
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-24-2016

Dynamic Honeypot Configuration for
Programmable Logic Controller Emulation
Kyle A. Girtz

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Girtz, Kyle A., "Dynamic Honeypot Configuration for Programmable Logic Controller Emulation" (2016). Theses and Dissertations.
302.
https://scholar.afit.edu/etd/302

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/302?utm_source=scholar.afit.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DYNAMIC HONEYPOT CONFIGURATION
FOR PROGRAMMABLE LOGIC

CONTROLLER EMULATION

THESIS

Kyle A. Girtz

AFIT-ENG-MS-16-M-253

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-M-253

DYNAMIC HONEYPOT CONFIGURATION FOR PROGRAMMABLE LOGIC

CONTROLLER EMULATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Kyle A. Girtz, B.S.E.E

March 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-253

DYNAMIC HONEYPOT CONFIGURATION FOR PROGRAMMABLE LOGIC

CONTROLLER EMULATION

THESIS

Kyle A. Girtz, B.S.E.E

Committee Membership:

Barry E. Mullins, PhD (Chairman)

LTC Mason J. Rice, PhD (Member)

Juan Lopez Jr. (Member)

AFIT-ENG-MS-16-M-253

Abstract

Attacks on industrial control systems and critical infrastructure are on the rise. Im-

portant systems and devices like programmable logic controllers are at risk due to

outdated technology and ad hoc security measures. To mitigate the threat, honeypots

are deployed to gather data on malicious intrusions and exploitation techniques.

While virtual honeypots mitigate the unreasonable cost of hardware-replicated

honeypots, these systems often suffer from a lack of authenticity due to proprietary

hardware and network protocols. In addition, virtual honeynets utilizing a proxy to

a live device suffer from performance bottlenecks and limited scalability.

This research develops an enhanced, application layer emulator capable of alle-

viating honeynet scalability and honeypot inauthenticity limitations. The proposed

emulator combines protocol-agnostic replay with dynamic updating via a proxy. The

result is a software tool which can be readily integrated into existing honeypot frame-

works for improved performance.

The proposed emulator is evaluated on traffic reduction on the back-end proxy

device, application layer task accuracy, and byte-level traffic accuracy. Experiments

show the emulator is able to successfully reduce the load on the proxy device by up

to 98% for some protocols. The emulator also provides equal or greater accuracy over

a design which does not use a proxy. At the byte level, traffic variation is statistically

equivalent while task success rates increase by 14% to 90% depending on the protocol.

Finally, of the proposed proxy synchronization algorithms, templock and its minimal

variant are found to provide the best overall performance.

iv

AFIT-ENG-MS-16-M-253

To my family.

I would not be who I am without you.

Stay off the paved roads.

v

Acknowledgements

I would like to thank Capt Phillip Warner for laying a solid foundation in his

research. His previous work and assistance throughout this process were invaluable.

Thank you for your dedication to a job well done.

I would also like to thank Dr. Barry Mullins, my advisor, for giving me the

opportunity to pursue a graduate degree and for his guidance throughout my career

at AFIT.

Finally, I would like to thank Capt Joseph Hall and Capt Michael Todd for their

assistance and peer reviews.

Kyle A. Girtz

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . x

List of Tables . xii

List of Acronyms . xiii

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 3
1.4 Approach . 4

1.4.1 Protocol emulation . 4
1.4.2 Honeynet configuration . 5
1.4.3 Experimentation . 5

1.5 Assumptions and Limitations . 6
1.5.1 Limitations of network trace-based approaches 7
1.5.2 Network protocols involved . 7
1.5.3 Limited set of tasks . 8
1.5.4 Limited configuration setup . 8
1.5.5 Timing . 9

1.6 Thesis Overview. 9

II. Background and Related Research . 10

2.1 Overview . 10
2.2 Background . 10

2.2.1 Industrial Control Systems . 10
2.2.2 ICS security . 13
2.2.3 Application layer protocols . 18
2.2.4 Honeypots . 19

2.3 Related Research . 25
2.3.1 Manually configured ICS honeypots . 25
2.3.2 Dynamic honeynets . 28
2.3.3 Automatic protocol emulation . 30
2.3.4 Advanced hybrid honeypots . 31

2.4 Chapter Summary . 34

vii

Page

III. Framework Design . 35

3.1 Overview . 35

3.2 Motivation and Application . 35

3.3 Design Parameters . 36

3.4 The ScriptGenE Framework . 37

3.4.1 Framework overview . 38

3.4.2 ScriptGenE.py . 39

3.4.3 ScriptGenEreplay.py . 40

3.5 ScriptGenEreplay Extensions . 41

3.5.1 Overview . 41

3.5.2 Usage . 42

3.5.3 Initialization . 44

3.5.4 Handling unknown transitions . 45

3.5.5 Proxy connections . 46

3.5.6 Design limitations . 55

3.6 Design Summary . 56

IV. Research Methodology . 57

4.1 Goals . 57

4.2 Approach . 57

4.3 System Boundaries . 58

4.4 Parameters and Factors . 60

4.4.1 Workload parameters . 60

4.4.2 System parameters . 64

4.5 Performance Metrics . 65

4.6 Experimental Design . 67

4.6.1 Overview . 67

4.6.2 Introducing variability . 68

4.6.3 Determining the number of modified protocol
trees . 69

4.7 Evaluation Techniques . 70

4.8 Experimental Setup . 71

4.8.1 Overview . 71

4.8.2 Machine configurations . 71

4.8.3 Experimental scripts . 73

4.8.4 Task automation . 76

4.8.5 Configuring and running the experiment . 77

4.9 Methodology Summary . 77

viii

Page

V. Results and Analysis . 79

5.1 Overview . 79
5.1.1 STEP7 Tasks . 80

5.2 Metric 1 - Message Forwarding Rate . 80
5.2.1 HTTP forwarding rates . 82
5.2.2 EtherNet/IP forwarding rates . 84

5.3 Metric 2 - Task Success Rate . 86
5.3.1 HTTP success rates . 86
5.3.2 EtherNet/IP success rates . 87

5.4 Metric 3 - Byte-level Variability . 87
5.4.1 HTTP variability . 88
5.4.2 EtherNet/IP variability . 90

5.5 Context Algorithm Comparison . 92
5.5.1 HTTP results . 92
5.5.2 EtherNet/IP results . 94

VI. Conclusions . 96

6.1 Introduction . 96
6.2 Research Conclusions . 96

6.2.1 Performance . 96
6.2.2 Authenticity . 96
6.2.3 Context Maintenance . 97

6.3 Significance of Research . 97
6.3.1 Contributions . 97
6.3.2 Applications . 98

6.4 Future Work . 98
6.4.1 Overview of recommendations . 98
6.4.2 Testing . 99
6.4.3 Enhancing ScriptGenEemulate algorithms 100
6.4.4 Honeynet integration . 101

6.5 Chapter Summary . 101
Bibliography . 102

ix

List of Figures

Figure Page

1 ICS block diagram . 11

2 General SCADA layout . 12

3 NIST recommended ICS network configuration . 17

4 Internet Protocol stack . 18

5 Example Honeyd+ production configuration . 27

6 Honeynet with intermediate application layer emulator 36

7 ScriptGenE framework overview . 38

8 Protocol tree structure . 39

9 ScriptGenEemulate.py usage . 43

10 Loop assigning client connections to new threads . 45

11 Protocol tree after a dynamic update . 47

12 Context synchronization algorithm comparison . 52

13 Triggerlock threshold example . 53

14 ScriptGenE emulator framework . 59

15 Successful web page download by wget . 66

16 Successful module browsing in RSLinx . 67

17 Successful module browsing in STEP7 . 67

18 Experiment setup . 72

19 HTTP forwarding rates . 83

20 EtherNet/IP forwarding rates . 85

21 HTTP percentage byte-level differences . 89

22 EtherNet/IP percentage byte-level differences . 91

x

Figure Page

23 HTTP forwarding rates for each context algorithm 93

24 EtherNet/IP forwarding rates for each context algorithm 94

xi

List of Tables

Table Page

1 Kali Linux VM configuration . 72

2 RSLogix Windows XP VM configuration . 73

3 STEP7 Windows XP VM configuration . 73

4 Honeydrive Linux VM configuration . 73

5 HTTP proxy forwarding rates . 82

6 ENIP proxy forwarding rates . 84

7 Pass Rate Results . 86

8 HTTP task success rates . 86

9 ENIP task success rates . 87

10 HTTP traffic differences . 88

11 ENIP traffic differences . 90

12 HTTP proxy algorithm forwarding rates . 92

13 ENIP proxy algorithm forwarding rates . 94

xii

List of Acronyms

CIP Common Industrial Protocol

CUT component under test

DoS Denial of Service

ENIP EtherNet Industrial Protocol

EtherNet/IP EtherNet Industrial Protocol

FTP File Transfer Protocol

GUI graphical user interface

HI high-interaction

HMI human-machine interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

HVAC Heating, Ventilation, and Air Conditioning

ICS Industrial Control Systems

IDS Intrusion Detection System

IED Intelligent Electronic Device

IP Internet Protocol

IPv4 Internet Protocol version 4

xiii

IPv6 Internet Protocol version 6

ISO-TSAP ISO Transport Service Access Point

IT Information Technology

LI low-interaction

MAC Media Access Control

MTU Master Terminal Unit

OS Operating System

pcap packet capture

p-tree protocol tree

PLC programmable logic controller

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SNMP Simple Network Management Protocol

SUT system under test

TCP Transmission Control Protocol

VM virtual machine

XML Extensible Markup Language

xiv

DYNAMIC HONEYPOT CONFIGURATION FOR PROGRAMMABLE LOGIC

CONTROLLER EMULATION

I. Introduction

1.1 Background

Technological advancement on a societal scale requires stable underlying infras-

tructure to generate and distribute electricity, gas, water, communications, commer-

cial goods, and other necessities. In the United States and similar modern societies,

critical infrastructure is automated and controlled by computer networks known as

Industrial Control Systems (ICS). Historically, ICS networks were isolated and de-

signed for robustness rather than security [1]. Today, security requirements match

those of availability as ICS networks have become increasingly interconnected and ex-

posed to the Internet [2]. The programmable logic controller (PLC), a common ICS

device, is particularly important to the security of ICS networks [3]. These devices

contain custom programming to act as data collection and actuator control points.

Modern malware, such as Stuxnet, has successfully compromised PLCs with phys-

ically destructive results [2, 4]. To complicate matters, the need for uninterrupted

service makes it very difficult to update or patch ICS systems with the same frequency

of traditional Information Technology (IT) systems [5]. For this reason, security is

shifting to the use of sensors within the system tasked with maintaining an acceptable

device state [6, 7].

One deception-based technology commonly employed for network state detection

and threat analysis is the honeypot [8]. A honeypot is a bait device added to a

1

network to attract attackers and collect suspicious traffic [9]. The quality of a hon-

eypot framework depends on the level of authenticity and flexibility provided. A

low-interaction (LI) honeypot provides low authenticity by only emulating specified

services. A high-interaction (HI) honeypot provides very high authenticity at the

cost of flexibility by replicating an entire computer system, either on physical hard-

ware or through a virtual machine (VM). Deceptive security schemes, and honeypots

in particular, have been shown to effectively identify new attacks and their origins

[10, 11].

1.2 Motivation

Several scalability difficulties accompany the application of honeypot technology

to PLCs. PLCs can be very expensive, rendering hardware replication and basic HI

honeypots impractical. In addition, many ICS devices use proprietary networking

protocols and hardware. Without a priori knowledge of a protocol, emulation cannot

be easily scripted for a LI honeypot. Reverse engineering is possible but will typically

yield a custom, inflexible solution. This time-consuming process would have to be

repeated for every new device or protocol.

In spite of the difficulties, there are effective techniques for creating ICS honey-

pots. Frameworks such as Honeyd allow LI honeypots to be configured to respond to

the network layer of the traditional protocol stack [12]. This method has also been

automated to create dynamic Honeyd configurations based on the state of a network

[13, 14, 15, 16]. While some of these solutions include application layer configura-

tion, this is not always possible in the presence of proprietary protocols. Automated

protocol reverse-engineering can help to emulate unexpected and unknown protocols

[17]. ScriptGen automatically creates Honeyd configurations [18] while the extended

ScriptGenE can emulate the protocol directly by replaying captured conversations in

2

context [19]. A final technique is to proxy traffic to a single physical device. Scala-

bility is still questionable as the back-end device can be easily overwhelmed by large

amounts of traffic.

Hybrid honeypots consists of some combination of the above methods with the

goal of achieving both authenticity and flexibility in one system [8]. Typically this

involves the simultaneous use of HI and LI honeypots. A simple example is Honeyd+,

an extension of Honeyd with a PLC proxy [20]. The front-end Honeyd instance han-

dles simple network traffic while application layer requests are sent to a real PLC.

More complex hybrid systems like SGNET [21] and GQ [22] have been tested on

IT networks, but neither framework is open-source. In addition, there is no guaran-

tee that IT honeypots will be effective or scalable on ICS networks for the reasons

discussed above.

There continues to be a need for an open-source, hybrid honeypot framework

designed and optimized for ICS networks. This research develops a hybrid system

by integrating a honeypot proxy with automatic protocol reverse engineering and

dynamic replay.

1.3 Research Goals

The goal of this research is to develop and test a hybrid honeypot configura-

tion with protocol emulation via dynamic replay and incremental updating. The

developed framework is an extension of the ScriptGenE software suite [19]. Initial

emulation based on training captures should accurately reproduce, in context, some

of the traffic generated by the PLC. Untrained traffic is forwarded to a real device

via proxy in order to improve replay capabilities. The emulator should not proxy

all requests, just unrecognized requests. The updated emulator should accurately

3

respond to unrecognized requests with accurate responses rather than a default error

message.

1.4 Approach

An automatic protocol emulation tool is developed from the base components of

the ScriptGenE framework [19]. This tool consists of server replay based on previously

captured training data with the addition of a novel dynamic update function. The

developed tool is intended to improve the configuration of Honeyd+ [20] to provide

a flexible and robust hybrid honeypot framework for ICS.

1.4.1 Protocol emulation.

The automatic emulation element of the developed framework extends the re-

play feature of the ScriptGenE framework. ScriptGenE, itself an extension of the

Honeyd script-creation tool ScriptGen [18, 23], is a suite of tools capable of build-

ing a generalized protocol tree (p-tree) from a set of network traces and replaying

the protocol through contextual emulation [19]. This research focuses on the replay

capability. Using previously collected and processed p-tree data, observed pieces of

the protocol can be replayed. In the event that unexpected traffic arrives, there are

several response strategies. ScriptGenE can backtrack to a point higher in the tree

or send default error messages. The new dynamic update function allows ScriptGenE

to proxy the new request to a real PLC, observe and forward the response back to

the client, and update its protocol tree to handle future requests of this type. This

function is intended to replace the default error messages when backtracking does not

occur.

4

1.4.2 Honeynet configuration.

The developed tool is designed to be added to a complete Honeyd+ configuration.

Honeyd+ is an extension of Honeyd that provides search-and-replace functionality

to proxy replies from a back-end PLC [20]. The Honeyd+ framework is designed to

be a production-level, PLC honeypot deployed on the Linux Raspberry Pi platform.

A key weakness to this framework is poor performance by the back-end PLC in the

presence of heavy traffic. The developed emulation tool reduces this load by emulating

the back-end PLC as an intermediary. In this configuration all Honeyd+ proxies point

to the emulation device, which then proxies directly to the PLC for dynamic updates.

While the tool is designed to supplement the Honeyd+ framework, it can be

deployed independently as a self-contained honeypot or as a component of other

honeynet frameworks. Care must be taken when using the tool independently as

it provides limited honeypot functionality by exclusively emulating the application

layer.

1.4.3 Experimentation.

All experimental network traffic in this research is generated by two PLCs. One

device is an Allen-Bradley ControlLogix L61 PLC with an attached EtherNet Indus-

trial Protocol (EtherNet/IP) ENBT module. This device is interrogated using the

RSLinx software by Rockwell Automation and wget to query the module information

and webserver respectively. The other device, a Siemens S7-300 PLC with discrete

and analog input/output modules, is interrogated using Siemens’ SIMATIC STEP7

software for module browsing.

A single experiment is developed to test both devices and all three primary pro-

tocols over a series of randomly ordered tasks. Hypertext Transfer Protocol (HTTP)

and EtherNet Industrial Protocol (ENIP) are tested on the L61 while ISO Transport

5

Service Access Point (ISO-TSAP) is tested on the S7-300. The experiments leverage

a complete initial protocol tree capable of full task replay for each protocol. These

protocol trees are randomly corrupted and loaded into an emulator. The relevant

tasks are performed on the emulator to determine how well it can compensate for the

gaps in the tree with its proxy function. The tasks are repeated for multiple corrupted

trees and proxy synchronization algorithms. All experimental tasks, identified by the

tuple (protocol, algorithm, tree), are performed in a random order.

During each experimental task run, packet captures are collected for the client and

proxy connections separately. These captures are inspected to determine PLC load

and emulator authenticity. PLC load is measured by calculating the fraction of client

requests that are forwarded to the PLC. Authenticity is measured by comparing the

byte differences in the client conversation with a reference trace for each task.

In addition to trace comparisons, each task is determined to pass or fail based on

the overall results of the conversation. The visual presence of modules is interpreted

as a pass (success) for ENIP and ISO-TSAP while the correct number and size of

files downloaded by wget indicates a pass (success) for HTTP. Control of these

queries and pass/fail determination is performed by OpenCV image recognition and

the graphical user interface (GUI) automation software SikuliX [24].

1.5 Assumptions and Limitations

Many of the underlying limitations of the ScriptGenE framework exist as a result of

the reliance on previously collected network traces [19]. This research develops a proof

of concept extension to ScriptGenE which aims to remove trace-based limitations

through the use of a proxy-and-update mechanism. However, some of the other

limitations of ScriptGenE persist and are left to be resolved as future work.

