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Abstract

The Unites States and its allies confront a persistent and evolving threat from mis-

sile attacks as nations around the world continue to invest and advance their current

capabilities. Within the air defense context of a missile-and-interceptor engagement,

a challenge for the defender is that surface to air interceptor missile batteries often

must be located to protect high-value targets dispersed over a vast area, subject to

an attacker observing the disposition of batteries prior to developing and implement-

ing an attack plan. To model this scenario, we formulate a two-player, three-stage,

perfect information, sequential move, zero-sum game that accounts for, respectively,

a defender's location of batteries, an attacker's launch of missiles against targets, and

a defender's assignment of interceptors to incoming missiles. The resulting trilevel

math programming formulation cannot be solved via direct optimization and it is not

suitable to solve via full enumeration for realistically-sized instances. We instead uti-

lize the game tree search technique Double Oracle, within which we embed alternative

heuristics to solve an important subproblem for the attacker. We test and compare

these solution methods to solve a designed set of 26 instances of parametric varia-

tion, from which we derive insights regarding the nature of the underlying problem.

Whereas full enumeration required up to 8.6 hours to solve the largest instance con-

sidered, our superlative implementation of Double Oracle terminates in a maximum

of 3.39 seconds over the set of instances, with an average termination time of less

than one second. Double Oracle also properly identi�es the optimal SPNE strategies

in 75% of our test instances and, regarding those instances for which Double Oracle

failed, we note that the relative deviation is less than 2.5% from optimal, on average,

yielding promise as a solution method to solve realistically-sized instances.
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HETEROGENEOUS AIR DEFENSE BATTERY LOCATION: A

GAME THEORETIC APPROACH

I. Introduction

Missile attacks have long been viewed as a diverse and e�ective alternative for air

attacks on enemy targets as they can be safer than using manned aircraft, and they

are also more capable of striking long range targets. Germany was one of the �rst

nations to use missile attacks with the V-1 and V-2 missiles during World War II,

and since then missiles have been used in con�icts such as the Afghan civil war, the

Persian Gulf con�icts, and most recently in Syria [26]. There are over 20 countries

with missile system capabilities, and Russia, China, and North Korea are just a

few among those investing in advancing their current capabilities. A large concern

with missile attacks is that the missiles can be armed with a variety of warheads

such as conventional explosives, nuclear, biological, or chemical weapons [26]. Long

range ballistic missiles are also capable of striking targets over 3,000 miles away with

decisive force. The di�culty in defending against such an attack is that, compared

to an attacker missile which only has to hit its target at a �xed location, a defender

interceptor has to correctly locate, track, and strike the incoming missile in �ight [20].

The U.S. may not face the largest of threats from a missile attack, but there are several

U.S. allies that are well within range of a missile strike from neighboring countries.

For example, it is estimated that North Korea has as many as 1,000 ballistic missiles

capable of reaching South Korea and Japan [20]. In a similar manner, according to

Joint Publication 3-01, Countering Air and Missile Threats, the predominant threat

is most likely from a rogue state or a terrorist group, rather than from a competing
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superpower [33].

As such, the U.S. seeks to research and develop air defense systems capable of pro-

viding high quality defense against missile attacks and has initiated several domestic

and joint programs to achieve this goal. The Standard Missile-3 (SM-3) Block IIA is

one such example which began in 2006 working with Japan as a partner. Since the

program began, approximately $3 billion has been invested [8]. Of the total amount,

the U.S. is responsible for slightly over $2 billion, which highlights just how costly

research and acquisition programs are. Considering only acquisition expenditures in

FY2015, the U.S. Department of Defense budget request for missile defense programs

was $8.2 billion [31]. For FY2016, the request rose to $8.8 billion, an increase of $600

million [32]. Again, both of these amounts do not include spending on research and

development for integration of newer technologies and weapon systems.

Acquisition expenditures are also broken down by Army, Air Force, Navy, or

Defense-wide spending, with missile defense being a capability within each of the

services. Of the $8.8 billion requested for missile defense in FY2016, over $5 billion

of the expenditure is classi�ed as Defense-wide rather than being assigned to any

one service. A similar scenario applies to the FY2015 request [32]. A few of the air

defense systems operated by the U.S. that contribute towards defense spending include

the AEGIS missile defense, the Terminal High Altitude Area Defense (THAAD), the

Ground-Based Midcourse Defense (GMD), and the Patriot/PAC-3 programs [32]. The

SM-3 Block IIA in development with Japan is scheduled to be deployed in Poland

beginning in 2018, adding to current assets available [27]. The SM-3 Block IIA is

also designed to be deployable on land or at sea, allowing for greater employment

�exibility.

The preceding discussion primarily addresses current missile defense assets already

developed and available for acquisition. However, focus has also been shifting to
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research and develop directed energy and other kinetic missile defense capabilities.

The main reason for the growing interest in these areas is that they are better suited

for a large-scale missile attack and o�er a better cost return [12]. Speci�cally with

regard to directed energy, it o�ers the advantage of a low cost per shot, large magazine

size, and rapid engagement of multiple targets necessary to counter a mass attack [12].

Current missile defense assets are very costly on a per missile basis, and their ability

to stop a large-scale missile attack has been questioned [13]. Newer technologies

look to combat these criticisms and, with the integration of such technologies, each

system o�ers distinct characteristics that make it advantageous to utilize whether it

be coverage radius, probability of successful interception, or acquisition cost.

In a further attempt to combat such attacks, Goure [13] presents the idea of

regional missile defense architecture in which nations collaboratively work together

in order to provide protection over an area. Speci�cally mentioned is Israel's defense

network which consists of systems such as the Arrow, Iron Dome, and the Patriot.

Also discussed are various missile systems used by U.S. allies such as Japan investing

in the Patriot, the AEGIS missile system, and the SM-3 Block IIA, as well as South

Korea investing in systems such as the Patriot and THAAD. This helps illustrate the

need not only for organization over di�erent missile systems, but also between nations

to provide adequate defense against a large-scale attack.

The acquisition of air defense systems re�ects only part of the challenge to decision

makers. Once acquired, air defense batteries must also be properly located to protect

the desired area. The mobility of air defense systems suggests they can be deployed in

what seems to be an in�nite number of locations, whereas the de�ning characteristic

of an asset may make it advantageous for operation at a certain location over a

di�erent asset. The combinatorics of allocating SAM batteries would overwhelm

decision makers for even moderately-sized instances, and on large-scale instances it

3



is almost impossible to consider all possible strategies. Meanwhile, a system having

a smaller range but a very high probability of successfully intercepting an incoming

missile may be preferable to one having a larger range but lower probability of success,

even if it means locating more assets within a given area. The dispersed nature of

cities and other defense objectives also causes trade-o�s between ensuring that high

value targets will be su�ciently protected, and preventing other targets from being

left completely undefended, given limited resources to accomplish both objectives.

Once the defender allocates SAM batteries, a defense plan of how to use available

interceptor missiles still needs to be implemented to properly defend cities targeted by

an attack. Simply assigning each air defense asset to protect the city/cities closest to it

may result in a suboptimal strategy and cause incoming missiles to strike unopposed.

Even though a SAM battery is located at a city, it may be advantageous to use this

SAM to protect a second city farther out which only that SAM can protect, and

instead use surrounding SAMs to protect the �rst city. A city may also need to be

protected using missiles from multiple surrounding SAM batteries resulting in a large

number of missile combinations, each of which yields a di�erent probability the city

survives. While strategies such as this that shift interceptor missiles around or use

missiles from multiple launching locations may be slightly harder to explore, it may

also result in a higher utility for the defender.

The acquisition process alone costs the U.S. billions of dollars every year, adding

to the importance of properly deploying and utilizing air defense assets. Once these

resources have been developed and acquired, a strategic decision remains concerning

where to locate the assets among the various sites. In today's �scal environment, it

is imperative that resources are employed to maximum bene�t. If not properly dis-

tributed, there is the possibility that a larger number of defense sites will be required,

while some locations may not be as e�ective or provide unnecessary coverage. Even

4



with all the advances in intelligence operations, threats can also be unpredictable.

Having defense plans and alternatives in place can make the di�erence between suc-

cessfully intercepting incoming missiles and cities being destroyed. Factors such as

cost, the strategic nature of locating resources, and the possibility of catastrophic loss

suggest the importance of missile defense and contribute towards the large amount of

resources and e�ort dedicated toward improving upon current capabilities and their

strategic deployment around the world.

The remainder of this paper is organized as follows. Chapter II presents docu-

ments pertaining to U.S. Integrated Air Defense Systems, along with relevant research

and discussion that in�uence our problem formulation and methodology. Chapter III

presents the framework for our problem development and the associated model for-

mulations. Chapter IV discusses the solution methodologies examined to solve the

model formulations, and Chapter V provides the results and discussion on various

test instances. Chapter VI presents conclusions regarding the implemented solution

methods in addition to directions for further research.

5



II. Literature Review

2.1 Missile Defense Background

Joint Publication 3-01 (JP3-01) de�nes Integrated Air Defense Systems not as a

formal system itself but as the aggregate of air and missile defense (AMD) systems

such as sensors, weapons, C2, communications, intelligence systems, and personnel

operating in a theater [33]. These systems can further be distinguished as active

AMD or passive AMD. Passive AMD relates to detection, warning, or concealment

to minimize the e�ectiveness of enemy air and missile threats [33]. Our focus aligns

closer with active AMD which relies on the use of aircraft, weapons, sensors, and

other direct defensive measures to destroy or nullify the e�ectiveness of air and missile

threats [33]. JP3-01 also discusses the importance of streamlined coordination in the

decision-making process, highlighting the importance of having air defense assets in

place and a strategy for defensive counter air operations, should they be necessary.

Finally, the JP3-01 mentions several di�erent AMD systems available to the defender

such as SAMs, AAA, and electronic warfare systems, which is a motivating feature

of this research.

2.2 Weapon Target Assignment Problem

The Weapon Target Assignment (WTA) Problem involves allocating m weapons

to n targets such that the expected damage to the enemy's targets is maximized [1].

WTA problems can further be divided into two groups: static or dynamic. Static

WTA problems assume a perfect information game with �xed parameters in which

all targets are engaged in a single stage [1]. The static WTA problem is similar to

the one faced by the attacker in the second stage of our model, in which the attacker

must decide on a target assignment for each attacker missile. The dynamic WTA

6



problem is a multistage game, and strategies in each period of the game can change

based on information gained from previous stages.

Ahuja et al. [1] formulate the WTA problem as a minimum cost �ow problem,

and solve this formulation to obtain a lower bound on the objective function. The

author's main focus is then on applying a branch-and-bound algorithm to optimally

solve the WTA problem; this algorithm performs very well for small instances but

requires a long run time on larger-size instances. To counter the increased run time,

they apply a heuristic involving a Very Large-Scale Neighborhood (VLSN) search

technique to decrease the required computation time while still �nding near-optimal

solutions for static WTA problem instances. Ahuja et al. [1] apply the VLSN to solve

larger instances of the WTA problem involving up to 200 weapons and 400 targets,

and they �nd near optimal solutions in a matter of seconds.

2.3 Game Theory

Game theory is concerned with the allocation of resources in a strategic environ-

ment, wherein the term strategic implies that the payo� to each player is a function

not only of their own action but also a function of the actions taken by other play-

ers. An important development in the �eld of game theory is the concept of Nash

Equilibrium, and Myerson [24] discusses the development of economic theory and the

in�uence that John Nash had on the study of game theory. Nash [25] explains three

critical components to characterize a game: the players, their strategies, and their

payo�s. Nash illustrates that every �nite game has an equilibrium point, where an

equilibrium point is �the set of all pairs of opposing `good strategies'" [25]. Nash

equilibrium can also be interpreted as a set of strategies such that neither player has

an incentive to deviate from their strategy selection. Nash concludes by illustrating

how these concepts can be applied to a three-person poker game.
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Selten [29] used the concept of Nash equilibrium as it applies to sequential move

games to explain subgame perfect equilibrium (SPNE). Selten [29] explains that se-

quential move games can be broken into subgames that will themselves have subgame

perfect equilibria. Notably, Selten proves that any �nite extensive form game with

perfect information will have at least one SPNE.

Galati & Simaan [9] apply the concept of Nash equilibrium to the Multi-Team

Target Assignment problem, a slight variation of the WTA. In the multi-team version,

instead of only one attacker allocating m weapons, there are now two teams facing

the WTA problem simultaneously. In addition, every weapon for one team is a target

for the other team, and vice versa [9]. Within the multi-team WTA problem, the

concept of Nash equilibrium as a solution has been criticized because it assumes that

the opponent is also implementing a Nash equilibrium strategy [9]. Galati & Simaan

[9] consider a random strategy, a unit greedy strategy, and a team optimal strategy

as three additional strategies that may be selected in the multi-team WTA problem.

The team optimal strategy is analogous to the WTA problem because it selects the

best allocation of weapons for the team, but it ignores possible strategy choices by

the opposing team. Of importance, Galati & Simaan [9] conduct a simulation in

which the players implement all 16 di�erent combinations of strategies against each

other. The results indicated that, on average, the unit greedy strategy appears to

be the worst, whereas the team Nash strategy returned the best payo�s. This result

supports the concept of Nash equilibrium (or SPNE) as a viable solution method.

Another criticism is that Nash equilibrium can be computationally expensive to

�nd, especially as the strategy space grows. Due to this, Galati & Simaan [9] also

discuss a neighborhood search algorithm called ULTRA. The algorithm works by

�xing the strategy of one team, and calculating a reaction strategy for the other team.

