
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-24-2016

Whitelisting System State In Windows Forensic
Memory Visualizations
Joshua A. Lapso

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Information Security Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Lapso, Joshua A., "Whitelisting System State In Windows Forensic Memory Visualizations" (2016). Theses and Dissertations. 309.
https://scholar.afit.edu/etd/309

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/309?utm_source=scholar.afit.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

WHITELISTING SYSTEM STATE IN
WINDOWS FORENSIC MEMORY

VISUALIZATIONS

THESIS

Joshua A. Lapso, Capt, USAF

AFIT-ENG-MS-16-M-029

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-M-029

WHITELISTING SYSTEM STATE IN WINDOWS FORENSIC MEMORY

VISUALIZATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Joshua A. Lapso, B.S.C.E.

Capt, USAF

March 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-029

WHITELISTING SYSTEM STATE IN WINDOWS FORENSIC MEMORY

VISUALIZATIONS

THESIS

Joshua A. Lapso, B.S.C.E.
Capt, USAF

Committee Membership:

Dr. Gilbert L. Peterson
Chair

Dr. Barry E. Mullins
Member

Dr. Timothy H. Lacey
Member

AFIT-ENG-MS-16-M-029

Abstract

Examiners in the field of digital forensics regularly encounter enormous amounts

of data and must identify the few artifacts of evidentiary value. The most pressing

challenge these examiners face is manual reconstruction of complex datasets with

both hierarchical and associative relationships. The complexity of this data requires

significant knowledge, training, and experience to correctly and efficiently examine.

Current methods provide primarily text-based representations or low-level visualiza-

tions, but levee the task of maintaining global context of system state on the examiner.

This research presents a visualization tool that improves analysis methods through

simultaneous representation of the hierarchical and associative relationships and local

detailed data within a single page application. A novel whitelisting feature further

improves analysis by eliminating items of little interest from view, allowing examin-

ers to identify artifacts more quickly and accurately. Results from two pilot studies

demonstrates that the visualization tool can assist examiners to more accurately and

quickly identify artifacts of interest.

iv

Acknowledgements

This is Sunday, and the question arises, what’ll I start tomorrow?

- Kurt Vonnegut, Jr.

I would like to express my deepest gratitude to my wife for her unwavering support

through this academic endeavour. To my faculty advisor, Dr. Gilbert Peterson, thank

you for the research motivation and consistently sound advice. To Dr. Mullins and

Dr. Lacey, thank you for the constant support along the way. Lastly, I would like to

thank Jimmy Okolica for being an outstanding research partner, it was great working

with you!

Joshua A. Lapso

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xii

I. Introduction . 1

1.1 Research Objectives . 1
1.2 Research Hypothesis . 2
1.3 Research Goals . 2
1.4 Hypothesis Evaluation . 2
1.5 Results Overview . 3
1.6 Summary . 3

II. Literature Review . 5

2.1 Digital Forensics . 5
2.1.1 Sources of Forensic Evidence . 6
2.1.2 Memory Forensics . 7
2.1.3 Overwhelming Datasets . 9

2.2 Information Visualization . 10
2.2.1 Information Visualization Overview . 10
2.2.2 Information Visualization Models . 12
2.2.3 Forensic Visualization Tools . 17
2.2.4 Information Visualization Tools . 18

2.3 Database Frameworks . 20
2.3.1 Comparing SQL To NoSQL . 20
2.3.2 Sacrificing Consistency or Availability . 21
2.3.3 NoSQL Database Assessment . 22

2.4 Web Application Platforms . 23
2.4.1 An Introduction To JavaScript . 24
2.4.2 JavaScript Frameworks . 24
2.4.3 The MEAN Stack . 25

2.5 Summary . 26

III. Memory Forensics Visualization . 27

3.1 System Overview . 27
3.2 User Interface Client . 32

3.2.1 Image Select and Function Buttons . 32

vi

Page

3.2.2 Process Nodes . 35
3.2.3 Resource Arcs . 39
3.2.4 Process and Resource Links . 41
3.2.5 Textual Data View . 44

3.3 WhiteListing . 45
3.4 Use Case Examples . 47

3.4.1 User Activity . 48
3.4.2 Microsoft Word Handles . 49
3.4.3 Malware Detection . 63

3.5 Summary . 73

IV. Methodology . 74

4.1 Pilot Studies . 74
4.2 Experimental Procedures . 75

4.2.1 Pilot Study One . 76
4.2.2 Pilot Study Two . 78

4.3 Scenario-Based Memory Captures . 79
4.4 Data Collection Methods . 82
4.5 Assumptions . 82
4.6 Hypotheses . 83

V. Results . 84

5.1 Data Analysis . 84
5.1.1 Pilot Study One . 85
5.1.2 Pilot Study Two . 88

5.2 Summary . 92

VI. Conclusion and Recommendations . 94

6.1 Accomplishments . 94
6.2 Future Work . 95

VII. Appendix A – IRB Exemption Letter . 97

VIII. Appendix B – Example Exercises . 98

Bibliography . 101

vii

List of Figures

Figure Page

1 The Digital Forensic Model[1]. 6

2 Models of Communication and Visualization[2]. 12

3 Traditional Hierarchical Visualization[3]. 13

4 Modern Hierarchical Visualization Models[3]. 14

5 Network Visualization Models[3]. 15

6 Timeline Visualizations. 16

7 Files By Size And Extension Using Treemaps. 17

8 Simple Visualizations. 28

9 Overview Of Hybrid Visualization Components. 29

10 Memory Visualization Tool Diagram. 31

11 User Interface Orientation. 32

12 Image Select and Function Buttons. 33

13 Set Whitelist Percentage Modal. 34

14 Add Memory Image Modal. 34

15 Remove Memory Image Modal. 34

16 Whitelist Memory Image Modal. 35

17 Process Node Hierarchy. 36

18 Mouse Over Control. 37

19 Mouse Click Control. 38

20 System Resource Arcs. 39

21 Mouse Over Tool Tip. 40

22 Service Specific Arcs. 41

viii

Figure Page

23 System View Links For lsass.exe. 42

24 Service Links For lsass.exe. 42

25 Module Links for Multiple Nodes. 43

26 System View Links for Multiple Nodes. 43

27 Process List In DataTables. 44

28 lsass.exe Search In DataTables. 45

29 lsass.exe Highlighted Using DataTables Click Event. 45

30 Whitelist Method Diagram. 47

31 Visualize User Activity Image. 48

32 Begin Memory Analysis. 48

33 User Processes in User Activity Image. 49

34 Highlight WINWORD.exe. 50

35 Turn-On Node-Resource Links. 50

36 WINWORD.exe Resource Links. 51

37 WINWORD.exe Resource Links Root Directory. 51

38 WINWORD.exe Resource Links Documents and
Settings. 52

39 WINWORD.exe Resource Links Administrator . 52

40 WINWORD.exe Open File Handle TheSecretPlan.docx. 53

41 Return to System View. 53

42 AcroRd32.exe Resource Links. 54

43 AcroRd32.exe Resource Links Root. 55

44 AcroRd32.exe Resource Links Documents and Settings. 55

45 AcroRd32.exe Resource Links Administrator. 56

ix

Figure Page

46 AcroRd32.exe Resource Links My Documents. 56

47 AcroRd32.exe Open File Handle. 57

48 Firefox.exe Resource Links. 58

49 Firefox.exe Sockets Links. 59

50 Firefox.exe Resource Links Root. 59

51 Firefox.exe Resource Links Documents. 60

52 Firefox.exe Resource Links Administrator. 60

53 Firefox.exe Resource Links Application Data. 61

54 Firefox.exe Resource Links Mozilla. 61

55 Firefox.exe Resource Links Firefox. 62

56 Firefox.exe Resource Links Profiles. 62

57 Firefox.exe Resource Link to 4a4novg1.default Profile. 63

58 FUTo Image Visualized. 65

59 FUTo Image Visualized with Whitelisting. 65

60 FUTo Image Visualized with Whitelisting
BadProcess.exe Selected. 66

61 FUTo Image Visualized with Whitelisting System Idle
Process Selected. 66

62 Poison Ivy Image Visualized. 68

63 Poison Ivy Image Visualized with Whitelisting. 68

64 Unmatched System Processes. 69

65 Module Path Identification Using Datatables. 70

66 Unmatched User Processes. 71

67 Abnormal Explorer Process. 71

68 Explorer.exe Resource Links Root. 72

x

Figure Page

69 Explorer.exe Resource Links Windows. 72

70 Explorer.exe Resource Links System32. 73

71 Visualization Tool Post-Study Survey. 77

72 Textual Methods Post-Study Survey. 79

73 Pilot Study Memory Acqusition and Analysis. 81

74 Pilot Study One Word Cloud. 85

75 Pilot Study Two Score and Time Charts By Individual. 89

76 Pilot Study Two Word Clouds. 89

xi

List of Tables

Table Page

1 Potential Sources of Digital Evidence. 7

2 Common Volatility Modules. 8

3 CMAT Output Feature Files. 9

4 Function Button Descriptions. 33

5 System Resource Definitions. 39

6 Fictional Scenario Descriptions. 76

7 Memory Image Feature Files. 80

8 Pilot Study One Quantitative Scores. 85

9 Most Frequently Used Words. 86

10 Pilot Study Two Scores and Time By Participant. 88

11 Most Frequently Used Words Visualization Survey. 90

12 Most Frequently Used Words Text-Based Methods
Surveys. 90

xii

WHITELISTING SYSTEM STATE IN WINDOWS FORENSIC MEMORY

VISUALIZATIONS

I. Introduction

Modern criminal investigations frequently include evidence obtained from elec-

tronic devices such as computers, smart phones, tablets and even refrigerators. Hinshaw[4]

estimates data storage is doubling every nine months, twice the rate of Moore’s Law.

As datasets grow with technology, the time required to analyze the data increases.

Adding additional manpower is not a likely solution for reducing the temporal factor

associated with data analysis[5], this is especially true in fiscally constrained environ-

ments.

Beebe and Clark [6] encourage further research in data mining such as informa-

tion visualization (InfoVis), for immediate application in digital forensics discipline.

This has proven successful in storage media[7], device interaction[8], memory[9] and

triage[5] analysis methods. These visualization tools lead to more accurate identifi-

cation of forensic artifacts by calling on the examiner’s intuition and knowledge of

the process. However, it still remains to be seen if forensic visualization tools provide

faster results.

1.1 Research Objectives

The objectives of this research are to unite three characteristics of analysis into a

single memory visualization tool. The characteristics necessary to produce a success-

ful memory visualization tool are:

1. Examiners must maintain local and global context throughout analysis.

1

2. Examiners must be able to quickly connect data.

3. A forensic visualization tool cannot be divorced from low level details that must

be documented in an examiner’s report.

1.2 Research Hypothesis

Together, the objectives provide context throughout analysis and shrink the search

space for an examiner. The hypothesis is that a visualization tool that meets these

objectives will make an examiner more accurate and faster.

1.3 Research Goals

The primary goal of this research is to develop and evaluate a fully functional

memory analysis tool based on Baum’s[9] memory visualization proof-of-concept. The

specific objectives of this research are as follows:

1. The memory visualization tool should simultaneously display hierarchical and

associative relationships.

2. A novel, behavioral whitelisting function should filter processes of little interest

from view.

1.4 Hypothesis Evaluation

To evaluate this hypothesis, three steps are necessary. First, extend Baum’s[9]

proof of concept into a fully functional tool. Second, implement a behavioral whitelist-

ing function. Lastly, conduct pilot studies to test the tool’s efficacy.

Baum’s proof of concept is not scalable. For this reason, the redesigned visual-

ization tool uses an industry standard, single-page application model with database

support. A searchable table module makes low-level details available to the examiner

2

when needed. Additionally, rewritten sorting functions abstract the operating system

and allow for future development.

The novel behavioral whitelisting feature, written as a server-side module, inte-

grates with the database solution for speed and scalability. The whitelisting feature

removes items of little interest from view, shrinking the examiners search space. This

feature allows an examiner to identify anomalies more rapidly.

Pilot studies using human subjects test the research hypothesis. These studies

evaluate participants completing forensic exercises using the memory visualization

tool. Graded exercises establish a baseline for analysis, while post-study surveys pro-

vide qualitative data for content analysis. The themes selected for content analysis

should show the memory visualization tool produces more accurate artifact identifi-

cation and with the whitelisting feature, reduces time spent on a task.

1.5 Results Overview

Both pilot studies showed positive results for participants using the memory visu-

alization tool. The first pilot study showed improved accuracy in artifact identification

when participants used the visualization tool. The first pilot study did not evaluate

differences in completion times. The second pilot study showed improved accuracy

in artifact identification and a reduction in completion time for participants using

the visualization tool. The results of these pilot studies support the hypothesis, and

suggest the memory visualization tool is ready for large scale testing and evaluation.

1.6 Summary

This chapter framed the research problem by discussing issues facing modern

forensic examiners and promising solutions found in information visualization. The

focus and goals for this research establish key requirements going forward. Lastly,

3

the hypothesis and evaluation methods form the basis of this research.

Chapter two provides an overview of related work in digital forensics, information

visualization, and single page web application platforms. The chapter highlights the

need for visualization methods in digital forensics to better analyze enormous datasets

along with four examples of forensic visualization tools. Single page web applications

are discussed as platform independent frameworks for visualization tools.

Chapter three describes the key features of the memory visualization tool. It

provides a system overview and demonstration of basic usage. Use cases are provided

to showcase how the memory visualization tool assists an examiner in identifying user

activity and malware on a system.

Chapter four describes the research methodology. It discusses the design of two

pilot studies involving human subjects. Lastly, this chapter states the hypotheses for

this research.

Chapter five details the results and analysis of data collected during the pilot

studies. Quantitative data collected from the forensic exercises are used to validate

post-study survey responses. Qualitative data collected in post-study surveys are

analyzed using content analysis methods.

The final chapter draws conclusions regarding the results of this research and

discusses the overall accomplishments. Future work is proposed in order to refine

existing features and implement new features in the memory visualization tool.

4

II. Literature Review

Forensic visualization tools establish state of the art analysis techniques for digital

forensic examiners. Recent successes applying visual analysis techniques to storage

media[7], device interaction[8], memory[9] and triage[5] encourage further research in

this discipline. This thesis focuses on reducing the temporal factor associated with

forensic memory analysis and improving the accuracy of forensic artifact identification

by extending a forensic memory visualization proof of concept into an operational tool.

This chapter highlights current work in the digital forensic sciences and describes

how web applications, information visualization (InfoVis), and distributed database

systems play a key role in digital forensics research. This chapter discusses how single

page web applications run code independent of operating systems, because browsers

have a built-in JavaScript engine. It presents popular InfoVis tools and details one

that is based on JavaScript, which is ideal for operating system independence. Lastly,

it reviews new database technologies which provide the data-mining platform required

for scalable InfoVis.

2.1 Digital Forensics

Digital forensics is “the discipline that combines elements of law and computer

science to collect and analyze data from computer systems, networks, wireless com-

munications, and storage devices in a way that is admissible as evidence in a court

of law.”[10]. Digital forensics can be divided into four distinct disciplines: computer,

network, mobile and database forensics. Kruse[11] characterizes computer forensics

as the preservation, identification, extraction, documentation and interpretation of

computer data. Network forensics assists with monitoring, intrusion detection and

auditing by analyzing traffic from an active network[12]. Mobile forensics deal solely

5

with digital evidence obtained from devices such as tablets, cellphones and PDAs[13].

Database forensics study databases and the associated metadata[14].

While each discipline specializes in a unique set of device characteristics, they

all tend to follow a standard model used by most investigative bodies including the

United States Department of Justice (DOJ)[1][15]. Figure 1 depicts the seven step

DOJ digital forensic process model described below:

• Obtaining and Imaging Forensic Data

• Forensic Request

• Preparation/Extration

• Identification

• Analysis

• Forensic Reporting

• Case Level Analysis

Figure 1. The Digital Forensic Model[1].

2.1.1 Sources of Forensic Evidence.

Digital evidence comes in many forms. However, there are two key characteristics

of all digital evidence defined by the Scientific Working Groups on Digital Evidence

and Imaging Technology (SWGDEIT)[16]. First, it is in binary form, which means it

6

is represented by ones and zeros and stored on some sort of electronic media. Second,

to be considered evidence it must be information of probative value, meaning useful

towards proving something in a court of law[16]. Any device containing any type of

electronic storage has the potential to contain digital evidence. Devices include but

are not limited to those listed in Table 1[15].

Table 1. Potential Sources of Digital Evidence.

Device Type Examples
Hard Drives Internal (SCSI, SATA, IDE) / External (USB, Firewire,

Ethernet)
Removable Media CDs, DVDs, Floppy Disks
USB Thumb Drives Various types
Memory Cards Secure Digital (SD) Cards, Compact Flash Cards
Handheld Devices PDAs, Tablets, Smartphones, Media players, Gaming sys-

tems
Embedded Devices Vehicles, Appliances, Homesecurity Systems, etc.
Peripheral Devices Memory, Keyboard, Mouse, Hubs, Webcams, Microphones

2.1.2 Memory Forensics.

Volatile memory, most commonly reffered to as Random Access Memory (RAM),

contains critical pieces of information about a system’s state. This information is

only available while the system is ‘powered on’ and is lost forever after a system is

turned off[17]. There have been instances of Malicious Software (Malware) that only

reside in RAM and thus would never be found on the other forms of computer storage

media[18]. Also, other items of interest such as active processes, open directory and

file handles, current network connections, and command history can only be found

in RAM[19]. Several methods for memory acquisition, both hardware and software

based, have been developed and are employed regularly by first responders.

Hardware-based acquisition methods have proved challenging. One method pro-

posed using a PCI expansion slot to house a device that could directly access the

memory bus[17]. This proof of concept was a success, however, it required that

7

all machines be fitted with the PCI card prior to the incident. Unfortunately, this

method is too costly and impractical for large scale use[17]. Another method for

hardware-based memory acquisition utilized the Firewire protocol (IEEE 1394)[20].

This approach allowed direct access to RAM, however, a compromised firewire device

would also have direct access to memory[21]. Unfortunately, most modern mother-

boards do not contain a Firewire interface[20].

Software-based memory acquisition is currently the method of choice for incident

responders. It requires careful bookkeeping, as each command entered by an examiner

modifies a section of memory with the process being executed[18][19]. The most

popular software tools are derivatives of the Unix-based drive copying tool, known

as dd[22][19]. Once a raw memory image has been collected and preserved, there are

several avenues for artifact extraction and identification.

The Volatility Framework[23] is a collection of open source memory analysis tools

written in Python. Volatility offers “[a] single, cohesive framework” that “[r]uns

on Windows, Linux, or Mac” with a focus on “forensics, incident response, and

malware”[23]. Detailed information on specific usage can be found in The Art of

Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac

Memory. Table 2 contains a list of modules provided by Volatility Framework Ver-

sion 2.4[23]. A key addition to the framework is the svcscan module[23].

