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Abstract 

 Epilepsy is the second most common neurological disease after stroke.  Epileptics 

may suffer hundreds of seizures per day, yet one is enough to put a person in constant 

fear of the next.  The sudden and unexpected onset of seizures has debilitating and 

sometimes fatal consequences.  The development of a real-time seizure prediction and 

alerting device would greatly improve epileptics’ quality of life.  Major challenges for 

such a device include determining predictive features and discovering the maximum 

prediction window. 

 Using the novel approach of random forest classification on EEG data, this 

research investigates the predictive features among the common EEG frequency bands 

for one patient with partial complex and partial with secondarily generalized seizures.   

The impact on classifier performance of labeling the transitional brain states is also 

investigated, using a time-series accuracy graph. 

 Predictive features are found as far as 40 minutes in advance of two seizures, 

specifically in the beta frequencies of one brain node.  The random forest classifier does 

not perform well, but shows promise for improved performance with minor adjustments 

in training.  The time-series accuracy graphs prove a useful tool for visualization and 

insight into classifier performance that is lacking in other evaluation methods. 
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EEG-BASED CLASSIFICATION AND  

ADVANCE WARNING OF EPILEPTIC SEIZURES 

 
 

I.  Introduction 

This research aims to improve the lives of epileptics by identifying important 

features to improve seizure prediction methods.  Epilepsy is a neurological disease 

characterized by recurrent, unprovoked seizures (Fisher et al., 2005).  Though few people 

are aware of the effects and impact of epilepsy, it is the second most common 

neurological disease, after stroke (Mormann, Andrzejak, Elger, & Lehnertz, 2007). 

Approximately sixty-five million people worldwide live with epilepsy, with at least two 

hundred thousand new diagnoses per year (C.U.R.E., 2015). 

Within the broad umbrella of epilepsy, there is a wide span of experiences.  

Seizures vary in effect: from staring blankly for a few seconds (absence seizures), to 

collapsing in convulsions for several minutes (tonic-clonic seizures) (Mayo Clinic, 2015).  

Seizures may go unnoticed, even by the person experiencing them, or be extremely 

painful and traumatizing.  Some epileptics may suffer from a single seizure in their 

lifetime, while others have hundreds per day.   

While seizures can be fatal, a more stressful issue for many epileptics is simply 

never knowing when the next seizure will occur (Fisher et al., 2000).  Even minor 

seizures can have devastating consequences if they occur at dangerous times, such as 
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when the person is swimming or driving a car.  The unpredictability of seizures causes 

many epileptics to lose their driver’s license and job.  The life-crippling effects of 

epilepsy have driven neurologists to research the possible causes, develop and improve 

diagnosis and treatment methods, understand the physiological processes at work, and 

attempt to predict seizures before they occur. 

The complexity and individuality of brains make seizure prediction a daunting 

task.  An algorithm trained to one patient may be completely ineffective when applied to 

another patient.  Researchers have found that features even vary between seizures within 

a single patient. 

This issue with individuality has driven researchers to personalize prediction 

algorithms, theoretically (yet to be clinically implemented) monitoring patients for a 

training period before tailoring an algorithm that can monitor and predict seizures in real-

time.  Such a device would drastically improve the lives of epileptics, either by simply 

warning them of the impending seizure so they can prepare, or by preventing or reducing 

the seizure by administering a drug or electrical treatment (details in Appendix A). 

While some algorithms have achieved high prediction accuracies, there are still 

many questions to address before an algorithm will be reliable enough for a clinical trial.  

The questions this research seeks to answer are the following: 

1. What are the key spectral power features in EEG for predicting epileptic seizures? 

2. How does predictive performance change when varying the length of the 
prediction window, which greatly influences the early warning time for the 
patient? 

3. How does a random forest classifier compare to those used in other prediction 
research, particularly SVMs? 
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1.1 Approach 

 This research used electroencephalogram (EEG) data transformed into the 

frequency domain, using a Fast Fourier Transform (FFT).  Then the signals were 

averaged into bins by the common EEG frequency bands: delta, theta, alpha, beta, and 

gamma, as well as two high frequency bands.  These bands were used as features for a 

binary classification problem, with 1 indicating a preictal (pre-seizure) sample and 0 

indicating an interictal (regular functioning) sample. 

 After a preliminary feature analysis through correlation, the data were used to 

train unique random forest classifiers for four different-length early warning windows, as 

well as two definitions of interictal data.  The parameters for each model were tuned with 

the training data, using Leave-One-Out Cross Validation (LOOCV).  Once tuned, 

classifier performance was evaluated on separate holdout seizures from the same patient.  

The effects of defining the preictal and interictal windows were analyzed using time-

series accuracy graphs.  The classifiers with the highest prediction accuracies were used 

for key feature analysis, by comparing the feature importance as indicated by the random 

forest.  The classifiers with the highest accuracy were also used to determine time under 

false warning, for comparison to other prediction research, as well as a random predictor. 

1.2 Assumptions and Limitations 

 The present research focuses specifically on epileptics, so findings may not be 

applicable to people suffering from non-epileptic seizures.  Also, this analysis is limited 

to patients with partial complex seizures and partial seizures with secondary 

generalization, monitored through intracranial EEG. 
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 One major challenge of this research was manipulating the available data to suit 

this study.  The data were not collected for the purpose of this research, but rather 

recorded from patients for clinical purposes.  This means all patients have individually 

tailored electrode configurations on their brains, rather than a standardized configuration. 

 Another challenge of this research was dealing with the unknown length of the 

preictal horizon.  The times of the seizures were marked in the EEG records by 

epileptologists, but the length of the preictal window (the time before the seizure during 

which prediction is possible) is unknown.  This issue was dealt with through examining 

four time windows, and by including time-series accuracy graphs in the evaluation. 

1.3 Implications 

Through identifying predictive features, testing the impact of the preictal window 

length, and introducing a random forest classifier to the field of research, the present 

study aims to both improve prediction classifiers and contribute to the basis of knowledge 

used to study epileptogenesis.  The motivation for this research is to improve the lives of 

epileptics in any way possible.   

The following contributions have implications for an early warning prediction and 

intervention device that would greatly improve the lives of epileptics. 

• The results of this research show that predictive features appear as far as 40 
minutes in advance of the seizure.  
 

• The random forest classifier was shown to be viable, though requiring further 
investigation in a context of optimizing seizure prediction accuracy for 
comparison to other methods. 
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II. Literature Review 

This chapter provides a brief overview of epileptic seizure prediction research.  

First, it covers the different types of EEG monitoring, then highlights important 

discoveries from research into the physiological factors and causes of epilepsy.  Seizure 

detection research is discussed solely for the implications of predictive features, and then 

a performance comparison of current prediction algorithms builds a platform for this 

research.  Finally, it highlights the areas available for improvement in the field that this 

research aims to address. 

2.1 History 

 Researchers have been attempting to predict seizures as early as the 1970’s.  

However, a survey paper published in 2007 showed much of the previous work in this 

area was falsely optimistic (Mormann et al., 2007).  Several statistical validation issues 

caused these problems with alleged results. 

 Most predictors reported classification accuracies for data used in the training set, 

rather than a separate holdout testing set, resulting in high prediction accuracies.  False 

positive rates were inaccurately low, because the preictal windows (when false positives 

are impossible) were included in the total time.  Researchers also failed to compare their 

classifiers to a naïve or random prediction scheme.  Later comparison showed several of 

them failed to statistically outperform the random methods.  One final problem was that 

the data were specifically selected and segmented to represent defined interictal and 

preictal periods, ignoring the many varied brain states that a predictor would have to 

interpret during long-term, continuous monitoring.  
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 The authors of the study proposed a set of guidelines for future prediction 

research to establish validity.  Briefly, these rules are as follows, with the complete 

verbiage in Appendix B (Mormann et al., 2007). 

• Algorithms should use long-term, continuous data to account for all mental states 
of the patient. 

• Metrics should include sensitivity and specificity with respect to prediction 
horizon.  Time under false warning should also be reported.  False prediction rates 
only apply to the interictal period. 

• Results should be tested to prove above-chance prediction rates. 

• Algorithms using training data must report results using an independent test set. 

2.2 Electroencephalography 

EEG monitoring has been the gold standard for epilepsy research since its 

development by Hans Berger in 1924.  EEG data are collected by placing electrodes 

either on the scalp (extracranial) or directly on the surface of the brain (intracranial).  The 

low-impedance (<5 kΩ for intracranial) electrodes detect the voltages of the neurons in 

the brain and record them for future analysis (Adeli, Zhou, & Dadmehr, 2003).   

Monitoring methods have improved vastly over the years, moving from paper 

print-outs requiring visual interpretation by expert neurologists, to high-resolution digital 

storage which can be analyzed by advance computer algorithms.  Extracranial EEG is 

still widely used, but now surgically invasive intracranial EEG—also known as iEEG or 

electrocorticography (ECoG)—has been invented to monitor patients before brain 

surgery.   

Extracranial EEG is a routine monitoring practice, often used for diagnosis and 

trying to determine the epileptic focus.  Unfortunately for researchers, scalp EEG 
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includes many artifacts, caused by electrical noise, movement, or line noise (Park, Luo, 

Parhi, & Netoff, 2011), making it difficult to process. 

ECoG requires placing electrodes directly on the surface of the brain.  This 

method is used for monitoring epileptics before brain surgery.  ECoG provides cleaner 

data which can be used to determine what part of the brain should be removed to try to 

reduce or stop seizures.  The invasive procedure consequently makes this data scarce, and 

has only recently been performed for the purpose of data collection (Ihle et al., 2012). 

When using EEG for research, there is a balance between useable data and the 

applicability of findings.  Invasive EEG data may be more useful to researchers than 

scalp EEG, but the applicability of invasive EEG is debatable.  A major goal of prediction 

research is to develop a real-time monitoring system that epileptics could wear constantly 

to be warned of seizures.  While scalp EEG may seem like the better candidate for this 

type of device, intracranial monitoring may be feasible and more permanent, as the 

device could be surgically implanted for long-term monitoring.  Such a device may even 

use a small electrical charge to “reset” the brain and prevent the seizure, somewhat like a 

pacemaker treats arrhythmias.   

Epilepsy research using EEG data can be grouped into two overarching 

categories: application and theory. The theory category includes research into the 

characteristics of EEG data and possible physiological and chemical processes involved 

with epilepsy.  Application involves constructing detection algorithms that determine 

when a patient is suffering from an epileptic seizure and prediction algorithms that warn 

of impending seizures in advance. 
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2.3 Theory 

There has been a broad range of studies into the physiology of the brain during 

epileptic seizures.  These studies range from observing the behavior of the gamma wave 

in rats during drug-induced status epilepticus (long-term continuous seizures) (Phelan, 

Shwe, Abramowitz, Birnbaumer, & Zheng, 2014), to theoretically modeling the epileptic 

brain as a dynamic system (Lopes da Silva et al., 2003; Moghim & Corne, 2014).  

Findings have been used to improve treatment methods. 

2.3.1 Cause (Epileptogenesis) and Activity. 

According to the International League Against Epilepsy (ILAE) and the 

International Bureau for epilepsy (IBE), an epileptic seizure is defined as “a transient 

occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal 

activity in the brain” (Fisher et al., 2005).  This definition may seem vague, but 

“synchronous neuronal activity” is common throughout the literature (Adeli et al., 2003; 

Lopes da Silva et al., 2003; Perez-Velazquez, Valiante, & Carlen, 1994), because the true 

cause of epilepsy remains unknown.  

 What researchers have theorized is that there is a physical difference between an 

epileptic brain and a non-epileptic brain that allows the former to produce a seizure in 

conditions that the latter would function unperturbed (Lopes da Silva et al., 2003).  The 

difference may be “specific inflammatory pathways” that are routinely utilized during 

epileptogenesis and remain in epileptic tissue in humans with temporal lobe epilepsy 

(Ravizza et al., 2008). 
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 The cerebral cortex, brainstem, and thalamocortical interactive systems are all 

involved in epileptogenesis (Fisher et al., 2005).  The hippocampus has also been linked 

to the formation of seizures by (Perez-Velazquez et al., 1994), who found electrotonic 

coupling influenced synchronous neuronal firing, by (Vezzani et al., 2002) who induced 

seizures and status epilepticus in rats through stimulating the hippocampus in a variety of 

ways, and by (Ernfors, Bengzon, Kokaia, Persson, & Lindvall, 1991) who found an 

increase in trophic factors (molecules that allow a neuron to develop and maintain 

connections with its neighbors) in the hippocampus could promote hyperexcitability.  

 Other EEG signal analysis has revealed brain activity that may be used for 

predictive purposes.  One area of study is signal synchronization between different parts 

of the brain, such as synchronization of Lyapunov exponents between electrode pairs and 

a novel Spike Synchronization Measure (L D Iasemidis, Shiau, Sackellares, Pardalos, & 

Prasad, 2004; Krishnan et al., 2015; L. D. Iasemidis, J. C. Principe, 2000).  These studies 

found an increase in their respective measures of synchronization in the preictal period, 

and a desynchronization in the postictal period.  An analysis of the power of features to 

distinguish between preictal and interictal using receiver operating characteristic (ROC) 

curves made a similar discovery that the best bivariate measures were those for phase 

synchronization based on the Hilbert transform, as well as maximum cross-correlation 

(Mormann et al., 2005). 