The strategy for one team can be represented as a vector ui, and a neighborhood is
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calculated that allows no more than ξ entries in ui to change [9]. The algorithm can

then be customized to �nd very good solutions at the cost of computation time for

high values of ξ, or require a short run time but risk getting caught at local optima

for small values of ξ.

A common assumption in game theoretic models is that the players involved all act

rationally. In terms of the attacker, this implies that the attacker will choose to attack

those targets that result in the highest expected utility. Yang et al. [34] suggest that

it may also be worth exploring situations wherein the attacker occasionally selects

sub-optimal strategies, as a defense strategy that does not take into account the

behavior of the attacker may not be robust against attackers who use di�erent decision

processes. They mention a model named COBRA which attempts to correct for

this assumption, wherein the attacker is allowed to deviate to ε-optimal strategies.

Further, the optimal strategy may be computationally expensive to �nd while ε-

optimal strategies are more readily available.

Yang et al. [34] then present Quantal Response Equilibrium as as solution method,

which allows players to select strategies that do not maximize their utility, and the

probability of selecting a non-optimal strategy increases as the cost of doing so de-

creases. They then present a MILP formulation and propose a heuristic called the

Best Response to Quantal Response (BRQR) that can be used to solve for quantal

response equilibrium strategies. BRQR is essentially a gradient ascent method that

starts with a randomly generated point and then moves in the direction that improves

the objective function.

2.4 Infrastructure Defense

Brown et al. [5] implement both bilevel and trilevel formulations on infrastructure

defense models in addition to providing several interesting comments about their

9



development. They indicate that the attacker usually has the advantage, as the

defender is forced to protect a large target area with �nite resources, while the attacker

can focus on a subset of this space and still in�ict damage. One assumption made

by Brown et al. [5] is that a protected resource is invulnerable. With regard to air

defense models, this may not hold as a city that is covered by a SAM battery is not

necessarily protected or invulnerable.

A related application of bilevel optimization models is the r -Interdiction median

problem with forti�cation (RIMF). This problem involves the defender determining

a strategy that selects a subset of facilities to protect in order to minimize damage

in�icted from the attacker's interdiction of r facilities [28]. The sequence of events

in RIMF problems is very similar to bilevel Defender-Attacker (DA) formulations in

which the defender �rst allocates resources to protect a subset of facilities, and the

attacker then observes this strategy and decides which facilities to attack. Scaparra

& Church [28] also introduce an implicit enumeration algorithm to solve this bilevel

problem, and they provide results for the implementation of this algorithm on in-

stances of various size. They vary the number of attacker interdictions, r, and note

one interesting result: there are a few facilities that appeared in every defender for-

ti�cation strategy. These facilities indicate important locations, and thus should be

forti�ed whether or not an attack is expected on these facilities [28]. This extends

to the placement of SAM batteries, as the defender locating a SAM battery at a city

may deter the attacker from targeting this city with missiles.

An important aspect of game theoretic problem formulations is determining the

structure and relationship of components in a system, as it can a�ect the strate-

gies employed by both the defender and the attacker. Hausken [18] discusses several

aspects related to infrastructure defense, along with potential characteristics to deter-

mine the value of each target. Of importance is the consideration that the defender is
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not only determining a strategy to protect against one attacker, but the possibility of

facing m independent attackers. Hausken [18] also argues that there are three main

factors that contribute to the valuation of a target: economic, human, and symbolic

value. The total value of the target can then be found by taking a weighted com-

bination of the above factors. Within our model, we do not necessarily require the

individual component values, only the �nal value of each city.

Bier et al. [3] present a small-scale example related to infrastructure defense

consisting of only two targets, and an attacker selecting exactly one location to target.

They also assume a sequential game in which the defender �rst decides to allocate

their resources between the targets, and the attacker then observes this allocation

and decides where to attack. Compared to our assumption of perfect information,

they assume that the attacker knows the defender's valuation of each target, but the

defender does not know the attacker valuations. Further, there is a probability pi of a

successful attack on target i which is a function of defender resource allocations and

targets selected by the attacker. Due to this, Bier et al. [3] point out the attacker

will not necessarily always attack the undefended target. For example, if the defender

chooses to locate their resource at City 1, then the attacker will still choose to attack

this city as long as the expected utility from attacking City 1 is greater than the

utility from attacking City 2 [3]. The importance of this result is that a lower-valued

target that is left undefended is not necessarily targeted by the attacker.

Bier et al. [3] continue to analyze the e�ect of changing certain parameters in the

problem, such as the defender's valuation of each city, the defender's cost of allocating

defensive resources, and the attacker's valuation of each city. As expected, increasing

the defender's valuation of City 1 decreases the probability of a successful attack

on this city in the optimal solution. The attacker can also observe this change in

probability and inform them of the defender's valuations in a case where the attacker
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did not originally have this information, adding credibility to the assumption of a

perfect information game [3]. Strengthening the defensive resource commitment at

one location makes that target appear more important to the defender, so the attacker

will generally achieve a higher payo� with a successful attack. The defender must

carefully weigh this decision, as strengthening one position means another location

may become more exposed, and after a point the attacker may decide to select an

easy target [3].

2.5 Target Hardening and Overarching Protection

An important distinction in infrastructure defense models is the characteristics

of the defender resources, speci�cally the capabilities they possess. There are two

main distinguishing classes for defender resources: Target Hardening and Overarching

Protection resources [17]. Target hardening refers to the case in which the defender

protects targets individually, whereas in overarching protection the defender is capable

of protecting multiple targets at once. Haphuriwat & Bier [17] argue that overarching

protection should be used by the defender when they have a large number of assets to

protect, and it will typically be more cost e�ective than fortifying individual targets.

Overarching protection is also more applicable to models that assume a defender asset

located at city i is capable of protecting any city within a certain radius.

Haphuriwat & Bier [17] also discuss the idea of using power-law functions to

calculate the probability of a successful attack. Power-law functions relate to the

idea of diminishing returns in that the �rst defender resource located at city i will

increase the defender's expected utility, but a second or third resource located at the

same city will not cause as large an increase. With regard to the defender, after a

certain point the probability of a successful attack will drop su�ciently low that the

resources would provide a larger bene�t elsewhere [17]. This is generally true when
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the defender has one type of resource, however when the situation expands to multiple

di�erent defender or multiple di�erent attacker resources, the defender may want to

place two di�erent resources at the same city to protect against di�erent threats.

2.6 Maximum Expected Covering Location Problem

The set covering and maximum covering location problems are two di�erent prob-

lem formulations concerned with a facility or resource being located to cover a set of

demand nodes [7]. The maximum covering location problem as discussed by Church

& ReVelle [6] involves �nding locations to place a set of facilities that maximizes the

total demand covered, subject to a maximum service distance. Although this is not

necessarily our objective, this is similar to locating a SAM battery such that it covers

the maximum number of cities. Daskin [7] presents a variation of this he denotes

as the maximum expected covering location problem (MEXCLP) which takes into

account that, just because a demand node is within range to be covered by a facility,

does not necessarily mean the facility will be able to service the demand node. As a

result, one possible objective is to not only maximize the number of demand nodes

covered, but also to subsequently maximize the number of nodes that are covered

more than once [7].

Daskin [7] also introduces the idea of dominated and non-dominated facility lo-

cations. A node j is said to be dominated if there exists another node k such that

locating a facility at node k covers every demand node covered by node j, while cov-

ering at least one additional node. The concept of dominance is important because

if node j is dominated, then we know that in the optimal solution to MEXCLP a fa-

cility will never be located at node j [7]. This can also be extended to the defender's

placement of SAM batteries based on the coverage radius and cities within range.

He then presents a heuristic to solve the MEXCLP and concludes by illustrating the
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performance on a frequently used 55-node network.

One key component of MEXCLP that Golalikhani & Zhuang [11] address is that a

defense asset located at a node i is capable of protecting not just that node, but nodes

within a certain radius of i. Many problem formulations discussed above assume that

a resource is only capable of protecting the node at which it is placed, which is not

necessarily the case. The capability of a defender resource protecting nodes around it

relates to the aforementioned discussion regarding overarching protection and gives

rise to the idea of a coverage parameter that indicates whether a resource located

at i is capable of reaching node j. Golalikhani & Zhuang [11] demonstrate that this

does not necessarily have to be based on the idea of geographical vicinity; it can be

based on functional similarity. A coverage radius is also a key bene�t to the defender

that increases their expected utility. Naturally this also lowers the attacker's utility,

and the decrease in the attacker's utility is typically larger than the increase in the

defender's utility [11].

2.7 Theater Ballistic Missile Defense

Brown et al. [4] discuss the growing importance of Theater Ballistic Missile (TBM)

Defense along with current TBM interceptor platforms and various existing analyt-

ical tools to aid in positioning missile defense assets. Brown et al. [4] make similar

assumptions to models previously discussed, notably that all parameters are common

knowledge, each attacker missile has a �xed probability of kill, pk, and each intercep-

tor missile has a probability of successfully destroying an attacker missile. Similar

to Hausken [18], the value of a target can be broken down into four main factors:

criticality, vulnerability, reconstitutability (ability of a target to recover from dam-

age), and threat [4]. They also mention the advantage of adding secrecy to the model

(i.e., no longer an assumption of perfect information) and conclude by testing their
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formulation on a case study.

2.8 Security Games

Security games can be viewed as a variation of DA models and have been receiving

increased attention due to their highly strategic nature, along with the importance of

their applications. Security games involve a defender who places a set of resources on

a graph to protect vulnerable locations, and an attacker who subsequently chooses a

strategy to attack these locations [19]. As such, the development of security games

closely aligns to the formulation of our trilevel Defender-Attacker-Defender (DAD)

model. Jain et al. [19] use the Mumbai attacks that occurred in 2008 as a motivating

example for the application of security games and discuss two methods available to

help solve for defender and attacker strategies. They discuss a double-oracle algorithm

called RUGGED to solve for player strategies, and they also present an improved

algorithm called SNARES that is capable of solving problems much quicker and larger

in size. Tsai et al. [30] and Halvorson et al. [15] also discuss how to implement double-

oracle algorithms as they relate to security games and provide examples to illustrate

an implementation of the algorithm. Double oracle is explained in further detail in

the following subsection.

Arce et al. [2] consider the interaction between one player protecting n locations,

and another player deciding which locations to attack and with what resources. They

also bring up the concept of Colonel Blotto games in which each player allocates a

�xed level of resources across N battle�elds. The player allocating more resources

to a battle�eld wins that battle�eld, and the objective is to maximize the number

of battle�elds won [2]. Arce et al. [2] also indicate the problem that resources allo-

cated to one battle�eld reduce the number of forces that can be allocated to other

battle�elds, highlighting how important it is to properly allocate resources. The bat-
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tle�eld allocation trade-o� is related to the assumption that each SAM battery has

a �xed radius r of cities it can protect, so the location of a SAM battery greatly

in�uences which cities are covered. Another assumption commonly made in Colonel

Blotto games is that the player who allocates more resources to a battle�eld wins

that battle�eld [2]. This is a simplifying assumption that does not necessarily hold

for air defense models. For example, if the defender places a SAM battery at city

i, it does not necessarily mean that full value of city i is added to the defender's

utility. The attacker could decide to attack city i, in which case there is a probability

of survival, or the attacker could overwhelm the city and attack with more missiles

than the defender could possibly launch interceptors against.

Korzhyk et al. [22] present an algorithm to �nd an equilibrium in security games

that works by progressively adding defender resources. There are two important as-

sumptions underlying this algorithm. First, if a target is not attacked, then it does

not a�ect either player's utility. However, in general a target that is not attacked

usually increases the defender's utility as this target is `safe'. The second assumption

is that the utility functions are additive, which simply implies that if the attacker

targets two cities, their utility is the sum of the utilities of attacking each target

individually [22]. If the defender has k resources to allocate, the algorithm works by

starting at a variation of the game assuming the defender has no resources and deter-

mines the equilibrium at this point (i.e., what targets are selected by the attacker).

This is calculated easily because the attacker will attack those targets that yield the

highest utility [22]. The basic premise of the algorithm is to calculate how much the

defender's resource level could increase until the attacker's strategy no longer is part

of a Nash equilibrium. The defender's resources are then increased by this amount,

and the strategies for the defender and the attacker are updated. A new equilibrium

is calculated, and the algorithm continues in a similar fashion until the amount of
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defender resource equals his actual commitment level k [22].

2.9 Double Oracle

Double Oracle is a solution method to �nd a Nash Equilibrium (or subgame perfect

equilibrium) and solve either a normal form (or extensive form) game. The algorithm

initially considers a restricted set of players' strategies and iteratively identi�es the

NE (or SPNE) to solve this `restricted game' [19]. For each opponent's NE/SPNE

strategy, the adversary's best response strategy is identi�ed among the entire strategy

space and added to the restricted game, terminating when no new strategies are

added to the restricted game. Jain et al. [19] also provide results indicating that

Double Oracle is capable of solving large-sized instances without a drastic increase in

computation time.

2.10 Heuristics

While exact solution methods exist, they may not always be practical to imple-

ment. For example, the required computation time may not be viable for large-size

problem instances, or a heuristic solution may be easier to discover and remain near-

optimal. In such cases, heuristics o�er an alternative solution method that are not

guaranteed to reach a global optimum, but are capable of greatly reducing the compu-

tation time. Simulated annealing and tabu search are two heuristic search techniques

that leverage di�erent algorithmic properties to ensure high quality solutions are

identi�ed.

Simulated annealing is an iterative heuristic search technique based on the an-

nealing process of metal or glass, along with a heuristic described by Metropolis.

Metropolis �rst used the heuristic to �nd the equilibrium of atoms at a given temper-

ature but it has since been used in other combinatorial optimization problems [21].

