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Abstract

As space becomes more congested, contested, and competitive, high-accuracy or-

bital predictions become critical for space operations. Current orbit propagators use

the two-body solution with perturbations added, which have significant error growth

when numerically integrated for long time periods. The Vinti Solution is a more

accurate model than the two-body problem because it also accounts for the equa-

torial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors

near orbital resonances in the perturbative terms of the Hamiltonian, which lead to

inaccurate orbital predictions. One approach to avoid the small divisors is to apply

transformation theory, which is presented in this research. The methodology of this

research is to identify the perturbative terms of the Vinti Solution, perform a coor-

dinate transformation, and derive the new equations of motion for the Vinti system

near orbital resonances. An analysis of these equations of motion offers insight into

the dynamics found near orbital resonances. The analysis in this research focuses on

the 2:1 resonance, which includes the Global Positioning System. The phase portrait

of a nominal Global Positioning System satellite orbit is found to contain a libration

region and a chaotic region. Further analysis shows that the dynamics of the 2:1

resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers

from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System

satellites are produced for 10 years. Two of the satellites are found to be outside of

the resonance region. Three are found to be influenced by the libration dynamics of

the resonance. The final satellite is found to be influenced by the chaotic dynamics

of the resonance. This thesis provides a method of avoiding the small divisors found

in the perturbative terms of the Vinti Solution near orbital resonances.
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ORBITAL RESONANCES IN THE VINTI SOLUTION

I. Introduction

1.1 Chapter Overview

The purpose of this chapter is to provide background knowledge, define the prob-

lem statement, justify the need for research, list the assumptions and limitations,

define the scope and standards, list the methodology and resources, and provide a

brief overview of this thesis.

1.2 Background

Since the launch of the first artificial satellite in 1957, over 39,000 objects have

been cataloged as Earth-orbiting satellites. The United States Air Force (USAF)

Joint Space Operations Center (JSpOC) is responsible for tracking the locations of

these objects [1]. It is crucial to know the location of Earth-orbiting satellites in

order to accomplish all space operations including communications, rendezvous, and

satellite collision avoidance. In order to precisely predict the future locations of satel-

lites, a highly accurate model that incorporates all aspects of the dynamics of satellite

motion is required. Currently, JSpOC uses ground and space based sensors to de-

tect objects in space and uses a simplified general perturbations model, known as

Simplified General Perturbations 4 (SGP4), to predict the future locations of these

objects [1]. Unfortunately, this method of propagation requires a significant amount

of computer processing power and becomes increasingly inaccurate when used for long

time periods. SGP4 has error growth of 1-3 km per day, and must be updated fre-
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quently with position and velocity information in order to accurately predict satellite

locations [2]. SGP4 requires small time steps to make accurate predictions. This is a

heavy burden on a numerical integrator and therefore computationally expensive. A

better method is needed to accurately and efficiently propagate orbits.

Currently, there are two exactly solvable orbital solutions for motion around the

Earth: the two-body solution and the Vinti Solution [3]. Research is currently being

conducted at the Air Force Institute of Technology (AFIT) to provide a numerical

method for modeling Earth-orbiting objects using the Vinti Solution. Unlike SGP4,

which uses the two-body solution and adds the Earth’s equatorial bulge as a pertur-

bation, the Vinti Solution accounts for the equatorial bulge in its solution [4, 1]. By

accounting for the equatorial bulge, the Vinti Solution numerical orbit propagator

is designed to predict satellite locations more accurately than the current two-body

solution numerical orbit propagators, such as SGP4. However, a major inaccuracy

appears in this numerical solution near orbital resonances.

Orbital resonances occur when the period of an orbit is a rational fraction of the

period of the Earth’s rotation. The first orbital resonance is the 1:1 resonance, which

occurs when the period of the satellite matches the period of the Earth’s rotation.

This resonance occurs in orbits known as geosynchronous orbits (GEO). Geostation-

ary orbits are circular equatorial orbits located in GEO. Geostationary orbits are

often utilized by the Air Force for communications and surveillance missions because

the satellite stays in the same position above the Earth as it orbits. The Space Based

Infrared System (SBIRS) is a critical Air Force satellite system located in GEO used

for “missile early warning, missile defense, battlespace awareness, and technical in-

telligence mission areas” [5]. SBIRS is one example of the many mission essential

satellites located in GEO which require highly accurate position predictions.

Figure 1 shows a two-dimensional representation of various resonant orbits in
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GEO at the Earth’s equator. The x and y axes show the positions of the orbits in

kilometers and are located in the equatorial plane of the Earth. Equatorial orbits have

an inclination of zero degrees. The orbits in Figure 1 are found by first calculating

the semi-major axis based on the period of the orbit using equation (1).

T = 2π

√
a3

µ
(1)

Where

T ≡ orbital period (seconds)

a ≡ orbital semi-major axis (km)

µ ≡ Earth’s gravitational constant = 398600.5
km3

s2

The period of the Earth’s rotation used in the calculations equals 23 hours, 56

minutes, and 4.0916 seconds, which is one sidereal day [6]. The period for GEO equals

the period of the Earth’s rotation, so the semi-major axis for GEO is calculated as

approximately 42,164 km. The first orbit has an eccentricity of zero, also known as a

circular orbit. The rest of the orbits are found by increasing the eccentricity by 0.1

until the orbit reaches an altitude of 160 km at closest approach. At altitudes below

160 km, the effects of atmospheric drag cause satellite to fall to the Earth relatively

quickly [7]. Using the above algorithm, 9 orbits are found and shown in Figure 1

with respect to the Earth about its equator. In reality, there are an infinite number

of orbits possible within the shown orbits if the eccentricity is not rounded to the

nearest tenth decimal place and the inclinations of the orbits are varied. For all of

the following figures, the Earth is modeled with a constant radius of 6,378 km.
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Figure 1. GEO Resonant Orbits

The second orbital resonances occur in medium Earth orbit (MEO), which is

defined at altitudes above 2,000 km altitude and below GEO at 35,786 km altitude [8].

The invaluable Global Positioning System (GPS) satellites are located in MEO. To

say that GPS satellites are essential to the Air Force is an understatement. GPS

satellites are utilized in every facet of U.S. National Security for all missions that

require precision positioning or timing [9].

Figure 2 shows various resonant orbits in equatorial MEO. The 1:2 to 1:11 resonant

orbits are located in MEO. Satellites in these resonances orbit the Earth 2 to 11 times

per day, respectively. The orbits in Figure 2 are found by calculating the semi-major

axis based on the period of the desired orbit, which is equal to the period of the

Earth’s rotation divided by the desired resonance. The periods of these orbits vary

between approximately 12 and 2 hours. The semi-major axes of these orbits vary

between approximately 26,562 and 8,525 km. The first orbit calculated is a circular

4



orbit and the rest of the orbits are found by increasing the eccentricity by 0.1 until

the orbit reaches an altitude of 160 km at closest approach. This process is repeated

for the remaining resonances. Using this algorithm, 52 resonant orbits are found in

MEO and shown in Figure 2 with respect to the Earth about its equator. In reality,

an infinite number of orbits are possible within the shown orbits and at varying

inclinations.

Figure 2. MEO Resonant Orbits

The final orbital resonances about the Earth are the repeating ground-trace orbits

located in low Earth orbit (LEO), which is any Earth orbit located below an altitude

of 2,000 km [7]. The 12:1 to 16:1 resonant orbits are located in LEO. Satellites near

these resonances orbit the Earth 12 to 16 times per day, respectively. LEO resonant

orbits are utilized for repeating ground trace orbits. One Air Force system that

utilizes repeating ground trace orbits is Landsat, which provides ground imagery and

can be used for emergency response or disaster relief [10].
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Figure 3 shows various resonant orbits in equatorial LEO. The orbits are found

by calculating the semi-major axis based on the period of the desired orbit, which is

equal to the period of the Earth divided by the desired resonance. The periods of

these orbits vary between 120 and 89 minutes. The semi-major axes of these orbits

vary between 8,044 and 6,640 km. The first orbit calculated is circular and the rest

of the orbits are found by increasing the eccentricity by 0.1 until the orbit reaches an

altitude of 160 km at closest approach. This process is repeated for the remaining

resonances. Seven resonant orbits are found in LEO using this algorithm and shown

in Figure 3 with respect to the Earth about its equator. In reality, an infinite number

of orbits are possible within the shown orbits and at varying inclinations.

Figure 3. LEO Resonant Orbits

Figures 1-3 show that resonances occur in numerous Earth orbits. Many critical

Air Force satellite systems, including SBIRS, GPS, and Landsat, are located in these

resonant orbits. Therefore, a more accurate method of predicting the satellites located
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in resonant orbits is essential for nearly all Air Force missions, and for all operations

in space due to the threat of satellite collision. All 68 resonant orbits calculated above

are shown to scale in Figure 4.

Figure 4. Resonant Orbits

One flaw with the Vinti Solution is that it does not accurately model orbits near

resonances. Near resonances, the frequency of the satellite is close to a rational mul-

tiple of the frequency of the Earth, which leads to small numbers in the denominators

of some of the perturbative terms of the Vinti Solution, known as small divisors [11].

Small divisors lead to large perturbation terms in the Vinti Solution. Large perturba-

tion terms directly contradict the fundamental assumption of classical perturbation

theory: perturbations must be small. If a satellite is located precisely at an orbital

resonance, some perturbations in the Vinti Solution have zeros in the denominator,

resulting in terms with values approaching infinity, which are not physically possible

and are obviously inaccurate. In order to avoid these large perturbative terms, a
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modified Vinti Solution must be used near resonances in conjunction with the nu-

merical model for the Vinti Solution. This solution is derived in Chapter III, the

Methodology, and is referred to as the orbital resonance solution.

1.3 Problem Statement

Small divisors in perturbations to the Vinti Solution lead to large, inaccurate

terms near orbital resonances about the Earth. These large terms cause incorrect

orbital predictions. The research in this thesis provides a solution to avoid the large

terms that appear near orbital resonances.

1.4 Justification

The research provided in this thesis is necessary in order to predict the locations of

Earth-orbiting satellites near orbital resonances using the Vinti Solution. Currently,

the orbital propagators used by JSpOC and other space operators are inefficient when

used for the thousands of objects located in space and become inaccurate over long

time intervals. In order to efficiently communicate with satellites, execute rendezvous

operations, and predict satellite collisions, space operators need to use models which

accurately and effectively propagate the orbits of their satellites.

The amount of objects orbiting the Earth is constantly increasing. The number

of launches per year is growing as the number of space companies and launch sites

increases. Also, with a greater number of objects in space, the number of space

collisions is increasing. Every collision results in thousands of pieces of orbital debris,

which dramatically increases the chance of another collision. The 2007 Chinese anti-

satellite test resulted in 3,000 pieces of trackable debris and an estimated 150,000

pieces of debris [12]. In 2009, the Iridium-Cosmos collision resulted in 2,000 pieces

of trackable debris and thousands more pieces of debris that are not trackable by
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JSpOC [12]. For every collision in space, thousands of objects are added to the

already large collection of Earth orbiting objects. As this collection increases, the

probability of another collision grows considerably. This snowball effect of space

collisions will lead to an exponential increase of space debris, drastically decreasing

the functionality of space operations near the Earth. Figure 5 shows the past and

current effective mass of objects in Earth orbit, as reported by NASA in the January

2015 Orbital Debris Quarterly News [13].

Figure 5. Monthly Effective Mass of Objects in Earth Orbit by Region, copied from
the January 2015 Orbital Debris Quarterly News by NASA [13]

Figure 5 shows that the collection of space objects is already rapidly increasing.

This effect must be mitigated in order to allow for the utilization of space in the near

future. One way to decrease this number is to accurately and efficiently model the

dynamics of objects in space in order to predict and prevent satellite collisions.

The Vinti Solution, when corrected to account for orbital resonances, could pro-

9



vide the accuracy and efficiency needed to predict orbits when performing critical

space operations. Unfortunately, numerically modeling the Vinti Solution leads to

inaccuracies near orbital resonances. This thesis provides the orbital resonance solu-

tion, which is designed to improve the Vinti Solution near resonances. The numerical

model of the Vinti Solution plus the orbital resonance solution could increase the

precision of orbit predictions and allow for more advanced operations in space.

1.5 Assumptions and Limitations

Several assumptions and limitations are made in order to specify the exact problem

being solved.