Though these studies have found synchronization in the preictal period and 

desynchronization in the postictal period, the claim of their predictive quality is under 

debate.  Previous Lyapunov studies have been invalidated due to neglect of the interictal 
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period during statistical validation (Mormann et al., 2007).  Also, a study of modeled 

temporal lobe epilepsy in mice found that there is a reduction in synchronization 

associated with epileptic mice, but the synchronization is throughout the signal and does 

not correspond to epileptic events (Arabadzisz, Antal, Parpan, Emri, & Fritschy, 2005). 

Identifying the root of seizures is difficult because their manifestations are so 

varied.  Seizures can originate and occur locally to one part of the brain (partial seizures), 

originate locally and spread to the rest of the brain (secondary generalized seizures), or 

originate across the entire brain (primary generalized seizures).  Suffering from multiple 

types of epilepsy, as well as a variety of other factors (such as brain maturity a 

medications) can make every epileptic event unique (Fisher et al., 2005).  

2.4 Application 

 Beyond the studies of epileptic physiology and brain dynamics lies the application 

of findings that enable seizure detection and prediction.  This section reviews previous 

research in both of these areas. 

There is an important distinction between seizure detection and seizure prediction.  

Seizure detection involves determining if a patient is currently experiencing a seizure, 

early in the ictal period (distinguishing between interictal and ictal).  Seizure prediction 

is the much more difficult task of determining if a patient will experience a seizure in the 

near future (within a prediction window). These methods must predict the seizure in the 

preictal phase, before the notable change in brain activity that is characteristic of seizure 

onset (distinguishing between interictal and preictal).  Both tasks are being investigated 
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using machine-learning algorithms, for their ability to learn from complex data and make 

assessments in real-time. 

2.4.1 Detection. 

 Detection algorithms are useful for the accurate diagnosis of epilepsy, which is 

otherwise identified by a neurologist visually inspecting EEG data for a 3-Hz spike and 

wave complex defined by Weir in 1965 (Adeli et al., 2003; Weir, 1965).  Detection 

algorithms may also be used by clinics to alert staff of an epileptic event, so they can 

administer treatments more promptly.   

 Since detection algorithms have achieved 100% accuracy (Chen, 2014; Subasi & 

Gursoy, 2010; A. T. Tzallas, Tsipouras, & Fotiadis, 2007; A. T. Tzallas, Tsipouras, & 

Fotiadis, 2009).  The features the algorithms use to recognize a seizure is occurring are 

briefly discussed here.  The features used for detection may provide insight into which 

features are useful for prediction. 

 Detection researchers have used the gamut of classification techniques, including 

decision trees (Polat & Güneş, 2007; A. T. Tzallas et al., 2009), several types of neural 

nets (Ghosh-dastidar, Adeli, & Dadmehr, 2010; Srinivasan, Eswaran, & Sriraam, 2007; A. 

T. Tzallas et al., 2007; A. T. Tzallas et al., 2009), support vector machines (Subasi & 

Gursoy, 2010), logistic regression, K-nearest neighbors, and Naïve Bayes (A. T. Tzallas 

et al., 2009).  To train these classifiers, most have used features derived from wavelet and 

Fourier transforms of the raw EEG data, binning by the common EEG frequency bands 

and calculating additional signal features such as approximate entropy (Chen, 2014; 

Ghosh-dastidar et al., 2010; Ocak, 2009; Polat & Güneş, 2007; Subasi & Gursoy, 2010;  a 
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T. Tzallas et al., 2007; A. T. Tzallas et al., 2009).  Some have unique approaches to the 

features, not transforming to the frequency domain and deriving features from the raw 

EEG signal in the voltage domain, rather than using a transformation (Srinivasan et al., 

2007; Venkataraman et al., 2014). 

 These studies achieved high detection results with their features, those that used 

feature selection did not report which features were selected as the most valuable.  This 

means we can only make assumptions about the values of the features by comparing 

results between studies.  In general, the studies using Fourier and wavelet transformed 

features performed better than those using raw approximate entropy and maximum 

Lyapunov exponents; several of the former achieved 100% detection accuracy. 

 However, detection algorithms are not enough to give epileptics peace of mind 

and some of their freedom back.  By the time detection algorithms send a warning, the 

seizure has already begun, making preparation (such as parking the car) impossible.  

Early detection may work with automatic stimulation to calm seizures before they take 

full effect and preliminary studies have shown promising results (Fountas et al., 2005; 

Kossoff et al., 2004; Mormann et al., 2007; Osorio et al., 2005).  However, even with 

perfect detection, stimulation and drug regimens fail to abort seizures for some patients.  

These patients require a device that warns them before the seizure begins. 

2.4.2 Prediction. 

 The first challenge of predicting seizures is proving that prediction is possible.  

There are two ways seizures could form: spontaneously or through a gradual build-up.  If 

they are spontaneous, there would not be any preceding indicators to use for prediction.  
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However, if seizures are the passing of a threshold after a build-up period, there would be 

preictal features employable for prediction. 

 The brain may be a dynamic system, with seizures acting as a stable state in an 

epileptic brain.  To transition to the seizure state, a number of state parameters would 

have to transition.  The parameter transitions would be reset or ineffective in a non-

epileptic brain, but in the epileptic brain a seizure occurs (Lopes da Silva et al., 2003).  A 

detectable preseizure state may be more likely for partial epilepsy, while primary 

generalized may be virtually spontaneous (Mormann et al., 2007). 

 Several studies found preictal physiological changes that would indicate a 

preseizure brain state, including “an increase in cerebral blood flow (Baumgartner et al., 

1998; Weinand et al., 1997), oxygen availability (Adelson et al., 1999), and blood 

oxygen-level-dependent signal (Federico, Abbott, Briellmann, Harvey, & Jackson, 2005) 

as well as changes in heart rate”(Delamont, Julu, & Jamal, 1999; Kerem & Geva, 2005; 

Novak, Reeves, Novak, Low, & Sharbrough, 1999; Mormann et al., 2007).  The existence 

of a pre-seizure state, or preictal window, means seizure prediction is possible. 

 Since 2007, there have been several patient-specific classification algorithms used 

for prediction that claim promising results.   Most of these studies focus on maximizing 

the prediction accuracy by providing a large set of features to an algorithm that performs 

automatic feature selection and prediction.  The present research aims instead to discover 

which specific features are important for prediction.  This focus may shed light on the 

processes underlying seizures and improve prediction algorithms. 
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Support Vector Machines (SVMs) are the most common classifiers used for 

prediction in recent research (Bandarabadi, Teixeira, Rasekhi, & Dourado, 2014; Moghim 

& Corne, 2014; Netoff, Park, & Parhi, 2009; Park et al., 2011; Williamson, Bliss, & 

Browne, 2011).  While these classifiers are known for classifying complex data by 

mapping it to a higher dimension before choosing the decision boundary, this mapping 

makes the prediction features difficult to interpret in terms of the original data. 

For the sole purpose of high prediction accuracy (disregarding feature analysis), 

SVMs have performed well, with one study achieving 97.5% sensitivity and a false 

positive rate of 0.27 per hour for a 30 minute preictal window (Park et al., 2011).  This 

study used 5-fold cross validation to tune a patient-specific, cost-sensitive SVM.  For 

features, this study used the common EEG bands (splitting the gamma band into four 

bands) processed with the Hjorth mobility parameter (a time-differential method for 

normalizing data).  Using Kernel Fisher Discriminant analysis, they discovered the 

gamma features often had the top discriminability for seizure prediction.  They concluded 

that changes in gamma band power in respect to total power may be used for seizure 

prediction. 

Another study achieved an S1-score (the harmonic mean between sensitivity and 

specificity) of 96% for a 13 minute preictal window (Moghim & Corne, 2014).  The 

features selected using the Matlab function ReliefF were not reported.  In fact, most 

research that used preliminary feature selection did not report the feature selection 

results, only the results of the classifier.  These studies were focused specifically on 

producing accurate prediction algorithms, so the features the algorithm automatically 
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selected and used were not pertinent to their results.  In contrast, the focus of the present 

research is to identify important prediction features.  For this case, the classifier serves 

only to gauge the predictive power of the features.   

All of these studies used different preictal windows, including 5 minutes (Netoff 

et al., 2009), 30 minutes (Park et al., 2011; Williamson et al., 2011), and ranges of times 

(Leon D Iasemidis et al., 2003; Mirowski, Madhavan, LeCun, & Kuzniecky, 2009; 

Moghim & Corne, 2014; Mormann et al., 2005), with a maximum window of 4 hours.  

Most preictal windows tested were within one hour.  Two studies that tested adjustable 

windows had an average window of approximately one hour (Leon D Iasemidis et al., 

2003; Mirowski et al., 2009).  This range of windows is due to the unknown length of the 

preictal window and its significant effect on prediction results. 

The maximum length of this preictal window is still under debate, and likely 

varies between patients and seizures.  Preictal indicators have been found as early as 240 

minutes in advance, though other research claimed a more modest 22 minute window 

(Ren et al., 2011).  An attempt to determine the optimal preictal window found the 

optimal window is unique within patients, as well as seizures, and recommended that 

algorithms should be trained accordingly (Bandarabadi, Rasekhi, Teixeira, & Dourado, 

2014).   

Due to this debate, prediction algorithms are evaluated in respect to a 

predetermined preictal window.  A long preictal window increases overall sensitivity and 

specificity, but does not provide the patient with as much certainty for when the seizure 

will occur.  Time under false warning is an important metric, because expecting a seizure 
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is stressful and time-consuming.  For instance, if a long preictal window is chosen, the 

algorithm may have high accuracy, but patients will spend a large portion of their time 

awaiting seizures that may or may not occur.  However, if the preictal window is too 

short, the prediction does not give the patient enough time to prepare, rendering the 

algorithm useless.  The present research tested four prediction window times (5, 10, 20, 

and 40 minutes) to explore the effect on prediction accuracy. 

There are divisions in the research as to what type of data and classifiers to use for 

prediction: univariate or multivariate features, and linear or nonlinear classification 

methods.  A survey of past research concluded that univariate measure have shown 

significant performance only in node-wise, seizure-wise analysis (Mormann et al., 2007).  

It should be noted, however, that the research achieving 97.5% sensitivity using 

univariate features was published more recently than the survey paper (Park et al., 2011). 

The same survey paper found that linear methods perform similarly to nonlinear 

methods.  These findings were reinforced more recently by a study in which an SVM 

predicted the seizures of only 11 out of 21 patients, while a logistic regression predicted 

for 14 patients (Mirowski et al., 2009).  However, a convoluted neural net in the same 

study predicted the seizures of 20 of the 21 patients.  These results suggest nonlinear 

methods may outperform linear methods after all. 

2.5 Uncharted Territory 

 Using a random forest classifier as a novel seizure prediction method, the present 

research aims to critically examine the selected predictive features.  As part of the 

process, this research will also examine: 
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• The effect the length of the preictal window has on classifier performance. 

• The performance of a random forest classifier for seizure prediction in 
comparison to classifiers common in the literature. 

 While SVMs are favorable in their performance on this type of data, they have the 

notable disadvantage of mapping the data to a higher dimensional space before selecting 

the decision boundary.  This means the decision boundary is in terms of the higher 

dimensional features, rather than the original features.  The disconnect makes it difficult 

to determine which original features were valuable for prediction, thus losing the possible 

inferences about epileptogenesis and applications to feature saliency. 

 Decision tree classifiers are a completely novel approach to seizure prediction, 

despite their suitability for the problem.  Like SVMs, decision trees work well with high-

dimensional data.  They also solve quickly, which is important for a real-time monitoring 

and prediction device.   

Decision trees have a tendency to over-fit data.  Overfitting is when a classifier 

virtually memorizes the training data, achieving perfect training accuracy, but sacrifices 

generalization and prediction accuracy on the holdout testing set.  Decision trees have a 

tendency to do this, because if the minimum size of a leaf (the resulting nodes of a split in 

the tree) is the default of 1, then every observation can potentially have its own leaf, 

unless some other limitation is placed (such as a maximum tree depth). 

Overfitting can be resolved by using an ensemble classifier of decision trees, 

called a random forest.  A random forest classifier trains multiple trees on subsets of the 

training data (in-bag samples), then estimate their error on the rest of the samples (out-of-

bag samples).  Matlab’s treebagger function uses approximately 2/3 of the data as in-bag 
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samples.  Each tree chooses a random subset, then bootstraps that sample to equal the 

size of the full training set.  On top of the randomness of the subsets, the trees also branch 

randomly.  This creates a forest of random trees that vote on new samples based on their 

out-of-bag errors.  By combining multiple random trees into a voting system, random 

forests have all of the same advantages as decision trees, without overfitting. 
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III. Methodology 

This chapter thoroughly explains the process by which the research questions 

were investigated.  First, the research questions and the formulations for answering them 

are described.  Next, the data selected and the steps necessary to process the raw iEEG 

data into a usable format are covered.  Moving from preprocessing to preliminary feature 

analysis, correlation is used to examine whether any individual features have notable 

predictive value.  Then the random forest classification method is described.  The chapter 

ends with the evaluation metrics and expected results in terms of these metrics. 

3.1 Research Objectives and Modeling 

This research investigates three questions pertaining to seizure prediction in 

epileptics: 

1. What are the key spectral power features of iEEG for predicting epileptic 
seizures? 

2. How does predictive performance change when varying the length of the preictal 
window, which greatly influences the impact for the patient? 

