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Abstract

Epilepsy is the second most common neurological disease after stroke. Epileptics
may suffer hundreds of seizures per day, yet one is enough to put a person in constant
fear of the next. The sudden and unexpected onset of seizures has debilitating and
sometimes fatal consequences. The development of a real-time seizure prediction and
alerting device would greatly improve epileptics’ quality of life. Major challenges for
such a device include determining predictive features and discovering the maximum
prediction window.

Using the novel approach of random forest classification on EEG data, this
research investigates the predictive features among the common EEG frequency bands
for one patient with partial complex and partial with secondarily generalized seizures.
The impact on classifier performance of labeling the transitional brain states is also
investigated, using a time-series accuracy graph.

Predictive features are found as far as 40 minutes in advance of two seizures,
specifically in the beta frequencies of one brain node. The random forest classifier does
not perform well, but shows promise for improved performance with minor adjustments
in training. The time-series accuracy graphs prove a useful tool for visualization and

insight into classifier performance that is lacking in other evaluation methods.
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EEG-BASED CLASSIFICATION AND

ADVANCE WARNING OF EPILEPTIC SEIZURES

I. Introduction

This research aims to improve the lives of epileptics by identifying important
features to improve seizure prediction methods. Epilepsy is a neurological disease
characterized by recurrent, unprovoked seizures (Fisher et al., 2005). Though few people
are aware of the effects and impact of epilepsy, it is the second most common
neurological disease, after stroke (Mormann, Andrzejak, Elger, & Lehnertz, 2007).
Approximately sixty-five million people worldwide live with epilepsy, with at least two
hundred thousand new diagnoses per year (C.U.R.E., 2015).

Within the broad umbrella of epilepsy, there is a wide span of experiences.
Seizures vary in effect: from staring blankly for a few seconds (absence seizures), to
collapsing in convulsions for several minutes (tonic-clonic seizures) (Mayo Clinic, 2015).
Seizures may go unnoticed, even by the person experiencing them, or be extremely
painful and traumatizing. Some epileptics may suffer from a single seizure in their
lifetime, while others have hundreds per day.

While seizures can be fatal, a more stressful issue for many epileptics is simply
never knowing when the next seizure will occur (Fisher et al., 2000). Even minor

seizures can have devastating consequences if they occur at dangerous times, such as



when the person is swimming or driving a car. The unpredictability of seizures causes
many epileptics to lose their driver’s license and job. The life-crippling effects of
epilepsy have driven neurologists to research the possible causes, develop and improve
diagnosis and treatment methods, understand the physiological processes at work, and
attempt to predict seizures before they occur.

The complexity and individuality of brains make seizure prediction a daunting
task. An algorithm trained to one patient may be completely ineffective when applied to
another patient. Researchers have found that features even vary between seizures within
a single patient.

This issue with individuality has driven researchers to personalize prediction
algorithms, theoretically (yet to be clinically implemented) monitoring patients for a
training period before tailoring an algorithm that can monitor and predict seizures in real-
time. Such a device would drastically improve the lives of epileptics, either by simply
warning them of the impending seizure so they can prepare, or by preventing or reducing
the seizure by administering a drug or electrical treatment (details in Appendix A).

While some algorithms have achieved high prediction accuracies, there are still
many questions to address before an algorithm will be reliable enough for a clinical trial.
The questions this research seeks to answer are the following:

1. What are the key spectral power features in EEG for predicting epileptic seizures?

2. How does predictive performance change when varying the length of the
prediction window, which greatly influences the early warning time for the
patient?

3. How does a random forest classifier compare to those used in other prediction
research, particularly SVMs?



1.1 Approach

This research used electroencephalogram (EEG) data transformed into the
frequency domain, using a Fast Fourier Transform (FFT). Then the signals were
averaged into bins by the common EEG frequency bands: delta, theta, alpha, beta, and
gamma, as well as two high frequency bands. These bands were used as features for a
binary classification problem, with 1 indicating a preictal (pre-seizure) sample and 0
indicating an interictal (regular functioning) sample.

After a preliminary feature analysis through correlation, the data were used to
train unique random forest classifiers for four different-length early warning windows, as
well as two definitions of interictal data. The parameters for each model were tuned with
the training data, using Leave-One-Out Cross Validation (LOOCV). Once tuned,
classifier performance was evaluated on separate holdout seizures from the same patient.
The effects of defining the preictal and interictal windows were analyzed using time-
series accuracy graphs. The classifiers with the highest prediction accuracies were used
for key feature analysis, by comparing the feature importance as indicated by the random
forest. The classifiers with the highest accuracy were also used to determine time under

false warning, for comparison to other prediction research, as well as a random predictor.

1.2 Assumptions and Limitations

The present research focuses specifically on epileptics, so findings may not be
applicable to people suffering from non-epileptic seizures. Also, this analysis is limited
to patients with partial complex seizures and partial seizures with secondary

generalization, monitored through intracranial EEG.



One major challenge of this research was manipulating the available data to suit
this study. The data were not collected for the purpose of this research, but rather
recorded from patients for clinical purposes. This means all patients have individually
tailored electrode configurations on their brains, rather than a standardized configuration.

Another challenge of this research was dealing with the unknown length of the
preictal horizon. The times of the seizures were marked in the EEG records by
epileptologists, but the length of the preictal window (the time before the seizure during
which prediction is possible) is unknown. This issue was dealt with through examining

four time windows, and by including time-series accuracy graphs in the evaluation.

1.3 Implications

Through identifying predictive features, testing the impact of the preictal window
length, and introducing a random forest classifier to the field of research, the present
study aims to both improve prediction classifiers and contribute to the basis of knowledge
used to study epileptogenesis. The motivation for this research is to improve the lives of
epileptics in any way possible.

The following contributions have implications for an early warning prediction and
intervention device that would greatly improve the lives of epileptics.

e The results of this research show that predictive features appear as far as 40
minutes in advance of the seizure.

e The random forest classifier was shown to be viable, though requiring further
investigation in a context of optimizing seizure prediction accuracy for
comparison to other methods.



II. Literature Review

This chapter provides a brief overview of epileptic seizure prediction research.
First, it covers the different types of EEG monitoring, then highlights important
discoveries from research into the physiological factors and causes of epilepsy. Seizure
detection research is discussed solely for the implications of predictive features, and then
a performance comparison of current prediction algorithms builds a platform for this
research. Finally, it highlights the areas available for improvement in the field that this

research aims to address.

2.1 History

Researchers have been attempting to predict seizures as early as the 1970’s.
However, a survey paper published in 2007 showed much of the previous work in this
area was falsely optimistic (Mormann et al., 2007). Several statistical validation issues
caused these problems with alleged results.

Most predictors reported classification accuracies for data used in the training set,
rather than a separate holdout testing set, resulting in high prediction accuracies. False
positive rates were inaccurately low, because the preictal windows (when false positives
are impossible) were included in the total time. Researchers also failed to compare their
classifiers to a naive or random prediction scheme. Later comparison showed several of
them failed to statistically outperform the random methods. One final problem was that
the data were specifically selected and segmented to represent defined interictal and
preictal periods, ignoring the many varied brain states that a predictor would have to

interpret during long-term, continuous monitoring.



The authors of the study proposed a set of guidelines for future prediction
research to establish validity. Briefly, these rules are as follows, with the complete
verbiage in Appendix B (Mormann et al., 2007).

e Algorithms should use long-term, continuous data to account for all mental states
of the patient.

e Metrics should include sensitivity and specificity with respect to prediction
horizon. Time under false warning should also be reported. False prediction rates
only apply to the interictal period.

e Results should be tested to prove above-chance prediction rates.

e Algorithms using training data must report results using an independent test set.

2.2 Electroencephalography

EEG monitoring has been the gold standard for epilepsy research since its
development by Hans Berger in 1924. EEG data are collected by placing electrodes
either on the scalp (extracranial) or directly on the surface of the brain (intracranial). The
low-impedance (<5 k€ for intracranial) electrodes detect the voltages of the neurons in
the brain and record them for future analysis (Adeli, Zhou, & Dadmehr, 2003).

Monitoring methods have improved vastly over the years, moving from paper
print-outs requiring visual interpretation by expert neurologists, to high-resolution digital
storage which can be analyzed by advance computer algorithms. Extracranial EEG is
still widely used, but now surgically invasive intracranial EEG—also known as iEEG or
electrocorticography (ECoG)—has been invented to monitor patients before brain
surgery.

Extracranial EEG is a routine monitoring practice, often used for diagnosis and

trying to determine the epileptic focus. Unfortunately for researchers, scalp EEG



includes many artifacts, caused by electrical noise, movement, or line noise (Park, Luo,
Parhi, & Netoff, 2011), making it difficult to process.

ECoG requires placing electrodes directly on the surface of the brain. This
method is used for monitoring epileptics before brain surgery. ECoG provides cleaner
data which can be used to determine what part of the brain should be removed to try to
reduce or stop seizures. The invasive procedure consequently makes this data scarce, and
has only recently been performed for the purpose of data collection (Ihle et al., 2012).

When using EEG for research, there is a balance between useable data and the
applicability of findings. Invasive EEG data may be more useful to researchers than
scalp EEG, but the applicability of invasive EEG is debatable. A major goal of prediction
research is to develop a real-time monitoring system that epileptics could wear constantly
to be warned of seizures. While scalp EEG may seem like the better candidate for this
type of device, intracranial monitoring may be feasible and more permanent, as the
device could be surgically implanted for long-term monitoring. Such a device may even
use a small electrical charge to “reset” the brain and prevent the seizure, somewhat like a
pacemaker treats arrhythmias.

Epilepsy research using EEG data can be grouped into two overarching
categories: application and theory. The theory category includes research into the
characteristics of EEG data and possible physiological and chemical processes involved
with epilepsy. Application involves constructing detection algorithms that determine
when a patient is suffering from an epileptic seizure and prediction algorithms that warn

of impending seizures in advance.



2.3  Theory

There has been a broad range of studies into the physiology of the brain during
epileptic seizures. These studies range from observing the behavior of the gamma wave
in rats during drug-induced status epilepticus (long-term continuous seizures) (Phelan,
Shwe, Abramowitz, Birnbaumer, & Zheng, 2014), to theoretically modeling the epileptic
brain as a dynamic system (Lopes da Silva et al., 2003; Moghim & Corne, 2014).
Findings have been used to improve treatment methods.

2.3.1 Cause (Epileptogenesis) and Activity.

According to the International League Against Epilepsy (ILAE) and the
International Bureau for epilepsy (IBE), an epileptic seizure is defined as “a transient
occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain” (Fisher et al., 2005). This definition may seem vague, but
“synchronous neuronal activity” is common throughout the literature (Adeli et al., 2003;
Lopes da Silva et al., 2003; Perez-Velazquez, Valiante, & Carlen, 1994), because the true
cause of epilepsy remains unknown.

What researchers have theorized is that there is a physical difference between an
epileptic brain and a non-epileptic brain that allows the former to produce a seizure in
conditions that the latter would function unperturbed (Lopes da Silva et al., 2003). The
difference may be “specific inflammatory pathways” that are routinely utilized during
epileptogenesis and remain in epileptic tissue in humans with temporal lobe epilepsy

(Ravizza et al., 2008).



The cerebral cortex, brainstem, and thalamocortical interactive systems are all
involved in epileptogenesis (Fisher et al., 2005). The hippocampus has also been linked
to the formation of seizures by (Perez-Velazquez et al., 1994), who found electrotonic
coupling influenced synchronous neuronal firing, by (Vezzani et al., 2002) who induced
seizures and status epilepticus in rats through stimulating the hippocampus in a variety of
ways, and by (Ernfors, Bengzon, Kokaia, Persson, & Lindvall, 1991) who found an
increase in trophic factors (molecules that allow a neuron to develop and maintain
connections with its neighbors) in the hippocampus could promote hyperexcitability.

Other EEG signal analysis has revealed brain activity that may be used for
predictive purposes. One area of study is signal synchronization between different parts
of the brain, such as synchronization of Lyapunov exponents between electrode pairs and
a novel Spike Synchronization Measure (L D lasemidis, Shiau, Sackellares, Pardalos, &
Prasad, 2004; Krishnan et al., 2015; L. D. lasemidis, J. C. Principe, 2000). These studies
found an increase in their respective measures of synchronization in the preictal period,
and a desynchronization in the postictal period. An analysis of the power of features to
distinguish between preictal and interictal using receiver operating characteristic (ROC)
curves made a similar discovery that the best bivariate measures were those for phase
synchronization based on the Hilbert transform, as well as maximum cross-correlation
(Mormann et al., 2005).

