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Abstract

The need to model millimeter wave (MMW) radar propagation is imperative to

proper design of aeronautical, civil, and military systems. Traditional radar propaga-

tion modeling is done using a path transmittance with little to no input for weather

and atmospheric conditions. As radar advances into the MMW regime, atmospheric

effects, such as attenuation and refraction, become more pronounced than at tra-

ditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices

High Energy Laser End-to-End Operational Simulation (HELEEOS), in combination

with the Laser Environmental Effects Definition and Reference (LEEDR) code, is a

powerful tool for simulating laser propagation and effects tied to atmospheric phe-

nomena such as turbulence and extinction. Although LEEDR is already developed

to characterize radiative transfer effects, this research attempts to extend HELEEOS

to characterize the far field radar pattern in three dimensions as a signal propa-

gates from an antenna through realistic atmospheres and weather conditions. The

latter are derived from NOAA numerical weather prediction models or the Extreme

and Percentile Environmental Reference Tables (ExPERT) climatological database.

The results from these simulations are compared to those from traditional radar

propagation software packages. In summary, this research explored adapting a laser

propagation model to extend understanding of MMW propagation through various

atmospheric and weather conditions.

iv
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CAPTURING ATMOSPHERIC EFFECTS ON 3-D

MILLIMETER WAVE RADAR PROPAGATION PATTERNS

I. Introduction

Radar applications in the millimeter wave (MMW) (30 - 300 GHz) band tradition-

ally have been limited due to high atmospheric absorption and insufficient transmitter

power. As radar technology progresses, MMW is finding itself at the forefront of radar

innovation. Numerous applications, both civil and military, are found in Section 1.2.

From a military standpoint, being able to quickly and accurately predict the three

dimensional pattern of MMW propagation in various atmospheric scenarios is nec-

essary to fully exploit design of radar weapon systems, electronic countermeasures

(ECM), and electronic counter-countermeasures (ECCM).

This research addresses the complexities and shortcomings involved with using

software to model MMW radar propagation in not only the traditional range-power

relationships, but also the change in shape of the waveform and pattern over three

dimensions as a signal propagates from an antenna towards a target. The High

Energy Laser End-to-End Operational Simulation (HELEEOS) [7], developed by Air

Force Institute of Technology’s Center for Directed Energy, with the support of the

High Energy Laser Joint Technology Office (HEL-JTO), is investigated as a potential

tool to be adapted and modified in order to help predict the highly atmospheric

dependent behavior of MMW radiation. Much is understood about the behavior of

traditional radar wavelengths at the aperture and target. However, this research seeks

to address gaps in knowledge of scattering, diffraction, and absorption that affect the

propagation of a MMW radar beam. Due to shorter wavelength and phenomena

1



discussed in Chapter II, MMW radar is more sensitive to atmospheric effects than

traditional wavelengths. Various radar modeling techniques are evaluated relative to

the investigation of fundamental atmospheric processes that affect the propagation

of MMW radar patterns. A MATLAB script is generated and optimized that allows

HELEEOS to model a MMW radar pattern in various atmospheres and scenarios.

The results from these HELEEOS calculations are compared amongst themselves

and with existing radar models. Finally, future endeavors for research and capability

enhancement are proposed. This thesis seeks to evaluate the problem statement of

to what degree is HELEEOS able to be used to provide accurate modeling of EM

Radiation propagation and scattering in the MMW regime, specifically with regards

to impacts on MMW radar performance. A thorough analysis and evaluation of

HELEEOS’ ability to model MMW radiation will provide a springboard to future

research and tools to accurately characterize the propagation of MMW radiation

through a realistic atmosphere.

1.1 Background

As radar evolves into higher frequency bands, specific assumptions that engineers

have been using for decades become outdated and inaccurate for the new wavelengths

being explored. Being able to accurately model radar and other electromagnetic (EM)

propagation is fundamental to proper system design for communications, radar, and

other electrical applications such as satellite links and even vehicle design. Further-

more, with increasing sensitivities of electronic systems, the pattern with which EM

waves propagate will become more of a factor to determine performance of systems.

Today, a large majority of radars operate between 300 MHz and 25 GHz [24].

Various ranges of radar frequencies, or bands, are used for many different applications

from air traffic control, terrain avoidance, traffic collision avoidance (in air and land
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vehicles), automotive parking assistance, automated landing guidance, police speed

detection radar, and many other applications [25]. These radar systems are still

expensive to operate and test and being able to model their propagation will save time

and money. However, assumptions and approximations built into current propagation

models for the traditional radar frequencies listed included in the band are reliable

and accurate in most atmospheric conditions. However, moving outside of this band

sends the designer into uncharted territory.