3. How does a random forest classifier compare to classifiers in other prediction 
research, particularly SVMs? 

To answer these questions, a binary classification problem was formulated that a 

machine learning algorithm could use to make predictions.  For every observation of data 

(frequency bins of EEG readings for a 5 second sample), the classifier predicts whether 

the patient is in the interictal (0) or preictal (1) state.  If the patient is in the preictal state, 

that means the patient will have a seizure within the specified time period of the preictal 

window. 
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3.2 Data Description 

EEG uses cranial sensors to record the electrical activity of the brain.  The 

challenge of EEG is the lack of data, since epileptics have seizures randomly and have to 

be monitored for days in order to possibly record a seizure.  Collecting useful and “clean” 

data is even more difficult. 

The data for this research were obtained through an online database hosted on the 

IEEG-Portal (Mayo Clinic, University, & Stroke, 2014).  The data are free for researchers 

to use to study seizures and epilepsy.  The website also included a Matlab toolbox with 

commands for interfacing with the website and manipulating data.   

 

 

Figure 1. EEG Node Configuration. An example of the intracranial node configuration diagram 
provided within the documentation for a patient. 
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The website has over 100 patient datasets, but only 12 were suitable for this 

research (two of which monitored the same patient).  The 11 patients were monitored for 

long-term, continuous, intracranial EEG.  All patients were recorded at the Mayo Clinic, 

sampling each at either 499.907 or 500 Hz.  The shortest recording is 2 days and 5 hours, 

and the longest is 13 days and 16 hours.  The total recording time is 1,951 hours, with 

172 total seizures.  The number of electrodes ranges from 16 to 116 between patients.  

The configuration of nodes is unique to each patient and is included in their 

documentation pages (Figure 1).  Of the 11 suitable patients, patient 017 was used for this 

analysis. 

The documentation for each patient also details the patient's experience during 

monitoring, including injections and actions taken by staff, times of clinical seizure 

onsets (though not for all seizures), discussion of the EEG, and clinical interpretations.  

Note that clinical seizure onsets are the (sometimes) visible symptoms of seizure onset, 

while the onsets labeled in the data are the onsets determined by the EEG signal, which 

may occur at a different time.  The following information is also available for each 

patient: age at onset, handedness, gender, ethnicity, seizure history, precipitants, age at 

admission, and contact group of electrodes.  Only the raw EEG data was pertinent to the 

present research, so all of this extraneous information was excluded from the analysis. 
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Figure 2. Pre-Processing Flowchart. The steps to process the raw EEG signals into useable datasets. 

3.3 Data Pre-Processing 

Before performing any analysis on the data, considerable pre-processing was 

necessary.  The following steps (outlined in Figure 2) were necessary to process the raw 

EEG signal into useable datasets: 

1. Transforming the data from voltages to power in the frequency domain 
using an FFT 

2. Averaging the FFT signal into bins by the common EEG frequency bands 

3. Labeling the preictal windows based on the start of the ictal labels, then 
deleting the ictal periods and artifacts 

4. Labeling the interictal data for Set 1 and Set 2 and separating the test set 

3.3.1 Fast Fourier Transform. 

Raw EEG signals are time-series discharges from the patient’s brain, recorded as 

voltages.  In order to use the data for spectral power analysis, it was converted to the 

frequency domain using Matlab’s FFT algorithm.  The algorithm computes the discrete 

Fourier transform (DFT) of each sample.  To maintain enough detail in the signal to 

identify important features, a time window of 5 seconds without overlap was used.  This 



 

23 

window length is consistent with those used by others performing similar analyses 

(Bandarabadi, Teixeira, et al., 2014; Mirowski et al., 2009; Moghim & Corne, 2014).   

For a vector X of length n, the DFT is defined as follows: 

𝑌(𝑘) = � 𝑋(𝑗)𝑊𝑛
(𝑗−1)(𝑘−1)𝑛

𝑗=1
 (1) 

 where  

𝑊𝑛 = 𝑒(−2𝜋𝜋)/𝑛 

 is one of n roots of unity (Mathworks, 2015). 

 Since the FFT function produces an output mirrored about 0, the negative values 

were discarded.  The amplitudes of the remaining frequencies were doubled (except the 

Nyquist frequency which appears only once) to preserve the total power of the signal.  

Each observation was then averaged into bins by the common EEG bands: delta (<4 Hz), 

theta (4-7 Hz), alpha (8-15 Hz), beta (16-31 Hz), and gamma (32-100 Hz), as well as two 

high frequency bands: high frequency A (HFA) (100-150 Hz) and HFB (150-200 Hz). 

3.3.2 Labeling and Segmentation. 

The data had to be segmented and labeled according to the four possible brain 

states in relation to seizures:  

1. Interictal - normal brain functioning between seizures 

2. Preictal - the period of unknown duration preceding a seizure during which the 
seizure is predictable (four possible windows were tested) 

3. Ictal - during the seizure  

4. Postictal - the period of unknown duration of altered brain function following a 
seizure – this period was included in the interictal data of the following seizure for 
one of the datasets (Figure 4) 
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Of these four states, only the interictal and ictal periods were annotated in the 

original data (preictal and postictal were also annotated as interictal), since they are 

directly observable in the EEG recordings (Figure 3).  The timing of the transitions 

between the brain states are unknown, so the impact on classification accuracy of 

mislabeling samples was investigated by graphing the sliding window average accuracy 

across the monitoring period (see section 3.6 for full description). 

 

 

Figure 3. Brain States in EEG.  An example of the four states of an epileptic brain.  Each signal (5 
total) represents a node on the patient’s brain and the x axis is the recording time. 

 

Since the onset of the preictal window is unknown, four window lengths 

concurrent with the literature were tested: 5, 10, 20, and 40 minutes (Mormann et al., 

2005; Netoff et al., 2009; Park et al., 2011; Williamson et al., 2011).  The 5 minute 

window was chosen as the common minimum warning time for an alert to be useful.  The 

40 minute window was chosen as both within the 1 hour windows tested in other 

literature, and beyond the 30 minute windows already tested.  The 10 and 20 minute 

windows were chosen as reasonable intermediate values.  Ideally, every time window 
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from 5 minutes to 4 hours could be tested.  This would either reveal the precise beginning 

of the preictal window for each seizure, or more likely produce a graph of increasing 

prediction accuracy as the preictal window approached the seizure and the preictal 

features presumably strengthened.  However, such a study was computationally 

impossible for this research, so the four selected windows were tested for a similar trend.   

 

 

Figure 4. Training Set 1 Labels.  The labels for training Set 1, using a 10 minute preictal window.   
Note that each preictal window labels the remainder of the data as interictal, so some observations will 
be labeled preictal for one window but interictal for another.  Each signal is recorded from a node on 
the patient’s brain and the x axis is the recording time. 

 

Next, the interictal training segments were labeled. Two definitions of the 

interictal training data were tested (henceforth Set 1 and Set 2).  Set 1 interictal data 

included all of the data that was not preictal (Figure 4).  However, this data was expected 

to cause problems during machine learning training because of the unknown length of the 

preictal (and postictal) windows.  If the preictal window was grossly ill-defined, the 

mislabeled samples may poorly train the classifier.  Also, if the postictal data included in 
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the interictal class resembles the preictal class, the classifier may not be able to 

distinguish the classes.   

To try to combat this potential issue, Set 2 interictal data was defined as the 

observations farthest between the end of the last seizure and the beginning of the 40 

minute preictal window, sampling an equal number to the preictal observations.  The 

observations would be considered exemplary interictal samples, because they would be as 

far between the preictal and postictal windows as possible (Figure 5).   

 

 

Figure 5. Training Set 2 Labels. The labels for training Set 2, for all windows (overlapped).   
The interictal samples are spaced as far from the end of the previous seizure and the start of the 40 
minute preictal window as possible.  Each signal is recorded from a node on the patient’s brain and 
the x axis is the recording time. 

 

The testing interictal set included all samples except ictal and preictal (the same 

method as Set 1, but separate seizures).  This is necessary for testing, since the algorithm 

must handle the many varying brain states a patient may experience.  To clarify, samples 
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within larger preictal windows were included in the interictal test data of smaller preictal 

windows.   

Once preictal and interictal observations were binarily labeled using the ictal 

annotations as reference points, the ictal periods were deleted from the data to maintain a 

binary classification problem: 1 for preictal or 0 for interictal.  (This removal was also 

considered valid because any classifications made during a seizure—whether positive or 

negative—would not be helpful to the patient during the seizure.)  There were also 

several periods of EEG silence (all variable values of 0) which were removed.  

All of this processing yielded eight separate training sets—Set 1 and Set 2 for 

each of the four preictal windows.  For both sets, bootstrapping was used to mitigate 

different training issues. 

Set 1 had highly unbalanced class sizes, because the interictal period was much 

longer than the preictal.  The unequal balance could cause a problem if the classifier 

learns to ignore the preictal class, due to lack of training data.  Uniform random sampling 

with replacement (bootstrapping) was used increase the preictal class size to an equal 

number of observations as the interictal class. 

For Set 2, bootstrapping was necessary to increase the number of observations for 

training.  Limiting the data to only twice the preictal window, multiplied by the number 

of training seizures, produced a negligible training set.  For this data, bootstrapping was 

used to create a training set of 10,000 observations.  The classes were approximately 

equal (less than 2% difference), since they were equal before the uniform sampling; this 

is because the resampling function in Matlab does not consider the original class ratio. 
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3.4 Preliminary Feature Analysis 
The common EEG bands across all nodes for a patient were chosen as original 

features.  Correlation with the binary classes was used as a preliminary feature analysis.  

Particular attention was paid to the high and low frequencies, because a previous study 

found a decrease in delta band power (with an increase in other bands) indicative of 

preictal EEG (Mormann et al., 2005), and several other studies have found indications 

among high-frequency bands (Alvarado-Rojas et al., 2014; Bandarabadi, Rasekhi, et al., 

2014; Worrell et al., 2004). 

If any feature had clear differences in readings between interictal and preictal 

samples, that feature would have high correlation (near 1) with seizure prediction.  This 

information was not used for feature selection, but merely checking for clearly indicative 

features and determining possible feature saliency. 

3.5 Classification 

This research framed seizure prediction as a binary classification problem: 

preictal or interictal.  Given an observation consisting of EEG spectral power readings at 

each node across the sample window, a classifier determined whether the patient was in a 

preictal state or any other (interictal or postictal) state.  If a seizure then occurred within 

the specified prediction window, the prediction was considered a true positive.  Defining 

the problem in this way focuses training on distinguishing between preictal and interictal, 

regardless of the duration of the ictal state.   

A random forest classifier was chosen for nonlinear classification.  This algorithm 

was chosen above other nonlinear methods for its ability to handle highly dimensional 
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data, resistance to over-fitting, speed, scalability, and most importantly the interpretability 

of results in terms of the input variables.  Furthermore, using a random forest classifier is 

a novel approach to this classification problem.   

Random forest is an ensemble classifier based on the decision tree classifier 

(Breiman, 2001).  It involves building a forest of decision trees that branch nodes by 

random, independent sampling, rather than through a metric.  The Matlab function 

Treebagger, is a random forest algorithm that utilizes bagging (or bootstrap aggregating) 

of trees to improve stability and accuracy (Mathworks, 2015).  This algorithm is known 

for being fast and simple to implement, and robust to noise.   

Treebagger has two important parameters that were adjusted to improve 

classification.  The first parameter was the number of trees the algorithm grows before 

the trees vote on each observation to classify it.  The training data for Set 2 was run with 

10, 50, 100, 500, and 1000 trees.  The Out-Of-Bag Error plot stabilized near 100 trees and 

maintained a comparable error for up to 1000 trees, so 100 trees were used for all further 

analysis. 

The second parameter was the minimum number of observations per end leaf 

(minleaf).  This parameter dictates how many observations have to be grouped together to 

form an end node when the tree branches.  Though important when tuning a decision tree 

to prevent overfitting, this value is less critical for random forests, because they are 

already robust to overfitting.  The parameter was tuned using Leave-One-Out Cross 

Validation (LOOCV) with the training data.  Settings of 1, 2, 4, and 8 were tested, with 
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each model selecting the setting that yielded highest total accuracy across all LOO trials.  

The setting varied between models, without a trend. 

Once the second parameter was tuned, the model was retrained using all of the 

training data.  Then the model was given the test data for classification, and the tree votes 

for every observation were saved.  By saving the votes, the Matlab function perfcurve 

was able to plot ROC curves.  The area under each curve (a built-in metric of perfcurve) 

was calculated as well.  The model with the simultaneous highest true positive rate and 

lowest false positive rate (the point on the ROC curve closest to the top left corner) was 

used for the evaluation metrics. 

To determine which predictive features each model was using, the Matlab 

OOBPermutedVarDeltaError (henceforth PVDE) values for each model were stored.  

This Matlab output is a measure of importance for each predictor variable, calculated by 

permuting the values of the variable across the out-of-bag observations and measuring the 

increase in prediction error.  After computing this measure for every tree, the values are 

averaged for the ensemble and reported as the PVDE output (Mathworks, 2015). 

3.6 Evaluation Metrics 

To evaluate the performance of the classification models, and thereby determine 

predictive EEG features, the classification accuracy for the holdout test set was used.  