17



The heuristic begins with a current arrangement of atoms and generates a neighbor

based on a small perturbation to this current arrangement. If the energy of this

neighbor arrangement is less than the current arrangement, the neighbor con�gu-

ration becomes the new arrangement and the process repeats. If the energy of the

neighbor is greater than the current arrangement, the neighbor is moved to with some

probability based on the di�erence in energy levels [21]. Repeating this process sim-

ulates the movement of atoms until a steady state is reached. Metropolis' heuristic

has been applied to optimization problems typically by letting solutions represent the

arrangement of atoms and the objective function value of the solution represent the

energy level.

The annealing process is utilized to change the temperature of the system, which

a�ects the probability that `worse' moves are accepted. Initially the temperature is

set very high so worse moves are selected with a higher probability which means that

more of the solution space is explored. Over time, the temperature begins to decrease

and the focus is shifted to re�ning the current solution towards a local optima [21].

Tabu search is a metaheuristic that has been applied to a wide range of appli-

cations to include scheduling problems, the traveling salesman problem, and graph

coloring problems. Tabu search uses a memory-based structure to move from solution

to solution in an attempt to reach a global optimum [10]. Memory is primarily used

in two di�erent ways. The �rst is to keep track of previous solutions visited and make

them tabu for the next k iterations, meaning they cannot be revisited. The goal of

this restriction is to allow moves away from local optima while still moving to high

quality solutions at each step [10]. This short-term memory is also used to prevent

cycling, wherein the algorithm would move away from a solution and immediately

return to it in the next iteration. The second type of memory is long-term based and

is used to periodically return to the best solution found so far, or move to a solution
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or set of the strategy space that has not been visited yet. This e�ective use of memory

is a key attribute of tabu search that allows the heuristic to explore diverse portions

of the strategy space while attempting to avoid traps in local optima.
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III. Model Formulation

3.1 Problem Formulation

We consider a game consisting of a set N of cities each with some value vj ∈

R+, j ∈ N , a set T of Interceptor Missile (IM) types with mq SAM batteries of

type q ∈ T , and a total of n Attacker Missiles (AM). Each SAM battery with type q

missiles has de�ning characteristics such as the probability of successfully intercepting

an incoming attacker missile and the maximum coverage radius of the battery that

distinguish it from other missile types. We formulate a two-player, three-stage, perfect

information, sequential move, zero-sum game as follows. The defender �rst locates all

SAM batteries among a set F of possible locations. The attacker observes this action

and then decides on a single stage attack plan. The defender accurately detects this

attack upon initiation and launches interceptor missiles to protect some subset of the

|N | cities. The strategies we wish to �nd are (a) where the defender locates its SAM

batteries in the �rst stage, (b) how the attacker allocates its n missiles in the attack

plan in the second stage, and (c) how the defender launches interceptor missiles in

the �nal stage.

3.2 Model Assumptions

There are several simplifying assumptions that allow us to formulate our two

models. The �rst assumption is that all parameters are common knowledge. That

is, both players know how many IMs and of what type the defender has, and how

many AMs the attacker has. Both players also know the coverage radius of each

type of SAM battery and the probability that a single IM of type q successfully

intercepts an AM. Given the current state of technology and rapid communication

capabilities, this is a reasonable assumption that allows for a complete information
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game. In addition, we assume that all targets are valued equally by both the defender

and the attacker, a necessary assumption to model the game as zero-sum. We also

assume that an unintercepted AM will destroy a city with 100% probability. This is

a simplifying assumption that models the defender's utility in a worst case scenario.

This assumption also allows us to rule out certain attacker strategies, described further

in the following chapter.

There are several general assumptions made about the attacker, the �rst being that

all AMs are launched in a single salvo. This assumption is made to reduce the strategy

space of the attacker and represents the case of an attack designed to overwhelm air

defenses and prevent the resupply of air defense batteries with additional interceptor

missiles. We also assume that the attacker has perfect information regarding the

location of all SAM batteries placed by the defender in the �rst stage, as well as the

types of IMs at each SAM battery. This is an additional requirement for the complete

information game assumption. Lastly, we assume that all AMs are identical, implying

that they have the same �ight performance and destructive capabilities.

With regard to the defender, we assume that SAM batteries can only be placed

at predesignated locations, and at most one SAM battery can be placed at each

given location. Again, this is a simplifying assumption made to reduce the size of

the strategy space available. We allow the defender to have multiple di�erent types

of IMs, under the assumption that a SAM battery contains only one type of IM.

In doing so, we also assume that each IM has a �xed probability of intercepting

an AM; and we note that this probability need not be the same for all IM types.

Since each SAM battery contains only one type of missile, each SAM battery has a

�xed coverage radius but this radius may di�er based on the IM type at the battery.

The �nal defender assumption is that no more than one IM will be launched against

each incoming AM. The Patriot PAC-3 and the THAAD missile systems previously
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mentioned are designed to intercept the attacker missile in the terminal phase of

�ight, meaning there is a small time window remaining to intercept the missile, and

if an interceptor fails the defender will not have time to launch a second IM. In the

second model formulation, a further defender assumption is made which we discuss

prior to presenting the model.

3.3 Model Formulation

The following section presents the model decision variables and parameters, fol-

lowed by a discussion about the model formulation.

Sets:

• N : the set of all cities.

• F : the set of possible SAM sites.

• T : the set of IM types.

Parameters:

• vj : the value of city j ∈ N .

• pq : the probability that a single IM of type q ∈ T successfully intercepts a

single AM.

• mq : the number of SAM batteries with IMs of type q ∈ T available to the

defender.

• n : the total number of AMs available to the attacker.

• cq : the number of IMs available per SAM battery with missiles of type q ∈ T .

• Aq : a coverage matrix for a SAM battery with missiles of type q ∈ T , indicating

whether a SAM battery at location i ∈ F is capable of protecting city j ∈ N .
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Decision Variables:

• dqi : 1 if a SAM battery with IMs of type q ∈ T is placed at location i ∈ F , and

0 otherwise.

• wj : Attacker's allocation of AMs to city j ∈ N .

• yj : 1 if city j ∈ N is protected, and 0 otherwise.

• xqij : Defender's allocation of missiles of type q ∈ T from a SAM battery placed

at location i ∈ F to intercept an AM launched against city j ∈ N .
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Trilevel DAD Model 1:

max
d

min
w

max
x,y

∑
j∈N

vjyj
∏
q∈T

p

( ∑
i∈F

xqij

)
q (1a)

s.t.
∑
i∈F

dqi = mq, ∀q ∈ T, (1b)

∑
j∈N

wj = n, (1c)

∑
j∈N

xqij ≤ cqd
q
i , ∀i ∈ F, q ∈ T, (1d)

∑
i∈F

∑
q∈T

aqijx
q
ij ≤ wj, ∀j ∈ N, (1e)

∑
i∈F

∑
q∈T

aqijx
q
ij ≥ wjyj, ∀j ∈ N, (1f)

∑
q∈T

dqi ≤ 1, ∀i ∈ F, (1g)

dqi ∈ {0, 1}, ∀i ∈ F, q ∈ T, (1h)

yj ∈ {0, 1}, ∀j ∈ N, (1i)

wj ∈ Z+, ∀j ∈ N, (1j)

xqij ∈ Z+, ∀i ∈ F, j ∈ N, q ∈ T. (1k)

The objective function (1a) represents the two-player, three stage optimization of

the expected value of the surviving cities, which the defender seeks to maximize via

SAM battery location, antecedent to the attacker seeking to minimize it by launch-

ing AMs, which precedes the defender's maximizing response of IM interception of

incoming AMs. Constraint (1b) requires that all SAM batteries with missiles of type

q are employed by the defender, and Constraint (1c) forces the attacker to use all

AMs available. Constraint (1d) requires that the defender launch no more than the
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total number of IMs available from each location i ∈ F . Constraint (1e) restricts the

defender to launch no more than one IM per incoming AM, whereas Constraint (1f)

requires that, in order for a city to be protected, the defender must launch an IM

against each AM targeting that city. Constraint (1g) enforces that no more than one

SAM battery will be placed at any location. Constraints (1h) and (1i) enforce binary

integer restrictions, respectively, on the defender's decision to place a SAM battery at

each location and the decision to protect a city, and Constraints (1j) and (1k) enforce

the integral restrictions on the AM and IM allocations, respectively.

Depending upon how the attacker allocates its n missiles, there are three main

possibilities a city can encounter at the beginning of the third stage. The �rst simply

occurs when there are no incoming AMs to city j, that is wj = 0. In this case,

Constraint (1f) allows for the city to be protected (yj = 1). Since the right hand side

of Constraint (1f) equals zero, this implies that
∑
i∈F

∑
q∈T

aqijx
q
ij = 0 and equivalently

that
∑
i∈F

xqij = 0, resulting in the full value of the city being added to the objective

function (1a). The second situation occurs when the attacker launches AM(s) at a

city (wj > 0) and the defender decides not to protect the city. In this situation

yj equals zero, and since we assume that an unintercepted AM destroys a city with

100% probability, no value is added to the defender's expected utility (i.e., the city

is lost). The �nal situation occurs when there are incoming AM(s) (wj > 0) and the

defender allocates enough IMs to protect the city (
∑
i∈F

∑
q∈T

xqij = wj). In this situation,

the expected value of the city depends on the number of each type of IM expended.

A feature of this model formulation is that the expected value of a city is a function

of the type of IMs used to protect the city and the number of each type of IM used.

For example, if there are two IM types (i.e., IM1 and IM2) and a city has �ve AMs

targeting it, then a total of �ve IMs must be expended to protect the city. These IMs

may also have di�erent pq-values, so using three of IM1 and two of IM2 will result
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in a di�erent expected value than when defending the city using two of IM1 and

three of IM2. The second model described below reduces this complexity by adding

a simplifying assumption.

3.4 Alternate Formulation

For this model, we assume that at most one type of interceptor missile may be

used to protect a city. This assumption is made in an attempt to reduce the IM com-

binations available to the defender. Without this assumption, the defender not only

has to decide to protect a city, but also must decide how many of each type of missile

to use when protecting a city. This assumption constrains the defender, and it pro-

vides a lower bound on the optimal objective function value to the original problem.

Lastly, this assumption serves to decon�ict potential complications for the defender

where SAM batteries from di�erent locations have to communicate about which AM

each type of IM is targeting. A major bene�t of adding this assumption is it allows

us to formulate the model as an integer linear program in the �nal stage, enabling a

wider variety of solution techniques to be leveraged. In adding this assumption, we

introduce a new binary decision variable ψqj ∈ {0, 1} indicating whether city j ∈ N

is protected using IMs of type q ∈ T . This variable equals 1 if true, 0 if false. In

this model, the previous parameters, sets, and decision variables remain the same as

those discussed above.
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Trilevel DAD Model 2:

max
d

min
w

max
x,ψ

∑
j∈N

vj
∑
q∈T

ψqjp
wj
q (2a)

s.t.
∑
i∈F

dqi = mq, ∀q ∈ T, (2b)

∑
j∈N

wj = n, (2c)

∑
j∈N

xqij ≤ cqd
q
i , ∀i ∈ F, q ∈ T, (2d)

∑
i∈F

aqijx
q
ij ≤ wjψ

q
j , ∀j ∈ N, q ∈ T, (2e)

∑
i∈F

aqijx
q
ij ≥ wjψ

q
j , ∀j ∈ N, q ∈ T, (2f)

∑
q∈T

dqi ≤ 1, ∀i ∈ F, (2g)

∑
q∈T

ψqj ≤ 1, ∀j ∈ N, (2h)

ψqj ∈ {0, 1}, ∀j ∈ N, q ∈ T, (2i)

dqi ∈ {0, 1}, ∀i ∈ F, q ∈ T, (2j)

wj ∈ Z+, ∀j ∈ N, (2k)

xqij ∈ Z+, ∀i ∈ F, j ∈ N, q ∈ T. (2l)

While a majority of the formulation remains the same as DAD Model 1, there

are three main changes. The �rst is from Constraint (1e) to Constraint (2e). This

constraint now enforces that IMs of type q can only be used to defend city j if the

binary decision ψqj equals one. A new Constraint (2h) is also introduced that limits

at most one IM type to be used to protect a city. Constraint (2h) is known as a
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special ordered set of type 1 (i.e., SOS1), which refers to a set of variables in which

at most one variable can take a strictly positive value [14]. In DAD Model 2, SOS1

enforces the assumption that at most one missile type may be used to defend a city,

so at most one ψqj variable can be positive for each j ∈ N .

The other major change to this model is the re�nement of the objective function.

In Model 2, we now have an objective function that, for a �xed attacker strategy wj =

w̃j, ∀j ∈ N , the resulting formulation is an integer program having a linear relaxation,

compared to the original formulation for which the corresponding relaxation was non-

linear and non-convex. This results from the added assumption because we now know

that, if there are �ve incoming AMs to a city and that city is protected, then �ve IMs

of the same type are used to protect that city. This is true for all cities, allowing us to

replace the
∑
i∈F

xqij in the exponent of the objective function (1a) with wj, substitute

ψqj for yj as appropriate, and replace the production summation with a summation,

resulting in a linear objective function in the �nal stage.