Figure 1. Placement of MMW Radar in EM Spectrum (Reproduced by permission of
the Institution of Engineering & Technology [24])

Traditionally, frequencies between 30 GHz to 300 GHz (1 cm to 1 mm) have been

avoided due to difficulties in signal processing, available power, and strong atmo-

spheric absorption. However, as solid state transmitters are developed to provide

adequate power, many industries are beginning to experiment with using the MMW

part of the EM spectrum. This regime offers unique atmospheric propagation and

antenna side-lobe pattern effects. It is necessary to investigate these effects to fur-
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ther determine various operating parameters for a system and avoid interference with

other electronic systems.

Because HELEEOS accounts for first principles of radiative transfer, potential

exists for HELEEOS to be an improvement over existing methods. Despite this, fu-

ture research will need to address any potential discrepancies that are brought up

when switching from a laser propagation to RF propagation simulation. By using

HELEEOS to model MMW radar, the capability to provide a full picture of the three

dimensional pattern can be generated in order to predict radar propagation in vari-

ous real-time weather and atmospheric scenarios. Examining turbulence effects on the

MMW, refractive bending, multiple scattering, and attenuation correlation to exper-

imentally measured strengths are all research areas that HELEEOS can interrogate.

By providing first principle physical analysis HELEEOS gives promise to providing

information that can be used to evaluate MMW radar signals.

1.2 Applications and Employment Considerations

Today, many applications of MMW radiation are finding their way into everyday

life as well as defense applications. Cellular phone frequencies, wireless internet,

digital radio, satellite communications, TSA full body scanners, collision avoidance

radar on aircraft, and newer automobile features that sense collision hazards around

the vehicle all at least partially employ the MMW regime [13]. However, this regime

is heavily weather and atmosphere dependent which requires a thorough knowledge of

the behavior and radiative transfer in the MMW regime. If one can effectively predict

the radar pattern at any point down-range of the antenna, it will assist designers and

engineers in optimizing systems based on terrain and weather extremes.

In addition to power propagated to an area of interest, radar cross section (RCS) is

also highly wavelength dependent. RCS is used to give a representation of how large
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an object appears on a radar return and is directly related to how well an object

scatters energy in various directions from an incident angle. RCS measurements

are based on traditional radar frequencies. Thus, it is not as widely understood

how objects may look to a radar at MMW frequencies. Due to the much smaller

wavelength, it is likely that small objects may impact the RCS much larger than

anticipated. The scattering of MMW radiation will help answer questions about how

objects will appear to a MMW radar. For instance, approximately 50% of a total

target return at 96 GHz is due to nuts, bolts, rivets, and cracks [13]. This means

that traditional models of RCS can be radically changed due to the fact that the

“barn door” is no longer providing most of the radar return; it may, in fact, be the

“doorknob” that will reflect the most.

Another advantage of MMW radar frequencies is the increased radar performance

in areas of resolution and gain. The angular resolution of an antenna is directly

proportional to wavelength, assuming antenna dimensions are not changed. Because

of this, a smaller wavelength allows for smaller angular resolution which results in

finer target identification and separation. Gain, (G) is the concentration of power

which allows for a more directed beam of radar energy. An expression for gain is

shown in Equation 1. Therefore, gain will increase in an antenna as the wavelength

decreases [28].

G = 4π
Aη

λ2
(1)

Weather satellites also use the microwave regime for cloud and precipitation de-

tection. CloudSat, ProSensing Cloud Profiler, and many other space-based weather

platforms operate with a 94 GHz channel [13]. A comparison of the increased effects

from weather with increase in frequency is seen in Table 1. Note the difference in

attenuation between 35 GHz compared with 94 GHz: the higher the frequency, the
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higher the attenuation difference when weather effects are considered. The variance

around 10 GHz are not as pronounced. Additionally, note the drastic change that is

dependent upon intensity of weather effects such as rain; quadrupling the rain rate

from 0.25 to 1.0 mm/hr increases the attenuation sevenfold. These effects support

the reasoning that real-time weather and climatology modeling must be implemented

into a MMW propagation model.

Table 1. LEEDR Generated Comparison of Atmospheric Effects on EM Attenuation
at Traditional and MMW Radar Frequencies

One-Way Loss (dB/km)

Parameter 10 GHz 35 GHz 94 GHz

Standard Atmosphere 0.012 0.099 0.383

Rain (mm/hr)

5 0.089 1.489 5.186

25 0.591 6.943 15.863

75 2.145 18.420 32.891

Clean Continental Cumulus 0.027 0.281 1.387

Fog 0.014 0.126 0.532
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1.3 Thesis Outline

Chapter II reviews previous research in MMW propagation and radar theory. Fur-

thermore, it examines work that has been done in EM wave propagation modeling.