Though these studies have found synchronization in the preictal period and
desynchronization in the postictal period, the claim of their predictive quality is under

debate. Previous Lyapunov studies have been invalidated due to neglect of the interictal



period during statistical validation (Mormann et al., 2007). Also, a study of modeled
temporal lobe epilepsy in mice found that there is a reduction in synchronization
associated with epileptic mice, but the synchronization is throughout the signal and does
not correspond to epileptic events (Arabadzisz, Antal, Parpan, Emri, & Fritschy, 2005).
Identifying the root of seizures is difficult because their manifestations are so
varied. Seizures can originate and occur locally to one part of the brain (partial seizures),
originate locally and spread to the rest of the brain (secondary generalized seizures), or
originate across the entire brain (primary generalized seizures). Suffering from multiple
types of epilepsy, as well as a variety of other factors (such as brain maturity a

medications) can make every epileptic event unique (Fisher et al., 2005).

2.4  Application

Beyond the studies of epileptic physiology and brain dynamics lies the application
of findings that enable seizure detection and prediction. This section reviews previous
research in both of these areas.

There is an important distinction between seizure detection and seizure prediction.
Seizure detection involves determining if a patient is currently experiencing a seizure,
early in the ictal period (distinguishing between interictal and ictal). Seizure prediction
is the much more difficult task of determining if a patient will experience a seizure in the
near future (within a prediction window). These methods must predict the seizure in the
preictal phase, before the notable change in brain activity that is characteristic of seizure

onset (distinguishing between interictal and preictal). Both tasks are being investigated

10



using machine-learning algorithms, for their ability to learn from complex data and make

assessments in real-time.

2.4.1 Detection.

Detection algorithms are useful for the accurate diagnosis of epilepsy, which is
otherwise identified by a neurologist visually inspecting EEG data for a 3-Hz spike and
wave complex defined by Weir in 1965 (Adeli et al., 2003; Weir, 1965). Detection
algorithms may also be used by clinics to alert staff of an epileptic event, so they can
administer treatments more promptly.

Since detection algorithms have achieved 100% accuracy (Chen, 2014; Subasi &
Gursoy, 2010; A. T. Tzallas, Tsipouras, & Fotiadis, 2007; A. T. Tzallas, Tsipouras, &
Fotiadis, 2009). The features the algorithms use to recognize a seizure is occurring are
briefly discussed here. The features used for detection may provide insight into which
features are useful for prediction.

Detection researchers have used the gamut of classification techniques, including
decision trees (Polat & Giines, 2007; A. T. Tzallas et al., 2009), several types of neural
nets (Ghosh-dastidar, Adeli, & Dadmehr, 2010; Srinivasan, Eswaran, & Sriraam, 2007; A.
T. Tzallas et al., 2007; A. T. Tzallas et al., 2009), support vector machines (Subasi &
Gursoy, 2010), logistic regression, K-nearest neighbors, and Naive Bayes (A. T. Tzallas
et al., 2009). To train these classifiers, most have used features derived from wavelet and
Fourier transforms of the raw EEG data, binning by the common EEG frequency bands
and calculating additional signal features such as approximate entropy (Chen, 2014;

Ghosh-dastidar et al., 2010; Ocak, 2009; Polat & Giines, 2007; Subasi & Gursoy, 2010; a
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T. Tzallas et al., 2007; A. T. Tzallas et al., 2009). Some have unique approaches to the
features, not transforming to the frequency domain and deriving features from the raw
EEG signal in the voltage domain, rather than using a transformation (Srinivasan et al.,
2007; Venkataraman et al., 2014).

These studies achieved high detection results with their features, those that used
feature selection did not report which features were selected as the most valuable. This
means we can only make assumptions about the values of the features by comparing
results between studies. In general, the studies using Fourier and wavelet transformed
features performed better than those using raw approximate entropy and maximum
Lyapunov exponents; several of the former achieved 100% detection accuracy.

However, detection algorithms are not enough to give epileptics peace of mind
and some of their freedom back. By the time detection algorithms send a warning, the
seizure has already begun, making preparation (such as parking the car) impossible.
Early detection may work with automatic stimulation to calm seizures before they take
full effect and preliminary studies have shown promising results (Fountas et al., 2005;
Kossoff et al., 2004; Mormann et al., 2007; Osorio et al., 2005). However, even with
perfect detection, stimulation and drug regimens fail to abort seizures for some patients.

These patients require a device that warns them before the seizure begins.

2.4.2 Prediction.

The first challenge of predicting seizures is proving that prediction is possible.
There are two ways seizures could form: spontaneously or through a gradual build-up. If

they are spontaneous, there would not be any preceding indicators to use for prediction.
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However, if seizures are the passing of a threshold after a build-up period, there would be
preictal features employable for prediction.

The brain may be a dynamic system, with seizures acting as a stable state in an
epileptic brain. To transition to the seizure state, a number of state parameters would
have to transition. The parameter transitions would be reset or ineffective in a non-
epileptic brain, but in the epileptic brain a seizure occurs (Lopes da Silva et al., 2003). A
detectable preseizure state may be more likely for partial epilepsy, while primary
generalized may be virtually spontaneous (Mormann et al., 2007).

Several studies found preictal physiological changes that would indicate a
preseizure brain state, including “an increase in cerebral blood flow (Baumgartner et al.,
1998; Weinand et al., 1997), oxygen availability (Adelson et al., 1999), and blood
oxygen-level-dependent signal (Federico, Abbott, Briellmann, Harvey, & Jackson, 2005)
as well as changes in heart rate”(Delamont, Julu, & Jamal, 1999; Kerem & Geva, 2005;
Novak, Reeves, Novak, Low, & Sharbrough, 1999; Mormann et al., 2007). The existence
of a pre-seizure state, or preictal window, means seizure prediction is possible.

Since 2007, there have been several patient-specific classification algorithms used
for prediction that claim promising results. Most of these studies focus on maximizing
the prediction accuracy by providing a large set of features to an algorithm that performs
automatic feature selection and prediction. The present research aims instead to discover
which specific features are important for prediction. This focus may shed light on the

processes underlying seizures and improve prediction algorithms.
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Support Vector Machines (SVMs) are the most common classifiers used for
prediction in recent research (Bandarabadi, Teixeira, Rasekhi, & Dourado, 2014; Moghim
& Corne, 2014; Netoff, Park, & Parhi, 2009; Park et al., 2011; Williamson, Bliss, &
Browne, 2011). While these classifiers are known for classifying complex data by
mapping it to a higher dimension before choosing the decision boundary, this mapping
makes the prediction features difficult to interpret in terms of the original data.

For the sole purpose of high prediction accuracy (disregarding feature analysis),
SVMs have performed well, with one study achieving 97.5% sensitivity and a false
positive rate of 0.27 per hour for a 30 minute preictal window (Park et al., 2011). This
study used 5-fold cross validation to tune a patient-specific, cost-sensitive SVM. For
features, this study used the common EEG bands (splitting the gamma band into four
bands) processed with the Hjorth mobility parameter (a time-differential method for
normalizing data). Using Kernel Fisher Discriminant analysis, they discovered the
gamma features often had the top discriminability for seizure prediction. They concluded
that changes in gamma band power in respect to total power may be used for seizure
prediction.

Another study achieved an S1-score (the harmonic mean between sensitivity and
specificity) of 96% for a 13 minute preictal window (Moghim & Corne, 2014). The
features selected using the Matlab function ReliefF were not reported. In fact, most
research that used preliminary feature selection did not report the feature selection
results, only the results of the classifier. These studies were focused specifically on

producing accurate prediction algorithms, so the features the algorithm automatically
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selected and used were not pertinent to their results. In contrast, the focus of the present
research is to identify important prediction features. For this case, the classifier serves
only to gauge the predictive power of the features.

All of these studies used different preictal windows, including 5 minutes (Netoff
et al., 2009), 30 minutes (Park et al., 2011; Williamson et al., 2011), and ranges of times
(Leon D Iasemidis et al., 2003; Mirowski, Madhavan, LeCun, & Kuzniecky, 2009;
Moghim & Corne, 2014; Mormann et al., 2005), with a maximum window of 4 hours.
Most preictal windows tested were within one hour. Two studies that tested adjustable
windows had an average window of approximately one hour (Leon D lasemidis et al.,
2003; Mirowski et al., 2009). This range of windows is due to the unknown length of the
preictal window and its significant effect on prediction results.

The maximum length of this preictal window is still under debate, and likely
varies between patients and seizures. Preictal indicators have been found as early as 240
minutes in advance, though other research claimed a more modest 22 minute window
(Ren et al., 2011). An attempt to determine the optimal preictal window found the
optimal window is unique within patients, as well as seizures, and recommended that
algorithms should be trained accordingly (Bandarabadi, Rasekhi, Teixeira, & Dourado,
2014).

Due to this debate, prediction algorithms are evaluated in respect to a
predetermined preictal window. A long preictal window increases overall sensitivity and
specificity, but does not provide the patient with as much certainty for when the seizure

will occur. Time under false warning is an important metric, because expecting a seizure
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is stressful and time-consuming. For instance, if a long preictal window is chosen, the
algorithm may have high accuracy, but patients will spend a large portion of their time
awaiting seizures that may or may not occur. However, if the preictal window is too
short, the prediction does not give the patient enough time to prepare, rendering the
algorithm useless. The present research tested four prediction window times (5, 10, 20,
and 40 minutes) to explore the effect on prediction accuracy.

There are divisions in the research as to what type of data and classifiers to use for
prediction: univariate or multivariate features, and linear or nonlinear classification
methods. A survey of past research concluded that univariate measure have shown
significant performance only in node-wise, seizure-wise analysis (Mormann et al., 2007).
It should be noted, however, that the research achieving 97.5% sensitivity using
univariate features was published more recently than the survey paper (Park et al., 2011).

The same survey paper found that linear methods perform similarly to nonlinear
methods. These findings were reinforced more recently by a study in which an SVM
predicted the seizures of only 11 out of 21 patients, while a logistic regression predicted
for 14 patients (Mirowski et al., 2009). However, a convoluted neural net in the same
study predicted the seizures of 20 of the 21 patients. These results suggest nonlinear

methods may outperform linear methods after all.

2.5  Uncharted Territory
Using a random forest classifier as a novel seizure prediction method, the present
research aims to critically examine the selected predictive features. As part of the

process, this research will also examine:
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e The effect the length of the preictal window has on classifier performance.

e The performance of a random forest classifier for seizure prediction in
comparison to classifiers common in the literature.

While SVMs are favorable in their performance on this type of data, they have the
notable disadvantage of mapping the data to a higher dimensional space before selecting
the decision boundary. This means the decision boundary is in terms of the higher
dimensional features, rather than the original features. The disconnect makes it difficult
to determine which original features were valuable for prediction, thus losing the possible
inferences about epileptogenesis and applications to feature saliency.

Decision tree classifiers are a completely novel approach to seizure prediction,
despite their suitability for the problem. Like SVMs, decision trees work well with high-
dimensional data. They also solve quickly, which is important for a real-time monitoring
and prediction device.

Decision trees have a tendency to over-fit data. Overfitting is when a classifier
virtually memorizes the training data, achieving perfect training accuracy, but sacrifices
generalization and prediction accuracy on the holdout testing set. Decision trees have a
tendency to do this, because if the minimum size of a leaf (the resulting nodes of a split in
the tree) is the default of 1, then every observation can potentially have its own leaf,
unless some other limitation is placed (such as a maximum tree depth).

Overfitting can be resolved by using an ensemble classifier of decision trees,
called a random forest. A random forest classifier trains multiple trees on subsets of the
training data (in-bag samples), then estimate their error on the rest of the samples (out-of-

bag samples). Matlab’s treebagger function uses approximately 2/3 of the data as in-bag
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samples. Each tree chooses a random subset, then bootstraps that sample to equal the
size of the full training set. On top of the randomness of the subsets, the trees also branch
randomly. This creates a forest of random trees that vote on new samples based on their
out-of-bag errors. By combining multiple random trees into a voting system, random

forests have all of the same advantages as decision trees, without overfitting.
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II1. Methodology

This chapter thoroughly explains the process by which the research questions
were investigated. First, the research questions and the formulations for answering them
are described. Next, the data selected and the steps necessary to process the raw iIEEG
data into a usable format are covered. Moving from preprocessing to preliminary feature
analysis, correlation is used to examine whether any individual features have notable
predictive value. Then the random forest classification method is described. The chapter

ends with the evaluation metrics and expected results in terms of these metrics.