The same previous scenarios again apply to each city upon completion of the

second stage. The �rst two scenarios remain the same, whereas the third only di�ers

slightly. In the new model, the defender does not have to decide how many of each IM

type are used to protect a city, only which type of IM is used to protect a city. Again,

this is a more constricting limitation for the defender but reduces the combinations

of decisions made in the �nal stage.
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IV. Methodology

4.1 Full Enumeration

Focusing on DAD Model 2, for given solutions to the �rst and second stages, we

are left to solve the integer linear program shown below in (3a) - (3g). One approach

to solve the DAD problem is to consider all possible defender and attacker strategy

combinations and solve the resulting ILP exactly. The di�culty with full enumeration

is that it quickly becomes intractable, even for small-size instances. Full enumeration

can also be represented in extensive form using a game tree as illustrated in Figure

1.

max
x,ψ

∑
j∈N

vj
∑
q∈T

ψqjp
wj
q (3a)

s.t.
∑
j∈N

xqij ≤ cqd
q
i , ∀i ∈ F, q ∈ T, (3b)

∑
i∈F

aqijx
q
ij ≤ wjψ

q
j , ∀j ∈ N, q ∈ T, (3c)

∑
i∈F

aqijx
q
ij ≥ wjψ

q
j , ∀j ∈ N, q ∈ T, (3d)

∑
q∈T

ψqj ≤ 1, ∀j ∈ N, (3e)

ψqj ∈ {0, 1}, ∀j ∈ N, q ∈ T, (3f)

xqij ∈ Z+, ∀i ∈ F, j ∈ N, q ∈ T. (3g)

If we �rst restrict the problem to a case containing only one type of IM in a game

consisting of |F | possible SAM Locations with m SAM batteries, the defender can

allocate these SAM batteries
(|F |
m

)
di�erent ways. In allowing for SAM batteries with

multiple IM types, the strategy space for the defender begins to grow as it is now
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Figure 1. Example Game Tree

important to know not only where SAM batteries are located, but also what IM type

is at each location. Examining the case when the defender hasmq SAM batteries with

missiles of type q, mq ≥ 1 for all q ∈ T , the defender now has Sd =
∏
q∈T

(|F |−∑
i<q

mi

mq

)
strategies to consider. For example, if the defender has |T | = 2 IM types in which

m1 = m2 = 2 SAM batteries corresponding to each missile type, for an instance with

|F | = 6 possible locations, the defender can allocate these 4 total SAM batteries(
6
2

)(
6−2

2

)
= 90 di�erent ways.

Meanwhile, the attacker must decide on a missile allocation strategy w̃j to target

each city. In stage 2, the attacker can allocate these n AMs Sa =
(|N |+n−1

n

)
di�erent

ways. This is also a combinatorial problem that grows both as the number of cities

|N | increases and the number of AMs n increases. Considering a small |N | = 6 city

example again with n = 5 AMs, the attacker has
(

6+5−1
5

)
= 252 strategies available.

Using full enumeration there are Sd · Sa branches at the end of stage 2 which

requires the same number of integer linear programs be solved. Table 1 shows how

the number of stage 2 branches changes on a small instance where |T | = 2 and

|N | = |F | = 6 for increasing values of m1, m2, and n. The largest example given in

Table 1 occurs when m1 = m2 = 2 and n = 4, and even this relatively small instance

requires over 11,000 ILPs be solved. Table 1 helps illustrate how the strategy space

grows exponentially for increasing parameters of the problem, and thus why full
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enumeration is not suitable for larger sized instances.

Table 1. Strategy Space for |N | = |F | = 6 example

m1 m2 n Sd Sa Stage 2 Branches
1 1

2
30

21
630

2 1 60 1,260
2 2 90 1,890
1 1

3
30

56
1,680

2 1 60 3,360
2 2 90 5,040
1 1

4
30

126
3,780

2 1 60 7,560
2 2 90 11,340

4.2 Reduced Strategy Space

When implementing full enumeration we consider every possible defender and

attacker strategy. However, based on certain parameters and at di�erent stages of

the game, we can start to rule out strategies to reduce the size of the strategy space.

At the beginning of the game we are able to utilize the coverage matrices Aq to

eliminate certain defender strategies. Recall that a SAM battery at location i is

dominated by a SAM battery at location k if location k covers every city covered by

location i while covering at least one additional city. In allowing multiple IM types

we can no longer say that a SAM battery will never be placed at location i. For

example, the defender may want to place a SAM battery with IM Type 2 at location

k and a SAM battery with IM Type 1 at location i. What can be observed is that

the defender will never place a SAM battery at location i if there is no SAM battery

at location k. In this case the defender could move the SAM battery from location

i to location k and not lose any coverage while covering at least one additional city.

Utilizing this result, we can check all possible defender SAM allocation strategies to
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see if this relation is true, and if so we do not need to explore this portion of the

strategy space.

At the beginning of stage 2 we can leverage the fact that the defender has already

placed all SAM batteries to rule out certain attacker strategies. We assume this is

a perfect information game, so upon completion of stage 1 the attacker should know

the maximum number of IMs of each type that can be used to protect any given

city. Let θqj represent the number of IMs of type q that can be used to protect city

j, and ηj = max
q

θqj be the maximum number of IMs of all types that can be used

to protect city j. Once this is known, the attacker should not consider a strategy

that allocates wj ≥ ηj + 2 AMs to city j. We can make this statement due to the

assumption that any AM not intercepted destroys a city with 100% probability. So

if the attacker wants to overwhelm a city and destroy it with certainty, this can be

achieved with wj = ηj + 1 AMs. Any additional AMs targeting this city would be

�wasted� and are better utilized elsewhere. Again, we can check this relation for

each attacker strategy given the current defender strategy and, if any wj ≥ ηj + 2,

the resulting ILP does not need to be solved. There is a slight complication when

the attacker can overwhelm a majority of cities regardless of the defender's SAM

allocation, however the expression of Constraint (1c) and (2c) as an equality presumes

that the attacker does not have more than the number of AMs required to both

overwhelm the defender's IMs and destroy all uncovered cities. For such an instance,

we would express Constraint (1c) and (2c) as an inequality. Herein, we set aside

instances manifesting such an overmatch of capabilities and retain the form expressed

above.
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4.3 Double Oracle

Double Oracle is implemented by iteratively solving three main problems until

convergence. The �rst component is coreLP which solves via enumeration a restricted

version of the game having a limited set of strategies available to the defender and

the attacker. Let Skd and Ska represent the set of strategies available to the defender

and the attacker during the kth iteration, respectively. The coreLP routine solves the

problem formulated in (3a) - (3g) to �nd the SPNE for this restricted game. S0
d and

S0
a are initialized by selecting an arbitrary set of defender and attacker strategies;

however, initializing these sets with �smart� strategies may improve the performance

of the algorithm as discussed by Jain et al. [19]. The defender and attacker SPNE

strategies returned from coreLP are denoted ŝd and ŝa respectively.

Defender Oracle

The Defender Oracle subproblem solves for the defender's best response for a

�xed AM allocation ŝa. This problem is also formulated in (4a) - (4j). In Defender

Oracle the defender wants to �nd the best SAM allocation strategy in stage 1 and

IM allocation in stage 3 to maximize the expected value of surviving cities. Since

the attacker's strategy is �xed in this problem, Defender Oracle is an integer linear

program which can be solved exactly. The defender's best response is then used

to update the set of strategies currently available. Let s̄d represent the defender's

best response found using Defender Oracle. Upon completion of iteration k, we let

Skd ← Sk−1
d

⋃
s̄d.
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max
d,x,ψ

∑
j∈N

vj
∑
q∈T

ψqjp
wj
q (4a)

s.t.
∑
i∈F

dqi = mq, ∀q ∈ T, (4b)

∑
j∈N

xqij ≤ cqd
q
i , ∀i ∈ F, q ∈ T, (4c)

∑
i∈F

aqijx
q
ij ≤ wjψ

q
j , ∀j ∈ N, q ∈ T, (4d)

∑
i∈F

aqijx
q
ij ≥ wjψ

q
j , ∀j ∈ N, q ∈ T, (4e)

∑
q∈T

dqi ≤ 1, ∀i ∈ F, (4f)

∑
q∈T

ψqj ≤ 1, ∀j ∈ N, (4g)

ψqj ∈ {0, 1}, ∀j ∈ N, q ∈ T, (4h)

dqi ∈ {0, 1}, ∀i ∈ F, q ∈ T, (4i)

xqij ∈ Z+, ∀i ∈ F, j ∈ N, q ∈ T. (4j)

Attacker Oracle

The Attacker Oracle subproblem formulated in (5a) - (5i) is used to solve for the

attacker's best response for a �xed defender SAM allocation strategy ŝd. This is a

bilevel nonlinear integer formulation as the defender's SAM locations are �xed, but

the defender has yet to decide which IMs to launch to protect the respective cities.

We utilize two di�erent heuristics described further below to solve for the attacker's

best response s̄a, upon which we similarly let Ska ← Sk−1
a

⋃
s̄a.
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min
w

max
x,ψ

∑
j∈N

vj
∑
q∈T

ψqjp
wj
q (5a)

s.t.
∑
j∈N

wj = n, (5b)

∑
j∈N

xqij ≤ cqd
q
i , ∀i ∈ F, q ∈ T, (5c)

∑
i∈F

aqijx
q
ij ≤ wjψ

q
j , ∀j ∈ N, q ∈ T, (5d)

∑
i∈F

aqijx
q
ij ≥ wjψ

q
j , ∀j ∈ N, q ∈ T, (5e)

∑
q∈T

ψqj ≤ 1, ∀j ∈ N, (5f)

ψqj ∈ {0, 1}, ∀j ∈ N, q ∈ T, (5g)

wj ∈ Z+, ∀j ∈ N, (5h)

xqij ∈ Z+, ∀i ∈ F, j ∈ N, q ∈ T. (5i)

The �rst heuristic implemented to solve Attacker Oracle is simulated annealing.

The heuristic starts with the initial feasible strategy ŝa from coreLP and utilizes a

neighborhood search technique to explore the strategy space while iteratively up-

dating the current attacker strategy, denoted s̈a. The neighborhood de�nition is

in�uenced by that used by Han et al. [16] in examining a related problem assuming

only one type of IM is available to the defender. The set of neighbor strategies is

generated by moving one AM from city j, wj > 0, to some other city j′, j 6= j′. In

a three city example, if the current strategy is s̈a = [3 5 0], the neighbor strategies

would be
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neighbors([3 5 0]) =



2 6 0

2 5 1

4 4 0

3 4 1


.

Instead of evaluating the entire neighborhood, a single random neighbor is selected

to compare against the current strategy. If the neighbor results in a lower expected

value of surviving cities, then s̈a is updated. If the neighbor strategy results in an

expected survival value greater than the current strategy, then it is probabilistically

selected to replace the current solution based on the di�erence in objective function

values and the current temperature of the system. The starting temperature is set

very high, so there is initially a high probability that worse strategies are adopted

and the solution space can be explored, while over time the temperature slowly cools

so the heuristic can converge to a local optimum. The heuristic continues until the

temperature is su�ciently small, at which point the best strategy found is returned

as s̄a.

The second heuristic implemented is tabu search which also utilizes the same

neighborhood de�nition. Compared to simulated annealing, tabu search evaluates

each neighbor strategy for the expected city survival value based on the defender's

best response in stage 3. The neighborhood strategy that results in the lowest ex-

pected value is selected to update the current strategy, regardless of its relation to

the previous strategy. This implies that we allow moves to strategies that increase

the value of surviving cities (i.e., worse for the attacker) in an attempt to escape

local optima. The current strategy s̈a is then placed on the tabu list for the next l

iterations, which prevents us from moving away from one strategy and returning to it

in the following iterations. The heuristic terminates after a pre-determined number

36



of iterations at which point the best strategy found is returned as s̄a.

If no new defender and attacker strategies are added, meaning Skd = Sk−1
d and Ska =

Sk−1
a , then the algorithm has converged and ŝd and ŝa are accepted as the predicted

SPNE strategies to the full game. If new strategies are added, the algorithm repeats,

starting with coreLP and solving for new best response strategies.

Since simulated annealing and tabu search are both heuristic approaches to solve

Attacker Oracle, there is no guarantee that they will return the optimal attacker

strategy s̄a. Even so, both heuristics have unique features that can be utilized to

ensure high quality solutions are still found. While McMahan et al. [23] proved

that Double Oracle will converge to the optimal solution when mixed strategies are

considered, we only consider pure strategies. In the context of this game, the issue is

not necessarily that we do not consider mixed strategies, rather that we do not solve

for alternative optima, if they exist. This implies that even if the heuristics used in

the Attacker Oracle are exact, there is still the possibility that Double Oracle will fail

to properly identify the SPNE.
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V. Computational Results

5.1 6 City Network

To test the performance of the various solution methods, we use the same network

Daskin [7] examined in the MEXCLP. The topology of this network along with the

value assigned to each city is illustrated in Figure 2. For all instances we test, it is

assumed that |N | = 6, |F | = 6, and |T | = 2. Test instances are based on those used

by Han et al. [16] in examining a single IM type problem. We �rst initialize Double

Oracle (DO) with a single defender strategy of placing SAM batteries in sequential

order at the most valuable city without a SAM battery and single attacker strategy

of all AMs targeting the most valuable city.

A B

C

D E

F

1 1

1

5 3
10

10

8

4

8

4

11 11

10

7 7

1 Value at city j, vj
δ Distance between i and j

A
City j

Figure 2. 6-city Network
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5.2 Heuristic Parameters

Within DO using Simulated Annealing (DO/SA) in Attacker Oracle, the main

algorithmic parameters are the initial temperature t0, the temperature cooling scheme,

and the stopping condition. These parameters were tested on smaller instances to

determine which settings would likely yield the desired results. For all �nal test

instances the initial temperature is t0 = 10, 000 and the temperature at iteration

k is updated according to the function tk = 0.95 · tk−1. In our implementation,

we complete 250 outer iterations with 5 iterations at each temperature for a total

of 1,250 iterations. This implies that the temperature at the end of the search is

near 0.028. We use the same probability function of accepting a worse strategy

discussed by Kirkpatrick et al. [21] of p = e∆/tk , where ∆ represents the di�erence

in objective function values between the current strategy and the neighbor strategy.