Table 2. Common Volatility Modules.

Module Description
imageinfo List what type of system your image came from

pslist List the processes of a system
dlllist Display a process’s loaded DLLs

handles Display the open handles in a process
connections View the active connections

hivelist List all subkeys in a hive
svcscan See which services are registered on your memory image

The Compiled Memory Analysis Tool (CMAT)[24] is an open source memory anal-

8

ysis tool written in C++. Unlike Volatility, which converts symbol files to a format

it can interpret, CMAT uses direct access to the Microsoft Symbol Server to obtain

the correct symbol files. Currently, CMAT cannot access the service list from within

the memory dump and responders must use the Windows “tasklist \svc” command

to obtain the service state information during the incident response phase[9]. Table

3 shows CMAT output feature files.

Table 3. CMAT Output Feature Files.

Feature File Data Details
1 Process Information Process IDs, Process Names, User IDs
2 Network Information Active network connections
3 Process Loaded Modules Loaded modules by Process ID
4 Process File Handles Open Files by Process ID
5 Process Registry Keys Registry Keys by Process ID
6 System Loaded Modules System Drivers by Name

Rekall[25] is one of the most recent memory forensic suites. The Rekall Framework

is forked from the Volatility Framework and transforms each module into libraries, for

use with other tools. Specifically, Rekall integrates with Google Rapid Response[26]

for a complete memory analysis suite from memory capture acquisition through foren-

sic analysis. Rekall uses the same modules as seen in Table 2. Rekall moved away

from Volatilities’ signature scanning technique and accesses the Microsoft Symbol

Server for global symbols[27].

2.1.3 Overwhelming Datasets.

As capacity increases for both volatile and non-volatile memory, the digital crime

scene evidence is expanding in both volume and vivacity. Beebe and Clark[6] cite the

rapidly increasing temporal factor for digital forensic analysis as a main reason to

pursue improving digital investigative methods. They discussed various data mining

techniques as potential methods for enhancement of forensic analysis. One of the

9

prospective methods for enhancing analysis is data visualization[28]. The practice of

data visualization, also known as information visualization, provides analysts with an

intuitive representation of data especially when dealing with complex datasets like

those seen in digital forensics[29].

2.2 Information Visualization

Information Visualization (InfoVis) is “the study of transforming data, informa-

tion, and knowledge into interactive visual representations”[29]. This section provides

an overview of InfoVis and introduces popular visualization tools and frameworks.

2.2.1 Information Visualization Overview.

InfoVis is a rapidly growing applied science which gained appeal with the rise of

big data analytics[29]. Lui, et al.[29] describe the five main modules of the InfoVis

pipeline: data transformation and analysis, filtering, mapping, rendering and user

input (UI) controls. The primary venues for InfoVis research are Empirical Method-

ologies, Interactions, Frameworks, and Applications.

Empirical methodologies consist of modeling and evaluation[29]. Modeling can be

broken down into several sub-categories, but the most important to this study is visual

representation models. Visual representation models address context preservation

for element comparison, visual difficulties to help users interpret information being

visualized, privacy preservation to protect sensitive data, and uncertainty caused by

the visualization process. Evaluation mainly consists of user studies such as surveys,

crowd sourcing, and laboratory studies. Lui, et al.[29] address the shortcomings of

rigorous laboratory studies, specifically the lack of statistical reliabilities. Crowd

sourcing typically supplements rigorous laboratory studies in order to add statistical

reliability.

10

Interaction techniques were traditionally divided into seven categories: “select,

explore, reconfigure, encode, abstract, filter, and connect.” Liu, et al.[29] update this

concept with two categories: windows, icons, mouse, pointer (WIMP) and post-

WIMP. WIMP includes basic interactions like selection, highlighting, filter, and

brushing, along with more advanced interactions such as visual comparison and

faceted navigation. The goal is to allow users to specify which data they want to

visualize for analysis. Post-WIMP interactions refer to those using modern devices

such as stylus, pen, touch pad or motion capture interfaces.

Systems and frameworks have received much attention in recent years[29]. Frame-

works in this context are high-level taxonomies and algorithms which describe data

models and are more theory based, leaving the implementation open to the researcher.

Effective frameworks are characterized by the visualization process as shown in Fig-

ure 2. The relative nature of uncertainty in various frameworks affects visualizations

and recognition is key to good visualizations[2][30].

An application’s usefulness is directly dependent upon quality data. Furthermore,

proper application to a given dataset is just as important, as some visualization ap-

plications apply different emphasis and meaning to data. Key areas of research in

InfoVis are static and dynamic graph visualizations, text visualization, map visualiza-

tions, and finally multivariate data visualization. Much of the new research in InfoVis

has focused on visualizing multivariate data, which is data with multiple independent

variables. Multivariate data visualization helps analysts identify, locate, distinguish,

categorize, cluster, rank, compare, associate, or correlate the data under analysis[29].

Visualizations applicable to digital forensic investigations rely on multivariate

data. Much of the multivariate visualization process is directly analogous to the

forensic acquisition and analysis process[6]. As is the case with most aspects of data

mining, a strong database solution is required.

11

Source

Noise

DestinationEncoder
(Transmitter)

message
M

Channel Decoder
(Receiver)

signal
S

signal
S'

message
M'

Comm.
Subsystem

[1]
Source

Comm.
Subsystem

[k]
Destination

message
M0

message
M1

message
Mk

message
Mk-1 NN

Source Destination

message
Mk

Composite Communication
Subsystem

(Virtual Channel)

message
M0 N

Source Destination

raw data
D

knowledge
K

Composite Visualization
Subsystem

(Virtual Channel)

N

Source Viewing Perception Cognition DestinationFiltering Visual
Mapping Rendering Displaying Optical

Transmission

raw data
D

information
I

geometry & labels
G

image
V

optical signal
S

optical signal
S'

image
V'

information
I'

knowledge
K

vis-encoder vis-channel vis-decoder

machine-centered human-centered

N N N N N N N N

)e(lennahc lautriv noitacinummoc a)c(a visualization virtual channel

(b) a point-to-point communication system composed of k subsystems

(a) a general communication system

P

N

process or
subsystem

P

process or
subsystem

affected by noise

P

P

N

pre-defined process
or subsystem

predefined process
or subsystem

affected by noise

Figure 2. Models of Communication and Visualization[2].

2.2.2 Information Visualization Models.

In InfoVis, hierarchical relationships are typically represented as trees, tree-maps,

adjacency diagrams or nested objects[3][31]. Figure 3 shows a traditional hierarchical

model while Figure 4 shows examples of modern hierarchical visualizations. An acyclic

hierarchy is well represented by all visualizations shown in Figures 3 and 4a through

4f. However, cyclic hierarchies would not be depicted well by nested objects such as

Figures 4d and Figure 4f or tree-map visualizations as shown in Figure 4c.

Network visualizations show relationships between linked data. As Baum[9] dis-

cusses, representing linked data is a key component of forensic memory visualizations.

Several network visualizations are shown in Figures 5a through 5c. In Figures 5a and

5c, the thicker lines identify frequent interaction, while the thin lines show infrequent

interaction. Figure 5b only shows interaction exists, but does not show frequency.

12

flare

query

AggregateExpression
And
Arithm

etic
Average
BinaryExpression
C

om
parison

C
om

positeExpression
C

ount
D

ateU
til

D
istinct

Expression
ExpressionIterator
Fn If IsA
Literal
M

atch
M

axim
um

M
inim

um
N

ot
O

r
Q

uery
R

ange
StringU

til
Sum
Variable
Variance
Xor

m
ethods

_ add
and
average
count
distinct
div
eq fn gt gte
iff isa
lt lte m

ax
m

in
m

od
m

ul
neq
not
or orderby
range
select
stddev
sub
sum
update
variance
w

here
xor

scale

IScaleM
ap

LinearScale
LogScale
O

rdinalScale
Q

uantileScale
Q

uantitativeScale
R

ootScale
Scale
ScaleType
Tim

eScale

util

Arrays
C

olors
D

ates
D

isplays
Filter
G

eom
etry

IEvaluable
IPredicate
IValueProxy
M

aths
O

rientation
Property
Shapes
Sort
Stats
Strings

heap
FibonacciH

eap
H

eapN
ode

m
ath

D
enseM

atrix
IM

atrix
SparseM

atrix

palette
C

olorPalette
Palette
ShapePalette
SizePalette

Figure 3. Traditional Hierarchical Visualization[3].

Timeline visualizations represent time-dependent data and assist the viewer in un-

derstanding chronological events[32]. Timelines are useful tools for computer forensic

examiners due to the preponderance of time-stamped computer operations[7][8]. Fig-

ure 6 depicts a common timeline visualization format, using a file system’s Modify,

Access, Create (MAC) timestamps. Figure 6a shows the complete timeline for the

contents of a directory and their associated MAC times, while Figure 6b shows the

same data focused around the period of highest activity.

13

fla
re

an
al

yt
ic

s

cl
us

te
r

gr
ap

h

an
im

at
e

Ea
si

ng

Tr
an

si
tio

n

Tr
an

si
tio

ne
r

in
te

rp
ol

at
e

In
te

rp
ol

at
or

da
ta

co
nv

er
te

rs
G

ra
ph

M
LC

on
ve

rte
r

di
sp

la
y

D
irt

yS
pr

ite

Te
xt

Sp
rit

e

ph
ys

ic
s

N
Bo

dy
Fo

rc
e

Si
m

ul
at

io
n

qu
er

y
Q

ue
ry

m
et

ho
ds

sc
al

e

ut
il

Ar
ra

ys
C

ol
or

s
D

at
es

D
is

pl
ay

s

G
eo

m
et

ry

M
at

hs

Sh
ap

es

St
rin

gs

he
ap

Fi
bo

na
cc

iH
ea

p
m

at
h

pa
le

tte

vi
s

Vi
su

al
iz

at
io

n

ax
is

Ax
is

co
nt

ro
ls

To
ol

tip
C

on
tro

l

da
ta

D
at

a

D
at

aL
is

t

D
at

aS
pr

ite

N
od

eS
pr

ite

Sc
al

eB
in

di
ng

Tr
ee

Bu
ild

er
re

nd
er

le
ge

nd
Le

ge
nd

Le
ge

nd
R

an
ge

op
er

at
or

di
st

or
tio

n

en
co

de
r

fil
te

r

la
be

l
La

be
le

r

la
yo

ut

C
irc

le
La

yo
ut

C
irc

le
Pa

ck
in

gL
ay

ou
t

Fo
rc

eD
ire

ct
ed

La
yo

ut

N
od

eL
in

kT
re

eL
ay

ou
t

R
ad

ia
lT

re
eL

ay
ou

t
St

ac
ke

dA
re

aL
ay

ou
t

Tr
ee

M
ap

La
yo

ut

(a) Icicle Tree.

flare 933KB
analytics 47KB
animate 97KB
data 29KB

DataField 1KB
DataSchema 2KB
DataSet 0KB
DataSource 3KB
DataTable 0KB
DataUtil 3KB
converters 17KB

display 23KB
flex 4KB

(b) Indented Tree.

AgglomerativeClusterCommunityStructure

HierarchicalCluster

MergeEdgeBetweennessCentrality

LinkDistance

MaxFlowMinCutShortestPaths

SpanningTree AspectRatioBanker

Easing

FunctionSequence ISchedulable

Parallel

Pause

Scheduler

Sequence

Transition

TransitionEvent

Transitioner

Tween

ArrayInterpolator

ColorInterpolator

DateInterpolator

Interpolator

MatrixInterpolator

NumberInterpolator

ObjectInterpolator

PointInterpolator

RectangleInterpolator

DataField

DataSchema

DataSet

DataSource

DataTable
DataUtil

Converters

DelimitedTextConverter

GraphMLConverter

IDataConverter

JSONConverter

DirtySprite

LineSprite

RectSprite

TextSprite

FlareVisDragForce

GravityForce

IForce

NBodyForce

Particle

Simulation

Spring

SpringForce

AggregateExpression

And

Arithmetic

Average

BinaryExpression

Comparison

CompositeExpression

Count

DateUtil

Distinct

Expression

ExpressionIterator

Fn

If IsA

Literal

Match

MaximumMinimum

Not

Or

Query

Range

StringUtil

Sum

VariableVariance

Xor

_

add

and
average

count
distinct

div eq

fn

gt

gteiff

isa

lt

lte

max
min

modmul

neq not

ororderby

range

select

stddev

sub

sum

update

variance

where

xor

IScaleMap

LinearScale

LogScale

OrdinalScale

QuantileScale

QuantitativeScale

RootScale

Scale

ScaleType

TimeScale

Arrays

Colors

Dates

Displays

Filter

Geometry

IEvaluableIPredicate

IValueProxy

Maths

Orientation

Property

Shapes

Sort

Stats

Strings

FibonacciHeapHeapNode

DenseMatrix

IMatrix

SparseMatrix

ColorPalette

Palette

ShapePalette
SizePalette

Visualization

Axes

Axis

AxisGridLineAxisLabel
CartesianAxes

AnchorControl

ClickControl

Control

ControlList

DragControl

ExpandControl

HoverControl
IControl

PanZoomControl

SelectionControl

TooltipControl

Data DataList

DataSprite

EdgeSprite

NodeSprite ScaleBinding

TreeTreeBuilder

ArrowType

EdgeRenderer

IRenderer

ShapeRenderer

DataEvent

SelectionEvent

TooltipEvent

VisualizationEvent

Legend

LegendItemLegendRange

IOperator

Operator

OperatorList

OperatorSequence

OperatorSwitch

SortOperator

BifocalDistortion

Distortion

FisheyeDistortion

ColorEncoder

EncoderPropertyEncoder

ShapeEncoder

SizeEncoder

FisheyeTreeFilter

GraphDistanceFilter

VisibilityFilter

Labeler

RadialLabelerStackedAreaLabeler

AxisLayoutBundledEdgeRouter

CircleLayout

CirclePackingLayout

DendrogramLayout

ForceDirectedLayout

IcicleTreeLayout

IndentedTreeLayout

Layout

NodeLinkTreeLayout

PieLayout

RadialTreeLayout

RandomLayout

StackedAreaLayout

TreeMapLayout

(c) Tree Map.
an

al
yt

ic
s

cl
us

te
r

H
ie

ra
rc

hi
ca

lC
lu

st
er

gr
ap

h
Li

nk
D

is
ta

nc
e

M
ax

Fl
ow

M
in

C
ut

Sh
or

te
st

Pa
th

s
As

pe
ct

R
at

io
Ba

nk
er

an
im

ate
Ea

sin
g

Tr
an

sit
ion

Tra
ns

itio
ne

r

interpolate

Interpolator

data

converters
GraphMLConverter

TextSprite

physics
NBodyForce

Simulation

query

Query
methods

scale

util

Colors

Displays

G
eom

etry

M
aths

Shapes

St
rin

gs

he
ap

Fi
bo

na
cc

iH
ea

p
m

at
h

pa
le

tte

C
ol

or
Pa

le
tte

vis

Vi
su

al
iza

tio
n

ax
is

Ax
is

Ca
rte

sia
nA

xe
s

co
ntr

ols

Sele
ctio

nC
on

tro
l

Tooltip
Contro

l

data

Data

DataList
DataSprite

NodeSprite

ScaleBinding
Tree

TreeBuilder

renderEdgeRenderer

legend
Legend

LegendRange

operator

distortion

BifocalDistortion

Distortion
encoder

Encoder

PropertyEncoder
filter

FisheyeTreeFilter

label
Labeler

layout

AxisLayout
CircleLayout

CirclePackingLayout

Dendrogram
Layout

ForceDirectedLayout
IcicleTreeLayout

Layout
N

odeLinkTreeLayout

R
adialTreeLayout

StackedAreaLayout

TreeM
apLayout

(d) Adjacency.

flare

an
al

yt
ic

s

cl
us

te
r

Ag
gl

om
er

at
iv

eC
lu

st
er

C
om

m
un

ity
St

ru
ct

ur
e

H
ie

ra
rc

hi
ca

lC
lu

st
er

M
er

ge
Ed

ge
gr

ap
h

Be
tw

ee
nn

es
sC

en
tra

lit
y

Li
nk

D
is

ta
nc

e
M

ax
Fl

ow
M

in
C

ut
Sh

or
te

st
Pa

th
s

Sp
an

ni
ng

Tr
ee

op
tim

iz
at

io
n

As
pe

ct
R

at
io

Ba
nk

er

an
im

at
e

Ea
sin

g
Fu

nc
tio

nS
eq

ue
nc

e

IS
ch

ed
ul

ab
le

Pa
ra

lle
l

Pa
us

e
Sc

he
du

le
r

Se
qu

en
ce

Tr
an

sit
ion

Tr
an

sit
ion

Ev
en

t

Tr
an

sit
ion

er

Tw
ee

n

int
erp

ola
te

Ar
ra

yIn
ter

po
lat

or

Colo
rIn

ter
po

lat
or

Date
Int

erp
ola

tor

Int
erp

ola
tor

Matr
ixI

nte
rpo

lat
or

Num
be

rIn
ter

po
lat

or

Obje
ctI

nte
rpo

lat
or

Poin
tIn

ter
po

lat
or

Recta
ngleInterpolator

data

DataField

DataSchema

DataSet

DataSource

DataTable

DataUtil

converters

Converters

DelimitedTextConverter

GraphMLConverter

IDataConverter

JSONConverter

display

DirtySprite

LineSprite

RectSprite

TextSprite

flex
FlareVis

physics

DragForce
GravityForce
IForce
NBodyForce
Particle
Simulation
Spring
SpringForce

query

AggregateExpressionAndArithmeticAverageBinaryExpressionComparisonCompositeExpression
CountDateUtilDistinctExpressionExpressionIterator

FnIfIsALiteralMatchMaximum
Minimum

NotOrQueryRange
StringUtil

SumVariable
Variance

Xor

m
ethods _addandaverage

count

distinct

diveqfngtgteiffisaltltem
ax

m
in

m
od

m
ul

neq
not
ororderby
range
select
stddev
sub
sum
update
variance
w

here

xo
r

sc
al

e

IS
ca

le
M

ap
Li

ne
ar

Sc
al

e
Lo

gS
ca

le
O

rd
in

al
Sc

al
e

Q
ua

nt
ile

Sc
al

e

Q
ua

nt
ita

tiv
eS

ca
le

R
oo

tS
ca

le
Sc

al
e

Sc
al

eT
yp

e

Ti
m

eS
ca

le

ut
il

Ar
ra

ys
Co

lo
rs

Da
te

s

Di
sp

la
ys

Fi
lte

r

G
eo

m
et

ry

IE
va

lu
ab

le

IP
re

dic
at

e

IV
alu

eP
ro

xy

M
at

hs

Orie
nt

at
ion

Pr
op

er
ty

Sh
ap

esSo
rt

Stat
s

Strin
gs

he
ap

Fibo
na

cc
iH

ea
p

Hea
pN

od
e

math

Den
se

Matr
ix

IM
atrix

Sparse
Matrix

palette

ColorPalettePalette

ShapePalette

SizePalette

vis

Visualization

axis

AxesAxis
AxisGridLine

AxisLabel
CartesianAxes

controls

AnchorControl
ClickControlControlControlListDragControlExpandControlHoverControlIControlPanZoomControlSelectionControlTooltipControl

data

Data
DataList

DataSprite
EdgeSprite
NodeSprite

ScaleBinding
Tree

TreeBuilder
render

ArrowType

EdgeRenderer

IRenderer

ShapeRenderer events

DataEvent

SelectionEvent

TooltipEvent

VisualizationEvent
legend

Legend

LegendItem

LegendRange operator

IOperator

Operator

OperatorList

OperatorSequence

OperatorSwitch

SortOperator

distortion

BifocalDistortion

Distortion
FisheyeDistortion

encoder

ColorEncoder
Encoder

PropertyEncoder

ShapeEncoder

SizeEncoder

filter

FisheyeTreeFilter

GraphDistanceFilter

VisibilityFilter

label

Labeler

RadialLabeler

StackedAreaLabeler

layout

AxisLayout

BundledEdgeRouter
C

ircleLayout

C
irclePackingLayout

D
endrogram

Layout
ForceD

irectedLayout
IcicleTreeLayout

IndentedTreeLayout
Layout

N
odeLinkTreeLayout

PieLayout
R

adialTreeLayout
R

andom
Layout

StackedAreaLayout
TreeM

apLayout

(e) Cartesian Tree.