3.1  Research Objectives and Modeling
This research investigates three questions pertaining to seizure prediction in
epileptics:

1. What are the key spectral power features of iEEG for predicting epileptic
seizures?

2. How does predictive performance change when varying the length of the preictal
window, which greatly influences the impact for the patient?

3. How does a random forest classifier compare to classifiers in other prediction
research, particularly SVMs?

To answer these questions, a binary classification problem was formulated that a
machine learning algorithm could use to make predictions. For every observation of data
(frequency bins of EEG readings for a 5 second sample), the classifier predicts whether
the patient is in the interictal (0) or preictal (1) state. If the patient is in the preictal state,
that means the patient will have a seizure within the specified time period of the preictal

window.
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3.2 Data Description

EEG uses cranial sensors to record the electrical activity of the brain. The
challenge of EEG is the lack of data, since epileptics have seizures randomly and have to
be monitored for days in order to possibly record a seizure. Collecting useful and “clean”
data is even more difficult.

The data for this research were obtained through an online database hosted on the
IEEG-Portal (Mayo Clinic, University, & Stroke, 2014). The data are free for researchers
to use to study seizures and epilepsy. The website also included a Matlab toolbox with

commands for interfacing with the website and manipulating data.

Left Lateral

— =y

LGRID
L35
LILS

Figure 1. EEG Node Configuration. An example of the intracranial node configuration diagram
provided within the documentation for a patient.
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The website has over 100 patient datasets, but only 12 were suitable for this
research (two of which monitored the same patient). The 11 patients were monitored for
long-term, continuous, intracranial EEG. All patients were recorded at the Mayo Clinic,
sampling each at either 499.907 or 500 Hz. The shortest recording is 2 days and 5 hours,
and the longest is 13 days and 16 hours. The total recording time is 1,951 hours, with
172 total seizures. The number of electrodes ranges from 16 to 116 between patients.
The configuration of nodes is unique to each patient and is included in their
documentation pages (Figure 1). Of the 11 suitable patients, patient 017 was used for this
analysis.

The documentation for each patient also details the patient's experience during
monitoring, including injections and actions taken by staff, times of clinical seizure
onsets (though not for all seizures), discussion of the EEG, and clinical interpretations.
Note that clinical seizure onsets are the (sometimes) visible symptoms of seizure onset,
while the onsets labeled in the data are the onsets determined by the EEG signal, which
may occur at a different time. The following information is also available for each
patient: age at onset, handedness, gender, ethnicity, seizure history, precipitants, age at
admission, and contact group of electrodes. Only the raw EEG data was pertinent to the

present research, so all of this extraneous information was excluded from the analysis.
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Data Pre-Processing

Set 1:

Preictal and
All Interictal
Fast Fourier Frequency Bins Label Preictal : Set 2:
RawEEG q ¥ .
agata Transform 6.8,0.p.v. 5, 10,20, 40 Mins g:}’fg;tfﬁrc;] Preictal and
5 sec Samples HFA HFB Delete Ictal T Pure Interictal

Holdout
Test Data

Figure 2. Pre-Processing Flowchart. The steps to process the raw EEG signals into useable datasets.

33 Data Pre-Processing

Before performing any analysis on the data, considerable pre-processing was
necessary. The following steps (outlined in Figure 2) were necessary to process the raw
EEG signal into useable datasets:

1. Transforming the data from voltages to power in the frequency domain
using an FFT

2. Averaging the FFT signal into bins by the common EEG frequency bands

3. Labeling the preictal windows based on the start of the ictal labels, then
deleting the ictal periods and artifacts

4. Labeling the interictal data for Set 1 and Set 2 and separating the test set

3.3.1 Fast Fourier Transform.

Raw EEG signals are time-series discharges from the patient’s brain, recorded as
voltages. In order to use the data for spectral power analysis, it was converted to the
frequency domain using Matlab’s FFT algorithm. The algorithm computes the discrete
Fourier transform (DFT) of each sample. To maintain enough detail in the signal to

identify important features, a time window of 5 seconds without overlap was used. This
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window length is consistent with those used by others performing similar analyses
(Bandarabadi, Teixeira, et al., 2014; Mirowski et al., 2009; Moghim & Corne, 2014).

For a vector X of length n, the DFT is defined as follows:

Y=y x(wI e M

j=1
where
W, = e(-2md/n

is one of n roots of unity (Mathworks, 2015).

Since the FFT function produces an output mirrored about 0, the negative values
were discarded. The amplitudes of the remaining frequencies were doubled (except the
Nyquist frequency which appears only once) to preserve the total power of the signal.
Each observation was then averaged into bins by the common EEG bands: delta (<4 Hz),
theta (4-7 Hz), alpha (8-15 Hz), beta (16-31 Hz), and gamma (32-100 Hz), as well as two

high frequency bands: high frequency A (HFA) (100-150 Hz) and HFB (150-200 Hz).

3.3.2 Labeling and Segmentation.

The data had to be segmented and labeled according to the four possible brain
states in relation to seizures:

1. Interictal - normal brain functioning between seizures

2. Preictal - the period of unknown duration preceding a seizure during which the
seizure is predictable (four possible windows were tested)

3. Ictal - during the seizure

4. Postictal - the period of unknown duration of altered brain function following a
seizure — this period was included in the interictal data of the following seizure for
one of the datasets (Figure 4)
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Of these four states, only the interictal and ictal periods were annotated in the
original data (preictal and postictal were also annotated as interictal), since they are
directly observable in the EEG recordings (Figure 3). The timing of the transitions
between the brain states are unknown, so the impact on classification accuracy of
mislabeling samples was investigated by graphing the sliding window average accuracy

across the monitoring period (see section 3.6 for full description).

Brain States — EEG Example

Ictal Postictal (Unknown Duration) Interictal (Not Post- or Pre-) Preictal (Unknown Onset Time) Ictal

Figure 3. Brain States in EEG. An example of the four states of an epileptic brain. Each signal (5
total) represents a node on the patient’s brain and the x axis is the recording time.

Since the onset of the preictal window is unknown, four window lengths
concurrent with the literature were tested: 5, 10, 20, and 40 minutes (Mormann et al.,
2005; Netoff et al., 2009; Park et al., 2011; Williamson et al., 2011). The 5 minute
window was chosen as the common minimum warning time for an alert to be useful. The
40 minute window was chosen as both within the 1 hour windows tested in other
literature, and beyond the 30 minute windows already tested. The 10 and 20 minute

windows were chosen as reasonable intermediate values. Ideally, every time window
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from 5 minutes to 4 hours could be tested. This would either reveal the precise beginning
of the preictal window for each seizure, or more likely produce a graph of increasing
prediction accuracy as the preictal window approached the seizure and the preictal
features presumably strengthened. However, such a study was computationally

impossible for this research, so the four selected windows were tested for a similar trend.

Training Set 1 Segmentation (10 Minute Preictal Window)

Interictal 10 Min Preictal

Figure 4. Training Set 1 Labels. The labels for training Set 1, using a 10 minute preictal window.
Note that each preictal window labels the remainder of the data as interictal, so some observations will
be labeled preictal for one window but interictal for another. Each signal is recorded from a node on
the patient’s brain and the x axis is the recording time.

Next, the interictal training segments were labeled. Two definitions of the
interictal training data were tested (henceforth Set 1 and Set 2). Set 1 interictal data
included all of the data that was not preictal (Figure 4). However, this data was expected
to cause problems during machine learning training because of the unknown length of the
preictal (and postictal) windows. If the preictal window was grossly ill-defined, the

mislabeled samples may poorly train the classifier. Also, if the postictal data included in
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the interictal class resembles the preictal class, the classifier may not be able to
distinguish the classes.

To try to combat this potential issue, Set 2 interictal data was defined as the
observations farthest between the end of the last seizure and the beginning of the 40
minute preictal window, sampling an equal number to the preictal observations. The
observations would be considered exemplary interictal samples, because they would be as

far between the preictal and postictal windows as possible (Figure 5).

Training Set 2 Labeling

Interictal Preictal

%:’

5 Minute Window 10 Minute Window 20 Minute Window 40 Minute Window Ictal (removed)

Figure 5. Training Set 2 Labels. The labels for training Set 2, for all windows (overlapped).

The interictal samples are spaced as far from the end of the previous seizure and the start of the 40
minute preictal window as possible. Each signal is recorded from a node on the patient’s brain and
the x axis is the recording time.

The testing interictal set included all samples except ictal and preictal (the same
method as Set 1, but separate seizures). This is necessary for testing, since the algorithm

must handle the many varying brain states a patient may experience. To clarify, samples
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within larger preictal windows were included in the interictal test data of smaller preictal
windows.

Once preictal and interictal observations were binarily labeled using the ictal
annotations as reference points, the ictal periods were deleted from the data to maintain a
binary classification problem: 1 for preictal or 0 for interictal. (This removal was also
considered valid because any classifications made during a seizure—whether positive or
negative—would not be helpful to the patient during the seizure.) There were also
several periods of EEG silence (all variable values of 0) which were removed.

All of this processing yielded eight separate training sets—Set 1 and Set 2 for
each of the four preictal windows. For both sets, bootstrapping was used to mitigate
different training issues.

Set 1 had highly unbalanced class sizes, because the interictal period was much
longer than the preictal. The unequal balance could cause a problem if the classifier
learns to ignore the preictal class, due to lack of training data. Uniform random sampling
with replacement (bootstrapping) was used increase the preictal class size to an equal
number of observations as the interictal class.

For Set 2, bootstrapping was necessary to increase the number of observations for
training. Limiting the data to only twice the preictal window, multiplied by the number
of training seizures, produced a negligible training set. For this data, bootstrapping was
used to create a training set of 10,000 observations. The classes were approximately
equal (less than 2% difference), since they were equal before the uniform sampling; this

is because the resampling function in Matlab does not consider the original class ratio.
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3.4  Preliminary Feature Analysis

The common EEG bands across all nodes for a patient were chosen as original
features. Correlation with the binary classes was used as a preliminary feature analysis.
Particular attention was paid to the high and low frequencies, because a previous study
found a decrease in delta band power (with an increase in other bands) indicative of
preictal EEG (Mormann et al., 2005), and several other studies have found indications
among high-frequency bands (Alvarado-Rojas et al., 2014; Bandarabadi, Rasekhi, et al.,
2014; Worrell et al., 2004).

If any feature had clear differences in readings between interictal and preictal
samples, that feature would have high correlation (near 1) with seizure prediction. This
information was not used for feature selection, but merely checking for clearly indicative

features and determining possible feature saliency.

3.5  Classification

This research framed seizure prediction as a binary classification problem:
preictal or interictal. Given an observation consisting of EEG spectral power readings at
each node across the sample window, a classifier determined whether the patient was in a
preictal state or any other (interictal or postictal) state. If a seizure then occurred within
the specified prediction window, the prediction was considered a true positive. Defining
the problem in this way focuses training on distinguishing between preictal and interictal,
regardless of the duration of the ictal state.

A random forest classifier was chosen for nonlinear classification. This algorithm

was chosen above other nonlinear methods for its ability to handle highly dimensional
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data, resistance to over-fitting, speed, scalability, and most importantly the interpretability
of results in terms of the input variables. Furthermore, using a random forest classifier is
a novel approach to this classification problem.

Random forest is an ensemble classifier based on the decision tree classifier
(Breiman, 2001). It involves building a forest of decision trees that branch nodes by
random, independent sampling, rather than through a metric. The Matlab function
Treebagger, is a random forest algorithm that utilizes bagging (or bootstrap aggregating)
of trees to improve stability and accuracy (Mathworks, 2015). This algorithm is known
for being fast and simple to implement, and robust to noise.

Treebagger has two important parameters that were adjusted to improve
classification. The first parameter was the number of trees the algorithm grows before
the trees vote on each observation to classify it. The training data for Set 2 was run with
10, 50, 100, 500, and 1000 trees. The Out-Of-Bag Error plot stabilized near 100 trees and
maintained a comparable error for up to 1000 trees, so 100 trees were used for all further
analysis.

The second parameter was the minimum number of observations per end leaf
(minleaf). This parameter dictates how many observations have to be grouped together to
form an end node when the tree branches. Though important when tuning a decision tree
to prevent overfitting, this value is less critical for random forests, because they are
already robust to overfitting. The parameter was tuned using Leave-One-Out Cross

Validation (LOOCYV) with the training data. Settings of 1, 2, 4, and 8 were tested, with

29



each model selecting the setting that yielded highest total accuracy across all LOO trials.
The setting varied between models, without a trend.