Concepts of operation are reviewed for models such as Advanced Refractive Effects

Prediction System (AREPS) [22], Improved Many-on-Many (IMOM) [18], Laser En-

vironmental Effects Definition and Reference (LEEDR) [9], and HELEEOS. Chapter

III covers research methodology and layout of the experiment. Chapter IV evaluates

the strengths and weaknesses of using HELEEOS to model a MMW radar pattern

along with comparison to current radar models. A summary and conclusion of find-

ings are presented in chapter V, along with prospects for future research. Finally,

an appendix contains applicable MATLAB scripts used and information on how to

use MATLAB’s Sensor Array Toolbox to generate radar patterns for import into

HELEEOS or other applications of interest.
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II. Literature Review

2.1 EM Wave Propagation Theory

Radar employs EM waves that propagate at relatively high frequencies (see Figure

1), and investigations into how the waves propagate in the atmosphere originate

with radiative transfer theory. In vacuum, EM radiation propagates at the speed of

light and does not experience refraction absorption, or scattering. However, Earth’s

atmosphere is anything but a vacuum. Especially at the lower altitudes, various

processes occur which either scatter, absorb, re-emit, or otherwise alter the photons as

they travel through the atmosphere. Therefore, a thorough understanding of radiative

transfer as it applies to MMW radar is required.

Index of Refraction.

Solving the wave equation, Equation 2 for an EM wave in vacuum, the speed of

light (in meters per second) is found to be Equation 3.

∂2u

∂t2
− c2∇2u = 0 (2)

c ≡ 1
√
εoµo

(3)

where εo = 8.854× 10−12 F
m

is the permittivity of free space and µo = 1.257× 10−6 N
A2

is the permeability of free space.

When considering propagation in a non-vacuum, the expression for the wave prop-

agation direction vector ~k becomes

∣∣∣~k∣∣∣+ i
∣∣∣~k∣∣∣ = ω

√
εµ

εoµo

√
εoµo =

ωN

c
(4)
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where ω is the angular frequency of the wave and N is the complex index of refraction

defined by N = c
c′

where c′ is the phase speed (approximately, if the medium is non-

absorbing) of the wave through a medium. N is a complex number and the real part of

N defines the phase velocity whereas the imaginary part represents attenuation of the

wave. The magnitude of N is generally greater than 1, which implies the wave slows

down through the medium. It is important to remember that N is heavily dependent

not only upon the medium, but also the frequency of the wave [23].

Scattering.

In addition to absorption, EM radiation can be scattered out of the path as

depicted in Figure2. This clearly reduces the effect of MMW radiation because the

energy is no longer on the path between the receiver (or target) and transmitter. The

likelihood of EM radiation scattering is heavily dependent upon the size and number

of the scatterers and the wavelength of radiation.

Figure 2. Single Scattering of Incident Wave by Particle (Adapted from Petty [23])

Because sensors do not differentiate between energy that has been absorbed or

scattered, an extinction coefficient will be defined as the sum of energy absorbed and

scattered out of the line-of-sight.

βe = βa + βs (5)
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In order to characterize the extinction as absorption or scattering, the term single

scatter albedo, ω̃ is defined as

ω̃ =
βs
βe

=
βs

βs + βa
(6)

ω̃ has a range of zero in purely absorbing medium and one in purely scattering

medium.

Because scattering of light depends upon the wavelength of the incident radiation

as well as the size of the scatterer, it is convenient to describe scattering behavior in

relation to a dimensionless size parameter, χ.

χ ≡ 2πr

λ
(7)

where r is the radius of the scattering particle. Figure 3 shows various types of scat-

tering as defined according to their size parameter; note the traditional and MMW

radar regimes shaded on the dark and light gray respectively. Even with wavelengths

on the millimeter scale, it is still typical to only address Rayleigh and Mie scattering,

and ignore geometric optics. As the wavelengths get shorter, there are fewer con-

stituents commonly found in the atmosphere that produce negligible scattering. As

this research focuses on wavelengths on the order of a millimeter, we see that scatter-

ing will begin to become an issue once on the order of radii equal to 0.1µm or greater.

This corresponds to Rayleigh Scattering for dust, smoke, haze, and cloud droplets.

In the MMW regime, drizzle, raindrops, and hail act as Mie Scatterers. It is crucial

to consider the wavelength with respect to the size of the scatterer when considering

radar applications as they move into the MMW regime. For instance, realizing that

as χ increases, forward scattering starts to dominate, which means that there is less

energy returned to the receiver, which, in turn, means that there may be no return
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for a particular target or weather phenomena.