The research in this thesis focuses purely on perturbative terms affected by reso-

nances; therefore, all other perturbative terms are assumed to be correctly modeled

in the Vinti Solution.

The orbital resonance solution shown in this thesis is implemented and integrated

in Matrix Laboratory R© (MATLAB). The numerical integrator used in MATLAB for

this thesis is ode45 : a Runge-Kutta (4,5) formula. Ode45 uses relative and absolute

error tolerances to determine the accuracy of the numeric integration [14]. The abso-

lute error tolerance of the integrator is defined as the estimated error of the computed

value minus the unknown, exact value [15]. The relative error tolerance of the inte-

grator is defined as the estimated error of the computed value minus the unknown,

exact value divided by the magnitude of that unknown, exact value [15]. The abso-

lute tolerances and relative tolerances used in this thesis are equal to 2.22045×10−14,

which is the highest tolerance possible for ode45. Since the solution is computed

numerically, it is inherently limited in its accuracy. The integrator and tolerances are

chosen in order to maintain high accuracy and reasonable computation times.
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1.6 Scope and Standards

The research in thesis is restricted in its scope in order to provide a thorough

analysis of the orbital resonance solution and the dynamics involved near orbital

resonances.

Resonances occur in a variety of manners including third-body resonance, spin-

orbit resonances, and orbital resonances due to the gravity field. The orbital resonance

solution shown in this thesis deals only with the latter: orbital resonances due to the

Earth’s gravity field.

Also, the solution shown in this thesis applies exclusively to Earth-orbiting satel-

lites. In order to apply the solution to celestial bodies other than the Earth, the

gravitational model of those bodies must be incorporated into the Vinti Solution and

the orbital resonance solution.

In Section 1.2, three different types of orbits are mentioned: GEO, MEO, and

LEO. This thesis provides the solution for all resonances within these orbital regions,

which includes the 1:1 to 16:1 resonances. Beyond the 16:1 resonance, the effects of

atmospheric drag are too large to be considered a perturbation, so the Vinti Solution

orbit propagator cannot accurately model the dynamics beyond this resonance.

The standards used to evaluate this solution are based on a reference orbit known

as the truth orbit. Ideally, a truth orbit would use observational data of actual Earth-

orbiting satellites. A sufficient amount of real-world satellite data for orbits near

resonances is not available to the public. Consequently, a numerical model must be

used in order to produce data for the truth orbit. In this thesis, the truth orbit is found

using a high-fidelity model developed by Analytical Graphics, Inc. R© (AGI) Systems

Toolkit R© (STK), which is assumed to be close to the value of a true orbit. Data for

the truth orbit is produced in STK using the high precision orbit propagator (HPOP)

with geopotential terms to order 2 and no other perturbative forces. The integrator
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used in STK is the Runge – Kutta – Fehlberg (RKF) 7(8) with a relative error of

10−13. The truth orbits produced in STK are used to evaluate the accuracy of the

orbital resonance solution. The coordinates produced by STK are translated to Vinti

coordinates using a Vinti Solution software package written by Dr. William Wiesel,

which numerically integrates the Vinti Solution for a given orbit. The resulting Vinti

truth orbit is used to evaluate the accuracy of the orbital resonance solution.

1.7 Methodology and Resources

The methodology used to find the orbital resonance solution answers the following

investigative questions.

1. Why does the Vinti solution vary drastically near orbital resonances?

2. What method can be used to avoid the inaccuracies near orbital resonances?

3. Does this method provide a solution to accurately model orbits near resonances?

The answers to these questions provide a comprehensive development and analysis

of the orbital resonance solution.

The only resources required for this thesis are the computer programs MATLAB,

STK, and Vinti Solution software. MATLAB is “a multi-paradigm numerical com-

puting environment and fourth-generation programming language” MATLAB is used

for numerical analyses and is used to integrate the differential equations of the orbital

resonance solution [15]. STK “is a physics-based software package from Analytical

Graphics, Inc. R© that allows engineers and scientists to perform complex analyses of

ground, sea, air, and space assets, and share results in one integrated solution” [16].

STK is used in this thesis to develop a truth orbit which is used to prove the validity

of the orbit resonance solution. The Vinti Solution software is written in C++ and
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provided by Dr. Wiesel. It is used to translate orbital coordinates to and from the

Vinti system.

1.8 Overview of Thesis

This thesis is divided into five chapters and three appendices. In Chapter I, the

Introduction, the problem of finding the solution to orbital resonance is defined and its

importance to all space operations is justified. In Chapter II, the Literature Review,

the background information necessary to find the resonance solution is researched

and summarized. The problem statement and investigative questions are used as a

basis for research in the Literature Review. In Chapter III, the Methodology, the

equations of the orbital resonance solution are derived. In Chapter IV, the Analysis

and Results, the dynamics due to resonance are explored and the derived orbital

resonance solution is analyzed against a truth orbit to determine its validity. In

Chapter V, the Conclusions and Recommendations, the thesis is summarized concisely

and recommendations for continued research are made. Finally, Appendix A and

Appendix B contain proofs and details of the mathematical operations shown in this

thesis while Appendix C contains the two line element sets used to produce the truth

orbits in STK. Throughout this thesis when an equation is introduced, the variables

used in the equation are defined below it. Variables are not redefined if they are used

later in the thesis, but can be found in the List of Variables. The page number used

in the List of Variables is the page number where the variable is first defined.

1.9 Chapter Summary

This chapter provides some background knowledge of the problem, defines the

problem statement, justifies the need for this research, lists the assumptions and

limitations, defines the scope and standards, lists the methodology and resources,

13



and provides a brief overview of this thesis. In Chapter II, the Literature Review,

the problem statement and investigative questions are used as a basis for the research

needed to find the orbital resonance solution.
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II. Literature Review

2.1 Chapter Overview

The purpose of this chapter is to provide a complete background for this thesis.

This chapter is divided into six sections. First, the Vinti Solution is explained be-

cause the orbital resonance solution provided in this thesis is designed to be used in

conjunction with the complete Vinti Solution. Second, orbital resonances are defined

because they are poorly modeled in the Vinti Solution, leading to the need for this

research. Third, the findings of research on resonances found in the GPS constellation

are summarized. Fourth, research on resonances in the KAM theorem is presented.

Then a the fundamental theories used in this thesis are presented. First, the classi-

cal orbital elements are defined. Second, classical mechanics is explained because it

provides the foundational concepts used to develop the Vinti Solution and the orbital

resonance solution. Finally, transformation theory is described because it is used

to derive the equations of motion for the orbital resonance solution. Summaries of

the relevant literature are provided in each of these sections in order to cover each

topic thoroughly. An understanding of these topics is necessary in order to address

the problem statement: deriving the equations for the Vinti Solution near orbital

resonances. The orbital resonance solution is provided in this thesis.

2.2 The Vinti Solution

The Vinti Solution was published in 1959 by John P. Vinti [4, 1]. It is an exactly

solvable solution to the motion of satellites around the Earth that accounts for the

effects of the Earth’s equatorial bulge [17, 1]. The equatorial bulge refers to the fact

that the radius of the Earth is larger at the equator than at the poles, which causes

a large perturbation on satellites. In orbital dynamics, this perturbation is known as
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J2. For symmetric planets, the Vinti Solution exactly models orbital motion because

the other gravitational terms can be represented as follows [17, 1]:

J4 = −J2
2

J6 = +J3
2

The Vinti Solution is significant because the only other exactly solvable celestial

solution found before the Vinti Solution was the solution to the two-body problem.

In the two-body problem, the equatorial bulge is added as a perturbation and the error

in this perturbation grows with time. Perturbations are linearized about the initial

time, but as time grows, this linearization becomes more inaccurate, which causes

error growth. The Vinti Solution accounts for the equatorial bulge and is a more

complete solution for orbital motion around the Earth, allowing for more accurate

orbital predictions [17, 1].

Currently, research is being completed at AFIT in order to create an orbit propa-

gator using the Vinti Solution. This propagator is designed to be more accurate than

the current two-body problem orbit propagators used by space operators.

A numerical model of the Vinti Solution is ideal for use as a highly accurate orbit

propagator, but there are numerical problems which arise near orbital resonances.

Near resonances, the frequency of the satellite is close to the frequency of the Earth.

Due to the nearly matching frequencies, some of the perturbative terms of the Vinti

Solution have small divisors. Small divisors lead to large, inaccurate terms in the

numerical solution. In this thesis, the terms of the Vinti Solution with small divi-

sors are identified and modified in order to overcome the inaccuracies caused by the

resulting large terms. These modified terms, known collectively as the orbital reso-

nance solution, are applied with the numerical model of the Vinti Solution in order
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to propagate Earth-orbiting satellites.

2.3 Orbital Resonances

The issue of orbital resonances was first discovered by French mathematician Jules

Henri Poincaré, which he published in Les Methodes Nouvelles de la Mecanique Ce-

leste, Vol II in 1899 [18]. The subject of orbital resonances was explored for the next

two centuries by a variety of researchers and astronomers. Most notably, in 1979,

Boris Chirikov found highly nonlinear and unstable motion in oscillating systems

near resonances [19]. Then in 2010, William Wiesel explored the dynamics caused

by orbital resonances in his book Modern Astrodynamics . In his research, Wiesel

states that nonlinear resonances occur in any system when the forcing frequency is

a rational multiple of the system frequency. For satellites orbiting the Earth, the

forcing frequency is the frequency of the Earth’s rotation, which equals one sidereal

day [20, 145]. A sidereal day is approximately 23 hours, 56 minutes, and 4.0916

seconds [6]. Orbital resonances occur when the period of the satellite is a rational

fraction of one sidereal day. Rational fractions of the Earth’s rotational period occur

in satellite motion for the 1:1 to 16:1 resonances. When resonances are greater than

16:1, the semi-major axis of the orbit is so small that effects of atmospheric drag cause

perturbation theory techniques to fail. The numerical problem that occurs near or-

bital resonances is that the frequencies of the satellite and the Earth are close in value,

which causes small divisors to appear in the perturbative terms of the Vinti Solution.

The terms with small divisors become large and inaccurate in the solution. These

large terms directly contradict the fundamental assumption of perturbation theory:

perturbations must be small. The terms with small divisors must be modified to

properly model orbits near resonances, which is accomplished in this thesis.

The 1:1 resonance occurs at a commonly used orbit known as GEO. Wiesel ex-
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plores the effects of orbital resonance in GEO. In his analysis, Wiesel finds the terms

that contain the small divisors due to orbital resonances and derives a Hamilto-

nian function using these terms. Then, Wiesel performs a canonical transformation

and produces the Hamiltonian to model trajectories for geosynchronous orbits. This

Hamiltonian is shown in equation (2).

H = − µ2

2(ΛGEO+ΦGEO)2 − ω⊕ΦGEO −
µ4R2

⊕J2

2(ΛGEO+ΦGEO)6 · · ·

− 3µ4R2
⊕D22

(ΛGEO+ΦGEO)6 sin (2φGEO + δ22)
(2)

Where

H ≡ Hamiltonian function

ω⊕ ≡ rotational frequency of the Earth = 7.2921159× 10−5 rad
s

R⊕ ≡ radius of Earth = 6378.135 km

J2 ≡ second zonal term of Earth’s geopotential = 1.081874× 10−3

D22 ≡ sectoral term of Earth’s geopotential = −1.8081× 10−6

δ22 ≡ phase constant = −60.259◦

ΛGEO ≡ axial momentum

ΦGEO ≡ longitudinal momentum

φGEO ≡ longitudinal coordinate

Using this new Hamiltonian, Wiesel calculates the equations of motion for a satel-

lite in GEO using Hamilton’s canonical equations of motion. This process is explained

in detail in Section 2.7. The resulting equations of motion are shown in equations (3)
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and (4).

Φ̇GEO = − ∂K

∂φGEO
=

6µ4R2
⊕D22

(ΛGEO + ΦGEO)6
cos (2φGEO + δ22) (3)

φ̇GEO = ∂K
∂ΦGEO

· · ·

= µ2

(ΛGEO+ΦGEO)3 − ω⊕ +
3µ4R2

⊕J2

(ΛGEO+ΦGEO)7 +
18µ4R2

⊕D22

(ΛGEO+ΦGEO)7 sin (2φGEO + δ22)
(4)

A phase portrait can be produced using these equations of motion, which is useful

for analyzing the dynamics of the problem. Figure 6 shows the phase portrait for

an equatorial circular orbit in GEO. The trajectories are plotted for a five year time

period with initial geocentric longitudes between 0 and 360 degrees and a step size

of 5 degrees, so the entire Earth is covered. The x-axis shows the initial longitude

of an orbit, and the y-axis shows the momentum associated with the motion in the

longitudinal direction.
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Figure 6. GEO Phase Portrait

Figure 6 can be used to find the four equilibrium points that exist in GEO and to

find the maximum change in semi-major axis for an orbit at an equilibrium point.