Once the second parameter was tuned, the model was retrained using all of the
training data. Then the model was given the test data for classification, and the tree votes
for every observation were saved. By saving the votes, the Matlab function perfcurve
was able to plot ROC curves. The area under each curve (a built-in metric of perfcurve)
was calculated as well. The model with the simultaneous highest true positive rate and
lowest false positive rate (the point on the ROC curve closest to the top left corner) was
used for the evaluation metrics.

To determine which predictive features each model was using, the Matlab
OOBPermutedVarDeltaError (henceforth PVDE) values for each model were stored.
This Matlab output is a measure of importance for each predictor variable, calculated by
permuting the values of the variable across the out-of-bag observations and measuring the
increase in prediction error. After computing this measure for every tree, the values are

averaged for the ensemble and reported as the PVDE output (Mathworks, 2015).

3.6  Evaluation Metrics

To evaluate the performance of the classification models, and thereby determine
predictive EEG features, the classification accuracy for the holdout test set was used.
Accuracy ranges from 0 to 1, with 1 indicating perfect accuracy. In a confusion matrix—
with the truth classes as rows and the predicted classes as columns—perfect classification

manifests as all samples falling into the diagonal.
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This evaluation method differs from other prediction studies that focus on true
positive rates (sensitivity), false positive rates (FPR), and the amount of time a patient
spends awaiting seizures after false positive warnings (time under false warning). The
present research chose accuracy instead of these other measure because of the
implications for feature importance.

Studies using sensitivity, FPR, and time under false warning aim to minimize false
prediction, while having at least one true prediction per seizure. That research focus
completely disregards false negative classifications (misclassifying a preictal sample), as
long as at least one preictal sample indicates the impending seizure. For optimizing
predictions and the quality of life for the patient, these metrics make sense. However, the
focus of the present research is not to develop a superior prediction method. The
classification algorithms are merely used to evaluate how useful the EEG features are for
distinguishing between all interictal and all preictal samples. That is why this research
uses classification accuracy of a holdout test set, rather than focusing on minimizing false
positives and disregarding false negatives.

The primary method of evaluation for the models was time-series accuracy graphs.
These graphs show a sliding window of the prediction accuracy for the preceding five
minutes of observations. (Every five seconds, it shows the accuracy of the past five
minutes.) A five minute window was chosen, because it smoothed the accuracy to a
point that the graph was interpretable, without smoothing away too much performance
detail. Ideally, these graphs would show 100% accuracy at all points in time. However,

this was infeasible, so the goals were to minimize misclassifications in the interictal span
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to avoid false warnings, and maximize positive classifications during the preictal, to show
the seizure was predicted. These graphs were particularly important for analysis, because
a classifier could potentially show high total accuracy by classifying all samples as
interictal, due to the extreme difference in class sizes. With these graphs, such an
algorithm would clearly show low accuracy for the preictal window. In short, these
graphs visualized the changes in classification accuracy in relation to the brain states.

Since the preictal and interictal training sets were sampled from as far away from
each other as possible in Set 2, the classification accuracy was expected to diminish in the
brain state transitional periods. If the assumption were correct, the time-series accuracy
graphs would show peaks in the purely interictal and preictal areas, and decreased
accuracy in the transitional areas. These graphs may also provide insight into the true
length of the preictal window, as the accuracy near and within the preictal window would
show the true state of the EEG. For instance, if the window is defined too short, there
would be many misclassified interictal samples preceding the window, since they would
be “misclassified” as preictal (because that is what they should actually be labeled).

In order to compare this research to other prediction algorithms, approximate time-
under-warning graphs were created to show how much time a patient would spend
awaiting seizures that may or may not occur. To create these graphs, it was assumed that
once a warning is issued, another warning cannot be issued for the length of the preictal
window. For comparison, the number of true positive classifications within a time span

necessary for a warning was increased, since this reduces the time under false warning.
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Ideally, though there may be false positives, the patient would never be alerted of a

seizure unless one was going to occur within the specified preictal window.

3.7  Summary

Raw EEG data were transformed to the frequency domain using an FFT and
averaged into common bands by frequency. The data were segmented into two sets of
training data with different interictal definitions, and a testing set. Each set included four
separate preictal window definitions: 5, 10, 20, and 40 minutes. Testing each of the four
selected preictal windows and two interictal sets individually, a unique random forest
classification model was trained to the patient. LOOCYV was used to train the minleaf
parameter, which reduces the chance of overfitting. Then the tuned classifiers were used
to predict two holdout test seizures from the same patient. Performance was analyzed

with the prediction accuracy of the test set, ROC curves, and time-series accuracy graphs.
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IV. Analysis and Results

These results are for Patient 017, who suffers from two types of epileptic seizures:
partial complex and partial with secondary generalization. The patient was monitored
with 16 nodes for 7 days and 17 hours. The patient had nine seizures during that time,
seven of which were used for training (including LOOCV) and two were used as the

holdout test set.

4.1 Preliminary Feature Analysis

The correlation coefficients for the features using the 5 minute preictal window of
Set 1 are shown in Table 1, with the rest of the windows included in Appendix C.
Considering correlation coefficients range between -1 and 1—with -1 indicating a perfect
inverse linear relationship and 1 indicating a perfect direct linear relationship—the
negligible magnitudes of all of the coefficients imply that none of the features are
individually linearly connected with the classes.

To compare across training set and preictal windows, the graphs were
conditionally formatted according to coefficient magnitude, with the largest magnitudes
(whether positive or negative) shading to dark grey, while values close to 0 were white.
Note that for this discussion, the numbers in the tables may be illegible, but they are not
as relevant as the shades. Shading the tables shows that limiting the samples to the
“pure” data of Set 2 slightly increases the correlation coefficient magnitudes (Figure 6).

Shading the tables also shows that the somewhat predictive features are consistent

across the varying seizure windows for Set 2, and the strength of the correlation increases
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with the wider preictal windows. The increase in correlation is reassuring that the 40
minute preictal window is not too long. Though the coefficients are small, the shades
show that gamma, HFA, and HFB have the largest magnitude coefficients. This is
consistent with the previously discussed literature, which found high frequency bands to
be more predictive than low frequency bands. Note also, that some of the least indicative
features (white) are found within the same bands, but on different nodes.

Overall, none of the coefficients are large enough to have real meaning. This
preliminary analysis has shown that there is not a substantial linear relationship between

any singular feature and the classes that could be used for prediction.

Table 1. Correlation Coefficients

Set 1 — 5 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00110 -0.00006 0.00069 0.00342 0.00351 0.00116  0.00045
2 -0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028 -0.00068
3 -0.00016 -0.00087 -0.00074 -0.00105 -0.00147 -0.00157 -0.00169
4 -0.00013 -0.00086 -0.00086 -0.00113 -0.00183 -0.00176 -0.00173
5 -0.00042 -0.00092 -0.00097 -0.00132 -0.00210 -0.00164 -0.00167
6 -0.00092 -0.00119 -0.00130 -0.00166 -0.00237 -0.00260 -0.00222
7 -0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158
8 -0.00101 -0.00024 0.00075 0.00313 0.00350 0.00112  0.00035
9 0.00073 0.00098 0.00381 0.00498 0.00463  0.00224  0.00086
10 -0.00065 -0.00072 0.00156 0.00490 0.00282  0.00390 0.00224
11 -0.00078 -0.00065 0.00152 0.00526 0.00551 0.00383  0.00290
12 -0.00062 -0.00061 -0.00003 0.00095 0.00052 0.00127  0.00057
13 -0.00074 0.00006 0.00078 0.00283  0.00287  0.00064 -0.00069
14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203
15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239 -0.00225
16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234
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Set 1 -5 Min Window - Correlation Coefficients