The stochastic nature of DO/SA results in the possibility that di�erent solutions will

be returned each time it is implemented regardless of initialization strategies.

When implementing DO using Tabu Search (DO/TS) in Attacker Oracle, the

current attacker strategy will have at most |N | · (|N | − 1) = 30 neighbors for this

6 city network, so we evaluate the whole neighborhood in Attacker Oracle. This

implies that DO/TS is deterministic in the sense that running the algorithm multiple

times will return the same value, assuming the same defender/attacker initialization

strategies are used each time. On a larger network, the neighborhood size begins to

grow, and a subset of the neighborhood will likely need to be selected. Once a strategy

has been selected for adoption, it is placed on the tabu list for the next 3 iterations.

Any duration greater than one iteration will be su�cient to prevent us from cycling

between strategies, and 3 was selected to meet this requirement. To determine the

number of iterations to complete within Attacker Oracle, we �rst consider the worst

case available. In such a scenario the attacker is using a strategy in which all AMs
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target the last city when the optimal strategy is to have all AMs target the �rst

city. Neighbor solutions will be generated and evaluated, and one AM will be moved

from the last city to the �rst city each time. After completion of n iterations the

best response strategy will be reached. Since Attacker Oracle is solved via a heuristic

there is no guarantee this will be the solution to the full game. As such, we may not

want to complete all n iterations, especially for large values of n. Instead, we simply

want to �nd a �better� attacker response, similar to Jain et al. [19]. Upon testing the

e�ect di�erent iteration lengths have on solution quality in smaller instances, we �x

the number of iterations in Attacker Oracle within DO/TS at 6.

5.3 Test Instance Results

Tables 2 and 3 present the various problem instances we test. In both of these

tables, IM Type 1 is identical and intended to represent a �baseline� IM performance.

For comparison, IM Type 2 re�ects a more capable missile with a higher pq and

coverage radius; however, fewer SAM batteries of this type are available. We further

distinguish IM Type 2 in terms of the number of IMs per SAM battery. IM Type 2A

re�ects a scenario in which the second IM type has an improved performance over the

baseline, but fewer IMs are available. Thus, in Table 2 we set c2 = 3
4
c1 rounded up

to the nearest even number. For example, this situation could be represented by the

comparison of the PAC-3 and HIMARS. In contrast, IM Type 2B again represents a

more capable missile, but with more IMs available than the baseline. For IM Type

2B we let c2 = 5
4
c1 rounded up to the nearest even number as illustrated in Table

3. This relation could be re�ected by the comparison of the PAC-3 and THAAD for

example.

Tables 2 and 3 also report the computation time required to solve each instance

using full enumeration, reduced enumeration, DO/SA, and DO/TS. All instances
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were solved using MATLAB calling IBM ILOG CPLEX Optimization Studio version

12.6 on an Intel(R) Xeon E5-1620 3.6 GHz processor having 32 GB memory.
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Table 2. Problem Instances IM Type 2A

IM Type 1 IM Type 2A Computation Time (sec)
Instance n m1 c1 p1 r1 m2 c2 p2 r2 Full Reduced DO/SA DO/TS

1 5 2 12 0.5 6 1 10 0.6 9 15.84 12.41 4.36 0.33
2 10 1 8 0.3 6 1 6 0.4 9 94.98 36.31 8.29 1.37
3 10 1 16 0.3 6 1 12 0.4 9 93.62 34.00 8.05 1.45
4 10 1 8 0.7 6 1 6 0.8 9 95.65 36.94 10.87 1.55
5 10 1 16 0.7 6 1 12 0.8 9 91.63 35.44 7.18 0.75
6 10 3 8 0.3 6 1 6 0.4 9 200.07 157.34 6.50 1.11
7 10 3 16 0.3 6 1 12 0.4 9 187.12 148.42 2.93 0.60
8 10 3 8 0.7 6 1 6 0.8 9 196.53 162.81 8.16 0.73
9 10 3 16 0.7 6 1 12 0.8 9 187.84 148.47 4.37 0.25
10 15 2 12 0.1 6 1 10 0.2 9 1002.22 487.95 14.75 1.93
11 15 2 4 0.5 6 1 4 0.6 9 1140.25 192.52 7.26 1.82
12 15 2 12 0.5 6 1 10 0.6 9 1002.77 481.16 9.67 1.49
13 15 2 20 0.5 6 1 16 0.6 9 979.47 471.74 6.13 1.04
14 15 2 12 0.9 6 1 10 1 9 1006.36 485.23 10.33 0.68
15 15 3 12 0.5 6 2 10 0.6 9 1332.72 1353.93 11.41 1.71
16 20 1 8 0.3 6 1 6 0.4 9 1839.85 172.12 20.65 3.66
17 20 1 16 0.3 6 1 12 0.4 9 1723.53 356.48 9.28 2.12
18 20 1 8 0.7 6 1 6 0.8 9 1876.66 176.08 15.16 2.34
19 20 1 16 0.7 6 1 12 0.8 9 1733.28 346.94 9.62 1.40
20 20 2 8 0.6 6 2 6 0.7 9 13422.77 7701.52 40.63 5.84
21 20 3 8 0.3 6 1 6 0.4 9 4210.00 1986.72 11.35 1.86
22 20 3 16 0.3 6 1 12 0.4 9 4079.74 2421.24 6.64 1.89
23 20 3 8 0.7 6 1 6 0.8 9 4915.87 2108.95 19.66 1.26
24 20 3 16 0.7 6 1 12 0.8 9 3571.13 2433.24 14.79 1.53
25 25 2 12 0.5 6 1 10 0.6 9 10333.44 2986.15 16.29 2.76
26 25 2 12 0.7 6 2 10 0.8 9 31282.68 22650.34 58.93 3.53
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Table 3. Problem Instances IM Type 2B

IM Type 1 IM Type 2B Computation Time (sec)
Instance n m1 c1 p1 r1 m2 c2 p2 r2 Full Reduced DO/SA DO/TS

1 5 2 12 0.5 6 1 16 0.6 9 15.69 12.12 4.14 0.33
2 10 1 8 0.3 6 1 10 0.4 9 92.09 34.14 7.78 1.20
3 10 1 16 0.3 6 1 20 0.4 9 94.17 34.11 7.71 1.62
4 10 1 8 0.7 6 1 10 0.8 9 93.19 33.76 8.32 0.91
5 10 1 16 0.7 6 1 20 0.8 9 92.99 33.83 8.29 0.68
6 10 3 8 0.3 6 1 10 0.4 9 191.76 152.25 2.82 0.56
7 10 3 16 0.3 6 1 20 0.4 9 189.93 150.02 2.82 0.60
8 10 3 8 0.7 6 1 10 0.8 9 190.87 151.26 4.27 0.25
9 10 3 16 0.7 6 1 20 0.8 9 189.93 150.84 4.27 0.25
10 15 2 12 0.1 6 1 16 0.2 9 971.47 470.57 11.24 1.93
11 15 2 4 0.5 6 1 6 0.6 9 1183.04 339.48 20.00 2.05
12 15 2 12 0.5 6 1 16 0.6 9 980.67 469.00 4.69 0.87
13 15 2 20 0.5 6 1 26 0.6 9 979.13 482.78 7.95 0.88
14 15 2 12 0.9 6 1 16 1 9 976.86 471.09 4.20 1.48
15 15 3 12 0.5 6 2 16 0.6 9 997.67 992.51 6.14 0.85
16 20 1 8 0.3 6 1 10 0.4 9 1808.44 325.28 31.59 2.79
17 20 1 16 0.3 6 1 20 0.4 9 1652.89 383.88 21.65 1.99
18 20 1 8 0.7 6 1 10 0.8 9 1826.66 331.70 19.84 2.66
19 20 1 16 0.7 6 1 20 0.8 9 1647.21 385.37 9.04 2.02
20 20 2 8 0.6 6 2 10 0.7 9 8659.12 6921.97 22.59 2.12
21 20 3 8 0.3 6 1 10 0.4 9 4226.24 2719.01 9.14 1.79
22 20 3 16 0.3 6 1 20 0.4 9 3404.64 2623.69 14.17 1.58
23 20 3 8 0.7 6 1 10 0.8 9 4219.76 2654.47 16.30 2.13
24 20 3 16 0.7 6 1 20 0.8 9 3403.84 2706.83 12.99 0.52
25 25 2 12 0.5 6 1 16 0.6 9 9716.15 3820.85 9.42 2.75
26 25 2 12 0.7 6 2 16 0.8 9 19993.36 15858.60 32.85 1.33
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As expected, full enumeration takes a considerable amount of time to solve making

the method impractical for even moderately-sized instances. Instance 26, the largest

size instance in which Sd ·Sa =
(

6
2

)(
6−2

2

)
·
(

6+25−1
25

)
= 12, 825, 540, required just over 8.6

hours and 5.5 hours to evaluate the game tree and identify the SPNE for IM Types

2A and 2B respectively. Although full enumeration is computationally expensive, it

does explore the whole game tree, so we are guaranteed to �nd the equilibrium.

In all but one instance (instance 15 for IM Type 2A), reduced enumeration was

able to reduce the computation time, on average approximately 50% faster than full

enumeration for IM Type 2A and approximately 45% faster for IM Type 2B, but it

still required up to 6.3 hours to complete. This method again explores the game tree

similar to full enumeration, with the added bene�t in that it does not evaluate any

strategy combination in which either the defender or attacker are using a dominated

strategy. While reduced enumeration is guaranteed to �nd the SPNE with a potential

reduction in computation time, it still remains impractical as a method for larger

instances.

Tables 4 and 5 provide the expected value of surviving cities for each instance when

implementing DO/SA, and Tables 7 and 8 provide the corresponding results when

implementing DO/TS. Since reduced enumeration is an exact method implemented

primarily to compare the solution time with full enumeration, it has been omitted

from Tables 4 - 8. Each of the tables also compare the defender and attacker strategy

found using Double Oracle with the optimal strategy identi�ed using full enumeration,

as reported in columns 6 and 7. If the strategies identi�ed by full enumeration and

Double Oracle are the same, the column contains a 1; else the identi�ed solutions di�er

and the entry is a 0. These columns provide potential indications of why Double

Oracle failed to identify the SPNE or, in some instances, identify the presence of

alternative optima.
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Table 4. DO/SA Expected Survival Value IM Type 2A

Value
DO/SA strategy

comparison with Full

Instance Full DO/SA
Relative
Gap SA

Absolute
Gap SA

Defender
Strategy

Attacker
Strategy

1 9.960 9.960 0 0
2 2.270 2.270 1 1
3 2.410 2.410 0 1
4 7.400 7.400 0 1
5 9.921 9.821 -1.01% -0.100 0 0
6 2.710 2.610 -3.69% -0.100 0 1
7 2.820 2.820 1 1
8 8.924 8.711 -2.39% -0.213 0 0
9 10.581 10.581 1 1
10 0.150 0.146 -2.67% -0.004 0 0
11 2.046 2.023 -1.12% -0.023 0 0
12 3.192 3.192 1 0
13 3.401 3.401 1 1
14 10.430 11.000 5.47% 0.570 0 0
15 3.874 3.874 0 1
16 0.179 0.116 -35.33% -0.063 0 0
17 0.274 0.188 -31.55% -0.087 0 0
18 2.640 2.420 -8.33% -0.220 0 0
19 3.883 3.883 0 1
20 3.317 3.312 -0.15% -0.005 0 0
21 0.374 0.374 1 0
22 0.463 0.462 -0.30% -0.001 0 0
23 4.345 3.984 -8.31% -0.361 0 0
24 5.303 5.303 1 1
25 1.026 0.918 -10.55% -0.108 0 0
26 4.728 4.730 0.05% 0.002 0 0

Note: Text in bold indicates DO reached the SPNE

In terms of required computation time, DO/SA o�ers a signi�cant improvement

over full enumeration. The average time required for DO/SA to solve the 26 test

instances is approximately 13.2 seconds and 12.7 seconds for IM Type 2A and IM

Type 2B, respectively, with the longest time just under 60 seconds. Whereas DO/SA

is signi�cantly faster than full enumeration, there are several instances for which it
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Table 5. DO/SA Expected Survival Value IM Type 2B

Value
DO/SA strategy

comparison with Full

Instance Full DO/SA
Relative
Gap SA

Absolute
Gap SA

Defender
Strategy

Attacker
Strategy

1 9.960 9.960 0 0
2 2.410 2.410 0 1
3 2.410 2.410 0 1
4 9.921 9.821 -1.01% -0.100 0 0
5 9.921 9.821 -1.01% -0.100 0 0
6 2.820 2.820 1 1
7 2.820 2.820 1 1
8 10.581 10.581 1 1
9 10.581 10.581 1 1
10 0.150 0.138 -8.00% -0.012 0 0
11 2.521 2.521 1 1
12 3.401 3.401 1 1
13 3.401 3.401 1 1
14 18.900 14.900 -21.16% -4.000 0 0
15 3.874 3.874 0 1
16 0.274 0.274 1 1
17 0.326 0.326 1 1
18 3.882 3.756 -3.24% -0.126 0 0
19 5.373 5.209 -3.05% -0.164 0 0
20 4.132 4.137 0.12% 0.005 1 0
21 0.461 0.462 0.08% <0.001 1 0
22 0.500 0.500 1 1
23 5.295 5.197 -1.86% -0.098 0 0
24 6.582 6.582 1 0
25 1.196 1.196 1 1
26 5.381 5.386 0.09% 0.005 0 0

Note: Text in bold indicates DO reached the SPNE

fails to identify the SPNE. Tables 4 and 5 provide the optimality gap for the instances

in which Double Oracle failed to properly identify the SPNE, and Table 6 provides

selected aggregate performance measures for the instances where it failed (across all

52 total instances). Table 6 shows that simulated annealing fails to identify the SPNE

more often below the optimal than above. DO/SA has a maximum optimality gap of
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35.33% when it fails below the SPNE, but is only 5.47% when it fails above the SPNE.