The two stable, “center,” equilibrium points are found in the center of the ovals

in Figure 6, at approximate longitudes of 75 and 255 degrees in the phase portrait,

which correspond to equatorial locations south of India and south of Mexico. These

are known as “libration regions” [20, 148].

The two unstable, “saddle,” equilibrium points are located at approximately 165

and 345 degrees longitude in the phase portrait. The regions around the unstable

equilibrium points are known as chaotic regions. The unstable equilibrium points are

located on the equator northeast of Australia and southwest of Liberia.

By calculating the longitudinal momentum at each time step, the value of the

semi-major axis can be found. The semi-major axis is calculated at each time step
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using the relationship in equation (5). The results of these calculations are plotted in

Figure 7 for a time period of five years. For this analysis, longitudes are considered

“near” a libration or chaotic region if the initial longitude is within one degree of the

equilibrium point.

a =
(Λ + Φ)2

µ
(5)

Figure 7. Semimajor Axis of Orbits near Equilibrium Points

The semi-major axis of satellites in libration regions varies up to 4 km, while the

semi-major axis of satellites in chaotic regions varies up to 32 km over the five-year

time period.

The above phase portrait analysis proves that the dynamics caused by orbital

resonances cause satellites to move far from the original, desired position for long
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time periods. This behavior is detrimental to space operations, where highly accu-

rate location predictions are essential. GPS satellites require highly accurate orbit

predictions, but they are located near the 1:2 resonance. Orbiting near a resonance

is a major problem due to the dynamics shown in Figures 6 and 7. The dynamics

caused by resonances on GPS satellites have been explored by other researchers and

the results are presented in Section 2.4.

2.4 Resonances in the GPS Constellation

In 2012, researchers in Brazil presented studies on orbits located near the 2:1 res-

onance [21]. By using canonical transformations, the researchers derived a simplified

model of the orbital dynamics near resonances. The phase space of this simplified

model was found to resemble the phase space of the simple pendulum [21]. In other

words, chaotic motion was found near resonances. In the journal article “Artificial

satellites orbits in 2:1 resonance: GPS constellation,” Sampaio, Neto, Fernandes,

Moraes, and Terra stated [21]:

The orbits of synchronous satellites are very complex, from the dynam-
ics point of view. The tesseral harmonics of the geopotential produce
multiple resonances which interact resulting [sic] significantly nonlinear
motions, when compared to non-resonant orbits. It has been found that
the orbital elements show relatively large oscillation amplitudes differing
from neighboring trajectories, they are in fact chaotic.

Sampaio, Neto, Fernandes, Moraes, and Terra chose four orbits near the 2:1 res-

onance and found the change in semi-major axis over time. The results were that

the semi-major axis oscillated significantly for all four of the orbits. The smallest

oscillation was found to be 3 km and the greatest was 14 km [21]. These results are

shown in Figure 8 using the orbital elements in Table 1.
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Figure 8. Time Behavior of the Semi-major Axis, copied from “Artificial satellites
orbits in 2:1 resonance: GPS constellation" by Sampaio, Neto, Fernandes, Moraes, and
Terra [21]

Table 1. Orbital Elements for Figure 8

Point Semi-major axis (km) Eccentricity Inclination (degrees)

A 26,564 0.01 55

B 26,560 0.01 30

C 26,558 0.01 55

D 26,554 0.01 20

Using the above data and performing a study of the phase space of the problem,

the researchers reached the following conclusions [21]:

Inside the region where the resonances are found, the motion can be
chaotic, showing sensibility to initial conditions. Outside the region of
junction of the resonances, the orbits are quasi-periodic.

Near resonances, orbits are subject to chaotic dynamics and require highly sensi-

tive equations of motion in order to model numerically. The research in this thesis
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offers a solution to finding these highly sensitive equations and evaluates the solution.

The quasi-periodicity of orbits outside of resonances is useful in the application

of the KAM theorem, presented in Section 2.5.

2.5 Orbital Resonances using the KAM Theorem

In 2010, Maj Ralph Bordner attempted to apply the KAM theorem in order

to find an analytical method of modeling orbits that would be more accurate than

the two-body problem. The KAM theorem was first announced in 1954 by Andrey

Kolmogorov and was later rigorously proven by Vladimir Arnol’d and Jurgen Moser,

for which it was named the Kolmogorov-Arnold-Moser (KAM) theorem [22]. The

KAM theorem states that an n-degree-of-freedom, integrable Hamiltonian system

exists on an n-dimensional, invariant deformed torus in phase space, even with small

perturbations. Different initial conditions appear on different invariant tori for the

same Hamiltonian system [23]. An example of a three-dimensional, unperturbed

invariant torus is shown in Figure 9.

Figure 9. Torus

Bordner proved that the KAM theorem can be accurately applied to model orbits

for long time periods as long as there is sufficient data for the orbit, and the orbit

is not perturbed by maneuvering the satellite [24, 90]. In other words, the KAM

theorem is best used to model orbital debris. However, Bordner found that issues

existed in applying the KAM theorem near orbital resonances, specifically the 2:1

resonance used for GPS orbits. When applying the KAM solution to a GPS orbit,
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Bordner reached the following conclusion [24, 90]:

It appeared to easily get drawn into finding other local minima rather
than the global solution. Hence, the torus found was not ‘close’ enough
for operational use. Thus, until a non-trajectory following method is
developed or a way to circumvent the near-commensurability of the peaks
is found, the operational GPS mission as we know it cannot benefit from
this type of effort either.

Therefore, the mission-critical GPS satellites, which orbit near the 2:1 resonance,

cannot be modeled using the KAM theorem: a potentially highly accurate method of

modeling orbits.

Bordner describes resonant orbits as having “commensurate frequencies” because

the frequency of satellites in resonant orbits have the same frequency or a frequency at

a rational multiple of the frequency of the Earth. While presenting his data, Bordner

states that “avoiding nearly commensurate frequencies and increasing the number

of periods of each basis frequency within the sampled data results in much better

reconstruction of the orbital trajectory” [24, 93]. In other words, the KAM theorem

could not be applied to resonant orbits because the frequencies of the orbits were not

sufficiently irrational. Thus, a method other than the KAM theorem must be applied

to orbits near resonances in order to accurately model orbits. The Vinti Solution

offers an accurate orbital model. This thesis offers method to avoid the numerical

effects of resonances in the Vinti Solution using transformation theory: a subset of

classical mechanics explained in Section 2.8.

2.6 Classical Orbital Elements

In this thesis, the classical orbital elements are used to define the truth orbits used

to validate the orbital resonance solution. The classical orbital elements are a set of

six scalar values used to describe an orbit in the two body problem [25, 64].
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The first classical orbital element is the semimajor axis, a, which defines the size

of the orbit. It is defined as the length of the longest axis of the orbit [25, 64].

The next element is eccentricity, e, which defines the shape of the orbit. Closed

orbits are defined with eccentricities between values of 0 and 1 depending on how

elliptic the orbit is shaped [25, 64].

The orbital element i is the inclination, and it defines the tilt of the orbit relate to

the equatorial plane. It is equal to the angle between the normal axis of the equatorial

plane and the normal axis of the orbital plane [25, 65].

The right ascension of the ascending node, Ω, defines the position of the ascending

node of the orbit. It is equal to the angle between the line of nodes and the vector

pointing to the vernal equinox. Vernal equinox is defined as the vector from the Earth

to the sun when the sun ascends in the Earth’s equatorial orbit on the first day of

spring [25, 64-65].

The argument of perigee, ω, defines the position of the point of closest approach

of the orbit. It is equal to the angle between the nodal vector and the eccentricity

vector [25, 65].

Finally, the true anomaly, ν, defines the position of the satellite relative to perigee

at a given time. It is equal to the angle between the eccentricity vector and the

position vector [25, 65].

The classical orbital elements are used in this thesis to define the initial values of

the truth orbits in Chapter IV.

2.7 Classical Mechanics

Classical mechanics is the study of the motion of interacting bodies, excluding

quantum mechanics. It is composed of theories developed by Isaac Newton, Leonhard

Euler, Joseph-Louis Lagrange, and William Rowan Hamilton [26, 1].
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Newton’s laws of motion were published in 1687 and provide the foundation for

classical mechanics [27, 9]:

First Law: If there are no forces acting upon a particle, the particle will
move in a straight line with constant velocity

Second Law: A particle acted upon by a force moves so that the force
vector is equal to the time rate of change of the linear momentum vector

Third Law: When two particles exert forces upon one another, the forces
lie along the line joining the particles and the corresponding force vectors
are the negative of each other

Newton’s laws are used as a basis for analytical dynamics, which is a subset of

classical mechanics and describes the motion of bodies using scalar functions of kinetic

and potential energy [26, 48]. Following Newton, Euler was instrumental in the

development of analytical dynamics in the 1700s. He derived the Euler-Lagrange

equation in 1744, which is shown in equation (6) [26, 152].

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (6)

Where

f ≡ generic function

y ≡ y cartesian coordinate

x ≡ x cartesian coordinate

This is a partial differential equation that shows the stationary values of a given

function, f , which is useful for gaining insight into the dynamics of a system. After

Euler, Lagrange made the next great development in the field of classical mechanics.
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He defined the Lagrangian function as an energy-like quantity used to describe a sys-

tem in terms of the generalized coordinates, the time rate of change of the generalized

coordinates, and time. The Lagrangian is shown in equation (7).

L(qi, q̇i, t) = T − V (7)

Where

L ≡ Lagrangian function

T ≡ kinetic energy

V ≡ potential energy

q ≡ generalized coordinate

t ≡ time

i ≡ counting index = 1, 2...n

n ≡ degrees of freedom of the system

Lagrange used this energy-like quantity and the Euler-Lagrange equation to derive

Lagrange’s equations, which are the equations of motion of a holonomic system and

shown in equation (8) [26, 159].

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (8)

These equations result in n second-order differential equations of motion, where

n is the degree of freedom of the system. After Lagrange, Hamilton further devel-

oped the field of classical mechanics by deriving a method for finding 2n first-order

28



differential equations of motion for a Hamiltonian system. Hamilton defined the

Hamiltonian function, which is an energy-like quantity used to describe the system

in terms of generalized coordinates, generalized momenta, and time [26, 163]. The

change in a generalized coordinate with respect to time, also known as the generalized

velocity, cannot be appear explicitly in the Hamiltonian function. Once the Hamilto-

nian is computed using equation (10), the generalized velocities must be eliminated

by expressing those quantities in terms of the generalized momenta [26, 163]. The

generalized velocities and momenta are related by the kinetic energy of the system,

as shown in equation (9) [26, 163].

pi =
∂L

∂q̇i
(9)

Where

p ≡ generalized momentum

The Hamiltonian function is shown in equation (10).

H(qi, pi, t) =
n∑
i=1

piq̇i − L(qi, q̇i, t) (10)

Then, the 2n equations of motion for the system can be found by computing

Hamilton’s canonical equations of motion, shown in equations (11) and (12) [26, 164].

q̇i =
∂H

∂pi
(11)

ṗi = −∂H
∂qi

(12)

Equations (11) and (12) are the equations of motion for a Hamiltonian system
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and describe the dynamics of the system using generalized coordinates, generalized

momenta, and time. The generalized coordinates and momenta are represented in the

state vector, ~x, and the equations of motion are represented in the dynamics vector,

~f .

~x =

qipi


~̇x = ~f(~x, t) =

q̇iṗi


The equations of variation for the system are found by linearizing the equations

of motion about the initial conditions, shown in equation (13). The equations repre-

sented by the vector δ~̇x are linear, time-varying differential equations used to assess

the dynamics near a nominal trajectory [20, 6].

δ~̇x =
∂ ~f

∂~x
δ~x = Aδ~x (13)

Where

A ≡ partials matrix =
∂ ~f

∂~x

The linear stability at any point can be determined by calculating the eigenval-

ues and eigenvectors of the partials matrix at the desired point. Since the partials

matrix is a linear model of the system, the eigenvalues and eigenvectors do not give

information regarding the stability of the system. The eigenvalues and eigenvectors

merely give stability information regarding the point itself. This stability information

is useful for gaining insight into the dynamics of the system.