6

1.5.1 Limitations of network trace-based approaches.

Trace-based approaches are only capable of emulating observed traffic. This is

particularly important for field variations within similar messages. Having never seen

a value vary, the emulator will fail to recognize its ability to vary. This problem is

not solved by a proxy update. A single proxy response has no baseline with which

to be compared, so no field variation can be detected. This research assumes that

training traces may be missing packets from a connection. The missing packets may

consist of any traffic except for the Transmission Control Protocol (TCP) connection

handshakes. Updates are made when entirely new traffic is encountered. This could

be a new conversation context or a significant deviation from a known conversation.

An additional limitation of trace-based approaches involves emulating encrypted

traffic. If training traffic contains no dynamic fields the traffic may be replayed as is.

When updating through a proxy, encryption issues can potentially be solved by estab-

lishing a new encrypted session with the back-end device. This allows the emulator to

observe dynamic fields during decryption prior to forwarding. However, if encrypted

training data contains dynamic fields and emulation is attempted independent of a

proxy connection, the emulation will be incorrect.

1.5.2 Network protocols involved.

This research provides a proof of concept proxy-and-update extension to the trace-

based training and replay functionality of ScriptGenE. As ScriptGenE has only been

tested on HTTP, ENIP, and ISO-TSAP, testing of this extension is also limited to

these protocols. Additionally, the extended ScriptGenE framework operates exclu-

sively at the application level. While many extensions and applications are possible,

this research intends to add the emulator to an existing Honeyd+ network which han-

7

dles all non-application layer traffic [20]. Finally, the original ScriptGenE framework

is limited to supporting TCP and Internet Protocol version 4 (IPv4) traffic. This

remains true for this research.

1.5.3 Limited set of tasks.

This research tests three protocols on two PLCs. Each protocol is tested with a

single task. In reality, there is a wide variety of potential tasks and conversations,

some very complex. In addition, production environments produce aggregated traffic

with specific characteristics. This proof of concept research does not attempt to

simulate complex conversations or environments. The test tasks are generated in a

controlled environment in order to create an effective experiment for examining the

extended functionality of ScriptGenE.

1.5.4 Limited configuration setup.

A single hardware and firmware configuration is used for each PLC during exper-

imental testing. Manufacturers such as Allen-Bradley and Siemens produce a variety

of PLC models and modules resulting in a wide range of hardware configurations. In

addition, there are numerous firmware versions for each product. Any of these factors

may affect traffic generation. For this reason, pre-trained emulation is assumed to be

valid for the exact configuration used to generate the training data. Proxy responses

are assumed to be valid only for the exact configuration found in the back-end target.

It is possible that poor emulator configuration could result in training data and proxy

data originating from different PLC configurations. Ensuring this does not happen or

assuming appropriate risk is the responsibility of the system administrator. In most

practical situations, extensive training data and relatively similar PLC configurations

mitigate this risk.

8

1.5.5 Timing.

When a client connects to the ScriptGenE emulator some of its traffic may be

proxied. In this configuration there are many relevant timing considerations. This

research does not address timing issues such as discrepancies between those emulated

responses that required proxying and those that did not. It is also possible that

emulation of training data (no proxy required) may not match the timing with which

the captured conversation occurred. These timing discrepancies will not affect the

content of the conversation and are also ignored in this research.

1.6 Thesis Overview

Chapter II contains an overview of ICS technology and related work on honeypots

and their applications. Chapter III provides a description of the developed emulator

configuration. Chapter IV details the experimental design with results in Chapter V.

Chapter VI presents research conclusions and suggestions for future work.

9

II. Background and Related Research

2.1 Overview

This chapter provides a brief background on the characteristics and importance

of Industrial Control Systems. In particular, a discussion of ICS security reveals that

traditional Information Technology security solutions are insufficient to properly ad-

dress complex, decentralized networks of relatively primitive ICS systems. Honeypots

are presented as a critical security measure to compensate for this inherent insecu-

rity. Relevant application layer networking protocols and honeypot basics provide a

foundation for the final survey of modern honeypot technology.

2.2 Background

2.2.1 Industrial Control Systems.

In order to flourish, every society depends on policy, infrastructure, and the com-

plex interactions between economic and political systems. In the United States, crit-

ical infrastructure, as defined by Presidential Policy Directive 21, currently consist of

sixteen sectors including the chemical, energy, food, water, and nuclear industries as

well as services such as health care, finance, transportation, communications, and in-

formation technology [25]. Many of these sectors rely on ICS to perform Supervisory

Control and Data Acquisition (SCADA) and other functions. ICS is a blanket term

for all digital and analog computer systems providing autonomous sensing and control

of physical processes that is reliable, safe, and efficient [1].

Figure 1 shows an abstracted ICS system and its three primary components: the

human-machine interface (HMI), control loop, and remote diagnostics and main-

tenance [1]. The HMI and remote maintenance components provide interfaces for

operators (locally or remotely) to observe and modify the control loop state and

10

functionality. The control loop itself achieves autonomy via a feedback loop consist-

ing of sensor and actuator subcomponents. The sensors provide physical data to the

controller so that it may decide how best to command the actuators. A simple ex-

ample is temperature control within a building. A thermometer (the sensor) provides

temperature data to the controller which triggers either the heater or air conditioning

(the actuators). The desired temperature can be set via an HMI like the thermostats

commonly found in homes. The HMI is a convenient abstraction of the control loop;

a homeowner does not have to manually turn the heater on and off to maintain the

desired temperature.

Figure 1. ICS block diagram [1]

A more realistic ICS implementation would look something like the system shown

in Figure 2 [1]. These systems are often composed of multiple, interconnected net-

11

works possibly spread over large geographic areas. For this reason, the control center

consolidates all observation and command capabilities for the convenience of the op-

erators. Control centers typically contain the primary HMI and a Master Terminal

Unit (MTU). The MTU communicates with scattered Remote Terminal Units (RTUs)

in a master/slave type relationship. The RTU collects data from sensors (not shown).

Other ICS devices include the Intelligent Electronic Device (IED) and the PLC. An

IED performs basic data processing locally before reporting to the control center. A

PLC is a flexible device that may act as an RTU or provide more complex control

functionality.

Figure 2. General SCADA layout [1]

As noted, the PLC is a unique device, being remotely deployed and capable of

both data collection and programmable control through ladder logic applications [1].

PLC hardware and firmware is usually vendor specific and modular. The modules

allow for flexible configuration of the hardware by providing extra analog or digital

input/output or communications functionality. Most PLCs will have at least one

controller module where ladder logic applications are deployed.

12

2.2.2 ICS security.

Traditional ICS networks are dedicated to data collection and control functions.

No external connections were available; practical security was accomplished through

lack of access [1]. However, as the Internet grew into its present-day, ubiquitous state,

ICS networks were increasingly exposed to the outside world in order to facilitate

efficient productivity and remote management [1]. This trend is expected to continue

as the dependence of society on increasingly complex control systems rises [1, 2].

Shodan, a database and search engine for Internet-facing embedded devices, provides

ready access to many Internet-facing PLCs, SCADA devices and servers, and other

building controls such as Heating, Ventilation, and Air Conditioning (HVAC) systems.

Researchers have used Shodan to find, catalog, and create visualizations of thousands

of these devices [26, 27]. Further work has shown that an exposed PLC will respond to

unauthenticated queries with codes that may reveal the function and industry sector

of the device [28]. These results are troubling; if researchers can identify vulnerable

devices, there is no reason to doubt malicious actors are capable of attacking them.

Indeed, ICS attacks are becoming more common and dangerous [1, 2]. The well-

known worm Stuxnet exploited PLCs in 2010 as part of what appears to be a targeted

attack on Iranian nuclear enrichment facilities [4]. The observable effects of the

attack included physical destruction of centrifuge equipment. Similarly, ICS threat

model studies have shown that application of Denial of Service (DoS) and integrity

attacks against a PLC in chemical production plants may lead to unsafe states such

as undesired shutdowns or explosions [2].

Another troubling reality of ICS systems is that destructive physical effects can

be achieved without actually exploiting the target device. With little or no remote

authentication, legitimate commands sent at the wrong time or in the wrong way

can cause a system to physically damage its environment. This inherent insecurity

13

was powerfully demonstrated at Digital Bond’s Project Basecamp [3]. The target, an

Allen-Bradley ControlLogix PLC, was provided to a simulated attacker. The attacker

was able to cause a DoS, trojanize the firmware, and leak arbitrary information with

legitimate traffic designed for ease of use. These intrusions could potentially modify

the behavior of equipment or entirely shut it down had this simulation been a live

attack.

A natural question to ask at this point is “How often are PLCs attacked due to

resources like Shodan?” The answer is unclear at the moment as recent experiments

provide conflicting and unsatisfactory results. In 2013, Kyle Wilhoit performed two

studies in which he seeded Google and Shodan with ICS honeypot information and

identified all targeted attacks [29, 30]. The studies, one lasting 28 days and the

second lasting four months, resulted in 12 and 74 attacks respectively. However,

there is some question as to whether these attacks actually targeted the PLCs or

only the HMIs [28]. More questions arise when these experiments are compared to a

study by Bodenheim in which four PLCs were deployed with Internet-facing Internet

Protocol (IP) addresses [31]. The PLC configurations varied so that some were easier

to identify by Shodan than the others. After 55 days of exposure, the absence of

any direct attacks caused Bodenheim to conclude that Shodan did not significantly

impact the targeting of PLCs on the Internet.

Regardless of the targeting mechanism, the key to securing modern ICS networks

lies in tightened defenses rather than obscurity. How can PLCs be kept from exploita-

tion once exposed? The difficulty lies in the dedicated, trust-based protocols ICSs

used before merging with the Internet. ICS design was not intended for a massively

interconnected environment hosting malicious actors. Fundamentally, ICS and IT

networks have different historical development paths and design goals [1].

14

There are a couple of key differences that make securing ICS more difficult than

IT systems. One factor is age. IT equipment has an average lifespan of 3-5 years

due to rapid technology development. ICS equipment often remains in use for 15-20

years or longer due to the specificity of its design [1]. This difference in design creates

problems with applying modern IT security solutions to aging ICS equipment. For

example, in one study a ping sweep, a technique commonly used to map IT networks,

caused ICS equipment to malfunction in spectacular ways including randomly moving

robotic arms, destroying circuit boards in production, and disrupting gas availability

to customers of a local utility company [5].

A second difficulty involves the difference between security goals and safety goals.

IT systems emphasize integrity and confidentiality in most settings while ICS net-

works value availability and safety. Where data matters most, businesses want to

ensure the data is valid and private. When a network controls physical processes,

safety overrides privacy. Additionally, availability is of utmost importance for most

critical infrastructure ICS systems [1]. The lights must stay on and water must keep

flowing without interruptions. This makes it undesirable to interrupt ICS for tem-

porary patching or replacement; even a reboot may not be feasible. In summary, IT

and ICS networks cannot be patched with new security measures in the same way [1].

A final difficulty is cost. While most businesses use IT networks to facilitate their

service or production goals, in critical infrastructure an ICS system is the service

being provided. The flexibility of IT infrastructure allows IT security solutions to be

more flexible while industrial companies may have fewer options for securing legacy

ICS equipment. Because nearly 90% of all critical infrastructure businesses using

these control systems are privately owned, finances often overshadow security [1].

In the minds of many decision makers, the guaranteed age and availability costs of

implementing security measures far outweigh the offhand risk of a potential attack.

15

Provided the difficulty of securing ICS, traditional defense mechanisms have proven

rather ineffective. A common defense paradigm is the separation of corporate IT net-

works from ICS networks using a demilitarized zone as shown in Figure 3 [1, 5].

Critical control systems are cordoned off by firewalls in order to prevent potentially

harmful traffic from entering the ICS space. Unfortunately, as time has shown, this

defense fails to address the real problem: ICS systems are designed to trust inputs.

Early control networks relied on local access and all commands were considered trust-

worthy. Today, there must be a paradigm shift toward “resilient control systems” [32].

Resiliency in ICS requires more than just a proper network configuration. The

state of the system must be monitored at all times in conjunction with mechanisms

to maintain a safe state close to operational normalcy even in the event of malicious

or unexpected disturbances [32]. This approach is discussed by Carcano et al. as

an extension of an Intrusion Detection System (IDS) for industrial networks [7]. The

idea is to collect data of normal operations and so called critical states before creating

metrics to accurately distinguish between the two. During operation, the IDS can

then monitor the state of the system rather than simply inspect traffic for signatures.

This method allows the IDS to determine when a system is approaching a critical

state and take protective measures before damage is done.

A variety of other creative defenses have been proposed as well. McQueen and

Boyer propose using a collection of deceptive methods simultaneously to protect data

and confuse attackers [10]. IDS based systems and honeypots have been found to

improve traditional security paradigms significantly [6, 11]. Honeypots in particular

provide powerful possibilities for state awareness. The next section addresses honey-

pot technology in detail.

16

Figure 3. ICS network configuration recommended by NIST [1]

17

2.2.3 Application layer protocols.

A basic understanding of networking protocols is critical for any honeypot discus-

sion. This section introduces the relevant application layer protocols for this research.

The interested reader is referred to [33] for more information on networking protocols

in general.

A common stack-based model of Internet protocol layers is shown in Figure 4.

Each layer below the application layer provides a network service with the end goal

of reliably delivering application layer data from a process on one machine to a specific

process on another machine [33]. The application layer contains the most variability

as any custom application may define its own application layer protocol. This re-

search specifically addresses impersonating a device by replicating network traffic at

the application layer. The application layer is the most difficult and interesting layer

to emulate because of its potential variability and the high correlation of packet in-

formation to process functionality. The rest of this section introduces the application

layer protocols used in this research.

Figure 4. Internet Protocol stack [33]

Arguably the most well-known application layer protocol is HTTP. As defined in

RFC 2616, HTTP is a generic, stateless protocol primarily used to transfer hypertext

over TCP port 80 [34]. Hypertext consists of a descriptive language such as Hypertext

18

Markup Language (HTML) transferred by HTTP as a normal text block. There are

several types of HTTP requests and responses; the most common are the GET request

and OK response used to retrieve a web page.

While HTTP represents a loose request/response behavior ideal for web pages,

most PLCs also use a primary control protocol for configuration and status updates.

These protocols tend to maintain a context state and are complex in comparison to

HTTP. One standard used by many devices and manufacturers is the combination

of EtherNet/IP and Common Industrial Protocol (CIP). These protocols were devel-

oped to consolidate the diverse command-and-control protocols used in automated

ICS networks [35]. The object-oriented design allows for flexibility in additions or

subtractions from a network as well as effective communication between different

networks. ENIP and CIP operate over TCP port 44818 and are used extensively by

Rockwell Automation for Allen-Bradley devices.

A second control protocol, designed and used by Siemens, is ISO-TSAP. Much

like ENIP and CIP, ISO-TSAP encapsulates the proprietary Siemens control protocol

PROFINET to allow it to operate over Ethernet connections rather than the original

specialized buses. ISO-TSAP communicates over TCP port 102.

2.2.4 Honeypots.

A honeypot is a system installed on a network which the administrators expect

to be probed, attacked, or compromised [9]. Honeypots are useful for identifying the

presence and methods of attackers on a network and can be configured for unique

applications like worm detection, adversary distraction, spam prevention and many

more. Honeypots have several advantages over traditional signature-based IDSs in-

cluding fewer false positives, the ability to interact with attackers at the application-

level, and zero-day attack detection [8]. If the honeypot system is configured to be

19

completely passive, it can be assumed that any traffic it receives will be suspect at

best and malicious at worst. Application level interaction allows honeypots to inves-

tigate and log traffic even if that traffic is encrypted during transmission. Finally,

honeypots can potentially detect a zero-day attack (i.e. exploiting a vulnerability

never discovered or patched) because it does not depend on identified signatures but

rather on current operational behavior. A new attack can be identified in real time

by its effects on the honeypot system.

Because a honeypot is a passive device designed for information gathering, its

value depends entirely on the information gathered [9]. Honeypots can be classified

into several categories. Physical honeypots are actual hardware machines with their

own IP addresses. Virtual honeypots are software-simulated machines configured to

behave similarly to the target system to some degree. The degree of interaction of a

honeypot can be either high or low depending on how much of the target system the

honeypot is able to replicate. The following sections discuss and provide examples of

each honeypot type.

All honeypots are evaluated based on three operational characteristics: perfor-

mance, fidelity, and security [8]. Performance refers to the honeypot’s ability to

handle heavy traffic or multiple virtual devices simultaneously. Fidelity indicates

how close the honeypot appears to mimic the functionality of the real target device.

Security describes how vulnerable the system is in the event an attacker obtains access

to the honeypot and attempts to exploit it to attack the network further.

As a powerful example of the benefits of honeypot information, a team of re-

searchers conducted a three year experiment gathering Internet traffic with honey-

pots [11]. The resulting data set, “Kyoto 2006+”, reveals the approximate global

state of malware on the Internet. Almost half of the collected sessions were attacks.

About one percent of these attack sessions (425,719) contained unknown attacks that

20

did not trigger the IDS. This is equivalent to an average of 428 unknown attacks

every day while the honeypots were operational. In addition, the data set revealed

the most common countries of origin, target ports, and shellcodes used as attack

payloads. This information shows the power honeypots can offer security experts a

realistic understanding of current attack methodologies and tools.

2.2.4.1 High-interaction honeypots.

A HI honeypot is a conventional computer system that operates normally without

emulating any functionality [8]. Through physical hardware or a VM, it provides real

services and genuine interaction to an attacker. This allows the honeypot to achieve

maximal authenticity by mirroring the target device exactly. Because the system

serves no real purpose, any traffic or interaction is suspect. Typically the honeypot

will contain monitoring and logging tools for detection and analysis of suspected

traffic. The primary drawback to HI honeypots is the lack of flexibility and scalability.

Creating a honeynet (i.e. network of honeypots) may involve prohibitively large cost

or significant maintenance efforts than would otherwise be practical.

Another problem with HI is the risk of compromise. If an attacker hijacks a

honeypot, he may use it as a launch pad to attack valuable systems on the same

network. For this reason, the honeynet is normally isolated from the real network by

a Honeywall [36]. A Honeywall server acts like a complex firewall that can capture,

control, and analyze network traffic coming from the honeynet [8].