Accuracy ranges from 0 to 1, with 1 indicating perfect accuracy.  In a confusion matrix—

with the truth classes as rows and the predicted classes as columns—perfect classification 

manifests as all samples falling into the diagonal.   
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This evaluation method differs from other prediction studies that focus on true 

positive rates (sensitivity), false positive rates (FPR), and the amount of time a patient 

spends awaiting seizures after false positive warnings (time under false warning).  The 

present research chose accuracy instead of these other measure because of the 

implications for feature importance. 

Studies using sensitivity, FPR, and time under false warning aim to minimize false 

prediction, while having at least one true prediction per seizure.  That research focus 

completely disregards false negative classifications (misclassifying a preictal sample), as 

long as at least one preictal sample indicates the impending seizure.  For optimizing 

predictions and the quality of life for the patient, these metrics make sense.  However, the 

focus of the present research is not to develop a superior prediction method.  The 

classification algorithms are merely used to evaluate how useful the EEG features are for 

distinguishing between all interictal and all preictal samples.  That is why this research 

uses classification accuracy of a holdout test set, rather than focusing on minimizing false 

positives and disregarding false negatives. 

The primary method of evaluation for the models was time-series accuracy graphs.  

These graphs show a sliding window of the prediction accuracy for the preceding five 

minutes of observations.  (Every five seconds, it shows the accuracy of the past five 

minutes.)  A five minute window was chosen, because it smoothed the accuracy to a 

point that the graph was interpretable, without smoothing away too much performance 

detail.  Ideally, these graphs would show 100% accuracy at all points in time.  However, 

this was infeasible, so the goals were to minimize misclassifications in the interictal span 
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to avoid false warnings, and maximize positive classifications during the preictal, to show 

the seizure was predicted.  These graphs were particularly important for analysis, because 

a classifier could potentially show high total accuracy by classifying all samples as 

interictal, due to the extreme difference in class sizes.  With these graphs, such an 

algorithm would clearly show low accuracy for the preictal window.  In short, these 

graphs visualized the changes in classification accuracy in relation to the brain states. 

Since the preictal and interictal training sets were sampled from as far away from 

each other as possible in Set 2, the classification accuracy was expected to diminish in the 

brain state transitional periods.  If the assumption were correct, the time-series accuracy 

graphs would show peaks in the purely interictal and preictal areas, and decreased 

accuracy in the transitional areas.  These graphs may also provide insight into the true 

length of the preictal window, as the accuracy near and within the preictal window would 

show the true state of the EEG.  For instance, if the window is defined too short, there 

would be many misclassified interictal samples preceding the window, since they would 

be “misclassified” as preictal (because that is what they should actually be labeled). 

In order to compare this research to other prediction algorithms, approximate time-

under-warning graphs were created to show how much time a patient would spend 

awaiting seizures that may or may not occur.  To create these graphs, it was assumed that 

once a warning is issued, another warning cannot be issued for the length of the preictal 

window. For comparison, the number of true positive classifications within a time span 

necessary for a warning was increased, since this reduces the time under false warning.  
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Ideally, though there may be false positives, the patient would never be alerted of a 

seizure unless one was going to occur within the specified preictal window. 

3.7 Summary 

Raw EEG data were transformed to the frequency domain using an FFT and 

averaged into common bands by frequency.  The data were segmented into two sets of 

training data with different interictal definitions, and a testing set.  Each set included four 

separate preictal window definitions: 5, 10, 20, and 40 minutes.  Testing each of the four 

selected preictal windows and two interictal sets individually, a unique random forest 

classification model was trained to the patient.   LOOCV was used to train the minleaf 

parameter, which reduces the chance of overfitting.  Then the tuned classifiers were used 

to predict two holdout test seizures from the same patient.  Performance was analyzed 

with the prediction accuracy of the test set, ROC curves, and time-series accuracy graphs. 
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IV. Analysis and Results 

These results are for Patient 017, who suffers from two types of epileptic seizures: 

partial complex and partial with secondary generalization.  The patient was monitored 

with 16 nodes for 7 days and 17 hours.  The patient had nine seizures during that time, 

seven of which were used for training (including LOOCV) and two were used as the 

holdout test set.   

4.1 Preliminary Feature Analysis 

The correlation coefficients for the features using the 5 minute preictal window of 

Set 1 are shown in Table 1, with the rest of the windows included in Appendix C.  

Considering correlation coefficients range between -1 and 1—with -1 indicating a perfect 

inverse linear relationship and 1 indicating a perfect direct linear relationship—the 

negligible magnitudes of all of the coefficients imply that none of the features are 

individually linearly connected with the classes. 

To compare across training set and preictal windows, the graphs were 

conditionally formatted according to coefficient magnitude, with the largest magnitudes 

(whether positive or negative) shading to dark grey, while values close to 0 were white.  

Note that for this discussion, the numbers in the tables may be illegible, but they are not 

as relevant as the shades.  Shading the tables shows that limiting the samples to the 

“pure” data of Set 2 slightly increases the correlation coefficient magnitudes (Figure 6). 

Shading the tables also shows that the somewhat predictive features are consistent 

across the varying seizure windows for Set 2, and the strength of the correlation increases 
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with the wider preictal windows.  The increase in correlation is reassuring that the 40 

minute preictal window is not too long.  Though the coefficients are small, the shades 

show that gamma, HFA, and HFB have the largest magnitude coefficients.  This is 

consistent with the previously discussed literature, which found high frequency bands to 

be more predictive than low frequency bands.  Note also, that some of the least indicative 

features (white) are found within the same bands, but on different nodes. 

Overall, none of the coefficients are large enough to have real meaning.  This 

preliminary analysis has shown that there is not a substantial linear relationship between 

any singular feature and the classes that could be used for prediction. 

Table 1. Correlation Coefficients 

Set 1 – 5 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.00110 -0.00006 0.00069 0.00342 0.00351 0.00116 0.00045 
2 -0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028 -0.00068 
3 -0.00016 -0.00087 -0.00074 -0.00105 -0.00147 -0.00157 -0.00169 
4 -0.00013 -0.00086 -0.00086 -0.00113 -0.00183 -0.00176 -0.00173 
5 -0.00042 -0.00092 -0.00097 -0.00132 -0.00210 -0.00164 -0.00167 
6 -0.00092 -0.00119 -0.00130 -0.00166 -0.00237 -0.00260 -0.00222 
7 -0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158 
8 -0.00101 -0.00024 0.00075 0.00313 0.00350 0.00112 0.00035 
9 0.00073 0.00098 0.00381 0.00498 0.00463 0.00224 0.00086 

10 -0.00065 -0.00072 0.00156 0.00490 0.00282 0.00390 0.00224 
11 -0.00078 -0.00065 0.00152 0.00526 0.00551 0.00383 0.00290 
12 -0.00062 -0.00061 -0.00003 0.00095 0.00052 0.00127 0.00057 
13 -0.00074 0.00006 0.00078 0.00283 0.00287 0.00064 -0.00069 
14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203 
15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239 -0.00225 
16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234 
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Figure 6. Shaded Correlation Tables.  Shading the correlation tables shows the increase in correlation 
when the data are restricted to “pure” samples.  The second column also shows the same features darkened 
across the four windows.  Though the values are small, this trend may indicate predictive features.  The two 
columns correspond to Set 1 and Set 2; the rows are the preictal windows—5, 10, 20, and 40—from top to 
bottom. 

 

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00110 -0.00006 0.00069 0.00342 0.00351 0.00116 0.00045 1 -0.09325 -0.08534 -0.10194 -0.10877 -0.09902 -0.08175 -0.11390
2 -0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028 -0.00068 2 -0.09419 -0.10077 -0.11539 -0.10156 -0.11163 -0.11292 -0.10664
3 -0.00016 -0.00087 -0.00074 -0.00105 -0.00147 -0.00157 -0.00169 3 -0.08854 -0.09316 -0.10428 -0.10817 -0.11948 -0.11805 -0.10097
4 -0.00013 -0.00086 -0.00086 -0.00113 -0.00183 -0.00176 -0.00173 4 -0.08851 -0.08856 -0.09758 -0.10339 -0.09868 -0.10264 -0.08588
5 -0.00042 -0.00092 -0.00097 -0.00132 -0.00210 -0.00164 -0.00167 5 -0.08762 -0.08322 -0.09497 -0.10380 -0.06253 -0.08804 -0.08395
6 -0.00092 -0.00119 -0.00130 -0.00166 -0.00237 -0.00260 -0.00222 6 -0.08957 -0.08047 -0.09422 -0.10235 -0.09104 -0.08579 -0.09203
7 -0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158 7 -0.08801 -0.07738 -0.08588 -0.09633 -0.08503 -0.07852 -0.08669
8 -0.00101 -0.00024 0.00075 0.00313 0.00350 0.00112 0.00035 8 -0.09241 -0.08530 -0.10209 -0.10894 -0.09908 -0.08208 -0.11439
9 0.00073 0.00098 0.00381 0.00498 0.00463 0.00224 0.00086 9 -0.05660 -0.07319 -0.05423 -0.08685 -0.06523 -0.04375 -0.04100

10 -0.00065 -0.00072 0.00156 0.00490 0.00282 0.00390 0.00224 10 -0.08940 -0.07634 -0.06680 -0.05618 -0.03215 -0.00220 -0.00552
11 -0.00078 -0.00065 0.00152 0.00526 0.00551 0.00383 0.00290 11 -0.08871 -0.05146 -0.02233 -0.03616 -0.02686 0.00182 -0.06659
12 -0.00062 -0.00061 -0.00003 0.00095 0.00052 0.00127 0.00057 12 -0.08910 -0.08618 -0.08878 -0.07937 -0.07821 -0.02691 -0.05058
13 -0.00074 0.00006 0.00078 0.00283 0.00287 0.00064 -0.00069 13 -0.08872 -0.08654 -0.08929 -0.09037 -0.07953 -0.07185 -0.10081
14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203 14 -0.08865 -0.08488 -0.10543 -0.11196 -0.11642 -0.13320 -0.14236
15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239 -0.00225 15 -0.08806 -0.08314 -0.09244 -0.10060 -0.08335 -0.10886 -0.10568
16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234 16 -0.08373 -0.07875 -0.08962 -0.09537 -0.06567 -0.09602 -0.09789

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00142 0.00031 0.00141 0.00630 0.00704 0.00246 0.00170 1 -0.08651 -0.07207 -0.07903 -0.06344 -0.05639 -0.05918 -0.07676
2 -0.00124 -0.00240 -0.00408 -0.00515 -0.00374 -0.00033 -0.00112 2 -0.08766 -0.09485 -0.10975 -0.10718 -0.12186 -0.09927 -0.10902
3 -0.00003 -0.00093 -0.00082 -0.00086 -0.00216 -0.00238 -0.00268 3 -0.08115 -0.08303 -0.09080 -0.09253 -0.12823 -0.12229 -0.11669
4 -0.00011 -0.00107 -0.00117 -0.00144 -0.00303 -0.00279 -0.00288 4 -0.08265 -0.08149 -0.08926 -0.09553 -0.12477 -0.11984 -0.11321
5 -0.00054 -0.00121 -0.00137 -0.00181 -0.00365 -0.00272 -0.00279 5 -0.08239 -0.07767 -0.08683 -0.09808 -0.10015 -0.10947 -0.10921
6 -0.00143 -0.00166 -0.00186 -0.00238 -0.00390 -0.00411 -0.00352 6 -0.08739 -0.07657 -0.08586 -0.09383 -0.11711 -0.10337 -0.10135
7 -0.00130 -0.00170 -0.00205 -0.00226 -0.00308 -0.00271 -0.00257 7 -0.08564 -0.07387 -0.08108 -0.08885 -0.10899 -0.09560 -0.10535
8 -0.00139 0.00004 0.00157 0.00579 0.00702 0.00237 0.00150 8 -0.08725 -0.07337 -0.07999 -0.06454 -0.05798 -0.06228 -0.08032
9 0.00035 0.00106 0.00483 0.00740 0.00776 0.00405 0.00130 9 -0.06567 -0.07421 -0.04665 -0.06226 -0.02319 -0.01608 -0.03469

10 -0.00108 -0.00124 0.00182 0.00692 0.00394 0.00522 0.00315 10 -0.08567 -0.07892 -0.05855 -0.03877 -0.01742 0.00747 0.00139
11 -0.00118 -0.00066 0.00233 0.00790 0.01029 0.00550 0.00529 11 -0.08544 -0.04361 -0.00725 -0.02463 -0.00602 0.00169 -0.03881
12 -0.00098 -0.00096 -0.00021 0.00128 0.00049 0.00069 -0.00015 12 -0.08655 -0.08284 -0.07686 -0.06965 -0.07933 -0.05647 -0.08156
13 -0.00118 0.00022 0.00110 0.00390 0.00339 -0.00024 -0.00197 13 -0.08661 -0.07753 -0.08211 -0.08535 -0.09147 -0.10529 -0.12986
14 -0.00067 -0.00101 -0.00064 0.00013 -0.00145 -0.00297 -0.00329 14 -0.08614 -0.08183 -0.09843 -0.10486 -0.12618 -0.13529 -0.14620
15 -0.00041 -0.00083 -0.00063 -0.00104 -0.00411 -0.00370 -0.00363 15 -0.08456 -0.07962 -0.08404 -0.09096 -0.10203 -0.11599 -0.12011
16 -0.00075 -0.00118 -0.00091 -0.00117 -0.00478 -0.00443 -0.00382 16 -0.08165 -0.07545 -0.07969 -0.08457 -0.08759 -0.10940 -0.11289