The theories of Newton, Euler, Lagrange, and Hamilton provide the foundation
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of classical mechanics. Classical mechanics is utilized throughout this thesis for the

derivation and analysis of the orbital resonance solution. A subset of classical me-

chanics is transformation theory and is presented in Section 2.8.

2.8 Transformation Theory

Transformation theory describes the process of changing coordinates in Hamilto-

nian systems [20, 33]. This theory is useful in order to simplify or solve the equations

of motion for a system. Wiesel clearly states the concepts of transformation theory

in Modern Astrodynamics, Second Edition. These concepts are summarized in the

algorithm below, which is applied in Chapter III in order to derive the equations for

the orbital resonance solution.

First, the old Hamiltonian function is defined in terms of the old coordinates, old

momenta, and time.

H = H(pi, qi, t)

Second, the new coordinates and new momenta are defined in order to simplify

or solve the equations of motion. They are functions of the old coordinates, old

momenta, and time.

Q ≡ new generalized coordinate = Q(pi, qi, t)

P ≡ new generalized momentum = P (pi, qi, t)

This step requires significant intuition regarding the dynamics of the problem

and some experience with Hamiltonian systems. It is also the most iterative part

of transformation theory because if the chosen coordinates are insufficient, then new

coordinates must be chosen.
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Third, the generating function is created. The algorithm utilized in this thesis

uses the F2 generating function. For explanations of alternative generating functions,

reference Chapter 2 of Modern Astrodynamics, Second Edition. To generate the F2

function, the new coordinates and the new momenta are added together. Then, the

old coordinates are substituted into the new coordinates. The F2 function is defined

in terms of the old coordinates, new momenta, and time. It is found using equation

(14).

F2 = F2(qi, Pi, t) =
n∑
i=1

QiPi (14)

Where

F2 ≡ generating function

Fourth, the values of the old momenta and new coordinates are found. The

equations for the old momenta are computed by differentiating the generating function

with respect to the old coordinates, shown in equation (15). The equations for the

new coordinates are computed by differentiating the generating function with respect

to the new momenta, shown in equation (16).

pi =
∂F2

∂qi
(15)

Qi =
∂F2

∂Pi
(16)

Fifth, the new Hamiltonian function is found by differentiating the generating

function with respect to time, adding it to the old Hamiltonian, and substituting the

new coordinates and new momenta into the new Hamiltonian. This process is shown

in equation (17). The new Hamiltonian is a function of the new coordinates, new
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momenta, and time.

K = K(Pi, Qi, t) = H +
∂F2

∂t
(17)

Where

K ≡ new Hamiltonian

Finally, this new Hamiltonian is used to generate the equations of motion for

the system. The equations of motion describe the time rate of change of the new

coordinates and new momenta. The change in the coordinates with respect to time

is equal to the differential of the Hamiltonian with respect to the momenta, shown

in equation (18). The change in the momenta with respect to time is equal to the

negative of the differential of the Hamiltonian with respect to the coordinates, shown

in equation (19).

Q̇i =
∂K

∂Pi
(18)

Ṗi = − ∂K
∂Qi

(19)

With a clever choice of coordinates, the new equations of motion will be simpler

than the old equations of motion and may even be solvable [20, 33-42]. The above

algorithm for changing coordinates using transformation theory is applied in Chapter

III to derive the equations for the orbital resonance solution.
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2.9 Chapter Summary

Summaries of the Vinti Solution, orbital resonances, classical mechanics, transfor-

mation theory, and related research are provided in this chapter. The Vinti Solution

is the solution to Earth-orbiting motion; however, the Vinti Solution is inaccurate

near orbital resonances. Through the use of transformation theory, the equations of

motion can be modified to accurately model orbital dynamics near resonances. Trans-

formation theory is applied in order to simplify the equations found using classical

mechanics. These equations can then be added to the Vinti Solution in order to find a

complete, efficient, and accurate solution for Earth-orbiting motion. An understand-

ing of these topics is necessary in order to progress to the next chapter of this thesis.

In Chapter III, the equations for the orbital resonance solution are derived using the

theories summarized in this chapter.
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III. Methodology

3.1 Chapter Overview

The purpose of this chapter is to derive the equations for the orbital resonance

solution. First, the resonant terms from the Hamiltonian of the Vinti Solution are

identified. Then, an application of transformation theory is used to derive the new

Hamiltonian for the resonant terms using the new coordinates. Finally, Hamilton’s

canonical equations of motion are applied in order to find the equations of motion of

the orbital resonance solution.

3.2 The Vinti System

Near resonances, the Vinti Solution fails due to small divisors in some of the

perturbative terms. The terms with the small divisors are identified and provided in

equation (20) along with the local action angle coordinates from the Vinti system.

This Hamiltonian function describes the motion of the Vinti system near orbital

resonances in terms of the old Vinti coordinates and momenta.

H =
3∑

α=1

3∑
β=1

Ωα(Iα − Iα0) +
1

2

∂Ωα

∂Iβ
(Iα − Iα0)(Iβ − Iβ0) · · ·

+Cn cos (~j · ~θ) + Sn sin (~j · ~θ)

(20)

Where

Ω ≡ frequency variable

I ≡ action variable

I0 ≡ initial value of action variable
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Cn ≡ gravity model cosine coefficient

Sn ≡ gravity model sine coefficient

~j = 〈j1, j2, j3〉

j ≡ resonance variable

~θ = 〈θ1, θ2, θ3〉

θ ≡ angle variable

The three frequencies of the Vinti system are known as the anomalistic frequency,

the Earth’s rotational frequency combined with the nodal regression rate, and the

apsidal regression rate. The anomalistic frequency is approximately the mean motion

including the effects due to the equatorial bulge [24, 47]. Bordner shows that this can

be approximately calculated using equation (21).

Ω1 =
dθ1

dt
≈
√
µ

a3

(
1−

3J2R
2
⊕

2a2(1− e2)
3
2

(
3

2
sin i2 − 1

))
(21)

Where

Ω1 ≡ anomalistic frequency

θ1 ≡ mean anomaly

e ≡ orbital eccentricity

i ≡ orbital inclination

The second frequency, the Earth’s rotational frequency plus nodal regression rate,

is the frequency that the orbit precesses in the rotating frame due to the equatorial
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bulge [24, 47]. The second frequency can be approximately calculated using equation

(22).

Ω2 =
dθ2

dt
≈ ω⊕ +

3
√
µJ2R

2
⊕

2a
7
2 (1− e2)2

cos i (22)

Where

Ω2 ≡ Earth’s rotation plus nodal regression rate

θ2 ≡ longitude of the ascending node

The third frequency, the apsidal regression rate, is the regression of the line of

apsides due to the non-circular shape of the orbit [24, 48]. The third frequency can

be approximately calculated using equation (23).

Ω3 =
dθ3

dt
≈ −

3
√
µJ2R

2
⊕

2a
7
2 (1− e2)2

(
5

2
sin i2 − 2

)
(23)

Where

Ω3 ≡ apsidal regression rate

θ3 ≡ argument of perigee

The above variables and Hamiltonian must be modified using a canonical trans-

formation to derive the orbital resonance solution.

3.3 Transformation Theory Application

Transformation theory is applied to the old Hamiltonian of the Vinti System near

orbital resonances. All of the coordinates and momenta used in this transformation

37



are defined below.


θ1

θ2

θ3

 ≡ generalized coordinates of the Vinti System


I1

I2

I3

 ≡ generalized momenta of the Vinti System


φ1

φ2

φ3

 ≡ generalized coordinates of the orbital resonance solution


Φ1

Φ2

Φ3

 ≡ generalized momenta of the orbital resonance solution

In the old Hamiltonian, the “~j · ~θ” term is the resonant term. The resonant term

results in the small divisors found near resonances in the Vinti Solution. The resonant

term is the focus of this transformation. In fact, the new coordinates are chosen so

that one of them becomes this resonant term. After a few iterations using various

coordinates, the new coordinates are chosen and defined in equations (24), (25), and

(26).

φ1 = ~j · ~θ = j1θ1 + j2θ2 + j3θ3 (24)

φ2 = θ1 (25)
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φ3 = θ2 (26)

Next, using equation (14), F2 =
n∑
i=1

QiPi, the generating function is calculated

and shown in equation (27).

F2 =
n∑
i=1

φiΦi = Φ1(j1θ1 + j2θ2 + j3θ3) + Φ2θ1 + Φ3θ2 (27)

Then, using equation (15), pi = ∂F2

∂qi
, the expressions of the old momenta are

calculated and shown in equations (28), (29), and (30).

I1 =
∂F2

∂θ1

= Φ1j1 + Φ2 (28)

I2 =
∂F2

∂θ2

= Φ1j2 + Φ3 (29)

I3 =
∂F2

∂θ3

= Φ1j3 (30)

Next, the expressions for the old momenta are inverted in order to solve for the new

momenta. Equations (31), (32), and (33) show the expressions for the new momenta.

Φ1 =
I3

j3

(31)

Φ2 = I1 −
I3j1

j3

(32)

Φ3 = I2 −
I3j2

j3

(33)

Next, using equation (17), K = H + ∂F2

∂t
, and substituting equations (28), (29),
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and (30) into the old Hamiltonian, the new Hamiltonian is calculated and shown in

equation (34).

K =
3∑

α=1

3∑
β=1

Ωα(Φ− Φ0)′α +
1

2

∂Ωα

∂Φβ

(Φ− Φ0)′α(Φ− Φ0)′β · · ·

+Cn cos (φ1) + Sn sin (φ1)

(34)

Where

(Φ− Φ0)′ =


Φ1j1 + Φ2 − Φ10j1 − Φ20

Φ1j2 + Φ3 − Φ10j2 − Φ30

Φ1j3 − Φ10j3


∂Ω

∂Φ
=


∂Ω1

∂I1

∂Ω1

∂I2

∂Ω1

∂I3

∂Ω2

∂I1

∂Ω2

∂I2

∂Ω2

∂I3

∂Ω3

∂I1

∂Ω3

∂I2

∂Ω3

∂I3


The above partials matrix, ∂Ω

∂Φ
, is symmetric. The proof of its symmetry is shown

in Appendix A. Also, all of the terms of the new Hamiltonian are expanded and shown

in Appendix B.

3.4 The Orbital Resonance Solution

The new Hamiltonian shown in equation (34) is used to find the equations of

motion for the Vinti system near resonances. By applying equation (18), Q̇i = ∂K
∂Pi

,

and equation (19), Ṗi = − ∂K
∂Qi

, the equations of motion are found by differentiating

using the relationships shown in equations (35) and (36).

φ̇i =
∂K

∂Φi

(35)
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Φ̇i = −∂K
∂φi

(36)

After differentiating the new Hamiltonian with respect to the coordinates and mo-

menta, the six equations of motion for the orbital resonance solution are found. The

new Hamiltonian does not contain the coordinates φ2 or φ3; therefore, the conjugate

momenta of these coordinates are constant for all time. The final equations of motion

of the orbital resonance solution are shown in equations (37)-(42).

φ̇1(t) =
3∑

α=1

3∑
β=1

jαΩα +
∂Ωα

∂Φβ

jβ(Φ− Φ0)′α (37)

φ̇2(t) =
3∑

α=1

Ω1 +
∂Ω1

∂Φα

(Φ− Φ0)′α (38)

φ̇3(t) =
3∑

α=1

Ω2 +
∂Ω2

∂Φα

(Φ− Φ0)′α (39)

Φ̇1(t) = Cn sin (φ1)− Sn cos (φ1) (40)

Φ̇2(t) = 0 (41)

Φ̇3(t) = 0 (42)

The expanded forms of the above equations are shown in Appendix B. Equations

(37)-(42) are the equations of motion for the orbital resonance solution of the Vinti

system.
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3.5 Chapter Summary

Equations (37)-(42) are the differential equations of motion of the orbital reso-

nance solution. In Chapter IV, the Results and Analysis, these equations are numer-

ically integrated in MATLAB to find the dynamics for given orbits near resonances.

Then, the truth orbits are found using orbital data produced in STK and translated

to Vinti coordinates. The numerical dynamics are compared with the truth orbits

to determine the accuracy of the orbital resonance solution. If the analysis in Chap-

ter IV proves that the equations accurately model orbital resonances, then equations

(37)-(42) can be utilized with the numerical model of the Vinti Solution to model

orbits near resonances.
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IV. Results and Analysis

4.1 Chapter Overview

The purpose of this chapter is to explore the dynamics found in the orbital res-

onance solution and to analyze the effectiveness of this solution by comparing the

dynamics with the truth orbits produced in STK.