Set 2—5 M in Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00110 -0.00006  0.00069  0.00342  0.00351 0.00116  0.00045 1 -0.09325 -0.08534 -0.10194 -0.10877 -0.09902 -0.08175 -0.11390
2 -0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028  -0.00068 2 -0.09419 -0.10077 -0.11539 -0.10156 -0.11163 -0.11292  -0.10664
3 __-0.00016 _ -0.00087 _ -0.00074 _ -0.00105 _-0.00147 _ -0.00157 __-0.00169 3 -0.08854 -0.09316 -0.10428 -0.10817 -0.11948 -0.11805 _-0.10097
4 -0.00013 -0.00086 -0.00086 -0.00113 -0.00183 -0.00176  -0.00173 4 -0.08851 -0.08856 -0.09758 -0.10339 -0.09868 -0.10264 -0.08588
5 -0.00042 -0.00092 -0.00097 -0.00132 -0.00210 -0.00164  -0.00167 5 -0.08762 -0.08322 -0.09497 -0.10380 -0.06253 -0.08804 -0.08395
6 -0.00092 -0.00119 -0.00130 -0.00166 -0.00237 -0.00260  -0.00222 6 -0.08957 -0.08047 -0.09422 -0.10235 -0.09104 -0.08579 -0.09203
7 -0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158 7 -0.08801 -0.07738 -0.08588 -0.09633 -0.08503 -0.07852 -0.08669
8 -0.00101 -0.00024 _ 0.00075  0.00313  0.00350  0.00112 _ 0.00035 8 -0.09241 -0.08530 -0.10209 -0.10894 -0.09908 -0.08208  -0.11439
9 000073 000098 000381 000498  0.00463  0.00224 _ 0.00086 9 -005660 -007319 -0.05423 -0.08685 -0.06523 -0.04375 -0.04100
10 __-0.00065 -0.00072 _ 0.00156  0.00490  0.00282  0.00390 __ 0.00224 10 -0.08940 -0.07634 -0.06680 -0.05618 -0.03215 -0.00220 -0.00552
11 -0.00078 -0.00065  0.00152 000526  0.00551  0.00383 _ 0.00290 11 -0.08871 -0.05146 -0.02233 -0.03616  -0.02686  0.00182 -0.06659
12 -0.00062  -0.00061 -0.00003 _ 0.00095  0.00052  0.00127  0.00057 12 008910 -0.08618 -0.08878 -0.07937 -0.07821 -0.02691 -0.05058
13 -0.00074  0.00006  0.00078  0.00283  0.00287  0.00064 -0.00069 13 -0.08872 -0.08654 -0.08929 -0.09037 -0.07953 -0.07185 -0.10081
14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203 14 008865 -0.08488 -0.10543 -0.11196 -0.11642 -0.13320 -0.14236
15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239  -0.00225 15 -0.08806 -0.08314 -0.09244 -0.10060 -0.08335 -0.10886 -0.10568
16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234 16 -0.08373 -0.07875 -0.0892 -0.09537 -0.06567 -0.09602 -0.09789
Set 1—10 M in Window - C ion C Set 2—10 M in Window - Correlation C
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00142  0.00031 0.00141 0.00630  0.00704  0.00246  0.00170 1 -0.08651 -0.07207 -0.07903 -0.06344 -0.05639 -0.05918 -0.07676
2 -0.00124 -0.00240 -0.00408 -0.00515 -0.00374  -0.00033 -0.00112 2 -0.08766 -0.09485 -0.10975 -0.10718 -0.12186 -0.09927 -0.10902
3 -0.00003 -0.00093 -0.00082 -0.00086 -0.00216 -0.00238 -0.00268 3 -0.08115 -0.08303 -0.09080 -0.09253 -0.12823 -0.12229 -0.11669
4 -0.00011 -0.00107 _-0.00117 -0.00144 -0.00303 -0.00279  -0.00288 4 -008265 -0.08149 -0.08926 -0.09553 -0.12477 -0.11984 -0.11321
5 -0.00054 -0.00121 -0.00137 -0.00181 -0.00365 -0.00272 -0.00279 5 -0.08239 -0.07767 -0.08683 -0.09808 -0.10015 -0.10947  -0.10921
6 -0.00143 -0.00166 -0.00186 -0.00238 -0.00390  -0.00411 -0.00352 6 -0.08739 -0.07657 -0.08586 -0.09383 -0.11711 -0.10337  -0.10135
7 -0.00130 -0.00170 -0.00205 -0.00226  -0.00308  -0.00271  -0.00257 7 -0.08564 -0.07387 -0.08108 -0.08885 -0.10899 -0.09560 -0.10535
8 -0.00139  0.00004 0.00157 0.00579  0.00702  0.00237  0.00150 8 -0.08725 -0.07337 -0.07999 -0.06454 -0.05798 -0.06228 -0.08032
9 0.00035 0.00106  0.00483  0.00740  0.00776  0.00405 _ 0.00130 9 -0.06567 -0.07421 -0.04665 -0.06226 -0.02319 -0.01608  -0.03469
10 -0.00108 -0.00124  0.00182  0.00692  0.00394  0.00522  0.00315 10 -0.08567 -0.07892 -0.05855 -0.03877 -0.01742  0.00747  0.00139
11 -0.00118 -0.00066  0.00233  0.00790  0.01029  0.00550  0.00529 11 -0.08544 -0.04361 -0.00725 -0.02463 -0.00602  0.00169  -0.03881
12 -0.00098 -0.00096 -0.00021  0.00128  0.00049 _ 0.00069 -0.00015 12 -0.08655 -0.08284 -0.07686 -0.06965 -0.07933 -0.05647 -0.08156
13 -0.00118  0.00022  0.00110  0.00390  0.00339  -0.00024  -0.00197 13 -0.08661 -0.07753 -0.08211 -0.08535 -0.09147 -0.10529  -0.12986
14 -0.00067 -0.00101 -0.00064  0.00013 -0.00145 _-0.00297 _ -0.00329 14 -008614 -0.08183 -0.09843 -0.10486 -0.12618 -0.13529 -0.14620
15 -0.00041 -0.00083 -0.00063 -0.00104 -0.00411 -0.00370 -0.00363 15 -0.08456 -0.07962 -0.08404 -0.09096 -0.10203 -0.11599 -0.12011
16 -0.00075 -0.00118 -0.00091 -0.00117  -0.00478 -0.00443  -0.00382 16 -0.08165 -0.07545 -0.07969 -0.08457 -0.08759 -0.10940 -0.11289
Set1-20M indow - Correlation Coefficients Set 2—20 M in Window - Correlation Coefficients
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Ganma HFA HFB
1 _-000218  0.00109  0.00288  0.01062  0.01315  0.00536 __ 0.00416 1_-006979 -0.02765 -0.01866 -0.00009  0.01622 -0.00324 -0.02071
2 -0.00197 -0.00331 -0.00577 -0.00615 -0.00382  0.00058 -0.00084 2 -0.07086 -0.08042 -0.10766 -0.07350 -0.06984 -0.04319 -0.05649
3 -0.00027 -0.00140 -0.00149 -0.00111 -0.00341 -0.00363  -0.00439 3 -006221 -0.06262 -0.08187 -0.06545 -0.12563 -0.10081 -0.10632
4 -0.00028 -0.00172 -0.00207 -0.00216 -0.00518 -0.00446 -0.00486 4 -006328 -0.06398 -0.08146 -0.07552 -0.14533 -0.11191 -0.11223
5 -0.00087 -0.00186 -0.00232 -0.00277  -0.00639 -0.00444  -0.00470 5 -006344 -0.05941 -0.07868 -0.08179 -0.14309 -0.10954 -0.10795
6 -0.00220  -0.00245 -0.00285 -0.00359 -0.00661  -0.00628  -0.00559 6 -0.07050 -0.06274 -0.07804 -0.08228 -0.15794 -0.11398  -0.09993
7 -0.00194 -0.00250 -0.00305 -0.00337 -0.00494 -0.00418  -0.00405 7 -0.06926 -0.06089 -0.07384 -0.07882 -0.14204 -0.10182 -0.10514
8 -0.00207  0.00073  0.00329  0.00982  0.01320 _ 0.00533 _ 0.00390 8 -0.06981 -0.02842 -0.01915 -0.00055  0.01547 -0.00472 -0.02219
9 -0.00034 0.00070 0.00498 0.00998  0.01112  0.00552  0.00132 9 -0.05911 -0.07715 -0.06704 -0.03005 0.00986  0.00388 -0.01637
10 -0.00182 -0.00221  0.00139  0.00871  0.00494  0.00796  0.00510 10 -0.07064 -0.07361 -0.07063 -0.01784  0.00483  0.01569  0.01041
11 -0.00179 -0.00104  0.00306  0.01111 0.01663  0.00822  0.00897 11 -0.06879 -0.03036  0.00625 -0.00168  0.01886  0.01033  0.00331
12 -0.00150 -0.00165 -0.00108  0.00122  0.00073  0.00087  -0.00048 12 -0.06986 -0.07516 -0.08209 -0.06201 -0.06623 -0.05409 -0.07805
13 -0.00179  0.00012 000138  0.00533  0.00579 -0.00004 _-0.00261 13 -0.06995 -0.06666 -0.07513 -0.06495 -0.07181 -0.09570 -0.11734
14 -0.00104 -0.00158 -0.00113 -0.00007 -0.00233  -0.00446 -0.00520 14 -0.06955 -0.07000 -0.09070 -0.09332 -0.13326 -0.12491 -0.14106
15 -0.00068 -0.00144 -0.00128 -0.00167 -0.00658 -0.00565 -0.00587 15 -0.06686 -0.06750 -0.07556 -0.07242 -0.12819 -0.10761 _ -0.11769
16 -0.00128 -0.00188 -0.00150 -0.00178 -0.00776 -0.00680 -0.00613 16 -0.06607 -0.06217 -0.06428 -0.06081 -0.11747 -0.11249 -0.11399
Set 140 M in Window - Correlation Coefficients Set 2—40 M in Window - Correlation Coefficients
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00337 0.00075 0.00299 0.01219  0.01763  0.00813  0.00546 1 -0.05793 -0.03326 -0.03039 -0.02197  0.01364  0.00950 -0.01563
2 -0.00313 -0.00497 -0.00847  -0.00894 -0.00522 _ 0.00134 _ 0.00010 2 -0.05995 -0.08682 -0.11636 -0.08047 -0.05569 -0.02368 -0.01938
3 -0.00085 -0.00310 -0.00320 -0.00323 -0.00587 -0.00580 -0.00707 3 -0.05062 -0.07066 -0.08987 -0.07669 -0.12977 -0.09801 -0.10905
4 -000084 -0.00346 -0.00401 -0.00436 -0.00877 -0.00694 -0.00770 4 -005034 -0.06736 -0.08826 -0.08359 -0.16207 -0.11201 -0.11566
5 -0.00165 -0.00359 -0.00430 -0.00525 -0.01069 -0.00680 -0.00738 5 -0.05171 -0.06303 -0.08357 -0.08770 -0.16001 -0.10661 -0.10972
6 -0.00331 -0.00383 -0.00448 -0.00572 -0.00976 -0.00902 -0.00829 6 -0.05656 -0.05900 -0.07533 -0.07902 -0.15153 -0.10099 -0.09264
7__-0.00284 -0.00380 _ -0.00467 _ -0.00524 -0.00730 __-0.00611 _-0.00598 7__-0.05527 _ -0.05440 _-0.07065 -0.07478 -0.14309 -0.09559 -0.09932
8 -0.00315 0.00024  0.00334 0.01122  0.01770  0.00813  0.00511 8 -0.05736 -0.03360 -0.03071  -0.02221 0.01318  0.00856  -0.01668
9 -000091  0.00073 0.00732  0.01042 001238  0.00514  0.00044 9 -0.04803 -0.06917 _-0.03701 -0.05593 -0.02084 -0.03140 -0.03485
10 -0.00281 -0.00347  0.00163  0.01029  0.00666  0.01303  0.01082 10 -0.05796 -0.07196 -0.05308 -0.02795  0.02101 0.03802  0.04820
11 -0.00258 -0.00198  0.00375  0.01541  0.02810  0.01703  0.01869 11 -0.05384 -0.03860 -0.00231 -0.00176  0.03707  0.04884  0.04457
12 -0.00232 -0.00271 -0.00203  0.00086  0.00102  0.00625  0.00417 12 -0.05616  -0.07366 -0.07316  -0.05972  -0.04671 0.00922  0.00152
13 -0.00280 -0.00050  0.00145  0.00573  0.00870  0.00217 -0.00187 13 -0.05835 -0.07890 -0.08232 -0.08633 -0.06409 -0.04458 -0.06429
14 -0.00159 -0.00266 -0.00221 -0.00161 -0.00428 -0.00645 -0.00776 14 -0.05458 -0.06553 -0.08881 -0.10315 -0.14068 -0.11176 _ -0.13015
15 -0.00123 -0.00281 -0.00300 -0.00391 -0.01102 -0.00864 -0.00915 15 -0.05269 -0.07102 -0.08148 -0.08040 -0.13623 -0.10616 -0.11948
16 __-0.00235 -0.00334 -0.00312_ -0.00416 -0.01302 _-0.01018 _ -0.00946 16 -0.05426  -0.06358  -0.06995 -0.07021 -0.12233  -0.10586  -0.11200
-1 0 1

Figure 6. Shaded Correlation Tables. Shading the correlation tables shows the increase in correlation
when the data are restricted to “pure” samples. The second column also shows the same features darkened
across the four windows. Though the values are small, this trend may indicate predictive features. The two
columns correspond to Set 1 and Set 2; the rows are the preictal windows—S5, 10, 20, and 40—from top to
bottom.

36



4.2 Classification

The results of the random forest classifier will be discussed first by the sets
individually, discussing the effects of the lengths of the preictal window. Then Set 1 and
Set 2 will be compared to determine the effect of training on different definitions of
interictal samples.

4.1.1 Training Set 1 — All Interictal.

Recall that the data for Set 1 were sampled from the entire interictal period,
regardless of the unknown transition times between postictal, interictal, and preictal
states. Due to the drastic unbalancing of the data, the preictal observations were
bootstrapped to equal the number of interictal observations.

The ROC curves in Figure 7—produced by varying the preictal vote threshold on
the training set—show that both the true and false positive rates are stunted for the
shorter preictal windows. Not until the 20 and 40 minute windows do the graphs begin to
show variation depending on the threshold for preictal classifications. For the shorter
preictal windows, even setting the threshold as low as requiring only 10% of the trees to
classify as preictal, the vast majority of samples are classified as interictal.

The reason for this lack of preictal presence to the classifier may stem from two
possible sources. The first issue may be the lack of unique preictal observations. Though
the data were bootstrapped to equal the number of interictal observations, bootstrapping
does not create any new information. The case may be that the classifier has not seen
enough unique preictal data to recognize new samples, necessary for generalizing on the

left-out training sample.
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A more likely cause of this lack of preictal classifications is the incorrect

definition of the preictal window. If the observations in the 20 and 40 minute preictal

windows resemble those in the five minute window, labeling the larger windows as

interictal for the smaller window datasets would contradict what the classifier was

learning as preictal samples. This explanation is supported by the earlier discussed trend

in feature importance observed in the correlation tables.
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Figure 7. Set 1 ROC Curves. From left to right and top to bottom, the ROC curves for the
5, 10, 20, and 40 minute preictal windows. The area under each curve (AUC) is also shown.
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Figure 8 shows the time-series accuracy graphs for both test seizures, with a 5
minute preictal window. The graphs show only the last 4 hours of data before the
seizure. (All of the full time-series accuracy graphs are included in Appendix D and
Appendix E, but for most analysis the 4 hour intervals will be examined.) Note the grey
box highlighting the defined preictal window.

Figure 8 illustrates the fundamental issue with reporting solely the classification
accuracy. The classifier performs relatively well (particularly well on Seizure 3), but
completely fails at predicting the seizure. The line sloping immediately to 0 upon
reaching the preictal window shows that the classifier was classifying the majority of
samples as interictal. Although the line shows a steep decline upon reaching the window,
it must be noted that the graph is a sliding average, which means the slope is only due to
averaging the accuracy from previous observations (including the correct interictal).

This classifier has not trained to recognize the preictal class. The results are
concurrent with the ROC curve, which implied all samples are classified as interictal,
most likely due to a poor definition of the preictal window.

The 10 minute preictal window has similar results (Figure 9). Compared to the 5
minute window, the 10 minute model classifies more samples as preictal; however, it still
fails to recognize the true preictal samples. The same plummet in accuracy occurs at the
start of the preictal window. In general, the graph is less extreme than the 5 minute
graphs: the accuracy does not start as high or plummet as low. The classifier is paying
more attention to the importance of the preictal class, however, it still does cannot

distinguish the two.
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Figure 8. Set 1 - 5 Minute Accuracy. The 5-minute moving window accuracy for the
last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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Study 017 - Set 1 - 10 min Preictal - Seizure 3 Accuracy - 4 Hours
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Figure 9. Set 1 - 10 Minute Accuracy. The 5-minute moving window accuracy for
the last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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When trained using a 20 minute preictal window, the classifier begins favoring
preictal samples as the dominant class (despite the truth being the opposite). Figure 10
shows that for one seizure the model predicts near randomly, with a slight preference for
preictal, as shown by the below average interictal classification and increase in accuracy
at the start of the preictal window. For the second seizure, the model has completely
changed strategy from the shorter preictal windows. For the 5 and 10 minute windows,
the model voted for interictal the majority of the time, but for the 20 minute window it
predicts preictal the majority of the time. While the classifier predicts the seizure, it
would be a poor early warning device, because the patient would constantly be awaiting
seizures which would not occur.