One particularly interesting feature of HI honeypots is the potential for 0-day ex-

ploit detection. Using a technique called dynamic taint analysis the system taints all

incoming data in order to determine where and how it influences the system [8]. Even

if the exploit method is unknown, this technique will reveal the nature, mechanism,

21

and results of the attack. The most prolific dynamic taint analysis honeypot package

is Argos, a virtual HI honeypot [8].

2.2.4.2 Low-interaction honeypots.

In contrast with HI honeypots, LI honeypots do not provide an entire, functional

computer system for attackers to interact with. Instead, they emulate only specific

services, network stacks, or other aspects of a real system [8]. The benefit of this

limitation is the simplicity and ease of configuration. LI honeypots often require

very little maintenance. Because they do not emulate a full machine, LI honeypots

are typically not vulnerable to compromise, making them safer to deploy alongside

a production network. The obvious downside to less interaction is the potential loss

of authenticity. A LI honeypot should provide “just enough” interaction to trick an

attacker or automated tool [8].

There is a wide variety of specialized LI honeypot packages. Each package simu-

lates a particular component of a computer system and is intended to detect specific

types of attacks. Some of the popular packages are LaBrea, Tiny Honeypot, Ne-

penthes/dionaea, Google Hack Honeypot, PHP.HoP, and Honeyd [9]. LaBrea and

Tiny Honeypot are general networking honeypots which provide relatively primitive

TCP interactions. The Google Hack Honeypot and PHP.HoP are both web service-

based honeypots. Nepenthes and its successor dionaea [37] allow a honeynet to collect

and analyze malware based on honeypot traffic [38].

One of the most popular LI honeypot frameworks is Honeyd [12]. Honeyd is not

actually a single honeypot on its own; it is a framework for creating virtual networks

of virtual honeypots [9]. Honeyd allows the user to create arbitrarily many virtual LI

honeypot devices and virtually network them together to consume unused IP space on

a real network. A more detailed discussion of Honeyd is provided in Section 2.2.4.5.

22

2.2.4.3 Active honeypots.

The traditional concept of a honeypot consists of a passive machine, physical or

virtual, waiting to be contacted by malicious traffic. All of the above examples fit this

description. However, given the recent rise in client-side exploits on programs such

as browsers, there is a need for client honeypots. These honeypots are often active

in the sense that they initiate interactions to simulate the end-user [8]. When traffic

is received in response to the honeypots probing, normal honeypot analysis through

logging, monitoring, or dynamic taint analysis can be used to determine its effects.

Another potential feature of active honeypot technology is the addition of “bait”

to a passive honeynet. One tool based on this idea is called Beeswarm [39]. This

system is configured like a normal honeynet with additional “drone” machines which

periodically communicate with honeypots and leak credentials as bait for an attacker.

When the credentials are used, the attacker may be discovered.

2.2.4.4 Hybrid honeypots.

As discussed above, HI honeypots provide a high level of fidelity at the cost

of scalability where LI honeypots provide excellent flexibility and scalability at the

(potential) cost of fidelity [8]. Hybrid honeypot systems attempt to merge the two

into a cohesive system where the strengths of each type counter the weaknesses of

the other. These hybrid systems often consist of LI front ends capable of transferring

filtered traffic to HI honeypots.

One solution following this model is Collapsar [40]. Collapsar allows a single

honeypot framework to span multiple networks through the use of traffic redirectors.

These devices redirect traffic from unused IP space on the separate networks back to a

front-end gateway. This gateway filters traffic into and out of the Collapsar core where

HI honeypots are running on VMs. This solution achieves promising performance and

23

scalability with the primary drawback of potentially increased latencies tipping off an

attacker.

Another fascinating example of extreme scalability is Potemkin [41]. In order

to determine the nature of attack traffic, Potemkin attempts to virtualize the en-

tire Internet. This is accomplished through a concept known as the honeyfarm. A

gateway router performs most of the analysis and filtering work while a group of

physical servers provide a collection of HI honeypots interaction. Potemkin’s key

feature is resource management; it only creates a lightweight, cloned VM on an IP

address when the gateway receives traffic intended for that address. These temporary

VMs are terminated after the traffic is processed. Studies have shown a handful of

servers can run over 64,000 honeypots using Potemkin [41]. In order to maintain high

virtualization and prevent security issues, the gateway also starts up new VMs for ma-

licious outbound traffic which is reflected back into the honeyfarm. In this way, traffic

interactions and causality can be studied in a safe, contained virtual environment.

A final hybrid solution is Honeybrid, an open-source project that attempts to

directly combine high and low-interaction honeypots with an emphasis on fidelity over

scalability [42, 43]. The architecture consists of a front-end gateway that routes traffic

to either high or low-interaction honeypots on the back end based on a decision engine.

While the flexibility of Honeybrid allows any high and low-interaction honeypots to

be plugged into the architecture, the preliminary experiments used Honeyd as a front

end and Qemu and Nepenthes as back-end honeypots.

2.2.4.5 Honeyd.

As mentioned above, Honeyd is not a single honeypot; it is a framework for

creating virtual networks of honeypots [9, 12]. Honeyd allows the user to create

arbitrarily many virtual LI honeypot devices and virtually network them together to

24

consume unused IP space on a real network. In addition, Honeyd allows for great

flexibility through service scripts, allowing the virtual honeypots to run any kind

of service or protocol the user desires. To increase authenticity, Honeyd will also

project operating systems using signatures from the same databases scanning tools

reference. For even greater flexibility and authenticity, Honeyd allows the user to

install subsystems [8]. These are external applications that run as a component of

the honeypot.

Conceptually, Honeyd allows a network administrator to fill in the unused portions

of network IP space with a virtual web of devices, each of which appears to run

a real, chosen operating system and provides real, flexible services and functions.

In addition, the topology of this virtual network can be specified and is projected

realistically. The overall view an attacker observes seems to be a real network of

devices indistinguishable from their physical counterparts.

The primary drawback to Honeyd is the need for custom application and service

scripts [8]. These must be created for each new application and, once installed, are

static until the configuration is modified. This means that changes in the network

require changes to Honeyd. New services on a network may require the creation of a

brand new service script. Both of these tasks may be time intensive on a complicated

or rapidly changing network. If the honeynet cannot be easily maintained, its use

will diminish entirely.

2.3 Related Research

2.3.1 Manually configured ICS honeypots.

Due to the substantial differences between traditional IT hardware and ICS devices

such as PLCs, deploying a honeypot on an ICS network can be challenging. There

have been several attempts to create an ICS honeypot. The key feature of each project

25

is the manual configuration and lack of flexibility. Each design emulates a particular

device or a specific set of protocols.

A few small, open-source projects have been published online. The Conpot project

is a LI honeypot capable of emulating a chosen PLC [44]. Service scripts for Modbus

and Simple Network Management Protocol (SNMP) have been released to supplement

the network stack of the actual device. Similarly, Digital Bond provides a honeynet

configuration consisting of two VMs: a honeywall server as a gateway and a simulated

PLC with exposed Modbus, File Transfer Protocol (FTP), Telnet, SNMP, and HTTP

services [45]. The user does have the option of replacing the simulated PLC with a

real device for increased authenticity.

Another design that uses a proxy for improved authenticity is Winn’s extension of

Honeyd [20]. The resulting framework, dubbed Honeyd+, is designed to be a cheap,

production-level honeypot framework. It can be deployed on a Linux Raspberry Pi

board and configured to proxy to a physical PLC at a remote location. With the

Honeyd platform as a stable foundation, many honeynets can be deployed at various

geographical locations while each emulates the same live PLC, which is used for proxy

requests at the application layer. An example configuration is shown in Figure 5 where

three honeypot sites proxy to a single corporate office with a live PLC.

Honeyd+ also improves upon Honeyd by adding a search-and-replace function to

the web pages retrieved by the proxy. This ensures that an attacker cannot identify

a honeypot by a discrepancy in the IP or Media Access Control (MAC) address on

its web page.

One research endeavor, CryPLH, attempted to create a custom ICS honeypot

from an Ubuntu VM [46]. The goal was to create an authentic honeypot that is

easy to configure and can be modified to emulate similar PLCs relatively quickly.

The design itself consists of a stripped down VM configured to look exactly like a

26

Figure 5. Example Honeyd+ production configuration [20]

27

Siemens Simatic 300(1) PLC. Using iptables as a firewall/filter the VM is able to

provide a variety of services including HTTP and HTTP Secure (HTTPS), SNMP,

and the ISO-TSAP protocol used by Siemens for their STEP7 programming software.

This design requires specific manual configuration for each service provided by the

honeypot and as such is very inflexible.

A similar design based on custom configurations of Linux is the highly portable

ICS honeypot created by Jaromin on a Gumstix device [47]. Just like CryPLH, this

honeypot provides chosen services through manually configured firewall rules and

custom scripts. The honeypot emulates a single specific device, a Koyo DirectLOGIC

405 PLC, with the HTTP and Modbus services. Although this honeypot performs

well, it has limited applicability because the Gumstix hardware is restricted to a single

PLC configuration and each service must be manually customized.

Occasionally, research is conducted into the nature of the results obtained from

honeypots rather than improving the technology itself. The studies by Kyle Wilhoit

described in Section 2.2.2 deployed several ICS honeypots of varying types and func-

tions around the world in order to determine the nature of ICS attacks [29, 30]. The

honeypots used in these experiments were all manually configured using Honeyd and

specific service scripts such as HTTP, FTP, and Modbus.

2.3.2 Dynamic honeynets.

In order to increase flexibility and reduce workload on administrators, it is benefi-

cial to automate the creation of a honeypot network. A dynamic honeynet is a system

with some degree of automation involved in the configuration process. Typically these

systems only automate the configuration of the transport layer of the network stack

and below; application layer protocols must be handled either manually or with some

other strategy, if the application layer is emulated at all. These systems tend to sac-

28

rifice fidelity of interaction for performance and scalability with the goal of deceiving

network scanning tools or detecting patterns of traffic.

One creative dynamic system attempted to capture Internet Protocol version 6

(IPv6) address scans to determine if the advent of IPv6 is providing attackers a fruitful

avenue of attack [48]. The system uses custom VM images of common Operating

Systems (OSs) such as Windows and Linux as manually configured honeypots. Based

on the common practice of creating IPv6 addresses from MAC addresses, the system

assigns the closest matching honeypot image to an incoming IPv6 probe. This means

any unused IPv6 space can potentially be bound to a honeypot during a scan. The

dynamic characteristic is seen in the binding of appropriate images to IP addresses

where the images are all manually configured.

As discussed above, Honeyd is a common LI honeypot framework capable of em-

ulating the transport layer and below. It is possible to create a dynamic honeynet

using Honeyd by automating the host generation process based on observed network

traffic. The simplest method is to quietly observe, without generating traffic, until

the network is fully mapped. Hieb used this technique, called passive sniffing, with

p0f and tcpdump to sniff traffic in order to determine the OS and ports to deploy

within a Honeyd honeynet [15].

A less stealthy, but faster and more reliable, method of sniffing network traffic is

active sniffing. Rather than wait for target traffic, an active system generates traffic

in order to observe desired responses. This approach risks honeypot exposure if an

attacker observes the active scans. Hecker, Hay, and Nance converted the passive

system created by Hieb above into an active one by replacing p0f and tcpdump

with the scanning tool Nmap [49].

Some systems combine the strengths of both techniques by using passive and active

sniffing together. Kuwatly et al. use p0f, tcpdump, and Nmap [16]. Hecker and Hay

29

extended their previous work to include varying levels and mixtures of passive and

active sniffing [14]. The lowest noise level, passive only, uses p0f and tcpdump. The

highest noise level uses Nmap and xprobe2 to scan the target network in addition

to the passive tools. Intermediate levels use combinations of these tools.

A more sophisticated system, designed by Vollmer and Manic for ICS, leverages

Ettercap to perform passive mapping of a network [13]. Using ports, OS finger-

prints, and MAC addresses the honeynet can be configured with the correct VM

images running the most probable services. All of the configuration data is stored in

an Extensible Markup Language (XML) document which allows for easy modification

should the network change. This system was integrated into an Automatic Intelligent

Cyber-Sensor which acts as a combination honeypot/IDS capable of detecting over

99% of anomalous traffic [6].

2.3.3 Automatic protocol emulation.

In contrast to the dynamic honeynets described in the last section, it is also

possible to automate the process of configuring application layer scripts for Honeyd.

These dynamic honeypots achieve higher levels of fidelity with less human interaction.

The idea is to observe port numbers and protocol traffic in order to determine what

well-known protocols are being used. With this information, configuration of those

protocols or services can be automated through the use of preconfigured scripts. The

techniques for sensing the network are numerous and often application specific.

A good example of such a system is BAIT-TRAP, a “catering” honeypot frame-

work designed by Jiang and Xu [50]. Their system contains a database of possible

service scripts which can be deployed dynamically to a set of virtual or physical

honeypots. The honeypot configuration at any moment depends on the state of the

network and the protocols and ports observed.

30

A further step of flexibility is taken by Chowdhary et al. by combining observed

protocol traffic and knowledge about the protocol to emulate it in a technique they re-

fer to as service mining [51]. This technique avoids using a static, preconfigured script

and emulates known services in context. Although it requires an initial database of

service information, the system worked well in experimentation by accurately emu-

lating FTP.

Fink did similar work in configuring known protocols, HTTP and TCP, based on

observed traffic [52]. Her system is able to emulate the web interface of an arbitrary

PLC by using wget and tcpdump. By extracting TCP field information from the

tcpdump results during a web page request, the emulator can modify its own TCP

functionality to mimic the target device.

An advanced technique for extracting useful protocol information from network

traffic is clustering. This method groups similar packets together into groups. Rafique

et al. used this technique to create algorithms for network dialog minimization and

determining differences between dialogs [53]. These algorithms were shown to be

useful for traffic verification through IDS signature generation.

2.3.4 Hybrid honeypots with replay.

In order to create increasingly flexible application layer emulators, the analysis of

network traffic must be taken to the extreme: complete protocol reverse engineering

and dynamic configuration of unknown services. To this end several tools have been

designed to implement advanced protocol reverse engineering algorithms and adaptive

replay.

31

2.3.4.1 Protocol-agnostic replay.

A straightforward program for replaying traffic is RolePlayer [54]. RolePlayer

works as part of a proxying Honeyd instance. Application layer traffic is sent to a

real device while RolePlayer observes the responses. After a given amount of traffic,

RolePlayer can replay those packets in context. Should the program arrive at a state

for which it has no response, it can replay the whole conversation back to the proxy

device in order to learn how to respond. This can occur without the attacker detecting

the switch.

A more sophisticated version of the replay idea is to actually create a brand new

Honeyd service script from an observed network trace as is done in ScriptGen [18].

ScriptGen uses state machines to determine the structure of a traffic dialog without

knowing anything about the protocol or its implementations on the server or client.

This state machine can be simplified and converted into a Python script usable by

Honeyd. A later version of ScriptGen improves performance in the presence of inter-

and intra-protocol dependencies [23]. It also adds the ability to dynamically update

ScriptGen’s state machines based on proxy traffic similar to RolePlayer.

ScriptGenE, a further extension of ScriptGen by Warner, adds the ability to handle

difficult cases such as unknown transitions and default responses during session replay

[19]. The protocol-agnostic design is intended specifically for ICS systems where PLCs

may use proprietary protocols. An extension of ScriptGen, the ScriptGenE framework

constructs protocol trees as the finite state machine of a protocol. These could be

converted into Honeyd scripts or ScriptGenE itself can access the trees as a subsystem

of Honeyd in order to replay the conversations.

32

2.3.4.2 Hybrid honeypots.

The first fully hybrid honeypot to implement protocol-agnostic replay using Role-

Player was GQ [22, 55]. This system was designed to capture and analyze worms and

similar malware. The system uses RolePlayer as part of a front-end controller tasked

with filtering incoming traffic, containing dangerous outbound traffic, and assigning

new honeypots to key traffic. The back-end honeyfarm has the common structure of

modular VM honeypots ready to be deployed. These honeypots can be replaced due

to their modularity. GQ has been maintained and improved in order to track new

malware in a contained environment.

SGNET, like many of the honeypot frameworks discussed so far, follows this same

strategy but distributes its sensors instead of having a centralized controller [21].

These ScriptGen-based sensors individually decide whether or not to route traffic back

to a gateway over a custom HTTP-like protocol called Peiros. Within the gateway

a private network of Argos-based sample factories and Nepenthes-based shellcode

handlers determine the behavior of malicious code captured from traffic. Information

on malware traffic patterns can be fed back to the sensors for improved filtering. An

improvement on the malware containment feature called Mozzie also uses ScriptGen to

emulate the parties during malware communication in order to study the interaction

without releasing dangerous traffic [56].

A final hybrid honeypot system called AWESOME, or Automated Web Emulation

for Secure Operation of a Malware-Analysis Environment, uses a collection of tools

seen above [57]. Honeyd and Argos are used for LI and HI honeypots respectively

while ScriptGen and Nitro are employed for replay and malware analysis. This system

is intended to collect and analyze malware similar to SGNET.

33

2.4 Chapter Summary

This chapter examines the current state of ICS technology and security. These

systems, though they are a key component of national critical infrastructure, are

inherently insecure due to weak designs based on universal trust. State-based security

paradigms are important for securing such a network. Honeypots are a flexible sensor

technology shown to be useful in analyzing the state of a network.

The ideal honeypot has a high degree of flexibility, scalability, and authenticity.

Though these factors often conflict with each other, creative combinations of LI and

HI honeypots can achieve high levels of performance. However, configuration and

maintenance are significant limitations. Hybrid honeypots such as SGNET, GQ, and

AWESOME attempt to provide flexibility and automation to the process.

Being designed for wide scale malware analysis, most of these powerful hybrid

systems have not been publicly released, nor have they been tested on ICS networks.

Other solutions like Honeyd+ are easy to deploy but lack flexibility and performance

guarantees. The need remains for an open-source, dynamic honeypot framework

for ICS networks. This honeypot should be protocol-agnostic in order to effectively

emulate the common proprietary ICS protocols. In addition, the honeypot should be

easy to configure and deploy in a production environment.

