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Abstract

Aerial refueling is essential to the United States Air Force (USAF) core mission of

rapid global mobility. However, in-flight refueling is not available to remotely piloted

aircraft (RPA) or unmanned aerial systems (UAS). As reliance on drones for intelli-

gence, surveillance, and reconnaissance (ISR) and other USAF core missions grows,

the ability to automate aerial refueling for such systems becomes increasingly critical.

New refueling platforms include sensors that could be used to estimate the relative

position of an approaching aircraft. Relative position estimation is a key component

to solving the automated aerial refueling (AAR) problem. Analysis of data from a

one-seventh scale, real world refueling scenario demonstrates that the relative position

of an approaching aircraft can be estimated at rates between 10 Hz and 30 Hz using

stereo vision. Linear regression models on position estimate accuracies predict re-

sults reported by other research in the simulation domain, suggesting that real world

accuracies are comparable to simulation domain accuracies reported by others. Fur-

ther, by seeding the position estimation algorithm with previous position estimates,

subsequent errors in position estimation are reduced.
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TOWARDS AUTOMATED AERIAL REFUELING:

REAL TIME POSITION ESTIMATION WITH STEREO VISION

I. Introduction

Aerial refueling is essential to the United States Air Force (USAF) core mission

of rapid global mobility. However, in-flight refueling is not available to remotely

piloted aircraft (RPA) or unmanned aerial systems (UAS). As reliance on drones for

intelligence, surveillance, and reconnaissance (ISR) and other USAF core missions

grows, the ability to automate aerial refueling for such systems becomes increasingly

critical [15].

Solving the automated aerial refueling (AAR) problem aims to fix this issue. AAR

consists of many challenges, including relative pose estimation between aircraft, nav-

igation and control processes, and data transfer between aircraft. Researchers have

been investigating the AAR problem for over a decade [34]. Some solutions to the rel-

ative navigation aspect of AAR have focused on the global positioning system (GPS),

inertial sensor data, monocular machine vision, and light detection and ranging (Li-

DaR) [5, 10,17].

Work towards solving the AAR problem involving monocular machine vision and

LiDaR have approached the challenge from the perspective of the receiving aircraft. In

these studies, the aircraft uses onboard sensors in order to detect the refueling tanker

and estimate a relative position [10,17]. This approach requires onboard sensors that

may not be present in the original aircraft designs.

Recently, the KC-X Tanker Modernization Program has introduced the KC-46

refueling tanker for future deployment [14]. This tanker could be capable of employing
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a stereo imaging system during refueling operations [3]. Utilizing existing sensors

towards solving the AAR problem can reduce costs and speed system deployment.

As a result, recent research focused on using stereo sensors on the refueling tanker

for relative position estimation of an approaching aircraft [42].

While other work examined relative position estimation in the simulation domain,

several questions regarding the utility of stereo vision in support of solving the AAR

problem remain. For example, does position estimation using stereo vision on real

world data result in accuracies comparable to accuracies observed in the simulation

domain? Is position estimation from stereo vision feasible in real time, and does

real time execution have an effect on position estimation accuracies? Do different

stereo vision algorithms exhibit different position estimation accuracies? Finally,

does seeding the registration algorithm with solutions from previous time steps affect

position estimation accuracy?

1.1 Problem outline

Here, the central problem consists of position estimation from stereo image data.

Specifically this investigation focuses on estimating an object’s position relative to the

stereo camera, given a pair of rectified stereo camera images and the associated region

of interest masks. This problem has been examined from the perspective of AAR by

Werner [42]. Werner’s work examined the accuracy of relative position estimation

from simulated stereo vision using semi-global block matching on the CPU and an

unseeded iterative closest point registration algorithm. An emphasis was placed on

high-fidelity three dimensional (3D) reconstruction by tuning correspondence function

parameters at the expense of high execution times [42].

Because simulated data lacks real world noise factors, results in the simulation

domain may exhibit smaller errors. This effect has been observed in other AAR

2



investigations. Specifically, real world flight tests have exhibited greater errors than

errors exhibited in simulation [5]. A main thrust of this investigation focuses on

evaluating position estimation accuracies from real world stereo imagery. The goal

for this aspect of the investigation is to test whether position estimation accuracies

produced from real world data differ from position estimation accuracies produced

from simulated data.

Another question central to this investigation relates to real time execution. Pre-

vious work demonstrated that stereo vision can produce relative position estimates.

However, each pair of stereo images required over one second of processing to pro-

duce a position estimate [42]. Real time execution is an essential requirement for

the feasibility of stereo vision as a solution to the relative navigation aspect of AAR.

Thus, this investigation examines whether execution at a rate greater than 1 Hz is

feasible, noting that an online system would prefer an execution rate exceeding the

system frame rate. Additionally, changes to support real time execution could impact

relative position estimation accuracies.

Several stereo correspondence algorithms exist. Due to different approaches to

stereo analysis, the execution times and the resulting disparity maps of different

stereo algorithms vary. Previous work emphasized tuning the function parameters

of a semi-global block matching stereo algorithm in order to obtain high fidelity 3D

reconstructions at the expense of high execution times [42]. In order to examine

the effect of different stereo algorithms on position estimates, three different stereo

algorithms with identical input parameters are tested.

Finally, this investigation considers the effect of seeding the point cloud registra-

tion function. In other work, a source or truth point cloud was registered to a target

point cloud generated from stereo correspondence data in order to estimate position.

The iterative closest point algorithm was used for registration. At each time step,

3



the source point cloud was placed at the origin of the camera frame of reference be-

fore performing iterations [42]. Because the position of the imaged aircraft is highly

related between time frames, seeding the position of the source point cloud with the

solution from the previous time frame could improve position estimation accuracy.

1.2 General approach

Evaluating position estimation accuracies from real world stereo imagery requires

a real world data collection. Specifically, stereo imagery of an aircraft from the

perspective of a refueling tanker at various distances is required. A full, one-to-one

scale data collection is not feasible. Instead, real world stereo imagery was collected

at a one-seventh scale. A 1:7 scale F-15E was imaged with a pair of cameras at

distance vectors varying from 2 m to 8 m in magnitude. These distances correspond

to distance vectors ranging from 14 m to 56 m in a full scale scenario.

In order to support reproducibility, a database schema was developed for collect-

ing, organizing, storing, and retrieving this real world stereo data. By wrapping the

database in an application programming interface (API), the collected data may be

accessed and analyzed programatically. The database structure is essential in making

large sets of data feasible.

Unlike the simulation domain, truth data is not intrinsically available in the real

world domain. Truth data is collected in parallel with the collection of stereo imagery.

All data collection takes place within a Vicon motion capture area. The poses of the

model F-15E and each camera are tracked by the motion capture system.

In order to construct a correspondence between stereo imagery and motion cap-

ture data, precise timing is required. Specifically, clock times must be synchronized

between the motion capture computer, the stereo data collection computer, and each

camera. In order to achieve clock synchronization, these devices were connected to a

4



local area network (LAN). A stratum 1 network time protocol (NTP) server provided

time synchronization services to these devices.

Evaluating the feasibility of real time execution requires robust, high-quality com-

puter vision software. Under this requirement and the desire to support reproducibil-

ity, OpenCV 3.0.0 and Point Cloud Library (PCL) 1.8.0 were used for data analysis.

OpenCV 3.0.0 provides stereo correspondence algorithms that utilize both the CPU

and the GPU. Faster execution due to parallelization on the GPU is an important

consideration for real time execution.

In particular, real world data was analyzed using semi-global block matching on

the CPU, block matching on the CPU, and block matching on the GPU. Assuming

an input of rectified stereo image pairs and corresponding region of interest masks,

these algorithms produce a disparity map. Disparity maps may be projected into a

three dimensional point cloud using calibration information.

After producing a point cloud from stereo imagery, the iterative closest point

(ICP) algorithm is applied in order to estimate position. Specifically, a point cloud

generated from a computer model of an F-15E is iteratively perturbed so as to reduce

the distance to the nearest neighbor points in the target point cloud. Two initial

conditions are tested for this algorithm. In one case, the source point cloud initially

is placed at the origin of the camera frame of reference. In the other case, the source

point cloud initially is placed at its final position in the previous time step.

1.3 Content summary

Results demonstrate that stereo analysis of real world data provides relative po-

sition estimates comparable to estimates produced in the simulation domain. In par-

ticular, real world data linear regression models for error vector magnitudes predict

simulation domain accuracies reported at close range in other work [42].
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Additionally, results indicate that real time execution at rates between 10 Hz and

30 Hz are feasible. Block matching on the GPU exhibits the fastest execution times.

Block matching on the CPU also executes at a rate appropriate for real time position

estimation. Semi-global block matching on the CPU is the least suitable algorithm

for real time execution of the three stereo correspondence functions tested.

Despite constricted execution times, no major impact on position estimation accu-

racies are observed. Linear regression models suggest that semi-global block match-

ing on the CPU produces relative position estimates with the most noise, and block

matching on the GPU produces relative position estimates with the least noise. How-

ever, these characteristics could be specific to the stereo correspondence parameters,

which were held constant across all three algorithms.

Finally, seeding the iterative closest point algorithm with the solution from the

previous time step results in a nominal reduction in error. The relative position

estimate error vector magnitudes produced by the unseeded iterative closest point

algorithm are larger on average than the magnitudes produced by the seeded iterative

closest point algorithm.
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II. Background

2.1 Previous work

Researchers have been investigating the automated aerial refueling (AAR) prob-

lem for over a decade [34]. The global positioning system (GPS) is a key resource in

these investigations. In practice, differential GPS (DGPS) produces relative position

estimation between aircraft with accuracies within tens of centimeters compared to

truth data [5]. In simulation, sensor fusion techniques combining GPS data with

monocular electro-optical (EO) sensor data estimate the pose of refueling aircraft

with errors on the order of centimeters [29]. Because GPS service can be interrupted,

researchers continue to search for additional solutions to the AAR problem. For exam-

ple, sensor fusion between inertial measurement unit (IMU) data and EO sensor data

reduces IMU navigation error in GPS-deprived environments [41]. Researchers have

investigated medium wave infrared (MWIR), light detection and ranging (LiDaR),

and stereo EO as solutions to the AAR problem as well [10, 39,42].

Differential GPS.

Differential GPS falls into three major categories [32]. Local area differential

GPS (LADGPS) depends on a single reference station with a well-defined location.

This station broadcasts a scalar correction to nearby receivers. Subscribers within

1000 km that receive the correction within 10 s can achieve position accuracies within

1 m to 10 m [32]. Note that these accuracies assume service degradation due to selec-

tive availability (SA). Some LADGPS implementations leverage “pseudosatellites,”

shortened to “pseudolites” (PL), as ground-based GPS sources in order to improve

the accuracy of subscribers’ positions [32].
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Wide area differential GPS (WADGPS) utilizes a network of reference stations

with well-defined locations. Together, these stations calculate a correction vector

for incoming GPS signals. WADGPS has a greater range than LADGPS. Addi-

tionally, WADGPS can produce greater location accuracy for receivers compared to

location accuracy under LADGPS. As with LADGPS, the greater the time between

a correction’s broadcast and its reception, the less the resulting location accuracy

improves [32].

Carrier-phase differential GPS (CDGPS) offers the best location accuracy com-

pared to LADGPS and WADGPS location accuracies. CDGPS compares the phase

of a GPS signal to the phase of a signal broadcast by a reference site. Under this

system, receiver locations can be determined at the scale of centimeters [32].

Relative navigation studies have used GPS and CDGPS for position estimation.

For example, NASA reported the real-world accuracy of three relative position esti-

mation techniques using GPS, CDGPS, and the fusion of CDGPS data with inertial

navigation sensor (INS) data [5].

The first technique, an independent separation measurement system (ISMS), uses

locations independently reported by GPS receivers on aircraft flying in formation.

These aircraft communicate their respective GPS locations at 2 Hz intervals over a

radio modem. The reported locations are translated from latitude, longitude, altitude

(LLA) coordinates to Earth-centered, Earth-fixed (ECEF) coordinates. Ultimately,

the ISMS returns the magnitude of the separation vector between the reported loca-

tions [5].

Errors in this method may arise if the two GPS receivers do not receive signals

from the same set of satellites. Latency increases error in real-time scenarios, partic-

ularly when the relative acceleration between aircraft is high. Tests suggest that this

technique estimates the magnitude of the separation vector between aircraft with less

8



than 61 cm of error 95% of the time, ideally. However, real-time tests exhibit higher

levels of error [5].

The second technique, labelled “formation needles” (FN), makes use of a refer-

ence ground location. Using the GPS data reported by the aircraft’s receivers, the

technique first calculates their north, east, down (NED) positions with respect to

the reference location. These positions are rotated into the flight’s formation frame

using heading information. Finally, the aircraft’s pose and velocity information is

extrapolated into the future in order to reduce the impact of latency [5].