The differences between Rayleigh and Mie Scattering are shown below in Figure

4. For Mie Scattering,photons are scattered primarily in the forward direction and

the larger the particle, the greater forward scattering of energy. Note that the phase

function (where the energy is likely to scatter with respect to incident angle) denotes

a relatively isotropic distribution for Rayleigh Scattering whereas Mie Scattering is

characterized by mostly forward scattering.

Figure 4. Comparison of Rayleigh and Mie Scattering. For Mie Scattering, larger
particles create a more pointed forward scattering pattern (Adapted from Petty [23])

Scattering will be important to model because it is vital to forming a 3-D picture

of the radar pattern as it propagates. Furthermore, the various sidelobes in a radar

transmitter will cause very complex patterns developed when scattering takes effect.

This was not normally a factor for traditional radar because the wavelengths were

longer and most atmospheric constituents had negligible contributions to scattering.

Multiple Scattering.

The phenomena of multiple scattering occurs when radiation scatters several times

after the initial incidence with a scatterer. With multiple scattering, it is possible

for a photon to scatter out of line of sight and back into the line of sight. Modeling
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Figure 3. Comparison of Size of Scatterer vs. Wavelength and the various scattering
regimes. The shaded box represents the MMW regime. Note that χ ≡ 2πr

λ
. Modified

from Atmospheric Science, 2nd Edition, John M. Wallace and Peter V. Hobbs, Figure
4.11, Pg. 123, Copyright 2006, with permission from Elsevier [34].
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this is very difficult and computationally demanding; however, at higher density of

scatterers, it becomes more important to consider multiple scattering effects.

As of the writing of this thesis in January 2016, HELEEOS only accounts for

single scattering. However, especially with the density of lower atmospheric levels,

modeling multiple scattering is necessary to accurately predict losses of radiation.

Current efforts are close to modeling multiple scattering using HELEEOS on a high

performance computer [8]. However, the computer power required is still intensive.

Absorption.

According to Petty [23], a restatement of Beer’s Law is given in Equation 8. Beer’s

law governs the attenuation of photons as they pass through a slab of absorbing or

scattering medium.

F = Foe
−βax (8)

where Fo is the incident flux of photons on a parcel of air and F is the flux that makes

it through a portion of linear distance x. βa is the absorption coefficient (in units

of inverse length so that the argument of the exponent is unit-less) derived from the

imaginary component of N by referencing Equation 4:

ω

c
Im {N} =

ωni
c

=
2πνni
c

(9)

where ni is the magnitude of Im {N} and ν is the frequency of the wave in Hertz.

Therefore, βa becomes:

βa =
4πνni
c

=
4πni
λ

(10)

By referencing Equation 8, it is apparent that the distance of β−1a is the distance
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for the wave’s fluence to be attenuated by a factor of 1
e
. Note that ni depends on

the permittivity and permeability of the propagation medium which is influenced by

several parameters such as size of the absorbers, density, type of absorbers, and many

other factors. Also, the presence of λ in Equation 10 shows an inverse wavelength

dependence on the absorption coefficient.

It is also important to note that when atmospheric radiation is absorbed, an atom

or molecule becomes excited. In turn, the excited molecule may relax back to its

ground state and release a photon. Thus, there is a need to determine the quantum

probabilities that a molecule will re-emit when excited with incident radiation.

Because these values of βa are dependent on so many various factors, in order

to calculate gaseous absorption, each atmospheric constituent and has been catego-

rized for its specific effect at a certain wavelength into tabulated databases, the most

common of which is HITRAN. This spectroscopic database lists various atmospheric

atoms and molecules and the strength of their absorption coefficient in cm−1. Radia-

tive transfer models take these coefficients and discretize the atmosphere and sum the

effects of each atmospheric layer and constituent to get a total path transmittance.

This same methodology will apply to MMW radar propagation; by determining the

absorbing constituents, a radiative transfer model can determine the strength of the

beam after passing through a parcel of air.

Atmospheric Transmittance Calculations.

In order to determine the change in intensity of an EM wave, a general form of

Beer’s Law is invoked:

Iλ = Iλo exp

[
−
∫ s2

s1

βe(s) ds

]
(11)

Equation 11 calculates the final intensity of an incident EM radiation after passing
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through a homogeneous parcel of air with an extinction cross section βe where the

path is defined by s1 and s2.

The value of the integral in Equation 11 is defined as the optical path (τ) which

is analogous to optical depth/thickness when measured vertically.

τ ≡
∫ s2

s1

βe(s) ds (12)

When taking the exponent of Equation 12, the transmittance is calculated over a

path s:

t ≡ e−
τ

(13)

Transmittance is a number from zero to one where zero is an optically thick (or

opaque) atmosphere and 1 is an optically thin (transparent) atmosphere. When

discretizing the atmosphere into several layers, the total transmittance is the product

of each layer’s transmittance. The total optical depth is the sum of all optical depths

[23].