34

III. Framework Design

3.1 Overview

This chapter details the design and development of an automatic, application layer

PLC emulator. The emulator uses trace-based dynamic replay alongside a novel incre-

mental update function via a proxy connection. This emulator is an extension of the

ScriptGenE framework intended to be used as a removable component of a Honeyd+

honeynet configuration. The motivation for these choices is provided in Section 3.2.

An in-depth look at the ScriptGenE framework is also provided in Section 3.4.2 as the

starting point for emulator design. The resulting extended emulator provides flexible,

automatic replay capability with limited dependence on the back-end PLC.

3.2 Motivation and Application

Winn’s production honeynet framework, Honeyd+, achieves application level au-

thenticity through a proxy to a back-end PLC [20]. Winn’s configuration is illustrated

on the left side of Figure 6. Honeyd+ is able to replace device-specific data in the

proxy responses to create the illusion of multiple identical, but independent, PLCs.

For maximum scalability, the framework is configured to allow many geographically-

distributed Honeyd+ instances proxy access to a single back-end PLC. Winn found

this configuration may create overwhelming traffic loads on the PLC. Alleviation is

challenging as adding more PLCs or cutting back Honeyd+ instances each limit scal-

ability due to cost and flexibility respectively. The ideal solution involves allowing an

arbitrary number of Honeyd+ instances and a single back-end PLC while reducing

the amount of traffic forwarded to the PLC.

One practical solution is an intermediary providing application layer emulation

as depicted on the right side of Figure 6. This intermediary would replace the PLC

35

as the target of Honeyd+ proxies thereby reducing traffic to the PLC. To maintain

authenticity, the intermediary itself should be able to proxy to the back-end PLC.

The emulation functionality of the intermediary would reduce the proxied traffic and

alleviate the load on the PLC. This research provides a proof of concept version

of this intermediary by extending the stand-alone functionality of the ScriptGenE

replay component. ScriptGenE was chosen as the emulator framework because it

provides an automatic replay function based on training captures. This allows the

emulator to immediately generate some of the PLC traffic without proxying. The

extensions to ScriptGenEreplay described in this chapter add the ability to proxy

unknown messages and dynamically update the protocol tree during emulation.

Figure 6. Honeynet with intermediate application layer emulator

3.3 Design Parameters

The extensions to ScriptGenE add new functionality to the existing replay emu-

lator to improve performance and authenticity. Therefore the design goals focus on

the improvements rather than overall emulator design. The following are the design

parameters under consideration in extending the ScriptGenE framework:

36

Authenticity:

1. Emulator queries a physical device for responses to unrecognized client

requests

2. Emulator completes a task without having been trained on all required

task traffic

Performance:

1. Emulator handles multiple client connections simultaneously

2. Emulator updates replay capabilities with new responses to avoid future

forwarding

3. Emulator forwards less traffic to the proxy target than it receives from the

client

4. Emulator provides several conversation context synchronization algorithms

to maximize performance with varying protocols

Flexibility:

1. Emulator is protocol-agnostic (no assumptions about protocol type)

2. Emulator can be added to an existing honeynet

3. Emulator can be automated

3.4 The ScriptGenE Framework

As discussed in Section 2.3.4.1, the ScriptGenE framework is an extension of the

Honeyd script generation software ScriptGen [18, 23]. Developed by Warner, Script-

GenE contains many functionality enhancements centered around protocol-agnostic

replay [19].

37

3.4.1 Framework overview.

ScriptGenE consists of several Python files and supporting third party libraries.

Functionality centers around protocol trees (p-trees), the finite state machine of

ScriptGenE in which edges and nodes represent client and server messages respec-

tively. Generation, manipulation, and replay of p-trees can be automated to create

an application layer emulator. A high level view of the framework is shown in Figure 7.

ScriptGenE.py
Build P-trees

ScriptGenEreplay.py
Emulator

(Replay P-trees)

Protocol

tree

ScriptGenE Framework

Set of traces

Build options Replay options

Figure 7. ScriptGenE framework overview [19]

Primary ScriptGenE files are:

• ScriptGenE.py - Builds initial and generalized p-trees

• GeneralizeTree.py - Generalizes initial p-trees built by ScriptGenE.py

• CombineGtrees.py - Combines p-trees at their root

• ScriptGenEreplay.py - Loads p-trees and replays server messages in context

during conversations with clients

• clientReplay.py - Provides client-side replay of p-trees for testing

• diffPcaps.py - Computes byte-level differences between two packet captures

(pcaps) by consolidating messages

38

This research assumes protocol trees are already built and exclusively addresses

replay of existing p-trees. For this reason, framework details are limited to those rele-

vant to the replay extensions. See Warner’s description of the ScriptGenE framework

for more information on how p-trees are built and manipulated [19].

3.4.2 ScriptGenE.py.

ScriptGenE.py is the file responsible for building protocol trees. The build process

begins with a set of pcaps which are parsed into separate trees for every complete

connection found. Nodes in a tree represent server responses while edges represent

client messages as illustrated in Figure 8. The initial trees are consolidated over two

rounds to create generic p-trees representing abstract protocol behavior.

Figure 8. Protocol tree structure

Consolidations produce generic messages with fixed fields, which always contain

the same data; variable fields, which may have changing data; and environmental

fields, which hold information related to the connection and its participants. The

environmental links are replaced with markers allowing the replay emulator to find and

39

insert environmental data. Intra-protocol dependencies, links between corresponding

client and server messages are also detected and similarly marked. After a default

error message is derived from the finished p-tree, the tree object is written to a Python

pickle file which can be loaded for replay later.

3.4.3 ScriptGenEreplay.py.

ScriptGenEreplay.py is the emulator file in the ScriptGenE framework. It loads a

p-tree pickle file at runtime and emulates the server side by opening a server socket.

Protocol context starts at the p-tree root. ScriptGenEreplay matches incoming client

messages to the edges of the current context node. A match shifts the current context

to the child node along the matched edge. The server message in the new node is

then sent to the client as the server response.

The emulator opens its server socket on a port number specified by the user

through runtime options. This is not necessarily the same port that the original p-

tree traffic used. The IP address of the emulator is extracted from the user-specified

interface provided at runtime. Only one client connection is allowed at a time. When

the client connects, all client and server environment information (e.g., IP addresses,

ports, hostnames) are loaded into a dictionary to be used for environmental link

replacement.

Every byte received from the client is checked for a match in the p-tree. The

emulator may determine more data is needed before declaring no match to be found.

When sufficient client data arrives and a match cannot be found at the current con-

text, the client data is said to represent an unknown transition (edge) in the p-tree.

Unknown transitions are handled in one of two ways: backtracking and default er-

ror messages. Backtracking starts by searching the path from the current context to

the root to determine if a match can be found in an earlier context. This provides

40

session looping capabilities. If a match is still not found, backtracking extends to

search the entire p-tree for any match. If the p-tree contains no matches, the default

error message created during the tree building process is sent to the client. The error

state is maintained so that future client requests receive the error message repeatedly

until the connection closes. The default error message found during build can be

overridden at replay runtime through user configuration.

Server messages in the p-tree contain markers for environmental and intra-protocol

links as described in Section 3.4.2. When server messages are retrieved from the p-

tree to be sent, these markers are replaced with the appropriate information from the

client connection. It is possible that the original and new data may have different

lengths. These lengths are accounted for during replacement, but undetected length

fields elsewhere in the packet may be rendered incorrect after replacement. Because

of this known issue, ScriptGenEreplay provides the option of using the original data

during replay.

3.5 ScriptGenEreplay Extensions

3.5.1 Overview.

This research modifies the ScriptGenE framework by directly extending the Script-

GenEreplay.py file into ScriptGenEemulate.py. The extensions consist of modifica-

tions to existing functions and newly developed functions totaling approximately

440 lines of Python code. All ScriptGenEreplay.py functionality is still available

in ScriptGenEemulate.py, but the new file provides additional runtime options and

extended emulation capabilities. The following sections detail the changes and exten-

sions within ScriptGenEemulate.py.

41

3.5.2 Usage.

The ScriptGenE framework was designed for a Linux environment. ScriptGe-

nEemulate.py is run from the Linux command line. The command line options are

shown in Figure 9.

Most of the ScriptGenEemulate.py options are the same as the original Script-

GenEreplay.py. The required options are the name of a p-tree file to replay and a

port number on which to open the server socket. There are also standard help, de-

bugging, and verbosity options. Environment options like the interface, host name,

and original data options define the information used to replace the environmental

link markers during replay. Connection options include the ‘--forever’ switch and

‘--connections’ variable.

The number of connections in ScriptGenEemulate is slightly different than that

of ScriptGenEreplay. ScriptGenEreplay.py can only handle a single client connection

at a time so this value denotes the number of connections to add to its backup queue.

ScriptGenEemulate.py can handle multiple connections, and this value represents the

total number of connections to accept before terminating the emulator. It can be

overridden by the ‘--forever’ option.

The ‘--strict’, ‘--repeat’, and ‘--default_error’ options determine the

behavior of the emulator when unknown transitions occur. The first two options

indicate when backtracking should occur and how to handle leaves in the tree while

the default error option allows the user to specify a custom error message.

Besides the modified meaning of the ‘--connections’ option, the only new

options are ‘--target’, ‘--proxy_port’, and ‘--proxy_mode’. These options

specify how the emulator should connect to the back-end proxy device. ‘--target’

and ‘--proxy_port’ specify the IP address of the proxy device and the TCP port

number on which the proxy device is running the emulated service. ‘--proxy_mode’

42

Figure 9. ScriptGenEemulate.py usage

43

allows the user to choose any of the proxy synchronization algorithms described

in Section 3.5.5.3. The currently-available algorithms are catchup, lockstep,

latelock, templock, and triggerlock as well as the minimal synchronization

versions of each (see Section 3.5.5.3). Setting the mode to off, the default option,

will disable the proxy and cause the emulator to ignore the other proxy options.

3.5.3 Initialization.

The main ScriptGenEemulate.py function verifies all input arguments before call-

ing the emulator function. The emulator loads the p-tree and begins listening on

a server socket. The socket is configured in code with three custom settings. The

nagling option is turned off in order to replay small packets exactly as they appear

in the tree rather than combining them. Keep-alive packets are configured to send

every eight seconds during idle connection time as an attempt at keeping the client

interested. Finally, the reuse address option is turned on in order to avoid having

port reuse conflicts when running the emulator multiple times in a short period of

time.

Next, the emulator function enters a while loop and tries to accept client con-

nections. Each accepted connection is passed to a new thread along with the client

address information and a connection identifier as shown in Figure 10. This behavior

is a significant difference from ScriptGenEreplay.py. The replay file structure consists

of a single emulator function call. The new structure encapsulates the emulator into

an object with a threadable replay method which is called for every new connection.

The object model provides two primary benefits. First, the emulator can now service

multiple, concurrent client connections. Second, the emulator is able to maintain a

unique proxy connection within the thread assigned to each client connection so that

proxy conversations do not affect one another.

44

Figure 10. Loop assigning client connections to new threads

Once the thread is started, dictionaries are defined for client and proxy environ-

ment information. This information includes IP addresses and port numbers for both

sides and the server host name. The proxy dictionary also holds the proxy connection

object to make it easy to pass among the various functions requiring access.

It should be noted that the CPython Global Interpreter Lock prevents Python

programs from truly multi-threading on the processor. However, because the emula-

tor application is I/O bound, this limitation is not expected to significantly restrict

emulator performance. Future implementations may remove this restriction for high

traffic environments.

3.5.4 Handling unknown transitions.

As in ScriptGenEreplay.py, the new ScriptGenEemulate.py also attempts to back-

track when an unknown transition is encountered. The backtracking algorithm as

described in Section 3.4.3 has not been modified. However, when backtracking fails

to find a match in the p-tree, the emulator can be configured with the options in Sec-

tion 3.5.2 to use its proxy before sending a default error message. The proxy allows

the emulator to query a live PLC and forward its response to the client. The proxy

mechanism is discussed in more detail in Section 3.5.5.

Using the proxy introduces additional latency in the emulator’s response to a

client request. The added delay depends on the protocol being emulated and the

45

current context of the client conversation. Minimization of these delays is part of the

motivation for the algorithms discussed in Section 3.5.5.3.

3.5.5 Proxy connections.

The most significant improvement to the ScriptGenE framework is the addition of

a proxy mechanism. The proxy allows the emulator to establish connections to a live

PLC, mirror the context of the client connection to the PLC, send an unrecognized

message, and collect the response for future replay. When client bytes are designated

as an “unknown transition” they can be proxied according to the following steps:

1. Replace environmental information in the unrecognized packet.

2. Synchronize the conversation context with the PLC (depends on the context

algorithm).

3. Send the unrecognized packet to the PLC and collect the PLC response.

4. Close/maintain the PLC connection (depends on the context algorithm).

5. Replace environmental information in the PLC response.

6. Update the p-tree with the PLC response.

7. Shift the current p-tree context to the added node and send the server response

to the client.

Some of these steps may be omitted or reordered depending on the context syn-

chronization algorithm used. Synchronization and PLC connection handling are dis-

cussed in Section 3.5.5.3. Replacing environmental information is another key issue

discussed in Section 3.5.5.4. The other key steps are explained below.

46

3.5.5.1 Proxy send and receive.

The proxy_new_request function performs the context synchronization by

calling synchronize_proxy. It then calls proxy_send_recv to exchange the

unrecognized request and receive the PLC response. If the proxy connection is broken

or errors occur at any time during this process, the proxy connection is closed and

reset while the emulator reverts to the default error message technique.

3.5.5.2 Update protocol tree.

After the proxy exchange is complete, the new server message is added to the

p-tree with the function update_tree. Here, a new child node containing the PLC

response is added to the p-tree in memory. A new edge containing the unrecognized

client message connects the current context node to its new child. Future requests

like this unknown transition will now find a match and be replayed directly rather

than being proxied again. The result of an example update is shown in Figure 11.

Figure 11. Protocol tree after a dynamic update

47

Modifications to the p-tree are performed by the add_node and add_edge meth-

ods from the tree class. This class is an extension of the DiGraph class from the

networkx package, a toolset for building and manipulating various types of graphs

in Python. The new edge and node are based on a single message exchange, so all of

the generic attribute information is set to default values.

Updating the p-tree in memory is a temporary solution. The updated tree is not

saved when the emulator is terminated. A p-tree is a generic structure constructed

from multiple traces containing the same kind of traffic. Updates add a single, real

message instance into an abstract protocol tree. Any bytes that vary in the proxied

message and its response will go undetected. It is safer to record all proxy traffic from

outside the emulator and build a new p-tree for future emulation. This technique will

ensure that only the desired new traffic is collected to avoid excessive pcap files.

Improving the dynamic update functionality is an important area of future work for

an efficient emulator.

3.5.5.3 Context Maintenance Algorithms.

One of the challenges in updating emulation capabilities through a proxy is syn-

chronizing conversation context with the PLC. The problem arises when an unknown

client request occurs while the replay state is deep in the protocol tree. In order for

the PLC to return the appropriate response to this new request it must understand

the current context of the conversation.

Synchronizing the client conversation context with the PLC requires sending each

client message in the path from the current p-tree node up to the root in reverse order,

effectively replaying the client side of the conversation to the PLC. These messages

can be sent all at once, individually as they are received from the client, or in any

other manner, but they must all be sent to guarantee the correct context. Failure to

48

transfer the full context may not cause a problem in every case, but it is impossible

to know when it is or is not necessary.

This research proposes several context-maintenance algorithms. In its non-minimal

form, each algorithm performs synchronization as described above. See the Mini-

mal Synchronization paragraph below for an explanation of the minimal versions.

The core differences between each algorithm described below lie in the conditions for

opening and closing proxy connections. In the event of unexpected proxy errors, the

proxy connection is broken down immediately regardless of the algorithm chosen.

Catch up. The catch up algorithm does not maintain a persistent connection

with the back-end PLC. The following process is carried out when a new request

requires proxying:

• A proxy connection is established.

• The PLC is caught up on the conversation context.

• The new request is forwarded.

• The new PLC response is recorded and forwarded to the client.

• The proxy connection is disconnected.

• The p-tree is updated with the new response data.

The catch up algorithm is ideal from the perspective of the back-end PLC. No

proxy connection is maintained and only the minimum necessary traffic is proxied.

However, from the perspective of the client, there may be long delays if the emulator

must repeatedly catch up the PLC on consecutive requests while deep in the protocol

tree. In the case of very long conversations this delay may realistically be thirty

seconds to several minutes. This delay could potentially tip off an attacker to the

presence of the honeypot.

49

Lockstep. The lockstep algorithm maintains a persistent connection with

the back-end PLC as an exact mirror of the connection with the client. A proxy

connection is established when a client connection is established and is broken down

only when the client connection is lost. All client traffic is immediately forwarded to

the PLC whose responses are ignored. In the case of unknown requests, the traffic is

forwarded as normal, but the response is sent to the client rather than ignored.

The lockstep algorithm is ideal from the perspective of the emulator and client.

In this mode, a proxy connection is maintained at all times as an exact mirror of the

client connection. This means a new request requires no delay for establishing context;

it can be sent immediately. However, from the PLC’s perspective, this algorithm is

the worst-case option. A proxy connection is maintained throughout the entire life of

the client connection, and all traffic received is forwarded to the PLC. This may be

overwhelming for devices with limited communications resources. In terms of PLC

performance, this algorithm is identical to replacing the emulator with the actual

device. No traffic is filtered.

Latelock. The latelock algorithm is a straightforward combination of the

catch up and lockstep algorithms. For this algorithm, no proxy connection is es-

tablished until a request needs to be proxied at which point the entire conversation

context is transferred. This is identical to the catch up process. However, once a

proxy connection is established and synchronized, the connection is maintained in-

definitely as in the lockstep algorithm rather than being broken down immediately as

in the catch up algorithm.

The latelock algorithm improves on the lockstep algorithm by only establishing

a proxy connection if it is needed. In this way, PLC resources are conserved in the

event that no forwarding is necessary. When the proxy is needed for a new request,

a long delay may occur during context synchronization. However, after the proxy is

50

connected this algorithm displays the same benefits and drawbacks as the standard

lockstep algorithm.