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00218 0.00109 0.00288 0.01062 0.01315 0.00536 0.00416 1 -0.06979 -0.02765 -0.01866 -0.00009 0.01622 -0.00324 -0.02071
2 -0.00197 -0.00331 -0.00577 -0.00615 -0.00382 0.00058 -0.00084 2 -0.07086 -0.08042 -0.10766 -0.07350 -0.06984 -0.04319 -0.05649
3 -0.00027 -0.00140 -0.00149 -0.00111 -0.00341 -0.00363 -0.00439 3 -0.06221 -0.06262 -0.08187 -0.06545 -0.12563 -0.10081 -0.10632
4 -0.00028 -0.00172 -0.00207 -0.00216 -0.00518 -0.00446 -0.00486 4 -0.06328 -0.06398 -0.08146 -0.07552 -0.14533 -0.11191 -0.11223
5 -0.00087 -0.00186 -0.00232 -0.00277 -0.00639 -0.00444 -0.00470 5 -0.06344 -0.05941 -0.07868 -0.08179 -0.14309 -0.10954 -0.10795
6 -0.00220 -0.00245 -0.00285 -0.00359 -0.00661 -0.00628 -0.00559 6 -0.07050 -0.06274 -0.07804 -0.08228 -0.15794 -0.11398 -0.09993
7 -0.00194 -0.00250 -0.00305 -0.00337 -0.00494 -0.00418 -0.00405 7 -0.06926 -0.06089 -0.07384 -0.07882 -0.14204 -0.10182 -0.10514
8 -0.00207 0.00073 0.00329 0.00982 0.01320 0.00533 0.00390 8 -0.06981 -0.02842 -0.01915 -0.00055 0.01547 -0.00472 -0.02219
9 -0.00034 0.00070 0.00498 0.00998 0.01112 0.00552 0.00132 9 -0.05911 -0.07715 -0.06704 -0.03005 0.00986 0.00388 -0.01637

10 -0.00182 -0.00221 0.00139 0.00871 0.00494 0.00796 0.00510 10 -0.07064 -0.07361 -0.07063 -0.01784 0.00483 0.01569 0.01041
11 -0.00179 -0.00104 0.00306 0.01111 0.01663 0.00822 0.00897 11 -0.06879 -0.03036 0.00625 -0.00168 0.01886 0.01033 0.00331
12 -0.00150 -0.00165 -0.00108 0.00122 0.00073 0.00087 -0.00048 12 -0.06986 -0.07516 -0.08209 -0.06201 -0.06623 -0.05409 -0.07805
13 -0.00179 0.00012 0.00138 0.00533 0.00579 -0.00004 -0.00261 13 -0.06995 -0.06666 -0.07513 -0.06495 -0.07181 -0.09570 -0.11734
14 -0.00104 -0.00158 -0.00113 -0.00007 -0.00233 -0.00446 -0.00520 14 -0.06955 -0.07000 -0.09070 -0.09332 -0.13326 -0.12491 -0.14106
15 -0.00068 -0.00144 -0.00128 -0.00167 -0.00658 -0.00565 -0.00587 15 -0.06686 -0.06750 -0.07556 -0.07242 -0.12819 -0.10761 -0.11769
16 -0.00128 -0.00188 -0.00150 -0.00178 -0.00776 -0.00680 -0.00613 16 -0.06607 -0.06217 -0.06428 -0.06081 -0.11747 -0.11249 -0.11399

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00337 0.00075 0.00299 0.01219 0.01763 0.00813 0.00546 1 -0.05793 -0.03326 -0.03039 -0.02197 0.01364 0.00950 -0.01563
2 -0.00313 -0.00497 -0.00847 -0.00894 -0.00522 0.00134 0.00010 2 -0.05995 -0.08682 -0.11636 -0.08047 -0.05569 -0.02368 -0.01938
3 -0.00085 -0.00310 -0.00320 -0.00323 -0.00587 -0.00580 -0.00707 3 -0.05062 -0.07066 -0.08987 -0.07669 -0.12977 -0.09801 -0.10905
4 -0.00084 -0.00346 -0.00401 -0.00436 -0.00877 -0.00694 -0.00770 4 -0.05034 -0.06736 -0.08826 -0.08359 -0.16207 -0.11201 -0.11566
5 -0.00165 -0.00359 -0.00430 -0.00525 -0.01069 -0.00680 -0.00738 5 -0.05171 -0.06303 -0.08357 -0.08770 -0.16001 -0.10661 -0.10972
6 -0.00331 -0.00383 -0.00448 -0.00572 -0.00976 -0.00902 -0.00829 6 -0.05656 -0.05900 -0.07533 -0.07902 -0.15153 -0.10099 -0.09264
7 -0.00284 -0.00380 -0.00467 -0.00524 -0.00730 -0.00611 -0.00598 7 -0.05527 -0.05440 -0.07065 -0.07478 -0.14309 -0.09559 -0.09932
8 -0.00315 0.00024 0.00334 0.01122 0.01770 0.00813 0.00511 8 -0.05736 -0.03360 -0.03071 -0.02221 0.01318 0.00856 -0.01668
9 -0.00091 0.00073 0.00732 0.01042 0.01238 0.00514 0.00044 9 -0.04803 -0.06917 -0.03701 -0.05593 -0.02084 -0.03140 -0.03485

10 -0.00281 -0.00347 0.00163 0.01029 0.00666 0.01303 0.01082 10 -0.05796 -0.07196 -0.05308 -0.02795 0.02101 0.03802 0.04820
11 -0.00258 -0.00198 0.00375 0.01541 0.02810 0.01703 0.01869 11 -0.05384 -0.03860 -0.00231 -0.00176 0.03707 0.04884 0.04457
12 -0.00232 -0.00271 -0.00203 0.00086 0.00102 0.00625 0.00417 12 -0.05616 -0.07366 -0.07316 -0.05972 -0.04671 0.00922 0.00152
13 -0.00280 -0.00050 0.00145 0.00573 0.00870 0.00217 -0.00187 13 -0.05835 -0.07890 -0.08232 -0.08633 -0.06409 -0.04458 -0.06429
14 -0.00159 -0.00266 -0.00221 -0.00161 -0.00428 -0.00645 -0.00776 14 -0.05458 -0.06553 -0.08881 -0.10315 -0.14068 -0.11176 -0.13015
15 -0.00123 -0.00281 -0.00300 -0.00391 -0.01102 -0.00864 -0.00915 15 -0.05269 -0.07102 -0.08148 -0.08040 -0.13623 -0.10616 -0.11948
16 -0.00235 -0.00334 -0.00312 -0.00416 -0.01302 -0.01018 -0.00946 16 -0.05426 -0.06358 -0.06995 -0.07021 -0.12233 -0.10586 -0.11200

Set 1 – 40 M in Window - Correlation Coefficients Set 2 – 40 M in Window - Correlation Coefficients

Set 1 – 5 M in Window - Correlation Coefficients Set 2 – 5 M in Window - Correlation Coefficients

Set 1 – 10 M in Window - Correlation Coefficients Set 2 – 10 M in Window - Correlation Coefficients

Set 1 – 20 M in Window - Correlation Coefficients Set 2 – 20 M in Window - Correlation Coefficients

-1   0      1 
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4.2 Classification 

The results of the random forest classifier will be discussed first by the sets 

individually, discussing the effects of the lengths of the preictal window.  Then Set 1 and 

Set 2 will be compared to determine the effect of training on different definitions of 

interictal samples. 

4.1.1 Training Set 1 – All Interictal. 

Recall that the data for Set 1 were sampled from the entire interictal period, 

regardless of the unknown transition times between postictal, interictal, and preictal 

states.  Due to the drastic unbalancing of the data, the preictal observations were 

bootstrapped to equal the number of interictal observations. 

The ROC curves in Figure 7—produced by varying the preictal vote threshold on 

the training set—show that both the true and false positive rates are stunted for the 

shorter preictal windows.  Not until the 20 and 40 minute windows do the graphs begin to 

show variation depending on the threshold for preictal classifications.  For the shorter 

preictal windows, even setting the threshold as low as requiring only 10% of the trees to 

classify as preictal, the vast majority of samples are classified as interictal. 

The reason for this lack of preictal presence to the classifier may stem from two 

possible sources.  The first issue may be the lack of unique preictal observations.  Though 

the data were bootstrapped to equal the number of interictal observations, bootstrapping 

does not create any new information.  The case may be that the classifier has not seen 

enough unique preictal data to recognize new samples, necessary for generalizing on the 

left-out training sample. 
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A more likely cause of this lack of preictal classifications is the incorrect 

definition of the preictal window.  If the observations in the 20 and 40 minute preictal 

windows resemble those in the five minute window, labeling the larger windows as 

interictal for the smaller window datasets would contradict what the classifier was 

learning as preictal samples.  This explanation is supported by the earlier discussed trend 

in feature importance observed in the correlation tables. 

Figure 7. Set 1 ROC Curves.  From left to right and top to bottom, the ROC curves for the 
5, 10, 20, and 40 minute preictal windows.  The area under each curve (AUC) is also shown. 

AUC = 0.6803 AUC = 0.7666 

AUC = 0.8414 AUC = 0.8414 
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Figure 8 shows the time-series accuracy graphs for both test seizures, with a 5 

minute preictal window.  The graphs show only the last 4 hours of data before the 

seizure.  (All of the full time-series accuracy graphs are included in Appendix D and 

Appendix E, but for most analysis the 4 hour intervals will be examined.)  Note the grey 

box highlighting the defined preictal window. 

Figure 8 illustrates the fundamental issue with reporting solely the classification 

accuracy.  The classifier performs relatively well (particularly well on Seizure 3), but 

completely fails at predicting the seizure.  The line sloping immediately to 0 upon 

reaching the preictal window shows that the classifier was classifying the majority of 

samples as interictal.  Although the line shows a steep decline upon reaching the window, 

it must be noted that the graph is a sliding average, which means the slope is only due to 

averaging the accuracy from previous observations (including the correct interictal).  

This classifier has not trained to recognize the preictal class.  The results are 

concurrent with the ROC curve, which implied all samples are classified as interictal, 

most likely due to a poor definition of the preictal window. 

The 10 minute preictal window has similar results (Figure 9).  Compared to the 5 

minute window, the 10 minute model classifies more samples as preictal; however, it still 

fails to recognize the true preictal samples.  The same plummet in accuracy occurs at the 

start of the preictal window.  In general, the graph is less extreme than the 5 minute 

graphs: the accuracy does not start as high or plummet as low.  The classifier is paying 

more attention to the importance of the preictal class, however, it still does cannot 

distinguish the two. 
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Figure 8. Set 1 - 5 Minute Accuracy.  The 5-minute moving window accuracy for the 
last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 9. Set 1 - 10 Minute Accuracy.  The 5-minute moving window accuracy for 
the last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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When trained using a 20 minute preictal window, the classifier begins favoring 

preictal samples as the dominant class (despite the truth being the opposite).  Figure 10 

shows that for one seizure the model predicts near randomly, with a slight preference for 

preictal, as shown by the below average interictal classification and increase in accuracy 

at the start of the preictal window.  For the second seizure, the model has completely 

changed strategy from the shorter preictal windows.  For the 5 and 10 minute windows, 

the model voted for interictal the majority of the time, but for the 20 minute window it 

predicts preictal the majority of the time.  While the classifier predicts the seizure, it 

would be a poor early warning device, because the patient would constantly be awaiting 

seizures which would not occur. 

The 40 minute model pushes even farther to the preictal class for the 4 hour span 

(Figure 11).  This shift for the 20 and 40 minute windows is likely due to the preictal 

windows being too long.   Labeling a number of interictal samples as preictal teaches the 

classifier that both classes resemble preictal data. 

Although there are issues in the 4 hours preceding the seizures, the 20 and 40 

minute preictal windows perform considerably well over the entire timespan for Seizure 3 

(Figure 12).  The graphs exhibit the same trends in accuracy, including two large dips in 

the second half of the timespan.  These dips may be artifacts that resemble preictal data 

or correspond to a particular function the patient is performing during that time (such as 

sleeping).  Excluding the major dip between -2000 and -1000 minutes, the performance 

nearly resembles what was expected for a time-series accuracy graph: lower accuracy at 

the beginning of the recording, due to the postictal period, then relatively high accuracy 
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for the clearly interictal period, and finishing with an area of questionable accuracy 

caused by the definition of the preictal window.  Note the critical difference between 

these relatively high accuracy graphs and the high accuracy of the 5 and 10 minute 

windows is that the larger windows have high accuracy during the preictal window. 

  

Figure 10. Set 1 - 20 Minute Accuracy.  The 5-minute moving window accuracy for the 
last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 11. Set 1 - 40 Minute Accuracy.  The 5-minute moving window accuracy for the 
last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 12. Set 1 – 20 and 40 Minute Accuracy.  The 5-minute moving window accuracy 
for the full timespan before Seizure 3.  The two preictal windows yield near identical 
results. 
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Figure 13. Set 1 – 20 and 40 Minute Accuracy.  The 5-minute moving window accuracy 
for the full timespan before Seizure 7.  The classifiers do not exhibit the same 
performance as for Seizure 3. 
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 Unfortunately, these favorable results are not consistent with Seizure 7 (Figure 

13).  The difference in performance may be due to the features selected by the classifier 

working well for Seizure 3, but not 7.  More likely, the difference is caused by Seizure 7 

having a much shorter timespan following Seizure 6, which perhaps does not allow for 

the brain to return to a purely interictal state.  This explanation is purely conjecture, as the 

time to return to normal brain functioning is unknown. 