Absorption in the MMW Regime.

In the millimeter wave regime, molecular absorption is primarily due to water and

oxygen. Figure 5 depicts extinction as a function of frequency. The peaks at 22 GHz

and 60 GHz are due to water and oxygen, respectively. The test frequencies for this

research (35 and 94 GHz) are denoted with stars. Also in the MMW regime are peaks

for oxygen at 120 GHz and water at 183 GHz. These successive peaks drive an overall

upward trend as frequency increases. Therefore, lower frequencies are not as affected

by this continuum absorption as the higher frequencies.
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Figure 5. Extinction as a Function of Frequency for 0 - 100 GHz

Radar Range Equation.

To this point, the attenuation of an EM wave has been discussed according to

atmospheric absorption and scattering. However, in radar applications, since the

wave originates at a point (radar transmitter) and radiates out in a semi-spherical

pattern, a significant amount of the attenuation is due to the power of the initial

beam being spread over the area of the semi-sphere. This loss mechanism is called

free space path loss. To illustrate free space path loss, consider a balloon being blown

up. When deflated, the latex is very thick, but the length from the hole to tip of

the balloon is shorter than when inflated. As you inflate the balloon, the distance

increases at the expense of the latex being thinned out. Because of this effect, the

strength of the energy as it travels out in a spherical pattern is proportional to 1
4πR2 ,

where R is the distance between transmitter and signal detection location.

Because a radar signal must traverse both from the transmitter, to the target,

then back to the receiver (assumed to be at the same location as the transmitter), the

total strength back to the receiver is proportional to 1
(4π)2R4 . Putting these concepts

together, a general radar range Equation for a specific radar system is formed:
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Prec ∼=
PavgGσAetint

(4π)2R4
(14)

where

Pavg = Average Transmitted Power

G = Antenna Gain

σ = Radar Cross Section of Target

Ae = Antenna Area

tint = Interrogation Time

Note that this Equation does not account for atmospheric losses in the radar

signal. This is because at traditional radar wavelengths, atmospheric attenuation is

very low. However, as the wavelength shortens and begins to get on the scale of

atmospheric phenomena (i.e. raindrops), attenuation becomes a factor. In order to

account for atmospheric losses, a propagation factor, F is defined such that

F =
|E|
|Eo|

(15)

where E is the magnitude of the electric field when propagated through the atmo-

sphere, and Eo is the magnitude of the electric field given by free space propagation

such as in Equation 14. This method allows easy computation of the strength of

the signal by combining all the effects computed from the total extinction from the

atmospheric transmittance calculation sections. Because the atmosphere is not ho-

mogeneous in all directions, it is possible that the value of F changes dramatically

depending on location in space. Accounting for this is the prime benefit of using a

weather model based package such as HELEEOS to propagate the EM wave in three

dimensional space [28].
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2.2 Radiative Transfer Models

A radiative transfer model is any program that predicts the propagation of electro-

magnetic radiation in the atmosphere or free space. The Air Force Institute of Tech-

nology Center for Directed Energy (AFIT CDE) has developed extensive research and

products to calculate the propagation of lasers in the atmosphere in order to support

the ongoing DoD high energy laser research and development. In order to capture

such effects, such as thermal blooming, optical turbulence, and extinction, programs

such as LEEDR build an atmosphere from climatology or numerical weather model

in both space and time. This allows for highly accurate determination of parameters

that also will affect energy propagated in the RF frequencies. The atmosphere that

LEEDR creates can also be ingested into HELEEOS which applies a laser propaga-

tion code through that atmosphere to determine irradiance and other laser measures

of merit. Other models evaluated in this research include APM/AREPS and IMOM

which are mission planning tools that evaluate the propagation of radar and commu-

nication systems. Figure 6 provides a comparison and relationship of the propagation

models further explained below.
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Figure 6. Comparison of Models Evaluated
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LEEDR.

The AFIT CDE developed LEEDR in order to build realistic profiles of atmo-

spheric effects which incorporate climatology or numerical weather prediction. The

program runs in the MATLAB environment and allows the user to define a wave-

length, atmosphere, and scenario geometry (slant angle and altitude). While initially

created for high energy laser propagation for the Air Force’s Airborne Laser System

(ABL), it is capable of providing profiles for temperature, pressure, water vapor con-

tent, optical turbulence, and atmospheric particulates and hydrometeors and relate

them for EM propagation from the UV to RF. The user can either choose a standard

atmosphere, aerosol profile, and weather conditions; or, LEEDR can import data

from a numerical weather prediction (NWP) model using NOAA’s National Opera-

tional Model Archive and Distribution System (NOMADS) or climatology database

(ExPERT) in order to provide actual weather conditions at a specific event time [9].