Templock. The templock algorithm is identical to the latelock algorithm

until a proxy connection is established and maintained. Rather than maintaining the

proxy connection indefinitely, templock terminates it prior to the end of the client

connection. The proxy connection is broken down as soon as a client request is

handled entirely by the replay p-tree (no proxy is required). As long as new requests

require the proxy connection, the connection is maintained. When it is no longer

needed, the proxy connection is closed and the algorithm returns to the waiting state

until a new request must be proxied. In this way, many proxy connections may be

established over the lifespan of a single client connection.

The templock algorithm has all of the same performance characteristics as the

latelock algorithm with one improvement. Once a proxy connection is established,

there is a chance it may be disconnected before the client conversation terminates.

This behavior allows the emulator to establish a proxy connection only when neces-

sary, maintain it over a series of requests, and close it when it is no longer needed.

This is ideal behavior from the perspective of the PLC. The primary drawback is the

familiar synchronization delay.

All of the algorithms described thus far begin and end proxy connections based

on the nature of received client messages. These algorithms are visually represented

in Figure 12 where the bars for each algorithm denote the duration of the proxy

connection. The left side of each bar represents initial synchronization after which

context is maintained until the end of the bar when the proxy connection is closed.

Triggerlock. The triggerlock algorithm alternates between maintaining con-

text and waiting in the same manner as the templock algorithm. The difference is in

51

Figure 12. Context synchronization algorithm comparison

the conditions for establishing and breaking down the proxy connection. Templock

establishes a connection at the first unknown request and breaks it down when a

request is handled independent of the proxy. In contrast, triggerlock builds up and

breaks down the proxy connection based on the current context in the p-tree. If

the current node is deeper in the tree than a threshold depth, a proxy connection is

established and synchronized regardless of the need for it. When the depth of the

current node rises above the threshold (due to backtracking), the proxy connection is

broken down.

The threshold (trigger_thresh) is defined as half of the maximum depth of

the tree. It is limited to a minimum value of three in order to prevent superfluous

connections on shallow p-trees. The example tree in Figure 13 depicts nodes below

the threshold as filled while those above are empty. During replay of this tree, a proxy

connection is maintained as long as the emulator context is at a filled node. While the

current software version uses hardcoded values, the threshold and minimum trigger

value could be made configurable.

The triggerlock algorithm sacrifices a small amount of PLC performance in order

to reduce the synchronization delay. This is practically ideal behavior from the client

52

Figure 13. Triggerlock threshold example

perspective. However, it is possible that a proxy connection may be established

unnecessarily, an acceptable risk due to the limited lifespan of the extra connection.

Minimal Synchronization. A final consideration is the setup phase of

many connections. Once a session is established, any request may be sent in any

order. The setup phase is typically linear in the p-tree with branches indicating setup

completion. It is possible that a minimal synchronization may be possible for some

protocols. Only the linear path from the root to the first branch is synchronized.

This would allow the proxy connection to synchronize much more quickly regardless

of the current conversation context. This optimization can be combined with any

other approach to create a minimal variation of the algorithm.

Algorithm Summary. The correct choice of algorithm depends heavily on

the nature of the protocol being emulated. For example, the catch up algorithm per-

forms poorly on complex protocols with long conversations while performing ideally

on a stateless protocol. Theoretically, the best algorithm choice for a complex, state-

53

oriented protocol is either templock or triggerlock depending on the exact shape of

the protocol tree. Triggerlock favors complex protocols with very deep trees due to its

depth awareness. Protocols with relatively shallow trees fit better with templock as

the synchronization delay is limited and unrecognized requests are likely infrequent.

3.5.5.4 Marking up client data.

As discussed in Section 3.4.2 and Section 3.4.3, the p-tree messages are marked

with intra-protocol and environmental link indicators. The original replay function is

able to replace these markers when replaying messages from the tree. The links are

replaced in increasing offset order to maintain consistent offsets later in the package

when length differences occur. All intra-protocol links are replaced before environ-

ment data is inserted. Link replacement is handled by the ScriptGenEreplay function

insert_link_data.

The new proxy mechanism adds two complexities to the presence of link mark-

ers. First, the emulator must maintain a separate dictionary for proxy environment

information as mentioned in Section 3.5.3. During proxy synchronization it is this

dictionary that is accessed by insert_link_data to replace markers. Because

synchronization replays consolidated data created by ScriptGenE.py, these markers

already exist.

The second issue is that unknown transition messages will not contain link mark-

ers. Because the unknown transition is a single traffic instance, there is also no

possibility of consolidation or checking for variable bytes in the client request or the

new PLC response. For this reason, new packets require a search to determine if

replacements are necessary. The function replace_elinks takes two environment

dictionaries and a message as arguments. It searches the message for fields in one

dictionary and replaces them with the corresponding fields in the other dictionary.

54

As described in Section 3.5.5 this process occurs before an unrecognized message is

sent to the PLC and when the PLC response is received. The second replacement

occurs before the p-tree is updated so that it contains data ready to be replayed to

the client.

There is one type of protocol link data that cannot be resolved in the preceding

fashion. If a protocol uses a global link, a field that is consistent across all packets

during a connection (e.g., session ID), the current ScriptGenE.py p-tree generation

algorithm will fail to recognize this field and insert no markers. This is not a problem

for direct replay as intra-protocol links can handle potential problems. However, a

proxied message must have a link value matching the new proxy connection. Similarly,

responses from the PLC will fail to have the correct client connection value.

This research assumes a pre-built tree so detection must occur during replay.

This is challenging as the global link may change values when the connection value

is established making it difficult for a protocol-agnostic algorithm to locate a global

link reliably. A strict algorithm will often fail to find the true link while more lenient

algorithms will produce many false positives.

The current emulator does not have the ability to perform this check accurately

during replay. Future software improvements should include global link detection dur-

ing p-tree build. In its current state, ScriptGenEemulate is able to replace global links

on messages passing between the client and proxy connections to ensure authenticity,

but the location and length of the link field must be manually provided.

3.5.6 Design limitations.

As a proof of concept design, ScriptGenEemulate has several limitations. Like its

ScriptGenE foundation, it can only handle IPv4 addresses and TCP protocols. En-

crypted protocols are not supported. While ScriptGenE is intended to be automated

55

and fully protocol-agnostic, the current software iteration requires some manual con-

figuration for global protocol fields such as session IDs.

3.6 Design Summary

In summary, this chapter details the design of the extended ScriptGenE replay

function: ScriptGenEemulate. This ICS emulator is designed to be flexible and au-

thentic. Emulated responses originate from two sources: static packet-capture data

and dynamic proxy responses.

New features within ScriptGenEemulate.py include:

1. multi-threading the server to enable handling multiple, concurrent client con-

nections

2. a proxy for forwarding client data to a back-end device

3. forwarding PLC responses to unknown client requests in lieu of default error

messages

4. incremental updating of the protocol tree in memory in order to improve future

response capability

56

IV. Research Methodology

4.1 Goals

This research focuses on extending a framework for automatically configuring

application layer PLC emulators by extending a working implementation as a proof

of concept. Testing goals for this extension are derived from the design parameters

discussed in Section 3.3. The following questions are addressed:

1. Can the extended emulator service a significant amount of client traffic without

using the proxy?

2. Can a supplemental proxy provide more accurate emulation than a default error

message in the event of incomplete training data?

3. Which PLC synchronization algorithm performs best with respect to client de-

lays and PLC traffic load?

4.2 Approach

The ScriptGenE framework is extended into a practical, application layer PLC

emulator. The base software generates generic protocol trees from observed traffic.

The p-trees allow the emulator to replay either server or client traffic in the observed

conversation. The extensions of this research further enable the emulator to respond

to untrained traffic via a forwarding mechanism in conjunction with a real, back-end

PLC. The details of the ScriptGenE framework and its extensions are covered in

Chapter III.

Testing the emulator involves building baseline p-trees from traffic generated by

ICS-related protocols, modifying these trees by removing nodes, and replaying the

57

modified trees in the extended emulator. Each baseline p-tree reflects the conver-

sation for a particular task performed by standard ICS management software tools.

After random modifications to the baseline p-tree, the emulator is interrogated by

the same tool and task to determine how the additional proxy functionality affects

performance. Each task and p-tree are also performed for several PLC synchroniza-

tion algorithms. Packet captures are collected for the client and proxy connections

during each task. Measurements from each set of captures provide information on

the PLC load reduction and synchronization algorithm performance. Measurements

on the byte-level variability between captures created by the extended and original

emulators reveal the extension’s affect on authenticity.

All experimental tasks, regardless of protocol, synchronization algorithm, or p-

tree, are randomly ordered and run in a single experiment. Two PLC control protocols

and a web protocol are chosen due to their diversity of structure and reflection of

typical PLC network activity.

4.3 System Boundaries

As shown in Figure 14, the system under test (SUT) is the extended ScriptGenE

Framework. The primary component under test (CUT) is the proxy-enabled p-tree

replay software (ScriptGenEemulate.py) which provides metrics for evaluating the

system.

The workload into the system is a set of similar protocol trees with varying modi-

fications. Each p-tree is generated by a different task. Emulation occurs when Script-

GenEemulate.py loads the p-tree for replay according to the specified replay options.

Proxy connections to the PLC configuration are handled according to the specified

synchronization algorithm.

58

Figure 14. ScriptGenE emulator framework

59

Evaluation metrics consist of three parts. First, the fraction of client messages

forwarded to the PLC is calculated as a percentage. Second, the client interrogator’s

response for each task is returned as a PASS or FAIL. Finally, server response accuracy

is based on statistical analysis of variability between the baseline and modified p-tree

captures.

4.4 Parameters and Factors

Any workload or system parameter that varies is called a factor with values called

levels. The remainder of this section describes each parameter and its relevance to

the SUT.

4.4.1 Workload parameters.

4.4.1.1 Task.

A single application task is selected for each of the chosen experimental protocols.

The HTTP, ENIP, and ISO-TSAP protocols are chosen because they represent a

variety of complexities, conversation structures, and purposes in ICS networks. They

also provide a reasonable set of reconnaissance tasks that an attacker may leverage

during network intrusion. Gathering web pages and browsing hardware modules using

RSLinx or STEP7 gives the attacker more information about the configuration of the

target system.

The wget tool is used to fetch a PLCs web pages over HTTP while RSLinx and

STEP7 are used to browse module information for a PLC on the network. These

tools operate over EtherNet/IP and ISO-TSAP, respectively. The runtime options

for wget are:

-pr --no-parent --no-verbose --tries 1 $server -o $temp_file

60

These options perform a recursive download of all pages in the root directory of

the target $server. All items on the page such as images and style sheets are

downloaded. The --tries option specifies that each download is attempted exactly

once. In the event of emulator errors, wget will not retry the download. Finally,

the lack of verbosity and temporary file output allow the results to be checked for a

PASS or FAIL result.

RSLinx and STEP7 are GUI-driven applications rather than command line calls

like wget. Automation of these tasks requires the use of SikuliX [24]. Section 4.8

provides further detail on the configuration of SikuliX.

4.4.1.2 Modified protocol trees.

For each protocol task a set of baseline pcaps is collected during several successful

interrogations of the PLC. The baseline captures are used to build the baseline p-trees

for each protocol before the experiment begins. This process only takes a few minutes

to create trees for all protocols. A verified initial tree is necessary to mitigate the

risk that emulator errors are attributed to the tree-building software rather than the

replay software. The experiment is designed to compare replay functions assuming

a complete p-tree is already built. The ScriptGenE.py build options used for this

process are taken from Warner’s experiments [19] in order to produce properly working

trees. The building process is performed by the experimental script build tree.sh.

Build options for each protocol are:

• HTTP: -p 80 -xa -M 0

• ENIP: -p 44818 -x -M 0.5

• ISO-TSAP: -p 102 -x -M 0.5

61

Each protocol has a specific port number (‘-p’) and threshold for clustering (‘-M’).

The ‘-x’ option limits exported items to only a Python pickle file, the format used

by the replay software. The ‘-a’ option provides ASCII output.

For each experiment, a set of modified p-trees is created from this baseline in order

to evaluate the emulator’s ability to compensate for incomplete training data with

proxy responses. Modification is done by modify tree.sh which repeatedly calls

modTree.py for each modification. Modtree.py removes a random non-root node in

the specified p-tree and deletes any descendants of that node. It takes an argument

as the number of nodes to remove in this manner. It is possible to delete the entire

tree except the root. For this research, a single node is removed from each tree.

Pilot testing reveals that a single removed node will cause the modified tree to fail

its task in nearly every case. There are unlikely cases where the build process fails to

consolidate similar messages and the modification removes the one that is not needed

during a task. Removing more than one node from a p-tree with few branches, as in

EtherNet/IP, is likely to delete most of the tree, reducing variability.

4.4.1.3 Synchronization algorithm.

The PLC synchronization algorithms in Section 3.5.5.3 are interchangeable in any

emulator configuration. For each experiment, the following algorithms are evaluated:

• Latelock

• Templock

• Minimal Templock

• Triggerlock

These algorithms are chosen because they generate the best theoretical perfor-

mance and are most likely to be deployed in actual implementations. The minimal

62

version of templock is the normal templock algorithm with the minimal catch up

heuristic incorporated. This affects the nature of initial synchronizations but does

not affect connection openings or closings. A final “mode” is emulation with no proxy

capabilities. This is identical to the foundational ScriptGenEreplay.py behavior and

is used for comparison.

4.4.1.4 Replay options.

The ScriptGenEemulate.py function is a direct extension of Warner’s Script-

GenEreplay.py [19] and takes all of the same runtime options in addition to those

dictating the proxy behavior. For this reason, the base replay options are again taken

from Warner’s experiments in order to provide a valid emulation configuration. The

options for each protocol are:

• HTTP: -i $IFACE -f -v --strict

• ENIP: -i $IFACE -v -d

• ISO-TSAP: -i $IFACE -f -v -d

In all cases the emulator requires the name of the interface on which to project its

service. Also the verbose switch (‘-v’) generates logs and debugging information. The

‘-f’ flag keeps the emulator running forever regardless of the number of connections

received. EtherNet/IP does not require this flag as a single connection is sufficient

for the chosen task; the emulator dies when the connection closes. The ‘-d’ option

instructs the emulator to continue repeating the last message sent when a default

error message is required. This allows the emulator to continue to respond after

encountering errors rather than closing the connection early. HTTP does not require

this option as each request is a separate connection; no further traffic is expected,

even if an error message is sent. Finally, the ‘--strict’ option disables backtracking

63

for the same reason regarding HTTP. There is no need to search the tree when each

request is a separate connection; session loops are impossible.

In addition to the above options, each protocol requires proxy configuration op-

tions as follows:

--target $PLC -m $sync_mode

The target is the PLC IP address for forwarding traffic. The synchronization mode

is one of the PLC synchronization algorithms to be evaluated. The proxy options are

excluded for experimental tasks where the proxy is turned off.

4.4.2 System parameters.

Figure 14 shows system parameters consist of PLC configurations and computing

parameters. The computing parameters are derived from the host laptop. The laptop

and PLC configurations are shown below:

Dell Latitude E6520 Laptop

• Microsoft Windows 7 Service Pack 1

• 2.2GHz Intel Core i7-2720QM processor

• 8GB RAM

• VMware Workstation version 12.0.0 build-2985596

Allen-Bradley ControlLogix5561 (L61) PLC

• Firmware version 19.015

• Slot 0 - L61 Controller with mode set to REM Run (remote Run)

• Slot 1 - 1756-EWEB EtherNet/IP ENBT

64

Siemens SIMATIC S7-300 PLC

• Firmware version 2.6

• Slot 2 - CPU 315-2 Controller with one Ethernet port

• Slot 4 - Discrete I/O (DI16xDC24V)

• Slot 5 - Discrete I/O (DO16xDC24V/0.5A)

• Slot 6 - Discrete I/O (DO16xAC120V/230V/1A)

• Slot 7 - Discrete I/O (DO16xRel. AC120V/230V)

• Slot 8 - Analog I/O (AI8xTC)

• Slot 9 - Analog I/O (AI8x16Bit)

4.5 Performance Metrics

Three performance metrics are used to evaluate the emulator in this research.

Because this research exclusively addresses the application layer, network and trans-

port metrics like timing and nmap authenticity are considered out of scope. Each

performance metric is based on application layer data as observed by standard tools

or pcap inspection.

The first metric measures the fraction of client messages forwarded to the PLC by

the emulator. This percentage metric is calculated by counting the application layer

messages containing data in the proxy and client pcaps. Empty packets (e.g., TCP

handshakes and acknowledgments) are not considered traffic for this metric.

It should be noted that counting messages does not guarantee a fraction strictly

less than one. It is possible that the emulator could send a client message to the

PLC more than once, producing a metric value greater than one. Therefore, this

metric should technically be termed a “ratio.” However, a practical interpretation of

the metric and the average test results fit the fractional description.

65

The second metric determines the accuracy of the emulator from the perspective

of standard industry tools (i.e., interrogators). The interrogator results are either

PASS or FAIL. The tools chosen, wget, RSLinx, and STEP7, each have a specific

success condition which signals the automation scripts to return a PASS result. The

default is to FAIL. Detection of the success condition is also performed by the automa-

tion scripts. Failure to detect the success condition indicates errors due to incorrect

emulator responses and results in a FAIL being returned.

The HTTP success condition is the number and size of the web page files down-

loaded and reported by wget. Initial testing reveals that a full download collected

65 files, each over a separate connection. The aggregate size of these files is 121KB

or 122KB. An HTTP PASS is returned when wget reports 65 files and 121KB or

122KB file sizes. Any other output produces a FAIL. The successful output is printed

in Figure 15.

Figure 15. Successful web page download by wget

RSLinx and STEP7 both require the use of GUIs to perform the EtherNet/IP

and ISO-TSAP tasks respectively. These GUIs produce images which are located by

SikuliX. In both cases, a PASS result requires the interrogator to successfully browse

hardware modules for each PLC. Error messages, incomplete tasks, and failure to

locate the correct modules each result in a FAIL. Successful modules for RSLinx and

STEP7 are shown in Figure 16 and Figure 17 respectively.