4.1.2 Training Set 2 – Pure Interictal. 

In an attempt to reduce the mislabeling of data due to undefined brain state 

transitions, Set 2 used “pure” interictal samples, as defined in section 3.3.2.  Reducing the 

vast interictal periods to a span of exemplars caused a shortage of data, so both the 

preictal and interictal classes were bootstrapped to a total of 10,000 observations. 

The ROC curves for Set 2 indicate there is no longer a problem with ignoring the 

preictal class (Figure 14).  However, the graphs also indicate the classifier would not out-

perform a random guess.  All of the ROC curves for the Set 2 data are near-perfect 

diagonals, showing that the classifier did not learn from the data. 

Figures 15, 16, 17, and 18 show that the classifier predicts randomly for the 4 

hours preceding the seizure.  This lack of training must be attributed to the limitation of 

data.  With so few examples of the highly variable interictal data, the model must classify 

observations that are unlike anything from the training set. 
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Figure 14. Set 2 ROC Curves.  From left to right and top to bottom, the ROC curves for the 
5, 10, 20, and 40 minute preictal windows.  The area under the curve (AUC) is also shown. 

AUC = 0.4960 AUC = 0.4358 

AUC = 0.5473 AUC = 0.5556 
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Figure 15. Set 2 -5 Minute Accuracy.  The 5-minute moving window accuracy for the 
last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 16. Set 2 - 10 Minute Accuracy.  The 5-minute moving window accuracy for 
the last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 17. Set 2 - 20 Minute Accuracy.  The 5-minute moving window accuracy for 
the last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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Figure 18. Set 2 - 40 Minute Accuracy.  The 5-minute moving window accuracy for 
the last 4 hours before both test seizures.  The grey boxes on the right mark the preictal 
window. 
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4.1.3 Training Set Comparison. 

Limiting Set 2 to a subset samples did not have the desired outcome of learning 

the data through exemplars.  Instead, the data limitation reduced the classifier’s 

performance to random for most windows. 

Training on the full data showed promising performance for the larger preictal 

windows, but had the expected decreases in accuracy in the transitional areas, as well as 

some unexplained dips that may have been caused by artifacts or patient activity.  

However, these transitional areas will presumably always pose an issue until the lengths 

of all states can be determined.  This fact once again highlights the utility of the time-

series accuracy graph as an evaluation metric for seizure predictors. 

4.1.4 Feature Importance. 

As described in section 3.5.1, the PVDE values were stored for each classifier.  In 

the same manner as the correlation matrices, the matrices were conditionally formatted to 

shade by value for visual inspection of prominent features, keeping in mind the best 

performance shown by Set 1 with 20 and 40 minute windows (Figure 19). 

Darker shades indicate higher values, though each table is shaded in comparison 

to only itself.  Set 1 has higher overall values, which follows from the classifiers finding 

stronger relationships between that data and output.  Set 2 has low values, because the 

classifier did not learn strong connections between the features and classes. 

Across all windows, Set 1 emphasizes the beta band of node 12, particularly for 

the 20 and 40 minute windows.  The fact that all four independently trained classifiers 

returned similar feature selections is indicative that the features are predictive.  The poor 
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performance of the classifiers in the shorter windows may partially be explained by those 

tables emphasizing many factors that are not indicative in the larger windows.  The 

shorter windows may be identifying features as indicative that do not have true predictive 

value.  The longer windows have higher contrast, by emphasizing only a few key 

features, specifically the beta band of node 12. 

In the documentation included with the patient mentions a beta frequency 

discharge in node 12 (as well as 11 and 13) during seizures.  The node was monitoring 

the right side of the patient’s brain, where the seizures would originate before sometimes 

spreading.  While this information may indicate the feature identified is predictive, the 

beta bands in nodes 11 and 13 have low feature importance in the chart, so the connection 

is inconclusive. 

Though the beta band of node 12 may be an indicative feature, the classifier 

performance was not considered high enough to perform more thorough analysis, such as 

comparison to a random predictor or determining the time under false warning.  These 

analyses would be auxiliary to the primary task of identifying features, in order to 

compare the predictive value of the features to features used in other studies. 

Training a new classifier with a compromise between the two interictal definitions 

would determine if the beta band of node 12 was truly indicative.  If the new classifier 

had higher performance and showed the same feature as indicative, further investigation 

into the position and significance of the node in respect to monitoring would be 

warranted. 
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  Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 1.0212 1.4184 1.4318 1.3435 1.2098 1.4622 2.0856 1 0.6503 0.6386 0.4671 0.5398 0.6645 0.5202 0.4059
2 1.0054 1.6570 1.9746 2.3460 1.5737 1.9475 2.0054 2 0.7284 0.3957 0.6949 0.7035 0.7763 0.6972 0.6676
3 0.8673 1.5710 1.2860 1.2342 1.4757 1.7557 2.2734 3 0.7252 0.6208 0.3760 0.4366 0.5725 0.6238 0.8192
4 0.9421 1.7302 1.5037 1.3462 2.3711 1.2292 1.9654 4 0.6398 0.6363 0.3641 0.5218 0.5693 0.5722 0.7525
5 0.7985 1.5623 1.3916 2.0480 2.5219 1.5897 1.6630 5 0.6823 0.7943 0.4733 0.4821 0.7279 0.5367 0.6145
6 0.8234 1.9997 1.6930 1.9122 1.5411 1.6789 1.4237 6 0.7067 0.8428 0.5541 0.5313 0.7149 0.8277 0.6384
7 1.7478 1.9154 2.2174 2.2477 1.8962 2.0304 2.1279 7 0.7182 0.5820 0.5617 0.6269 0.8842 0.9145 0.8292
8 0.8595 1.2457 1.4655 1.0902 1.0388 1.2938 1.7948 8 0.6195 0.6269 0.5208 0.6016 0.4286 0.6210 0.5040
9 1.8542 1.8861 1.7423 2.5291 2.8413 1.6575 2.2710 9 0.7680 0.6676 0.6217 0.5691 0.6213 0.6761 0.5752

10 1.1851 1.8851 2.1406 1.7050 1.6286 2.1421 1.3917 10 0.5718 0.8316 0.6502 0.6311 0.7195 0.4953 0.4951
11 1.3127 2.1200 1.6349 1.6516 1.7795 2.4496 2.1820 11 0.9007 0.8589 0.9374 0.6187 0.6959 0.7652 0.4803
12 1.5028 1.6771 2.0677 3.1263 2.9774 2.5164 2.6272 12 0.5279 0.4974 0.6306 0.6915 0.7267 0.6506 0.6857
13 0.8285 1.7531 1.8191 1.7399 1.2668 1.9917 2.0443 13 0.8095 0.6757 0.6290 0.5401 0.6801 0.7544 0.7546
14 1.2200 1.6629 1.3919 1.2583 1.3797 2.4155 2.0330 14 0.7135 0.5598 0.3444 0.4341 0.7075 0.4741 0.7894
15 1.0589 1.3962 1.2405 1.6548 2.5367 1.4118 1.9358 15 0.6617 0.6074 0.5680 0.6856 0.6878 0.5797 0.5760
16 1.3373 1.7946 1.8282 1.5848 2.3244 1.3914 2.1557 16 0.5500 0.6595 0.6282 0.6988 0.7668 0.8224 0.6633

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 1.1356 1.0410 1.0326 1.2168 1.4365 1.4407 1.5673 1 0.7439 0.7047 0.5684 0.6138 0.7939 0.7761 0.8473
2 1.1595 1.7184 2.3732 2.3185 1.9690 1.7024 1.9821 2 0.7621 0.4022 0.8297 0.8596 0.8029 0.8471 0.7602
3 1.0826 1.2141 1.5517 1.5457 1.7677 2.0626 1.9811 3 1.0100 0.6850 0.5343 0.6147 0.8446 0.8274 0.9524
4 0.8567 1.5614 1.4559 1.7139 2.2813 1.9440 1.7639 4 0.6010 0.8588 0.6715 0.5427 0.7500 0.7189 0.6740
5 0.7088 1.4934 1.5430 1.7668 2.1662 1.4026 1.3421 5 0.6830 0.8891 0.4192 0.5724 0.9051 0.7476 0.6541
6 0.7419 1.8214 2.4513 1.7664 1.6921 1.6615 1.8674 6 0.8488 0.8520 0.9542 0.8029 0.9703 1.3377 0.9763
7 1.2964 1.9046 1.5063 2.5282 1.7592 1.9974 2.4817 7 0.7220 0.6322 0.9486 0.7702 0.9130 1.2011 0.9658
8 0.8777 1.2195 1.2691 1.3552 1.2861 1.4744 2.0570 8 0.6454 0.8073 0.6117 0.6703 0.5629 0.7918 0.6684
9 1.4042 2.6062 2.0053 1.7891 1.7575 1.6592 2.1598 9 0.7107 0.9966 0.6238 0.8788 0.7831 0.8038 0.8216

10 1.2146 1.7896 1.9158 1.4271 1.7611 1.4742 1.3490 10 0.5591 0.7631 0.8620 0.7270 0.7340 0.5456 0.6941
11 1.6066 2.2680 2.0514 1.7219 1.4920 2.3577 2.0151 11 0.6566 0.6257 0.8869 0.6024 0.7436 0.8322 0.6010
12 0.8490 1.9138 2.0559 2.9532 1.5314 2.1597 1.9447 12 0.7956 0.6650 0.8549 0.6137 0.8005 0.5812 0.6963
13 0.8344 1.5068 1.6288 1.8224 1.3949 1.5673 2.0536 13 0.8240 0.6206 0.5878 0.6528 0.5170 0.7525 0.9083
14 1.0022 1.2336 1.8496 1.4154 1.8540 1.9688 1.8949 14 0.7479 0.5046 0.4803 0.5546 0.7368 0.8846 0.6924
15 1.2470 1.7739 1.4892 1.7882 1.6588 1.4178 1.9379 15 0.7120 0.8936 0.7806 0.5964 0.8666 0.6054 0.8406
16 1.2814 2.2652 1.8183 1.3550 1.4652 1.7963 1.5220 16 0.5079 0.7032 0.8466 0.9059 0.9868 0.7259 0.6616

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 0.6632 0.9545 0.7121 0.7132 0.9546 1.3676 1.7177 1 0.7880 0.6552 0.6709 0.7523 0.6724 1.0179 0.6975
2 0.5795 1.3626 1.7064 1.7083 1.1638 1.6207 1.5335 2 0.9321 0.9703 1.3551 1.1511 1.0574 1.0590 1.1857
3 0.6362 1.2007 0.9851 1.1504 1.2376 1.8528 1.4396 3 1.0263 0.7607 0.5125 0.7352 1.0346 1.1901 0.9435
4 0.7184 1.5223 1.3551 1.2060 1.8549 1.5825 1.5761 4 0.7903 0.8483 0.4998 0.8291 0.8404 0.9180 1.0691
5 0.6706 1.5395 1.0013 1.6031 1.7143 1.7299 1.6053 5 1.1488 0.8914 0.8723 0.9864 1.1114 0.9122 0.9189
6 0.6062 1.9046 1.6330 1.5866 1.3031 2.1087 1.9506 6 0.8461 1.0463 0.9787 0.8393 0.8961 1.6851 1.2025
7 1.1612 1.3936 1.3404 1.1901 1.4383 1.9647 1.8473 7 0.6054 1.1491 1.0898 0.9943 1.1298 1.4450 1.1417
8 0.5214 0.9894 1.0255 0.8642 0.7664 1.2569 1.5100 8 0.6902 0.6754 0.6762 0.8671 0.7278 0.9601 0.9665
9 1.3007 1.3754 1.9229 1.6675 1.3461 1.1566 1.8754 9 0.7483 1.0899 1.1043 1.0372 1.0688 0.7344 1.0209

10 0.9041 1.3172 1.5661 1.3217 1.1163 1.2849 1.3742 10 0.7833 1.1484 1.0827 1.1303 0.7922 0.6448 0.7765
11 0.6318 1.3893 1.7784 1.0263 0.9551 2.3808 1.6467 11 0.8278 0.7059 0.7745 0.7937 0.7436 1.1157 0.7956
12 0.8270 1.4193 1.8270 3.0612 1.9059 1.5290 1.7285 12 0.8305 0.5237 0.8279 1.0822 1.0085 0.9866 0.7713
13 0.7156 1.1284 1.3529 1.3481 1.0938 1.2735 1.4612 13 0.8860 0.7872 1.1025 0.6231 0.9412 1.0004 0.9593
14 0.9407 1.0971 1.1320 1.3744 0.9359 1.9331 1.3709 14 0.6921 1.1098 0.5470 0.6517 0.8133 0.9282 0.7461
15 1.3253 1.0148 1.3017 1.1289 1.4157 1.3813 1.7294 15 0.6675 0.7109 1.0800 0.6309 1.1211 0.7030 0.8878
16 1.2496 1.5203 1.2500 1.1745 1.2314 1.5792 1.2781 16 0.7523 1.0269 0.8336 1.1383 1.2059 0.8491 0.7724