The FN technique calculates the difference between an aircraft’s intended forma-

tion pose and its estimated pose and returns a difference vector. Unlike the ISMS

technique, the FN technique only reports results when both GPS receivers are work-

ing from the same set of satellites. Real-time tests of the FN technique produce

performance comparable to the ideal performance of the ISMS technique [5].

The third technique, a formation flight instrumentation system (FFIS), does not

depend on reference stations. The FFIS uses CDGPS to estimate relative position.

It leverages both GPS and INS data in order to estimate the relative orientation

and velocity between aircraft. As with the ISMS and FN techniques, the FFIS relies

on wireless communication between aircraft. Tests indicate that the FFIS estimates

relative position within 7 ± 13 cm. However, the FFIS is not effective at estimating

relative orientation in these tests [43].

Simulated monocular machine vision.

As exhibited by the FFIS, combining GPS and INS data can improve relative

position estimation compared to GPS-only techniques. Other investigations have

explored combining additional sensor data, such as monocular EO data, with GPS

and inertial data [29]. Monocular EO machine vision uses visible spectrum data
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captured by a single camera in order to determine information about the environment.

Researchers have used feature matching and template matching with monocular EO

sensor data as approaches when investigating solutions to the AAR problem [8,17].

A collaboration between the University of Perugia and West Virginia University

focused specifically on the automated aerial refueling of unmanned aerial vehicles

(UAVs) with the aid of monocular machine vision. The group constructed a simu-

lated environment consisting of a refueling tanker aircraft with the United States Air

Force (USAF) refueling boom and an approaching drone aircraft. The environment

simulates various sensor data and physical effects, including monocular EO camera

data from the perspective of the approaching UAV viewing the refueling tanker [17].

The simulation environment aims to study the three-dimensional position and

orientation estimation problem, i.e. the pose estimation problem. Once the pose

estimation problem is solved, an approaching UAV could make corrections to its

estimated position so as to place itself in a target area relative to the tanker. It is

assumed that the boom operator can proceed with refueling once the UAV is inside

this target area [17].

In order to solve the pose estimation problem, red markers are placed on the

simulated refueling tanker. The monocular EO data, which is produced from the

perspective of the UAV looking towards the refueling tanker, is simulated as a 1280×

1280 pixel bitmap refreshed at 20 Hz. After an image frame is collected, a three stage

process begins [17].

First, the process extracts features from the image. In this case, the features of

interest are the red markers on the simulated refueling tanker. Since these markers

are the only sources of red in the simulation, a red pass-through filter is applied to the

image. The feature is accepted so long as its area exceeds a predetermined amount.

The location of the feature is taken to be the centroid of the pixel area [17].
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Second, the process matches the resulting features to expected features. Initially,

the actual positions of these expected features is assumed to be available. The match-

ing function between observed features and known features minimizes the offset dis-

tance sum between the sets. Finally, the pose is estimated according to the reported

matching [17].

The initial results from this simulation study are less accurate than the previous,

real-world experiments focused around GPS. While the magnitude of the separation

vector between the approaching UAV and the refueling tanker is between 10 and 30

m, the resulting error in relative position estimates range from 0 m to 10 m. However,

further work on this process improves the pose estimation dramatically [17].

For example, the researchers removed the red markers and replaced the feature

extraction process with a corner detection algorithm. Again assuming that the actual

pose of the corners are known, the monocular EO data is passed through a Harris

corner detector in order to identify points on the refueling tanker [29]. A smallest

univalue segment assimilating nucleus (SUSAN) corner detector was also investigated.

However, the Harris corner detector produces better results [16].

In order to further improve accuracy, the position of the UAV is approximated as

the previously determined position. The orientation is approximated as the rotation

between the orientations reported by the aircrafts’ IMUs. By seeding the pose esti-

mation algorithm with GPS and IMU data, the error reduces to a range from −0.015

m to 0.010 m [29]. Changing the sensor fusion technique from linear interpolation to

an extended Kalman filter (EKF) improves results by another order of magnitude,

reducing the average error to millimeters in simulation [27].

Two other point matching algorithms considered are the mutual nearest point

(MNP) and maximum clique detection (MCD) algorithms. The MNP algorithm

minimizes the “distance” across four dimensions: the two pixel coordinate positions,
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the feature area, and hue. Before minimization, each dimension is weighted. The

researchers found that weighting the two pixel coordinates equally and weighting the

remaining dimensions at zero (i.e. omitting them) produced the best results [28].

The MCD algorithm cannot be executed in real-time without applying a heuris-

tic. However, the heuristic allows non-optimal solutions. As a result, while the MCD

algorithm improves over the MNP algorithm in some cases, the MNP algorithm per-

forms better on average. Because the MNP algorithm requires less computation than

the MCD algorithm and performs better on average, it is preferable over the MCD

algorithm [28].

Real world machine vision.

Another investigation into automated aerial refueling for both manned and un-

manned aircraft uses real world monocular EO data. In this experiment, an approach-

ing aircraft contains a forward facing EO camera, an embedded GPS inertial (EGI)

sensor, and other sources of navigation data. The approaching aircraft images the

refueling tanker. Using a three dimensional scan of the tanker and the monocular

image source, the relative position vector between the two aircraft is calculated [8].

In particular, both the real world image and a simulated image, which is created

as a two dimensional projection of the refueling tanker model, are passed through a

Sobel edge filter. Filtering the images reduces noise due to environmental factors.

The refueling tanker model is perturbed in space under a sum squared difference

(SSD) metric so that its two dimensional projection converges to the camera image.

At this point, the relative position of the refueling tanker model is taken to be the

position of the actual tanker [8].

This approach has some challenges. Decreasing the resolution of the tanker

model’s iterative perturbations decreases execution time but increases the likelihood
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of erroneous solutions. Ultimately, the pose of the approaching aircraft relative to the

refueling tanker can be determined within 35 cm 95% of the time while the aircraft

are within 20 m of each other [8].

Machine vision, in combination with other sensor sources, has even been shown

to provide navigation capabilities in the absence of GPS. In one approach, machine

vision data complements inertial sensor data through fusion via an extended Kalman

filter. As sensor data becomes available, image information predicts incoming iner-

tial information and corrects detected errors. Likewise, inertial information predicts

incoming image information and corrects detected errors. The resulting navigation

information exhibits improvement over inertial navigation alone [41].

Using medium wave infrared to aid navigation.

Because machine vision has been shown to complement existing navigation meth-

ods, researchers have explored other sensors as sources of navigation data. Tharp

proposed that medium wave infrared (MWIR) sensor data could aid in navigation

tasks. This investigation also focused on navigation in GPS-deprived environments,

which is of interest to the AAR problem [39].

As previously described, one navigation solution uses GPS data and inertial data

to produce pose estimations. However, inertial sensor systems tend to exhibit large

and rapid increases in error in the absence of GPS. By combining inertial data and EO

data in order to produce position estimates using structure from motion (SfM) [36],

these IMU data errors were limited successfully. As a result, EO data can be used to

correct errors in IMU data in GPS-denied environments [39].

From these results, Tharp suggests that MWIR imagery could fulfill a similar

function. First, EO data corrects IMU errors successfully. Second, SfM using MWIR

imagery returns qualitatively similar results to SfM results from EO imagery. Thus,
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it is possible that MWIR imagery could correct IMU errors. No quantitative testing

of this proposal could be performed due to a lack of timing information in the MWIR

dataset [39].

Using medium wave infrared to aid navigation provides multiple benefits over EO

imagery. For example, MWIR can provide meaningful data in environments where

EO cannot provide useful sensor information. These environments include night, fog,

clouds, smoke, and so on. However, MWIR does have limitations. The equipment

tends to have a higher price while simultaneously offering lower resolution than EO

solutions [39].

LiDaR.

Light Detection and Ranging (LiDaR) has been investigated as a supplement to

existing GPS and monocular vision AAR approaches. In this system, a LiDaR sensor

is placed on an aircraft approaching a refueling tanker. The resulting LiDaR sensor

data is used to estimate the position of the refueling tanker relative to the approaching

aircraft. This method was also tested using real world data [10].

First, the relative orientation of the aircraft is determined using INS data. Next,

two separate algorithms were investigated to provide the relative position estimate.

One algorithm perturbs a previously determined location of the refueling tanker into

the future, producing several candidate positions. The algorithm then produces sim-

ulated LiDaR data for each of these possible positions. When actual LiDaR data

becomes available, each of the predicted tanker positions are matched with the mea-

sured LiDaR data. The simulated position most closely matching the actual data is

selected as the position estimate [10].

The other algorithm provides relative position estimates through iterative closest

points (ICP). In this scheme, a three dimensional model of the refueling tanker is
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converted into a point cloud. ICP then iteratively translates the point cloud model

to fit the real-world points measured by the LiDaR. Upon convergence or a timeout,

the position of the point cloud model is selected as the position estimate [10].

Testing revealed that ICP produces more accurate position estimates than the

other approach. After post-processing the real world data, estimated positions were

within 40 cm of the truth data on average [10].

Simulated stereo machine vision for AAR.

Stereo machine vision offers the possibility of solving the pose estimation problem

for AAR without the aid of GPS or other sensor data. Stereo imagery from two

cameras provides depth information that monocular imagery, which is composed of

image data from a single camera, lacks. With proper calibration, a stereo pair of

cameras may be used to reconstruct an imaged scene in three dimensions [42].

Werner applied stereo machine vision techniques toward solving the AAR prob-

lem [42]. The KC-46 refueling tanker will employ a stereo imaging system during

refueling operations. As a result, the approach proposed by Werner shifted the pose

estimation problem to the perspective of the refueling tanker observing approaching

aircraft [42].

As the tanker captures stereo imagery of the approaching aircraft, it produces

disparity maps from image pairs. These maps are projected into three dimensions

in order to create a point cloud of the approaching aircraft. Using ICP, a three

dimensional model of the aircraft is matched to the point cloud. Upon convergence

or when a time limit is reached, the pose of the model is selected as the solution to

the pose estimation problem [42].

Werner concludes that solving the pose estimation problem for AAR with stereo

imagery is feasible. Additionally, the accuracy of the resulting pose estimation is com-
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parable to other AAR approaches. Position estimates from simulations are accurate

to ±10 cm when in the contact position.

However, investigation of the stereo machine vision approach is not complete.

As shown in previous studies [5], real world deployment can result in significantly

degraded accuracies. Further, the execution time of stereo machine vision solutions

must be small enough to allow real time applications. Currently, this stereo analysis

process requires approximately 1.367 s in execution time per image pair [42].

Due to these limitations, there are several open questions that remain regarding

stereo machine vision as a solution to the pose estimation problem. For example,

cameras can capture 30 or more frames per second. As a result, real time approaches

require execution times on the order of fractions of a second. Other real world factors

may have an impact as well. In order to fully evaluate stereo machine vision as a

solution to the pose estimation problem, real world data and real time execution are

required. These factors compose the main thrust of this investigation.

2.2 Stereo machine vision

A key utility of stereo machine vision is the reconstruction of a three-dimensional

(3D) scene from a pair of camera images. This process is based upon idealized math-

ematical camera models.

An idealized camera may be described mathematically as a centre of projection

C ′ and an image plane π′. A centre of projection C ′ is a point in 3D space, taken

to be at the center of the camera lens. An image plane π′ is a two-dimensional (2D)

plane in 3D space containing images of points from the 3D space. For a point P in

3D space, its image P ′ is defined as the intersection of the ray
−−→
PC ′ and the image

plane π′ [19].
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Figure 1. A simple mathematical model of a camera

Triangulation.

By introducing a second idealized camera, the position of a point P in 3D space

can be determined from its images P ′ and P ′′. Specifically, point P is located at the

intersection of the ray
−−→
C ′P ′ and the ray from

−−−→
C ′′P ′′. This process is referred to as

“triangulation” [11].

Figure 2. An illustration of ideal triangulation
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However, these rays may not intersect when using data from real world cameras.

For example, the image plane of a real world camera may not be continuous. When a

digital camera records the image of a point P , the resulting P ′ may be perturbed from

its geometric position due to the presence of discrete pixels. As a result, triangulation

could fail to relocate the 3D point P [11].

One solution to this problem approximates P as the midpoint of the line segment

perpendicular to both ray
−−→
C ′P ′ and ray

−−−→
C ′′P ′′ [11]. This solution does not work

in some situations, and in other situations this method can make poor approxima-

tions [21]. A triangulation method presented by Hartley and Sturm provides better

results than the midpoint method [21].