4.2 GPS Orbital Parameters

First, the coordinates and momenta of a nominal GPS orbit are found. These

variables are found using Vinti Solution software provided by Wiesel. The software

takes the Cartesian position and velocity coordinates of an orbit at any point, uses a

numerical model of the Vinti Solution, and outputs the coordinates and momenta of

the orbit in terms of the Vinti system.

The orbital elements defining a nominal GPS orbit are found in the Global Po-

sitioning System Standard Positioning Service Performance Standard and are listed

below [28].

aGPS = GPS orbit semi-major axis = 26559.710 km

iGPS = GPS orbit inclination = 55◦

These orbital elements are converted to Cartesian coordinates in non-dimensional

distance units, DU, and non-dimensional velocity units, DU
TU , using equations (43) and

(44).
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x

y

z

 =


a(1−e)
R⊕

0

0

 (43)


ẋ

ẏ

ż

 =



0√
2

(
R⊕

a(1−e) −
R⊕
2a

)
cos i√

2

(
R⊕

a(1−e) −
R⊕
2a

)
sin i


(44)

Where

x, y, z ≡ Cartesian position coordinates (nondimensional distance units)

The values of the calculated coordinates for the nominal GPS orbit are listed

below. The coordinates are calculated in nondimensional distance units (DU), and

the velocities are calculated in nondimensional distance units per time units (DU
TU ).

x

y

z

 =


4.164181 (DU)

0

0



ẋ

ẏ

ż

 =


0

0.281078 DU
TU

0.401421 DU
TU


After inputting the above coordinates into the Vinti Solution software, the vari-

ables of the resonance Hamiltonian are output. The values for the coordinates, mo-

menta, frequencies, partials, and gravity model coefficients calculated in the Vinti
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Solution software are provided below.


θ1

θ2

θ3

 =


3.14115254212883

1.57079628270754

−4.40834029280524× 10−8



I1

I2

I3

 =


2.55961607247161× 10−9

8.70110419770256× 10−1

1.17045966711800




Ω1

Ω2

Ω3

 =


1.17691524082448× 10−1

1.17695078871764× 10−1

5.88551639511689× 10−2


∂Ω

∂I
=


−.173027367744446 −.173032609369944 −.173023313481916

−.173032579478445 −.173053690186322 −.173028900086754

−.173023283592948 −.173028900086512 −.173009514095713


Cn = 1.863845985594790× 10−9

Sn = 1.261360044523120× 10−9

The period of a GPS orbit is calculated as approximately 43, 077 seconds, or 12

hours, while the rotational period of the Earth is approximately 86, 164 seconds, or 24

hours. The rotational period of the Earth divided by the period of the GPS orbit is

approximately 2.0002, which means that the GPS orbit is very near the 2:1 resonance.

The resonance vector for a 2:1 resonant orbit is defined below.
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~jGPS =


0

1

−2


Next, a change of variables is completed using equations (24)-(26) and (31)-(33)

from the coordinate transformation in Section 3.3. The new coordinates and new

momenta are calculated and provided below.

φ1 = j1θ1 + j2θ2 + j3θ3 = 1.570796370874346

φ2 = θ1 = 3.141152542128830

φ3 = θ2 = 1.570796282707540

Φ1 =
I3

j3

= −0.585229833559000

Φ2 = I1 −
I3j1

j3

= 2.559616072471610× 10−9

Φ3 = I2 −
I3j2

j3

= 1.455340253329256

All of the variables used in the orbital resonance solution are shown above. Tra-

jectories of the GPS orbit can be calculated by numerically integrating the differential

equations of the orbital resonance solution using the above variables.

4.3 One Degree of Freedom Orbital Resonance Solution

In order to analyze the dynamics due to orbital resonances, the system is reduced

to a one degree of freedom system. The coordinate is φ1, the resonant term, and the

momentum is Φ1, the associated momentum of the resonant term. This is a valid

simplification because the Φ2 and Φ3 momenta are constant in the orbital resonance
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solution and φ2 and φ3 coordinates do not affect the dynamics due to resonance. The

φ2, φ3, Φ2, and Φ3 variables of the orbital resonance solution are set to zero, resulting

in the equations of motion for a one degree of freedom system.

By equating the φ2, φ3, Φ2, and Φ3 variables to zero in equation (40), the equation

of motion of the momentum, Φ1, for a one degree of freedom system is found and

shown below.

Φ̇1(t) = Cn sinφ1 − Sn cosφ1

This equation can be further simplified by changing variables to a harmonic am-

plitude and phase representation by using equations (45) and (46).

Cn = Dn cos δ (45)

Sn = −Dn sin δ (46)

Where

Dn ≡ harmonic amplitude

δ ≡ harmonic phase

The Cn and Sn variables are subsituted by the harmonic amplitude and phase

variables, and the resulting momentum equation of motion is shown below.

Φ̇1(t) = Dn cos δ sinφ1 +Dn sin δ cosφ1

Using the trigonometric identity sin (x+ y) = sinx cos y + cosx sin y, the one

degree of freedom equation of motion for the momentum is simplified and its final

form is shown in equation (47).
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Φ̇1(t) = Dn sin (φ1 + δ) (47)

By equating the φ2, φ3, Φ2, and Φ3 variables to zero in equation (37), the one

degree of freedom equation of motion for the coordinate φ1 is found and shown in

equation (48).

φ̇1(t) = Ω1j1 + Ω2j2 + Ω3j3 · · ·

+

(
∂Ω1

∂I1
j2

1 + ∂Ω2

∂I2
j2

2 + ∂Ω3

∂I3
j2

3 + 2∂Ω1

∂I2
j1j2 + 2∂Ω1

∂I3
j1j3 + 2∂Ω2

∂I3
j2j3

)
(Φ1 − Φ10)

(48)

Equations (47) and (48) are the one degree of freedom equations of motion of the

orbital resonance solution. They are used to analyze the dynamics caused by orbital

resonance.

4.4 GPS Orbit Equilibrium Points

Next, the equilibrium points of the GPS orbit are found by setting φ̇1 and Φ̇1 in

equations (47) and (48) equal to zero. The equilibrium points occur at the points

corresponding to the values of δΦ1 and φ1 shown in equations (49) and (50). There

exists only one equilibrium value of δΦ1 for a given system. Multiple equilibrium

values of φ1 can exist for a given system, as long as they are within the bounds of 0◦

and 360◦.

δΦ1 = (Φ1 − Φ10) = − Ω1j1+Ω2j2+Ω3j3
∂Ω1
∂I1

j21+
∂Ω2
∂I2

j22+
∂Ω3
∂I3

j23+2
∂Ω1
∂I2

j1j2+2
∂Ω1
∂I3

j1j3+2
∂Ω2
∂I3

j2j3
(49)

φ1 = Nπ + δ (50)
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Where

N ≡ integer counting variable = 0, 1, 2, ...

0◦ ≤ φ1 ≤ 360◦

Within the values of 0◦ and 360◦, two equilibrium points are found for the nominal

GPS orbit. The values of the equilibrium points are shown below. The x-component

of the equilibrium point is φ1, and the y-component of the equilibrium point is δΦ1.

P1 ≡ first equilibrium point

= (34.088224904562992◦,−8.815684073697417× 10−5)

P2 ≡ second equilibrium point

= (214.0882249045630◦,−8.815684073697417× 10−5)

In order to analyze the stability of these points, the partials matrix is found using

equation (13), A = ∂ ~f
∂~x
. The resulting partials matrix for the linearized one degree of

freedom equations of motion is shown below in equation (51).

A =


∂φ̇1

∂φ1

∂φ̇1

∂Φ1

∂Φ̇1

∂φ1

∂Φ̇1

∂Φ1

 = 0 ∂Ω1

∂I1
j2

1 + ∂Ω2

∂I2
j2

2 + ∂Ω3

∂I3
j2

3 + 2∂Ω1

∂I2
j1j2 + 2∂Ω1

∂I3
j1j3 + 2∂Ω2

∂I3
j2j3

Dn cos (δ + φ1) 0


(51)

The stability of the equilibrium points can be assessed by computing the eigenval-

ues of the partials matrix at P1 and P2. Each equilibrium point has two eigenvalues

since the partials matrix is a 2× 2 matrix. The values of these eigenvalues are listed

below.
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λP1 = ±0.197304468450755× 10−4i

λP2 = ±0.197304468450755× 10−4

Where

λ ≡ eigenvalue

P1 is classified as a marginally stable, “center,” equilibrium point because both

eigenvalues lie on the imaginary axis and are non-repeating. P2 is classified as an

unstable, “saddle,” equilibrium point because one eigenvalue is positive on the real

axis and therefore unstable, while the other eigenvalue is negative on the real axis

and therefore stable. These equilibrium points repeat in a center - saddle pattern

as φ1 increases. The only equilibrium points that require analysis are the two listed

above that reside within the range of 0◦ ≤ φ1 ≤ 360◦.

The frequency of the one degree of freedom system is found in the imaginary com-

ponent of the marginally stable eigenvalue λP1 . The frequency is equal to 0.197304468450755×

10−4 rad
TU . When converted back to dimensional units, this means that the frequency

is 44.186983462275663 deg
year . Since the frequency of the system is very low, the orbits

must be analyzed for long time periods in order to observe the system dynamics due

to resonance. Unfortunately, integrating for long time periods introduces the problem

of numerical errors due to rounding tolerances.

4.5 GPS Orbit Equations of Variation

The equations of variation are used to assess the linear dynamics in the vicinity of

a designated point. The equations of variation of the orbital resonance solution are

found using equation (13), δ~̇x = Aδ~x, and are shown in equation (52).
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δφ̇1

δΦ̇1

 = A

δφ1

δΦ1

 = 0 ∂Ω1

∂I1
j2

1 + ∂Ω2

∂I2
j2

2 + ∂Ω3

∂I3
j2

3 + 2∂Ω1

∂I2
j1j2 + 2∂Ω1

∂I3
j1j3 + 2∂Ω2

∂I3
j2j3

Dn cos (δ + φ1) 0


δφ1

δΦ1


(52)

The trajectories of the phase space are computed by numerically integrating the

equations of variation in MATLAB. The phase portrait of the linearized one degree of

freedom system orbital resonance solution near the center equilibrium point is found

by numerically integrating equation (52) with initial conditions at P1 for a time period

of 0 to 106 TU. Then, the value of δφ1 is varied from 0◦ to 45◦ with a step size of 1◦.

This phase portrait is shown in Figure 10.

Figure 10. Equations of Variation about Center Equilibrium Point Phase Portrait
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The direction of motion of all the above trajectories is counterclockwise. The

displacement along the δΦ1 axis for the trajectory calculated at the center equilibrium

point is equal to twice the value of δΦ1 of the center equilibrium point, which is

computed as 1.76313681474 × 10−4. The trajectory closest to the center of Figure

10 shows the linear dynamics at the center equilibrium point. In Figure 10, the

trajectories closest to the center equilibrium point appear close to each other, showing

that the dynamics remain linear near the center equilibrium point. The more that

δφ1 is varied, the less accurate the trajectories become because the partials matrix is

linearized at P1.

Next, the phase portrait of the linearized one degree of freedom system orbital

resonance solution near the saddle equilibrium point is found. First, the positive

trajectories are found by numerically integrating equation (52) with initial conditions

at P2 for a time period of 0 to 106 TU and a time period of 106 to 0 TU. Then, the

value of δΦ1 is varied from its equilibrium value to +0.00015 with a step size of .00001.

Second, the negative trajectories are found by numerically integrating equation (52)

with initial conditions at P2 for a time period of 0 to 106 TU and a time period of

106 to 0 TU. Then, the value of δΦ1 is varied from its equilibrium value to −0.00015

with a step size of −0.00001. The positive and negative trajectories are shown in the

phase portrait in Figure 11.
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Figure 11. Equations of Variation about Saddle Equilibrium Point Phase Portrait

The direction of motion of the positive trajectories in positive time is from right to

left, and the direction of motion of the negative trajectories is from left to right. The

farther the trajectories propagate from the equilibrium point, the less accurate the

trajectories become because the partials matrix is linearized at P2. These trajectories

continue in a v-shape as time increases and decreases, which differs from the nonlinear

dynamics shown in Section 4.6.