The 40 minute model pushes even farther to the preictal class for the 4 hour span
(Figure 11). This shift for the 20 and 40 minute windows is likely due to the preictal
windows being too long. Labeling a number of interictal samples as preictal teaches the
classifier that both classes resemble preictal data.

Although there are issues in the 4 hours preceding the seizures, the 20 and 40
minute preictal windows perform considerably well over the entire timespan for Seizure 3
(Figure 12). The graphs exhibit the same trends in accuracy, including two large dips in
the second half of the timespan. These dips may be artifacts that resemble preictal data
or correspond to a particular function the patient is performing during that time (such as
sleeping). Excluding the major dip between -2000 and -1000 minutes, the performance
nearly resembles what was expected for a time-series accuracy graph: lower accuracy at

the beginning of the recording, due to the postictal period, then relatively high accuracy

42



for the clearly interictal period, and finishing with an area of questionable accuracy
caused by the definition of the preictal window. Note the critical difference between
these relatively high accuracy graphs and the high accuracy of the 5 and 10 minute

windows is that the larger windows have high accuracy during the preictal window.
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Figure 10. Set 1 - 20 Minute Accuracy. The 5-minute moving window accuracy for the
last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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Study 017 - Set 1 - 40 min Preictal - Seizure 3 Accuracy - 4 Hours
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Figure 11. Set 1 - 40 Minute Accuracy. The 5-minute moving window accuracy for the
last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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Figure 12. Set 1 — 20 and 40 Minute Accuracy. The 5-minute moving window accuracy
for the full timespan before Seizure 3. The two preictal windows yield near identical
results.
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Figure 13. Set 1 — 20 and 40 Minute Accuracy. The 5-minute moving window accuracy
for the full timespan before Seizure 7. The classifiers do not exhibit the same
performance as for Seizure 3.
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Unfortunately, these favorable results are not consistent with Seizure 7 (Figure
13). The difference in performance may be due to the features selected by the classifier
working well for Seizure 3, but not 7. More likely, the difference is caused by Seizure 7
having a much shorter timespan following Seizure 6, which perhaps does not allow for
the brain to return to a purely interictal state. This explanation is purely conjecture, as the
time to return to normal brain functioning is unknown.

4.1.2 Training Set 2 — Pure Interictal.

In an attempt to reduce the mislabeling of data due to undefined brain state
transitions, Set 2 used “pure” interictal samples, as defined in section 3.3.2. Reducing the
vast interictal periods to a span of exemplars caused a shortage of data, so both the
preictal and interictal classes were bootstrapped to a total of 10,000 observations.

The ROC curves for Set 2 indicate there is no longer a problem with ignoring the
preictal class (Figure 14). However, the graphs also indicate the classifier would not out-
perform a random guess. All of the ROC curves for the Set 2 data are near-perfect
diagonals, showing that the classifier did not learn from the data.

Figures 15, 16, 17, and 18 show that the classifier predicts randomly for the 4
hours preceding the seizure. This lack of training must be attributed to the limitation of
data. With so few examples of the highly variable interictal data, the model must classify

observations that are unlike anything from the training set.
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Figure 14. Set 2 ROC Curves. From left to right and top to bottom, the ROC curves for the
5, 10, 20, and 40 minute preictal windows. The area under the curve (AUC) is also shown.
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Figure 15. Set 2 -5 Minute Accuracy. The 5-minute moving window accuracy for the
last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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Figure 16. Set 2 - 10 Minute Accuracy. The 5-minute moving window accuracy for
the last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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Figure 17. Set 2 - 20 Minute Accuracy. The 5-minute moving window accuracy for
the last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.

51



Study 017 - Set 2 - 40 min Preictal - Seizure 3 Accuracy - 4 Hours
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Figure 18. Set 2 - 40 Minute Accuracy. The 5-minute moving window accuracy for
the last 4 hours before both test seizures. The grey boxes on the right mark the preictal
window.
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4.1.3 Training Set Comparison.

Limiting Set 2 to a subset samples did not have the desired outcome of learning
the data through exemplars. Instead, the data limitation reduced the classifier’s
performance to random for most windows.

Training on the full data showed promising performance for the larger preictal
windows, but had the expected decreases in accuracy in the transitional areas, as well as
some unexplained dips that may have been caused by artifacts or patient activity.
However, these transitional areas will presumably always pose an issue until the lengths
of all states can be determined. This fact once again highlights the utility of the time-
series accuracy graph as an evaluation metric for seizure predictors.

4.1.4 Feature Importance.

As described in section 3.5.1, the PVDE values were stored for each classifier. In
the same manner as the correlation matrices, the matrices were conditionally formatted to
shade by value for visual inspection of prominent features, keeping in mind the best
performance shown by Set 1 with 20 and 40 minute windows (Figure 19).

Darker shades indicate higher values, though each table is shaded in comparison
to only itself. Set 1 has higher overall values, which follows from the classifiers finding
stronger relationships between that data and output. Set 2 has low values, because the
classifier did not learn strong connections between the features and classes.

Across all windows, Set 1 emphasizes the beta band of node 12, particularly for
the 20 and 40 minute windows. The fact that all four independently trained classifiers

returned similar feature selections is indicative that the features are predictive. The poor
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performance of the classifiers in the shorter windows may partially be explained by those
tables emphasizing many factors that are not indicative in the larger windows. The
shorter windows may be identifying features as indicative that do not have true predictive
value. The longer windows have higher contrast, by emphasizing only a few key
features, specifically the beta band of node 12.

In the documentation included with the patient mentions a beta frequency
discharge in node 12 (as well as 11 and 13) during seizures. The node was monitoring
the right side of the patient’s brain, where the seizures would originate before sometimes
spreading. While this information may indicate the feature identified is predictive, the
beta bands in nodes 11 and 13 have low feature importance in the chart, so the connection
is inconclusive.

Though the beta band of node 12 may be an indicative feature, the classifier
performance was not considered high enough to perform more thorough analysis, such as
comparison to a random predictor or determining the time under false warning. These
analyses would be auxiliary to the primary task of identifying features, in order to
compare the predictive value of the features to features used in other studies.

Training a new classifier with a compromise between the two interictal definitions
would determine if the beta band of node 12 was truly indicative. If the new classifier
had higher performance and showed the same feature as indicative, further investigation
into the position and significance of the node in respect to monitoring would be

warranted.
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Set 1 -5 Min Window — OOBE

Set 2 — 5 Min Window — OOBE

Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 10212 14184 14318 13435 12098 14622 2856 1. 06503 06386 04671 05398 06645 _ 05202 04059
2 10054 16570 19746 23460 15737 19475 2.0054 20 07284 03957 0.6949 07035 07763 _ 0.6972 _ 0.6676
3 08673 15710 12860 12342 14757 17557 20734 30 07252 06208 03760 04366 0.5725 06238
409421 17302 15037 134620 23711 12292 19654 4 06398 06363 03641 05218 05693 05722 07525
5 07985 15623 13916 2.0480 15897 16630 S| 06823 07943 04733 04821 07279 05367  0.6145
6 08234 19997 16930 19122 15411 16789 14237 6 07067 08428 05541 05313 07149 0.6384
7 L7478 19154 22174 22477 18962 20304 2.1279 70 07182 05820 05617 0.6269
8 08505 12457 14655 10902 1.0388 12938  1.7948 8 06195 06269 05208 06016 0428 06210 0.5040
9 18542 18861 1.7423 16575 22710 9l 07680 0.6676 06217 05691 _ 0.6213 _ 06761 _ 0.5752
10 11851 18851 20406 17050 16286 2.1421 13917 10 05718 06502 0.6311 07195 04953 04951
1l 13027 21200 16349 16516 17795 24496 2.1820 1 06187 0.6959 07652 0.4803
12 15028 16771 2.06771 12 05279 04974 06306 0.6915 07267 _ 0.6506 _ 0.6857
13 08285 17531 18191 17399 12668 19917 20443 137 08095 06757 0629 05401 0.6801 07544 0.7546
14 12000 16629 13919 12583 13797. 24155 _ 2.0330 14 07135 05598 03444 04341 07075 04741 07894
15 10589 13962 12405 1.6548 14118 1.9358 15 06617 06074 05680 0.685 06878 05797 05760
16 13373 17946 18282 15848 23244 13914 2.1557 16 05500 06595 06282 06988 0.7668 0.6633
Set 1—10 Min Window — OOBE Set 2 — 10 Min Window — OOBE
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 11356 10410 10326 12168 14365 14407 15673 1 07439 07047 05684 06138 07939 07761 08473
2 11595 17184 23732 23185 19690 17024 1.9821 2 07621 04022 08297 08596  0.8029 08471 _ 0.7602
310826 12141 15517 15457 17677 20626 19811 3010100 06850 05343 06147 08446 08274 09524
408567 15614 14559 17139 2813 1.9440 17639 4 06010 08588 06715 05427 07500 07189 06740
5 07088 14934 15430 68 21662 14026 13421 5. 06830 08891 04192 05724 09051 07476 0.6541
6 07419 18214 16921 16615 1.8674 6 08488 08520 09542 08029 09703 09763
7 12964 19046 15063 17592 19974 707220 06322 09486 07702 09130 0.9658
8 08777 12195 12691 13552 12861 14744 2.0570 8 06454 08073 06117 06703 05629 07918  0.6684
9 14042[ 26062 20053 17891 17575 16592 2.1598 9 07107 0996 06238 08788 07831 08038 08216
10 12046 17896 19158 14271 17611 14742 13490 10 05591 07631 08620 07270 07340 0.5456___ 0.6941
11 L6066 22680 20514 17219 149200 23577 20151 11 06566 06257 08869  0.6024 07436 0.8322 _ 0.6010
12 08490 19138 20559 15314 21507 1.9447 12 07956 06650 08549 06137 08005 0.5812 _ 0.6963
13 08344 15068 16288  1.8224 13949 1.5673_ 2.0536 13 08240 06206 05878 06528 05170 0.7525 __ 0.9083
14 10022 1233 18496 14154 18540 19688  1.8949 14 07479 05046 04803 05546 07368 0.8846  0.6924
15 12470 17739 14892 17882 16588 14178 1.9379 15 07120 08936 07806 0.5964 08666  0.6054 __ 0.8406
16 12814 22652 18183 13550 14652 17963 1.5220 16 05079 07032 08466 09059 _ 09868  0.7259  0.6616
Set 1 —20 Min Window — OOBE Set 2 — 20 Min Window — OOBE
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
1 006632 09545 07121 07132 09546 13676 17177 1 07880 06552 06709 07523 06724 LOID 06975
2 05795 13626 17064 17083  1.1638 16207 _ 1.5335 209321 09703 L1511 10574 1.0590 11857
3 06362 12007 09851 11504  1.376 18528 14396 30 10263 07607 05125 07352 1.0346 L1901 09435
4 07184 15223 13551 12060 1.8549 15825 15761 407903 08483 04998 08291 08404 09180 10691
5 06706 15395 10013 16031 17143 17299 16053 S_ 11488 08914 08723 09864 _ LIlI4 09122 09189
6 06062 19046 1.6330 15866 13031 2.1087 19506 6 08461 10463 09787 08393 0.89l 12025
7 L1612 13936 13404 11901 14383 19647  1.8473 7 06054 11491 10898 09943 1.1298 11417
8 05214 09894 10255 08642 07664 12569 1.5100 8 06902 0.6754 06762 08671 07278 09601 0.9665
9 13007 13754 19229 16675 13461 11566 1.8754 9 07483 10899 11043 1.0372 10688 07344 1.0209
10 09041 13172 15661 13217 11163 12849 13742 10 07833 11484 10827 11303 07922 0.6448 _ 0.7765
11 06318 13893 17784  1.0263 09551 23808  1.6467 11 08278 07059 07745 07937 0743 11157 0.7956
12 08270 14193 18270 080618 19059 15290  1.7285 12 08305 05237 08279 10822 10085 09866 07713
13 07156 11284 13529 13481 10938 12735 14612 13 08860 07872 11025 0.6231 09412 10004 _ 0.9593
14 09407 10971 11320 13744 09359 19331 13709 14 069210 L1098 05470 06517 08133 09282 0.746
15 13253 10148 13017 11289 14157 13813 1.7294 15 06675 07109 10800  0.6309_ L1211 07030 0.8878
16 1249 15203 12500 11745 12314 15792 12781 16 07523 10269 08336 11383 12059 _ 0.8491 07724
Set 1 —40 Min Window - OOBE Set 2 — 40 Min Window - OOBE
Node Delta Theta Alpha Beta Gamma HFA HFB Node Delta Theta Alpha Beta Gamma HFA HFB
T 08989 13831 13947 11089 09725 1.8292 2209 T 06912 06369 05631 0.6634 05547 0.6650 _ 0.5289
2 13180 21247 23190 21688 1.6890 _ 2.6901 20606 2 07227 08154 09620 08848 09467 06529 09138
3 08955 12830 14560 17864  1.6994 22062 16928 3 06391 05315 05634 04880 0.6054 08401 _ 0.7466
4 09297, 16873 17100 18571 23941 20912 17832 407083 07186 07448 08314 07559 07048 07056
S 08730 16393 17885 16784 18572 21062 24054 S 06020 07392 07330 07697 09419 11002 0.7865
6 109470 23913 20026 21356 1.5185 2.803_ 6 06082 08761 09073 09451 _ 0.7463
716665 19708 18681 24198 14754 26721 705606 08795 09267 09404 09525 10708 09795
8 09052 12101 12946 16256 10183 17737 1.8653 8 05710 05974 06020 07061 _ 0.6417 07689 0.6950
9 15553 17035 21971 27230 23797 17801 2.6881 9 07138 09322 10764 07413 06575 09210 10910
10 09700 14851 18934 23930  2.1491 20907 1.9404 10 07987 09966 09164 07505 11577 05598 0.9551
Il 15834 1749% 18779 12476 13672 2495  1.5213 1 07395 07775 07207 06410 0.6895 0.6292
12 10968 19811 240810 37130 20716 17376 1.8924 12 06727 09349 05976 09900 12342 07882 0.8823
13 10496 16657 17198 22447 14714 18191 17278 13 07047 06785 08445 08307 _ 0.6258 08649 _ 0.9258
14 12301 17775 19474 20489 16325 24931 1906 14 05322 06749 06817 06738 06565 _ 0.6409 _ 0.8041
15 15489 18734 23147 20955 16756 27103 2.1305 15 07566 07189 07197 07895 07639 0.781 __ 0.7825
16 16957 23135 23033 16169 23296 22012 16 06756 05893 08317 0780 05653 07139 0.8037