This method leverages the epipolar geometry of the two cameras [21]. Given two

image planes, the associated epipolar geometry depends on their relative pose. This

geometry is summarized in a fundamental matrix F such that ~p>F~p′ = 0, where ~p and

~p′ are vectors representing the positions of image points P and P ′ [19]. In a pair of

image planes with image points perturbed by noise, two corresponding image points

P and P ′ generally do not satisfy the constraint ~p>F~p′ = 0. However, perturbing

both image points in order to eliminate the noise should result in points ~̂p and ~̂p′ that

do satisfy the constraint [21].

Hartley and Sturm assume a Gaussian noise function for their study. Their tri-

angulation algorithm, proposed as a replacement of the midpoint method, minimizes

the function d(~p, ~̂p)2 + d(~p′, ~̂p′)2 with the constraint ~̂p>F~̂p′ = 0. The function d(~x, ~y)

returns the Euclidean distance between ~x and ~y. The solution is analytical, and the

researchers report moderate execution times and consistently better results compared

to other triangulation approaches [21].
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Correspondence.

Triangulation depends on the key assumption that corresponding image points

P ′ and P ′′ are already known. Generally, the bijection between image points in two

image planes generated from cameras is not known. Before performing triangulation,

this bijection must be constructed.

Stereo algorithms produce two main categories of bijections. Sparse or feature-

based bijections describe correspondences between a subset of images points [35].

These algorithms, which identify image features and attempt to construct a bijection

between this subset of image points, are suitable for resource-constrained environ-

ments [12]. Dense bijections attempt to describe correspondences between all image

points [35]. Image point pairs with correspondence certainties below some threshold

are rejected. A study investigating real time stereo correlation focuses on this second

approach [12].

In developing a bijection, the researchers utilize the epipolar constraint between

image planes [12]. The epipolar constraint observes that a point P , its images P ′

and P ′′, and the centre of projection points C ′ and C ′′ must be coplanar. Thus, by

defining a plane P ′C ′C ′′, the image point P ′′ must lie on the epipolar line at the

intersection of image plane π′′ and plane P ′C ′C ′′ [19].

In reality, P ′′ is likely to have been perturbed off of this epipolar line due to noise

or other factors. Thus, given an image point P ′, the researchers perform a search for

the corresponding point P ′′ within a window around the epipolar line. Specifically,

a window of pixels around P ′ is compared to a window of pixels centered on the

epipolar line in the other image. A correlation score is generated according to a set

of criteria, and then the window is shifted along the epipolar line. The process is

repeated until a correlation curve has been generated for the entire epipolar line, and

a correspondence may be selected from this curve [12].
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Figure 3. An illustration of the epipolar constraint

Characteristics of dense stereo algorithms.

Many other dense stereo correspondence algorithms exist. In order to better

organize and compare these algorithms, researchers have outlined four characteris-

tics common to these algorithms. Dense stereo correspondence algorithms tend to

compute matching costs, aggregate costs, compute a disparity map, and refine the

disparity map. Some algorithms only perform a subset of these tasks [35].

Two matching cost functions leveraged by some stereo algorithms include the

sum of squared differences in pixel intensity and the sum of absolute differences in

pixel intensity [35]. However, these approaches have been shown to produce incor-

rect matches when performed on individual pixels. Errors due to image sampling

can result in large matching costs for corresponding image points. The problem be-

comes particularly significant when an algorithm accepts or rejects a match based

on threshold values. Another pixel-based cost function eliminates sensitivity to im-

age sampling by linear interpolation of surrounding pixel intensities. Applying this
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correction results in a less than 10% increase in execution time while improving the

performance of stereo algorithms on real world data [6].

After computing a matching cost function, local or window-based stereo algo-

rithms generally conduct cost aggregation. Cost aggregation serves as an intermedi-

ary step between matching cost computation and disparity map generation for local

stereo algorithms, which determine disparities based on the information within lim-

ited pixel areas. In contrast, global stereo algorithms generally determine disparities

based on a global energy minimization function. As a result, global stereo functions

are less likely to conduct cost aggregation [6].

In a local stereo algorithm, the costs from the matching functions may be summed

or averaged over some pixel area. This aggregation of cost effectively creates an in-

herent smoothness constraint on disparities, as opposed to explicit smoothness con-

straints made by some global stereo functions. Several other cost aggregation strate-

gies exist for local stereo algorithms as well [6].

The key output of a stereo algorithm is a disparity map. A disparity map may be

defined as a function d(x, y) that outputs a scalar value for each pixel coordinate of

a reference image in a stereo pair. Disparity values may be conceptualized as inverse

depth. Alternatively, a disparity map may be described as a 3D projective transform

of a 3D scene [6].

For local stereo algorithms, the map is generated by selecting the disparity corre-

sponding to the lowest cost at each pixel. Global stereo algorithms perform compara-

tively more work in order to generate a disparity map, because these algorithms have

not conducted cost aggregation. Instead, some of these algorithms minimize energy

as a function of the disparity map. These energy functions may depend on how well

the disparity map conforms to the original images and how well neighboring pixels
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adhere to a smoothness constraint. A local minimum of the energy function may be

found through simulated annealing, max-flow, graph-cut, or other techniques [6].

Depending on the application, the resulting disparity map may be refined. For

example, disparity values tend to be partitioned into discrete values. Applications

aimed at 3D reconstruction may produce subprime output if these discrete values

are not refined. Instead of a smooth reconstruction of a 3D scene, the output may

be segmented into discrete layers. Sub-pixel disparity interpolation can alleviate this

issue. However, such refinement may not be appropriate under certain conditions [6].

In addition to having execution steps in common, dense stereo algorithms also

share some problems. For example, smoothness constraints can reduce the accuracy

of disparity maps at object boundaries and for thin objects. Foreground objects have

been observed to include parts of the background at their boundaries. Occlusion, in

which part of a scene is not visible to one or more images, also presents challenges

for stereo algorithms. Problems have also been observed in textureless areas of im-

ages, with global algorithms tending to perform better than local algorithms in these

cases [6].

Failure to determine matches in low-texture images is referred to as “dropout.”

To mitigate dropout, one researcher demonstrated overlaying a random texture onto

stereo images. However, these textures must be random in particular ways in order

to achieve the best results. Some random overlays are too uniform and, as a result,

different parts of the image are still too similar to prevent dropout [24].

In order to best reduce dropout, these texture overlays must be as different as

possible in different parts of the image. Two different methods are presented in order

to achieve this effect. The first method is inspired by coding theory techniques that

encode characters of the alphabet as differently as possible for transmission. This

method aims to maximize the Hamming distance between blocks. However, because
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the general form of this problem is not easily solvable, a greedy algorithm is used to

produce lexicographic codes [24].

The second method begins with a randomly generated overlay and modifies it

using simulated annealing. The algorithm repeatedly selects pixels according to a

cost function and swaps them. After performing simulated annealing multiple times,

the best overlay is selected. This second method exhibits better results than the first,

especially as image size increases [24].

Calibration and rectification.

Just as triangulation assumes a bijection, some stereo correspondence algorithms

assume that image pairs are subject to the epipolar constraint. However, images

captured with real world cameras generally do not satisfy the epipolar constraint. For

example, an imperfect camera lens results in distorted images. Before some stereo

correspondence algorithms produce a bijection, the cameras must be calibrated and

the resulting images must be rectified.

About twenty years ago, camera calibration techniques generally fell into one of

two categories. In photogrammetric calibration, a camera observes an object with

precisely known 3D geometry. The object does not need to be complex; two perpen-

dicular planes are sufficient. However, proper calibration using this technique requires

very precise conditions [46].

In self-calibration, a camera observes a static scene from different locations. This

technique does not require conditions as precise as the conditions required for pho-

togrammetric calibration. However, self-calibration tends to produce less reliable

results. Neither photogrammetric calibration nor self-calibration could be described

as particularly robust, flexible, or inexpensive [46].
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A newer calibration technique occupies a middle ground between photogrammet-

ric calibration and self-calibration. In this technique, a patterned board is imaged

by a camera from multiple poses. Because a known, 2D pattern is being used for

calibration, the approach is similar to photogrammetric calibration. Because either

the board or the camera is moved to different poses, the approach is similar to self-

calibration [46].

Ultimately, any calibration method must produce a matrix describing the intrinsic

parameters of a camera. These parameters are organized into an intrinsic parameters

matrix A, where A has the following form [46].

A =


α γ u0

0 β v0

0 0 1

 (1)

In this matrix, (u0, v0) is the principal point of the image (ideally in the center), α

and β are scale factors associated with the u and v axis respectively, and γ describes

skew in the image axes [46].

Once the intrinsic parameters are determined, the extrinsic parameters (rotation

and translation) of the camera can also be determined. These parameters take the

form of a 3× 3 rotation matrix R and a three-dimensional translation column vector

~t, often combined into a 3× 4 matrix written as

(
R~t

)
[46].

The relationship between a 3D point in the world and the corresponding point in

an image plane may be summarized as follows [46].

s


u

v

1

 = A

(
~r1 ~r2 ~r3 ~t

)


x

y

z

1


(2)
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This calibration method involves a camera’s view of a known pattern that lies

within a 2D plane. Thus, without loss of generality, the observed pattern plane can

be assumed to be coplanar with the z-plane in the world coordinate system. This

assumption simplifies the relationship between a 3D point observed on the pattern

plane and the corresponding 2D point on the image plane [46].

s


u

v

1

 = A

(
~r1 ~r2 ~t

)
x

y

1

 (3)

As a shorthand, let H = A

(
~r1 ~r2 ~t

)
. Given an image of the pattern plane, H

may be estimated using a maximum likelihood criterion and assuming that the image

coordinates (u, v) have been perturbed by Gaussian noise with a mean of zero. Using

the fact that ~r1 and ~r2 should be orthonormal, additional constraints may be placed

on the intrinsic parameters [46].

Using this calibration technique, it can be shown mathematically that an addi-

tional image parallel to an existing image in the world coordinate system provides

no new information. In simulation, using three images for calibration produces a

relatively large increase in performance compared to using two images. Using more

than three images produces a relatively smaller increase in performance. Rotations

of the pattern plane of 45◦ from image to image produces the best performance [46].

After calibration, stereo image pairs must be rectified. In this step, calibration

information is used to remap the images so that they adhere to the epipolar constraint.

Note that it is possible to perform rectification without calibration [20].

25



(a) A primary camera calibration image (b) A secondary camera calibration image

(c) A rectified primary camera image (d) A rectified secondary camera image

Figure 4. Example stereo calibration images and resulting rectified images

Stereo algorithms in OpenCV.

OpenCV 3.0.0 offers five stereo algorithms. Two of these algorithms, a block

matching algorithm and a semi-global matching algorithm, utilize only the CPU for

analysis. The remaining three algorithms utilize CUDA and Nvidia GPU processing

for analysis. These algorithms include a block matching algorithm, a belief propaga-

tion algorithm, and a constant space belief propagation algorithm [31].
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CPU block matching.

The OpenCV CPU block matching algorithm, StereoBM, is based on a block

matching algorithm from Konolige [7, 25]. At a high level, the algorithm expects to

compute a disparity map given two rectified, stereo images. Because the images are

rectified, the search space for a given pixel’s match in the other image is reduced to

only the pixels near the epipolar constraint. Additionally, the algorithm is able to

make the assumption that, for a given block in the primary image, the matching block

in the secondary image has x-coordinates less than or equal to the x-coordinates of

the primary block [7].

The StereoBM algorithm accepts up to two parameters. The first parameter,

numDisparities, sets the number of pixels along the epipolar constraint that are

searched for matches. The algorithm begins by searching the same pixels in the

secondary image as the corresponding pixels in the primary image, and continues

searching to the left for numDisparities pixels. The default argument value is 0 [31].

The second parameter, blockSize, sets the side length of the square search blocks.

Arguments must be odd so that search blocks are centered around the pixel of interest.

As block size increases, the resulting disparity map may become more smooth but

less accurate, while smaller block sizes increase the possibility of incorrect matches.

The default argument value is 21 [31].

In order to produce matches, the original algorithm first applies an image trans-

form. The image transform is designed to minimize the effects of real world artifacts

and factors that may skew pixel correspondence. The laplacian of gaussian transform

first blurs the image with a standard deviation of a couple pixels. Then, image edge

intensities and directions are identified. After transforming the images, the algorithm

matches areas of the images. An L1 norm with the sum of absolute differences serves

as the correspondence function [25].
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Once the algorithm has produced a disparity map by minimizing the results of cor-

respondence, the map is filtered. One filter that reduces errors at object boundaries,

which are produced due to overlapping blocks in areas with discontinuous disparities,

is a left/right check. By producing a disparity map twice, alternating the primary and

secondary images, disagreements that occur at object boundaries may be rejected.

Another filter, an “interest operator” that measures image texture along epipolar

lines, may be used to reject correspondences in areas of the image with little texture.

The threshold of this operator may be set above the level of noise characteristic to

the imaging device [25].