4.6 GPS Orbit Equations of Motion

Next, the dynamics found in the equations of motion of the orbital resonance

solution are explored and compared with the dynamics of the linearized equations of

motion. Equations (47) and (48) are the equations of motion for the one degree of

freedom orbital resonance solution. The trajectories of the phase space are computed
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by numerically integrating the equations of motion for 106 time units using ode45

in MATLAB with relative and absolute tolerances of 2.22045 × 10−14. To create

the phase portrait, the initial value of φ1 is varied from the center equilibrium point

value to 360◦ and the initial value of δΦ1 is varied from the equilibrium point value to

±0.0004. Trajectories are computed in positive time from 0 to 106 TU and in negative

time from 106 to 0 TU. The resulting trajectories of these numeric integrations are

shown in Figure 12.

Figure 12. GPS Phase Portrait

In the oval regions of Figure 12, the direction of motion of the trajectories is

counterclockwise, which agrees with the linear dynamics. The direction of motion of

the trajectories above the oval region is from right to left. The direction of motion

of the trajectories below the oval region is from left to right. Next, the equilibrium

points P1 and P2 can be identified in the phase portrait. P1 is found at φ1 ≈ 34◦
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and has a center equilibrium structure. P2 is found at φ1 ≈ 214◦ and has a saddle

equilibrium structure. Similar to the phase portrait shown in Figure 6, the center

equilibrium point is located in a libration region and the saddle equilibrium point is

located in a chaotic region. Trajectories near the center equilibrium point oscillate

about the equilibrium point as time approaches infinity. Trajectories near the saddle

point diverge from the point along the unstable eigenvector direction and asymptot-

ically approach the equilibrium point along the stable eigenvector direction as time

approaches infinity.

4.7 Reach of the 2:1 Resonance

In this section, orbits near the 2:1 resonance are propagated using the orbital reso-

nance solution in order to find the reach of the dynamics due to this resonance. First,

the nominal GPS orbit semi-major axis and inclination are translated to Cartesian

coordinates, input into the Vinti Solution software, and the Vinti system coordinates

are used as initial values for the integrated trajectories using the orbital resonance

solution equations of motion. The nominal GPS trajectory is shown in red in Fig-

ure 13. Then, the semi-major axis is varied by ±0.1 km and trajectories are found

using the above process. The semi-major axis is varied until the trajectory becomes

sinusoidal. The sinusoidal trajectories are not affected by the resonance dynamics,

and are not included in Figure 13. Finally, the semi-major axis of an orbit directly

at the 2:1 resonance is calculated using equation (1), T = 2π
√

a3

µ
, and the trajectory

is found using the above process. The 2:1 resonance trajectory is shown in black in

Figure 13. The trajectories found using the above process are shown in Figure 13,

numbered from top to bottom, and listed in Table 2. All orbits are calculated at an

inclination equal to 55◦ and eccentricity equal to 0, which is the defined nominal GPS

orbit.
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Figure 13. Trajectories near the 2:1 Resonance Phase Portrait
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Table 2. Orbits shown in Figure 13

Trajectory Semi-major Axis (km) Label

1 26567.210 GPS plus 7.5 km

2 26566.710 GPS plus 7 km

3 26565.710 GPS plus 6 km

4 26564.710 GPS plus 5 km

5 26563.710 GPS plus 4 km

6 26562.710 GPS plus 3 km

7 26561.764 2:1 Resonance

8 26560.710 GPS plus 1 km

9 26559.710 GPS

10 26558.710 GPS minus 1 km

11 26557.710 GPS minus 2 km

12 26556.810 GPS minus 2.9 km

The reach of the dynamics due to the 2:1 resonance is found to be −5.0 km to

+5.4 km in semi-major axis, when rounded to the nearest tenth decimal place. The

nominal GPS orbit happens to be located within this range, which means that it is

affected by 2:1 resonance dynamics. The reason that the reach of the 2:1 resonance

is not equal in the positive and negative directions is because the period of the orbit

squared is proportional to the semi-major axis cubed. Thus, a linear change in semi-

major axis will result in a nonlinear change in period. Therefore, The reach of the

dynamics due to orbital resonance is asymmetric in semi-major axis.

The reach of the dynamics due to resonance is explored further by producing truth

orbits in STK and translating the truth orbits to the Vinti system.
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4.8 Validation using GPS Truth Orbits

In this section, the truth orbits of GPS satellites are produced in STK and the

dynamics are compared with those found in the orbital resonance solution.

Seven GPS satellites are chosen that orbit in the same orbital plane with a right

ascension of the ascending node equal to approximately 180◦. The two-line element

(TLE) data sets used in this analysis are reported by CelesTrak and listed in Appendix

C. These seven GPS TLE files are input into STK and converted to classical orbital

elements (COEs), which are reported in Table 3.

Table 3. COEs found in STK

Satellite Name Semi-major Axis (km) Eccentricity Inclination (deg) RAAN (deg) Argument of Perigee (deg) True Anomaly (deg)

GPS-BIIA-10 26558.648198 0.011391 54.211 186.589 11.500 246.447

GPS-BIIF-11 26844.160534 0.000802 54.953 181.828 194.808 260.103

GPS-BIIF-08 26558.580289 0.000365 54.930 182.047 182.880 50.014

GPS-BIIR-04 26559.717827 0.005009 53.045 177.495 74.589 345.753

GPS-BIIR-07 26561.779713 0.016388 52.971 180.478 249.998 117.820

GPS-BIIR-10 26576.090729 0.007501 52.847 180.522 244.090 84.470

GPS-BIIRM-08 26559.176516 0.004564 54.193 181.486 27.180 74.488

These seven orbits are then propagated in STK for ten years with a step size of 600

seconds. In STK, the Earth’s gravity model is defined by World Geodetic System 1984

(WGS84) and the Earth’s Gravitational Model 1996 (GM96). WGS84 models the

Earth’s gravity on a geoid relative to a reference ellipsoid and was established in 1984

[29]. GM96 approximates the geopotential of the Earth using spherical harmonics and

was developed in 1996 [30]. The gravity model used to produce the truth orbits is

WGS84 GM96 with a maximum degree of two, a maximum order of two, and no solid
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tides. Drag, solar radiation pressure, and third body gravity effects are not used in

the propagation. This force model best simulates local action and angle coordinates

of the Vinti system used to derive the orbital resonance solution. The propagator

used is the high precision orbit propagator (HPOP) with RKF 7(8) integration. The

relative error tolerance is specified as 10−13.

Reports are generated for the inertial position and velocity of the seven orbits for

ten years. The position and velocity values from the report are then translated to

Vinti coordinates and momenta using the Vinti solution software provided by Wiesel.

The resulting trajectories of the seven coplanar GPS satellites in the Vinti system

are shown in Figure 14.

Figure 14. Truth Orbits of 7 GPS Satellites Propagated for 10 Years

Figure 14 shows one GPS satellite, GPS-BIIF-11, shown in green, displaying dras-

tically different dynamics than the rest of the satellites. The direction of motion of

this satellite is from left to right and the momentum, δΦ1, steadily decreases as time
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increases. The GPS-BIIF-11 satellite has an initial semi-major axis of 26844.160534

km, which is well outside of the reach of the resonance shown in Section 4.7. This

orbit is removed to analyze the six other orbits, which are closer to the resonance.

Figure 15 shows the ten year trajectories of the six GPS satellites in the same

orbital plane located closest to the resonance.

Figure 15. Truth Orbits of 6 Coplanar GPS Satellites, Propagated for 10 Years

From these six trajectories, one satellite shows unique dynamics. The GPS-BIIR-

10 satellite, shown in yellow, with a semi-major axis of 26576.090729 km is slightly

outside of the reach of the resonance, but its dynamics can be observed in Figure 12,

the GPS phase portrait. Since the momentum, δΦ1, of GPS-BIIR-10 is increasing

and decreasing as φ1 increases and the direction of motion is from left to right, it

is located just below the libration region of the phase portrait. This region appears

wavy in the phase portrait because the momentum oscillates as time increases. The

semi-major axis of GPS-BIIR-10 is just outside of the reach of the resonance, so it
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can be removed to further analyze the dynamics near the resonance.

Figure 16 shows the ten year trajectories of the five GPS satellites in the same

orbital plane located within the reach of the resonance.

Figure 16. Truth Orbits of 5 Coplanar GPS Satellites within 2:1 Resonance, Propagated
for 10 Years

All five of the satellites in Figure 16 have arc-shaped trajectories. These shapes

resemble the trajectories found in the upper half of the libration region of the phase

portrait. All of these satellites have semi-major axes within reach of the resonance,

and the trajectories produced in STK clearly show the effects of the resonance. GPS-

BIIA-10 and GPS-BIIR-07 have directions of motion from left to right. GPS-BIIF-

08, GPS-BIIR-04, and GPS-BIIRM-08 have directions of motion from right to left.

These five GPS satellites tend to follow the dynamics found in the upper half of the

libration region of the phase portrait. These trajectories show that the GPS satellites

with semi-major axes within reach of the dynamics due to the resonance are affected
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by the resonance for long time periods.

The libration region of the phase portrait contains counter-clockwise trajectories,

which is consistent with the three GPS arcs moving from right to left. However, the

two left to right arcs are inconsistent with the dynamics of the phase portrait. A

possible explanation of these dynamics is that the satellites may be influenced by the

dynamics of nearby resonances. In the research presented in Section 2.4, the interac-

tions of multiple resonances were found to result in highly nonlinear motions. This

same explanation could also be causing the nonlinear motions of the GPS satellites

in Figure 16.

Also, the accuracy of these trajectories is limited by the precision of the initial

conditions. The TLE data sets are translated to COEs in STK, but the numerical

accuracy of these initial condition is limited to six decimal places in semi-major axis

and eccentricity, while the inclination, RAAN, argument of perigee, and true anomaly

are limited to three decimal places. When integrating for long time periods, such as

decades, accurate initial conditions are essential. Since the initial conditions are

limited in accuracy, this is a source of error for the long propagations performed in

STK.

If any of the satellites are located near the chaotic region of the phase space, they

are even more sensitive to initial conditions. One of the satellites, the GPS-BIIR-07,

shown in magenta, appears to be near one of these chaotic regions. GPS-BIIR-07

has a semi-major axis of 26561.779713 km, which is very near the 2:1 resonant orbit

semi-major axis of 26561.764 km. Since its motion changes quickly at approximately

φ1 = 45◦, its orbit is propagated in STK for twenty years to examine long-term

behavior. This propagation is shown in Figure 17.
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Figure 17. Truth Orbit of 1 GPS Satellite within 2:1 Resonance, Propagated for 20
Years

The trajectory in Figure 17 starts at φ1 = 16◦ and ends at φ1 = 290◦. At

the beginning of the trajectory, the satellite appears to be approaching a chaotic

region because the dynamics rapidly change. Since the resonance variable is bounded

between 0◦ and 360◦, the trajectory jumps from the left side to the right side of the

plot in Figure 17. By the end of the trajectory, the trajectory displays the dynamics

found in the lower half of the libration region of the phase space.

One issue with numerically propagating in STK is that as time increases, the

predictions become less accurate due to the numerical accuracy of the propagator.

For propagations of ten to twenty years, the numerical accuracy appears good enough

to show the long-term effects of the dynamics due to orbital resonance.
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4.9 Chapter Summary

In this chapter, the equations of the orbital resonance solution are examined using

analytical and numerical techniques. First, the GPS orbital parameters are found in

terms of the Vinti system. Second, the orbital resonance solution is reduced to a one

degree of freedom system to gain insight. Third, the equilibrium points of the orbital

resonance solution are examined. Fourth, the linear dynamics are examined though

the equations of variation. Fifth, the phase portrait of the GPS orbit is produced

showing the dynamics of the phase space. Sixth, the reach of the dynamics due to

the resonance is found. Finally, GPS truth orbits are produced in STK and compared

with the dynamics of the orbital resonance solution. The effects of the resonance are

found to be evident in the GPS orbits. These effects are difficult to model in the

perturbative terms of the Vinti Solution due to small divisors. However, with the use

of the orbital resonance solution, orbits near resonances can be modeled in the Vinti

Solution. Next, in Chapter V, the results are summarized and recommendations for

future research are made.
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V. Conclusion

5.1 Chapter Overview

The purpose of this chapter is to summarize the main points of the entire thesis

and make recommendations for future research.