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 0.8989 1.3831 1.3947 1.1089 0.9725 1.8292 2.2059 1 0.6912 0.6369 0.5631 0.6634 0.5547 0.6650 0.5289
2 1.3180 2.1247 2.3190 2.1688 1.6890 2.6901 2.0606 2 0.7227 0.8154 0.9620 0.8848 0.9467 0.6529 0.9138
3 0.8955 1.2830 1.4560 1.7864 1.6994 2.2262 1.6928 3 0.6391 0.5315 0.5634 0.4880 0.6054 0.8401 0.7466
4 0.9297 1.6873 1.7100 1.8571 2.3941 2.0912 1.7832 4 0.7083 0.7186 0.7448 0.8314 0.7559 0.7048 0.7056
5 0.8780 1.6393 1.7885 1.6784 1.8572 2.1062 2.4054 5 0.6020 0.7392 0.7330 0.7697 0.9419 1.1002 0.7865
6 1.0947 2.3913 2.0026 2.1356 1.5185 2.8034 3.7681 6 0.6082 0.8761 0.9073 0.9451 0.7463 1.5266 1.2640
7 1.6665 1.9708 1.8681 2.4198 1.4754 2.6721 3.2127 7 0.5606 0.8795 0.9267 0.9404 0.9525 1.0708 0.9795
8 0.9052 1.2101 1.2946 1.6256 1.0183 1.7737 1.8653 8 0.5710 0.5974 0.6020 0.7061 0.6417 0.7689 0.6950
9 1.5553 1.7035 2.1971 2.7230 2.3797 1.7801 2.6881 9 0.7138 0.9322 1.0764 0.7413 0.6575 0.9210 1.0910

10 0.9700 1.4851 1.8934 2.3930 2.1491 2.0907 1.9404 10 0.7987 0.9966 0.9164 0.7505 1.1577 0.5598 0.9551
11 1.5834 1.7496 1.8779 1.2476 1.3672 2.4965 1.5213 11 0.7395 0.7775 0.7207 0.6410 0.6895 1.1825 0.6292
12 1.0968 1.9811 2.4081 3.7130 2.0716 1.7376 1.8924 12 0.6727 0.9349 0.5976 0.9900 1.2342 0.7882 0.8823
13 1.0496 1.6657 1.7198 2.2447 1.4714 1.8191 1.7278 13 0.7047 0.6785 0.8445 0.8307 0.6258 0.8649 0.9258
14 1.2301 1.7775 1.9474 2.0489 1.6325 2.4931 1.9061 14 0.5322 0.6749 0.6817 0.6738 0.6565 0.6409 0.8041
15 1.5489 1.8734 2.3147 2.0955 1.6756 2.7103 2.1305 15 0.7566 0.7189 0.7197 0.7895 0.7639 0.7861 0.7825
16 1.6957 2.3135 2.3033 3.2590 1.6169 2.3296 2.2012 16 0.6756 0.5893 0.8317 0.7820 0.5653 0.7139 0.8037

Set 1 – 40 Min Window – OOBE Set 2 – 40 Min Window – OOBE

Set 1 – 5 Min Window – OOBE Set 2 – 5 Min Window – OOBE

Set 1 – 10 Min Window – OOBE Set 2 – 10 Min Window – OOBE

Set 1 – 20 Min Window – OOBE Set 2 – 20 Min Window – OOBE

Figure 19. Shaded PVDE Tables.  The shading is normalized within each 
OOBPermutedVarDeltaError (PVDE) table, with dark grey indicating maximum values.  
The columns correspond to Set 1 and Set 2, with the rows from top to bottom indicating 
windows 5 to 40.  The columns within the tables are the EEG frequency bins, while the 
rows are the nodes on the brain. 
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V.  Conclusions and Recommendations  

5.1 Conclusions of Research 

This research used machine learning methods to investigate three research 

questions: 

1. What are the key spectral power features in EEG for predicting epileptic seizures? 

2. How does predictive performance change when varying the length of the preictal 
window, which greatly influences the impact for the patient? 

3. How does a random forest classifier compare to those used in other prediction 
research, particularly SVMs? 

Though inconclusive, results showed the answer to the first question may lie in 

the beta frequency bins of specific nodes.  Further investigation would be necessary to 

confirm this result.  Adjusting the alert threshold to reduce the number of false warnings 

would be necessary for comparison to other research.  The results are also limited to a 

single patient, due to the collection process of the data.  Investigating the features of 

patients with similar epilepsy may show the beta band of a particular region of the brain 

is indicative. 

Investigation of the second question was impacted by the definitions of the 

interictal window.  For Set 1, using a longer preictal window provided better 

classification results, however, including the possibly preictal samples in the interictal 

data of the shorter windows may have been the key factor behind this difference, rather 

than the more accurate definition of the preictal window.  Still, a predictive feature was 

found as far as 40 minutes in advance and maintained validity into the shorter windows, 

indicating a 40 minute preictal window is viable. 
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The answer to the third question is still open to debate.  While the classifier had 

inconsistent accuracy across the full timespans, much of this error may have been due to 

the segmentations of the data windows.  Also, the performance of the classifier cannot be 

fairly compared to other research that focused on seizure prediction, as the focus of this 

research was classification.  The modest performance with Set 1 for the 20 and 40 minute 

windows would imply that higher prediction accuracy is achievable.  This question 

requires further research and analysis to reach a proper conclusion. 

5.2 Significance of Research 

The identification of a predictive feature as far as 40 minutes prior to seizure 

onset is encouraging for the prospect of real-time monitoring systems.  If predictive 

features are found at 40 minutes, the algorithm could possibly give a preliminary 

warning, then keep the patient updated on the status of whether or not the algorithm still 

predicts a seizure as the preictal window shortens. 

This research also emphasized the importance of identifying the transitional 

states, and their major impacts on classifier performance.  The use of a time-series 

accuracy graph was a novel approach to investigating classifier performance, and would 

enhance the analysis of future classifiers. 

Though inconclusive, the application of a random forest classifier to this field of 

research showed promise of improved performance.  The speed and interpretability of 

these algorithms may have positive implications for future research, now that they have 

been introduced to the field as a viable method. 
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5.3 Recommendations for Future Research 

The process of this study revealed several issues that require significant 

investigation, as well as elucidated possible methodologies for such investigations.  This 

section emphasizes those findings with the hope that future works will address them. 

Testing a third definition of an interictal training sample may yield better results.  

A definition that excludes a postictal period and leaves a gap before the preictal period, 

but without eliminating as much data as Set 2, may perform well. 

This analysis focused specifically on classification in order to determine 

predictive features, rather than focusing on the prediction algorithm.  One disadvantage to 

this methodology is the lack of a comparison measure to other prediction research.  

Purely for this comparison, a basic thresholding analysis to increase the number of 

positive classifications necessary to alert the patient, as well as a time-under-false-

warning graph would improve this research. 

To improve upon this research, a wavelet transform preprocessing method, to 

localize by time and frequency (rather than just frequency with FFT), would maintain 

more information in the signal.  Changing this preprocessing step, but maintaining the 

rest of the methodology, may provide significant improvements. 

Another area of improvement would be comparing the nonlinear random forest 

classifier to a linear classifier, such as logistic regression.  Binary classifiers are either 

linear or nonlinear, depending on how they form the decision boundary between classes.  

Though trained on the same data, classifier performance depends on the relationship 

between the observations and the outcome.  In this application, if there is a linear 
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relationship between the features and class labels, then a linear classifier such as logistic 

regression should perform well.  However when a nonlinear method is used on a linearly 

separable classification problem, it may over-train to noise in the signal, complication the 

decision boundary and preforming poorly on the test set.  Such a comparison would 

contribute to the debate of linear versus nonlinear classifiers.  Also, linear methods are 

preferable to more complicated and time-consuming nonlinear methods when the linear 

method is suitable for the problem. 

Assuming predictive features can be determined in individual patients, another 

possible improvement would be to use a dataset with standardized node placement across 

all patients.  Such a dataset may be unattainable due to the intrusiveness of intracranial 

EEG.  Generalizing features between patients was virtually impossible for this research, 

since each patient had a unique number and configuration of nodes, even if they suffered 

from similar types of epilepsy. 

The undefined duration of the postictal period may have substantial implications 

when using any prediction algorithm.  This is especially the case for patients that suffer 

from frequently recurring seizures, with a short interictal period.  Determining a method 

for handling the postictal period that is robust to frequent seizures is a topic for future 

work. 

In the realm of optimizing seizure prediction, the next investigation should 

include various synchronization measures and their predictive values.  As discussed in 

section 2.3.1 of the Literature Review, synchronization measures may be suitable features 
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to use for seizure prediction.  Such features could then be classified using random forests 

and evaluated using the same measures as our research. 

Finally, the present study was not able to capture the time-series aspect of the 

data.  Each observation was treated as an independent data point, without considering its 

relationship with previous observations.  Using a time-series method such as a Hidden 

Markov Model (HMM) may address the loss of time-series information, which would 

address several issues associated with the time windows.  Hidden Markov Models are 

useful when the states are not directly observable, but a signal from the states is 

observable.  A Hidden Markov Model may be suitable for this application if the states 

were defined as interictal, preictal, ictal, and postictal.  The EEG signal is always visible, 

but the preictal and postictal states are hidden.   

Using an HMM may account for the unknown length of the preictal and postictal 

windows, the dilemma of setting the alert threshold, as well as the likelihood that 

postictal data resembles preictal data.  By accounting for the known states (interictal and 

ictal) the probability of transitioning to the hidden states would incorporate the fact that a 

person in an interictal state cannot move to a postictal state.  This may greatly improve 

prediction accuracy for closely spaced seizures with brief (or nonexistent) interictal 

periods, which are a current obstacle for prediction algorithms.  The issue with using an 

HMM may be the increased computational complexity.  The algorithm would need to run 

quickly to be useful in an early warning device. 
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Appendix A – Treatment Methods 

 There are currently several options to treat epilepsy.  The most common 

treatments are drug regimens, electrical stimulation, and brain surgery.  Drug 

administration and electrical stimulation during a seizure are common to mitigate effects.  

In fact, the threats of permanent brain damage and death during status epilepticus have 

compelled doctors to recommend erring on the side of excessive medication, rather than 

risk under-dosing (Roth & Blum, 2014).  Brain surgery to attempt to remove the epileptic 

focus of the brain is a last resort when other methods fail.  However, for some people 

even surgery fails and they continue to have seizures. 

 Treatment is a fragile process, as the medication to treat one form of epilepsy may 

exacerbate a different form.  Epileptologists have to be careful with drug prescriptions, 

especially with patients suffering from multiple types of epilepsy. 

 There is some debate about the effectiveness of open-loop versus closed-loop 

treatments.  Open-loop treatments are on a schedule, independent of any feedback from 

the patient.  Treatments can be either drug dosages or electrical neuronal stimulations.  

Closed-loop treatments consider biofeedback and are designed to administer only when 

they are needed, such as imminently before or shortly after the start of a seizure.  A 

significant amount of research has concentrated on implementing closed-loop systems, 

despite closed-loop treatment having yet to prove superior to open-loop as far as efficacy 

and tolerability (Mormann et al., 2007).  The future of treatment may consist of “fully-

automated closed-loop seizure prevention systems” (Mormann et al., 2007), which would 

predict and treat seizures before their onset. 
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Appendix B – Guidelines for Seizure Prediction Algorithms 

(Mormann et al., 2007) 

- Prediction algorithms should be tested on unselected continuous long-term 
recordings covering several days of EEG in order to comprise the full spectrum of 
physiological and pathophysiological states for an individual patient. 
 

- Studies should assess both sensitivity and specificity and should report these 
quantities with respect to the applied prediction horizon. Rather than false 
prediction rates, the portion of time under false warning should be reported. If 
false prediction rates are reported, they should be reported only for the seizure-
free interval. 

 
- Results should be tested using statistical validation methods based on Monte 

Carlo simulations or naïve prediction schemes to prove that a given prediction 
algorithm performs indeed above chance level. This is particularly important for 
studies that contain in-sample optimization such as retrospective adjustment of 
parameters or selection of EEG channels. 