The average di�erence in values with full enumeration is 0.13 for IM Type 2A and

0.46 for IM Type 2B, with the largest di�erence in values at 4.00 for instance 14 on

IM Type 2B. Further, the instance with the largest relative optimality gap does not

necessarily correspond to the instance with the largest absolute gap. It is important

again to note that, due to the stochastic nature of simulated annealing as a heuristic,

running DO/SA multiple times will most likely return di�erent values. Thus, we

could run DO/SA again and might reach the SPNE in more (or fewer) instances,

however the results provided are from a single run through all the instances.

Table 6. DO Performance with Single Strategy Initialization

DO/SA DO/TS
Below SPNE Above SPNE Below SPNE Above SPNE

# of instances 19 5 19 4
Average % -7.62% 1.16% -13.13% 1.55%
Max % -35.33% 5.47% -41.00% 3.97%

Average Value Di� -0.310 0.117 -0.264 0.080
Max Value Di� -4.00 0.570 -0.960 0.172

DO/TS again o�ers a signi�cant improvement in computation time over full enu-

meration while also performing faster than DO/SA. Compared to full enumeration

which required up to 8.6 hours to solve, DO/TS required a maximum of 5.84 sec-

onds before completion. For IM Type 2A, DO/TS terminated in an average of 1.73

seconds, whereas for IM Type 2B, DO/TS terminated in an average of 1.39 seconds.

While DO/TS is signi�cantly faster, there are again instances where it fails to iden-

tify the SPNE. Tables 7 and 8 again report the relative and absolute gap for these

instances. For IM Type 2A, DO/TS reached the optimal objective function value in

46% of the instances, while IM Type 2B was slightly higher at 65% of the instances.

The optimality gap for instances where DO/TS did fail is as high as 41% in multiple
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instances, however the optimal SPNE value for these instances are also very small so

even small deviations will appear as large relative deviations. For example, instance

16 and 17 for IM Type 2B both have relative optimality gaps above 40%, but the

absolute deviation is only 0.112 and 0.134, respectively. For all 52 test instances, the

maximum absolute deviation from the SPNE value is 0.960 with an average deviation

of approximately 0.264.

Table 6 again illustrates that, in the instances when DO/TS did fail to prop-

erly �nd the SPNE, it tended to return an expected value lower than the optimal

value. Outcomes such as these indicate that Double Oracle converged prematurely

and portions of the game tree where the optimal strategies exist were never explored.

In every instance for which Double Oracle returned a smaller value than the SPNE,

the defender strategy returned failed to match that of full enumeration. Conversely,

when Double Oracle returned a larger expected value, the conjecture is that Attacker

Oracle failed to generate the correct strategy. This is indeed a likely cause since we

use a heuristic to solve Attacker Oracle, but it cannot be stated with certainty in the

absence of further information.

Table 7 shows there are two instances where Double Oracle failed and the attacker

strategy matched that of full enumeration (i.e., instances 6 and 16). These occurrences

indicate that Double Oracle failed due to only considering pure strategies. Due to the

current formulation, in order for the defender to have a mixed strategy, the strategies

in the support must result in the same optimal SPNE value. Otherwise, the defender

would always select the strategy that resulted in the larger value. Thus, the cause of

this can also be attributed to not solving for alternative optima, if they exist. Lastly

of interest are those instances for which Double Oracle returned the same value as

full enumeration, and either the defender or attacker strategy di�er (e.g., instances 1

and 12). These occurrences indicate the presence of alternative optima.
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Table 7. DO/TS Expected Survival Value IM Type 2A

Value
DO/TS strategy

comparison with Full

Instance Full DO/TS
Relative
Gap TS

Absolute
Gap TS

Defender
Strategy

Attacker
Strategy

1 9.960 9.960 0 1
2 2.270 2.270 0 1
3 2.410 1.450 -39.83% -0.960 0 0
4 7.400 7.400 0 1
5 9.921 9.821 -1.01% -0.100 0 0
6 2.710 2.610 -3.69% -0.100 0 1
7 2.820 2.820 1 1
8 8.924 8.711 -2.39% -0.213 0 0
9 10.581 10.581 1 1
10 0.150 0.150 1 1
11 2.046 2.023 -1.12% -0.023 0 0
12 3.192 3.192 1 0
13 3.401 3.401 1 1
14 10.430 9.710 -6.90% -0.720 0 0
15 3.874 3.874 0 1
16 0.179 0.170 -5.24% -0.009 0 1
17 0.274 0.271 -1.13% -0.003 0 0
18 2.640 2.420 -8.33% -0.220 0 0
19 3.883 3.883 0 1
20 3.317 3.250 -2.02% -0.067 0 0
21 0.374 0.374 1 1
22 0.463 0.461 -0.38% -0.002 0 0
23 4.345 4.517 3.97% 0.172 0 0
24 5.303 5.303 1 1
25 1.026 0.918 -10.55% -0.108 0 0
26 4.728 4.812 1.78% 0.084 1 0

Note: Text in bold indicates DO reached the SPNE

Of the 52 total instances examined, tabu search is faster than simulated annealing

in each of them. On average tabu search is 11.47 seconds faster than simulated an-

nealing for IM Type 2A and 10.31 seconds faster for IM Type 2B, with the maximum

di�erence in time around 55 seconds. Within Attacker Oracle, simulated annealing

does complete more iterations than tabu search due to the random nature of ex-
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Table 8. DO/TS Expected Survival Value IM Type 2B

Value
DO/TS strategy

comparison with Full

Instance Full DO/TS
Relative
Gap TS

Absolute
Gap TS

Defender
Strategy

Attacker
Strategy

1 9.960 9.960 0 1
2 2.410 1.450 -39.83% -0.960 0 0
3 2.410 1.450 -39.83% -0.960 0 0
4 9.921 9.821 -1.01% -0.100 0 0
5 9.921 9.821 -1.01% -0.100 0 0
6 2.820 2.820 1 1
7 2.820 2.820 1 1
8 10.581 10.581 1 1
9 10.581 10.581 1 1
10 0.150 0.150 1 1
11 2.521 2.521 1 1
12 3.401 3.401 1 1
13 3.401 3.401 1 1
14 18.900 18.957 0.30% 0.057 0 0
15 3.874 3.874 0 1
16 0.274 0.162 -40.88% -0.112 0 0
17 0.326 0.192 -41.00% -0.134 0 0
18 3.882 3.756 -3.24% -0.126 0 0
19 5.373 5.373 0 1
20 4.132 4.132 1 1
21 0.461 0.461 1 1
22 0.500 0.500 1 1
23 5.295 5.303 0.15% 0.008 0 0
24 6.582 6.582 1 1
25 1.196 1.196 1 1
26 5.381 5.381 0 1

Note: Text in bold indicates DO reached the SPNE

ploring neighbors which explains one reason for the di�erence in computation times.

While this comparison helps illustrate the di�erence in computation time required by

the two heuristics, a direct comparison is not entirely accurate. A more comparable

measure would also include the number of iterations Double Oracle performed before

converging, as this may also account for the di�erence in computation time. Table
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6 also shows that simulated annealing fails in one more instance above the SPNE

but in the same number of instances below the SPNE, compared to tabu search.

While DO/TS results in a larger average optimality gap both below and above the

SPNE than DO/SA, the average absolute optimality gap and the maximum absolute

optimality gap are both lower. As Tables 7 and 8 illustrate this is due to DO/TS

failing most often when the SPNE is ≤ 3, where deviations will result in a large rela-

tive optimality gap but not necessarily a large absolute optimality gap, as discussed

previously.

Figure 3 provides an illustration of the di�erent cases in which either DO/SA or

DO/TS fail to identify the SPNE along with the frequency with which they occur.

In Cases 1 to 5, DO/TS returns a value less than the optimal SPNE, in Cases 6 to 8

DO/TS successfully attains the optimal SPNE, and in Cases 9 to 13 DO/TS returns

a value larger than optimal. Case 7 is the ideal outcome in which both DO/SA and

DO/TS properly identify the SPNE and also has the highest frequency, occurring 23

out of the 52 test instances. The case with the next highest frequency is Case 2 which

is also intriguing because this indicates that both DO/SA and DO/TS failed below

the SPNE, and they terminated at the same value. Lastly, of the 29 instances for

which either DO/SA and/or DO/TS fail, there are 18 instances in which they both

fail.

5.4 Initializing DO with Multiple Defender/Attacker Strategies

In an attempt to improve the performance of Double Oracle, we test the e�ect of

initializing DO with multiple defender and attacker strategies on the solution qual-

ity. We generate three new defender strategies and two new attacker strategies in

addition to the single strategies used above to initialize Double Oracle. The expec-

tation of adding these additional strategies is that they will either (a) improve the
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Figure 3. Cases in which DO/TS and/or DO/SA Fail

solution quality in instances which Double Oracle failed by reaching new portions of

the strategy space, and/or (b) reduce the computation time by reaching portions of

the strategy space quicker. Thus, by adding these new strategies we do not expect

the performance to be any worse than the initial results.

The �rst new defender strategy included in the initial restricted game is the so-

lution to the weighted maximum covering problem formulated in (6a) - (6f). The

variable dqi is again the decision to locate a SAM battery with IM of type q at loca-

tion i and rj indicates whether city j is covered by a SAM battery or not.
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Weighted Max Covering:

max
d,r

∑
j∈N

vjrj (6a)

s.t. rj ≤
∑
i∈F

∑
q∈T

aqijd
q
i , ∀j ∈ N, (6b)

∑
i∈F

dqi = mq, ∀q ∈ T, (6c)

∑
q∈T

dqi ≤ 1, ∀i ∈ F, (6d)

dqi ∈ {0, 1}, ∀i ∈ F, q ∈ T, (6e)

rj ∈ {0, 1}, ∀j ∈ N. (6f)

The objective function in (6a) represents the objective to maximize the weighted

value of cities covered by a SAM battery, where the weight assigned to each city is

its city value vj. Constraint (6b) requires that a SAM battery can only cover a city

if the city is within range of the SAM battery while Constraint (6c) requires that all

SAM batteries with missiles of type q are employed. Constraint (6d) enforces that no

more than one SAM battery will be placed at any location and Constraints (6e) and

(6f) enforce binary integer restrictions on the decision to locate a SAM battery at a

city and the decision to cover a city, respectively.

The second new defender strategy included in the initial restricted game utilizes a

greedy heuristic to place a SAM battery at the most valuable city that is not covered

by a SAM battery already placed. In this strategy the �rst SAM battery is always

placed at the most valuable city. The next SAM battery is placed at the next most

valuable city uncovered, given the placement of the �rst SAM battery. For example,

if the SAM battery at City 1 also covers City 2 but not City 3, then the second

SAM battery would be placed at City 3. If all cities are covered and there are SAM
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batteries remaining, the SAM batteries are sequentially placed at the most valuable

city without a SAM battery.

The �nal new defender strategy included in the initial restricted game is the

opposite of the single initialization strategy. Instead of SAM batteries being placed

in sequential order at the most valuable city without a SAM battery, SAM batteries

are placed in sequential order at the least valuable city without a SAM battery. This

strategy is added in an attempt to diversify the set of initialization strategies.

As previously mentioned, we generate two new attacker strategies to add to the

initialization set. The �rst strategy assigns AMs to cities based on the city value.

This strategy assigns wj =
⌈ vj∑

j∈N
vj
n
⌉
AMs to each city j until all n missiles have been

allocated.

The second new attacker strategy included in the initial restricted game itera-

tively assigns AMs to the city with the highest expected city survival value given the

allocation of previous AMs. Let vkj represent the expected city survival value and

wkj represent the number of AMs targeting city j after k AMs have been allocated.

Initially, v0
j = vj and the allocation of AMs continues until k = n. At each iter-

ation the next attacker missile is assigned to the city with the largest vkj value. If

wkj = wk−1
j , implying that the kth AM is not targeting city j, then the expected value

remains unchanged and vkj = vk−1
j . If the kth attacker missile is assigned to target

city j, then wkj 6= wk−1
j and the expected city survival value is updated according to

vkj = vk−1
j pmax, where pmax = max

q
pq.

Since DO/TS will always return the same output assuming the same heuristic

parameter settings and same initialization strategies, we know that any alteration to

the performance of DO/TS from initializing Double Oracle with single defender/at-

tacker strategies will result from the additional strategies in the initialization set. Due

to the stochastic element of simulated annealing, the same will not necessarily hold
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true; however, the results from DO/TS may be used to infer e�ects (i.e., if DO/SA

performs better and DO/TS performs better, it is likely DO/SA improved due to the

di�erent initialization strategies).

5.5 Multiple Strategy Initialization Test Instance Results

The same 26 instances for IM Type 2A and IM Type 2B are tested again to see

what e�ect initializing Double Oracle with multiple defender and attacker strategies

will have. Tables 9, 10, 11, and 12 provide the results from initializing Double Oracle

with multiple strategies, along with the original results from full enumeration. Table

13 again summarizes the performance in those instances in which DO/SA and DO/TS

fail to identify the SPNE.