Aggl

CommHiera M

Betw

LinkD

MaxFlo

Short

Spa

Aspec

Easing

Funct

Arr
Col

Da

Interp

Mat
Nu

ObPo

Rec

ISPara P
SchedSeque

Transi

Transitio

Tr

Tween

CDeli

GraphM

ID
JSO

DaDat
D

Dat
D

Dat

DirtyS

Li RectTextSp
Flar

Dr
Gr
I

NBodyF

Par

Simula

Spr
Sp

Ag An

Arit

Av
Bin

Comp

Comp

C

Date
Di

Expr

Expr

Fn

IfIsA

Li

Matc

M aa
a cd

d e

fg
g i

i

l

l
mm mm

n

n

o o

r
ss

s s uv wx _
M

No

Or

Query

Ra
Stri S

Va

Va

Xo

ISc
Li

Log Ordi
Qua

Quan

Ro Scal
Sc

TimeS

Arrays

Colors

Dates

Display

Fil

Geometr

FibonaHeI I
IV

DenIMa

Spa

Maths
Or

Color
PaSha
Siz

Prope

Shapes

Sort
Stats

Strings

Ax

Axis

AA
Carte

Anc

Clic

Co Cont
Dra

Exp

Hove

I

PanZ
Select

Toolti

Data

DataList

DataSp

Edg

NodeSprit

AEdgeR I
Sha

ScaleBi

Tree
TreeBu

Dat Se
ToVi

Legend

Lege Legend

Bifo

Disto

Fis

ColEnco

Prop
Sh Si

Fish

Gra Visi

IOLabele

RadiSta

AxisL
Bund

Circle
CircleP

Dend

ForceD

Icic

Ind
Layout

NodeLin
Pie

RadialT

Ra

Stacke

TreeMa

Ope

Oper
Oper

Ope
Sor

Visualiz

(f) Node Packing.

Figure 4. Modern Hierarchical Visualization Models[3].

14

(a) Force Directed.

Child 2

C
hi

ld
 2

Child 1

C
hi

ld
 1

Mother Plutarch

M
ot

he
r P

lu
ta

rc
h

Mme. Hucheloup

M
m

e.
 H

uc
he

lo
up

Courfeyrac

C
ou

rfe
yr

ac

Feuilly

Fe
ui

lly

Prouvaire

Pr
ou

va
ire

Combeferre

C
om

be
fe

rre

Enjolras

En
jo

lra
s

Mabeuf

M
ab

eu
f

Marius

M
ar

iu
s

Gavroche

G
av

ro
ch

e

Bossuet

Bo
ss

ue
t

Joly

Jo
ly

Grantaire

G
ra

nt
ai

re

Bahorel

Ba
ho

re
l

Mme. Burgon

M
m

e.
 B

ur
go

n

Jondrette

Jo
nd

re
tte

Boulatruelle

Bo
ul

at
ru

el
le

Mlle. Vaubois

M
lle

. V
au

bo
is

Woman 2

W
om

an
 2

Toussaint

To
us

sa
in

t

Cosette

C
os

et
te

Lt. Gillenormand

Lt
. G

ille
no

rm
an

d

Gillenormand

G
ille

no
rm

an
d

Magnon

M
ag

no
n

Mlle. Gillenormand

M
lle

. G
ille

no
rm

an
d

Mme. Pontmercy

M
m

e.
 P

on
tm

er
cy

Baroness T

Ba
ro

ne
ss

 T

Pontmercy

Po
nt

m
er

cy

Babet

Ba
be

t

Gueulemer

G
ue

ul
em

er

Javert

Ja
ve

rt

Mme. Thenardier

M
m

e.
 T

he
na

rd
ie

r

Montparnasse

M
on

tp
ar

na
ss

e

Claquesous

C
la

qu
es

ou
s

Brujon

Br
uj

on

Thenardier

Th
en

ar
di

er

Eponine

Ep
on

in
e

Anzelma

An
ze

lm
a

Listolier

Li
st

ol
ie

r

Tholomyes

Th
ol

om
ye

s

(b) Matrix.

M
yr

ie
l

N
ap

ol
eo

n
M

lle
. B

ap
tis

tin
e

M
m

e.
 M

ag
lo

ire
C

ou
nt

es
s

de
 L

o
G

eb
or

an
d

C
ha

m
pt

er
ci

er
C

ra
va

tte
C

ou
nt

O
ld

 M
an

La
ba

rre
Va

lje
an

M
ar

gu
er

ite
M

m
e.

 d
e

R
Is

ab
ea

u
G

er
va

is
Th

ol
om

ye
s

Li
st

ol
ie

r
Fa

m
eu

il
Bl

ac
he

vi
lle

Fa
vo

ur
ite

D
ah

lia
Ze

ph
in

e
Fa

nt
in

e
M

m
e.

 T
he

na
rd

ie
r

Th
en

ar
di

er
C

os
et

te
Ja

ve
rt

Fa
uc

he
le

ve
nt

Ba
m

at
ab

oi
s

Pe
rp

et
ue

Si
m

pl
ic

e
Sc

au
ffl

ai
re

W
om

an
 1

Ju
dg

e
C

ha
m

pm
at

hi
eu

Br
ev

et
C

he
ni

ld
ie

u
C

oc
he

pa
ille

Po
nt

m
er

cy
Bo

ul
at

ru
el

le
Ep

on
in

e
An

ze
lm

a
W

om
an

 2
M

ot
he

r I
nn

oc
en

t
G

rib
ie

r
Jo

nd
re

tte
M

m
e.

 B
ur

go
n

G
av

ro
ch

e
G

ille
no

rm
an

d
M

ag
no

n
M

lle
. G

ille
no

rm
an

d
M

m
e.

 P
on

tm
er

cy
M

lle
. V

au
bo

is
Lt

. G
ille

no
rm

an
d

M
ar

iu
s

Ba
ro

ne
ss

 T
M

ab
eu

f
En

jo
lra

s
C

om
be

fe
rre

Pr
ou

va
ire

Fe
ui

lly
C

ou
rfe

yr
ac

Ba
ho

re
l

Bo
ss

ue
t

Jo
ly

G
ra

nt
ai

re
M

ot
he

r P
lu

ta
rc

h
G

ue
ul

em
er

Ba
be

t
C

la
qu

es
ou

s
M

on
tp

ar
na

ss
e

To
us

sa
in

t
C

hi
ld

 1
C

hi
ld

 2
Br

uj
on

M
m

e.
 H

uc
he

lo
up

(c) Arc.

Figure 5. Network Visualization Models[3].

15

C
ou

nt

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2014-03-31 2014-06-30 2014-09-30 2014-12-31 2015-03-31 2015-06-30 2015-09-30 2015-12-31

datetime per week

�

� "timestamp_desc"="cti…

� "timestamp_desc"="mt…

L egend �

(a) Full Timeline For Directory MAC Times.

C
ou

nt

0

100

200

300

400

500

600

700

2015-04-04 2015-04-11 2015-04-18 2015-04-25 2015-05-02 2015-05-09 2015-05-16 2015-05-23 2015-05-30

datetime per day

�

� "timestamp_desc"="cti…

� "timestamp_desc"="mt…

L egend �

(b) Period Of Highest Activity Timeline For Directory MAC Times.

Figure 6. Timeline Visualizations.

16

2.2.3 Forensic Visualization Tools.

There are numerous publications on the extraction of forensic evidence through

hard drive imaging[7][33], registry keys[19], and memory captures[24]. However, there

are fewer publications in InfoVis, for forensic analysis.

In 2006, Teerlink and Erbacher[7] prototyped a file search tool that visualizes file

size, date, and type using unique shapes and colors similar to the visualization seen

in Figure 7. The result of their experiment showed that users found more files of

interest with a visualization tool when compared to using traditional search strings.

More compellingly, a single file, not found with search strings had a 100 percent find

rate using their visualization tool. Had their experiment been a real investigation,

key evidence would have been missed using traditional search strings.

 S ize T ype

S F298.texmy R eferenc es .bib 55
k Bmy R eferenc es _old.bib

18 k B

tex put.log

C hapter02.aux
5 k B
C hapter02.bbl
6 k B

C hapter02.blg

C hapter02.log
18 k B

C hapter02.pdf 114 k B

C hapter02.s y nc tex .gz 95 k B

C hapter02.tex
2 k Babs trac t.tex

1
ac k nowledgements .texprefac e.tex
1

c ommonS y mbols .tex

my Figures .tex
3
k B

my Tables .tex
4
k B

titleP age.log 42 k BtitleP age.tex
2

aFirs tDraft.bbl
16 k B

aFirs tDraft.blg

aFirs tDraft.log
20 k B

aFirs tDraft.pdf 1585 k B

aFirs tDraft.s y nc tex .gz 214 k B

aFirs tDraft.tex
5 k B

addA bs trac t.tex
1addFirs tR es ults .tex
2
k B

addFrontMatter .tex
3 k B

addMainMatter .tex
3
k B

addMoreFrontMatter .tex
1
k B

addS ty le.tex
1

c us tomize.texhis tory .tex
1

my S etup.tex
2
k B

nex tS tep.tex

s tartS imple.tex
1
k B

troubles hooting.tex

angular .log
27 k B

angular .texbes tForens ic s DB .tex
2
k B

c onc lus ion.texc ons is tenc y OrA vailability .tex
2
k B

d3.log 31 k B

d3.tex

dataMining.log
29 k B

dataMining.texdatabas eIntro.tex databas eTy peC omparis on.tex
2
k B

environments .tex
2
k B

evidenc eS ourc es .tex
1
k B

ex pres s .tex

forens ic Definitions .log
70 k B

forens ic Definitions .tex
2
k B

forens ic V is ualiztionTools .tex
2
k Bgephi.log

21 k B

gephi.texinfoV is Framework s .texinfoV is Intro.tex

infoV is Models .log
79 k B

infoV is Models .tex
4 k B

infoV is Overview.tex
3 k B

intro.log 33 k B

intro.texintroDigita lForens ic s .tex javas c ript.texjs Framework s .texlis ts .tex
4 k B

mean.tex
3
k Bmongo.log

20 k B

mongo.tex

node.log
24 k B

node.tex overwhelmingDatas ets .texraphael.texs ummary .tex

volatileMemory Forens ic s .log
124 k B

volatileMemory Forens ic s .tex
4 k B

webIntro.tex

C hapter03_Draft_Tex t.doc x
12 k B

adobeA c tiv ity .log
73 k B

adobeA c tiv ity .tex
2 k Bfirefox A c tiv ity .tex

3
k B

futo.tex
3 k B

intro.tex
1

link s .tex
20

outlook A c tiv ity .tex
1

pois onivy .log 209 k B

pois onivy .tex
6 k B

proc es s Nodes .tex
2

res ourc eA rc s .tex
2 k Bs oftwareDes ign.log 35 k B

s oftwareDes ign.tex
1s y s temOverviewIntro.tex
5
k B

tex tV iew.tex
2

us erA c tiv ity Intro.tex
1

us erInputC ontrols .log 137 k B

us erInputC ontrols .tex
4
k B

us erInterfac eOrientation.tex
1

us erP roc es s es .tex
1

whitelis ting.tex
2 k B

wordA c tiv ity .tex
3 k B

as s umptions .tex
1

bac k ground.tex
2
k B

c ons tantFac tors .tex
1

c ontrolV ariables .tex
0

dataC ollec tion.tex
1

dataC ollec tionMethods .tex
1

ex perimentIntro.tex
2 k B

hy pothes es .tex
1intro.tex

1

objec tive.tex
1pilotS tudy 1.tex
1pilotS tudy 2.tex
1

proc edures Intro.tex
2
k B

res pons eV ariables .tex
1

s ourc eData .tex
3 k B

P ilotS tudy OneR es pons es .x ls x
15 k B

P ilotS tudy TwoR es pons es .c s vP ilotS tudy TwoR es pons es .x ls x
27 k BR aw_Data_Us er_S tudy _2.x ls x

13 k Banaly s is Intro.tex
1

intro.tex
1

phras eC ountFullV is ualization.tx t
1

phras eC ountS urvey OneV is ualization.tx t

phras eC ountS urvey TwoTex t.tx tphras eC ountS urvey TwoV is ualization.tx tpilotS tudy One.tex
6 k B

pilotS tudy OneQuantitativeData .R
pilotS tudy Two.tex
7 k B

pilotS tudy TwoQuantitativeData .R

pilotS tudy TwoR Import.c s v

wordC ountS urvey One.tx t
1

wordC ountS urvey OneTable.tx t
1

wordC ountS urvey TwoTex t.tx t
1

wordC ountS urvey TwoV is ualization.tx t
wordC ountV is ualizationFull.tx t
1

intro.texintro.tex

FUToS c ript.tx t
1
k B

P roc es s ToR es ourc eL ink s .tx t
1
k B R es ourc eC irc le.tx t

3
k B

Us erA c tiv ity .tx t
3
k B

poins onIvy S c ript.tx t
2
k B

(a) Treemap Directories And Files By Size.

 S ize T ype

tex 1800 B y tes

bib
56410
B y tes

bib 18934 B y tes

log 757 B y tes

aux 4874 B y tes
bbl 6470 B y tes

blg 1945 B y tes

idx 0 B y tes

log 18721 B y tes

pdf 117148 B y tes

gz 97006 B y tes

tex 2251 B y tes
tex 1432 B y testex 191 B y tes

tex 1016 B y tes

tex 584 B y tes

tex 2968 B y tes

tex
3823
B y tes

log
42869
B y tes

tex 2057 B y tes

aux 0 B y tes

bbl 16394 B y tes

blg 1798 B y tes

idx 0 B y tes

log 20480 B y tes

pd
16
B y

gz 218772 B y tes

tex 4798 B y tes

tex 985 B y tes

tex 1726 B y tes

tex 3256 B y tes

tex 2794 B y tes

tex 1226 B y tes

tex 655 B y tes

tex 333 B y tes

tex 535 B y tes

tex 26 B y tes

tex 1816 B y tes

tex 161 B y tes

tex 1342 B y tes

tex 248 B y tes

log 28019
B y tes

tex
608
B y tes

tex
2271
B y tes

tex
421
B y tes

tex
2104
B y tes

log 31416 B y tes

tex
686
B y tes

log 29332
B y tes

tex
640
B y tes

tex
240
B y tes

tex
2437
B y tes

tex
2091
B y tes

tex
1362
B y tes

tex
364
B y tes

log 71535 B y tes

tex
1614
B y tes

tex
2432
B y tes

log 21722
B y tes

tex
471
B y tes

tex
423
B y tes

tex
256
B y tes

log 80933
B y tes

tex
3927
B y tes

tex
3571
B y tes

log 33771 B y tes

tex
457
B y tes

tex
213
B y tes

tex
733
B y tes

tex
796
B y tes

tex
3740
B y tes

tex
2687
B y tes

log 20192
B y tes

tex
440
B y tes

log 24690
B y tes

tex
543
B y tes

tex
708
B y tes

tex
527
B y tes

tex
296
B y tes

log 127418
B y tes

tex
4429
B y tes

tex
518
B y tes

doc x 12493
B y tes

log 74483 B y tes

tex
2281
B y tes

tex 3392
B y tes

tex
2763
B y tes

tex
1044
B y tes

tex
1865
B y tes

tex
255
B y tes

tex
534
B y tes

log 214370 B y tes

tex 5845
B y tes

tex
1653
B y tes

tex
2277
B y tes

log 35799
B y tes

tex
855
B y tes

tex 4673
B y tes

tex
1541
B y tes

tex
1199
B y tes

log 140247 B y tes

tex 3982
B y tes

tex
752
B y tes

tex
744
B y tes

tex
2375
B y tes

tex
3314
B y tes

tex 711 B y tes

tex 2239 B y tes

tex 732 B y tes

tex 473 B y tes tex 714 B y tes

tex 1190 B y tes

tex 2358 B y tes

tex 807 B y tes

tex 945 B y tes

tex 669 B y tes

tex 769 B y tes

tex 1151 B y tes

tex 2136 B y tes

tex 772 B y tes

tex 3100 B y tes

x ls x
14905
B y tes

c s v 409 B y tes x ls x
27711
B y tes

x ls x
13514
B y testex 598 B y tes

tex 815
B y tes

tx t 908
B y tes

tx t 396 B y tes

tx t 217 B y tes

tx t 320 B y tes

tex
5783
B y tes

R 408 B y tes

tex
7044
B y tes

R 350 B y tes

c s v 624 B y tes

tx t 813
B y tes

tx t 912
B y tes

tx t 618 B y tes

tx t 447 B y tes

tx t 895
B y tes

tex 629 B y tes
tex 629 B y tes

tx t 1051 B y testx t 755 B y tes

tx t 3115 B y testx t 3082 B y tes

tx t 2155 B y tes

(b) Treemap Directories And Files By Type.

Figure 7. Files By Size And Extension Using Treemaps.

Osborne[8] introduced the Explore, Investigate and Correlate (EPIC) model which

visualized events and interaction on and between devices. The EPIC tool provided

two visualizations, one focused on inter-entity relationships and the other intra-device

events such as “email, Short Message Service (SMS), Multimedia Messaging Service

(MMS), phone call and website visit”.