The atmosphere built by LEEDR is a three dimensional model of the atmosphere

and takes into account the change in propagation due to vertical and horizontal (if

using NWP) gradients in the atmosphere. The Graphical User Interface (GUI) for

LEEDR is similar to the GUI for HELEEOS found in Figure 8 with the exception of

the scenario setup.

Once LEEDR has built the atmosphere, the path transmittance, path extinction

(km−1), surface visibility (km), and slant path visibility (km) for the specific wave-

length are calculated by using a line-by-line radiative transfer model. The ability

to use a correlated-k method will also increase computation speed, if high spectral

resolution is not necessary. Once LEEDR has calculated the atmosphere, it is able

to generate a transmittance plot for the path of interest, as shown in Figure 7. This

allows one to determine which portions of the spectrum are most opaque and which

are transparent for the chosen atmospheric path and conditions [10].
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Figure 7. Example of path transmittance calculated by LEEDR for WPAFB at 12-15
Local Time on During Summer for a 1 km path at 1000 meters altitude.

A thorough knowledge of the LEEDR generated atmosphere is necessary in order

to understand the assumptions and methods that LEEDR applies to generate the

wavelength dependent absorption and scattering of the atmosphere. For molecular

absorption, LEEDR considers the constituents and concentrations listed in Table 2.

The absorption parameters are calculated using the HITRAN database and using a

Lorentz line shape for pressure broadening at wavelengths for less than 1 millimeter.

For wavelengths over 1 millimeter, the van Vleck-Weisskopf line shape is used [9].
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Table 2. Molecular Absorbers Considered in LEEDR (Adapted from [9])

Absorber Concentration

H2O Variable

CO2 3.80× 10−4

O3 Variable

N2O 3.20× 10−7

CO 1.50× 10−7

CH4 1.794× 10−6

O2 .209

NO 2.99× 10−10

SO2 2.93× 10−10

NO2 2.99× 10−11

NH3 5.03× 10−11

HNO3 5.30× 10−11

For scattering, a number density must be assumed based off particle and droplet

sizes. LEEDR uses a log-normal distribution to derive a normalized radius specific

particle number density per unit volume as demonstrated in Equation 16 [9].

dN(r)

d(log r)
=

N√
2π log(σ)

exp

(
−(log r − log rm)2

2(log σ)

)
(16)

Taking this range of radii, LEEDR integrates over each radius (discretely) to

determine a wavelength dependent extinction, scattering, and absorption coefficients

for each particle. Using the Wiscombe Improved Mie Scattering algorithm [35], a total

attenuation is calculated depending upon particles and atmospheric composition.
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σe,s,a(λ) =

r2∫
r1

Qe,s,a(m,λ, r)πr
2 dN(r)

r ln 10d(log r)
dr ≈

rmax∑
i=rmin

Qe,s,a(m,λ, r)πr
2 dNi

ri ln 10d(log ri)
∆ri

(17)

These line-by-line and Mie Scattering calculations allow a first principles treatment

of radiative transfer in a realistic LEEDR generated atmosphere. For more in-depth

analysis and specific equations and assumptions that are included in the LEEDR

transmittance calculations, the reader is directed to [9] and the LEEDR Equations

and Principles Handbook published by the CDE [12].

HELEEOS.

HELEEOS builds on the functionality of LEEDR by creating a laser weapon-

target scenario and determines probability of kill (Pk) along with other laser metrics

for a given scenario. HELEEOS uses an wavelength dependent atmosphere built by

LEEDR. Additionally, HELEEOS enables the user to specify a laser power, shape,

and target type to determine laser operational parameters such as peak irradiance,

power in the bucket, spot size, and other interesting measures of merit for laser per-

formance. These fast-calculating values allow for on-the-fly operational assessments

for effectiveness of laser propagation. HELEEOS has been well validated and useful

in the UV to RF wavelengths. [11]. Figure 8 gives examples of the end user’s GUI for

running a HELEEOS simulation. While the GUI is acceptable for understanding gen-

eral principles of operation for the program, as discussed in Chapter III, a script will

be written which will set up the scenario and run the calculations and extract values

of interest. Figure 8 walks through setting up a generic scenario beginning with loca-

tion selection for climatology or NWP, selecting atmospheric constituent information,

weather effects, laser and platform information, and finally scenario geometry.
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(a) Location Selection for ExPERT or NOMADS Data

(b) Atmospheric Data Selection
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(c) Cloud and Rain Manual Selection

(d) Source Platform Information
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(e) Wavelength and Power Designation

(f) Scenario Geometry Display

Figure 8. HELEEOS GUI Displays
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Chapter III gives a description of how HELEEOS is used to provide a prediction

of a radar pattern as it propagates in a real atmosphere. While traditional extinction

makes it difficult to separate the absorption and scattering, HELEEOS treats the

two phenomena separate and combines absorption and scattering to provide a total

path extinction. Also, HELEEOS provides the scattering information which can, with

further research, provide utility in determining off axis radar propagation that could

either weaken the beam or allow a radar path more likely to be detected off the area

of focus.