Overall, initializing Double Oracle with multiple defender and attacker strategies

improves DO/SA both in terms of computation time and solution quality. There

are 45 instances that required a smaller computation time, with a majority of these

instances completing approximately 2 to 4 seconds faster. DO/SA also fails in fewer

instances below the SPNE than previously and results in a smaller average and max-

imum value di�erence. In addition, there are eight new instances for which DO/SA

attains the SPNE and for which it previously failed. Again, it is important to note

that this may not always be the outcome as the performance of simulated anneal-

ing will most likely vary each time it is run, and thus it is di�cult to conclude that

this di�erence in performance is solely attributed to initializing Double Oracle with

multiple strategies.

DO/TS also improves upon single strategy initialization both in terms of compu-

tation time and solution quality. Of the 52 total test instances, initializing Double

Oracle with multiple strategies reduces the computation time in 48 instances, with a

maximum reduction time just under 3 seconds. While DO/TS already performs very
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Table 9. DO/SA Results with Multiple Strategy Initialization for IM Type A

Time (sec) Value

Instance Full DO/SA Full DO/SA
Relative
Gap SA

Absolute
Gap SA

1 15.84 2.74 9.960 9.960
2 94.98 4.60 2.270 2.270
3 93.62 1.40 2.410 2.410
4 95.65 7.46 7.400 7.400
5 91.63 6.97 9.921 9.921*
6 200.07 8.00 2.710 2.610 -3.69% -0.100
7 187.12 1.38 2.820 2.820
8 196.53 4.76 8.924 8.711 -2.39% -0.213
9 187.84 4.11 10.581 10.581
10 1002.22 10.67 0.150 0.150*
11 1140.25 7.22 2.046 2.046*
12 1002.77 5.63 3.192 3.192
13 979.47 2.98 3.401 3.401
14 1006.36 5.55 10.430 10.400 -0.29% -0.030
15 1332.72 4.72 3.874 3.874
16 1839.85 9.14 0.179 0.217 20.86% 0.037
17 1723.53 22.32 0.274 0.274*
18 1876.66 15.48 2.640 2.517 -4.67% -0.123
19 1733.28 6.11 3.883 3.8821 -0.02% -0.001
20 13422.77 15.94 3.317 3.309 -0.24% -0.008
21 4210.00 7.30 0.374 0.374
22 4079.74 12.09 0.463 0.461 -0.38% -0.002
23 4915.87 12.57 4.345 4.109 -5.44% -0.236
24 3571.13 10.48 5.303 5.303
25 10333.44 11.75 1.026 1.019 -0.70% -0.007
26 31282.68 38.77 4.728 4.734 0.12% 0.006

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy initialization
1 indicates DO optimal with single strategy initialization but failed with

multiple strategy

quickly and this reduction does not appear too large, this di�erence may become

more noticeable on larger-sized instances or networks. Tables 11 and 12 also identify

12 instances for which DO/TS now properly identi�es the SPNE, but for which it

failed when initialized with a single defender/attacker strategy. As Table 13 shows,
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Table 10. DO/SA Results with Multiple Strategy Initialization for IM Type B

Time (sec) Value

Instance Full DO/SA Full DO/SA
Relative
Gap SA

Absolute
Gap SA

1 15.69 5.35 9.960 9.960
2 92.09 7.36 2.410 2.410
3 94.17 10.56 2.410 2.410
4 93.19 5.39 9.921 9.921*
5 92.99 6.74 9.921 9.921*
6 191.76 2.75 2.820 2.820
7 189.93 2.75 2.820 2.820
8 190.87 4.11 10.581 10.581
9 189.93 6.91 10.581 10.581
10 971.47 15.14 0.150 0.169 12.67% 0.019
11 1183.04 14.85 2.521 2.521
12 980.67 4.53 3.401 3.401
13 979.13 5.79 3.401 3.401
14 976.86 30.47 18.900 18.962 0.33% 0.062
15 997.60 6.06 3.874 3.874
16 1808.44 19.37 0.274 0.2811 2.30% 0.006
17 1652.89 14.23 0.326 0.3271 0.48% 0.002
18 1826.66 12.66 3.882 3.888 0.16% 0.006
19 1647.21 11.59 5.373 5.373*
20 8659.12 19.21 4.132 4.132*
21 4226.24 19.56 0.461 0.462 0.08% <0.001
22 3404.64 9.07 0.500 0.500
23 4219.76 21.59 5.295 5.197 -1.86% -0.098
24 3403.84 12.52 6.582 6.6131 0.48% 0.032
25 9716.15 15.67 1.196 1.2601 5.35% 0.064
26 19993.36 26.15 5.381 5.291 -1.67% -0.090

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy initialization
1 indicates DO optimal with single strategy initialization but failed with

multiple strategy

initializing Double Oracle with multiple strategies also improves the performance of

DO/TS in every measure when it predicts an equilibrium below the optimal SPNE.

This is attributed to two main e�ects, the �rst simply that DO/TS fails in fewer

instances. The second, as Tables 11 and 12 show, is that there are multiple instances
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where DO/TS still fails but results in a smaller optimality gap. Interestingly, initial-

izing Double Oracle with multiple strategies had no e�ect on those instances where

DO/TS failed above the SPNE. The reason for this unchanged performance is not

immediately clear and warrants further investigation to determine the cause.

Table 11. DO/TS Results with Multiple Strategy Initialization for IM Type A

Time (sec) Value

Instance Full DO/TS Full DO/TS
Relative
Gap TS

Absolute
Gap TS

1 15.84 0.19 9.960 9.960
2 94.98 0.72 2.270 2.270
3 93.62 0.18 2.410 2.410*
4 95.65 1.39 7.400 7.400
5 91.63 0.55 9.921 9.921*
6 200.07 0.70 2.710 2.610 -3.69% -0.100
7 187.12 0.17 2.820 2.820
8 196.53 0.57 8.924 8.711 -2.39% -0.213
9 187.84 0.17 10.581 10.581
10 1002.22 1.29 0.150 0.150
11 1140.25 0.98 2.046 2.046*
12 1002.77 1.18 3.192 3.192
13 979.47 0.41 3.401 3.401
14 1006.36 1.05 10.430 9.710 -6.90% -0.720
15 1332.72 0.48 3.874 3.874
16 1839.85 1.00 0.179 0.179*
17 1723.53 1.64 0.274 0.274*
18 1876.66 2.30 2.640 2.517 -4.67% -0.123
19 1733.28 1.12 3.883 3.8821 -0.02% -0.001
20 13422.77 2.80 3.317 3.309 -0.24% -0.008
21 4210.00 0.80 0.374 0.374
22 4079.74 1.80 0.463 0.461 -0.38% -0.002
23 4915.87 1.11 4.345 4.517 3.97% 0.172
24 3571.13 1.84 5.303 5.303
25 10333.44 1.02 1.026 1.011 -1.49% -0.015
26 31282.68 3.39 4.728 4.812 1.78% 0.084

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy initialization
1 indicates DO optimal with single strategy initialization but failed with

multiple strategy
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Table 12. DO/TS Results with Multiple Strategy Initialization for IM Type B

Time (sec) Value

Instance Full DO/TS Full DO/TS
Relative
Gap TS

Absolute
Gap TS

1 15.69 0.18 9.960 9.960
2 92.09 0.39 2.410 2.410*
3 94.17 0.30 2.410 2.410*
4 93.19 0.55 9.921 9.921*
5 92.99 0.55 9.921 9.921*
6 191.76 0.17 2.820 2.820
7 189.93 0.17 2.820 2.820
8 190.87 0.17 10.581 10.581
9 189.93 0.18 10.581 10.581
10 971.47 1.45 0.150 0.150
11 1183.04 1.13 2.521 2.521
12 980.67 0.36 3.401 3.401
13 979.13 0.52 3.401 3.401
14 976.86 1.43 18.900 18.957 0.30% 0.057
15 997.60 0.54 3.874 3.874
16 1808.44 1.10 0.274 0.274*
17 1652.89 1.48 0.326 0.326*
18 1826.66 1.23 3.882 3.882*
19 1647.21 0.44 5.373 5.373
20 8659.12 0.61 4.132 4.132
21 4226.24 1.18 0.461 0.461
22 3404.64 0.84 0.500 0.500
23 4219.76 2.26 5.295 5.303 0.15% 0.008
24 3403.84 0.39 6.582 6.582
25 9716.15 1.12 1.196 1.196
26 19993.36 1.60 5.381 5.2911 -1.67% -0.090

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy initialization
1 indicates DO optimal with single strategy initialization but failed with

multiple strategy

A �nal point worthy of discussion are those instances for which Double Oracle

succeeded in identifying the SPNE when initialized with a single defender/attacker

strategy but failed to properly identify the SPNE with the addition of new strategies.

Since DO/SA randomly explores the strategy space, it is harder to determine the
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Table 13. DO Performance with Multiple Strategy Initialization

DO/SA DO/TS
Below SPNE Above SPNE Below SPNE Above SPNE

# of instances 11 10 9 4
Average % -1.94% 4.28% -2.38% 1.55%
Max % -5.44% 20.86% -6.90% 3.97%

Average Value Di� -0.083 0.023 -0.141 0.080
Max Value Di� -0.236 0.064 -0.720 0.172

cause of this outcome. One advantage of DO/TS is that it will always return the

same output, allowing us to investigate the cause of this di�erence.

There is one instance (i.e., instance 19) for IM Type 2A and one instance (i.e.,

instance 26) for IM Type 2B where such a failure occurs for DO/TS. In both of these

instances, the expected value returned is smaller than the SPNE, implying that the

defender is not doing as well as it could. We explore this disparity by observing

the strategies returned from coreLP, Attacker Oracle, and Defender Oracle upon

completion of each iteration from initializing Double Oracle with single strategies,

and then with multiple strategies.

In both instances when Double Oracle is initialized with a single defender/attacker

strategy, the optimal defender strategy is a best response to the attacker strategy of

allocating all n missiles to the �rst city. When the newly generated attacker strategies

are added to the initialization set, the attacker no longer selects this strategy from

the set of strategies available. As a result, the optimal defender strategy is no longer

returned as a best response in Defender Oracle. This is not to say that the �rst

attacker strategy is the only one that causes the optimal defender best response, but

none of the other attacker strategies in the initialization set or those generated out

of Attacker Oracle induce this defender best response strategy.
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5.6 Implementation Note

The �nal test instances with the results provided in Tables 4 through 12 were run

on the computer with speci�cations given in Section 5.3. When �rst developing the

code in MATLAB, these instances were occasionally run on various other computers.

All computers executed the same set of code and invoked the same version of CPLEX

solving each instance. An interesting result of utilizing di�erent computers is that

there exist a few instances within the test set for which di�erent computers returned

di�erent expected values for DO/TS when additional initialization strategies were uti-

lized. Speci�cally, a few computers solved Instance 19 for IM Type 2A and Instance

26 for IM Type 2B optimally, whereas the �nal test computer failed for these two

instances. After examining each iteration of Double Oracle, we were able to attribute

the cause of this di�erence to one factor: the presence of alternative optima when

solving the weighted max covering problem. The computers returned di�erent opti-

mal strategies to the weighted max covering problem, so the initialization strategies

created for Double Oracle were not the same on all computers.

This disparity highlights an important feature of the problem in that (a) it clearly

shows that the initialization strategies have an e�ect on the performance of Double

Oracle, and (b) the presence of alternative optimal strategies impacts the performance

of Double Oracle. From Table 4, for example, we found that there are alternative

optimal defender/attacker strategies to the full game in those instances where DO/TS

did attain the SPNE values but returned a di�erent strategy (or strategies) than

reported by full enumeration. This implies that, when we solve Defender Oracle for

the optimal defender strategy given a �xed attacker strategy ŝa, the strategy returned

may a�ect the ability of DO/TS to attain the SPNE if there are alternative defender

best response strategies.

Due to this observation, it may be worth considering solving for these alternative
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optima if they exist. However, returning to the weighted max covering problem,

there are multiple instances for which the number of alternative optimal solutions is

upwards of 30, about half the size of the total number of strategies available to the

defender. Therefore, it is not practical to initialize Double Oracle with this many

strategies, especially in larger instances, as the e�ect on increasing computation time

would be too large to be of value.

5.7 Initialization Pairs

As a �nal focus of analysis within Double Oracle, we initialize the restricted game

with each combination of defender/attacker strategies from the multiple initialization

strategy set. There are four initial defender strategies and three initial attacker

strategies, for a total of 12 combinations. D1 and A1 represent the defender and

attacker strategies used in single strategy initialization as discussed in Section 5.1,

respectively. D2 represents the defender strategy to the solution of the weighted max

covering problem, D3 represents the defender strategy using the greedy allocation

of SAMs to uncovered cities, and D4 represents the last defender strategy of all

SAM batteries at the the least valuable cities. A2 represents the attacker strategy of

assigning wj =
⌈ vj∑

j∈N
vj
n
⌉
AMs to each city j, and A3 represents the attacker strategy

of iteratively assigning AM to the most valuable city based on the expected value of

all previously assigned missiles.

The results from initializing Double Oracle with each strategy pair are provided

in Tables 14 and 15. In this sense, the term `initialization pair' refers to the speci�c

combination of a single defender/ single attacker initialization strategy combination

(e.g., D1A3). First, note that these results are only provided for DO/TS and, because

the combination D1A1 represents the same initialization pair as the original results

in Section 5.3, they have been omitted from these tables. The attacker strategy A2
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and A3 are also identical for the �rst instance with only 5 AM available and, as a

result, the strategy A3 was omitted from the initialization pair.

Tables 14 and 15 provide further insight into the performance of Double Oracle.

First, across all 52 instances, there are 16 instances for which all 12 initialization

pairs successfully identify the SPNE. In addition, there are 10 instances in which all

initialization pairs fail to identify the SPNE. Of the 10 instances for which all fail,

there are 3 instances for which all 12 initialization pairs fail at the same SPNE value.