Henderson[5] explored a triage method for non-volatile storage media through a

17

timeline visualization of modify, access and create disk activities similar to those in

Figure 6. This tool would automatically generate a second timeline visualization

focused around the period of greatest activity similar to Figure 6b. The resulting

visualization limited the search space to a finite timeframe for investigators.

Baum[9] applied the idea of visualizing volatile memory and showed that malicious

software (malware) could be detected more accurately through data visualization.

These visualization tools offer a proof of concept to the forensic community, but

come with restrictions normally associated with prototypes such as limited flexibility

or scalability.

These visualization tools highlight the benefits of intuitive representations of large,

interrelated datasets. However, there is still a need for data filtering to focus the scope

of forensic analysts. The most obvious method for filtering data during static analysis

is whitelisting. Whitelisting effectively skips over “known good” files and applications

in order to shrink the search space. Traditional whitelisting methods, such as hashing

and signature comparison, work well for file storage media such as hard drives, flash

memory, and magnetic tape, but do not directly translate to system state information

stored in volatile memory[34].

2.2.4 Information Visualization Tools.

InfoVis tools vary drastically. They range from stand-alone tools to web-based

development libraries. Each vary in the level of knowledge required, difficulty to

build, and flexibility of visual outputs. Some are intended for one-and-done static

representation of data, while others are dynamic and interactive [35]. Three of the

most popular, interactive visualization tools were selected for further examination.

18

2.2.4.1 Data Driven Documents JavaScript Library (D3).

The Data Driven Documents (D3) JavaScript library is a powerful Infovis tool

that employs direct inspection and manipulation of the World Wide Web Consor-

tium (W3C) standard document object model (DOM). The DOM is the underlying

representation utilized by HTML, XML, JavaScript and others. It exposes the hierar-

chical content (i.e. elements) of a web page for reference or manipulation. This direct

exposure allows for both partial scene graph modifications and transparent debugging

which are typically made unavailable by toolkit specific scene graph abstractions[36].

D3 utilizes scalable vector graphics (SVG) to create a wide array of dynamic visual-

izations [35].

2.2.4.2 Raphael.

Raphael brands itself as a “small JavaScript library that should simplify your work

with vector graphics on the web” [37]. Like D3, Raphael employs SVG elements for its

web-based visualizations. Users of Raphael can manipulate basic graphics primitives

as well as implement event listeners for interactive visualizations [35]. However, due

to a lack of abstractions and referenceable scene graph, complex visualizations become

extremely tedious to build and even more difficult to debug [36].

2.2.4.3 Gephi.

Gephi is an open source toolkit for graph and network visualization and analy-

sis [38]. Unlike the web-based visualization tools, Gephi is powered by an ad-hoc

OpenGL engine making it extremely fast and capable of handling daunting datasets

[39]. Gephi can process dynamic and interactive visualizations which are exportable

to SVG objects [38], however, this feature is not accomplished on-the-fly and thus is

not feasible in a web-based tool.

19

2.3 Database Frameworks

This section discusses current research in database technology, explores the bene-

fits and drawbacks of Structured Query Language (SQL), Not Only SQL (NoSQL) and

NewSQL, and presents an optimal solution for specialized data-mining platforms.

2.3.1 Comparing SQL To NoSQL.

Data mining and big data analytics are driving an evolving need for storing

and querying large datasets. Much of the time data is unformatted or only semi-

formatted. These models do not fit the standard relational databases such as SQL.

NoSQL database systems such as MongoDB or Cassandra can solve the problem.

MongoDB and its native MapReduce implementation allows parallel processing for

large repositories[40].

Relational databases such as SQL follow the classic Atomic, Consistent, Isolation,

Durable (ACID) model. This model is difficult to implement in distributed environ-

ments because of the strict consistency requirement. SQL has been in existence for

much longer than NoSQL. As a result, many large organizations are heavily dependent

upon SQL and could not migrate to NoSQL without a complete system overhaul[40].

Lastly, SQL is supported by practically every programming language.

NoSQL grew up alongside the internet giants, operating distributed systems with

unstructured data. There are three NoSQL models: key-value, column oriented,

and document oriented. These models employ the Basically Available, Soft state,

Eventual consistancy (BASE) paradigm along with the Consistency, Availability, and

Partition tolerance (CAP) theorem. The two main strengths of NoSQL databases

are scalability and a schema-less design. For scalability, NoSQL has better cross-

node operation than SQL. It also adapts better to large volumes of data in the dis-

tributed environment[40]. In terms of a schema-less design, the user is not required

20

to think about database evolution and thus makes updating easy. Currently, rela-

tional databases contain obstacles to adhoc upgrades or schema changes and as data

evolves, it must be modeled to the database schema. In schema-less design, the user

defined model evolves with the data.

MongoDB’s [40] strength is read-intensive operations such as data mining. It has

a strong open-source community and is considered an alternative to Hadoop. Mon-

goDB uses the concept of database sharding, which is a horizontal partitioning of the

data stores many times across multiple systems. More precisely, MongoDB imple-

ments auto-sharding which load balances systems automatically when an imbalance

is detected. Each mongod is a Mongo server instance and shards are collections of

replicas. However, MongoDB’s scalability comes from the native MapReduce imple-

mentation.

2.3.2 Sacrificing Consistency or Availability.

Abadi[41] argues the CAP Theorem has a more limited impact on modern dis-

tributed database systems (DDBS) than often assumed by researchers. The trade-off

between consistency and latency is more dominant and should be factored in more

heavily. He claims that CAP was misunderstood and misapplied which led to un-

necessary restrictions on DDBS design. He notes that CAP is intended for dealing

with failures and not meant to limit capabilities during a system’s normal operations.

Several modern systems, in his opinion, have been incorrectly influenced by these

trade-offs. Abadi claims unifying the two sets of latencies under a theorem he calls

PACELC (If P, then A OR C; Else C OR L) would better serve DDBS designers[41].

Latency and availability are closely tied as a system that is too latent becomes

essentially unavailable[41]. For this reason replication is required both to provide

availability and low latency. Replication immediately incurs a trade-off. Alternatives

21

for replication are: send to all, send to master, or send to one. Sending to all incurs

latency due to preprocessing required to avoid replica divergence. Send to master

realizes latency in three forms: synchronous - slowest entity, asynchronous - propa-

gation or overloaded master, or hybrid - quorum agreement delay. Send to one must

overcome latency induced by preprocessing and quorum agreement.

Under Abadi’s [41] PACELC each NoSQL DDBS can be classified. Dynamo,

Cassandra, and Riak as PA/EL systems, meaning they choose availability over con-

sistency and latency over consistency. VoltDB/H-Store and Mega -store are PC, they

always choose consistency. MongoDB is said to be PA/EC, it chooses availability in

failure, but consistency during normal operations. Lastly, PNUTS is PC/EL, consis-

tency during failure or latency otherwise. The implementation of PACELC will not

solve all the problems for DDBS. There will always be trade-offs due to the inher-

ent nature of distributed systems. However, incorporating the latency/consistency

trade-offs early in the design phase is beneficial to all.

2.3.3 NoSQL Database Assessment.

The emergence of new NoSQL paradigms has solved problems plaguing relational

database systems such as the ineffective big data storage and processing or inefficient

transactions and join operations. Further evaluation and baselining is needed for

existing NoSQL systems. Abramova and Bernardino [42] perform a side-by-side com-

parison of MongoDB and Cassandra, two of the leading open-source NoSQL DDBS.

MongoDB is a document-oriented NoSQL database system (briefly introduced in

section 2.3.1), where documents are the smallest unit. Documents are stored in col-

lections and collections in databases. MongoDB uses binary JavaScript object nota-

tion (BSON). The key characteristics of MongoDB are its durability and consistency.

MongoDB uses a master/slave replication implementation to provide durability of

22

data. Only masters can write, therefore slaves serve as read-only backups. If the

master goes down, the most updated slave takes over. Since MongoDB version 2.2,

the system uses locks to ensure consistent data. The main similarity that MongoDB

shares with relational database systems are: create, read, update, delete (CRUD)

operations[42].

Cassandra [42] is a member of the column-oriented family of NoSQL databases.

Cassandra uses columns and rows similar to those of relational database systems.

However, Cassandra can handle both structured and unstructured data. The key

characteristics of Cassandra are durability and availability. Cassandra implements

a peer-to-peer model for replication to provide durability. Cassandra can operate in

both synchronous and asynchronous replication modes. Abramova and Bernadino[42]

highlight Cassandra’s indexing ability as a key feature. This feature contributes to

the overall speed and availability of Cassandra, but comes with considerable overhead

as the number of nodes increase.

In digital forensic analysis, consistency is more critical than speed. While Cassan-

dra outperforms MongoDB in scalability, MongoDB is still highly scalable and much

more consistent. MongoDB’s auto-sharing and native MapReduce implementation

makes for a strong data mining platform[42][40]. This will be key to implementing a

sharded whitelisting database inside a visualization tool.

2.4 Web Application Platforms

Web applications are a popular avenue for developing system agnostic tools, due in

large part the the Representational State Transfer (REST) architectual style. Fielding

[43] introduces REST as a “coordinated set of architectural constraints that attempts

to minimize latency and network communication, while at the same time maximizing

the independence and scalability of component implementations”. JavaScript and its

23

associated “Full Stack” implementations provide quality fast prototyping solutions.

2.4.1 An Introduction To JavaScript.

Javascript is found in practically every mainstream web browser. It is a functional

language often refered to as “Lisp in C’s clothing”[44]. The European Computer Man-

ufacturers Association (ECMA) specified ECMAScript (now JavaScript) was the first

lambda language to achieve wide-spread acceptance and eventually beat out Java as

the language of the web [44]. JavaScript provides a superb platform for system agnos-

tic web applications. Furthermore, JavaScript is asynchronous allowing for concurrent

operations through its eventing architecture rather than multi-threading. It relies on

callback functions for data integrity and reduces the resource overhead associated

with multi-threading [45].

2.4.2 JavaScript Frameworks.

In the early days of web development, applications were heavily coupled to a

back-end server. There was little worry about styling or DOM manipulation. Those

days have quickly passed and given way to new frameworks targeting the client-side

browser. A few of the numerous frameworks heavily relied on by present day devel-

opers include jQuery[46], AngularJS[47] and Ember[46]. They each provide different

methods for achieving high-performing, mobile and scalable user interfaces across mul-

tiple web browsers[46]. These Model-View Controllers (MVC) have quickly carved

out a niche in various corners of the web application market. However, for the all pur-

pose single page web application, the MEAN Stack provides a powerful front-to-back

experience [48].

24

2.4.3 The MEAN Stack.

The MEAN Stack is just one of the combinations of JavaScript technologies

dubbed “Full Stack” web applications. MEAN is an acronym stemming from the

names of tools comprising it, MongoDB, ExpressJS, AngularJS and Node. Each pro-

vide a specific set of functionality to a web application. AngularJs provides a sleek

front-end browser experience to the client. MongoDB provides fast NoSQL data stor-

age. On the back-end, Node and ExpressJS provide an asynchronous web server with

dynamic routing for database queries [48].

In the context of the MEAN Stack, Mongo [48] provides the back-end database

for a web application. It stores data in web friendly BSON format, or binary JSON.

Furthermore, since MongoDB is a schemaless system, it adapts to each application

and when coupled with ExpressJS and Node.js there is almost seamless integration

with the web environment.

ExpressJS[48] is a web framework package for Node. ExpressJS organizes the

server side into the MVC architecture and provides routing features. The idea behind

ExpressJS is that it should be a “fast, unopinionated, minimalist web framework.”

Essentially providing a robust set of features without obscuring Node.js [49]. The

main attraction of ExpressJS is its built in network middleware, for lack of a better

term [50].

AngularJS[47] is a popular front-end library for web applications. AngularJS

provides a declarative programming environment for developing user interfaces over

HTML. Google [47] labels this project the “superheroic JavaScript MVW framework”,

where MVW stands for Model-View-Whatever. This is because unlike jQuery, An-

gular defines the DOM prior to run-time. AngularJS extends HTML directives with

its own declarations. It is written much like HTML with additional features and

controlled through a JavaScript controller function. Lastly, AngularJS provides au-

25

tomatic data binding through its $scope variable which makes DOM manipulation as

simple as variable assignment and mutation [48].

Node.js or Node[48] is a server-side implementation of JavaScript targeted at

supporting long running server processes. Node is simply a platform that allows

Javascript to run outside of a browser. In contrast to other high-level languages

such as Java, C# and numerous other scripting languages, Node (and JavaScript as

a whole) does not utilize multi-threading to implement concurrent operations [48].

Instead, it uses an asynchronous I/O event-driven model eliminating costly overhead

and bookkeeping. Essentially, Node is a JavaScript engine embedded within a single-

threaded daemon [51].

2.5 Summary

This chapter discusses the current state of the computer forensics discipline. A

discussion of new database, data-mining and InfoVis technologies set a platform for

exploration of new analysis methods. Lastly, a survey of current web application

libraries establishes initial design considerations for new tools.

Several visualization methods found practical application in various forensic dis-

ciplines. Some of the methods focus on visually differentiating files by types or size.

Other methods aim to narrow the search space or reduce the load of monotonous

tasks for investigators. Each of the forensic visualization tools discussed shows the

potential for InfoVis techniques in the fields of digital forensics.

26

III. Memory Forensics Visualization

Modern incident response tools leave forensic examiners with an enormous collec-

tion of data and the daunting task of locating useful artifacts. This research seeks to

improve speed and accuracy of artifact identification during the analysis process. Us-

ing a combination of InfoVis methods, the memory visualization tool provides global

and local views of the memory capture data to the examiner in a single visualization

structure. The examiner is then free to interact with, rather than reconstructing

the data and apply intuition to the analysis processes. In addition, through a novel

white-listing process, the memory visualization tool filters items of little interest from

view, effectively shrinking the search space.

This section details the system overview, user interface client, display characteris-

tics, and the white-listing process employed by the Memory Visualization Tool. This

chapter concludes with two use cases detailing identification of user activity and mal-

ware. The use cases walk through three memory images, one known to be free of

malware, showing user activity on a system, one containing an instance of the rootkit

FUTo and the last exploited with the remote administration tool Poison Ivy.

3.1 System Overview

Computer system forensic examiners and incident response teams work under

various prescribed timelines derived from federal, state and private regulations[52].

Evolving technologies, most recently the arrival of vertical negative-AND (NAND)

structures[53], drastically increase available storage and continue to put examiners

behind the curve as existing timelines do not consider rapid leaps in future technology.

The existing tools and methods provided to these examiners often generate ever-

growing sets of data visualized as text or simple visualizations such as the trees and

27

histograms shown in Figure 8. Figure 8a shows a graphical process tree reconstruction

from the Digital Forensics Framework (DFF)[54]. Figure 8b presents a histogram of

MAC times created using Plaso (log2timeline and psort), Elasticsearch, Logstash,

and Kibana (Plaso-ELK)[55]. These products provide a local view of data, but lack

a global context beneficial to the examiner. This levies the task upon the examiner

to manually or internally connect the data in order to make it useful.

(a) DFF Graphical Process Tree Reconstruction.

C
ou

nt

0

100

200

300

400

500

600

700

2015-04-04 2015-04-11 2015-04-18 2015-04-25 2015-05-02 2015-05-09 2015-05-16 2015-05-23 2015-05-30

datetime per day

�

� "timestamp_desc"="cti…

� "timestamp_desc"="mt…

L egend �

(b) Plaso-ELK Timeline For Directory MAC Times.

Figure 8. Simple Visualizations.

Data sources in forensic examinations can have both hierarchical and associa-

tive relationships. Hierarchical relationships are seen in system structures such as

the process tree, logical file system directory structure and registry (or equivalent

configuration files) structure. Associative relationships are found between processes

and their open network connections, file/registry handles, system modules, and/or

28

services. In general, tree visualizations represent hierarchical data, while network

visualizations depict connectedness. The problem lies in that neither visualization

method can simultaneously represent both types of data.

The memory visualization tool presents both types of data simultaneously. This

hybrid visualization method uses three types of visualizations, as shown in Figure

9, on a single canvas. In the center of the visualization, nested circles represent the

system’s process tree, a hierarchical structure. Around the perimeter, a donut chart

(i.e., a modified pie chart) represents system resources (e.g., network connections,

file/registry handles, system modules, and services). System resources are hierarchical

in nature, but at an arbitrary level are resources nodes with an associative relationship

to nodes in the process tree. Associative relationships between process nodes and

systems resource nodes are shown using lines (i.e., edges) as in standard network

diagrams.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

System Resources
(Donut Chart Visualization

System Resources
(Donut Chart Visualization

Process Nodes
(Circle Pack Visualization)

Edge

Node

Process-Resource Links
(Network Visualization)

Figure 9. Overview Of Hybrid Visualization Components.

29

The goal of the memory visualization tool is to provide a tool that helps examiners

perform a more accurate analysis in less time than current methods and tools. By

providing both global and local views of the data, the examiner is freed from the task

of determining connectedness of data, which may not be of interest, and can focus

on applying knowledge and intuition to the analysis process. Furthermore, the global

view provides the examiner with the proverbial “Big Picture” as they step further into

the local views to get the descriptive raw data. Additionally, the visual representation

of data allows novice examiners to better understand and explore the system under

analysis, freeing up expert analysts for tasks more suited to their expertise.

In addition to these visualization techniques, the memory visualization tool applies

a novel whitelisting process with the goal of shrinking the search space by eliminating

items of little interest from view. The whitelisting process works off the premise that

much of the data found on a live computer system is consistent and repetitive between

instances of the same operating system. The tool filters consistent data from view

based on a confidence percentage asserted by the examiner. The interactive nature

of the tool allows the examiner to identify items of interest within a few clicks of the

mouse rather than riffling through pages of text files.

Baum’s[9] proof of concept provided many key inspirations, but ultimately could

not refactor on a dynamic level. The tool required a ground up build supporting mod-

ularity and scalability. Additionally, new data structures written in JavaScript Object

Notation (JSON) enabled use of built-in JavaScript functions. These considerations

yielded an all new, fully functional memory visualization tool.

Baum’s[9] proof of concept did not use dynamic functions for determining hierar-

chical relationships. For example, if a user changed the logical directory file structure

from the default settings, the file handles would not appear in the tool. Also, if a

process ID (PID) was lower than its parent process ID (PPID), which can happen

30

when a PID is recycled, the tool would not correctly visualization the process tree.

Developing new dynamic functions independent of the operating system, solved these

issues.

The new memory visualization tool, completely rewritten in the MEAN Stack

framework, is comprised of server-side Javascript using the NodeJS Engine and client-

side Javascript using AngularJS running in a web browser as depicted in Figure 10.

