tape as

necessary, ensure Kapton tape is sanded

69



Appendix B. MATLAB Script for Editing G-Code

This MATLAB script was used to edit the G-Code to make a negative air gap

at the joint layer. The layers were shifted down 0.15mm. There may be a G-Code

command to re-zero the z-axis rather than using this MATLAB script to change the

air gap at the joint layer.
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G-Code editor
clear all; clc; close all;

filetext  = fileread('D638Clump2.txt');
expr = 'Z';
matches = regexp(filetext,expr,'match');
IND = strfind(filetext,'Z');
n = length(IND);
digits = 7;

for ii = 1:n
newIND(ii,1:digits) = [IND(ii)+1:IND(ii)+digits];
end

Zvals = filetext(newIND);
startvals = 11;
cutZvals = str2num(Zvals(startvals:n-2,1:digits));
shift = -.15;%distance to move Z axis in mm
newZvals = cutZvals+shift;
newSTR = num2str(newZvals,'%8.3f');

replace
fid = fopen('D638Clump2.txt','rt');
fin = fopen('D638ClumpEdit2.txt','wt');
S = fgetl(fid);
layer = 1;
while ischar(S)
    if length(S)>27
        if strcmp(S(27),'Z')

            if ~isempty(S) && strcmp(S(27),'Z')
                 if layer < 318
                     fprintf(fin,'%s\n',S);
                     layer = layer+1;
                 else
                     if layer<500%for str length

                        fprintf(fin,'%s\n',
[S(1:27),newSTR(layer,2:7)]);
                        layer = layer+1;
                     else
                        fprintf(fin,'%s\n',
[S(1:27),newSTR(layer,1:7)]);
                        layer = layer+1;
                     end
                 end
            else
                fprintf(fin,'%s\n',S);
            end
        else

1



            if ~isempty(S) && strcmp(S(28),'Z')
                 if layer < 318
                     fprintf(fin,'%s\n',S);
                     layer = layer+1;
                 else
                     if layer<500%for str length
                        fprintf(fin,'%s\n',
[S(1:28),newSTR(layer,2:7)]);
                        layer = layer+1;
                     else
                        fprintf(fin,'%s\n',
[S(1:28),newSTR(layer,1:7)]);
                        layer = layer+1;
                     end
                 end
            else
                fprintf(fin,'%s\n',S);
            end
        end
    else
             fprintf(fin,'%s\n',S);
    end

    S = fgetl(fid);
end
fclose(fid);
fclose(fin);

Published with MATLAB® R2017b
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