5.2 Conclusions

Operations in space require accurate orbit predictions using orbit propagators.

Current orbit propagators use SGP4, which utilizes the two body problem plus per-

turbation theory. The Vinti Solution offers a more accurate solution than the two

body problem. Unfortunately, small divisors appear in the perturbative terms of the

Vinti Solution near orbital resonances, leading to large terms and inaccurate orbit

predictions. The research in this thesis provides a solution to avoid the large terms

that appear near orbital resonances. It is referred to as the orbital resonance solu-

tion. Numerous resonant orbits are used for critical satellite systems in GEO, MEO,

and LEO including SBIRS, GPS, and Landsat. In order to keep these satellites safe

from collision and to make accurate orbit predictions for advanced space operations,

a highly accurate model is required. The Vinti Solution, when corrected for orbital

resonances, offers a more accurate method for predicting satellite locations. A method

to correct for orbital resonances is offered in this thesis.

The scope of this research focuses on orbital resonances due to the gravity field. It

only applies to Earth orbiting satellites. The solution provided in this thesis applies

to all orbital resonances from the 1:1 to 16:1 resonances. The truth orbits used to

analyze the effectiveness of the orbital resonance solution are produced using STK

with an error tolerance of 10−13. Numerical analyses are performed using MATLAB

with an error tolerance of 2.22045 × 10−14,which inherently limits the accuracy of
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the integrations. Also, Vinti Solution software provided by Dr. Wiesel is utilized to

change from Cartesian coordinates to Vinti system coordinates and momentum.

The Literature Review provides theory and research of the background knowledge

necessary to understand the thesis. First, the Vinti Solution is explained because the

orbital resonance solution provided in this thesis is designed to be used in conjunction

with a numerical model of the Vinti Solution. Second, orbital resonances are defined

because they are poorly modeled in the Vinti Solution, leading to the need for this

research. Third, the findings of research on resonances found in the GPS constellation

are summarized. Fourth, research on resonances in the KAM theorem is presented.

Fifth, classical mechanics is explained because it provides the foundational concepts

used to develop the Vinti Solution and the orbital resonance solution. Finally, trans-

formation theory is described because it is used to derive the equations of motion for

the orbital resonance solution.

In the Methodology, the orbital resonance solution is derived. The resonant terms

from the Hamiltonian of the Vinti Solution are identified, transformation theory is

applied to derive the new Hamiltonian, and Hamilton’s canonical equations of motion

are applied to find the equations of motion of the orbital resonance solution.

In order to analyze the orbital resonance solution, a case study of the GPS con-

stellation is applied because it is located near the 2:1 resonance. A nominal GPS

orbit is defined and translated into Vinti system coordinates and momenta.

The orbital resonance solution is then reduced to a one degree of freedom system,

resulting in two equations of motion. The coordinate of this system is φ1, the resonant

term. The momentum of this system is Φ1, the associated momentum of the resonant

term.

The equilibrium points of the one degree of freedom orbital resonance solution are

found for the nominal GPS orbit. Two equilibrium points are found: one marginally
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stable center point and one unstable saddle point. The imaginary value of the stable

eigenvalue defines the system frequency, which is found to be approximately 44 degrees
year .

This means that the dynamics due to orbital resonances can only be observed for long

time periods. Unfortunately, integrating for long time periods increases the magnitude

of numerical errors.

The linear dynamics near the equilibrium points are examined. In the vicinity

of the stable equilibrium point, trajectories are found to oscillate around the point.

In the vicinity of the unstable equilibrium point, trajectories are found to quickly

diverge from the point.

The nonlinear one degree of freedom equations of motion of the orbital resonance

solution are applied to the nominal GPS orbit. These equations are numerically

integrated to create the phase portrait of the GPS satellite. The equilibrium points

are easily identified within the phase portrait. Trajectories near the center equilibrium

point encircle the point in the libration region. Trajectories near the saddle point

diverge from the point along the unstable eigenvector direction and asymptotically

approach the equilibrium point along the stable eigenvector direction.

Various orbits near the 2:1 resonance are examined to determine the reach of the

2:1 resonance. When measured in change in semi-major axis and rounded to the

nearest tenth decimal place, the reach of the dynamics due to the 2:1 resonance is

found to be −5.0 km to +5.4 km.

Truth orbits are produced in STK to analyze the accuracy of the orbital resonance

solution. Seven GPS satellites within the same orbital plane or chosen and propagated

for ten years. The accuracy of these truth orbits is limited by the accuracy of the

initial classical orbital elements used. One of the satellites is found to be outside of

the reach of the 2:1 resonance and the dynamics are not influenced by the resonance.

Another satellite is found to be just outside of the reach of the resonance and its
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momentum oscillates for all time. The remaining five satellites are found to be within

reach of the resonance and appear to be in the libration region of the phase space

because they make arcing motions. However, some of these arcs move in the opposite

direction of the phase portrait. This may be due to influences of nearby resonances.

One satellite happens to be very near the 2:1 resonance. When propagated for 20

years, it appears to be influenced by chaotic motion and later settles into an arcing

motion. All five of the GPS satellites within reach of the resonance are clearly affected

by the dynamics due to resonance.

The main limitation of this research is found to be evident in the validation using

the truth orbits. In the orbital resonance solution, only one resonance can be modeled

at a time. However, the true dynamics of the orbit are affected by multiple interacting

frequencies, which results in highly nonlinear motion. This highly nonlinear motion

is not evidenced by the orbital resonance solution, but can be seen in the truth orbits

that contradict the orbital resonance phase portrait.

The first main conclusion of this research is that transformation theory offers a

valid method of avoiding small divisors near orbital resonances. Through the use of

transformation theory, the orbital resonance solution is found, which can accurately

model the dynamics due to resonances in the Vinti Solution. Previously, this was not

possible due to small divisors. The orbital resonance solution is the most significant

and novel contribution of this research.

The second conclusion of this research is that the phase space of a nominal GPS

orbit contains a libration region and a chaotic region due to orbital resonance. The

phase portrait of the nominal GPS orbit has a “center” equilibrium point within the

libration region and a “saddle” equilibrium point within the chaotic region.

The third main conclusion is that the reach of the 2:1 resonance is found to be

-5.0 to +5.4 km in semi-major axis.
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The fourth main conclusion is that GPS truth orbits confirm that resonance dy-

namics exist for orbits within reach of the 2:1 resonance. These truth orbits validate

that the orbital resonance solution is a valid method for modeling resonance pertur-

bative terms in the Vinti solution.

5.3 Recommendations for Future Research

Several aspects of this research could benefit from further analysis due to the

limitations of the problem.

First, the dynamics near resonances other than the 2:1 resonance could be ex-

plored. The phase portraits showing dynamics near these resonances could be pro-

duced. Also, the reach of these resonances could be explored to see the range of

semi-major axes that are affected by resonance dynamics. The 1:1 resonance, also

known as GEO, is utilized for numerous high-cost space systems and could benefit

from an analysis of the dynamics due to resonance. Also, the numerous resonances

found in LEO could benefit from this research since these orbits are highly populated

due to their proximity to Earth.

Second, further research could explore an alternative change of coordinates, re-

sulting in an alternative orbital resonance solution. It is possible that a different set

of coordinates could offer a more accurate way of representing the Vinti system while

still avoiding the small divisors.

Third, the chaotic region of the phase space appears to be highly sensitive when

modeled numerically. This region could benefit from further exploration in future

research.

Finally, the main limitation with the orbital resonance solution provided in this

thesis is that only one resonance can be modeled at a time. The actual orbital dynam-

ics are influenced by multiple interacting resonances which result in highly nonlinear
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motions. Future research could develop a model to incorporate the interacting reso-

nances to gain greater insight into the phase space of orbits near resonances in the

Vinti Solution.

5.4 Chapter Summary

This chapter contains a summary of the thesis with the main conclusions of the

research and provides recommendations for further research.
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Appendix A. Frequencies Matrix Symmetry Proof

The local angle variables, Ωi, are defined as the time rate of change of the angle

variables, θi, from the Vinti system:

Ωi = θ̇i

By applying Equation 18 from Hamilton’s canonical equations in Section 2.7, the

local angle variables can be defined as:

Ωi = θ̇i =
∂K

∂Φi

By using the commutative property of multiplication, the following expression is

true:

∂K

∂Φα

∂K

∂Φβ

=
∂K

∂Φβ

∂K

∂Φα

Then, by using the local angle variable definition above, the second partial of the

new Hamiltonian can also be calculated as:

∂2K

∂Φ2
=

3∑
α=1

3∑
β=1

∂2K

∂Φα∂Φβ

=
3∑

α=1

3∑
β=1

∂Ωα

∂Φβ

Or, equivalently:

∂2K

∂Φ2
=

3∑
α=1

3∑
β=1

∂2K

∂Φβ∂Φα

=
3∑

α=1

3∑
β=1

∂Ωβ

∂Φα

Thus, the diagonal elements of the frequency matrix are equivalent:

∂Ωα

∂Φβ

=
∂Ωβ

∂Φα
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In conclusion, the off-diagonal components of the frequency matrix are equivalent,

which is the definition a symmetric matrix.
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Appendix B. Orbital Resonance Solution Derivation

The following Hamiltonian function describes the motion of the Vinti system near

orbital resonances in terms of the old coordinates:

H = Ω1(I1 − I10) + Ω2(I2 − I20) + Ω3(I3 − I30) · · ·

+1
2

(
∂Ω1

∂I1
(I1 − I10)(I1 − I10) + ∂Ω1

∂I2
(I1 − I10)(I2 − I20) + ∂Ω1

∂I3
(I1 − I10)(I3 − I30) · · ·

+∂Ω2

∂I1
(I2 − I20)(I1 − I10) + ∂Ω2

∂I2
(I2 − I20)(I2 − I20) + ∂Ω2

∂I3
(I2 − I20)(I3 − I30) · · ·

+∂Ω3

∂I1
(I3 − I30)(I1 − I10) + ∂Ω3

∂I2
(I3 − I30)(I2 − I20) + ∂Ω3

∂I3
(I3 − I30)(I3 − I30)

)
· · ·

+Cn cos (~j · ~θ) + Sn sin (~j · ~θ)

In simplified form, this is equal to:

H =
3∑

α=1

3∑
β=1

Ωα(Iα − Iα0) +
1

2

∂Ωα

∂Iβ
(Iα − Iα0)(Iβ − Iβ0) + Cn cos (~j · ~θ) + Sn sin (~j · ~θ)

Where

H = old Hamiltonian

Ω1,Ω2,Ω3 = local angle variables of Vinti system

I1, I2, I3 = local action variables of Vinti system

I10, I20, I30 = initial values of local action variables of Vinti system

Cn, Sn = gravity model coefficients

~j = 〈j1, j2, j3〉 = frequency variables
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~θ = 〈θ1, θ2, θ3〉 = angle variables

Next, transformation theory is applied. All of the coordinates and momenta used

in this transformation are defined below:

qi = old coordinates

pi = old momenta

Qi = new coordinates

Pi = new momenta

Where

i = 1, 2...n

n = degrees of freedom of the system = 3

The new coordinates are chosen as:

φ1 = ~j · ~θ = j1θ1 + j2θ2 + j3θ3

φ2 = θ1

φ3 = θ2

The generating function is found to be:

F2 =
n∑
i=1

QiPi = Φ1(j1θ1 + j2θ2 + j3θ3) + Φ2θ1 + Φ3θ2

Where
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F2 = generating function

The old momenta are calculated as:

I1 =
∂F2

∂θ1

= Φ1j1 + Φ2

I2 =
∂F2

∂θ2

= Φ1j2 + Φ3

I3 =
∂F2

∂θ3

= Φ1j3

The equations for the old momenta are inverted to calculate the new momenta:

Φ1 =
I3

j3

Φ2 = I1 −
I3j1

j3

Φ3 = I2 −
I3j2

j3

The new Hamiltonian is found to be:
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K = H + ∂F2

∂t
=

Ω1(Φ1j1 + Φ2 − Φ10j1 − Φ20) + Ω2(Φ1j2 + Φ3 − Φ10j2 − Φ30) + Ω3(Φ1j3 − Φ10j3) · · ·

+1
2

(
∂Ω1

∂I1
(Φ1j1 + Φ2 − Φ10j1 − Φ20)(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω1

∂I2
(Φ1j1 + Φ2 − Φ10j1 − Φ20)(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+∂Ω1