ExpressJS provides the routing interface between AngularJS and NodeJS. Mongoose

connects AngularJS and NodeJS to the MongoDB database for find, update, remove,

and insert operations. The whitelist module is a C++ node module that receives

commands from the NodeJS Server and has direct access to both the memory image

and the whitelist databases. Memory image feature files are uploaded to the NodeJS

server from the client workstation and then imported to the memory image database.

Memory Visualization
Server

Analyst Workstation

Local Storage Memory Image
Database
(MongoDB) Whitelist

Database
(MongoDB)

Memory
ImageMemory

ImageMemory
Image

NodeJS Server

Whitelist
Module

Mongoose

Web Browser

AngularJS
Express

Figure 10. Memory Visualization Tool Diagram.

31

3.2 User Interface Client

Figure 11 highlights the three main components of the memory visualization tool’s

user interface. The ‘Image Select’ and ‘Functional Buttons’ components control ini-

tialization of the ‘Interactive Visualization’ and toggle features within the ‘Interactive

Visualization’ and ‘Raw Text View’ components. The ‘Raw Text View’ component

displays raw text data from the source database in a sortable as well as searchable ta-

ble. The majority of this section focuses on the ‘Interactive Visualization’ component,

which is the primary InfoVis development in this tool.

Image Select Function Buttons

Interactive Visualization
Textual Data View

Figure 11. User Interface Orientation.

3.2.1 Image Select and Function Buttons.

Figure 12 shows the nine basic function buttons. These buttons are used to

initialize the visualization tool, add or remove datasets from the database, and toggle

features on or off during analysis. Additional user input controls are attached to

components of the visualization. These components are discussed later in this section.

Table 4 describes the function of each button. Some buttons open an additional

32

Figure 12. Image Select and Function Buttons.

control window via modals. Modal windows allow the visualization to retain state

while adding additional hypertext mark-up language (HTML) views and function

scope.

Table 4. Function Button Descriptions.

Button Action
Image Select Menu A list of memory images currently loaded in the image

database.
Visualize Dataset Initializes the visualization tool with selected image.
System View Resets the visualization tool to the initial global view.
Toggle Links Enables or disables process to resource link display.
Toggle Text View Enables or disables raw data display using datatables

plug-in.
Toggle Whitelisting Opens Whitelisting precision select modal.
Whitelist Memory Image Opens Whitelisting image select modal.
Add Memory Image Opens Memory image upload and import select modal.
Remove Memory Image Opens Memory image remove select modal.

The examiner inputs a desired percentage for whitelisting between 0 and 100

through the control modal shown in Figure 13. The percentage represents the low-

est risk threshold the examiner is willing to accept. The whitelisting algorithm is

discussed later in this chapter. An entry of 100% will mark process nodes as “likely

safe” only if it appears in every system in the whitelist database. Likewise, an entry

of 80% will mark processes as “likely safe” if it appears the same way in at least 80%

of the systems.

To add a new memory image to the database, the examiner uploads a directory

containing the memory feature files. The directory is selected for upload using the

modal in Figure 14. Prior to database import, the examiner can name the memory

image or leave the default time-stamped image name. This image is only added to

the working database and is not automatically added to the whitelisting database.

33

Figure 13. Set Whitelist Percentage Modal.

Figure 14. Add Memory Image Modal.

The examiner can remove an image from the working database using the control

window shown in Figure 15. The image is not removed from the whitelisting database

if it had been used for whitelisting.

Figure 15. Remove Memory Image Modal.

34

If an image is determined free of malicious code, an examiner processes it through

the whitelist module via the modal in Figure 16.

Figure 16. Whitelist Memory Image Modal.

3.2.2 Process Nodes.

Circle packing provides an intuitive representation of the process tree in a given

memory image. This differs from a standard tree diagram in that relationships are

implied by spacial position rather than lines, displaying greater amounts of data in a

smaller space. Processes are nested inside of their parent process with the root node

being Microsoft Window’s System Idle Process. Figure 17 shows the process

state of a “clean” Microsoft Windows XP SP3 system. The labels identify system

processes (those initiated by the operating system) and user processes (those initiated

by a user).

Process nodes offer two additional user controls. Holding a mouse curser over

a node circle initiates tooltip window that shows the process name and process ID

(PID) as shown in Figure 18. Process nodes also accept a mouse click event which

highlights the node clicked as seen in Figure 19 and set that node into scope for the

process to resource links which is discussed later in this section.

35

System Idle Process
PID: 0

System Processes

User Processes

Figure 17. Process Node Hierarchy.

36

System Idle Process
PID: 0

System Processes

User Processes

Process

lsass.exe
704

Figure 18. Mouse Over Control.

37

System Idle Process
PID: 0

System Processes

User Processes

Figure 19. Mouse Click Control.

38

3.2.3 Resource Arcs.

A donut chart, much like a pie chart shows parts of a whole. When observing the

initial system view shown in Figure 20, six system resources (File Handles, Registry

Keys, Modules, Services, Ports, and Sockets), which are defined in Table 5 make up

the outer donut.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 20. System Resource Arcs.

Table 5. System Resource Definitions.

Resource Definition
File Handle A unique identifier* linking an open file to owning PID.
Registry Key Handle A unique identifier* linking a registry key to owning PID.
Module Core executable programs and shared system libraries.
Service A background program providing a specific function.
Port The operating system end-point of an network connection.
Socket The process end-point of a network connection.

* Except when a file handle held by a process is duplicated, or process inherits the file
handles of the parent [56].

39

Three additional user controls are attached to the resource arcs. A mouse-over as

seen in Figure 21 displays the name of the resource over which the mouse is currently

hovering.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Service

Figure 21. Mouse Over Tool Tip.

A mouse click steps through a hierarchical resource tree and display all branches

and leaf nodes at each new level. Leaf nodes are opaque and clicking on them high-

lights all nodes associated with that specific resource. Figure 22 shows the service

specific arc for all running services on the system.

Rolling the mouse wheel up while hovering over an arc steps back one level in the

resource tree until the initial system view is reached.

40

ALG

Dnscache

PlugPlay

RpcSs

SSDPSRV

SamSs

Spooler

TermService

VMTools

...ware Physical Disk Helper Service

WZCSVCWebClient

osppsvc

Figure 22. Service Specific Arcs.

3.2.4 Process and Resource Links.

Links show a relationship between connected data. Much like edges in a network

diagram, links show a one-to-one, one-to-many, many-to-one, or many-to-many rela-

tionship between process nodes and resource arcs. Figure 23 shows the global system

view with links enabled for the selected process lsass.exe.

Selecting a resource arc steps into that particular resource and draw links from

the selected process node to the resources in the current display. Figure 24 depicts

the service links for selected node lsass.exe.

As noted in the resource arc discussion above, clicking on an opaque resource

highlights all associated process nodes, and with links enabled, draws links from the

select nodes to all associated resources. Figure 25 illustrates this functionality.

Using the mouse-wheel up control or selecting the ‘System View’ control button

steps backwards in the resource tree while leaving the multiple nodes selected as seen

in Figure 26.

41

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 23. System View Links For lsass.exe.

ALG

Dnscache

PlugPlay

RpcSs

SSDPSRV

SamSs

Spooler

TermService

VMTools

...ware Physical Disk Helper Service

WZCSVCWebClient

osppsvc

Figure 24. Service Links For lsass.exe.

42

VSSAPI.DLL

WINHTTP.dll

WININET.dll

WINIPSEC.DLL

WINMM.dll

WINSCARD.DLL

WINSPOOL.DRV

WINSTA.dll
WINTRUST.dll

WinSCard.dll

Winspool.DRV

vix.dll
vmhgfs.dll

vmtools.dll

vmtoolsd.exe

w32time.dll

wbemcomn.dll

wbemcons.dll

wbemcore.dll

wbemess.dll

wbemprox.dll

wbemsvc.dll

wdigest.dll

webcheck.dllwin32dd.exe

winhttp.dll

winlogon.exe

winrnr.dll

winsrv.dll

Figure 25. Module Links for Multiple Nodes.

<RootDir>/

HKEY/

Modules

Ports

Service

Sockets

Figure 26. System View Links for Multiple Nodes.

43

3.2.5 Textual Data View.

The textual data view using the DataTables Javascript plug-in provides raw text

data to the analyst with a few additional controls and features. Using HTML tabs,

the examiner can switch the table view between the system resources. Figure 27

shows the process list for a clean Microsoft Windows XP Image. DataTables provides

a text search function that limits the table with each letter typed. Furthermore, each

header is alphabetically or numerically sortable.

Figure 27. Process List In DataTables.

44

As the examiner types in the search field, the table is limited to entries with

matching strings. Typing “lsa” in the search field limited the table to a single entry

for lsass.exe as shown in Figure 28.

Figure 28. lsass.exe Search In DataTables.

Mouse click event listeners are appended to each table row and highlight an asso-

ciated process node when clicked. This feature is illustrated in Figure 29.

Highlight Event

Click Event

Figure 29. lsass.exe Highlighted Using DataTables Click Event.

3.3 WhiteListing

The memory visualization tool uses a novel, behavioral whitelisting algorithm.

This approach to whitelisting looks at a process by application name and its associ-

45

ated resources to determine if an application behaves in the same manner as other

applications of the same name. When a given application behaves the same as other

applications bearing the same name, it is likely that application is genuine. For

instance, a compromised version of svchost.exe would appear differently than

genuine versions from a Microsoft release.

The whitelisting process has two main functions:load new images and update

resulting percentages. Product versioning is accounted for in the whitelisting process.

During both the load and results functions, each memory image is only compared to

those of the same major and minor version (i.e., Processes in Windows 5.1 (aka

Windows XP) are not compared against other versions of Windows such as 7, 8, 8.1

or 10). The whitelisting process is depicted by Figure 30. This process works best

with a very large database of clean memory images, ideally in the tens of thousands.

The load function iterates through each process in the image being loaded and

compares it to processes already in the whitelist database. If a given process behaves

the same way as a similarly named processes in the database, the whitelisting module

increments the count for the number of times that application appears in the whitelist

database. However, if the application behaves differently (i.e., uses different dlls, open

files, or registry keys, etc...) or it is the first time an application of that name is added

to the whitelist, a new application entry is created and the application is assigned a

unique application identifier (AppID).

The results function looks at each image in the working database. The function

attempts to match each process in a selected image to an AppID and assigns the asso-

ciated percentage denoting how often that AppID appears in the whitelist database.

If no matching AppID exists, the process is assigned zero percent. The percentages

are updated in the working database for use in the visualization as described earlier

46

Figure 30. Whitelist Method Diagram.

in this chapter.

3.4 Use Case Examples

To demonstrate use of the memory visualization tool, this section presents two use

cases. The first use case describes how to identify artifacts pertaining to user activity

on a system. In this case, the examiner focuses on user processes and their associated

handles. The second use case describes how to use the tool to detect the presence of

malware. In the second case, the examiner utilizes the whitelisting feature and looks

for odd behavior in loaded modules and network connections.

47

3.4.1 User Activity.

The researcher creates a scenario to demonstrate how to analyze user activity with

the memory visualization tool. In this scenario the user, Administrator, is editing

TheSecretPlan.docx in Microsoft Word, reading HowToWriteAVirus.pdf in

Adobe Reader, and is browsing to http://www.mpgh.net/forum/showthread-

.php?t=578711 (a java language virus writing tutorial page) with Mozilla Firefox.

The following sections show how to locate forensic artifacts using the memory visu-

alization tool.

To begin analysis, the researcher selects the Image ‘UserActivity’ from the drop-

down menu and click ‘Visualize Dataset’ as shown in Figure 31. When the visualiza-

tion has finished loading, the researcher clicks the ‘Begin Memory Analysis’ button

shown in Figure 32.

Figure 31. Visualize User Activity Image.

Figure 32. Begin Memory Analysis.

3.4.1.1 User Processes.

Looking at the user processes (i.e., the child processes of Explorer.exe) shown

in Figure 33, the examiner identifies five user processes likely initiated by the user:

48

netbeans, WINWORD, OUTLOOK, AcroRd32, and Firefox. The processes

ctfmon, jucheck, and vmtoolsd are likely started automatically at login.

Lastly, the process win32dd is the memory capture tool initiated by the incident

response team. The following sections explore the Microsoft Word, Adobe Reader,

and Mozilla Firefox Processes.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

netbeans.exe

WINWORD.exe
OUTLOOK.exe Firefox.exe

AcroRd32.exe

Explorer.exe

Figure 33. User Processes in User Activity Image.

3.4.2 Microsoft Word Handles.

The researcher highlights the process WINWORD.exe by hovering the mouse curser

over the desired process node and performs a right mouse click as in Figure 34. He

then turns on the resource links by clicking the ‘Toggle Links’ button seen in Figure

35 to view process to resource links for WINWORD.exe as seen in Figure 36.

The blue link indicates that WINWORD.exe has open file handles, while the pur-

49

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 34. Highlight WINWORD.exe.

Figure 35. Turn-On Node-Resource Links.

ple and the red links indicate open registry keys and loaded modules respectively.

Performing a right mouse click on the <RootDir>/ resource arc steps into the root

of the open file handles and the resulting display shown in Figure 37 shows all subdi-

rectories and file handles in the root directory. The links identify the subdirectories

and file handles with which WINWORD.exe is associated.

Following the link to the Documents and Settings subdirectory by right-

clicking its resource arc enters into that directory and displays its subdirectories and

file handles as seen in Figure 38.

Following the link to the Administrator subdirectory steps into that directory

and provide the results view in Figure 39.

50

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 36. WINWORD.exe Resource Links.

255

AsyncConnectHlp

Ctx_WinStation_API_service

DOCUME~1

Documents and Settings

EVENTLOG

Endpoint

InitShutdown

PCHFaultRepExecPipe

PCHHangRepExecPipe

PIPE_EVENTROOT

Program Files

ROUTER SfcApi

System Volume Information

TerminalServer

W32TIME

WINDOWS

Winsock2

XP

atsvc

epmapper

keysvc

lsarpc

lsass

net

ntsvcs

pagefile.sys

protected_storage

scerpc

spoolss

trkwks

winlogonrpc

winreg

wkssvc

Figure 37. WINWORD.exe Resource Links Root Directory.

Note: Opaque arcs denote file handles.

51

Administrator

All Users NetworkService

Figure 38. WINWORD.exe Resource Links Documents and Settings.

Administrator

Application Data

Cookies

Desktop

Local Settings

My Documents

PrintHood

Recent

Start Menu

Figure 39. WINWORD.exe Resource Links Administrator

Note: The gray arcs denote directory handles.

52

Stepping into the My Documents subdirectory brings up the final view shown in

Figure 40 which has a single link to the file handle C:\Documents and Settings

\Administrator\My Documents\TheSecretPlan.docx.

DownloadsTheSecretPlan.docx

Figure 40. WINWORD.exe Open File Handle TheSecretPlan.docx.

Click the ‘System View’ button illustrated in Figure 41 to return to the global

system view.

Figure 41. Return to System View.

3.4.2.1 Adobe Reader Handles.

Select AcroRd32.exe (PID 1116), which is a child process (or more correctly the

plug-in process) of AcroRd32.exe (PID 364) as shown in Figure 42. As with the

WINWORD.exe example, following the blue link to the root directory will show all sub-

53

directories and file handles in the root directory as seen in Figure 43. Quickly stepping

through the directory path <RootDir>\Documents and Settings\Administ-

rator\My Documents\Downloads\ will bring up the views shown in Figures 44,

45, 45, 46, and 47 respectively. Figure 47 shows a single link between the process

AcroRd32.exe and the file handle for C:\Documents and Settings\Adminis-

trator\My Documents\Downloads\HowToWriteAVirus.pdf. Click the ‘Sys-

tem View’ button to return to the global system view.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 42. AcroRd32.exe Resource Links.

54

255

AsyncConnectHlp

Ctx_WinStation_API_service

DOCUME~1

Documents and Settings

EVENTLOG

Endpoint

InitShutdown

PCHFaultRepExecPipe

PCHHangRepExecPipe

PIPE_EVENTROOT

Program Files

ROUTER SfcApi

System Volume Information

TerminalServer

W32TIME

WINDOWS

Winsock2

XP

atsvc

epmapper

keysvc

lsarpc

lsass

net

ntsvcs

pagefile.sys

protected_storage

scerpc

spoolss

trkwks

winlogonrpc

winreg

wkssvc

Figure 43. AcroRd32.exe Resource Links Root.

Administrator

All Users NetworkService

Figure 44. AcroRd32.exe Resource Links Documents and Settings.

55

Administrator

Application Data

Cookies

Desktop

Local Settings

My Documents

PrintHood

Recent

Start Menu

Figure 45. AcroRd32.exe Resource Links Administrator.

DownloadsTheSecretPlan.docx

Figure 46. AcroRd32.exe Resource Links My Documents.

56

HowToWriteAVirus.pdf

Figure 47. AcroRd32.exe Open File Handle.

3.4.2.2 Firefox Handles and Connections.

Select the Firefox.exe process node as shown in Figure 48. Following the

green link shows all open sockets. However, as seen in Figure 49, the only sockets

Firefox.exe has open are loopback addresses. Click the ‘System View’ button to

return to the global system view. Following the blue link to the root directory brings

up the file view seen in Figure 50. Quickly stepping through the directory path

<RootDir>\Documents and Settings\Administrator\Application

Data\Mozilla\Firefox\Profiles\4a4novg1.default generates the views

seen in Figures 51, 52, 53, 54, 55, 56, and 57 respectively. In Figure 57, Firefox.exe

has several links to file handles, but Mozilla Firefox stores browsing history in places-

.sqlite and that is the file handle of interest. Examining the contents of places

57

.sqlite would show that the User visited the website Tutorial: Java Begin-

ning Virus Programming, MultiPlayer Game Hacking & Cheats

(http://www.mpgh.net/forum/showthread.php?t=578711).

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 48. Firefox.exe Resource Links.

58

10.1.0.144:0

10.1.0.144:3538

10.1.0.144:3717 127.0.0.1:0

127.0.0.1:3551

127.0.0.1:3552

Figure 49. Firefox.exe Sockets Links.

255

AsyncConnectHlp

Ctx_WinStation_API_service

DOCUME~1

Documents and Settings

EVENTLOG

Endpoint

InitShutdown

PCHFaultRepExecPipe

PCHHangRepExecPipe

PIPE_EVENTROOT

Program Files

ROUTER SfcApi

System Volume Information

TerminalServer

W32TIME

WINDOWS

Winsock2

XP

atsvc

epmapper

keysvc

lsarpc

lsass

net

ntsvcs

pagefile.sys

protected_storage

scerpc

spoolss

trkwks

winlogonrpc

winreg

wkssvc

Figure 50. Firefox.exe Resource Links Root.

59

Administrator

All Users NetworkService

Figure 51. Firefox.exe Resource Links Documents.