HELEEOS Assumptions.

HELEEOS uses the Scaling for High Energy Laser and Relay Engagement (SHaRE)

[20] laser propagation and beam control toolbox for MATLAB. The wave optics code

in this toolbox treats the EM radiation as a converging beam; this is unlike radar

radiation which can be modeled as a diverging source. Our simulation methodology

will circumvent this limitation by dividing the radar pattern into a large array of

discrete laser like sources. Each angle, or fraction of the radar pattern will be treated

as a laser beam. More on this methodology can be found in Chapter III.

It is also important to note that HELEEOS currently only has the ability to cal-

culate single scatter radiation. This feature is implemented in LEEDR however, it

has yet to be included in HELEEOS. Currently, there are plans to implement multi-

scatter effects in the future. Implementing these calculations will greatly enhance the

accuracy of beam propagation and provide a more thorough picture of where MMW

energy is scattered to while propagation through the atmosphere. These calcula-

tions will greatly increase computation time, therefore, a simultaneous investigation

into operating HELEEOS scripts on a high performance computer will make timely

computations possible.
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AREPS and APM.

The Space and Naval Warfare Systems Center (SPAWAR) developed the Advanced

Propagation Model (APM), which is a hybrid ray-optic and parabolic equation model

that constructs a fast, yet accurate model of EM propagation. By using a hybrid

model, the APM can solve for high elevation angles where pure PE would not be

used.

Furthermore, APM accounts for various sea and terrain paths using the Digital

Terrain Elevation Data (DTED) database and also incorporates dielectric ground con-

stants for finite conductivity and vertical polarization calculations. APM determines

attenuation via oxygen, water vapor, interference, diffraction, tropospheric scatter,

and ground waves. APM data have been validated to be very accurate in the 1.8 me-

ter wavelength regimes; however, no millimeter wavelengths have been validated [16].

The atmosphere that AREPS incorporates is able to take an input of temperature,

dew point, relative humidity, winds, and other atmospheric data and create a vertical

atmosphere using the gridded data.

AREPS (Advanced Refractive Effects Prediction System)is the graphical user in-

terface to APM. AREPS is an end user product that runs on Microsoft Windows

operating systems and enables the user to create high quality graphic depictions of

radar propagation scenarios. AREPS and APM provide assessments for LF to EHF

communications, radar, strike and ECM, and other applications [22].

AREPS generates graphical plots of dB attenuation at various heights and ranges.

The two types of plots that will be used for this research include propagation loss

and plots. An example of propagation loss is given in Figure 9 and propagation

factor is seen in Figure 10. The propagation factor is the ratio of the actual electric

field strength with respect to the field strength in free space conditions such as in

Equation 18. Using the propagation factor, propagation loss can then be defined
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using Equation 19 where Lfs is the free space path loss due to the spherical spreading

of the energy. Because propagation loss also accounts for free space path loss, that

will provide the most similar comparison to HELEEOS. It is also important to note

the difference using the factor of 20 that arose from converting from power to voltage.

This difference will cause decibel attenuation values to not align between HELEEOS

and AREPS. Correlating the two models is an area rich for future research. For this

reason, a significant portion of the analysis will be qualitative comparisons between

the two outputs.

F =
E

Efs
(18)

L = Lfs − 20 log10(F ) (19)
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Figure 9. Example of AREPS Propagation Loss Plot
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Figure 10. Example of AREPS Propagation Factor Plot
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IMOM.

Improved Many on Many (IMOM) is an end user computer simulation software

that provides radar and communication propagation prediction. Originally developed

as a tactical decision aid for radar threat detection, it has evolved into communica-

tions, broadcast, and even acoustic prediction with an extensive terrain effects package

that also uses DTED [29] [18].

The limiting factor of IMOM and AREPS in the MMW regime is the inability

to build a three dimensional atmosphere based off weather data. Figure 11 shows

the part of the GUI that enables the user to select the atmosphere and limits the

selection to a definition of humidity. In the MMW regime, there are many more

effects to be concerned with in the atmosphere in order to correctly model a MMW

pattern such as referenced in Table 1 and discussion on scattering and absorption

provided in Chapter II.