Figure 19. Shaded PVDE Tables. The shading is normalized within each

OOBPermutedVarDeltaError (PVDE) table, with dark grey indicating maximum values.
The columns correspond to Set 1 and Set 2, with the rows from top to bottom indicating
windows 5 to 40. The columns within the tables are the EEG frequency bins, while the
rows are the nodes on the brain.

55



V. Conclusions and Recommendations

5.1  Conclusions of Research
This research used machine learning methods to investigate three research
questions:

1. What are the key spectral power features in EEG for predicting epileptic seizures?

2. How does predictive performance change when varying the length of the preictal
window, which greatly influences the impact for the patient?

3. How does a random forest classifier compare to those used in other prediction
research, particularly SVMs?

Though inconclusive, results showed the answer to the first question may lie in
the beta frequency bins of specific nodes. Further investigation would be necessary to
confirm this result. Adjusting the alert threshold to reduce the number of false warnings
would be necessary for comparison to other research. The results are also limited to a
single patient, due to the collection process of the data. Investigating the features of
patients with similar epilepsy may show the beta band of a particular region of the brain
is indicative.

Investigation of the second question was impacted by the definitions of the
interictal window. For Set 1, using a longer preictal window provided better
classification results, however, including the possibly preictal samples in the interictal
data of the shorter windows may have been the key factor behind this difference, rather
than the more accurate definition of the preictal window. Still, a predictive feature was
found as far as 40 minutes in advance and maintained validity into the shorter windows,

indicating a 40 minute preictal window is viable.
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The answer to the third question is still open to debate. While the classifier had
inconsistent accuracy across the full timespans, much of this error may have been due to
the segmentations of the data windows. Also, the performance of the classifier cannot be
fairly compared to other research that focused on seizure prediction, as the focus of this
research was classification. The modest performance with Set 1 for the 20 and 40 minute
windows would imply that higher prediction accuracy is achievable. This question

requires further research and analysis to reach a proper conclusion.

5.2 Significance of Research

The identification of a predictive feature as far as 40 minutes prior to seizure
onset is encouraging for the prospect of real-time monitoring systems. If predictive
features are found at 40 minutes, the algorithm could possibly give a preliminary
warning, then keep the patient updated on the status of whether or not the algorithm still
predicts a seizure as the preictal window shortens.

This research also emphasized the importance of identifying the transitional
states, and their major impacts on classifier performance. The use of a time-series
accuracy graph was a novel approach to investigating classifier performance, and would
enhance the analysis of future classifiers.

Though inconclusive, the application of a random forest classifier to this field of
research showed promise of improved performance. The speed and interpretability of
these algorithms may have positive implications for future research, now that they have

been introduced to the field as a viable method.
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5.3  Recommendations for Future Research

The process of this study revealed several issues that require significant
investigation, as well as elucidated possible methodologies for such investigations. This
section emphasizes those findings with the hope that future works will address them.

Testing a third definition of an interictal training sample may yield better results.
A definition that excludes a postictal period and leaves a gap before the preictal period,
but without eliminating as much data as Set 2, may perform well.

This analysis focused specifically on classification in order to determine
predictive features, rather than focusing on the prediction algorithm. One disadvantage to
this methodology is the lack of a comparison measure to other prediction research.
Purely for this comparison, a basic thresholding analysis to increase the number of
positive classifications necessary to alert the patient, as well as a time-under-false-
warning graph would improve this research.

To improve upon this research, a wavelet transform preprocessing method, to
localize by time and frequency (rather than just frequency with FFT), would maintain
more information in the signal. Changing this preprocessing step, but maintaining the
rest of the methodology, may provide significant improvements.

Another area of improvement would be comparing the nonlinear random forest
classifier to a linear classifier, such as logistic regression. Binary classifiers are either
linear or nonlinear, depending on how they form the decision boundary between classes.
Though trained on the same data, classifier performance depends on the relationship

between the observations and the outcome. In this application, if there is a linear
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relationship between the features and class labels, then a linear classifier such as logistic
regression should perform well. However when a nonlinear method is used on a linearly
separable classification problem, it may over-train to noise in the signal, complication the
decision boundary and preforming poorly on the test set. Such a comparison would
contribute to the debate of linear versus nonlinear classifiers. Also, linear methods are
preferable to more complicated and time-consuming nonlinear methods when the linear
method is suitable for the problem.

Assuming predictive features can be determined in individual patients, another
possible improvement would be to use a dataset with standardized node placement across
all patients. Such a dataset may be unattainable due to the intrusiveness of intracranial
EEG. Generalizing features between patients was virtually impossible for this research,
since each patient had a unique number and configuration of nodes, even if they suffered
from similar types of epilepsy.

The undefined duration of the postictal period may have substantial implications
when using any prediction algorithm. This is especially the case for patients that suffer
from frequently recurring seizures, with a short interictal period. Determining a method
for handling the postictal period that is robust to frequent seizures is a topic for future
work.

In the realm of optimizing seizure prediction, the next investigation should
include various synchronization measures and their predictive values. As discussed in

section 2.3.1 of the Literature Review, synchronization measures may be suitable features
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to use for seizure prediction. Such features could then be classified using random forests
and evaluated using the same measures as our research.

Finally, the present study was not able to capture the time-series aspect of the
data. Each observation was treated as an independent data point, without considering its
relationship with previous observations. Using a time-series method such as a Hidden
Markov Model (HMM) may address the loss of time-series information, which would
address several issues associated with the time windows. Hidden Markov Models are
useful when the states are not directly observable, but a signal from the states is
observable. A Hidden Markov Model may be suitable for this application if the states
were defined as interictal, preictal, ictal, and postictal. The EEG signal is always visible,
but the preictal and postictal states are hidden.

Using an HMM may account for the unknown length of the preictal and postictal
windows, the dilemma of setting the alert threshold, as well as the likelihood that
postictal data resembles preictal data. By accounting for the known states (interictal and
ictal) the probability of transitioning to the hidden states would incorporate the fact that a
person in an interictal state cannot move to a postictal state. This may greatly improve
prediction accuracy for closely spaced seizures with brief (or nonexistent) interictal
periods, which are a current obstacle for prediction algorithms. The issue with using an
HMM may be the increased computational complexity. The algorithm would need to run

quickly to be useful in an early warning device.
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Appendix A — Treatment Methods

There are currently several options to treat epilepsy. The most common
treatments are drug regimens, electrical stimulation, and brain surgery.  Drug
administration and electrical stimulation during a seizure are common to mitigate effects.
In fact, the threats of permanent brain damage and death during status epilepticus have
compelled doctors to recommend erring on the side of excessive medication, rather than
risk under-dosing (Roth & Blum, 2014). Brain surgery to attempt to remove the epileptic
focus of the brain is a last resort when other methods fail. However, for some people
even surgery fails and they continue to have seizures.

Treatment is a fragile process, as the medication to treat one form of epilepsy may
exacerbate a different form. Epileptologists have to be careful with drug prescriptions,
especially with patients suffering from multiple types of epilepsy.

There is some debate about the effectiveness of open-loop versus closed-loop
treatments. Open-loop treatments are on a schedule, independent of any feedback from
the patient. Treatments can be either drug dosages or electrical neuronal stimulations.
Closed-loop treatments consider biofeedback and are designed to administer only when
they are needed, such as imminently before or shortly after the start of a seizure. A
significant amount of research has concentrated on implementing closed-loop systems,
despite closed-loop treatment having yet to prove superior to open-loop as far as efficacy
and tolerability (Mormann et al., 2007). The future of treatment may consist of “fully-
automated closed-loop seizure prevention systems” (Mormann et al., 2007), which would

predict and treat seizures before their onset.
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Appendix B — Guidelines for Seizure Prediction Algorithms

(Mormann et al., 2007)

- Prediction algorithms should be tested on unselected continuous long-term
recordings covering several days of EEG in order to comprise the full spectrum of
physiological and pathophysiological states for an individual patient.

- Studies should assess both sensitivity and specificity and should report these
quantities with respect to the applied prediction horizon. Rather than false
prediction rates, the portion of time under false warning should be reported. If
false prediction rates are reported, they should be reported only for the seizure-
free interval.

- Results should be tested using statistical validation methods based on Monte
Carlo simulations or naive prediction schemes to prove that a given prediction
algorithm performs indeed above chance level. This is particularly important for
studies that contain in-sample optimization such as retrospective adjustment of
parameters or selection of EEG channels.