This algorithm assumes that the provided images are rectified. As a result, the

epipolar constraints are straight, horizontal lines. Additionally, points at a given y-

coordinate in the primary image are expected to be located at the same y-coordinate

in the secondary image (with the x-coordinate being different). Experiments show

that a vertical offset of even a couple of pixels between images in a pair may result

in poor disparity maps [25].

CPU semi-global block matching.

The second CPU stereo algorithm, StereoSGBM, takes at least three or up to eleven

parameters. The first parameter, minDisparity, identifies the starting offset value

for the algorithm to search for a match. This value may even be set negative if, for

some reason, the user expects matching pixels to be located in the opposite direction

as expected along the epipolar constraint [31].

The second parameter, numDisparities, is used to indicate the difference between

the specified minimum disparity and the desired maximum disparity. The blockSize

parameter must be odd, and it specifies the side length of the search window. The

next two parameters, P1 and P2, are integers controlling disparity smoothness. The
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P1 argument penalizes small disparity changes between neighboring pixels, and the

P2 argument penalizes large disparity changes between neighboring pixels [31].

The next parameter, disp12MaxDiff, controls the left/right check. By setting

this integer to a negative value, the check is disabled. Positive values govern the

largest allowed difference in pixels between disparities before they are rejected. The

preFilterCap parameter creates an interval that limits values passed to the pixel cost

function. The uniquenessRatio parameter describes how well a selected disparity

must exceed the next-closest option in order to be selected [31].

The last three parameters include speckleWindowSize, speckleRange, and mode.

Post-processing on the disparity map checks for “speckles,” or areas of disparity to

label as noise. The speckleWindowSize parameter governs how large these noise

regions are allowed to be. The speckleRange value governs how similar neighboring

disparities are allowed to be in speckles. Finally, the mode parameter governs whether

or not a memory-intensive version of the algorithm is executed [31].

The original algorithm generates a correspondence cost curve along epipolar con-

straints. The cost function can use mutual information (MI) [22]. In the case of the

OpenCV implementation, a cost function insensitive to image sampling is used [6,31].

The algorithm is semi-global in that an energy function exists to be minimized, but

the minimization process is approximated by conducting cost aggregation [22].

Cost aggregation solutions along epipolar lines are vulnerable to errors or artifacts

in the horizontal direction. In order to mitigate this issue, the semi-global solution

aggregates correspondence costs in multiple one-dimensional directions emanating

from each pixel [22].

In order to further reduce errors, the global energy function tracks costs for two

separate types of disparity discontinuities. A smaller cost is levied for neighboring

pixels with small disparity differences, while a larger cost is levied for large disparity
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differences in neighboring pixels. This scheme better allows for continuous surfaces

with gradients with respect to the image plane [22].

The resulting disparity maps still exhibit some consistent issues. For example,

small regions of the resulting map may have drastically different disparity values

than other nearby pixels. Additionally, this semi-global matching technique may

have higher error rates in low texture portions of images [22].

CUDA block matching.

The CUDA implementation of stereo block matching, cuda::StereoBM, follows

from the CPU block matching algorithm. The algorithm accepts two parameters,

numDisparities and blockSize. The numDisparities parameter has a default

value of 64. This parameter determines the number of pixels along the epipolar

constraint that are searched for matches. The blockSize parameter has a default

value of 19. This parameter sets the side length of the square search blocks [31].

CUDA belief propagation.

Another stereo matching algorithm that utilizes CUDA for parallel processing,

cuda::StereoBeliefPropagation, accepts four parameters. These parameters in-

clude ndisp, iters, levels, and msg_type. The computation function for producing

a disparity map also accepts an array for specifying data cost [31].

The belief propagation algorithm aims to approximate optimization on Markov

random field (MRF) models. This optimization is an NP hard problem, but belief

propagation acts as a suitable approximation by identifying local minima over large

enough neighborhoods when applied to stereo correspondence. Using MRF models

for stereo correspondence compares positively to local stereo algorithms. However,
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without approximation, using MRF models requires more execution time than local

stereo algorithms [13].

As with other stereo algorithms, the belief propagation algorithm defines an energy

function with costs for data and discontinuities. To minimize this energy function,

images are represented as graphs. Messages are passed between neighboring pixels in

parallel, and the process is repeated iteratively. As a consequence of this approach,

belief approximation can require relatively large amounts of memory due to the pres-

ence of multiple messages per pixel [13].

To further reduce execution time, some optimizations are made. The message up-

date process is reduced to linear time. The graph representing the image is encoded

as a bipartite graph in order to reduce both execution time and memory requirements.

Finally, the graph is organized into multiple levels in order to expedite moving mes-

sages between disparate portions of images [13].

CUDA constant space belief propagation.

The final stereo matching algorithm, which also utilizes CUDA for parallel pro-

cessing, is the cuda::StereoConstantSpaceBP algorithm. This algorithm accepts

five parameters, ndisp, iters, levels, nr_plane, and msg_type [31].

This algorithm, like the previous belief propagation algorithm, represents images

as graphs with multiple levels. Also like the previous algorithm, belief propagation

is performed iteratively and messages are updated in linear time. However, messages

are also updated in constant space [44].

This new method performs comparably in terms of execution time and accuracy

to the standard belief propagation approach while requiring less memory. However,

this method does exhibit a shortcoming. At discontinuities in disparity values, the

algorithm tends to perform more poorly than standard belief propagation. In order
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to alleviate this issue, a bilateral filter may be applied to the function output. This

filter does not require significant additional execution time or space [44].

2.3 Iterative closest point algorithm

Stereo imagery may be used to create a three dimensional reconstruction of an

imaged scene. In order to use this reconstruction for relative position estimation,

the resulting scene must be registered to truth models. The iterative closest point

algorithm provides one method for performing this procedure.

The iterative closest point (ICP) algorithm aims to determine a transformation,

which is composed of a rotation and a translation, that aligns a source (also “model”

or “truth”) point cloud with a target (or “data”) point cloud according to an error

metric. This process of alignment is referred to as registration. The mean square

distance between paired points in the source and target point clouds is one example

of an ICP error metric [4].

Previous work investigated using a synthetic virtual model as a source point cloud

and sensor data to compose a target point cloud. Target point clouds generated from

sensor data are preprocessed in order to remove erroneous points due to sensor noise.

Additionally, the search range for minimizing the error metric is narrowed by using

properties specific to the shapes being registered [4].

Each iteration of the algorithm consists of two main steps. First, a map is gener-

ated between points in the source point cloud and points in the target point cloud.

The map may be generated according to many different criteria. For example, points

in the source point cloud may be mapped to the nearest point in the target point

cloud according to the Euclidean distance function. In general, a map between a

source point cloud and a target point cloud is not a one-to-one correspondence [4].
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After generating a map between point clouds, a transformation is applied in order

to minimize the error criteria. For example, singular value decomposition (SVD) or

a quaternion operation may be applied under the least squares metric. This trans-

formation uses the previously generated map as input [4].

By repeating this process iteratively under the mean squared error metric, the

iterative closest point algorithm is proven to converge to the nearest local minimum

monotonically. Experimental results indicate that the largest decrease in error occurs

during the first sequence of iterations. After the first sequence of iterations, errors

decrease by considerably smaller amounts between iterations [4].

Iterative closest point algorithms have been applied to stereo vision data and

navigation problems. In navigation scenarios, computational challenges have been

reduced by utilizing motion continuity constraints. For example, this method was

applied in order to determine the motion of an observer in an environment. While this

example aimed to determine the position of the observer through scene reconstruction

for navigation, ICP can be used for object recognition and tracking as well [45].

Iterative closest point algorithm in Point Cloud Library.

An implementation of the iterative closest point algorithm is included in Point

Cloud Library 1.8.0. Users set a source point cloud and a target point cloud. Ad-

ditionally, convergence criteria based on the number of iterations, the differences

between subsequent iterations, or the error criteria may be set. After executing the

alignment function, the ICP object may be queried to check convergence. The object

may also be queried for a fitness score, which reports the average distance between

a point and its nearest neighbor. A 4 × 4 transformation matrix is returned after

alignment [33].
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III. Methodology

A main thrust of this investigation focuses on evaluating position estimation ac-

curacies from real world stereo imagery. Evaluating position estimation accuracies

from real world stereo imagery requires a real world data collection. Because a full,

one-to-one scale data collection is not feasible, real world stereo imagery was collected

at a one-seventh scale.

3.1 Real world data collection environment

A 1:7 scale F-15E was imaged with a pair of cameras at distance vectors varying

from 2 m to 8 m in magnitude. These distances correspond to distance vectors

ranging from 14 m to 56 m in a full scale refueling scenario. Unlike the simulation

domain, truth data is not intrinsically available in the real world domain. Truth data

is collected in parallel with the collection of stereo imagery. All data collection takes

place within a Vicon motion capture area. The poses of the model F15-E and each

camera are tracked by the motion capture system.

(a) Top view (b) Side view

Figure 5. Illustrations of the data collection environment (not to scale)
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(a) The 1:7 scale F-15E (b) A view from the primary camera

(c) A front view of the motion capture area (d) A side view of the motion capture area

(e) The stereo camera pair (f) A side view of the stereo camera pair

Figure 6. Images of the data collection environment
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3.2 Time synchronization and network structure

In order to construct a correspondence between stereo imagery and motion cap-

ture data, precise timing is required. Specifically, clock times must be synchronized

between the motion capture computer, the stereo data collection computer, and each

camera. In order to achieve clock synchronization, these devices were connected to a

local area network (LAN). A stratum 1 network time protocol (NTP) server provided

time synchronization services to each device.

The stratum 1 NTP server provided time to the LAN using information from GPS

signals. Four devices on the LAN record timestamp data. The venue motion capture

data collection computer receives data from the venue motion capture data broadcast

computer. Once this motion capture data is received, it is timestamped by the venue

software. These timestamps have microsecond precision.

Figure 7. A chart summarizing the local area network
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Each of the two cameras timestamp images according to their time sources. The

camera options include a setting to use timing information from an NTP server.

Timestamps are burned into the top of the images themselves, and they have precision

up to one hundredth of a second.

Before data analysis can take place, the timestamps burned into the stereo image

data must be extracted as text. Once the timestamps are available as text, the

timestamped motion capture truth data can be programmatically paired with the

timestamped stereo imagery data. The image time stamps were extracted as text

using the open source Tesseract OCR (optical character recognition) package [38].

The stereo data collection computer also subscribed to the NTP server time. This

computer recorded the arrival time of camera images in the database. Coupled with

the image time stamps, these arrival times indicate the time between image capture

and the arrival of the image at the database.

3.3 Stereo camera API and database

OpenCV provides robust, high-quality computer vision functions. However, due

to its scope, OpenCV does not offer an interface for stereo cameras. Instead OpenCV

offers interfaces to single video sources, and these interfaces may be combined for

multi-camera systems.

In order to reduce code complexity and increase code flexibility and reusability,

a stereo camera application programming interface (API) and an associated stereo

imagery database were developed. The stereo imagery database schema was designed

with general stereo imagery experiments in mind. Using a database to collect, orga-

nize, store, and retrieve stereo data is essential in making large sets of data feasible.
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Figure 8. An illustration of the StereoCamera class database schema
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Camera table and associated functions.

At least one row must be entered into the Camera table before other data may be

placed in the database. When collecting real world data (as opposed to simulation

domain data), at least two rows will be present in the Camera table before placing

other data in the database.

Each row is composed of an automatically assigned camera ID integer primary

key, a maker text field, a name text field, and a number text field. Entries in all four

column cannot be null, and the (maker, name, number) tuple must be unique.

For a physical, real world camera, the maker field should contain the camera brand,

the name field should contain the camera model, and the number field should contain

the serial number. For a virtual camera generated by a commercial application, the

maker field should contain the company, the name field should contain the application

name, and the number field should contain the app version number. For a virtual

camera generated by a custom program, the maker field should contain the program

author, the name field should contain the git repository address, and the number field

should contain the commit hash.

The only StereoCamera class method associated with this table is getCameraId.

The method accepts make, name, and number arguments. If a corresponding camera

exists in the table, then its ID is returned. Otherwise, the camera is entered into the

table and its ID is returned.

Stereo camera table and associated functions.

The stereo camera table tracks pairs of cameras from the camera table. Each row is

automatically assigned a stereo camera ID integer primary key. The primary camera

ID and secondary camera ID entries are foreign keys referencing camera table IDs.

The fourth entry in each row indicates whether the two cameras have a horizontal
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or vertical baseline. A check on this entry restricts values to zero or one. Entries in

all four columns cannot be null, and the (primary camera ID, secondary camera ID,

is horizontal stereo) tuple must be unique.

The StereoCamera class method getStereoCameraId is associated with this table.

The method accepts a primary camera ID, a secondary camera ID, and a StereoType

enum value (HORIZONTAL or VERTICAL). If a corresponding stereo camera exists in the

table, then its ID is returned. Otherwise, the stereo camera is entered into the table

and its ID is returned.