The final metric measures emulator traffic accuracy at the byte level by comparing

differences in experimental and reference captures. The reference captures are gener-

ated during tasks where an unmodified tree is loaded into the emulator. This makes

the proxy superfluous whether it is configured or not. Experimental captures are gen-

66

Figure 16. Successful module browsing in RSLinx

Figure 17. Successful module browsing in STEP7

erated during tasks involving a modified tree. For each task a percentage difference in

bytes is computed between the experimental capture and its corresponding reference

capture. Differences in the number of messages are taken into account but differences

in the number of connections are not. The difference percentages are divided into

two groups: those with the proxy configured and those using no proxy. The latter

produces behavior equivalent to the original ScriptGenEreplay.py emulator. A sta-

tistical difference between these groups indicates that the proxy has improved overall

emulator accuracy when training data is incomplete.

4.6 Experimental Design

4.6.1 Overview.

Each experimental task is designed to determine how well the extended Script-

GenE emulator performs compared to the foundational ScriptGenE replay emulator

67

as directed by the research questions in Section 4.1. The chosen tasks use the HTTP,

EtherNet/IP, and ISO-TSAP protocols as these are the protocols used to test the

original ScriptGenE framework. The experiments are fully automated and random-

ness is introduced in order to test the consistency of the emulator’s flexibility and

accuracy.

4.6.2 Introducing variability.

The starting point for this research, ScriptGenE, was designed and tested as a

proof of concept framework [19]. The experiment for this research is designed to test

extensions to ScriptGenE rather than retesting the baseline software. Therefore care

is taken to prevent unexpected bugs or errors in ScriptGenE during testing. This is

achieved by using reference pcaps to generate p-trees known to correctly complete

each task. Experimental variability is intentionally added through modification of

the baseline p-trees. Every experimental task is performed exactly as the reference

captures were created so that emulator behavior can be isolated to the p-tree modi-

fications.

Variability at the p-tree level is appropriate for SUT assessment. The extended

emulator is designed to supplement p-tree deficiencies with proxied PLC responses. A

p-tree is modified by removing a random, non-root node from the baseline p-tree and

deleting the subtree rooted at the removed node. Node removal simulates the loss of

the client message on the edge between the removed node and its parent. When the

emulator reaches the parent context and searches for a client message, modified trees

will lack that client message and provide no match. This allows the proxy function a

chance to update the tree with new PLC responses.

Because the triggerlock synchronization algorithm is triggered by p-tree depth

and the other algorithms are not, it is critical that some modifications occur below

68

the trigger threshold. If all modifications occur above the threshold, the algorithms

cannot be fairly compared. While random node selection does not guarantee this

condition, manual inspection of each set of modifications reveals the random choices

are acceptable.

4.6.3 Determining the number of modified protocol trees.

Removal of a single node per modification reflects realistic training data in a

deployed honeypot. The assumption is that training data in the real world is thorough

but not complete. Pilot testing reveals that the loss of a single node is sufficient

to cause the p-tree to fail the experimental task for each protocol. In addition,

EtherNet/IP p-trees are relatively small (fewer than 30 nodes) and linear. Removal

of more than one random node yields a very reduced tree with high probability.

Removing more than one node actually reduces the added variability as the number

of removed nodes increases.

Removing only one node limits the number of modified trees to the size of the

baseline tree for each protocol. EtherNet/IP has the smallest baseline tree with 22

nodes. HTTP has 75 and ISO-TSAP has 83. The Birthday Paradox dictates that the

probability of removing the same node in more than one modified tree rises rapidly

as the number of modifications increases. Testing the same modified tree more than

once provides no new information and requires additional testing time. Therefore the

number of modifications is maximized until the probability of collisions reaches 50%.

For the 22 nodes in the EtherNet/IP tree, this number is six at a probability of 52%.

Therefore six is chosen as the number of modifications to each baseline p-tree for each

experiment. To increase the number of potential modifications and show consistency,

the entire experiment is performed three times and all traffic data is aggregated.

69

4.7 Evaluation Techniques

All data analysis and evaluation is performed in the statistical package R [58].

Scripts for each protocol read the data log files and perform the calculations listed

below. Standard statistics (e.g., mean, standard deviation, 95% confidence interval)

are calculated for all data sets in addition to the tests described below.

Proxy forwarding rates are the ratio of data-bearing forwarded messages to client

messages received. A one-sided Mann-Whitney-Wilcoxon test is used to determine if

the rates are significantly less than 100%. This test is chosen over a t-test because a

normal distribution is not assumed.

Pass rates for each protocol task are computed as the percentage ratio of PASS

results to total task runs. This metric is computed for all tasks with and without the

proxy. The mean and standard deviation are computed for each value across multiple

experimental runs. A Mann-Whitney-Wilcoxon test is used to determine if there is a

significant difference when the proxy is turned on.

The final metric measures byte-level accuracy of the emulator traffic. As with the

metrics above, the Mann-Whitney-Wilcoxon test is used to determine if there is a

significant difference between the variability in traffic when the proxy is used versus

the original replay functionality.

Synchronization Algorithm Comparison. PLC synchronization algorithm

performance is heavily dependent on the protocol used. The forwarding rate metric

used to determine PLC load reduction is examined at the algorithm level to deter-

mine which algorithm reduced the load by the greatest amount. A Kruskal-Wallis

test reveals if the performance of any algorithm deviates significantly from the others.

Because the Kruskal-Wallis test does not identify which algorithm is different, further

70

Mann-Whitney-Wilcoxon tests are used to isolate it through pair-wise comparisons.

As before, the data is not assumed to be normal.

4.8 Experimental Setup

4.8.1 Overview.

As shown in Figure 18, the experimental network setup includes two physical

PLCs, an Allen-Bradley L61 and a Siemens S7-300, and a laptop hosting four VMs.

These three machines are connected by a Cisco SG 100D-08 switch. The laptop VMs

each have a bridged network interface to the physical interface of the laptop. Three of

the VMs run client interrogators while the fourth, a Kali Linux VM, hosts the SUT,

runs experiment coordination scripts, and captures all traffic data with tshark. The

RSLinx and STEP7 interrogators each run on Windows XP VMs and wget runs on a

Honeydrive Linux VM. SikuliX scripts are used to automate the RSLinx and STEP7

GUIs. These scripts and a wget task script are initiated remotely by a simple Python

server running on the Kali Linux coordinator. The physical machine configurations

are listed in Section 4.4.2.

4.8.2 Machine configurations.

All physical configuration information for the laptop and PLCs is discussed in

Section 4.4.2. The primary VM is the Kali Linux 1.0 which hosts the SUT. Kali is

derived from Debian Linux and is commonly used for penetration testing. All VM

configuration and software information are listed in Table 1.

Both Windows XP VMs have nearly the same virtual hardware and performance

capabilities. They differ primarily in the installed software packages. One carries the

RSLogix suite, which includes RSLinx, while the other substitutes the STEP7 suite

71

Figure 18. Experiment setup

Table 1. Kali Linux VM configuration

Kali 1.0

1 processor core Linux kernel 3.14.5 bash 4.2.37
2GB RAM Python 2.7.3 tshark 1.10.2

30GB HD space gcc 4.7.2

72

for RSLogix. The Windows XP configurations for the RSLogix VM and STEP7 VM

are listed in Table 2 and Table 3.

Table 2. RSLogix Windows XP VM configuration

Windows XP Service Pack 3

2 processor cores RSLogix V19.01.00 Python 2.7.2
2GB RAM ControlFLASH Java 1.8.0u51

60GB HD space RSLinx Classic 2.59.02 SikuliX 1.1.0

Table 3. STEP7 Windows XP VM configuration

Windows XP Service Pack 3

2 processor cores STEP7 5.5 Python 2.7.2
4GB RAM ControlFLASH Java 1.7.0u25

60GB HD space SikuliX 1.1.0

The last VM is a third-party Linux distribution called Honeydrive 3.0. This

Xubuntu variant is designed for honeypot deployment by housing a wide variety of

pre-installed data collection and analysis tools. The VM acts as a wget interrogator

for this experiment. All VM configuration and software information are listed in

Table 4.

Table 4. Honeydrive Linux VM configuration

Honeydrive 3 (Royal Jelly)

1 processor core Linux kernel 3.2.0 bash 4.2.25
1GB RAM Python 2.7.3 wget 1.13.4

80GB HD space

4.8.3 Experimental scripts.

Experiment automation and data collection is controlled by a variety of custom

scripts. These scripts perform the actual experiment and generate files to be analyzed

in R [58]. The scripts include:

73

modify tree.sh

• Randomly removes non-root nodes from a protocol tree and cleans up

dangling fragments

master-exp.sh

• Coordinates all experimental tasks

• Manages network connectivity status

wget-exp.sh

• Runs the HTTP experimental task

• Uses RobotServer.py to control wget remotely

74

wget-test.sh

• Runs the experimental wget task

• Called by RobotClient.py on the remote host

enip-exp.sh

• Runs the EtherNet/IP experimental task

• Uses RobotServer.py to control RSLinx remotely

step7-exp.sh

• Runs the ISO-TSAP experimental task

• Uses RobotServer.py to control STEP7 remotely

RobotClient.py

• Controls RobotServer.py to run GUI tasks powered by SikuliX

• Sends one command and gets PASS or FAIL result

RobotServer.py

• Controlled by RobotClient.py to run GUI tasks powered by SikuliX

• Receives one command, executes the remote task, and returns PASS or

FAIL result

diffPcapDir.py

• Utilizes Warner’s diffPcaps.py [19] to collect difference data on combina-

tions of baseline and experimental pcaps in a directory

• Difference data is exported to text files suitable for import into the R

statistical package

75

4.8.4 Task automation.

While the scripts in Section 4.8.3 automate the coordination of the experiment

and its command line components, several SikuliX scripts handle GUI automation

of the RSLinx and STEP7 software. Using OpenCV and Tesseract, SikuliX is able

to automate anything on a computer screen using image and text recognition along

with user input emulation (e.g., mouse, keyboard) [24, 59]. SikuliX scripts can be

integrated with other software due to its Java foundation. The scripts for this research

use Jython, a Python equivalent built on Java.

The scripts used in this experiment are modified from those developed by Warner

[19]. SikuliX scripts control the RSLinx drivers, STEP7 object status, and task con-

versations. Batch files restart the RSLinx and STEP7 servers and a bash script con-

trols the wget task. All of these scripts are remotely called by RobotClient.py which

receives instructions from RobotServer.py with the keyword ‘RUN’. By category, the

RobotServer tasks used in this experiment are:

Driver ‘STOP DRIVER’, ‘DEL DRIVER’, ‘CONFIG DRIVER’

RSLinx ‘RESTART’

STEP7 ‘DEL OBJECTS’, ‘CONFIG NODE’, ‘RESTART STEP7’

wget ‘WGET’

Conversations ‘RSWHO’, ‘STEP7BROWSE’

Driver tasks handle tasks related to device drivers and browsing in EtherNet/IP.

Conversation tasks bundle several simple tasks together to perform a sequence of

realistic interactions between the interrogator and a device. The remaining categories

contain the simple tasks performed by each interrogator.

76

In addition to running the ‘RSWHO’ task, the EtherNet/IP experiment stops

the RSLinx driver between experimental runs. This is to prevent extraneous traffic

created by the auto browse feature. The ‘RSWHO’ task deletes and restarts this

driver during the next run.

4.8.5 Configuring and running the experiment.

The full experiment consists of all tasks for all three protocols run in random

order to mitigate unexpected sources of variability. Randomization is accomplished

by creating a list of all experiment tasks and randomizing the list order with the

bash tool shuf. As tasks are completed the corresponding line is removed from

the list and added to a list of completed tasks. To eliminate bias from previous

p-tree modifications, each experiment task is run on a new emulator process. This

guarantees that previous client interactions will not affect the emulator’s responses

to future requests.

Coordination of the task list and experiment completion is controlled by master-

exp.sh. This script calls the individual scripts for the protocol tasks: wget-exp.sh,

enip-exp.sh, and step7-exp.sh. All four scripts have unique configuration files (‘*-

exp.conf’) which hold relevant experimental and environmental details. The experi-

ment scripts can be called from the command line with custom configurations. The

following example runs the master experiment (ID = 1) with seven modified trees

rather than six:

NUM_MODS=7 ./master-exp.sh 1

4.9 Methodology Summary

This chapter describes the experiment methodology for testing the accuracy and

performance of the extended ScriptGenE emulator. The experiment performs tasks

77

over three different protocols with an emulator using varying sets of training data.

Each task consists of an emulator configuration with a modified p-tree, a PLC synchro-

nization algorithm, and an automated protocol task. The emulator is able to proxy

requests to a physical PLC it is trying to emulate, an Allen-Bradley L61 or Siemens

S7-300. The tasks are performed by the interrogator programs wget, RSLinx, and

STEP7.

The experiment is evaluated by the fraction of client requests forwarded to the

PLC, the task success rate as determined by the PASS/FAIL results, and the byte-

level differences between traffic captures from the experimental and reference emula-

tors.

78

V. Results and Analysis

5.1 Overview

The experiment described in Chapter IV was conducted three times as speci-

fied. The HTTP and EtherNet/IP tasks completed successfully without errors. The

ISO-TSAP tasks produced errors and failure modes which kept valid data from being

collected. Further details on the STEP7 errors are provided in Section 5.1.1.

During analysis in R, all collected data is aggregated for computation of the for-

warding rate and byte-level variability metrics (Section 5.2 and Section 5.4). Each

experiment is treated as a separate data point for the success rate metric in Sec-

tion 5.3. Finally, a comparison of the performances of each context algorithm is

provided in Section 5.5.

As discussed in Section 4.7, non-parametric tests were chosen for all data due to

lack of normality. Shapiro-Wilk tests verify this assumption. The largest p-value

for any set of data collected is 10−11 indicating that each data set is significantly

non-normal in distribution.

The forwarding rate, or fraction of client messages proxied, is less than 100% in

all cases indicating load relief on the PLC. Though the proxy does not pass every

task, it produces higher task success rates than default error messages. The byte level

differences show that increased success rates do not imply a higher average level of

accuracy. Finally, the context algorithm comparison confirms the proposition that

algorithm performance is highly dependent on protocol. The triggerlock algorithm

provides the worst performance while the minimal templock algorithm provides the

best.

79

5.1.1 STEP7 Tasks.

Warner found ScriptGenEreplay is able to accurately replay the ISO-TSAP pro-

tocol and observed only PASS results from STEP7 tasks during his experiment [19].

The experiment for this research corrupted p-trees before emulation causing expected

and unexpected task failures. The failures are a direct result of the emulator pro-

viding an inadequate response either by not responding at all or sending incorrect

data.

Experiment attempts resulted in task failures producing critical STEP7 errors

that disrupted the SikuliX automation scripts. Failure modes were diverse and un-

predictable. Occasionally a failure caused no activity and the task ended abruptly.

In other cases, the browse task stalled and STEP7 would stop responding for an arbi-

trary amount of time. In many cases a failure left the STEP7 GUI in an unexpected

state that affected the results of the next task. Complete understanding of these

errors requires in-depth knowledge of the STEP7 browsing process.

Manual handling of the errors was not straightforward in some cases. Closing the

unresponsive program during hang ups either took a large amount of time or simply

failed to close the GUI. Although the automation scripts are designed to be robust

and handle many errors, they were not reliable enough to produce valid data. Full

experiment automation in the presence of such unpredictable and troublesome errors

requires a more extensive error handling technique and much longer experimental

tasks to recover from hang ups.

5.2 Metric 1 - Message Forwarding Rate

The fraction of client messages proxied to the PLC, or the forwarding rate, is

used to evaluate the PLC load reduction when ScriptGenEemulate is an intermediary

emulator in a honeynet like Honeyd+. Any rate less than 100% shows a lightened load

80

on the PLC. When no proxy is used (‘Off’ mode), there is no forwarded traffic and

all forwarding rates are 0%. With the proxy turned on, the rates are all greater than

0% and less than 100%. This indicates that some, but not all, traffic was forwarded.

The following sections address protocol-specific results.

81

5.2.1 HTTP forwarding rates.

Summary statistics for aggregated HTTP forwarding rates are shown in Table 5.

The forwarding rate for each task takes one of three distinct values: 0%, 1.35%, or

2.7%. Each wget request establishes approximately 65 connections with the emula-

tor. Each of these connections consists of one or two request packets. Most connec-

tions send a single request; however, incorrect server responses occasionally trigger a

second client packet in the same connection. P-tree modification removes one node

from the stateless tree which causes one of the request connections to fail. The 1.35%

forwarding rate reflects one forwarded packet. 2.7% is double this value. A second

packet is forwarded on failing runs because an extra request is received. The only

other forwarding rate is 0% which occurs when unmodified p-trees are replayed. With

an average rate of less then 2% as shown in Figure 19, the proxy conclusively reduces

PLC loads (p < 2.2 · 10−16).

Table 5. HTTP proxy forwarding rates (%)

Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

1.53 0.86 0.00 1.35 2.70 0.00 3.23 0 < 2.2 · 10−16

82

0

1

2

On Off
Proxy Mode

%
 F

ow
ar

di
ng

 R
at

e

Percent forwarding rates for tasks with and without the proxy

Figure 19. HTTP forwarding rates

83

5.2.2 EtherNet/IP forwarding rates.

Summary statistics for aggregated EtherNet/IP forwarding rates are shown in Ta-

ble 6. Unlike HTTP, forwarding rates for EtherNet/IP vary widely as depicted in

Figure 20. There are still 0% values reflecting the unmodified p-trees, but the aver-

age forwarding rate, approximately 54%, is much higher. The difference in the p-tree

structure causes this discrepancy. While HTTP is a stateless protocol, EtherNet/IP

produces deep, linear trees. PLC synchronization requires forwarding all of the re-

ceived traffic in many cases, regardless of where modifications occur in the p-tree. The

high standard deviation can also be attributed to tree structure and the diverse be-

havior required for different modifications. Even with unavoidable traffic, a successful

PLC load reduction still occurs with an average rate less than 100% (p < 2.2 · 10−16).

Table 6. ENIP proxy forwarding rates (%)

Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

54.23 36.77 0.00 77.52 89.47 0.00 100.00 0 < 2.2 · 10−16

84

0

25

50

75

On Off
Proxy Mode

%
 F

ow
ar

di
ng

 R
at

e

Percent forwarding rates for tasks with and without the proxy

Figure 20. EtherNet/IP forwarding rates

85

5.3 Metric 2 - Task Success Rate

The task success rates for all experiments and protocols are shown in Table 7. The

proxy provides higher success rates than default error messages for both protocols.