This is an interesting result as it indicates that the initialization strategies do not

have a large impact on the performance of DO/TS in these instances.

In addition, none of the initialization pairs exactly matches the performance of

DO/TS under multiple strategy initialization, as reported in Tables 11 and 12. Fur-

ther, if we compare each combination of initialization pairs (i.e., D1A1 with D1A2,

D1A1 with D1A3, . . ., D4A2 with D4A3), no two combinations yield the exact same

performance. That is, no combination of initialization pairs identify the same SPNE

value for every instance. This indicates that each defender/attacker strategy in the

multiple strategy initialization set contributes to the performance of Double Oracle

and as a result, each strategy is important to include in the initialization set. Subse-

quently, Tables 14 and 15 again illustrate how the performance of Double Oracle can

vary with di�erent initialization strategies.
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Table 14. DO/TS Results with Single Strategy Initialization Combinations for IM Type A

Instance Full D1 A2 D1 A3 D2 A1 D2 A2 D2 A3 D3 A1 D3 A2 D3 A3 D4 A1 D4 A2 D4 A3
1 9.960 9.960 9.960 9.960 9.960 9.960 9.960 9.960
2 2.270 2.270 2.270 2.270 2.270 2.270 2.270 2.270 2.270 2.270 2.270 2.270
3 2.410 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410*
4 7.400 7.400 7.400 7.400 7.0711 7.0711 7.400 7.0711 7.0711 7.400 7.400 7.400
5 9.921 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.821 9.821 9.821
6 2.710 2.610 2.610 2.570 2.570 2.570 2.570 2.570 2.570 2.570 2.570 2.570
7 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820
8 8.924 8.711 8.711 8.711 8.711 8.711 8.711 8.711 8.711 8.711 8.711 8.711
9 10.581 10.581 10.581 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811

10 0.150 0.1461 0.150 0.150 0.150 0.150 0.150 0.1461 0.150 0.150 0.1461 0.150
11 2.046 1.725 2.023 2.046* 2.046* 2.046* 2.023 1.725 2.023 2.023 2.023 2.023
12 3.192 3.192 3.192 3.192 3.192 3.192 3.192 3.192 3.192 3.192 3.192 3.192
13 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401
14 10.430 9.500 9.710 9.710 16.500 9.710 9.710 14.900 9.710 9.710 17.832 9.710
15 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874
16 0.179 0.136 0.170 0.170 0.136 0.170 0.179* 0.179* 0.179* 0.179* 0.136 0.170
17 0.274 0.271 0.274* 0.271 0.271 0.271 0.274* 0.274* 0.274* 0.271 0.271 0.274*
18 2.640 2.420 2.229 2.517 3.026 3.026 2.420 2.420 2.420 2.517 2.517 2.517
19 3.883 3.883 3.883 3.6071 3.8821 3.8821 3.8821 3.8821 3.8821 3.6211 3.8821 3.6211

20 3.317 3.309 3.309 3.111 3.245 3.245 3.149 3.245 3.221 3.149 3.245 2.886
21 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374
22 0.463 0.461 0.461 0.461 0.456 0.461 0.461 0.456 0.456 0.461 0.456 0.456
23 4.345 4.517 4.517 4.517 4.517 4.517 4.517 4.517 4.517 4.517 4.109 4.109
24 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.0451

25 1.026 1.011 0.918 1.011 1.011 1.011 1.011 1.011 0.918 0.918 1.011 0.918
26 4.728 4.812 4.902 4.812 4.728* 4.812 4.812 4.728* 4.058 4.902 4.812 4.112

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy D1A1 initialization
1 indicates DO optimal with single D1A1 strategy, but failed with new combination
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Table 15. DO/TS Results with Single Strategy Initialization Combinations for IM Type B

Instance Full D1 A2 D1 A3 D2 A1 D2 A2 D2 A3 D3 A1 D3 A2 D3 A3 D4 A1 D4 A2 D4 A3
1 9.960 9.960 9.960 9.960 9.960 9.960 9.960 9.960
2 2.410 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410*
3 2.410 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410* 2.410*
4 9.921 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.821 9.821 9.821
5 9.921 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.921* 9.821 9.821 9.821
6 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820
7 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820 2.820
8 10.581 10.581 10.581 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811

9 10.581 10.581 10.581 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811 10.2811

10 0.150 0.1461 0.150 0.150 0.150 0.150 0.150 0.1461 0.150 0.150 0.1461 0.150
11 2.521 2.521 2.521 2.521 2.521 2.521 2.521 2.521 2.521 2.521 2.521 2.521
12 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401
13 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401 3.401
14 18.900 18.957 18.957 18.957 18.957 18.957 18.957 18.957 18.957 18.957 18.957 18.957
15 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874 3.874
16 0.274 0.160 0.162 0.247 0.160 0.162 0.274* 0.274* 0.274* 0.247 0.160 0.162
17 0.326 0.192 0.311 0.311 0.192 0.311 0.326* 0.326* 0.326* 0.311 0.196 0.311
18 3.882 3.882* 3.882* 3.385 3.321 3.882* 3.882* 3.882* 3.882* 3.385 3.385 3.385
19 5.373 5.373 5.373 5.373 5.373 5.373 5.373 5.373 5.373 5.1891 5.373 5.1891

20 4.132 4.132 4.132 4.132 4.132 4.132 4.132 4.132 4.132 4.132 4.132 4.132
21 0.461 0.461 0.461 0.461 0.4001 0.4271 0.461 0.4001 0.4231 0.461 0.4001 0.4001

22 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.4791 0.500 0.500 0.4791

23 5.295 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303 5.303
24 6.582 6.582 6.582 6.582 6.582 6.582 5.8821 6.582 5.8821 6.582 6.582 6.582
25 1.196 1.196 1.196 1.196 1.196 1.196 1.196 1.196 1.196 1.196 1.196 1.196
26 5.381 5.2911 5.381 5.381 5.2911 5.381 5.381 5.2911 5.381 5.381 5.2911 5.381

Text in bold indicates DO reached the SPNE
* indicates improvement over single strategy D1A1 initialization
1 indicates DO optimal with single D1A1 strategy, but failed with new combination
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Finally, there is only one initialization strategy pair that appears to dominate

another strategy pair, meaning it matches the performance and successfully reaches

the SPNE in at least one additional instance. This is the initialization pair D1A3,

which dominates D1A1. The pair D1A3 successfully identi�es the SPNE for Instance

17 on IM Type 2A, and it is also the only pair that does not fail in an instances for

which D1A1 was successful.

5.8 Full Enumeration IM Swap

At this point, we return focus to DAD Model 1. Recall that the main di�erence in

this model compared to DAD Model 2 is that the defender is able to launch multiple

types of IMs to protect any given city. While this is a more di�cult model to solve,

we can use the stage 3 strategy identi�ed by full enumeration for DAD Model 2 as

a starting feasible solution, and examine IM Swaps based on this solution. In doing

so, we de�ne an IM swap in one of two ways. For IM Swap 1, we �rst determine

the number of IM Type 2 remaining and the cities within range capable of being

protected by these missiles. If there is a city within range that is currently protected

using only IM Type 1, we begin to substitute IM Type 2 for IM Type 1, thereby

mixing IM types used to protect the city. If there are multiple cities within range

currently protected using IM Type 1, we begin the swap at the most valuable city.

IM Swap 2 is not a swap of IMs used; rather it allows the defender to use previously

unallocated IMs to protect a new city by mixing IM types. In such a search, we begin

with the most valuable city currently not protected and determine the number of IM

of both types that could be used to protect the city. If the total number is at least as

large as the number of AMs, we begin allocating IMs to defend the city until enough

IMs have been allocated to match incoming AMs one to one, starting with IM Type

2.
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In applying the above IM Swaps to the solution from full enumeration, there is

the possibility that the order the swaps are applied will be important in terms of

the increase in the defender's expected utility. As such, we apply the IM Swap in

both orders. That is, we perform one iteration in which we use the full enumeration

solution and apply IM Swap 1 followed by IM Swap 2, and one iteration in which we

apply IM Swap 2 followed by IM Swap 1. The larger expected utility to the defender

of the two is then selected.

Table 16 provides the results for applying this swap technique for IM Type 2A,

and Table 17 provides the results for IM Type 2B. Further, since this swap is not guar-

anteed to increase the defender's expected value (and it will never decrease it), results

are only reported for instances in which the defender's expected value increased.

Table 16. Full Enumeration SPNE Value IM Swap Type 2A

Instance Full IM Swap Increase in SPNE
8 8.924 9.343 0.420
14 10.430 12.524 2.094
18 2.640 2.643 0.003
20 3.317 3.357 0.040
21 0.374 0.405 0.031
22 0.463 0.484 0.021
23 4.345 4.450 0.106
24 5.303 5.528 0.226
26 4.728 4.784 0.056

Table 17. Full Enumeration SPNE Value IM Swap Type 2B

Instance Full IM Swap Increase in SPNE
21 0.461 0.473 0.012
23 5.295 5.377 0.082

Table 16 and 17 show that the largest increase in the SPNE is 2.094 for instance

14 with IM Type 2A. Returning to Table 2, we note that this is also the instance
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in which p2 = 1, and this is attributed as the main cause for the large increase.

Excluding this instance, the largest increase in the SPNE is 0.420, with a majority

of the instances increasing the SPNE by less than 0.100. There are two main factors

for this small change in SPNE. First, the pq-values are relatively close together, so

mixing IM types to protect a city will not drastically change the SPNE. Secondly,

the largest increase in SPNE would arise as a result of protecting a city that was

previously unprotected. Returning to the DAD Model 2 full enumeration solution,

a majority of the cities are already protected. In fact, the fewest number of cities

protected is three, and this only occurs in a few instances. Thus, the only real change

is mixing IMs utilized on an already protected city, which as previously mentioned

will not cause a large change. While this IM swap technique is not an exact solution

method, it does provide an indication that the assumption limiting the defender to at

most one IM type employed to protect a city is not too constricting on the defender.
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VI. Conclusions

6.1 Summary

With the continual advancement of technology and evolving threats around the

world, missile defense remains a key area that accounts for billions of dollars in the

U.S. acquisition process alone. As new technologies and weapon systems are intro-

duced, each brings unique capabilities to help combat this threat. While current

systems such as the THAAD, Patriot, and AEGIS are capable of providing protec-

tion, the focus is beginning to shift towards more cost e�ect alternatives capable of

providing the necessary protection against an overwhelming attack [12]. A defender

may need to protect a large, dispersed area, and close attention must be given to

properly allocate defensive resources in order to maximize the utility of each system.

This is a problem faced not only by the U.S. but by nations around the world. As

Goure [13] argues, this requires a coordinated e�ort that takes full advantage of the

capabilities available in any given area. The above factors, along with the rami�ca-

tions for the failure to deal with such a threat, contribute towards the necessity for

the research and advancement of air defense systems and their deployment.

The problem of properly positioning air defense systems may seem simple, but

the defender must select a single strategy to implement from an overwhelmingly large

number of those available. We observed that solving the problem exactly via enu-

meration may be plausible for instances of small-size, but the time required increases

too sharply to remain tractable for realistically-sized instances. Even by leveraging

the assumption of a perfect information game and eliminating defender or attacker

strategies at appropriate stages, this method still required several hours to complete.

In contrast, Double Oracle o�ers the advantage of signi�cantly reducing the compu-

tation time required at the potential cost of converging to a solution that incorrectly
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approximates the SPNE. While this may be concerning, it appears that the optimal-

ity gap is not large enough to completely discount the use of Double Oracle as a

viable solution method. This is the case whether simulated annealing or tabu search

was used to solve the Attacker Oracle subproblem within Double Oracle, as both

heuristics have unique features that can be leveraged.

Further, the performance of Double Oracle can be improved by altering its imple-

mentation. This was observed by adding new strategies to the initial restricted game,

and the success of Double Oracle properly identifying the SPNE in a larger num-

ber of instances than under single strategy initialization. In the �nal test instances

with the additional initialization strategies, we note that the average computation

time required by Double Oracle utilizing tabu search to solve Attacker Oracle is 0.95

seconds, a signi�cant improvement over implementing full enumeration. For those

instances for which Double Oracle failed to properly identify the SPNE, the average

relative deviation is less than 2.5%, which equates to an absolute deviation in SPNE

value of approximately 0.13. Lastly, in the event that the defender utilizes mixed IM

types to protect a city, we have not found this to have a large e�ect on the change in

the expected survival value of the city, assuming the pq-values are relatively close.

6.2 Future Research

While Double Oracle provides a large improvement over full enumeration and even

scales well to solve larger instances, it does come at the potential cost of failing to

properly identify the SPNE. Thus, the improvement in the implementation of Double

Oracle yields one such area for further work. One element to consider is solving for

mixed strategies, or alternative optima, when solving for the best response within

Defender and Attacker Oracle. This may increase the computation time required for

Double Oracle, with the bene�t of exploring more of the strategy space allowing for
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an improved performance in predicting the SPNE.

Returning to the network topology, another aspect to examine is considering geo-

graphical factors that may be important. If a defense network is designed to provide

protection against a known threat, then the location of this threat may be an im-

portant factor to consider. For example, assume that all AMs will be launched from

one direction (e.g., from the west). In such a scenario, it may be possible for a SAM

battery to protect a city to the east that is outside of the coverage radius, as the

AM will have to �y over this SAM battery �rst. This would allow the defender an-

other factor to consider when placing SAM batteries and also help accurately re�ect

how additional information can be leveraged when selecting a strategy to implement.

Such a change would likely warrant a new model formulation to accurately address

the di�erent aspects that in�uence protection capabilities.
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