Calibration session set table and associated functions.

Tests demonstrate that stereo camera calibration results from OpenCV can vary

dramatically between two different calibration sessions. In particular, two practically

identical calibration sessions performed back-to-back can result in significantly differ-

ent stereo calibration output. As a result, it is important to perform stereo calibration

sessions in sets.

Each calibration session results in stereo calibration output, and a calibration

session set is a collection of calibration sessions. In other words, a calibration session

set is a collection of stereo calibration trials (sessions). A calibration session set

(i.e. one or more calibration sessions) must be performed before collecting data for

analysis.

Each row is composed of an automatically assigned calibration session set ID

integer primary key, a stereo camera ID foreign key referencing a stereo camera table

ID, and a note file name. The calibration session set ID and the stereo camera ID

entries cannot be null, and the note file name must be unique.

A note string object should be used to record details apparent before capturing

images. Examples include experimenter names and contact information, the stereo
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camera baseline measurement, and other settings. The contents of the note string

object are written into a note file, which is tracked in the database by the note file

name. The location of the note file is meant to be opaque to the user.

Four StereoCamera class methods interface with the calibration session set table.

To insert a calibration session set row, pass a stereo camera ID and a note string

object to the insertCalibrationSessionSet method. This method returns the

resulting calibration session set ID. The selectCalibrationSessionSetIds method

returns a vector object containing all calibration session set IDs associated with the

given stereo camera ID.

The StereoCamera class method selectCalibrationSessionSetNote and the

StereoCamera class method writeCalibrationSessionSetNote provide access to

the calibration session set note. These functions are read-only by design. Both

methods accept a calibration session set ID. The former method returns a copy of the

associated note as a string object, and the latter method writes a copy of the note

to the location indicated by the second argument. Success is indicated by a returned

Boolean value.

Calibration session table and associated functions.

A calibration session is composed of stereo camera calibration images. The cali-

bration session table acts as an organizational table between calibration session sets

and calibration images. Each row is composed of an automatically assigned cali-

bration session ID integer primary key and a calibration session set ID foreign key

referencing a calibration session set table ID. All entries in this table cannot be null.

The insertCalibrationSession and selectCalibrationSessionIds methods

interface with this table. The former method accepts a calibration session set ID and

returns the ID of the resulting calibration session. The latter method returns a vector
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object containing all calibration session IDs associated with the given calibration

session set ID.

Calibration image pair table and associated functions.

The calibration image pair table tracks stereo camera calibration images. Each row

is composed of an automatically assigned calibration image pair ID integer primary

key, a calibration session ID foreign key referencing a calibration session table ID, a

primary camera image time stamp, a primary camera image file name, a secondary

camera image time stamp, and a secondary camera image file name. Each primary

camera image file name and each secondary camera image file name must be unique.

Except for the file name entries, all entries in this table cannot be null.

The insertCalibrationImagePair method stores an image pair previously cap-

tured by the captureImagePair method with the given calibration session ID. The re-

sulting calibration image pair ID is returned. The selectCalibrationImagePairIds

method returns a vector object containing all calibration image pair IDs with the

given calibration session ID. The selectCalibrationImageTimeStamp method re-

turns the time stamp string object associated with the given calibration image pair

ID and Camera enum value (PRIMARY or SECONDARY).

The methods selectCalibrationImage and writeCalibrationImage provide

access to captured calibration images. These functions are read-only by design. Both

methods accept a calibration image pair ID. The former method returns a copy of

the associated image as a cv::Mat object, and the latter method writes a copy of the

image to the location indicated by the second argument. Success is indicated by a

returned Boolean value.
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Calibration output table and associated functions.

After completing a calibration session, the data may be analyzed for calibration

output. A string object containing the appropriately formatted calibration output

is generated by the getCalibrationOutputYML method. This method accepts as

input a calibration session ID, a cv::Size object representing the number of interior

corners in the imaged checkered board, the length of a checker square, and the units

of the checker square length.

Each row of the calibration output table is composed of an automatically assigned

calibration output ID integer primary key, a calibration session ID foreign key ref-

erencing a calibration session table ID, a primary camera calibration RMS value, a

secondary camera calibration RMS value, a stereo camera calibration RMS value, the

units of the calibration data, the the calibration output file name.

Other than the calibration output file name, all entries in this table cannot be null.

The calibration output file name must be unique. The primary camera calibration

RMS, the secondary camera calibration RMS, and the stereo camera calibration RMS

must be greater than or equal to zero.

The insertCalibrationOutput method takes a calibration session ID and an

appropriately formatted calibration output string object and returns a calibra-

tion output ID. The selectCalibrationOutputIds method returns a vector ob-

ject containing all calibration output IDs with the given calibration session ID.

The StereoCamera method selectCalibrationOutputCameraRMS returns the cam-

era calibration RMS value associated with the given calibration output ID and Camera

enum value (PRIMARY or SECONDARY), and the selectCalibrationOutputStereoRMS

method returns the stereo camera calibration RMS value associated with the given cal-

ibration output ID. The selectCalibrationOutputUnits method returns the units

of the calibration output associated with the given calibration output ID.
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The methods selectCalibrationOutput and writeCalibrationOutput provide

access to calibration output. These functions are read-only by design. Both methods

accept a calibration output ID. The former method returns a copy of the associated

calibration output as a YML-formatted string object, and the latter method writes

a copy of the calibration output to the location indicated by the second argument.

Success is indicated by a returned Boolean value.

Data session set table and associated functions.

A data session set consists of a collection of data sessions. These data sessions

can be described as trials. Thus, a data session set should be composed of different

trials or “runs” of the same experiment. A data session set can contain both training

data sessions and test data sessions.

Each row is composed of an automatically assigned data session set ID integer

primary key, a calibration session set ID foreign key referencing a calibration session

set table ID, and a note file name. The data session set ID and the calibration session

set ID entries cannot be null, and the note file name must be unique.

A note string object should be used to record details apparent before capturing

images. Examples include experimenter names, contact information, and a quantita-

tive description of the experiment associated with the data session set. The contents

of the note string object are written into a note file, which is tracked in the database

by the note file name. The location of the note file is meant to be opaque to the user.

Four StereoCamera class methods interface with the data session set table. To

insert a data session set row, pass a calibration session set ID and a note string

object to the insertDataSessionSet method. This method returns the resulting

data session set ID. The selectDataSessionSetIds method returns a vector object

containing data session set IDs associated with the given calibration session set ID.
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The StereoCamera class method selectDataSessionSetNote and the method

writeDataSessionSetNote provide access to the data session set note. These func-

tions are read-only by design. Both methods accept a data session set ID. The former

method returns a copy of the associated note as a string object, and the latter

method writes a copy of the note to the location indicated by the second argument.

Success is indicated by a returned Boolean value.

Data session tables and associated functions.

Two data session tables exist in the database. These data session tables include a

training data session table and a test data session table. Other than the utility of the

associated data sessions (training vs test), these two data session tables are identical.

A data session is composed of a stereo pair of videos. Data session tables act

as organizational tables between data session sets and data image pairs. Each row

is composed of an automatically assigned data session ID integer primary key, a

data session set ID foreign key referencing a data session set table ID, a video four

character code (fourCC), a video file extension, video frames per second (FPS), a

primary camera video file name, and a secondary camera video file name.

Other than the primary camera video file name and the secondary camera video

file name, entries in this table cannot be null. The primary camera video file name

must be unique, as does the secondary video file name. The video FPS value must

be greater than zero.

The “insert data session” and “select data session IDs” methods interface with

this table. The former method accepts a data session set ID, a fourCC value, a video

file extension, and a video FPS value and returns the ID of the resulting data session.

The latter method returns a vector object containing all data session IDs associated
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with the given data session set ID. Methods to select the video fourCC value, the

video file extension, and the video FPS value given the data session ID exist as well.

The “select data session video” and the “write data session video” methods provide

access to data session videos. These functions are read-only by design. Both methods

accept a data session ID. The former method returns a copy of the associated video

as a cv::VideoCapture object, and the latter method writes a copy of the video to

the location indicated by the second argument. Success is indicated by a returned

Boolean value.

Data image pair tables and associated functions.

As with the data session tables, two data image pair tables exist in the database.

These data image pair tables include a training data image pair table and a test data

image pair table. Other than the utility of the associated data image pairs (training

vs test), these two data image pair tables are identical.

The data image pair tables may be used to track frame numbers and time stamps.

Each row is composed of an automatically assigned data image pair ID integer primary

key, a data session ID foreign key referencing a data session table ID, a frame number,

a primary camera image time stamp, and a secondary camera image time stamp. All

entries in these tables cannot be null, the (data session ID, frame number) tuple must

be unique, and frame numbers must be greater than or equal to zero.

The “insert data image pair” methods store an image pair previously captured by

the captureImagePair method to the ends of the appropriate data session videos.

The resulting data image pair ID is returned. The “select data image pair IDs”

methods return a vector containing all data image pair IDs with the given data

session ID. The “select data image time stamp” methods return the time stamp

string associated with the given calibration image pair ID and Camera enum value.
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Figure 9. An illustration of the StereoCamera class API
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The “select data image” and “write data image” methods provide access to cap-

tured data images. These functions are read-only by design. Both methods accept

a data image pair ID. The former method returns a copy of the associated image as

a cv::Mat object, and the latter method writes a copy of the image to the location

indicated by the second argument. Success is indicated by a returned Boolean value.

3.4 Calibration

Each calibration session follows the same methodology. Nine pairs of calibration

images are captured during each calibration session. An example set of calibration

images from the perspective of the primary camera is pictured below.

Figure 10. An example set of calibration images from the primary camera perspective
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The checkered square pattern is 27 interior corners wide by 27 interior corners

tall. Each square has a side length of 19 mm.

Calibration output exhibiting a stereo camera calibration RMS value of 0.306445

mm was used for the purposes of rectification. While individual camera calibra-

tion RMS values are consistently on the order of 0.30 mm, many of the observed

stereo camera calibration RMS values are more than two orders of magnitude larger.

Calibration outputs with these high stereo camera calibration RMS values were not

selected for the purposes of rectification.

3.5 Relative position estimation process outline

In order to generate a relative position estimate, a stereo pair or rectified images

with applied region of interest masks is passed through a stereo correspondence al-

gorithm. Using these two images, the stereo correspondence algorithm generates a

disparity map. This disparity map is passed through a speckle filter in order to reduce

erroneous regions of disparity values. After filtering, the disparity map is projected

into a three dimensional point cloud.

This data point cloud, along with a model point cloud, is passed through the

iterative closest point (ICP) registration algorithm. The ICP algorithm iterates until

a convergence criteria is met. After reaching a convergence criteria, the ICP algorithm

outputs a transformed point cloud. The resulting transformed point cloud is used to

generate a relative position estimate.
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Figure 11. The relative position estimation process
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IV. Results

Given rectified stereo images with associated regions of interest for the approach-

ing aircraft, results suggest that the relative position of a refueling aircraft may be

estimated in real time at a rate between 10 Hz and 30 Hz. Furthermore, real time exe-

cution is feasible not only on the GPU. Block matching on the CPU achieves execution

times suitable for real time position estimation as well. Results with data from the

real world domain exhibit error vector magnitudes comparable to previous research

in the simulation domain after adjusting for scale [42]. Finally, seeding the iterative

closest point registration algorithm with the final estimation from the previous time

step results in nominally smaller position estimate error vector magnitudes.

4.1 Stereo algorithm execution times

Real world data was analyzed using three different stereo correspondence algo-

rithms from OpenCV 3.0.0. Two of these algorithms, semi-global block matching

and block matching, execute on the CPU. The third algorithm, also a block match-

ing algorithm, executes in the GPU. These algorithms are abbreviated CPU SGBM

(semi-global block matching on the CPU), CPU BM (block matching on the CPU),

and GPU BM (block matching on the GPU). Each algorithm was set through its

parameters to use a disparity search range of 48 pixels and a block size of 9 pixels.

The semi-global block matching algorithm accepts additional, optional parame-

ters. These parameters enable extra processing that can improve resulting disparity

maps at the expense of increased execution times, so long as the values are precisely

tuned. Previous research focused on tuning these optional parameters for the simu-

lation domain [42]. In order to maximize comparability between stereo algorithms,

these optional parameters were not utilized for this analysis.
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(a) Downsampled CPU SGBM point cloud (b) Downsampled CPU BM point cloud

(c) Downsampled GPU BM point cloud (d) Truth model point cloud

Figure 12. Example point clouds
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The execution time for the CPU SGBM algorithm averages 57.97 ± 0.57 ms per

image pair, or about 17.25 Hz. The execution time for the CPU BM algorithm is

4.20± 0.51 ms on average, or about 237.91 Hz. The GPU BM algorithm executes in

0.92 ± 0.01 ms on average. Including upload and download memory transfer times,

the algorithm executes in 1.14± 0.01 ms on average, or about 879.76 Hz.