 
- If prediction algorithms are optimized using training data (in-sample), they should 

be tested on independent testing data (out-of-sample). If part of the data from an 
individual patient are used for patient-specific parameter adjustment or EEG 
channel selection, these data must be excluded when evaluating the performance 
out-of-sample. Performance of an algorithm should always be reported separately 
for the testing data. 
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Appendix C – Correlation Tables 

Set 1 – 5 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.00110 -0.00006 0.00069 0.00342 0.00351 0.00116 0.00045 
2 -0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028 -0.00068 
3 -0.00016 -0.00087 -0.00074 -0.00105 -0.00147 -0.00157 -0.00169 
4 -0.00013 -0.00086 -0.00086 -0.00113 -0.00183 -0.00176 -0.00173 
5 -0.00042 -0.00092 -0.00097 -0.00132 -0.00210 -0.00164 -0.00167 
6 -0.00092 -0.00119 -0.00130 -0.00166 -0.00237 -0.00260 -0.00222 
7 -0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158 
8 -0.00101 -0.00024 0.00075 0.00313 0.00350 0.00112 0.00035 
9 0.00073 0.00098 0.00381 0.00498 0.00463 0.00224 0.00086 

10 -0.00065 -0.00072 0.00156 0.00490 0.00282 0.00390 0.00224 
11 -0.00078 -0.00065 0.00152 0.00526 0.00551 0.00383 0.00290 
12 -0.00062 -0.00061 -0.00003 0.00095 0.00052 0.00127 0.00057 
13 -0.00074 0.00006 0.00078 0.00283 0.00287 0.00064 -0.00069 
14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203 
15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239 -0.00225 
16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234 

 
 
 

Set 1 – 10 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.00142 0.00031 0.00141 0.00630 0.00704 0.00246 0.00170 
2 -0.00124 -0.00240 -0.00408 -0.00515 -0.00374 -0.00033 -0.00112 
3 -0.00003 -0.00093 -0.00082 -0.00086 -0.00216 -0.00238 -0.00268 
4 -0.00011 -0.00107 -0.00117 -0.00144 -0.00303 -0.00279 -0.00288 
5 -0.00054 -0.00121 -0.00137 -0.00181 -0.00365 -0.00272 -0.00279 
6 -0.00143 -0.00166 -0.00186 -0.00238 -0.00390 -0.00411 -0.00352 
7 -0.00130 -0.00170 -0.00205 -0.00226 -0.00308 -0.00271 -0.00257 
8 -0.00139 0.00004 0.00157 0.00579 0.00702 0.00237 0.00150 
9 0.00035 0.00106 0.00483 0.00740 0.00776 0.00405 0.00130 

10 -0.00108 -0.00124 0.00182 0.00692 0.00394 0.00522 0.00315 
11 -0.00118 -0.00066 0.00233 0.00790 0.01029 0.00550 0.00529 
12 -0.00098 -0.00096 -0.00021 0.00128 0.00049 0.00069 -0.00015 
13 -0.00118 0.00022 0.00110 0.00390 0.00339 -0.00024 -0.00197 
14 -0.00067 -0.00101 -0.00064 0.00013 -0.00145 -0.00297 -0.00329 
15 -0.00041 -0.00083 -0.00063 -0.00104 -0.00411 -0.00370 -0.00363 
16 -0.00075 -0.00118 -0.00091 -0.00117 -0.00478 -0.00443 -0.00382 
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Set 1 – 20 Min Window - Correlation Coefficients 

Node Delta Theta Alpha Beta Gamma HFA HFB 
1 -0.00218 0.00109 0.00288 0.01062 0.01315 0.00536 0.00416 
2 -0.00197 -0.00331 -0.00577 -0.00615 -0.00382 0.00058 -0.00084 
3 -0.00027 -0.00140 -0.00149 -0.00111 -0.00341 -0.00363 -0.00439 
4 -0.00028 -0.00172 -0.00207 -0.00216 -0.00518 -0.00446 -0.00486 
5 -0.00087 -0.00186 -0.00232 -0.00277 -0.00639 -0.00444 -0.00470 
6 -0.00220 -0.00245 -0.00285 -0.00359 -0.00661 -0.00628 -0.00559 
7 -0.00194 -0.00250 -0.00305 -0.00337 -0.00494 -0.00418 -0.00405 
8 -0.00207 0.00073 0.00329 0.00982 0.01320 0.00533 0.00390 
9 -0.00034 0.00070 0.00498 0.00998 0.01112 0.00552 0.00132 

10 -0.00182 -0.00221 0.00139 0.00871 0.00494 0.00796 0.00510 
11 -0.00179 -0.00104 0.00306 0.01111 0.01663 0.00822 0.00897 
12 -0.00150 -0.00165 -0.00108 0.00122 0.00073 0.00087 -0.00048 
13 -0.00179 0.00012 0.00138 0.00533 0.00579 -0.00004 -0.00261 
14 -0.00104 -0.00158 -0.00113 -0.00007 -0.00233 -0.00446 -0.00520 
15 -0.00068 -0.00144 -0.00128 -0.00167 -0.00658 -0.00565 -0.00587 
16 -0.00128 -0.00188 -0.00150 -0.00178 -0.00776 -0.00680 -0.00613 

 
 
 
 

Set 1 – 40 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.00337 0.00075 0.00299 0.01219 0.01763 0.00813 0.00546 
2 -0.00313 -0.00497 -0.00847 -0.00894 -0.00522 0.00134 0.00010 
3 -0.00085 -0.00310 -0.00320 -0.00323 -0.00587 -0.00580 -0.00707 
4 -0.00084 -0.00346 -0.00401 -0.00436 -0.00877 -0.00694 -0.00770 
5 -0.00165 -0.00359 -0.00430 -0.00525 -0.01069 -0.00680 -0.00738 
6 -0.00331 -0.00383 -0.00448 -0.00572 -0.00976 -0.00902 -0.00829 
7 -0.00284 -0.00380 -0.00467 -0.00524 -0.00730 -0.00611 -0.00598 
8 -0.00315 0.00024 0.00334 0.01122 0.01770 0.00813 0.00511 
9 -0.00091 0.00073 0.00732 0.01042 0.01238 0.00514 0.00044 

10 -0.00281 -0.00347 0.00163 0.01029 0.00666 0.01303 0.01082 
11 -0.00258 -0.00198 0.00375 0.01541 0.02810 0.01703 0.01869 
12 -0.00232 -0.00271 -0.00203 0.00086 0.00102 0.00625 0.00417 
13 -0.00280 -0.00050 0.00145 0.00573 0.00870 0.00217 -0.00187 
14 -0.00159 -0.00266 -0.00221 -0.00161 -0.00428 -0.00645 -0.00776 
15 -0.00123 -0.00281 -0.00300 -0.00391 -0.01102 -0.00864 -0.00915 
16 -0.00235 -0.00334 -0.00312 -0.00416 -0.01302 -0.01018 -0.00946 

 
 



 

65 

 
Set 2 – 5 Min Window - Correlation Coefficients 

Node Delta Theta Alpha Beta Gamma HFA HFB 
1 -0.09325 -0.08534 -0.10194 -0.10877 -0.09902 -0.08175 -0.11390 
2 -0.09419 -0.10077 -0.11539 -0.10156 -0.11163 -0.11292 -0.10664 
3 -0.08854 -0.09316 -0.10428 -0.10817 -0.11948 -0.11805 -0.10097 
4 -0.08851 -0.08856 -0.09758 -0.10339 -0.09868 -0.10264 -0.08588 
5 -0.08762 -0.08322 -0.09497 -0.10380 -0.06253 -0.08804 -0.08395 
6 -0.08957 -0.08047 -0.09422 -0.10235 -0.09104 -0.08579 -0.09203 
7 -0.08801 -0.07738 -0.08588 -0.09633 -0.08503 -0.07852 -0.08669 
8 -0.09241 -0.08530 -0.10209 -0.10894 -0.09908 -0.08208 -0.11439 
9 -0.05660 -0.07319 -0.05423 -0.08685 -0.06523 -0.04375 -0.04100 

10 -0.08940 -0.07634 -0.06680 -0.05618 -0.03215 -0.00220 -0.00552 
11 -0.08871 -0.05146 -0.02233 -0.03616 -0.02686 0.00182 -0.06659 
12 -0.08910 -0.08618 -0.08878 -0.07937 -0.07821 -0.02691 -0.05058 
13 -0.08872 -0.08654 -0.08929 -0.09037 -0.07953 -0.07185 -0.10081 
14 -0.08865 -0.08488 -0.10543 -0.11196 -0.11642 -0.13320 -0.14236 
15 -0.08806 -0.08314 -0.09244 -0.10060 -0.08335 -0.10886 -0.10568 
16 -0.08373 -0.07875 -0.08962 -0.09537 -0.06567 -0.09602 -0.09789 

 
 
 
 

Set 2 – 10 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.08651 -0.07207 -0.07903 -0.06344 -0.05639 -0.05918 -0.07676 
2 -0.08766 -0.09485 -0.10975 -0.10718 -0.12186 -0.09927 -0.10902 
3 -0.08115 -0.08303 -0.09080 -0.09253 -0.12823 -0.12229 -0.11669 
4 -0.08265 -0.08149 -0.08926 -0.09553 -0.12477 -0.11984 -0.11321 
5 -0.08239 -0.07767 -0.08683 -0.09808 -0.10015 -0.10947 -0.10921 
6 -0.08739 -0.07657 -0.08586 -0.09383 -0.11711 -0.10337 -0.10135 
7 -0.08564 -0.07387 -0.08108 -0.08885 -0.10899 -0.09560 -0.10535 
8 -0.08725 -0.07337 -0.07999 -0.06454 -0.05798 -0.06228 -0.08032 
9 -0.06567 -0.07421 -0.04665 -0.06226 -0.02319 -0.01608 -0.03469 

10 -0.08567 -0.07892 -0.05855 -0.03877 -0.01742 0.00747 0.00139 
11 -0.08544 -0.04361 -0.00725 -0.02463 -0.00602 0.00169 -0.03881 
12 -0.08655 -0.08284 -0.07686 -0.06965 -0.07933 -0.05647 -0.08156 
13 -0.08661 -0.07753 -0.08211 -0.08535 -0.09147 -0.10529 -0.12986 
14 -0.08614 -0.08183 -0.09843 -0.10486 -0.12618 -0.13529 -0.14620 
15 -0.08456 -0.07962 -0.08404 -0.09096 -0.10203 -0.11599 -0.12011 
16 -0.08165 -0.07545 -0.07969 -0.08457 -0.08759 -0.10940 -0.11289 
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Set 2 – 20 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.06979 -0.02765 -0.01866 -0.00009 0.01622 -0.00324 -0.02071 
2 -0.07086 -0.08042 -0.10766 -0.07350 -0.06984 -0.04319 -0.05649 
3 -0.06221 -0.06262 -0.08187 -0.06545 -0.12563 -0.10081 -0.10632 
4 -0.06328 -0.06398 -0.08146 -0.07552 -0.14533 -0.11191 -0.11223 
5 -0.06344 -0.05941 -0.07868 -0.08179 -0.14309 -0.10954 -0.10795 
6 -0.07050 -0.06274 -0.07804 -0.08228 -0.15794 -0.11398 -0.09993 
7 -0.06926 -0.06089 -0.07384 -0.07882 -0.14204 -0.10182 -0.10514 
8 -0.06981 -0.02842 -0.01915 -0.00055 0.01547 -0.00472 -0.02219 
9 -0.05911 -0.07715 -0.06704 -0.03005 0.00986 0.00388 -0.01637 

10 -0.07064 -0.07361 -0.07063 -0.01784 0.00483 0.01569 0.01041 
11 -0.06879 -0.03036 0.00625 -0.00168 0.01886 0.01033 0.00331 
12 -0.06986 -0.07516 -0.08209 -0.06201 -0.06623 -0.05409 -0.07805 
13 -0.06995 -0.06666 -0.07513 -0.06495 -0.07181 -0.09570 -0.11734 
14 -0.06955 -0.07000 -0.09070 -0.09332 -0.13326 -0.12491 -0.14106 
15 -0.06686 -0.06750 -0.07556 -0.07242 -0.12819 -0.10761 -0.11769 
16 -0.06607 -0.06217 -0.06428 -0.06081 -0.11747 -0.11249 -0.11399 

 
 
 
 

Set 2 – 40 Min Window - Correlation Coefficients 
Node Delta Theta Alpha Beta Gamma HFA HFB 

1 -0.05793 -0.03326 -0.03039 -0.02197 0.01364 0.00950 -0.01563 
2 -0.05995 -0.08682 -0.11636 -0.08047 -0.05569 -0.02368 -0.01938 
3 -0.05062 -0.07066 -0.08987 -0.07669 -0.12977 -0.09801 -0.10905 
4 -0.05034 -0.06736 -0.08826 -0.08359 -0.16207 -0.11201 -0.11566 
5 -0.05171 -0.06303 -0.08357 -0.08770 -0.16001 -0.10661 -0.10972 
6 -0.05656 -0.05900 -0.07533 -0.07902 -0.15153 -0.10099 -0.09264 
7 -0.05527 -0.05440 -0.07065 -0.07478 -0.14309 -0.09559 -0.09932 
8 -0.05736 -0.03360 -0.03071 -0.02221 0.01318 0.00856 -0.01668 
9 -0.04803 -0.06917 -0.03701 -0.05593 -0.02084 -0.03140 -0.03485 

10 -0.05796 -0.07196 -0.05308 -0.02795 0.02101 0.03802 0.04820 
11 -0.05384 -0.03860 -0.00231 -0.00176 0.03707 0.04884 0.04457 
12 -0.05616 -0.07366 -0.07316 -0.05972 -0.04671 0.00922 0.00152 
13 -0.05835 -0.07890 -0.08232 -0.08633 -0.06409 -0.04458 -0.06429 
14 -0.05458 -0.06553 -0.08881 -0.10315 -0.14068 -0.11176 -0.13015 
15 -0.05269 -0.07102 -0.08148 -0.08040 -0.13623 -0.10616 -0.11948 
16 -0.05426 -0.06358 -0.06995 -0.07021 -0.12233 -0.10586 -0.11200 

 



 

67 

Appendix D – Set 1 - Full Time-Series Accuracy Graphs 

 

 



 

68 

 

 



 

69 

 



 

70 

 



 

71 

Appendix E – Set 2 – Full Time-Series Accuracy Graphs 
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