- If prediction algorithms are optimized using training data (in-sample), they should
be tested on independent testing data (out-of-sample). If part of the data from an
individual patient are used for patient-specific parameter adjustment or EEG
channel selection, these data must be excluded when evaluating the performance
out-of-sample. Performance of an algorithm should always be reported separately
for the testing data.
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Appendix C — Correlation Tables

Set 1 — 5 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB

-0.00110 -0.00006  0.00069 0.00342  0.00351 0.00116  0.00045

-0.00096 -0.00179 -0.00281 -0.00352 -0.00248 -0.00028 -0.00068

-0.00016  -0.00087 -0.00074 -0.00105 -0.00147 -0.00157 -0.00169

-0.00013  -0.00086 -0.00086 -0.00113 -0.00183 -0.00176 -0.00173

-0.00042  -0.00092 -0.00097 -0.00132 -0.00210 -0.00164 -0.00167

-0.00092  -0.00119 -0.00130 -0.00166 -0.00237 -0.00260 -0.00222

-0.00085 -0.00121 -0.00142 -0.00159 -0.00188 -0.00172 -0.00158

0| N[N | |W (|~

-0.00101 -0.00024  0.00075  0.00313  0.00350 0.00112  0.00035

9 0.00073 0.00098 0.00381 0.00498 0.00463 0.00224  0.00086

10 -0.00065 -0.00072  0.00156  0.00490  0.00282  0.00390  0.00224

11 -0.00078 -0.00065 0.00152 0.00526  0.00551 0.00383  0.00290

12 -0.00062 -0.00061 -0.00003 0.00095 0.00052 0.00127  0.00057

13 -0.00074  0.00006  0.00078  0.00283  0.00287  0.00064 -0.00069

14 -0.00039 -0.00078 -0.00045 0.00009 -0.00078 -0.00184 -0.00203

15 -0.00021 -0.00054 -0.00042 -0.00073 -0.00281 -0.00239 -0.00225

16 -0.00029 -0.00076 -0.00064 -0.00082 -0.00344 -0.00281 -0.00234

Set 1 — 10 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00142 0.00031 0.00141 0.00630 0.00704 0.00246  0.00170
2 -0.00124 -0.00240 -0.00408 -0.00515 -0.00374 -0.00033 -0.00112
3 -0.00003 -0.00093 -0.00082 -0.00086 -0.00216 -0.00238 -0.00268
4 -0.00011 -0.00107 -0.00117 -0.00144 -0.00303 -0.00279 -0.00288
5 -0.00054 -0.00121 -0.00137 -0.00181 -0.00365 -0.00272 -0.00279
6 -0.00143 -0.00166 -0.00186 -0.00238 -0.00390 -0.00411 -0.00352
7 -0.00130 -0.00170 -0.00205 -0.00226 -0.00308 -0.00271 -0.00257
8 -0.00139 0.00004 0.00157 0.00579 0.00702 0.00237 0.00150
9 0.00035 0.00106 0.00483 0.00740 0.00776  0.00405 0.00130
10 -0.00108 -0.00124 0.00182 0.00692 0.00394 0.00522 0.00315
11 -0.00118 -0.00066 0.00233  0.00790 0.01029 0.00550 0.00529
12 -0.00098 -0.00096 -0.00021 0.00128 0.00049 0.00069 -0.00015
13 -0.00118 0.00022 0.00110 0.00390 0.00339 -0.00024 -0.00197
14 -0.00067 -0.00101 -0.00064 0.00013 -0.00145 -0.00297 -0.00329
15 -0.00041 -0.00083 -0.00063 -0.00104 -0.00411 -0.00370 -0.00363
16 -0.00075 -0.00118 -0.00091 -0.00117 -0.00478 -0.00443 -0.00382
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Set 1 — 20 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00218 0.00109 0.00288 0.01062 0.01315 0.00536 0.00416
2 -0.00197 -0.00331 -0.00577 -0.00615 -0.00382 0.00058 -0.00084
3 -0.00027 -0.00140 -0.00149 -0.00111 -0.00341 -0.00363 -0.00439
4 -0.00028 -0.00172 -0.00207 -0.00216 -0.00518 -0.00446 -0.00486
5 -0.00087 -0.00186 -0.00232 -0.00277 -0.00639 -0.00444 -0.00470
6 -0.00220 -0.00245 -0.00285 -0.00359 -0.00661 -0.00628 -0.00559
7 -0.00194 -0.00250 -0.00305 -0.00337 -0.00494 -0.00418 -0.00405
8 -0.00207 0.00073 0.00329 0.00982 0.01320 0.00533  0.00390
9 -0.00034 0.00070 0.00498 0.00998 0.01112  0.00552  0.00132
10 -0.00182 -0.00221 0.00139 0.00871 0.00494 0.00796 0.00510
11 -0.00179 -0.00104 0.00306 0.01111 0.01663 0.00822  0.00897
12 -0.00150 -0.00165 -0.00108 0.00122  0.00073  0.00087 -0.00048
13 -0.00179 0.00012 0.00138 0.00533  0.00579 -0.00004 -0.00261
14 -0.00104 -0.00158 -0.00113 -0.00007 -0.00233 -0.00446 -0.00520
15 -0.00068 -0.00144 -0.00128 -0.00167 -0.00658 -0.00565 -0.00587
16 -0.00128 -0.00188 -0.00150 -0.00178 -0.00776 -0.00680 -0.00613
Set 1 — 40 Min Window - Correlation Coefficients
Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.00337 0.00075 0.00299 0.01219 0.01763 0.00813  0.00546
2 -0.00313 -0.00497 -0.00847 -0.00894 -0.00522  0.00134  0.00010
3 -0.00085 -0.00310 -0.00320 -0.00323 -0.00587 -0.00580 -0.00707
4 -0.00084 -0.00346 -0.00401 -0.00436 -0.00877 -0.00694 -0.00770
5 -0.00165 -0.00359 -0.00430 -0.00525 -0.01069 -0.00680 -0.00738
6 -0.00331 -0.00383 -0.00448 -0.00572 -0.00976 -0.00902 -0.00829
7 -0.00284 -0.00380 -0.00467 -0.00524 -0.00730 -0.00611 -0.00598
8 -0.00315 0.00024 0.00334 0.01122 0.01770 0.00813  0.00511
9 -0.00091 0.00073 0.00732 0.01042 0.01238 0.00514 0.00044
10 -0.00281 -0.00347 0.00163 0.01029 0.00666 0.01303 0.01082
11 -0.00258 -0.00198  0.00375 0.01541 0.02810 0.01703  0.01869
12 -0.00232 -0.00271 -0.00203 0.00086 0.00102  0.00625 0.00417
13 -0.00280 -0.00050 0.00145 0.00573  0.00870  0.00217 -0.00187
14 -0.00159 -0.00266 -0.00221 -0.00161 -0.00428 -0.00645 -0.00776
15 -0.00123 -0.00281 -0.00300 -0.00391 -0.01102 -0.00864 -0.00915
16 -0.00235 -0.00334 -0.00312 -0.00416 -0.01302 -0.01018 -0.00946

64



Set 2 — 5 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.09325 -0.08534 -0.10194 -0.10877 -0.09902 -0.08175 -0.11390
2 -0.09419 -0.10077 -0.11539 -0.10156 -0.11163 -0.11292 -0.10664
3 -0.08854 -0.09316 -0.10428 -0.10817 -0.11948 -0.11805 -0.10097
4 -0.08851 -0.08856 -0.09758 -0.10339 -0.09868 -0.10264 -0.08588
5 -0.08762 -0.08322 -0.09497 -0.10380 -0.06253 -0.08804 -0.08395
6 -0.08957 -0.08047 -0.09422 -0.10235 -0.09104 -0.08579 -0.09203
7 -0.08801 -0.07738 -0.08588 -0.09633 -0.08503 -0.07852 -0.08669
8 -0.09241 -0.08530 -0.10209 -0.10894 -0.09908 -0.08208 -0.11439
9 -0.05660 -0.07319 -0.05423 -0.08685 -0.06523 -0.04375 -0.04100
10 -0.08940 -0.07634 -0.06680 -0.05618 -0.03215 -0.00220 -0.00552
11 -0.08871 -0.05146 -0.02233 -0.03616 -0.02686 0.00182 -0.06659
12 -0.08910 -0.08618 -0.08878 -0.07937 -0.07821 -0.02691 -0.05058
13 -0.08872 -0.08654 -0.08929 -0.09037 -0.07953 -0.07185 -0.10081
14 -0.08865 -0.08488 -0.10543 -0.11196 -0.11642 -0.13320 -0.14236
15 -0.08806 -0.08314 -0.09244 -0.10060 -0.08335 -0.10886 -0.10568
16 -0.08373 -0.07875 -0.08962 -0.09537 -0.06567 -0.09602 -0.09789
Set 2 — 10 Min Window - Correlation Coefficients
Node Delta Theta Alpha Beta Gamma  HFA HFB
1 -0.08651 -0.07207 -0.07903 -0.06344 -0.05639 -0.05918 -0.07676
2 -0.08766 -0.09485 -0.10975 -0.10718 -0.12186 -0.09927 -0.10902
3 -0.08115 -0.08303 -0.09080 -0.09253 -0.12823 -0.12229 -0.11669
4 -0.08265 -0.08149 -0.08926 -0.09553 -0.12477 -0.11984 -0.11321
5 -0.08239 -0.07767 -0.08683 -0.09808 -0.10015 -0.10947 -0.10921
6 -0.08739 -0.07657 -0.08586 -0.09383 -0.11711 -0.10337 -0.10135
7 -0.08564 -0.07387 -0.08108 -0.08885 -0.10899 -0.09560 -0.10535
8 -0.08725 -0.07337 -0.07999 -0.06454 -0.05798 -0.06228 -0.08032
9 -0.06567 -0.07421 -0.04665 -0.06226 -0.02319 -0.01608 -0.03469
10 -0.08567 -0.07892 -0.05855 -0.03877 -0.01742 0.00747 0.00139
11 -0.08544 -0.04361 -0.00725 -0.02463 -0.00602 0.00169 -0.03881
12 -0.08655 -0.08284 -0.07686 -0.06965 -0.07933 -0.05647 -0.08156
13 -0.08661 -0.07753 -0.08211 -0.08535 -0.09147 -0.10529 -0.12986
14 -0.08614 -0.08183 -0.09843 -0.10486 -0.12618 -0.13529 -0.14620
15 -0.08456 -0.07962 -0.08404 -0.09096 -0.10203 -0.11599 -0.12011
16 -0.08165 -0.07545 -0.07969 -0.08457 -0.08759 -0.10940 -0.11289
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Set 2 — 20 Min Window - Correlation Coefficients

Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.06979 -0.02765 -0.01866 -0.00009 0.01622 -0.00324 -0.02071
2 -0.07086 -0.08042 -0.10766 -0.07350 -0.06984 -0.04319 -0.05649
3 -0.06221 -0.06262 -0.08187 -0.06545 -0.12563 -0.10081 -0.10632
4 -0.06328 -0.06398 -0.08146 -0.07552 -0.14533 -0.11191 -0.11223
5 -0.06344 -0.05941 -0.07868 -0.08179 -0.14309 -0.10954 -0.10795
6 -0.07050 -0.06274 -0.07804 -0.08228 -0.15794 -0.11398 -0.09993
7 -0.06926 -0.06089 -0.07384 -0.07882 -0.14204 -0.10182 -0.10514
8 -0.06981 -0.02842 -0.01915 -0.00055 0.01547 -0.00472 -0.02219
9 -0.05911 -0.07715 -0.06704 -0.03005 0.00986 0.00388 -0.01637
10 -0.07064 -0.07361 -0.07063 -0.01784 0.00483 0.01569 0.01041
11 -0.06879 -0.03036 0.00625 -0.00168 0.01886 0.01033  0.00331
12 -0.06986 -0.07516 -0.08209 -0.06201 -0.06623 -0.05409 -0.07805
13 -0.06995 -0.06666 -0.07513 -0.06495 -0.07181 -0.09570 -0.11734
14 -0.06955 -0.07000 -0.09070 -0.09332 -0.13326 -0.12491 -0.14106
15 -0.06686 -0.06750 -0.07556 -0.07242 -0.12819 -0.10761 -0.11769
16 -0.06607 -0.06217 -0.06428 -0.06081 -0.11747 -0.11249 -0.11399
Set 2 — 40 Min Window - Correlation Coefficients
Node Delta Theta Alpha Beta Gamma HFA HFB
1 -0.05793 -0.03326 -0.03039 -0.02197 0.01364 0.00950 -0.01563
2 -0.05995 -0.08682 -0.11636 -0.08047 -0.05569 -0.02368 -0.01938
3 -0.05062 -0.07066 -0.08987 -0.07669 -0.12977 -0.09801 -0.10905
4 -0.05034 -0.06736 -0.08826 -0.08359 -0.16207 -0.11201 -0.11566
5 -0.05171 -0.06303 -0.08357 -0.08770 -0.16001 -0.10661 -0.10972
6 -0.05656 -0.05900 -0.07533 -0.07902 -0.15153 -0.10099 -0.09264
7 -0.05527 -0.05440 -0.07065 -0.07478 -0.14309 -0.09559 -0.09932
8 -0.05736 -0.03360 -0.03071 -0.02221 0.01318 0.00856 -0.01668
9 -0.04803 -0.06917 -0.03701 -0.05593 -0.02084 -0.03140 -0.03485
10 -0.05796 -0.07196 -0.05308 -0.02795 0.02101 0.03802 0.04820
11 -0.05384 -0.03860 -0.00231 -0.00176 0.03707 0.04884  0.04457
12 -0.05616 -0.07366 -0.07316 -0.05972 -0.04671 0.00922 0.00152
13 -0.05835 -0.07890 -0.08232 -0.08633 -0.06409 -0.04458 -0.06429
14 -0.05458 -0.06553 -0.08881 -0.10315 -0.14068 -0.11176 -0.13015
15 -0.05269 -0.07102 -0.08148 -0.08040 -0.13623 -0.10616 -0.11948
16 -0.05426 -0.06358 -0.06995 -0.07021 -0.12233 -0.10586 -0.11200
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Test Accuracy for Sliding 5 Min Window
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Appendix E — Set 2 — Full Time-Series Accuracy Graphs
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