Figure 13. Average execution times for stereo algorithms

Each stereo algorithm generates disparity maps from stereo image pairs. These

disparity maps must then be filtered and projected into three dimensions before using

a registration algorithm in order to make a position estimate.

53



4.2 Disparity map speckle filter execution times

Some disparity maps output by stereo algorithms contain “speckles,” or contiguous

areas with erroneous disparity values. OpenCV provides a CPU-only function for

filtering these small noise areas in disparity maps.

In practice, filtering a disparity map for speckles reduces the number of erroneous

points after projecting into three dimensions. For example, projecting a disparity

map into three dimensions without filtering for speckles could result in erroneous

points placed at or near the origin of the camera frame of reference. Erroneous points

could be filtered after projection into three dimensions. However, filtering in a higher

dimensional space could be computationally costly.

In order to maximize comparability, the output of each algorithm was passed

through the same speckle filter. Specifically, the speckle filter was initialized with a

maximum speckle area of 144 pixels and a maximum disparity value difference of 4

between neighbor pixels in order to be considered part of the same speckle.

The speckle filter execution time on disparity maps from the CPU SGBM algo-

rithm averages 0.96 ± 0.24 ms. The speckle filter execution time on disparity maps

from the CPU BM algorithm is 2.16 ± 0.15 ms on average. The speckle filter on

disparity maps from the GPU BM algorithm executes in 0.56± 0.11 ms on average.
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Figure 14. Average execution times for the speckle filter

Given a stereo image pair, a corresponding disparity map contains the same num-

ber of channels, the same width, and the same height regardless of the stereo algo-

rithm used to generate the map. Thus, it may be expected that an identical speckle

filter applied to disparity maps generated from identical stereo images passed through

different stereo algorithms would execute in identical amounts of time on average.

Among disparity maps generated from different stereo imagery passed through

the same stereo algorithm, this expectation is supported by data. However, the mean

execution times of speckle filters on disparity maps generated from the same stereo

imagery passed through different stereo algorithms are statistically different. This

fact is illustrated by low t-test p-values.
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Table 1. Speckle filter Welch two sample t-test results with an alternative hypothesis
that the difference in means is not equal to zero. Values are in ms with ns precision.

CPU SGBM mean CPU BM mean GPU BM mean p-value

0.9634078 2.1568558 - < 2.2× 10−16

0.9634078 - 0.5550956 < 2.2× 10−16

- 2.1568558 0.5550956 < 2.2× 10−16

4.3 Point cloud generation execution times

A disparity map is projected into three dimensions using information from a 4×4

matrix Q generated during stereo calibration. The Q matrix and disparity map

values are used to calculate a three dimensional point cloud according to the following

formula [7].

Q



x

y

d

1


=



X

Y

Z

W


(4)

In this formula, x and y are the pixel coordinates (column and row, respectively) of

the disparity value d. The three dimensional point corresponding to a given disparity

value has coordinates (X/W, Y/W,Z/W )>.

Depending on the distance between the cameras and the model jet, point clouds

generated from the collected data contain between 1500 and 22000 valid points. In

order to reduce iterative closest point execution times, a downsampling function is

applied during point cloud generation.

Previous research applied stochastic universal sampling (SUS) to downsample

point clouds with the aim of preserving point cloud features [42]. Here, a point

is omitted under the downsampling criteria if a random value is below a threshold.
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This approach exhibits no major drawbacks compared to the SUS downsampling

method with the advantage of a straightforward implementation for real time pro-

cessing. After downsampling and applying a bounds check, point clouds generated

from the collected data contain between 200 and 1000 points.

Point cloud generation execution times range between 1 ms and 10 ms. Generation

of the point clouds was performed on the CPU. Because each vector (x, y, d, 1)> in a

two dimensional disparity map undergoes the same calculation in order to produce a

corresponding point in three dimensions, this process may be parallelized for increased

speed.

Figure 15. Average execution times for point cloud generation
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4.4 Iterative closest point execution times

After projecting a disparity map into a three dimensional “target” point cloud,

a “source” or “truth” point cloud is registered to the target point cloud using the

iterative closest point algorithm. As noted previously, target point clouds generated

from stereo data contain between 200 and 1000 points. The source point cloud is a

three dimensional model of an F15-E composed of 1000 points.

Two different initial conditions for the iterative closest point algorithm were tested.

For the “unseeded” initial condition, the source point cloud is placed at the origin of

the camera frame of reference. For the “seeded” initial condition, the source point

cloud is placed at its ending registration position in the previous time step. Because

the position of the target point cloud in a given time step is likely to be similar to its

position in adjacent time steps, seeding the position of the source point cloud with

previous solutions could increase the quality of the registration.

Each execution of the iterative closest point algorithm ran for 10 iterations. The

number of points in the target point clouds, ranging from 200 to 1000, exhibit little

influence over the execution time. Additionally, the difference between the means

of seeded ICP execution times and unseeded ICP execution times is not statistically

significant. This fact is illustrated by a t-test p-value of 0.07822.

Table 2. ICP Welch two sample t-test results with an alternative hypothesis that the
difference in means is not equal to zero. Values are in ms with ns precision.

Seeded ICP duration mean Unseeded ICP duration mean p-value

30.81123 30.77444 0.07822
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Figure 16. Execution times for iterative closest point algorithm. Points without visible
error bars have error within ±0.25 ms.

Table 3. Linear regression analysis of iterative closest point execution times

Estimate Std. error t value Pr(> |t|) R2

Seeded intercept 30.2575 0.0504 600.35 < 2.0× 10−16 0.0412

Seeded slope 0.0011 0.0001 11.29 < 2.0× 10−16

Unseeded intercept 29.4023 0.0702 418.87 < 2.0× 10−16 0.1197

Unseeded slope 0.0028 0.0001 20.09 < 2.0× 10−16
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The iterative closest point algorithm occupies a significant portion of the total

execution time for relative position estimation. Except in the case of semi-global block

matching on the CPU, the iterative closest point algorithm occupies the majority of

the total execution time for relative position estimation. When the source point

cloud contains approximately 1000 points, the duration of the ICP algorithm with a

convergence criteria of 10 iterations averages approximately 30.79 ms.

However, source point clouds with a greater number of points exhibit larger exe-

cution times. For example, ICP with a source point cloud containing approximately

5000 points executes in 150.00 ms on average. As a result, generating a relative posi-

tion estimate before the next pair of stereo images is available would not be feasible.

Therefore, larger source point cloud sizes can inhibit real time execution.

Figure 17. ICP execution times as a function of the source point cloud size
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4.5 Summary of execution times

Given rectified stereo images with associated regions of interest for the approaching

aircraft, the relative position of a refueling aircraft may be estimated in real time.

Results suggest that semi-global block matching on the CPU could provide position

estimates at a rate of up to approximately 10.7 Hz. Block matching on the CPU

could provide position estimates at a rate of up to approximately 25.4 Hz. Finally,

block matching on the GPU could provide position estimates at a rate of up to

approximately 28.4 Hz. Thus, real-time execution is feasible not only by leveraging

the GPU, but by using only the CPU as well. The majority of execution time for

both the CPU and GPU block matching approaches is consumed by ICP.

Table 4. Average execution times. Timing values have ns precision.

CPU SGBM CPU BM GPU BM

Stereo algorithm (ms) 57.973786 4.203305 1.136670

Speckle filter (ms) 0.963408 2.156856 0.555096

Point cloud generation (ms) 3.642200 1.931584 3.110842

Iterative closest points (ms) 30.838964 31.146360 30.393187

Sum (ms) 93.418358 39.438105 35.195795

Hz 10.704534 25.356188 28.412485

4.6 Position estimation accuracy

After using the iterative closest point algorithm to register the source F15-E model

to the target point cloud, the centroid of the point cloud may be used in order to

estimate the relative position of the observed aircraft. This method for estimating

position was used in previous work [42].
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In order to compare real world data position estimation accuracy to previous

work’s position estimation accuracy in the simulation domain, the same method for

position estimation is employed. The real world data collection took place at an

approximately one-seventh scale of the simulation data in previous work. Results

from the simulation domain study have been scaled down by a factor of seven for the

sake of comparison [42].

Figure 18. Relative position error by components for CPU SGBM
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Figure 19. Relative position error magnitudes for CPU SGBM

Table 5. Linear regression analysis of CPU SGBM 3D error vector magnitudes

Estimate Std. error t value Pr(> |t|) R2

Seeded intercept −1.7227 0.0786 −22.10 < 2.0× 10−16 0.9646

Seeded slope 0.6813 0.0132 51.69 < 2.0× 10−16

Unseeded intercept −1.6131 0.1211 −13.32 < 2.0× 10−16 0.9259

Unseeded slope 0.7165 0.0205 34.99 < 2.0× 10−16
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Real world data analyzed by the CPU semi-global block matching stereo algorithm

exhibit trends qualitatively similar to trends in the simulation domain results from

previous work by Werner [42]. Seeding the iterative closest point algorithm appears

to result in nominally lower errors. Note the increase in the z-component of the error

vector as the magnitude of the distance vector decreases from 3 m towards 2 m. This

increase corresponds to the occlusion of the imaged jet nose as it exits the bottom of

the frame.

Figure 20. Relative position error by components for CPU BM
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Figure 21. Relative position error magnitudes for CPU BM

Table 6. Linear regression analysis of CPU BM 3D error vector magnitudes

Estimate Std. error t value Pr(> |t|) R2

Seeded intercept −1.5013 0.0578 −25.98 < 2.0× 10−16 0.9769

Seeded slope 0.6285 0.0098 64.32 < 2.0× 10−16

Unseeded intercept −1.2907 0.0888 −14.54 < 2.0× 10−16 0.9437

Unseeded slope 0.6084 0.0156 40.53 < 2.0× 10−16
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For all three stereo algorithms, the R2 value associated with the linear regression

model for the seeded algorithm is higher than the R2 value associated with the linear

regression model for the unseeded algorithm. This fact suggests that seeding the

iterative closest point algorithm leads to more predictable and less noisy relative

position estimates.

Figure 22. Relative position error by components for GPU BM
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Figure 23. Relative position error magnitudes for GPU BM

Table 7. Linear regression analysis of GPU BM 3D error vector magnitudes

Estimate Std. error t value Pr(> |t|) R2

Seeded intercept −1.7554 0.0620 −28.32 < 2.0× 10−16 0.9771

Seeded slope 0.6782 0.0105 64.71 < 2.0× 10−16

Unseeded intercept −1.8505 0.1129 −16.39 < 2.0× 10−16 0.9576

Unseeded slope 0.8984 0.0191 47.06 < 2.0× 10−16
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V. Conclusion

Aerial refueling is essential to the USAF core mission of rapid global mobility.

However, in-flight refueling is not available to remotely piloted aircraft or unmanned

aerial systems. As reliance on drones for ISR and other USAF core missions grows,

the ability to refuel such systems in-flight becomes increasingly critical.

Research towards automated aerial refueling aims to solve this problem. Re-

searchers have been investigating the AAR problem for over a decade, and approaches

have utilized GPS, INS, monocular machine vision, and LiDaR. New capabilities in

upcoming tankers introduce the possibility of a stereo vision solution.

5.1 Summary of findings

This investigation demonstrates that real world stereo imagery may be used to

estimate relative position with accuracies comparable to accuracies observed in simu-

lation. Real time relative position estimation is feasible, both on the GPU and on the

CPU. Given rectified stereo images and associated region of interest masks, relative

position estimation may be performed at rates between 10 Hz and 30 Hz. Changes

to support real time execution exhibited no significant impact on position estimation

accuracies compared to accuracies reported in simulation-based work conducted by

Werner [42].

In order to support comparisons between stereo algorithms, all three functions

were initialized with the same parameters. As a result, these algorithms could be

ranked according to the ability of a linear regression to explain the position error

vector magnitude as a function of distance between the cameras and the subject.

Block matching on the GPU exhibits the most predictable and least noisy relation-

ship between these factors, and semi-global block matching on the CPU exhibits the
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least predictable and most noisy relationship between these factors. However, these

algorithms use different approaches in order to determine a stereo correspondence.

Individually tuning the input parameters for these functions could result in different

rankings.

Seeding the iterative closest point algorithm with the solution from the previous

time step in order to propagate information improves accuracy. The magnitudes

of relative position error vectors produced by the unseeded iterative closest point

algorithm are greater than the magnitudes produced by the seeded algorithm on

average.

5.2 Future work

One area of future work involves the application of filters. In order to reduce

the amount of erroneous disparity values before projecting into a three dimensional

point cloud, a speckle filter was applied. Despite there being no theoretical difference

between disparity maps generated by different stereo algorithms, results indicate that

speckle filter execution times differ statistically according to the originating stereo

correspondence function. A model characterizing speckle filter execution time could

help to explain these results.