Administrator

Application Data

Cookies

Desktop

Local Settings

My Documents

PrintHood

Recent

Start Menu

Figure 52. Firefox.exe Resource Links Administrator.

60

Adobe Microsoft

Mozilla NetBeans

Figure 53. Firefox.exe Resource Links Application Data.

Firefox

Figure 54. Firefox.exe Resource Links Mozilla.

61

Profiles

Figure 55. Firefox.exe Resource Links Firefox.

4a4novg1.default

Figure 56. Firefox.exe Resource Links Profiles.

62

content-prefs.sqlite

cookies.sqlite

cookies.sqlite-shm

cookies.sqlite-wal

formhistory.sqlite

parent.lock

permissions.sqlite

places.sqlite

places.sqlite-shm

places.sqlite-wal

webappsstore.sqlite

webappsstore.sqlite-shm

webappsstore.sqlite-wal

Figure 57. Firefox.exe Resource Link to 4a4novg1.default Profile.

3.4.3 Malware Detection.

Detecting live malware on a system is one of the listed research goals. The follow-

ing sections describe how to quickly detect malicious code running on a system. The

first example is a rootkit (FUTo) and the second is a remote access toolkit (Poison

Ivy).

3.4.3.1 FUTo.

FUTo uses Direct Kernel Object Manipulation (DKOM) methods to obscure spec-

ified objects within the PspCidTable. Russinovich and Solomon [57] refer to the Psp-

CidTable as a “handle table for process and thread client IDs”. As such, Silberman

[58] points out, “Every process PID corresponds to its location in the PspCidTable”.

FUTo removes references to not only itself, but to each process it wants to hide.

Furthermore, it sets up a process notify routine which will add the process references

63

back to the PspCidTable before closing a hidden process. This stops the system from

deferencing a null value and ultimately a “Blue Screen of Death” [58].

To begin analysis, the researcher selects the Image ‘FUTo’ from the drop-down

menu and clicks ‘Visualize Dataset’. When the visualization has finished loading,

the researcher clicks ‘Begin Memory Analysis’. From the beginning, this dataset dif-

fers from standard Microsoft Windows XP images. The ‘System Idle Process’ has

three child processes as seen in Figure 58 rather than the normal two (System and

Explorer) as shown in Figure 62. To further confirm the odd behavior, the re-

searcher clicks ‘Toggle Whitelisting’ and selects an acceptable confidence percentage.

The resulting view in Figure 59 shows five processes that do not meet the confidence

percentage, one of them being the third child process of System Idle Process.

Performing a mouse-over on the suspicious process node as seen in Figure 60 pro-

vides the name BadProcess.exe and PID ‘0’ which is reserved for System Idle

Process as seen in Figure 61. A process hidden by the FUTo rootkit can have any

name, but it will always be associated with PID ‘0’.

This visualization tool is capable of showing all loaded modules, dynamic-link

libraries and custom registry keys unique to each implementation of FUTo. Since the

process hidden by FUTo is associated with System Idle Process (i.e., appears

as a loaded module). All artifacts of interest are also associated with System Idle

Process. It is important to note the textual representation of these artifacts was

not detailed in this document due to their length. It is possible to locate all known

artifacts associated with the FUTo rootkit using the same techniques shown in this

use case.

64

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 58. FUTo Image Visualized.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 59. FUTo Image Visualized with Whitelisting.

65

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 60. FUTo Image Visualized with Whitelisting BadProcess.exe Selected.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 61. FUTo Image Visualized with Whitelisting System Idle Process Selected.

66

3.4.3.2 Poison Ivy.

Poison Ivy[59] is a remote access toolkit. It is typically delivered through social

engineering (i.e., email attachment, web download, or file service.). Once initiated,

the code executes in stages. The first stage, named ‘initialization and maintenance’

by FireEye Inc. researchers [59], injects its code into the Explorer.exe process (if

persistence is enabled, a watchdog thread is included). The second phase, dubbed

‘Network Code’ by FireEye, can come in various configurations. By default, it starts

a hidden instance of the system’s default browser process and injects itself into that

hidden process. The code then downloads all additional code and data required for

functionality from the attacker’s remote client[59].

To begin analysis, the researcher selects the Image ‘RAT’ from the drop-down

menu and clicks ‘Visualize Dataset’. When the visualization has finished loading, the

researcher clicks the ‘Begin Memory Analysis’. At the initial view of this dataset

shown in Figure 62, nothing stands out as suspicious.

To limit the scope of the analysis, the researcher clicks ‘Toggle Whitelisting’ and

selects confidence percentage, in this case 65%. The resulting view in Figure 63 shows

five processes that do not meet the confidence percentage. Explore each process and

its links by toggling links on and selecting the process nodes one at a time.

Under the system processes there is an instance of svchost.exe (which is

the service host process) with three children: two instances of wuauclt.exe and

wscntfy.exe seen in Figure 64. The process wuauclt.exe is the Windows Up-

date Automatic Update Client and wscntfy.exe is the Windows Security Center

Notify Application. Both should run from C:\Windows\System32\.

67

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 62. Poison Ivy Image Visualized.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 63. Poison Ivy Image Visualized with Whitelisting.

68

Ports

Sockets <RootDir>/

HKEY/

ModulesService

wuauclt.exe

wscntfy.exe

wmiprvse.exe

Figure 64. Unmatched System Processes.

Using the textual data view as shown in Figure 65, the researcher confirms both

are in fact running from the expected path. Another instance of the service host

is running wmiprvse.exe, which is the Windows Management Instrumentation

process. The process should run from C:\Windows\System32\Wbem\. Confirm

execution path using the text view as with the others.

Under the Explorer process in Figure 66 there is one child process, win32dd.exe.

This process can be ignored as it is the process used to capture live memory by

the incident response team. Selecting the Explorer.exe process as in Figure 67

identifies links to File, Keys, Modules, Ports, and Sockets. The network connections

are abnormal and warrant further investigation. Following the link to network ports

shows a single network connection over port 3460.

Returning to the system view and following the link to file handles will step into the

root directory. Quickly stepping through the path, <RootDir>\Windows\System32,

brings up the views seen in Figures 68, 69, 70. The resulting view shows a link to a

69

single file handle for test.exe. The application test.exe is not a Microsoft Win-

dows executable file and should not be in the System32 directory. These activities

are indicative of a Remote Administration Toolkit – in this case, Poison Ivy.

(a) Module Path For wuauclt.exe.

(b) Module Path For wscntfy.exe.

(c) Module Path For wmiprvse.exe.

Figure 65. Module Path Identification Using Datatables.

70

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Explorer.exe

win32dd
cmd.exe

Figure 66. Unmatched User Processes.

Ports

Sockets <RootDir>/

HKEY/

ModulesService

Figure 67. Abnormal Explorer Process.

71

Ctx_WinStation_API_service

DAV RPC SERVICE Documents and Settings

Endpoint

InitShutdown

PCHFaultRepExecPipe

PCHHangRepExecPipe

Program Files

SfcApi

System Volume Information

TerminalServer

W32TIME

WINDOWS

Winsock2

XP

atsvc

epmapper

keysvc

lsass

net

ntsvcs

protected_storage

scerpc

spoolss

winlogonrpc

winreg

wkssvc

Figure 68. Explorer.exe Resource Links Root.

AppPatch

Debug Fonts

Help

PeerNet

Resources

SchedLgU.Txt

SoftwareDistribution

Tasks

WinSxS

WindowsUpdate.log

ime

inf

msagent

mui

pchealth

srchasst

system

system32

Figure 69. Explorer.exe Resource Links Windows.

72

mui

system32

1033

Com

IME

Restore

Setup

config

dllcache

drivers

inetsrv

npp

oobe

spool

test.exe

usmt

wbem

xircom

Figure 70. Explorer.exe Resource Links System32.

The memory visualization tool also shows all network connections, loaded mod-

ules, threads and modified registry keys, unique to each implementation of Poison

Ivy. Note that the textual representation of these artifacts was not detailed in this

document due to their length. However, using the same techniques as those presented,

each of the artifacts can be located and the textual data view can provide the full

details.

3.5 Summary

This chapter introduced the memory visualization tool user interface and provided

a user orientation. A discussion of two use cases set an initial basis for examiners to

understand how to use the tool when attempting to locate artifacts of interest. The

prime focus of this section was artifacts related to user activity and malware. Lastly,

this chapter discussed implementation specific details for two images containing mal-

ware: FUTo and Poison Ivy.

73

IV. Methodology

Digital forensic tools share a common analysis medium, humans. The binary

nature of forensic artifact detection presents two distinct outcomes, Found and Not

Found. The merits of a tool cannot simply be measured by how well it detects and

presents anomalies in a collection to the human examiner, because each tool also relies

on the human examiner, of varying expertise, to correctly determine whether or not

an anomaly is an artifact of interest. As such, quantitative methods do not adequately

reflect the efficacy of a given tool. This research describes two pilot studies in digital

forensics involving human subjects, where memory capture data are analyzed using

a qualitative methodology known as content analysis.

This chapter details two separate pilot studies seeking to document the efficacy

of the memory visualization tool. Data collection and analysis methods are discussed

and outlined. Additionally, sample exercise material is provided and discussed.

4.1 Pilot Studies

To test the efficacy of the memory visualization tool, two pilot studies, involving

human participants, were designed to examine the core principles of the tool. The

first study sought to determine if the memory visualization tool improved the analysis

and understanding of hierarchical and linked data in memory captures. Along the

same line of inquiry, the second pilot study extended the first and introduced the

whitelisting functionality. The second study sought to examine if the whitelisting

process improved the accuracy of artifact identification and reduced analysis time.

In both studies, the memory visualization tool was compared with a traditional

textual data approach. While the data was limited to a text view, users were free to

employ any search, sort and filter functions available in commercial or open-source

74

text tools (e.g., Microsoft Office, Libre Office, grep, sort). Both methods used the

same source data.

The pilot studies also examined a single user experience objective. As the primary

objective, researchers evaluate whether or not the memory visualization tool increased

the participant’s understanding of the data through simultaneous visualization of

global and local views. As a secondary objective, researchers examine whether or not

intuition played a role in a participant’s understanding of the data.

To evaluate the research goals, researchers collected data from the written sub-

mission of each exercise along with participant feedback. The written submission

evaluates a participant’s successful completion of a forensic exercise and is graded for

accuracy. In the second pilot study, individual time metrics are also collected for each

exercise.

One of two post-study surveys are administered for all participants. In the first

pilot study, participants only respond to the visualization method survey. For the

second pilot study, participants respond on either the text-based method survey or

the visualization method survey, based on which group the participant was assigned.

Each survey question focused on the participant’s observations of the method, tool or

perception of their own performance. Additionally, a single user experience question

focused on the participant’s perceived understanding of the data. The final question

in the survey, sought to draw out future work and/or recommended modifications to

the user interface.

4.2 Experimental Procedures

During the exercise portion of the pilot studies, each participant is presented with

data from several fictitious scenarios. Some of the data involves scripted criminal

activity, while other data represents normal user activity on a computer. Each par-

75

ticipant is required to answer questions pertaining to the data. The pilot studies

share some data, but the data acquisition, scenario and questions differ. Scenarios

are described in Table 6.

Table 6. Fictional Scenario Descriptions.

Name Description
Scenario One Consists of three machines running Microsoft Windows XP.

Only two of the three machines are accessible to the incident
response team. One of the machines is running an instance of
Poison Ivy[59]. The other machine only contains normal user
activity.

Scenario Two Consists of five machines running Microsoft Windows XP and
three servers running Windows 2008 Server. All machines are
accessible to the incident response team. Each machine contains
normal user activity along with some questionable activity. One
machine is exploited using a Meterpreter[60] Reverse TCP Shell.

Scenario Three Consists of a single machine running Microsoft Windows XP.
The user is browsing virus writing tutorial websites with
the Firefox browser. The use has the Netbeans Java IDE
open and is currently editing a file called “NewVirus.java”.
Adobe Acrobat is open reading a document named “How To
Write A Virus.pdf”. Lastly, Microsoft Word is open and cur-
rently editing a file named “The Secret Plan.docx”.

Scenario Four Consists of a single machine running Microsoft Windows XP.
The machine is running an instance of BadProcess.exe hidden
by FUTo[58] rootkit. This scenario is used exclusively with data
from scenario one in section two of the exercise during the second
pilot study.

4.2.1 Pilot Study One.

The first pilot study uses five members of a graduate level, Introduction to Cyber

Forensics course. The participants, split into a team of two and a team of three,

are asked to perform two separate incident responses. Using the data extracted from

each fictional crime scene, the teams complete data analysis, artifact identification,

and reconstruct the timeline and events through detailed narrative.

In scenario one, participants are limited to text-based analysis tools. In scenario

76

two, participants are required to use the memory visualization tool. After each sce-

nario, team members submit a collaborative report which is graded for completeness

and accuracy of artifact identification. All participants are surveyed using the mem-

ory visualization tool survey shown in Figure 71.

Memory Visualization Tool Survey
The purpose of this survey is to accurately assess the Memory Visualization Tool and its effect on
analysis time and accuracy of artifact identification. Please provide complete and honest feedback.

What items in the visualization made completing the task easier?

What items in the visualization made completing the task more difficult?

How do you perceive your accuracy in the task was impacted by the visualization? And, why?

How do you perceive your speed to complete the task was impacted by the visualization? And, why?

Did using the tool increase your understanding of the process and data being analyzed?

What would you like to see changed with the visualization?

Figure 71. Visualization Tool Post-Study Survey.

77

4.2.2 Pilot Study Two.

The second pilot study utilizes eleven master’s degree students from the grad-

uate cyber operations program. These participants self-identified as knowledgeable

in the subjects of computer operating systems, computer networking, and malware.

Participants are split into two groups. Participants in the first group must use text-

based tools. Participants in the second group must use the memory visualization tool

with the whitelisting function. All participants are provided data from scenarios one,

two and three and asked various open-ended questions pertaining to the data. Each

question is timed.

In section one of the exercise, participants are presented with data from scenario

three and asked to provide specific details about the state of a single system. In section

two, each participant examines data from scenario one and four and is required to

answer questions about the presence of malware. In section three, participants are

presented data from scenario two and asked to report anything suspicious. Each

exercise is graded for completeness and accuracy. Time and accuracy results are

compared between groups. Each participant completes the survey associated with

the group to which they were assigned. Members of the visualization group respond

on Figure 71 and members of the text-based methods groups respond on Figure 72.

78

Memory Visualization Tool Survey
The purpose of this survey is to accurately assess the Memory Visualization Tool and its effect on
analysis time and accuracy of artifact identification. Please provide complete and honest feedback.

What text-based tools/functions made completing the task easier?

What about text-based tools made completing the task more difficult?

How do you perceive your accuracy in the task? And, why?

How do you perceive your speed to complete the task? And, why?

Did using text-based tools increase your understanding of the process and data being analyzed?

What would have helped you perform better?

Figure 72. Textual Methods Post-Study Survey.

4.3 Scenario-Based Memory Captures

All raw memory capture data are collected from the scenarios described in Table

6. Each scenario is considered a live environment and as such, all machines are in

79

the state specified by researchers. Live memory captures are obtained using win32dd.

Individual memory captures are processed with CMAT [24] and the output memory

feature files, which are described in Table 7 are placed in a uniquely named image

directory. Each directory containing memory feature files are uploaded individually

as a single composite image into the memory visualization image database. Figure

73 depicts the memory image acquisition process used by incident response teams

during the pilot studies. During the first pilot study, participants follow Figure 73a for

exercise one and Figure 73b for exercise two. For the second pilot study, participants

in the textual methods group follow Figure 73c, while participants in the visualization

tool group follow Figure 73d.

Table 7. Memory Image Feature Files.

Name Description
Processes Lists all running processes including name, PID, and PPID
Handles Lists all file, registry key, directory and thread handles by asso-

ciated PID.
Modules Lists all modules including name, path and PID.
Connections Lists all network connections by PID including local and remote

port, protocol, and socket information.
MemDump Lists system information including processor, operating system,

major version, minor version, build, PAE, kernel base, page di-
rectory base, machine name and image date.

Services* Lists all running services including service name, path, and PID.
* Services acquired using command ‘tasklist /svc /fo csv’ not with CMAT

80

• Microsoft Windows
• XP
• 7
• 8
• 8.1

• win{32,64}dd

Memory
Acquisition

 CMAT
 Volatility

Forensic Data
Extraction • Local Views Textual Data

Analysis

Participant Responsibility

(a) Memory Acquisition Textual Analysis.

• Microsoft Windows
• XP
• 7
• 8
• 8.1

• win{32,64}dd

Memory
Acquisition

 CMAT
 Volatility

Forensic Data
Extraction

• Global View
• Local Views

Interactive
Visualization

Analysis

Participant Responsibility

(b) Memory Acquisition Visual Analysis.

• Microsoft Windows
• XP
• 7
• 8
• 8.1

• win{32,64}dd

Memory
Acquisition

 CMAT
 Volatility

Forensic Data
Extraction • Local Views Textual Data

Analysis

Participant Responsibility Researcher Responsibility

(c) Memory Textual Analysis Only.

• Microsoft Windows
• XP
• 7
• 8
• 8.1

• win{32,64}dd

Memory
Acquisition

 CMAT
 Volatility

Forensic Data
Extraction

• Global View
• Local Views

Interactive
Visualization

Analysis
• Whitelisted Global View
• Whitelisted Local Views

Variable
Percentage
Whitelisting

Participant Responsibility Researcher Responsibility

(d) Memory Visual Analysis Only.

Figure 73. Pilot Study Memory Acqusition and Analysis.

81

4.4 Data Collection Methods

The independent variable in these studies was which tool a participant used. In

the first pilot study, participants used both tools (repeated measures). During the

second pilot study, half of the participants used the text-based tools and half of the

participants used the visualization tool (between groups). The controlled variable

was the graded exercise. The dependent variables were survey responses, accuracy of

artifact identification and measured time to complete the exercise (only used in the

second pilot study).

Time was self reported by participants. Each participant was provided a stop

watch and asked to record time in the format ‘hh:mm:ss’ (h = hour, m = minute,

s = second). The accuracy of exercise completion was graded based on researcher

knowledge of the scenario. Incompleteness was graded as incorrect.

The post-exercise surveys introduce the qualitative aspect of the pilot studies.

The survey responses are the primary interest of the researchers. Each response to

the open ended questions are analyzed for keywords and themes. Accuracy and time

information are used to bolster survey content by assigning more weight to responses

from higher scoring participants.

4.5 Assumptions

1. Digital forensic methods exist for obtaining an accurate physical memory image.

2. The extracted datasets under consideration for each system are limited to pro-

cess lists, network connections, system services, open file handles, system reg-

istry keys, and loaded modules.

3. The operating systems under consideration are limited to Microsoft Windows

Operating Systems.