The improvement is large for HTTP which swings from consistent failure to consistent

success. EtherNet/IP shows a more modest improvement of 14%. Protocol-specific

results are discussed below.

Table 7. Pass Rate Results (%)

Protocol Proxy Exp 1 Exp 2 Exp 3 Mean

HTTP
Off 0.00 0.00 0.00 0.00
On 79.17 100.00 91.67 90.28

ENIP
Off 33.33 33.33 33.33 33.33
On 48.00 45.83 48.94 47.59

5.3.1 HTTP success rates.

Summary statistics for HTTP task success rates are shown in Table 8. The wget

task requires all of the web page files to be downloaded, each over a separate con-

nection. When the emulator fails to provide the correct response for one of these

connections, the task is not successful. This is why all tasks performed with the

default error messages return a FAIL.

Table 8. HTTP task success rates (%)

Proxy Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

Off 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.125

On 90.28 10.49 79.17 91.67 100.00 45.16 100.00

The proxy is able to fill the gap in the p-tree and pass tasks at higher rates. With

a p-value of 0.125 the difference is not statistically significant, but this is attributed to

86

the small number of data points. Inspection of the few failed tasks reveals failure al-

ways occurs on the same modified p-tree regardless of the proxy algorithm used. This

suggests the modification to the tree was particularly troublesome for the emulator

to handle, even with PLC responses.

5.3.2 EtherNet/IP success rates.

Summary statistics for EtherNet/IP task success rates are shown in Table 9. One

third of all RSLinx tasks pass when the emulator replays a modified tree and does

not use the proxy. This indicates there are some modifications to the p-tree which,

while limiting its replay accuracy, do not prevent the success condition from being

achieved. The correct modules are browsed without a full, accurate conversation.

Table 9. ENIP task success rates (%)

Proxy Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

Off 33.33 0.00 33.33 33.33 33.33 33.33 33.33
6 0.125

On 47.59 1.59 45.83 48.00 48.94 40.74 54.44

Just as with HTTP, the tasks that failed while the proxy was in use were all

confined to the same set of p-trees. The context algorithm is once again irrelevant.

Given the baseline pass rate of 33%, the proxy improves the average success rate

of RSLinx tasks by 14%. Again, more data is required for a statistically significant

difference (p = 0.125).

5.4 Metric 3 - Byte-level Variability

Byte-level variability represents relative conversation variability where each data

point is the percent difference between the successful baseline task pcap and a pcap

collected while replaying a modified p-tree. For all protocols, the average variability

87

is consistent whether the proxy is used or not. The default error messages derived

from the most common response in the p-tree look similar to the correct response.

This intentional design choice for ScriptGenEreplay is showcased by the results of

this experiment. The following sections examine protocol-specific results.

5.4.1 HTTP variability.

Summary statistics for HTTP traffic differences are shown in Table 10. The

variability when using the proxy is statistically equivalent to the non-proxy variability

(p = 0.0954). While it is not conclusive from Figure 21 that the proxy improved

overall accuracy of the emulator, there was very little room for improvement. A

default error message sent during one of 65 connections results in very little variability

for the conversation as a whole.

Table 10. HTTP traffic differences (%)

Proxy Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

Off 11.80 22.08 0.14 1.59 75.66 0.00 58.86
729 0.0954

On 14.62 26.09 0.00 0.003 77.69 0.00 66.64

88

●●●●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

On Off
Proxy Mode

%
 D

iff
er

en
t B

yt
es

Percent different bytes for tasks with and without the proxy

Figure 21. HTTP percentage byte-level differences

89

5.4.2 EtherNet/IP variability.

Summary statistics for ENIP traffic differences are shown in Table 11. Figure 22

shows the variability difference results for the EtherNet/IP tasks. Even though the

task success rate discussed in Section 5.3.2 is higher when using the proxy, the average

variability of the traffic is actually higher than when no proxy is used.

This may appear to be a contradiction with success rates showing improved accu-

racy while variability rates show decreased accuracy. Manual inspection of the data

reveals that successful tasks had very low variability rates. The failed tasks produced

inflated variability rates due to extra session loops. The session loops occur as RSLinx

attempts to correct an error after receiving incorrect traffic from the emulator. These

loops do not occur in a successful task conversation and contribute a large amount

of variability to failed tasks. This additional variability is not a reflection of poor

emulation accuracy. Statistically, the variability rates with and without the proxy

are equivalent with a p-value of 0.7687.

Table 11. ENIP traffic differences (%)

Proxy Mean Std Dev Min Median Max
95% CI

V p
Lower Upper

Off 9.70 15.82 1.58 3.72 69.24 0.00 43.08
610 0.7687

On 12.03 12.83 0.00 8.61 44.76 0.00 37.61

90

●
●
●●

●

0

20

40

60

On Off
Proxy Mode

%
 D

iff
er

en
t B

yt
es

Percent different bytes for tasks with and without the proxy

Figure 22. EtherNet/IP percentage byte-level differences

91

5.5 Context Algorithm Comparison

The following sections provide analysis of each context algorithm for distinct pro-

tocol tasks.

5.5.1 HTTP results.

Summary statistics for HTTP forwarding rates by algorithm are shown in Ta-

ble 12. The forwarding rates for each algorithm during the HTTP tasks reveal very

little about the strengths and weaknesses of each algorithm. Figure 23 illustrates each

algorithm performing nearly identically. The group comparison test gives a p-value

of 0.9947 (χ2 = 0.0750) indicating none of the algorithms deviates from the others.

This is expected; the algorithms are intended to improve performance for long con-

versations with extensive synchronization processes. As a stateless protocol, HTTP

does not fit these criteria. The chosen algorithm is irrelevant.

Table 12. HTTP proxy algorithm forwarding rates (%)

Algorithm Mean Std Dev Min Median Max
95% CI

Lower Upper

latelock 1.54 0.88 0.00 1.35 2.70 0.00 3.35
templock 1.54 0.88 0.00 1.35 2.70 0.00 3.35
min templock 1.49 0.85 0.00 1.35 2.70 0.00 3.24
triggerlock 1.54 0.88 0.00 1.35 2.70 0.00 3.35

92

●

●

●

●

●●

●●●●●

0

1

2

latelock min_templock templock triggerlock
Proxy Algorithm

%
 F

ow
ar

di
ng

 R
at

e

Percent forwarding rates for each proxy algorithm

Figure 23. HTTP forwarding rates for each context algorithm

93

5.5.2 EtherNet/IP results.

Summary statistics for ENIP forwarding rates by algorithm are shown in Table 13.

EtherNet/IP, a state-based protocol with a deep p-tree and frequent session looping,

distinguishes the algorithms more than HTTP, as seen in Figure 24.

Table 13. ENIP proxy algorithm forwarding rates (%)

Algorithm Mean Std Dev Min Median Max
95% CI

Lower Upper

latelock 49.60 38.55 0.00 71.97 89.47 0.00 100.00
templock 43.36 38.83 0.00 66.66 84.21 0.00 100.00
min templock 42.85 38.48 0.00 61.9 83.33 0.00 100.00
triggerlock 81.1 7.46 57.14 83.33 85.71 64.80 96.40

●●

0

25

50

75

latelock min_templock templock triggerlock
Proxy Algorithm

%
 F

ow
ar

di
ng

 R
at

e

Percent forwarding rates for each proxy algorithm

Figure 24. EtherNet/IP forwarding rates for each context algorithm

Triggerlock performs decidedly worse with a consistently higher forwarding rate.

Kruskal-Wallis tests verify this with a negligible p-value (χ2 = 30.011, p = 1.373·10−6)

94

when comparing all algorithms and a p-value of 0.5634 (χ2 = 1.1474) when triggerlock

is left out. Further evidence is provided by a Mann-Whitney-Wilcoxon test which

reveals that triggerlock rates are significantly higher than the next highest algorithm,

latelock (W = 608.5, p = 0.0001751). The poor performance of triggerlock can be

explained by the session loops which cycle through the p-tree at heights above and

below the trigger threshold. This causes the proxy to synchronize multiple times

unnecessarily, resending a single client message more than once.

Although the performances of the latelock, minimal templock, and pure templock

algorithms are similar, the differences in their averages can be explained. Templock,

an optimization of latelock, barely outperforms latelock because it can close a proxy

connection once it is no longer needed. The minimal version of templock, a further op-

timization, performs slightly better yet by synchronizing only part of the conversation

context.

95

VI. Conclusions

6.1 Introduction

This chapter presents a summary of the research conclusions, impact, and future

work. Section 6.2 gives conclusions from the experiment results. Section 6.3 discusses

the impact of the research. Section 6.4 presents several ideas and recommendations

for future work and related research.

6.2 Research Conclusions

This research successfully provides an enhanced PLC emulator based on the ap-

plication layer replay framework found in ScriptGenE. The outcome of each research

goal from Section 4.1 is discussed below. Each goal is satisfied successfully as shown

through the conducted experiments.

6.2.1 Performance.

In order to reduce bottlenecks in distributed honeynets using a single back-end

PLC, the emulator is required to handle a significant portion of incoming client traffic

without using its proxy. All experiments verify the ability of ScriptGenEemulate

to reduce the PLC load. For the HTTP protocol, the average load reduction is a

dramatic 98%. The EtherNet/IP protocol shows an average load reduction of 46%.

6.2.2 Authenticity.

Industry standard tools are used to interrogate the emulator with specified tasks.

Emulator authenticity is evaluated in two ways. First, the results of the tasks are

returned PASS/FAIL. Experiment results for modified p-trees show that the enhanced

emulator is able to produce higher PASS rates than the original ScriptGenEreplay

96

which relies on default error messages. These results are consistent but lack enough

data to show statistical significance.

The second accuracy evaluation technique consists of byte-level variability com-

parisons between the responses of ScriptGenEemulate and ScriptGenEreplay when

replaying modified p-trees. The data shows that average variability is statistically

equivalent in all cases. The EtherNet/IP task initiated by RSLinx elicits much higher

levels of variability when the proxy is on and when the emulator fails to respond

correctly. The high variability is attributed to the extra traffic generated by the

interrogator not the degree of inaccuracy in the emulator.

6.2.3 Context Maintenance.

The results of experimental HTTP tasks provide no conclusive differences in the

performance of the various context algorithms. The EtherNet/IP tasks reveal that

triggerlock sends significantly more traffic to the PLC than other algorithms as a

result of session looping and the trigger threshold placement. Performance of the

other three algorithms (latelock, templock, and minimal templock) is consistent. The

minimal templock algorithm average forwarding rate reduces the PLC load by the

greatest amount. However, if minimal synchronization is insufficient and the full

context is required, templock is the recommended algorithm.

6.3 Significance of Research

6.3.1 Contributions.

The primary contributions of this research consist of ScriptGenE framework en-

hancements. ScriptGenEreplay.py is extended into ScriptGenEemulate.py, an en-

hanced application layer emulator. Enhancements include a restructured, object-

97

oriented design, for increased maintainability and extensibility, and multi-threading,

to allow the emulator to service multiple client connections concurrently.

The most significant enhancement is the addition of a proxy mechanism which

replaces default error messages. The proxy is able to forward unrecognized messages

from a client to a live PLC and respond to the client with the PLC response. This im-

proves the accuracy of the emulator and allows it to handle situations where protocol

training data is insufficient.

The final contribution is the dynamic update function which incorporates PLC

responses into the protocol tree. Updating the p-tree allows the emulator to replay

the new response directly and avoid further proxy usage. Theoretically the proxy

should be used less over time leading to gradual PLC load reductions.

6.3.2 Applications.

The general applications of an application layer ICS emulator are very diverse and

include network fuzzing, security training, research projects, and standalone honey-

pots. More specific applications involve incorporating the emulator into a hybrid

network sensor or honeynet. This application allows the emulator to help detect

intrusions or collect malware and other attack information. As discussed in Sec-

tion 3.2, the design of ScriptGenEemulate is specifically intended for use in Honeyd+,

a production-level ICS honeypot framework [20].

6.4 Future Work

6.4.1 Overview of recommendations.

Warner lists a variety of recommendations for future work on the ScriptGenE

framework [19]. This research addresses some of those recommendations through ex-

tensions to the ScriptGenEreplay functionality. In the process, new areas of future

98

work are created. This section recommends areas of future work on the ScriptGe-

nEemulate application layer emulator. The recommendations fall into three cate-

gories: testing, emulator improvement, and honeynet integration.

6.4.2 Testing.

Further testing of ScriptGenEemulate.py is required to show it can be deployed

in a production environment. Testing with additional protocols, tasks, and PLC

configurations can show the emulator is able to handle diverse network conditions.

Further testing is also recommended for profiling the strengths and weaknesses

of each proxy context maintenance algorithm. Each algorithm is theoretically ideal

for appropriate protocols. The algorithms can be tested with a wide range of p-tree

types to verify the theoretical predictions and further refine the process of choosing

the best algorithm for real-world deployments.

The enhanced emulator also contains features that have not been tested. Dynamic

updating can be tested to determine if PLC load is reduced over the course of several

consecutive tasks as the p-tree is gradually expanded. In addition, it is not known

whether the subsequent tasks in such an experiment will be consistently accurate or

if single message updates to a generic protocol tree will reduce its accuracy.

Another untested feature of ScriptGenEemulate is its ability to handle multiple

simultaneous connections. Although pilot testing proves that the emulator can handle

multiple connections, the performance limitations are not known. Further testing

can determine how many simultaneous connections ScriptGenEemulate can handle

on various computing platforms and if there are any adverse affects on emulation

quality as the number of connections increases.

99

6.4.3 Enhancing ScriptGenEemulate algorithms.

The current ScriptGenEemulate implementation can be enhanced in a variety of

ways described in the following sections.

6.4.3.1 Global link recognition.

As discussed in Section 3.5.5.4, the emulator is currently unable to automatically

recognize globally-linked fields across a whole conversation. Manual configuration is

necessary for ScriptGenEemulate to locate global link fields. Future software itera-

tions can add global link recognition during emulation or during the p-tree building

process. In either case, an algorithm similar to the intra-protocol link detection is

required to find the global link and determine if it changes value through session

establishment.

6.4.3.2 Robust dynamic updates.

Dynamic updating as described in Section 3.5.5.2 can be improved through iter-

ative updating. To make dynamically-added nodes generic like the rest of the tree,

unknown transitions can be proxied multiple times. The results could be consolidated

as in ScriptGenE.py. Proxy repetition can occur all at once in rapid succession or the

new node could be assigned probationary status as it waits on future proxy responses

of that type.

6.4.3.3 New context maintenance algorithms.

Although several algorithms are tested in this research, there are a many other

ways client context can be transferred to the PLC. One potential option is a lagstep

algorithm which performs similarly to triggerlock by establishing a proxy connection

based on the depth of the current context in the p-tree. However, rather than syn-

100

chronizing the whole conversation at once and creating delays visible to the client,

lagstep could begin synchronizing incrementally between client messages. This would

reduce the synchronization delay and maintain a low forwarding rate.

6.4.4 Honeynet integration.

With the ability to accept multiple connections, ScriptGenEemulate is ready to be

integrated into existing honeynet configurations. The ScriptGenE framework oper-

ates exclusively at the application layer, so adding to a honeypot framework capable

of handling the network and transport layers is recommended. As discussed in Sec-

tion 6.3.2, Honeyd+ is the framework for which ScriptGenEemulate was designed.

Honeyd or any other low-level honeypot framework may benefit from the abilities of

ScriptGenEemulate.

6.5 Chapter Summary

This chapter presents the conclusions and impact of the ScriptGenEemulate re-

search. To conclude, several recommendations for future work are provided which

build upon and extend the application layer emulation techniques developed in this

research.

101

Bibliography

1. Keith A. Stouffer, Joseph A. Falco, and Karen A. Scarfone. Guide to Indus-
trial Control Systems (ICS) security: Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control Systems (DCS), and other control sys-
tem configurations such as Programmable Logic Controllers (PLC). Technical
Report SP 800-82, National Institute of Standards & Technology, Gaithersburg,
MD, United States, 2011. Retrieved 23 June, 2015 from http:// csrc.nist.gov/
publications/ nistpubs/ 800-82/ SP800-82-final.pdf .

2. Yu-Lun Huang, Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Hsin-Yi
Tsai, and Shankar Sastry. Understanding the physical and economic consequences
of attacks on control systems. International Journal of Critical Infrastructure
Protection, 2(3):73–83, 2009.

3. Ruben Santamarta. Project Basecamp – attacking ControlLogix. In 5th SCADA
Security Scientific Symposium, Miami Beach, FL, USA, January 2012. Digital
Bond. Retrieved 23 June, 2015 from http:// reversemode.com/ downloads/ logix
report basecamp.pdf .

4. Nicolas Falliere. Exploring Stuxnet’s PLC infection process. Technical re-
port, Symantec Official Blog, 2010. Retrieved 23 June, 2015 from http:// www.
symantec.com/ connect/ blogs/ exploring-stuxnet-s-plc-infection-process .

5. David P. Duggan, Michael Berg, John Dillinger, and Jason Stamp. Penetra-
tion testing of Industrial Control Systems. Technical Report 2005-2846P, San-
dia National Laboratories, March 2005. Retrieved 26 October, 2014 from http:
// energy.sandia.gov/ wp/ wp-content/ gallery/ uploads/ sand 2005 2846p.pdf .

6. Todd Vollmer, Milos Manic, and Ondrej Linda. Autonomic intelligent cyber-
sensor to support industrial control network awareness. Industrial Informatics,
IEEE Transactions on, 10(2):1647–1658, May 2014.

7. Andrea Carcano, Alessio Coletta, Michele Guglielmi, Marcelo Masera, Igor Nai
Fovino, and Alberto Trombetta. A multidimensional critical state analysis for de-
tecting intrusions in SCADA systems. Industrial Informatics, IEEE Transactions
on, 7(2):179–186, May 2011.

8. Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Pearson Education, Boston, MA, USA, first edition, 2007.