∂I3
(Φ1j1 + Φ2 − Φ10j1 − Φ20)(Φ1j3 − Φ10j3) · · ·

+∂Ω2

∂I1
(Φ1j2 + Φ3 − Φ10j2 − Φ30)(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω2

∂I2
(Φ1j2 + Φ3 − Φ10j2 − Φ30)(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+∂Ω2

∂I3
(Φ1j2 + Φ3 − Φ10j2 − Φ30)(Φ1j3 − Φ10j3) · · ·

+∂Ω3

∂I1
(Φ1j3 − Φ10j3)(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω3

∂I2
(Φ1j3 − Φ10j3)(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+∂Ω3

∂I3
(Φ1j3 − Φ10j3)(Φ1j3 − Φ10j3)

)
· · ·

+Cn cos (φ1) + Sn sin (φ1)

In simplified form, this is equivalent to:

K = H + ∂F2

∂t
=

3∑
α=1

3∑
β=1

Ωα(Φ− Φ0)′α +
1

2

∂Ωα

∂Φβ

(Φ− Φ0)′α(Φ− Φ0)′β + Cn cos (φ1) + Sn sin (φ1)

Where

(Φ− Φ0)′ =


Φ1j1 + Φ2 − Φ10j1 − Φ20

Φ1j2 + Φ3 − Φ10j2 − Φ30

Φ1j3 − Φ10j3
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∂Ω

∂Φ
=


∂Ω1

∂I1

∂Ω1

∂I2

∂Ω1

∂I3

∂Ω2

∂I1

∂Ω2

∂I2

∂Ω2

∂I3

∂Ω3

∂I1

∂Ω3

∂I2

∂Ω3

∂I3


The equations of motion are found by applying Hamilton’s canonical equations of

motion:

φ̇i =
∂K

∂Φi

Φ̇i = −∂K
∂φi

Where

i = 1, 2...n

n = 3

The final equations of motion for the orbital resonance solution are shown below:

φ̇1(t) = j1Ω1 + j2Ω2 + j3Ω3 · · ·

+∂Ω1

∂I1
j1(Φ1j1 + Φ2 − Φ10j1 − Φ20) + ∂Ω2

∂I2
j2(Φ1j2 + Φ3 − Φ10j2 − Φ30) + ∂Ω3

∂I3
j3(Φ1j3 − Φ10j3) · · ·

+1
2

(
∂Ω1

∂I2
j1(Φ1j2 + Φ3 − Φ10j2 − Φ30) + ∂Ω1

∂I2
j2(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω1

∂I3
j1(Φ1j3 − Φ10j3) + ∂Ω1

∂I3
j3(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω2

∂I1
j2(Φ1j1 + Φ2 − Φ10j1 − Φ20) + ∂Ω2

∂I1
j1(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+∂Ω2

∂I3
j3(Φ1j2 + Φ3 − Φ10j2 − Φ30) + ∂Ω2

∂I3
j2(Φ1j3 − Φ10j3) · · ·

+∂Ω3

∂I1
j3(Φ1j1 + Φ2 − Φ10j1 − Φ20) + ∂Ω3

∂I1
j1(Φ1j3 − Φ10j3) · · ·

+∂Ω3

∂I2
j2(Φ1j3 − Φ10j3) + ∂Ω3

∂I2
j3(Φ1j2 + Φ3 − Φ10j2 − Φ30)

)
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φ̇2(t) = Ω1 + ∂Ω1

∂I1
(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+1
2

(
∂Ω1

∂I2
(Φ1j2 + Φ3 − Φ10j2 − Φ30) + ∂Ω2

∂I1
(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+∂Ω1

∂I3
j3(Φ1 − Φ10) + ∂Ω3

∂I1
j3(Φ1 − Φ10)

)

φ̇3(t) = Ω2 + ∂Ω2

∂I2
(Φ1j2 + Φ3 − Φ10j2 − Φ30) · · ·

+1
2

(
∂Ω1

∂I2
(Φ1j1 + Φ2 − Φ10j1 − Φ20) + ∂Ω2

∂I1
(Φ1j1 + Φ2 − Φ10j1 − Φ20) · · ·

+∂Ω2

∂I3
j3(Φ1 − Φ10) + ∂Ω3

∂I2
j3(Φ1 − Φ10)

)

Φ̇1(t) = Cn sin (φ1)− Sn cos (φ1)

Φ̇2(t) = 0

Φ̇3(t) = 0

By applying the symmetry property of the partials matrix, proven in Appendix

A, these equations are equivalent to:

φ̇1(t) =
3∑

α=1

3∑
β=1

jαΩα +
∂Ωα

∂Φβ

jβ(Φ− Φ0)′α

φ̇2(t) =
3∑

α=1

Ω1 +
∂Ω1

∂Φα

(Φ− Φ0)′α
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φ̇3(t) =
3∑

α=1

Ω2 +
∂Ω2

∂Φα

(Φ− Φ0)′α

Φ̇1(t) = Cn sin (φ1)− Sn cos (φ1)

Φ̇2(t) = 0

Φ̇3(t) = 0

The above six equations are the equations of motion for the orbital resonance

solution.
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Appendix C. GPS Two Line Element Sets

The following GPS Two Line Element Sets were found at http://www.celestrak.

com/NORAD/elements/gps-ops.txt and last updated on 2015 December 16 16:07:00

UTC [31].

GPS BIIA-10 (PRN 32)

1 20959U 90103A 15349.81456260 .00000083 00000-0 00000+0 0 9992

2 20959 54.2496 186.8871 0113256 9.9965 350.2799 2.00566692183487

GPS BIIR-2 (PRN 13)

1 24876U 97035A 15350.12819347 .00000009 00000-0 00000+0 0 9998

2 24876 55.7244 248.7552 0044469 116.3880 244.1423 2.00562118134815

GPS BIIR-3 (PRN 11)

1 25933U 99055A 15350.27376619 .00000011 00000-0 00000+0 0 9996

2 25933 51.2831 101.7519 0160575 85.2369 303.4142 2.00566160118637

GPS BIIR-4 (PRN 20)

1 26360U 00025A 15350.59859909 .00000088 00000-0 00000+0 0 9997

2 26360 53.0699 177.7686 0048065 73.4809 294.2400 2.00562715114338

GPS BIIR-5 (PRN 28)

1 26407U 00040A 15350.45506237 -.00000047 00000-0 00000+0 0 9990

2 26407 56.6935 6.5294 0202256 266.1394 274.6995 2.00560799113004

GPS BIIR-6 (PRN 14)

1 26605U 00071A 15350.48092414 .00000009 00000-0 00000+0 0 9991

2 26605 55.2936 246.6803 0085442 249.0122 246.0702 2.00560546110600

GPS BIIR-7 (PRN 18)

1 26690U 01004A 15350.50371804 .00000086 00000-0 00000+0 0 9993

2 26690 52.9991 180.7546 0166196 249.9766 354.9043 2.00565652109013
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GPS BIIR-8 (PRN 16)

1 27663U 03005A 15350.26099001 -.00000046 00000-0 00000+0 0 9993

2 27663 56.7700 6.2427 0082141 16.2817 149.1275 2.00564073 94361

GPS BIIR-9 (PRN 21)

1 27704U 03010A 15350.13592801 .00000046 00000-0 00000+0 0 9996

2 27704 53.5861 121.0387 0230285 253.9772 141.1032 2.00559258 93164

GPS BIIR-10 (PRN 22)

1 28129U 03058A 15350.21638220 .00000085 00000-0 00000+0 0 9998

2 28129 52.8754 180.8131 0076781 244.4828 114.7612 2.00394817 87874

GPS BIIR-11 (PRN 19)

1 28190U 04009A 15350.34525875 -.00000032 00000-0 00000+0 0 9991

2 28190 55.6761 67.7075 0111472 37.1973 20.3691 2.00387958 86041

GPS BIIR-12 (PRN 23)

1 28361U 04023A 15350.29813428 .00000014 00000-0 00000+0 0 9994

2 28361 54.2589 242.3611 0104993 210.9929 45.5160 2.00553281 84124

GPS BIIR-13 (PRN 02)

1 28474U 04045A 15350.00255747 .00000046 00000-0 00000+0 0 9991

2 28474 53.9791 120.2904 0153006 234.3950 171.0785 2.00561828 81482

GPS BIIRM-1 (PRN 17)

1 28874U 05038A 15350.49347407 -.00000036 00000-0 00000+0 0 9996

2 28874 55.8441 64.8875 0110140 246.9603 258.8179 2.00571289 74895

GPS BIIRM-2 (PRN 31)

1 29486U 06042A 15350.49886971 -.00000033 00000-0 00000+0 0 9993

2 29486 55.7539 304.1960 0084334 331.2282 101.0342 2.00565746 67617

GPS BIIRM-3 (PRN 12)

1 29601U 06052A 15350.34208217 -.00000046 00000-0 00000+0 0 9992
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2 29601 56.7400 5.1656 0054777 34.4766 325.9192 2.00577277 66522

GPS BIIRM-4 (PRN 15)

1 32260U 07047A 15350.16407676 .00000018 00000-0 00000+0 0 9990

2 32260 53.3889 239.1982 0077953 24.3662 336.0830 2.00552030 59902

GPS BIIRM-5 (PRN 29)

1 32384U 07062A 15349.57562113 -.00000030 00000-0 00000+0 0 9990

2 32384 55.8958 65.4717 0010632 315.6425 114.1715 2.00566967 58622

GPS BIIRM-6 (PRN 07)

1 32711U 08012A 15350.07430882 -.00000033 00000-0 00000+0 0 9997

2 32711 55.4761 303.7185 0091240 207.8510 151.6639 2.00562306 56826

GPS BIIRM-8 (PRN 05)

1 35752U 09043A 15350.52279786 .00000089 00000-0 00000+0 0 9994

2 35752 54.2243 181.7597 0044676 25.0033 328.6789 2.00560419 46406

GPS BIIF-1 (PRN 25)

1 36585U 10022A 15350.36651617 -.00000047 00000-0 00000+0 0 9992

2 36585 56.0729 2.3583 0046696 37.8522 307.9047 2.00574112 40654

GPS BIIF-2 (PRN 01)

1 37753U 11036A 15350.40642302 .00000053 00000-0 00000+0 0 9998

2 37753 55.1994 122.6791 0047859 25.8332 73.6231 2.00565387 32333

GPS BIIF-3 (PRN 24)

1 38833U 12053A 15350.25788142 -.00000034 00000-0 00000+0 0 9994

2 38833 54.5092 301.1703 0038630 14.6291 345.4885 2.00566860 23410

GPS BIIF-4 (PRN 27)

1 39166U 13023A 15350.11631029 -.00000037 00000-0 00000+0 0 9991

2 39166 55.5535 62.0975 0028133 9.5435 350.5570 2.00559278 18931

GPS BIIF-5 (PRN 30)
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1 39533U 14008A 15350.11538218 -.00000035 00000-0 00000+0 0 9997

2 39533 54.6615 306.3794 0016603 187.1071 172.8732 2.00564841 13302

GPS BIIF-6 (PRN 06)

1 39741U 14026A 15350.39283412 .00000052 00000-0 00000+0 0 9999

2 39741 55.1910 122.1950 0003454 230.3777 129.5710 2.00572027 11587

GPS BIIF-7 (PRN 09)

1 40105U 14045A 15350.48587609 .00000014 00000-0 00000+0 0 9999

2 40105 54.7761 241.9672 0002986 129.6648 230.4405 2.00563128 10044

GPS BIIF-8 (PRN 03)

1 40294U 14068A 15350.34920246 .00000089 00000-0 00000+0 0 9998

2 40294 54.9614 182.3233 0004602 212.3762 147.6390 2.00578809 8251

GPS BIIF-9 (PRN 26)

1 40534U 15013A 15349.99348628 -.00000049 00000-0 00000+0 0 9990

2 40534 55.0441 2.0231 0006490 322.2351 37.7563 2.00562959 5310

GPS BIIF-10 (PRN 08)

1 40730U 15033A 15350.15433925 -.00000038 00000-0 00000+0 0 9993

2 40730 55.0904 62.0158 0018651 269.5424 90.2903 2.00569879 3073

GPS BIIF-11 (PRN 10)

1 41019U 15062A 15339.39193380 .00000082 00000-0 00000+0 0 9995

2 41019 54.9865 182.5263 0008710 205.6679 154.3216 1.97373612 687
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