82

4. The primary examiner(s) have knowledge of the laboratory exercises with which

to evaluate accuracy of artifact identification.

5. Examiner(s) have a scholastic background (i.e., knowledge of operating systems,

malware, networking and incident response) and a refresher lesson in analysis

techniques in order to reduce learning effects during the experiment.

4.6 Hypotheses

The primary hypothesis of these pilot studies is that the memory visualization

tool would produce more accurate artifact identification than traditional text-based

methods. It was hypothesized that any improved accuracy over text-based methods

was due to the visualization tool’s ability to simultaneously display hierarchical and

associative relationships (i.e., simultaneous global and local view). It was also hy-

pothesized that simultaneous global and local views led to better understanding of

the data.

The secondary hypothesis, tested only in the second pilot study, is that filtering

items of little interest from view, using the visualization tool’s whitelisting function,

would reduce time taken to complete a task. It was hypothesized that a reduced

workload would in turn reduce time spent on a task.

83

V. Results

Evaluation of the visualization uses two qualitative pilot studies involving human

subjects. During the course of our pilot studies, we collected two forms of data from

participants. Each participant (or team) submitted a written solution to a forensic

exercise. Secondly, each participant completed an open response survey. The written

solutions received a percentage grade for completeness and correctness. The surveys

were analyzed for content and themes. We drew conclusions about the efficacy of the

memory visualization tool from both sources of data.

This chapter focuses on the results of two pilot studies conducted using human

subjects. The results from each study are first analyzed within their respective studies.

Additionally, data from participants using the memory visualization tool are analyzed

between studies. Findings are compared to the hypotheses established in the previous

chapter

5.1 Data Analysis

The source data in the first pilot study consists of two graded exercises and the

post-study survey. The source data from the second pilot study consists of a single

graded exercise and one of two post-study surveys. The quantitative scores from the

exercises play a supporting role to the qualitative survey responses.

We present the quantitative results using basic visualization techniques. Qual-

itative results are presented through themes extracted from the survey responses.

Themes are extracted using word and phrase count techniques, which take into ac-

count the use of synonyms.

84

5.1.1 Pilot Study One.

In this study, there were four pieces of quantitative data, which are listed in Table

8. This data suggests that the visualization tool produces more accurate results.

Table 8. Pilot Study One Quantitative Scores.

Submission Analysis Type Score
Team 1 Exercise 1 Text-based Methods 88%
Team 2 Exercise 1 Text-based Methods 89%
Team 1 Exercise 2 Visualization Method 98%
Team 2 Exercise 2 Visualization Method 98%

To explore these initial findings, we examine the survey responses. A basic start-

ing point for content analysis is word usage. Figure 74 was generated with Wordle[61]

using only the responses from the post-study survey. This form of word analysis is

a helpful starting point, but we need to be more selective in order to find themes.

I limited the words to verbs, adjectives and nouns related to the visualization tool,

producing the list found in Table 9.

Figure 74. Pilot Study One Word Cloud.

85

Table 9. Most Frequently Used Words.

NO. Occurences Word
6 helpful
6 easier
5 able
4 identify
3 speed
3 reference
3 helped
3 faster
3 easy
2 suspicious
2 represent
2 links
2 increased
2 improved
2 bubbles
1 visually
1 visible
1 viewing
1 useful
1 unique
1 understanding
1 understand
1 toggle
1 switching
1 switch
1 programs
1 presented
1 positively
1 positive

NO. Occurences Word
1 ownership
1 owner
1 nesting
1 looking
1 look
1 levels
1 level
1 knew
1 intuitive
1 improving
1 improvements
1 implies
1 identifying
1 hierarchy
1 easily
1 ease
1 distinguish
1 detect
1 context
1 containers
1 connections
1 connection
1 connecting
1 connectedness
1 connected
1 comparison
1 compared
1 bubble
1 believe

The themes in the first pilot study align with the hypothesis. Improved accuracy

with the visualization tool is attributed to its ability to represent hierarchical and

linked data simultaneously. Additionally, this representation of data helps the user

to better understand the data and apply intuition. Referring back to Table 9, it

becomes clear that these themes are present.

86

When discussing which components of the visualization tool made the tasks easier,

one participant responded, “links between the process and system resources.” While

another participant added, “nesting of the process bubbles.” Both of these inputs

identify visual representation of hierarchical and linked data within the visualization

tool. However, a third participant had affirmed our hypothesis by writing, “[The

visualization tool] helped greatly to see ownership (hierarchical) and connectedness

of processes and system resources.” Survey responses indicate that the participants

recognize our method, but it remains to be seen whether or not the methods lead to

a better understanding of the data.

We asked our participants how they perceived their accuracy of artifact identifi-

cation, keep in mind that they have not yet seen their scores. The responses were

overwhelmingly positive. One participant claimed to be, “confident”, that they “knew

potentially infected machines within a few minutes.” Along a similar line, partici-

pants claimed the visualization tool made it easy to “identify items that should not be

on the system.” or “believe if a machine was clean because nothing appears unusual.”

Word usage by the participants (e.g., knew, believe, appears) implies understanding

and the quantitative data shows an improvement in scores, but we need to go a step

further.

Focused on a specific point, we asked our participants if the visualization tool

increased their understanding of the process and the data. Two of the participants

thought the visualization tool had no impact on their understanding, but that it made

the process “faster” and “easier”. The remaining three participants agreed that the

visualization tool improved their understanding. They thought the visualization tool

“was intuitive”, it allowed the user to “visually distinguish” objects that “appear

suspicious.”

The results of the initial pilot study were positive. Participants showed improve-

87

ment quantitatively in the exercise scores, but more importantly, qualitative analysis

of the post-study survey supported key themes of our hypothesis. These results led

to minor changes in the visualization tool’s user interface and initiated a second pilot

study to confirm the initial findings and test an additional hypothesis.

5.1.2 Pilot Study Two.

Our second pilot study contained twelve pieces of quantitative data shown in Table

10: six graded questions and six associated time recordings. After initial review of the

quantitative data, we removed the second visualization participant from the study.

It was clear to us that this participant did not possess the required knowledge to

successfully complete the forensic exercise. We formed this conclusion based on their

low score, slow time, and comments from their post-study survey. No other outliers

were seen in the quantitative data.

Figures 75a and 75b show individual scores and times respectively. The quantita-

tive data suggests that participants using the memory visualization tool scored higher

and had faster completion times than their counterparts using text-based methods.

Table 10. Pilot Study Two Scores and Time By Participant.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Average Total
Participant Score Time Score Time Score Time Score Time Score Time Score Time Score Time
Text1 1.00 0:15:15 1.00 0:12:52 1.00 0:06:04 1.00 0:06:12 0.44 0:42:29 0.50 0:49:43 0.82 2:12:35
Text2 0.85 0:07:12 0.50 0:12:50 0.50 0:01:08 0.88 0:05:30 0.78 0:27:46 0.00 0:28:01 0.58 1:22:27
Text3 0.69 0:03:14 0.50 0:20:26 1.00 0:01:55 0.94 0:04:24 0.56 0:20:13 0.50 0:39:18 0.70 1:29:30
Text4 0.92 0:07:20 0.50 0:07:20 1.00 0:07:20 0.63 0:07:20 0.22 0:44:30 0.75 0:45:00 0.67 1:43:01
Text5 0.92 0:11:15 0.50 0:11:15 1.00 0:11:15 0.94 0:11:15 0.33 0:29:10 0.00 1:00:00 0.62 2:14:10
Visual1 0.92 0:01:30 1.00 0:06:45 1.00 0:04:13 1.00 0:09:35 0.67 0:38:28 0.50 0:38:41 0.85 1:39:12
Visual3 1.00 0:08:11 1.00 0:09:27 1.00 0:02:03 1.00 0:05:43 1.00 0:31:27 0.75 0:34:19 0.96 1:31:10
Visual4 0.77 0:02:33 0.25 0:16:30 1.00 0:01:28 0.81 0:04:59 0.44 0:15:28 1.00 0:26:56 0.71 1:07:54
Visual5 1.00 0:09:30 1.00 0:10:30 1.00 0:03:00 1.00 0:10:00 0.56 0:21:30 0.75 0:27:00 0.88 1:21:30
Visual6 0.69 0:00:30 0.50 0:10:00 1.00 0:01:15 0.94 0:11:50 0.33 0:03:00 0.75 0:19:30 0.70 0:46:05
Text Average 0.862 0:06:06 0.6 0:11:43 0.9 0:05:10 0.875 0:07:37 0.511 0:32:01 0.35 0:42:12 0.683 1:41:40
Visual Average 0.877 0:04:27 0.75 0:10:38 1 0:02:24 0.95 0:08:25 0.6 0:21:59 0.75 0:29:17 0.821 1:17:10

88

Individual
50

55

60

65

70

75

80

85

90

95

Sc
or

e(
%

)

Visual6
Visual5
Visual4
Visual3
Visual1

Text5
Text4
Text3
Text2
Text1

(a) Scores By Individual

Individuals
30

40

50

60

70

80

90

100

110

120

130

140

Ti
m

e
(m

in
ut

es
)

Visual6
Visual5
Visual4
Visual3
Visual1

Text5
Text4
Text3
Text2
Text1

(b) Times By Individual

Figure 75. Pilot Study Two Score and Time Charts By Individual.

As with the first pilot study, we begin the qualitative analysis by examining the

survey responses at the most basic level. Figures 76a and 76b show the most com-

monly used words while Tables 11 and 12 provide the frequency of usage. It is

interesting to note, the most dominant word in the text-based methods surveys is

data. Using this information, we confirmed the presence of our themes in the survey

data and continued the analysis.

(a) Visualization Method Survey Word Cloud (b) Textual Methods Survey Word Cloud

Figure 76. Pilot Study Two Word Clouds.

The themes in the second pilot study were identical to those of the first study and

include a third theme: time. We attribute reduced time between artifact identification

to the efficacy of the whitelisting feature. As in the first study, we analyze the content

of the open response surveys.

89

Table 11. Most Frequently Used Words Visualization Survey.

NO. Occurences Word
6 able
4 understanding
3 links
3 helped
2 view
2 quickly
2 hierarchy
2 helpful
1 whitelisting
1 whitelist
1 visually
1 understand
1 tree
1 showing
1 show
1 shading
1 perceive

NO. Occurences Word
1 notice
1 located
1 leveled
1 level
1 interacting
1 interacted
1 integrated
1 information
1 increase
1 help
1 filtering
1 filter
1 efficient
1 easier
1 connected
1 bubbles
1 aided

Table 12. Most Frequently Used Words Text-Based Methods Surveys.

NO. Occurences Word
19 data
6 time
6 task
6 excel
5 filtering
4 within
4 together
4 think
4 relationships
4 information
4 found
4 find
4 between
3 spreadsheets
2 text
2 tedious

NO. Occurences Word
2 tables
2 sorting
2 scanning
2 representation
2 puzzle
2 pen
2 paper
2 organization
2 manually
2 links
2 indicators
1 scattered
1 overload
1 filters
1 filter
1 distracting

90

We asked the five participants using the memory visualization tool to identify

which features made the tasks easier. One participant thought the process node

visualization (i.e., circle packing) was the most helpful stating, “it allowed me to very

easily see what a particular process was using” while two others stated the “automatic

links to resources” or “link view” was the most helpful. Another participant wrote

the “leveled local views”, using the resource circle, simplified the tasks. We interpret

“leveled local views” to mean global view, because a single local view does not have

levels. The most affirming response stated, “ [T]he whitelisting tool was very useful,

but it made me nervous to turn it up too far since I was worried that I might miss

something.”

Looking at the perceived accuracy in artifact detection of our participants, the

findings were very similar to the first study. All five participants stated that the

visualization tool increased their accuracy. One of the participants stated, “Without

the visualization, I probably would not have been able to complete any of the tasks...’,

while another wrote “I can’t imagine using spreadsheets” to complete the tasks. There

were also concerns that the visualization tool made artifact discovery too easy and as

one participant wrote, “[T]he tool made me more confident than I should have been...I

might have rushed through the data too fast and missed something.” Two participants

noted the visualization tool improved their accuracy by making “anomalies more

obvious” and helping spot “odd behavior” by a process.

We then shifted our focus to how they perceived their time on task. One partici-

pant thought the visualization tool “definitely” increased completion speed noting, “I

was able to, in a few seconds, locate suspicious processes”. Three other participants

attributed their speed to the simultaneous global and local views. One participant

wrote, “Being able to see the links throughout the UI and navigate through the hierar-

chy allowed for a better understanding.” A second participant stated, “The [resource]

91

links and process bubbles made some of the questions no brainers”, while a third felt

“the visualization helped me literally see connections and dig into specific resources

with more clarity than I think I would have otherwise.”

When asked if the visualization tool increased their understanding of the process

and data being analyzed, the participants gave a resounding “yes”. The participants

agreed the visualization tool helped them “see” or “understand” the data better. The

visualizations allowed them to understand “how objects were connected” as opposed

to making the connections manually. One participant stated, “the visualization tool

did seem to direct me” and “it increased my knowledge, by allowing me to see at a

glance” the internal workings of an active system. The results of the second pilot study

were mostly positive. Participants using the memory visualization tool showed higher

scores and lower completion times than their counterparts using text-based methods.

More importantly, key themes in the survey data supported our primary hypotheses.

While these responses did not support our hypothesis that the faster analysis times

were attributable to the whitelisting feature, they do support the hypothesis that the

simultaneous global and local views improve understand of the data and allow the

users to apply intuition. Furthermore, these results provide the level of confidence

required to move forward from pilot studies into real world testing.

5.2 Summary

This chapter details the results of two pilot studies testing the efficacy of the mem-

ory visualization tool. Quantitative scores compared within the studies provided a

basis for evaluation of qualitative survey data. Qualitative themes extracted from the

survey data test the primary and secondary hypotheses. The primary objective was

to show the memory visualization tool produced more accurate artifact identification

than traditional text-based methods. The secondary objectives were to associate im-

92

proved accuracy and reduced completion time with the tool’s simultaneously global

and local views and whitelisting feature respectively.

Quantitative data from both pilot studies showed higher accuracy in artifact iden-

tification when using the memory visualization tool. This data was supported by

themes extracted from the post-study response surveys. These confirmed the primary

hypotheses that the memory visualization tool would produce more accurate artifact

identification than traditional text-based methods. Furthermore, the themes sup-

ported the secondary hypothesis that any improved accuracy over text-based meth-

ods was due to the visualization tool’s ability to simultaneously display hierarchical

and associative relationships.

In the second pilot study quantitative data suggested higher scores and faster

completion times for participants using the memory visualization tool. The themes

from the post-study surveys show that participants perceived their completion times

as quick, but the themes did not support the hypothesis that filtering items of little

interest from view, using the visualization tool’s whitelisting function, would reduce

time taken to complete a task. This hypothesis deserves further examination.

93

VI. Conclusion and Recommendations

This research developed and evaluated a fully functional memory analysis tool

based on Baum’s[9] memory visualization proof-of-concept. Two pilot studies con-

firmed the efficacy of the visualization tool through qualitative analysis of key themes

contained in post-study survey data. Most importantly, this research confirmed the

hypothesis a visualization tool that provides context throughout analysis and shrinks

an examiner’s search space will make an examiner more accurate and faster.

This chapter highlights the accomplishments of this research and concludes with

a presentation of future research opportunities.

6.1 Accomplishments

This research built upon a proof of concept and produced a fully functional anal-

ysis tool that can run in practically any operating system environment. Using the

MEAN Stack single page application model together with several JavaScript libraries,

the memory visualization tool is both maintainable and scalable. The memory visu-

alization tool developed through this research provides forensic examiners a full scale

analysis client that aids in artifact identification and anomaly detection. The specific

objectives met by this research are as follows:

1. The memory visualization tool simultaneously displays hierarchical and asso-

ciative relationships.

2. A novel, behavioral whitelisting function filters processes of little interest from

view.

Two pilot studies concluded the memory visualization tool produced more ac-

curate artifact identification than traditional text-based methods – supporting our

94

primary hypothesis. A single pilot study showed the memory visualization tool real-

ized faster completion times than traditional text-based methods.

6.2 Future Work

The limiting factor of the memory visualization tool is its reliance on feature files

from CMAT. The MongoDB instance is capable of handling the output of all popular

memory analysis tools, but a custom schema is required for each. The best solution

may be to design a single document format, taking input from all memory analysis

tools and mapping them to the predetermined format.

The whitelisting algorithm has a couple shortcomings to address. The current

version cannot differentiate between similarly named applications with varying num-

bers of open network connections. For example, if processes named Firefox.exe

has three open network connections and all other instances of a process named

Firefox.exe have two, the whitelisting function would create a new AppID for

the instance FireFox.exe with three network connections. In the interim, the

whitelisting function was modified to check whether or not connections exist. There-

fore, if a process named Firefox.exe has one hundred open network connections

and all other instances of a process named Firefox.exe have two, the instance

FireFox.exe with one hundred network connections is matched in the whitelist

and hidden from view.

The visualization methods used in this research were only tested on Microsoft

Windows operating systems. However, the abstraction used in development should

allow easy porting to Linux, OS X, and Android. The limiting factor in analyzing

other operating systems is CMAT. Rekall[25] and Volatility[23] both support Linux,

OS X and Android, CMAT currently does not.

The next version of the memory visualization tool should implement a code ex-

95

traction feature. This would allow forensic examiners to extract unpacked executable

code segments from a memory image using the memory visualization tool’s user in-

terface. This would most likely require an additional database schema.

96

VII. Appendix A – IRB Exemption Letter

DEPARTMENT OF THE AIR FORCE
AIR FORCE INSTITUTE OF TECHNOLOGY

WRIGHT-PATTERSON AIR FORCE BASE OHIO

23 June 2015

MEMORANDUM FOR DR Gilbert peterson

FROM: William A. Cunningham, Ph.D.
AFIT IRB Research Reviewer
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

SUBJECT: Approval for exemption request from human experimentation requirements (32 CFR
219, DoDD 3216.2 and AFI 40-402) for Memory Visualization Educational Impacts.

1. Your request was based on the Code of Federal Regulations, title 32, part 219, section 101,
paragraph (b) (2) Research activities that involve the use of educational tests (cognitive,
diagnostic, aptitude, achievement), survey procedures, interview procedures, or observation of
public behavior unless: (i) Information obtained is recorded in such a manner that human
subjects can be identified, directly or through identifiers linked to the subjects; and (ii) Any
disclosure of the human subjects’ responses outside the research could reasonably place the
subjects at risk of criminal or civil liability or be damaging to the subjects’ financial standing,
employability, or reputation.

2. Your study qualifies for this exemption because you are not collecting sensitive data, which
could reasonably damage the subjects’ financial standing, employability, or reputation. Further,
the demographic data you are utilizing and the way that you plan to report it cannot realistically
be expected to map a given response to a specific subject.