Results suggest that the relative position estimates could be resilient to noise.

Specifically, the results from high-fidelity simulation domain data in other work are

predicted by a linear regression model on the more noisy data from this investigation.

The tradeoff between omitting the speckle filter for faster execution times at a cost

of greater noise could help to quantify the importance of the speckle filter.

Other filters could be applied at different stages of the relative position estimation

process. For this investigation, the input is assumed to consist of rectified stereo im-

ages with associated region of interest masks. These masks are another type of filter.
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Bounding boxes remove anomalous points that exceed sensible values. Clustering

algorithms could be applied after point cloud generation in order to further filter the

data. Isolating the points of interest while maintaining real time execution further

supports stereo vision towards a solution to the AAR problem.

Similar to the speckle filter execution times, point cloud generation execution

times exhibit different responses to the number of points generated depending on

the stereo algorithm that produced the disparity map. Characterizing point cloud

generation execution time as a function of the number of points generated may also

help to place an upper bound on point cloud size for feasible real time execution.

Implementing point cloud generation on the GPU could support real time execution

as well.

Unlike the speckle filter execution times and point cloud generation execution

times, the iterative closest point algorithm execution times exhibit no significant

response to the number of points in the target point cloud. A characterization of

iterative closest point algorithm execution times could help to explain these results.

While the size of the target point clouds varied, the size of the source point cloud

remained constant. Changing the size of the source point cloud could aid in model

development. Additionally, changing the number of iterations performed and other

convergence criteria could help to construct a model of the tradeoff between execution

time and accuracy.

Finally, large errors in long range position estimates are observed both in other

work in the simulation domain and in this investigation using real world data. Errors

reduce dramatically as the distance between cameras and the imaged object decreases.

In order for stereo vision to be a viable solution to the AAR problem, efforts should

be made to reduce these errors. Sensor fusion techniques or other modifications may

also improve position estimation accuracies at greater imaging distances.
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Appendix A. Computer Hardware

In the interest of reproducibility, this appendix reports the computer hardware

on which software for this project is developed, tested, and executed. Keyboards,

mouses, displays, cables, and other peripherals are also required.

Table 8. Data collection hardware

Item Identification number Details

Intel NUC NUC5i5RYK Core i5-5250U two core 1.6

GHz CPU

G.skill Ripjaws RAM F3-1866C10D-16GRSL DDR3L 2×8GB 1866 MHz

10-10-10-32 SO-DIMM RAM

Samsung 850 Evo M.2 SSD MZ-N5E500BW 500GB M.2 SSD

Table 9. Data analysis hardware

Item Identification number Details

Fractal Design Define R4 FD-CA-DEF-R4-BL ATX mid tower case

Corsair AX760 power supply CP-9020045-NA ATX12V 760W power supply

Asus Sabertooth Z97 Mark

1/USB 3.1 motherboard

90MB0LA0-M0AAY0 Intel LGA 1150 ATX moth-

erboard

Intel Core i7-4770S BX80646I74770S 65W four core 3.1 GHz CPU

2 × G.skill Sniper RAM F3-1866C9D-16GSR DDR3 2×8GB 1866 MHz 9-

10-9-28 240-pin RAM

Nvidia Geforce Gtx 980 04G-P4-1982-KR 2048 CUDA cores Evga 4GB

Samsung 850 Evo SSD MZ-75E1T0B/AM 1TB 2.5” SATA III SSD
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Appendix B. Operating System

Software developed for this project is cross-platform or, more specifically, may

run under recent versions of Linux, Mac, or Windows operating systems with the

appropriate hardware. Due to time and resource constraints, compatibility on all

platforms has not necessarily been tested. As a result, minor tweaks may be required

before running software on some operating systems. All development decisions were

made under the principle of producing cross-platform code.

In order to support an appropriate rate of progress, software compatibility is

ensured only for Ubuntu 14.04.3 LTS. This operating system is largely open source,

guaranteed support until April 2019, and free to download, install, and use [9]. The

majority of development and testing occurred on this operating system.

The following steps present installation methods for the Ubuntu 14.04.3 LTS op-

erating system used during this project. These steps serve as a record of the method-

ology employed when installing the operating system.

1. Obtain the Ubuntu 14.04.3 LTS Desktop 64-bit ISO image.

This file may be available at the following URL:

http://releases.ubuntu.com/trusty/ubuntu-14.04.3-desktop-amd64.iso

2. Place the ISO image on an installation device.

(a) Burn the ISO image to a DVD.

Detailed steps may be available at the following URL:

https://help.ubuntu.com/community/BurningIsoHowto

(b) Place the ISO image on a USB storage device.

Detailed steps may be available at the following URLs:

https://help.ubuntu.com/community/Installation/FromUSBStick

https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx
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3. Insert the installation media into the computer, and boot from the device.

The easiest way to boot from the installation device may be from the BIOS

boot menu.

4. Choose to install Ubuntu.

• Welcome: For this project, the “English” option is chosen.

• Wireless: In some cases, continuing without connecting to the Internet

seems to cause problems with the installation.

• Preparing to install Ubuntu: The options “has at least 6.6 GB available

drive space,” “is connected to the Internet,” “Download updates while in-

stalling,” and “Install this third-party software” are all checked. Omitting

some combinations of the last three options may cause issues when using

OpenCV for this project.

• Installation type: Some machines used for development contain additional

operating systems, while others only contain Ubuntu.

– No additional operating systems: Choose “Erase disk and install Ubuntu.”

– Additional operating systems: Choose “Something else.”

∗ Create a partition for the root file system “/” with a size from

16000 MB to 24000 MB. The new partition should be of type

“Primary” at the beginning of the partition space. Choose an

“Ext4 journaling file system” with “/” as the mount point.

∗ Create a partition for the swap with a size between one and 1.5

times the amount of RAM (e.g. a 48000 MB swap size for 32000

MB RAM). The new partition should be of type “Logical” at the

beginning of the partition space. Choose to use as swap area.
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∗ Create a partition for “/home” using the remaining space on the

storage device. The new partition should be of type “Logical” at

the beginning of the partition space. Choose an “Ext4 journaling

file system” with “/home” as the mount point.

• Choose “Install now,” and accept the changes written to the disk.

• Where are you: For this project, the default selection is acceptable. Con-

sult the IANA Time Zone Database (also referred to as the tz database or

zoneinfo database) for other options.

• Keyboard layout: For this project, the “English (US)” and “English (US)”

options are chosen.

• Who are you: The name, computer name, username, password, and pass-

word confirmation field are completed. The option to require a password

to login is selected. The encryption option is not selected, because this

option seems to cause problems for the resulting installation.

5. After installation, install updates presented by the Ubuntu Software Update

application.

6. Finally, execute the following Terminal commands.

sudo apt−get update

sudo apt−get upgrade
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Appendix C. Software dependencies

All of the software developed for this project depend on the OpenCV 3.0.0 release.

Before installing OpenCV, several dependencies are required. The build-essential,

cmake, git, libgtk2.0-dev, pkg-config, libavcodec-dev, libavformat-dev, and

libswscale-dev packages are required [31].

The python-dev, python-numpy, libtbb2, libtbb-dev, libjpeg-dev, libpng-dev,

libtiff-dev, libjasper-dev, and libdc1394-22-dev packages are recommended [31].

OpenCV automatically makes use of the libwebp-dev, libopenexr-dev, doxygen,

libv4l-dev, libavresample-dev, libeigen3-dev, libgphoto2-dev, python3-dev,

python3-numpy, libgstreamer1.0-dev, and libgstreamer-plugins-base1.0-dev

packages when they are present [31].

Additionally, OpenCV makes use of the libopenni-sensor-primesense-dev,

libopenni-dev, libxine-dev, and libgdal-dev packages so long as they are specif-

ically set to “ON” when generating compilation files with the CMake command [31].

The freeglut3-dev, mesa-utils, libqt4-dev, and libvtk5-dev packages pro-

vide graphics and visualization functionalities leveraged by OpenCV. This combina-

tion of packages results in warning messages during the one-time process of generating

compilation files for OpenCV, but these warning messages can be ignored. To avoid

these inconsequential warning messages, investigate using Qt 5 and VTK 6.

The following terminal command installs the dependencies used by this project for

the OpenCV 3.0.0 release. A description for most of these packages may be viewed

by appending the package name to the end of the “https://apps.ubuntu.com/

cat/applications/” URL.
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sudo apt−get i n s t a l l bui ld−e s s e n t i a l cmake g i t l i b g t k 2 .0−dev

pkg−c o n f i g l ibavcodec−dev l ibavformat−dev l i b s w s c a l e−dev

python−dev python−numpy l ib tbb2 l ibtbb−dev l i b j p e g−dev l ibpng−dev

l i b t i f f −dev l i b j a s p e r−dev l ibdc1394−22−dev libwebp−dev

l ibopenexr−dev l ibavresample−dev l i b e i g e n 3−dev l ibgphoto2−dev

l i b v 4 l−dev l i bg s t r eamer1 .0−dev l ibgs t r eamer−plug ins−base1 .0−dev

doxygen python3−dev python3−numpy l ibopenn i−dev

l ibopenn i−sensor−primesense−dev l i b x i n e−dev l i b g d a l−dev

f r e e g l u t 3−dev mesa−u t i l s l i bq t4−dev l ibvtk5−dev

Additionally, the CUDA API must be installed for data analysis. This process

changes frequently and depends on the operating system. See the Nvidia CUDA

website for details.

After installing the above packages and CUDA, the OpenCV 3.0.0 release can be

downloaded, compiled, and installed. According to the Filesystem Hierarchy Stan-

dard [26], the /usr/local directory is the appropriate location for software like the

OpenCV 3.0.0 release. So long as no other versions of OpenCV are present, the

source code may be placed in /usr/local/src and the installation prefix may be set

to /usr/local. If the user does not have appropriate privileges to install OpenCV

in /usr/local or multiple versions of OpenCV must exist on the system, then any

other directory may be used.

The following terminal commands retrieve the appropriate version of the source

code using wget and unzip. If the source directory is not /usr/local/src, then the

sudo command may not be necessary.

cd / usr / local / s r c /

sudo wget https : // github . com/ I t s e e z /opencv/ arch ive / 3 . 0 . 0 . z ip

sudo unzip 3 . 0 . 0 . z ip

cd opencv −3.0.0/
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Alternatively, the following terminal commands may be used to retrieve the ap-

propriate version of the source code in the git repository.

cd / usr / local / s r c /

sudo g i t c l one https : // github . com/ I t s e e z /opencv . g i t

cd opencv/

sudo g i t checkout 3 . 0 . 0

sudo mv opencv/ opencv −3.0.0/

After retrieving the appropriate version of the source code, the compilation files

must be generated. The following terminal commands may be used to generate these

compilation files. These commands must be executed from the opencv-3.0.0/ work-

ing directory. The final two characters of the cmake command, .., indicate that the

CMakeLists.txt file in the opencv-3.0.0/ directory should be used to generate the

compilation files.

sudo mkdir bu i ld

cd bu i ld /

sudo cmake −D CMAKE BUILD TYPE=RELEASE

−D CMAKE INSTALL PREFIX=/usr / local −D WITH GDAL=ON

−D WITH OPENMP=ON −D WITH OPENNI=ON −D WITH OPENGL=ON

−D WITH QT=ON −D WITH TBB=ON −D WITH XINE=ON . .