9. Niels Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium, pages 1–14, 2004.

10. Miles A. McQueen and Wayne F. Boyer. Deception used for cyber defense of
control systems. In Human System Interactions, 2nd Conference on, HSI’09,
pages 624–631. IEEE, May 2009.

102

http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://reversemode.com/downloads/logix_report_basecamp.pdf
http://reversemode.com/downloads/logix_report_basecamp.pdf
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://energy.sandia.gov/wp/wp-content/gallery/uploads/sand_2005_2846p.pdf
http://energy.sandia.gov/wp/wp-content/gallery/uploads/sand_2005_2846p.pdf

11. Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke Inoue, and
Koji Nakao. Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation. In Building Analysis Datasets and Gathering Ex-
perience Returns for Security, Proceedings of the First Workshop on, BADGERS
’11, pages 29–36, New York, NY, USA, 2011. ACM.

12. Niels Provos. Honeyd (version 1.6d), 2013. Retrieved 23 August, 2015 from
https:// github.com/ DataSoft/ Honeyd .

13. Todd Vollmer and Milos Manic. Cyber-physical system security with deceptive
virtual hosts for industrial control networks. Industrial Informatics, IEEE Trans-
actions on, 10(2):1337–1347, May 2014.

14. Christopher Hecker and Brian Hay. Automated honeynet deployment for dynamic
network environment. In System Sciences, 46th Hawaii International Conference
on, HICSS’13, pages 4880–4889. IEEE, 2013.

15. Jeff Hieb. Anomaly based intrusion detection for network monitoring using a
dynamic honeypot. Master’s thesis, University of Louisville, Louisville, KY, USA,
December 2004. Retrieved 26 October, 2014 from http:// digital.library.louisville.
edu/ utils/ getfile/ collection/ etd/ id/ 516/ .../ 517.pdf .

16. Iyad Kuwatly, Malek Sraj, Zaid Al Masri, and Hassan Artail. A dynamic honeypot
design for intrusion detection. In Pervasive Services, IEEE/ACS International
Conference on, pages 95–104. IEEE, July 2004.

17. Xiangdong Li and Li Chen. A survey on methods of automatic protocol reverse
engineering. In Computational Intelligence and Security, Seventh International
Conference on, CIS’11, pages 685–689. IEEE, 2011.

18. Corrado Leita, Ken Mermoud, and Marc Dacier. ScriptGen: an automated script
generation tool for Honeyd. In Computer Security Applications Conference, 21st
Annual, pages 12 pp.–214. IEEE, December 2005.

19. Phillip C. Warner. Automatic configuration of programmable logic controller em-
ulators. Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB
OH, USA, March 2015. oai.dtic.mil/ oai/ oai?verb=getRecord&metadataPrefix=
html&identifier=ADA620212 .

20. Michael M. Winn. Constructing cost-effective and targetable ICS honeypots
suited for production networks. Master’s thesis, Air Force Institute of Technol-
ogy, Wright-Patterson AFB OH, USA, March 2015. oai.dtic.mil/ oai/ oai?verb=
getRecord&metadataPrefix=html&identifier=ADA615223 .

21. Corrado Leita and Marc Dacier. SGNET: A worldwide deployable framework
to support the analysis of malware threat models. In Dependable Computing
Conference, Seventh European, pages 99–109. IEEE, May 2008.

103

https://github.com/DataSoft/Honeyd
http://digital.library.louisville.edu/utils/getfile/collection/etd/id/516/.../517.pdf
http://digital.library.louisville.edu/utils/getfile/collection/etd/id/516/.../517.pdf
oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA620212
oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA620212
oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA615223
oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA615223

22. Weidong Cui, Vern Paxson, and Nicholas Weaver. GQ: Realizing a system to
catch worms in a quarter million places. Technical Report 06-004, International
Computer Science Institute, September 2006. Retrieved 31 August, 2015 from
http:// www.icir.org/ vern/ papers/ gq-techreport.pdf .

23. Corrado Leita, Marc Dacier, and Frederic Massicotte. Automatic handling of
protocol dependencies and reaction to 0-day attacks with ScriptGen based hon-
eypots. In Recent Advances in Intrusion Detection, Proceedings of the 9th In-
ternational Conference on, RAID’06, pages 185–205, Berlin, Heidelberg, 2006.
Springer-Verlag.

24. Raimund Hocke. SikuliX powered by RaiMan, 2015. Retrieved 9 March, 2015
from http:// www.sikulix.com.

25. White House Office of the Press Secretary. Presidential Policy Direc-
tive 21. Critical Infrastructure Security and Resilience, 2013. Retrieved
23 June, 2015 from http:// www.whitehouse.gov/ the-press-office/ 2013/ 02/ 12/
presidential-policy-directive-critical-infrastructure-security-and-resil .

26. Éireann P. Leverett. Quantitatively assessing and visualising industrial system
attack surfaces. Master’s thesis, University of Cambridge, Darwin College, Cam-
bridge, UK, June 2011. Retrieved 8 February, 2015 from http:// www.cl.cam.ac.
uk/ ∼fms27/ papers/ 2011-Leverett-industrial.pdf .

27. Kelly J. Higgins. ‘Project SHINE illuminates sad state of SCADA/ICS se-
curity on the net. Dark Reading blog entry, 2013. Retrieved 23 June,
2015 from http:// www.darkreading.com/ vulnerabilities---threats/ project-shine-
illuminates-sad-state-of-scada-ics-security-on-the-net/ d/ d-id/ 1140691 .

28. Paul M. Williams. Distinguishing Internet-facing ICS devices using PLC pro-
gramming information. Master’s thesis, Air Force Institute of Technology, Wright-
Patterson AFB OH, USA, June 2014 (ADA602989).

29. Kyle Wilhoit. Who’s really attacking your ICS equipment? Tech-
nical report, Trend Micro, Inc., 2013. Retrieved 23 June, 2015
from http:// www.trendmicro.com/ cloud-content/ us/ pdfs/ security-intelligence/
white-papers/ wp-whos-really-attacking-your-ics-equipment.pdf .

30. Kyle Wilhoit. The SCADA that didn’t cry wolf. Technical report, Trend Micro,
Inc., 2013. Retrieved 23 June, 2015 from http:// www.trendmicro.com/ cloud-
content/ us/ pdfs/ security-intelligence/ white-papers/ wp-the-scada-that-didnt-
cry-wolf.pdf .

31. Roland C. Bodenheim. Impact of the Shodan computer search engine on Internet-
facing Industrial Control System devices. Master’s thesis, Air Force Institute of
Technology, Wright-Patterson AFB OH, USA, March 2014 (ADA601219).

104

http://www.icir.org/vern/papers/gq-techreport.pdf
http://www.sikulix.com
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
http://www.darkreading.com/vulnerabilities---threats/project-shine-illuminates-sad-state-of-scada-ics-security-on-the-net/d/d-id/1140691
http://www.darkreading.com/vulnerabilities---threats/project-shine-illuminates-sad-state-of-scada-ics-security-on-the-net/d/d-id/1140691
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-whos-really-attacking-your-ics-equipment.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-whos-really-attacking-your-ics-equipment.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf

32. Craig G. Rieger, David I. Gertman, and Miles A. McQueen. Resilient control
systems: Next generation design research. In Human System Interactions, 2nd
Conference on, HSI ’09, pages 632–636, May 2009.

33. James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Ap-
proach. Addison-Wesley Publishing Company, Boston, MA, USA, 6th edition,
2013.

34. Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. RFC 2616: Hypertext Transfer Protocol
– HTTP/1.1, 1999. Retrieved 23 June, 2015 from http:// tools.ietf.org/ html/
rfc2616 .

35. Paul Brooks. Ethernet/IP - industrial protocol. In Emerging Technologies and
Factory Automation, Proceedings of the 8th IEEE International Conference on,
volume 2, pages 505–514. IEEE, October 2001.

36. Honeywall, 2009. Retrieved 22 June, 2015 from
https:// projects.honeynet.org/ honeywall .

37. Paul Baecher and Markus Koetter. Dionaea, 2013. Retrieved 23 June, 2015 from
http:// dionaea.carnivore.it .

38. Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix
Freiling. The nepenthes platform: An efficient approach to collect malware. In
Recent Advances in Intrusion Detection, pages 165–184. Springer, 2006.

39. Johnny Vestergaard. Beeswarm, 2015. Retrieved 23 August, 2015 from http:
// www.beeswarm-ids.org .

40. Xuxian Jiang, Dongyan Xu, and Yi-Min Wang. Collapsar: A VM-based honey-
farm and reverse honeyfarm architecture for network attack capture and deten-
tion. Journal of Parallel and Distributed Computing, 66(9):1165–1180, 2006.

41. Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and con-
tainment in the Potemkin virtual honeyfarm. SIGOPS Operating Systems Review,
39(5):148–162, October 2005.

42. Robin G. Berthier. Advanced Honeypot Architecture for Network Threats Quan-
tification. PhD thesis, University of Maryland, College Park, MD, USA, 2009. Re-
trieved 24 August, 2015 from http:// drum.lib.umd.edu/ bitstream/ 1903/ 9204/
1/ Berthier umd 0117E 10310.pdf .

43. Robin G. Berthier. Honeybrid: Hybrid honeypot framework, 2013. Retrieved 24
August, 2015 from http:// honeybrid.sourceforge.net .

105

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
https://projects.honeynet.org/honeywall
http://dionaea.carnivore.it
http://www.beeswarm-ids.org
http://www.beeswarm-ids.org
http://drum.lib.umd.edu/bitstream/1903/9204/1/Berthier_umd_0117E_10310.pdf
http://drum.lib.umd.edu/bitstream/1903/9204/1/Berthier_umd_0117E_10310.pdf
http://honeybrid.sourceforge.net

44. Lukas Rist, Johnny Vestergaard, Daniel Haslinger, and Andrea Pasquale. Conpot,
2013. Retrieved 27 August, 2015 from http:// conpot.org/ .

45. Digital Bond. SCADA honeynet, 2006. Retrieved 27 August, 2015 from http:
// www.digitalbond.com/ tools/ scada-honeynet/ .

46. Daniel Buza, Ferenc Juhasz, Gyorgy Miru, Mark Felegyhazi, and Tamas Hol-
czer. CryPLH: Protecting smart energy systems from targeted attacks with a
PLC honeypot. In Proceedings of Smart Grid Security, pages 181–192, Febru-
ary 2014. Retrieved 23 June, 2015 from http:// crysys.hu/ publications/ files/
BuzaJMFH2014smartgridsec.pdf .

47. Robert M. Jaromin. Emulation of industrial control field device protocols. Mas-
ter’s thesis, Air Force Institute of Technology, Wright-Patterson AFB OH, USA,
March 2013.

48. Kazuya Kishimoto, Kenji Ohira, Yukiko Yamaguchi, Hirofumi Yamaki, and Hi-
roki Takakura. An adaptive honeypot system to capture IPv6 address scans. In
Cyber Security, International Conference on, CyberSecurity’12, pages 165–172.
IEEE, December 2012.

49. Christopher Hecker, Kara L. Nance, and Brian Hay. Dynamic honeypot con-
struction. In Information Systems Security Education, Proceedings of the 10th
Colloquium for, Adelphi, MD, USA, June 2006. University of Maryland.

50. Xuxian Jiang and Dongyan Xu. BAIT-TRAP: a catering honeypot framework.
Technical report, Purdue University, 2004. Retrieved 23 August, 2015 from http:
// friends.cs.purdue.edu/ pubs/ BaitTrap.pdf .

51. Vishal Chowdhary, Alok Tongaonkar, and Tzi-cker Chiueh. Towards automatic
learning of valid services for honeypots. In Distributed Computing and Internet
Technology, Proceedings of the First International Conference on, ICDCIT’04,
pages 469–469, Berlin, Heidelberg, 2004. Springer-Verlag. Retrieved 31 August,
2015 from http:// seclab.cs.sunysb.edu/ alok/ papers/ icdcit04.pdf .

52. Deanna R. Fink. Toward automating web protocol configuration for a pro-
grammable logic controller emulator. Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB OH, USA, June 2014.

53. M Zubair Rafique, Juan Caballero, Christophe Huygens, and Wouter Joosen.
Network dialog minimization and network dialog diffing: two novel primitives for
network security applications. In Computer Security Applications Conference,
Proceedings of the 30th Annual, pages 166–175. ACM, 2014.

54. Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H. Katz. Protocol-
independent adaptive replay of application dialog. In Network and Distributed
System Security Symposium, February 2006. Retrieved 1 September, 2015

106

http://conpot.org/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://crysys.hu/publications/files/BuzaJMFH2014smartgridsec.pdf
http://crysys.hu/publications/files/BuzaJMFH2014smartgridsec.pdf
http://friends.cs.purdue.edu/pubs/BaitTrap.pdf
http://friends.cs.purdue.edu/pubs/BaitTrap.pdf
http://seclab.cs.sunysb.edu/alok/papers/icdcit04.pdf

from http:// www.internetsociety.org/ doc/ protocol-independent-adaptive-replay-
application-dialog .

55. Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong Cui, and Vern Pax-
son. GQ: Practical containment for measuring modern malware systems. In In-
ternet Measurement Conference, Proceedings of the 2011 ACM SIGCOMM Con-
ference on, IMC ’11, pages 397–412, New York, NY, USA, 2011. ACM.

56. Mariano Graziano, Corrado Leita, and Davide Balzarotti. Towards network con-
tainment in malware analysis systems. In Computer Security Applications Con-
ference, Proceedings of the 28th Annual, pages 339–348. ACM, 2012.

57. Christian Martin Fuchs and Martin Brunner. Towards next generation mal-
ware collection and analysis. Advances in Security, International Journal on,
6(1 and 2):32–48, 2013. Retrieved 31 August, 2015 from http:// www.thinkmind.
org/ download.php?articleid=sec v6 n12 2013 3 .

58. R: The R Project for statistical computing, 2015. Retrieved 23 June, 2015 from
http:// www.r-project.org .

59. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. Sikuli: Using GUI screen-
shots for search and automation. In User Interface Software and Technology,
Proceedings of the 22nd Annual ACM Symposium on, UIST ’09, pages 183–192,
New York, NY, USA, 2009. ACM.

107

http://www.internetsociety.org/doc/protocol-independent-adaptive-replay-application-dialog
http://www.internetsociety.org/doc/protocol-independent-adaptive-replay-application-dialog
http://www.thinkmind.org/download.php?articleid=sec_v6_n12_2013_3
http://www.thinkmind.org/download.php?articleid=sec_v6_n12_2013_3
http://www.r-project.org

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2016 Master’s Thesis Sept 2014 — Mar 2016

Dynamic Honeypot Configuration
for Programmable Logic Controller Emulation

16G264

Girtz, Kyle A., Mr., Civ

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-M-253

Department of Homeland Security ICS-CERT POC: Neil Hershfield, DHS
ICS-CERT Technical Lead ATTN: NPPD/CS&C/NCSD/US-CERT Mailstop:
0635, 245 Murray Lane, SW, Bldg 410, Washington, DC 20528 Email:
ics-cert@dhs.gov phone: 1-877-776-7585

DHS ICS CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research develops an enhanced, application layer emulator capable of alleviating honeynet scalability and honeypot
inauthenticity limitations. The proposed emulator combines protocol-agnostic replay with dynamic updating via a proxy.
The result is a software tool which can be readily integrated into existing honeypot frameworks for improved
performance. The proposed emulator is evaluated on traffic reduction on the back-end proxy device, application layer
task accuracy, and byte-level traffic accuracy. Experiments show the emulator is able to successfully reduce the load on
the proxy device by up to 98% for some protocols. The emulator also provides equal or greater accuracy over a design
which does not use a proxy. At the byte level, traffic variation is statistically equivalent while task success rates increase
by 14% to 90% depending on the protocol. Finally, of the proposed proxy synchronization algorithms, templock and its
minimal variant are found to provide the best overall performance.

SCADA, honeypot, programmable logic controller, industrial control systems, automation, emulator, protocol reverse
engineering

U U U U 123

Dr. Barry E. Mullins (ENG)

(937) 255-3636 x7979 Barry.Mullins@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-24-2016

	Dynamic Honeypot Configuration for Programmable Logic Controller Emulation
	Kyle A. Girtz
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Motivation
	Research Goals
	Approach
	Protocol emulation
	Honeynet configuration
	Experimentation

	Assumptions and Limitations
	Limitations of network trace-based approaches
	Network protocols involved
	Limited set of tasks
	Limited configuration setup
	Timing

	Thesis Overview

	Background and Related Research
	Overview
	Background
	Industrial Control Systems
	ICS security
	Application layer protocols
	Honeypots

	Related Research
	Manually configured ICS honeypots
	Dynamic honeynets
	Automatic protocol emulation
	Advanced hybrid honeypots

	Chapter Summary

	Framework Design
	Overview
	Motivation and Application
	Design Parameters
	The ScriptGenE Framework
	Framework overview
	ScriptGenE.py
	ScriptGenEreplay.py

	ScriptGenEreplay Extensions
	Overview
	Usage
	Initialization
	Handling unknown transitions
	Proxy connections
	Design limitations

	Design Summary

	Research Methodology
	Goals
	Approach
	System Boundaries
	Parameters and Factors
	Workload parameters
	System parameters

	Performance Metrics
	Experimental Design
	Overview
	Introducing variability
	Determining the number of modified protocol trees

	Evaluation Techniques
	Experimental Setup
	Overview
	Machine configurations
	Experimental scripts
	Task automation
	Configuring and running the experiment

	Methodology Summary

	Results and Analysis
	Overview
	STEP7 Tasks

	Metric 1 - Message Forwarding Rate
	HTTP forwarding rates
	EtherNet/IP forwarding rates

	Metric 2 - Task Success Rate
	HTTP success rates
	EtherNet/IP success rates

	Metric 3 - Byte-level Variability
	HTTP variability
	EtherNet/IP variability

	Context Algorithm Comparison
	HTTP results
	EtherNet/IP results

	Conclusions
	Introduction
	Research Conclusions
	Performance
	Authenticity
	Context Maintenance

	Significance of Research
	Contributions
	Applications

	Future Work
	Overview of recommendations
	Testing
	Enhancing ScriptGenEemulate algorithms
	Honeynet integration

	Chapter Summary

	Bibliography