3. This determination pertains only to the Federal, Department of Defense, and Air Force
regulations that govern the use of human subjects in research. Further, if a subject’s future
response reasonably places them at risk of criminal or civil liability or is damaging to their
financial standing, employability, or reputation, you are required to file an adverse event report
with this office immediately.

WILLIAM A CUNNINGHAM, PH.D.
AFIT Exempt Determination Official

97

VIII. Appendix B – Example Exercises

Study One Exercise Example.

Assignment #4
Cyber Forensics - CSCE 527

Due: 8:00 AM, Wednesday August 20, 2014
Incident Response

Purpose:
Gain an understanding of the collectable information from an active

machine in a logged in state, and the performance of an incident response.

Scenario:
ABC Corporation is a small board game distributor started by Col. David

Mustard (ret) in 2008. They purchase games from the publishers and sell them
to game stores. David focuses on sales (getting and keeping customers). In
addition to David, there are two full-time employees, J ohn Green who is a
combination IT-guy and warehouse manager. And Nancy Scarlett, who handles
the actual day-to-day receiving, shipping, and inventory control.

Today, J ohn received a panicked text message/email from David when

David discovered that their "Top Customer List" saved on David's computer
appears to have been changed. You have been contacted by J ohn to help with
the investigation. Has the file been modified and if so, by who and for what
purpose?

Assignment:
Before searching the machine, generate the data collection process

(process list, current connections, etc.) and a general policy that will you use for
approaching a system and analyze the data.

Several suites are available in the course folder. Feel free to use and
extend these or make your own scripts.

During the analysis focus on Inman & Rudin (identification,
individualization/classification, association, and reconstruction) and the narrative
(who, what, when, how, where, why). In the final report, clearly state the
forensic question you are answering with a particular piece of evidence.

As an example, if you found and identified a file as potential evidence
(identification, what and where) you need to determine how the file arrive on the
machine (association, how). Remember that how it did not arrive is as useful as
how it did. In doing this, do not just randomly look for things; think about all the
ways it could arrive, and write that out (include in the report, and then follow
your process).

Prepare a written report detailing the steps and tools you used for this
lab, the evidence found, and any other recommended documentation. As always,
maintain documentation of your investigation, recording everything that you do
and when you do it. Also, in this report present at least two methods you would

98

use to triage the machine. In the triage discussion, be sure to discuss tradeoffs
between the certainty of being clean and the time the triage takes.

Scope:
Your investigation will use a set of Virtual Box machines.

ABC Corporation has a very small digital footprint. David and J ohn each
have a computer (Box1 and Box2 respectively) and they are networked together.
They have email accounts on Yahoo (GreenABCCorp@yahoo. com and
MustardABCCorp@yahoo.com. Though neither know it, they share the same
password (Password!123) which is the same password for logging into their
machines. J ust to help with administration, J ohn has also set up an account for
himself on David's machine in case David needs something while he is gone.

Network Summary:
192.168.56.103 Box1 J ohn Green (pwd: Password!123)
GreenABCCorp@yahoo.com
192.168.56.102 Box2 David Mustard (pwd: Password!123)
MustardABCCorp@yahoo.com
192.168.56.104 Box3

Power the boxes on in reverse order: Box3, Box2, and Box1. The presence

of Box3 can be ignored for the scenario. All boxes are reachable from the host
machine (ipconfig on host to get IP).

Take care to reduce alteration to the state of the system. This way, if you
need to come back and re-perform your investigation, you can do so.

Email a soft copy of written report to Gilbert.Peterson@afit.edu.

99

Study Two Exercise Example.

User Activity Image:

1) List processes the user had running at the time of the memory capture.

2) Did any of the processes listed above have interesting file handles? If so, please list.

3) Which processes had network connections? What where the remote IP addresses?

4) How many processes have Shell32.dll loaded? List each process and indicate whether it is a system (kernel)
process or user process?

Malware Images:
For the three memory images provided, please identify which type of malware is present and the suspected
process Name and PID.

1) Box1: Process Name ____________ PID___ [] RootKit [] Remote Access Tool Kit [] Both [] Neither
2) Box2: Process Name ____________ PID___ [] RootKit [] Remote Access Tool Kit [] Both [] Neither
3) Box3: Process Name ____________ PID___ [] RootKit [] Remote Access Tool Kit [] Both [] Neither

5 Box Exercise:

Analyze the five images provided and report anything out of the ordinary. This is an open ended question,
report what you find...there are many correct answers.

100

Bibliography

1. O. Carroll, S. Brannon, and T. Song. (2008, January) Computer forensics:
Digital forensic analysis methodology. [Online]. Available: http://www.justice.
gov/sites/default/files/usao/legacy/2008/02/04/usab5601.pdf

2. M. Chen and H. Jänicke, “An information-theoretic framework for visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp.
1206–1215, 2010.

3. J. Heer, M. Bostock, and V. Ogievetsky, “VIISUALIZATION A Tour through
the Visualization Zoo A survey of powerful visualization techniques , from the
obvious to the obscure,” Communications of the ACM, vol. 53, no. 5, pp. 59–67,
2010. [Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=
22906879

4. F. Hinshaw, “Data warehouse appliances Driving the Business Intelligence Rev-
olution,” DM Review, vol. 14, no. 9, p. 30, sep 2004.

5. G. Henderson, “Triage visualization for digital media exploitation,” Master’s
thesis, Naval Postgraduate School, 2013. [Online]. Available: http://calhoun.nps.
edu/bitstream/handle/10945/37636/13Sep Henderson Glenn.pdf?sequence=1

6. N. Beebe and J. Clark, “Dealing with Terabyte Data Sets in Digital
Investigations,” in Advances in Digital Forensics, S. Pollitt, Mark and
Shenoi, Ed. Springer US, 2005, pp. 3–16. [Online]. Available: http:
//dx.doi.org/10.1007/0-387-31163-7 1

7. S. Teerlink and R. F. Erbacher, “Improving the computer forensic analysis
process through visualization,” Communications of the ACM, vol. 49, no. 2,
p. 71, 2006. [Online]. Available: http://dx.doi.org/10.1145/1113034.1113073

8. G. Osborne, H. Thinyane, and J. Slay, “Visualizing information in digital
forensics,” in Advances in Digital Forensics VIII, ser. IFIP Advances in
Information and Communication Technology, G. Peterson and S. Shenoi, Eds.
Springer Berlin Heidelberg, 2012, vol. 383, pp. 35–47. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33962-2 3

9. J. B. Baum, “Windows Memory Forensic Data Visualization,” Master’s
thesis, Air Force Institute of Technology, 2014. [Online]. Available: http:
//www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA602889

10. United States Computer Emergency Readiness Team. (2008) Computer forensics.
[Online]. Available: https://www.us-cert.gov/sites/default/files/publications/
forensics.pdf

101

11. W. Kruse and J. Heiser, Computer Forensics: Incident Response Essentials.
Addison-Wesley, 2002.

12. G. Palmer, “A Road Map for Digital Forensic Research,” Proceedings of the 2001
Digital Forensics Research Workshop (DFRWS 2004), pp. 1–42, 2001. [Online].
Available: http://www.dfrws.org/2001/dfrws-rm-final.pdf

13. R. Ayers, W. Jansen, and S. Brothers, “Guidelines on Mobile Device Forensics
(Draft),” National Institute of Standards and Technology, Gaithersburg,
MD, Tech. Rep., 2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-101r1.pdf

14. S. Yadav, K. Ahmad, and J. Shekhar, “Analysis of digital forensic tools and
investigation process,” in High Performance Architecture and Grid Computing,
ser. Communications in Computer and Information Science, A. Mantri, S. Nandi,
G. Kumar, and S. Kumar, Eds. Springer Berlin Heidelberg, 2011, vol. 169, pp.
435–441. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-22577-2 59

15. National Institute of Justice. (2008) Electronic crime scene investigation:
A guide for first responders, second edition. [Online]. Available: https:
//www.ncjrs.gov/pdffiles1/nij/219941.pdf

16. Scientific Working Groups on Digital Evidence and Imaging Technology.
(2015) Swgde/swgit digital and multimedia evidence glossary. [Online]. Avail-
able: https://www.swgde.org/documents/Current%20Documents/2015-05-27%
20SWGDE-SWGIT%20Glossary%20v2.8

17. B. D. Carrier and J. Grand, “A hardware-based memory acquisition procedure
for digital investigations,” Digital Investigation, vol. 1, no. 1, pp. 50–60, 2004.
[Online]. Available: http://dx.doi.org/10.1016/j.diin.2003.12.001

18. N. Davis, “Live Memory Acquisition for Windows Operating Systems,” Citeseer,
2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.173.6197&rep=rep1&type=pdf

19. H. Carvey, Windows Forensic Analysis. Elsevier, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9781597491563500083

20. M. Burdach, “Physical memory forensics.” Black Hat, 2006. [Online]. Available:
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf

21. M. Becher, M. Dornseif, and C. Klein, “FireWire: all your memory
are belong to us,” in Proceedings of CanSecWest, 2005, p. 40. [Online].
Available: https://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
FireWire:+all+your+memory+are+belong+to+us#0

102

22. L. Zeltser. (2015) One-click windows memory acquisition with
dumpit. Blog Post. [Online]. Available: https://zeltser.com/
memory-acquisition-with-dumpit-for-dfir-2/

23. M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory
Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory, 1st ed., C. Long, Ed. Indianapolis: Wiley, 2014. [Online]. Avail-
able: http://www.amazon.com/Art-Memory-Forensics-Detecting-Malware/
dp/1118825098/ref=sr 1 1?s=books&ie=UTF8&qid=1412631153&sr=1-1&
keywords=the+art+of+memory+forensicsevernote:///view/5232484/s49/
1c7c4311-35ce-473a-9049-9e2b3b2308a0/1c7c4311-35ce-473a-9049-9e2b

24. J. Okolica and G. L. Peterson, “Windows operating systems agnostic memory
analysis,” Digital Investigation, vol. 7, no. SUPPL., pp. S48–S56, 2010. [Online].
Available: http://dx.doi.org/10.1016/j.diin.2010.05.007

25. M. Cohen, “Rekall memory forensic framework,” 2013. [Online]. Available:
http://www.rekall-forensic.com/docs/Tools/pmem.html

26. J. Stüttgen and M. Cohen, “Anti-forensic resilient memory acquisition,” Digital
Investigation, vol. 10, pp. 105–115, 2013.

27. M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident re-
sponse in the enterprise,” Digital Investigation, vol. 8, pp. S101–S110, 2011.

28. T. J. Jankun-Kelly, J. Franck, D. Wilson, J. Carver, D. Dampier, and J. E. Swan,
Ii, “Show me how you see: Lessons from studying computer forensics experts for
visualization,” in Proceedings of the 5th International Workshop on Visualization
for Computer Security, ser. VizSec ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 80–86.

29. Y. Liu, Y. Wang, and Y. Jin, “Research on the improvement of MongoDB Auto-
Sharding in cloud environment,” ICCSE 2012 - Proceedings of 2012 7th Interna-
tional Conference on Computer Science and Education, pp. 851–854, 2012.

30. M. Tory and T. Moller, “Rethinking Visualization: A High-Level Taxonomy,”
IEEE Symposium on Information Visualization, pp. 151–158, 2004. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1382903

31. B. Shneiderman, “Tree Visualization with Tree-Maps: 2-d Space-Filling
Approach,” ACM Transactions on Graphics, vol. 11, no. 1, pp. 92–99, 1992.
[Online]. Available: http://dx.doi.org/10.1007/s13398-014-0173-7.2

32. C. Stab, K. Nazemi, and D. W. Fellner, “SemaTime - Timeline visualization
of time-dependent relations and semantics,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6455 LNCS, pp. 514–523, 2010.

103

33. S. L. Garfinkel, “Digital forensics research: The next 10 years,” Digital
Investigation, vol. 7, pp. S64–S73, 2010. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1742287610000368

34. S. Chawathe, “Effective whitelisting for filesystem forensics,” in Intelligence and
Security Informatics, 2009. ISI ’09. IEEE International Conference on, June
2009, pp. 131–136.

35. A. Graves, “Creation of visualizations based on linked data,” Proceedings of
the 3rd International Conference on Web Intelligence, Mining and Semantics -
WIMS ’13, p. 1, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2479787.2479828

36. M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2301–2309, 2011. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2011.185

37. D. Baranovskiy. (2015) Raphal - javascript library. [Online]. Available:
http://raphaeljs.com/

38. M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An Open Source Software for
Exploring and Manipulating Networks,” Third International AAAI Conference on
Weblogs and Social Media, pp. 361–362, 2009. [Online]. Available: http://www.
aaai.org/ocs/index.php/ICWSM/09/paper/view/154\backslashnpapers2:
//publication/uuid/CCEBC82E-0D18-4FFC-91EC-6E4A7F1A1972

39. Gephi.org. (2015) Gephi - the open graph viz platform. [Online]. Available:
http://gephi.github.io/

40. L. Bonnet, A. Laurent, M. Sala, B. Laurent, and N. Sicard, “Reduce,
You Say: What NoSQL Can Do for Data Aggregation and BI in
Large Repositories,” 2011 22nd International Workshop on Database and
Expert Systems Applications, pp. 483–488, 2011. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6059864

41. D. Abadi, “Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42, Feb 2012.
[Online]. Available: http://dx.doi.org/10.1109/MC.2012.33

42. V. Abramova and J. Bernardino, “NoSQL databases,” Proceedings of the
International C* Conference on Computer Science and Software Engineering -
C3S2E ’13, pp. 14–22, 2013. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2494444.2494447

43. R. Fielding and R. Taylor, “Principled design of the modern Web architecture,”
Proceedings of the 2000 International Conference on Software Engineering. ICSE
2000 the New Millennium, vol. 2, no. 2, pp. 115–150, 2000.

104

44. D. Crockford, JavaScript: The Good Parts. O’Reilly Media, 2008. [Online]. Avail-
able: http://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/
dp/0596517742%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D0596517742

45. D. Flanagan, JavaScript: The Definitive Guide.
O’Reilly Media, 2001. [Online]. Available: http:
//www.amazon.com/JavaScript-Definitive-Guide-David-Flanagan/dp/
0596000480%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D0596000480

46. W. Hales, HTML5 and JavaScript Web Apps. O’Reilly Media, 2012. [Online].
Available: http://www.amazon.com/HTML5-JavaScript-Apps-Wesley-Hales/
dp/1449320511%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D1449320511

47. Angularjs.org. (2015) Angularjs - superheroic javascript mvw framework.
[Online]. Available: https://angularjs.org/

48. J. Dickey, Write Modern Web Apps with the MEAN Stack (Mongo
Express AngularJS and Node.js). PeachpitPress, 9 2014. [Online]. Available:
http://amazon.com/o/ASIN/B00QPZ9LS6/

49. Expressjs.com. (2015) Express - node.js web application framework. [Online].
Available: http://expressjs.com/

50. A. Mardanov, Express.js Guide: The Comprehensive Book on
Express.js: The Comprehensive Book on Express.js. CreateS-
pace Independent Publishing Platform, 2013. [Online]. Available:
http://www.amazon.com/Express-js-Guide-The-Comprehensive-Book/dp/
1494269279%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D1494269279

51. S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance
Network Programs,” Internet Computing, IEEE, vol. 14, no. 6, pp. 80–83, nov
2010.

52. W. Gortney, CHAIRMAN OF THE JOINT CHIEFS OF STAFF MANUAL
6510.01B CYBER INCIDENT HANDLING PROGRAM, Department Of
Defense, 1400 Defense Pentagon Washington, DC 20301-1400, dec 2014. [Online].
Available: http://www.dtic.mil/cjcs directives/cdata/unlimit/m651001.pdf

105

53. A. Goda and K. Parat, “Scaling directions for 2d and 3d nand cells,” in
Proceedings of the 2012 IEEE International Electron Devices Meeting (IEDM),
Dec 2012, pp. 2.1.1–2.1.4. [Online]. Available: http://dx.doi.org/10.1109/IEDM.
2012.6478961

54. Arxsys. (2014) Features - arxsys. [Online]. Available: http://www.arxsys.fr/
features/

55. C. Vandeplas, “Finding the needle in the haystack with ELK,” in Digital Forensics
and Incident Response (DFIR). Prague: SANS Institute, 2014.

56. Microsoft Developer Network. (2015) File handles (Windows). [On-
line]. Available: https://msdn.microsoft.com/en-us/library/windows/desktop/
aa364225(v=vs.85).aspx

57. D. S. Mark Russinovich, Microsoft Windows Internals, 4th ed., L. A. Robin
Van Steenburgh, Ben Ryan, Valerie Woolley, Sally Stickney, Roger LeBlanc,
Ed. Redmond, Washington: Microsoft Press, 2005. [Online]. Available:
http://csit.udc.edu/∼byu/UDC3529315/WindowsInternals-4e.pdf

58. P. C. Silberman, “FUTo,” Uninformed, vol. 3, p. 14, 2006. [Online]. Available:
http://www.uninformed.org/?v=3&a=7

59. FireEye Inc., “Poison Ivy: Assessing Damage and Extracting Intelligence,”
Milpitas, CA, Tech. Rep., 2014. [Online]. Available: https://www.fireeye.com/
content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-poison-ivy.pdf

60. T. M. Project. (2004) Metasploit’s meterpreter. [Online]. Available: https:
//dev.metasploit.com/documents/meterpreter.pdf

61. J. Feinberg. (2014) Wordle - beautiful word clouds. [Online]. Available:
http://www.wordle.net/

106

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2016 Master’s Thesis May 2014 — Mar 2016

Whitelisting System State In Windows Forensic Memory Visualizations

Lapso, Joshua A., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-M-029

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Examiners in the field of digital forensics regularly encounter enormous amounts of data and must identify the few
artifacts of evidentiary value. The most pressing challenge these examiners face is manual reconstruction of complex
datasets with both hierarchical and associative relationships. The complexity of this data requires significant knowledge,
training, and experience to correctly and efficiently examine. Current methods provide primarily text-based
representations or low-level visualizations, but levee the task of maintaining global context of system state on the
examiner. This research presents a visualization tool that improves analysis methods through simultaneous
representation of the hierarchical and associative relationships and local detailed data within a single page application. A
novel whitelisting feature further improves analysis by eliminating items of little interest from view, allowing examiners
to identify artifacts more quickly and accurately. Results from two pilot studies demonstrates that the visualization tool
can assist examiners to more accurately and quickly identify artifacts of interest.

Memory forensics, Incident response, Information visualization, Single page web application, D3.js

U U U U 120

Dr. Gilbert L. Peterson, AFIT/ENG

(937)255-6565 x4281; gilbert.peterson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-24-2016

	Whitelisting System State In Windows Forensic Memory Visualizations
	Joshua A. Lapso
	Recommended Citation

	tmp.1511816971.pdf.LVJK3