# a l s o inc l ude the f l a g s −D WITH CUBLAS and −D WITH NVCUVID

# i f the CUDA API i s i n s t a l l e d

Finally, the following terminal commands compile and install OpenCV.

sudo make −j 4 # on a four core CPU

sudo make i n s t a l l
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Data collection and analysis also rely on the SQLite relational database manage-

ment software [37], the Tesseract optical character recognition (OCR) software [38],

and Point Cloud Library (PCL) [33]. The following terminal command installs SQLite

and Tesseract.

sudo apt−get i n s t a l l s q l i t e 3 l i b s q l i t e 3 −dev t e s s e r a c t−ocr

l i b t e s s e r a c t −dev l i b l e p t o n i c a−dev

To install PCL, first ensure that the following packages are installed: libcf0,

libeigen3-dev, libflann-dev, libflann1.8, libgl2ps-dev, libgl2ps0, libhdf5-7,

libnetcdf-dev, libnetcdfc++4, libnetcdfc7, libnetcdff5, libopenni2-0, libqhull6,

libopenni2-dev, libqhull-dev, libusb-1.0-0-dev, libusb-1.0-doc, libvtk5-dev,

libvtk5-qt4-dev, libvtk5.8, libvtk5.8-qt4, libxss-dev, tcl8.6-dev, tk8.6-dev,

x11proto-scrnsaver-dev.

sudo apt−get i n s t a l l l i b c f 0 l i b e i g e n 3−dev l i b f l a n n−dev l i b f l a n n 1 . 8

l i b g l 2 p s−dev l i b g l 2 p s 0 l ibhd f5 −7 l i b n e t c d f−dev l i b n e t c d f c++4

l i b n e t c d f c 7 l i b n e t c d f f 5 l ibopenn i2−0 l ibopenn i2−dev l i b q h u l l−dev

l i b q h u l l 6 l ibusb −1.0−0−dev l ibusb −1.0−doc l ibvtk5−dev l ibvtk5−qt4−dev

l i b v t k 5 . 8 l i b v t k 5 .8−qt4 l i b x s s−dev t c l 8 .6−dev tk8 .6−dev

x11proto−sc rnsaver−dev

Next, download the source code, generate compilation files, compile, and install.

wget https : // github . com/ PointCloudLibrary / pc l / a r ch ive / pcl −1.8 .0 rc1 . z ip

unzip pcl −1.8 .0 rc1 . z ip

cd pcl−pcl −1.8 .0 rc1 / && mkdir bu i ld && cd bu i ld /

cmake −D CMAKE BUILD TYPE=Release −D CMAKE INSTALL PREFIX=/home/usrnm

−D BUILD CUDA=ON −D BUILD GPU=ON . .

make −j 4

make i n s t a l l
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Appendix D. Software development

The project software is developed with the Git distributed version control sys-

tem [18]. Development takes place at two levels, a macro level and a micro level.

Macro level development follows the “forking workflow,” and micro level develop-

ment follows the “gitflow workflow” [2].

Figure 24. An illustration of the forking workflow used during software development

79



The macro level forking workflow begins with three initialization steps. Initial-

ization step i consists of User A initializing Local Repository A and pushing it to

Remote Repository A.

usera$ mkdir /path/ to / r e p o s i t o r y / && cd /path/ to / r e p o s i t o r y /

usera$ g i t i n i t

usera$ g i t c o n f i g user . name User A

usera$ g i t c o n f i g user . emai l ua@example . com

usera$ g i t remote add o r i g i n https : // usera@example . com/ usera /

r e p o s i t o r y . g i t

# Create a README f i l e

usera$ g i t add README. txt

usera$ g i t commit −m ”README”

usera$ g i t push −u o r i g i n master

Initialization step ii consists of User B forking Remote Repository A in order to

create Remote Repository B. This step is performed through the remote repositories

server interface. Initialization step iii consists of User B cloning Remote Repository

B in order to create Local Repository B.

userb$ g i t c l one https : // userb@example . com/ userb / r e p o s i t o r y . g i t

userb$ cd r e p o s i t o r y /

userb$ g i t c o n f i g user . name User B

userb$ g i t c o n f i g user . emai l ub@example . com

userb$ g i t remote add upstream https : // userb@example . com/ usera /

r e p o s i t o r y . g i t

After the three initialization steps, the macro level forking workflow consists of a

repeating sequence of six steps. Before step 1 of the macro level workflow, User B

makes changes to Local Repository B according to the micro level gitflow workflow.
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Figure 25. An illustration of the gitflow workflow used during software development
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Specifically, User B checks out a branch (a feature branch, a release branch, a fix

branch, or develop) in which changes will be made.

# Create a new f e a t u r e branch

userb$ g i t checkout −b fea ture−a develop

# Create a new f i x branch

userb$ g i t checkout −b f i x −0.1 .1 master

# Create a new r e l e a s e branch

userb$ g i t checkout −b r e l e a s e −0.2 develop

After making changes in Local Repository B according to the micro level gitflow

workflow and committing them to a branch, User B performs step 1 of the macro level

forking workflow. User B pushes changes made to Local Repository B to Remote

Repository B.

userb$ g i t push o r i g i n branch−name

Step 2 of the macro level forking workflow consists of User B submitting a pull

request from the updated branch in Remote Repository B to an appropriate target

branch in Remote Repository A. See Figure 25 for an illustration of appropriate

merges. Step 2 is performed through the remote repositories server interface.

In step 3 of the macro level forking workflow, User A fetches the changes submitted

by User B from Remote Repository B to Local Repository A.

usera$ g i t f e t c h https : // usera@example . com/ userb /

r e p o s i t o r y . g i t branch−name

usera$ g i t checkout FETCH HEAD
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User A tests the code for acceptability. Upon a successful test, the changes are

merged into the indicated target branch in Local Repository A.

usera$ g i t checkout target−branch

usera$ g i t merge −−no− f f FETCH HEAD

# omit −−no− f f i f merging deve lop in t o deve lop

Step 4 of the macro level forking workflow consists of User A pushing the merged

changes from Local Repository A to Remote Repository A. The associated pull request

should be automatically resolved after step 4.

usera$ g i t push o r i g i n target−branch

Once the merged changes have been pushed to Remote Repository A, User B

performs step 5 of the macro level forking workflow. The merged changes are pulled

from Remote Repository A to Local Repository B.

userb$ g i t checkout target−branch

userb$ g i t p u l l upstream target−branch

Finally, in step 6 of the macro level forking workflow, User B pushes the merged

changes from Local Repository B to Remote Repository B.

userb$ g i t push o r i g i n target−branch

If the original branch is not a permanent branch (i.e. the original branch is not

the develop or master branch), then it should be removed from the repositories.

userb$ g i t branch −d branch−name

userb$ g i t push o r i g i n −−d e l e t e branch−name
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Appendix E. Network time protocol server

References such as [40] and [23] outline procedures for building a stratum 1 network

time protocol (NTP) server with a Raspberry Pi computer. However, these references

may be scattered, out of date, or lack specifics. Thus, the following information

provides a specific record of the methodology employed when constructing the NTP

server for the data collection environment local area network (LAN).

The materials listed in Table 10 were used in order to construct the NTP server.

Additional materials may be required. Examples of such materials include Ethernet

cables, a Power over Ethernet (PoE) switch, a PoE splitter, and a weatherproof

garden case for outdoor cabling. Before configuring the NTP server, the materials

must be constructed into a computer. This process includes some soldering. Assembly

instructions are available from the purchase site [1]. After assembly, the Raspberry

Pi may be configured for WiFi network access and access through Secure Shell (SSH).

Table 10. NTP server materials

Item Adafruit.com PID

Raspberry Pi 2 Model B 2358

Adafruit Raspberry Pi B+/Pi 2 case 2258

8 GB SD card with Raspbian Jessie 2767

SMA to µFL/µ.FL/IPX/IPEX RF adapter 851

3-5 V 28 dB 5 m SMA External active GPS antenna 960

CR1220 12 mm 3 V lithium coin cell battery 380

2 pack brass M2.5 standoffs for Pi HAT 2336

Adafruit Ultimate GPS HAT for Raspberry Pi 2324

GPIO header for Pi HAT 2×20 short female 2243

USB WiFi 802.11 b/g/n antenna for Pi 1030
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After the materials have been assembled, the following steps configure the device

as an NTP server.

1. Enable PPS

$ lsmod | grep pps # there shou ld be no output

$ sudo apt−get i n s t a l l pps−t o o l s

$ sudo reboot

$ lsmod | grep pps # there shou ld be no output

$ sudo nano / boot / c o n f i g . txt

# add the f o l l ow i n g l i n e

dtover lay=pps−gpio , gp iop in=4

$ sudo nano / e tc /modules

# add the f o l l ow i n g l i n e

pps−gpio

$ sudo reboot

$ lsmod | grep pps # output shou ld inc l ude pps gp io and pps core

$ sudo pps t e s t /dev/pps0

2. Compile NTP from source

$ cd Downloads/

$ wget http :// a r ch ive . ntp . org /ntp4/ntp−4.2/ntp−4.2 .8 p4 . ta r . gz

$ wget http :// a r ch ive . ntp . org /ntp4/ntp−4.2/ntp−4.2 .8 p4 . ta r . gz .md5

$ md5 ntp−4.2 .8 p4 . ta r . gz

$ cat ntp−4.2 .8 p4 . ta r . gz .md5

$ mkdir ntp−con f i gure−p r e f i x

$ sudo apt−get i n s t a l l l ibcap−dev l ibevent−dev l i b s s l −dev

$ cd ntp−4.2 .8 p4

$ . / c o n f i g u r e −−p r e f i x=/home/ pi /Downloads/ntp−con f i gure−p r e f i x /

−−enable−ATOM −−enable−NMEA −−enable−SHM −−enable−l i nuxcaps
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$ make −j 4

$ make i n s t a l l

3. Stop, remove, and replace the existing NTP service

$ sys t emct l | grep ntp

$ sudo sys t emct l stop ntp . s e r v i c e

$ cd Downloads/ntp−con f i gure−p r e f i x /

$ sudo cp bin /∗ / usr / bin /

$ sudo cp sb in /∗ / usr / sb in /

$ sudo cp −r share /doc/ntp / . / usr / share /doc/ntp/

$ sudo cp −r share /doc/ sntp / usr / share /doc/

$ cd / usr / share /man/man1/

$ sudo rm ntpdc . 1 . gz ntpq . 1 . gz ntpsweep . 1 . gz ntpt race . 1 . gz

sntp . 1 . gz

$ cd /home/ pi /Downloads/ntp−con f i gure−p r e f i x /

$ sudo cp share /man/man1/∗ / usr / share /man/man1/

$ sudo rm / usr / share /man/man5/ntp . conf . 5 . gz

$ sudo cp share /man/man5/∗ / usr / share /man/man5/

$ cd / usr / share /man/man8/

$ sudo rm ntpd . 8 . gz ntp−keygen . 8 . gz ntp−wait . 8 . gz

$ cd /home/ pi /Downloads/ntp−con f i gure−p r e f i x /

$ sudo cp share /man/man8/∗ / usr / share /man/man8/

$ sudo cp −r share /ntp / usr / share /

$ sudo sys t emct l s t a r t ntp . s e r v i c e
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4. Configure the serial port so that it may be used for GPS

$ sudo nano / boot / cmdline . txt

# remove ‘ conso l e=ttyAMA0 ,115200 ’ to read :

dwc otg . lpm enable=0 conso l e=tty1 root=/dev/mmcblk0p2

r o o t f s t y p e=ext4 e l e v a t o r=dead l ine rootwa i t

$ sudo sys t emct l stop s e r i a l −getty@ttyAMA0 . s e r v i c e

$ sudo sys t emct l d i s a b l e s e r i a l −getty@ttyAMA0 . s e r v i c e

$ sudo sys t emct l mask s e r i a l −getty@ttyAMA0 . s e r v i c e

$ sudo reboot

$ s t t y −F /dev/ttyAMA0 raw 9600 cs8 c l o c a l −cstopb

$ cat /dev/ttyAMA0

$ sudo nano / e tc /udev/ r u l e s . d/99−gps . r u l e s

# add the f o l l ow i n g l i n e s

KERNEL==”ttyAMA0” ,SYMLINK+=” gps0 ”

KERNEL==”pps0” ,SYMLINK+=” gpspps0 ”

5. Edit the NTP configuration file /etc/ntp.conf

$ sudo nano / e tc /ntp . conf

• Add the following lines

s e r v e r 1 2 7 . 1 2 7 . 2 0 . 0 mode 18 minpol l 4 maxpoll 4 n o s e l e c t

fudge 1 2 7 . 1 2 7 . 2 0 . 0 f l a g 1 1

• Wait approximately 24 hours, then run the following commands

$ ntpq −pn

$ ntpq −p

• Make note of the offset (e.g. −524.105)
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• Edit the previously inserted lines so that the time2 value approximately

eliminates the offset

s e r v e r 1 2 7 . 1 2 7 . 2 0 . 0 mode 18 minpol l 4 maxpoll 4 p r e f e r

fudge 1 2 7 . 1 2 7 . 2 0 . 0 time2 +0.500 f l a g 1 1

• Optionally, include the following line if the local clock is available

s e r v e r 1 2 7 . 1 2 7 . 1 . 0

• Comment out the other servers

Additional documentation, such as details for driver 20, is available from the

NTP manual [30]. After some time, the NTP server may be checked by running the

command line function $ date and confirming that the output is correct. In order to

subscribe another computer on the LAN to the NTP server time, the computer’s local

/etc/ntp.conf file must be edited. The NTP server’s IP address must be entered

into the computer’s local /etc/ntp.conf file using appropriate formatting.
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world refueling scenario demonstrates that the relative position of an approaching aircraft can be estimated at rates
between 10 Hz and 30 Hz using stereo vision. Linear regression models on position estimate accuracies predict results
reported by other research in the simulation domain, suggesting that real world accuracies are comparable to simulation
domain accuracies reported by others. Further, by seeding the position estimation algorithm with previous position
estimates, subsequent errors in position estimation are reduced.
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