IMOM will be used in conjunction with HELEEOS to provide a baseline and

comparison of data in terms of MMW propagation. It will not be treated as a control

because the atmospheric and weather models that are input into it are not as robust

as the numerical weather data that is ingested into HELEEOS.

Parabolic Equations.

AREPS and IMOM both employ a technique called Parabolic Wave Equation

(PWE) Modeling. PWE is different from HELEEOS and LEEDR which use a line-

by-line radiative transfer code to determine atmospheric absorption. PWE solves the

Helmholtz equation in a small angle, forward scattering approximation, PWE is able

to determine propagation by including spherical-Earth diffraction, atmospheric re-

fraction, and surface reflections. For a rigorous derivation and explanation of various

PWE Equations, the reader is referred to Parabolic Equation Methods for Electro-
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Figure 11. Defining an Atmosphere in IMOM

magnetic Wave Propagation by Mireille Levy [19]. More recent and advanced models

have the capability to model impedance boundaries, rough surfaces, completed an-

tenna patterns, irregular terrain, atmospheric absorption, and other scattering phe-

nomena. PWE works because it uses the index of refraction of a parcel of the atmo-

sphere to forward step in the direction of propagation and use numerical evaluation

methods to solve the wave Equation. This method eliminates the need for separate

approximations and algorithms for different geometries and frequency regimes. Also,

PWE is better suited to handle certain radar specific phenomena such as ducting,

where radiation gets trapped in atmospheric ducts due to a negative gradient in the

index of refraction [26].

In order to implement a PWE calculation, an initial-value problem is defined at

the antenna of interest and “marched” out in range and/or altitude. This produces a

range-height grid of calculated values for each defined initial-condition. While running

a PWE code is very efficient, it is still computationally demanding and difficult to
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use in real-time operational scenarios. Two popular methods to solve PWE are the

Fourier Split-Step (FSS) and the implicit finite difference (IFD) Equations. The FSS

determines an approximate solution the PWE in the Fourier Transform domain and

the IFD converts the PWE to a system of coupled differential Equations that uses

matrix mathematics and linear algebra to solve the wave Equation. In general, the

FSS is more stable, which encourages the use of larger step increments; however, the

IFD is able to implement complicated boundaries easier than the FSS [6].

Understanding the contribution of PWE to radar modeling is important because

PWE is able to solve the wave Equation and determine properties of a wave much

quicker than the line-by-line radiative transfer methods employed by LEEDR and

HELEEOS. Future iterations of LEEDR and HELEEOS could incorporate elements

of PWE modeling in order to speed up calculations in regimes where accuracy would

not be sacrificed. It is an alternative method and the underlying engine behind

AREPS and IMOM’s scheme of calculating radar propagation.

2.3 Atmospheric Effects in the MMW Regime

Weather Effects.

The standard dry atmosphere is approximately 78% N2, 21% O2, and 1% other,

such as Ar, CO2, and other trace gases Not included in the dry atmosphere is water

vapor (between .001% - 5%), which can greatly affect atmospheric attenuation due

to H2O absorption lines. The strong dipole moment present in H2O creates strong

absorption features at 22, 183, and 323 GHz, which fall within the MMW spectrum.

The effect of humidity on transmittance can be seen in Figure 12. As the location

changes from a relatively dry Kandahar, Afghanistan to a more humid Libreville,

Gambon in Africa, the path transmittance decreases under an effect deemed contin-

uum absorption. For reference, the absolute humidity at Libreville is 13.47 g/m3 and
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at Kandahar, much less moisture is in the air, 6.63 g/m3.

In addition to water vapor absorption, oxygen has resonance lines in the millime-

ter regime due to magnetic dipole transitions. At 60 and 118 GHz, O2 has strong

absorption features due to these effects. Because water vapor and oxygen are con-

centrated and of greatest density like most constituents at the lower altitudes of the

atmosphere, altitude is crucial to consider when calculating attenuation in the MMW

regime. Figure 13 demonstrates the differences in attenuation between 1000 meters

and 10,000 meters on the exact same day and location. Also, at the higher alti-

tudes, a phenomena known as pressure broadening is more dominant and causes the

absorption lines to have increased width.
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Figure 12. Comparison of path specific attenuation using LEEDR and the ExPERT database during Summer. Location 1
is Kandahar, Afghanistan with 28% relative humidity (absolute humidity = 6.63 g/m3) at 1000 meters. Location 2 is the
coastal town of Libreville, Gambon with 87% relative humidity, (absolute humidity = 13.46 g/m3) at 1000 meters
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Figure 13. Comparison of path specific attenuation using LEEDR and the ExPERT database during Summer at WPAFB
at 12-15 UTC. Attenuation was calculated at 1000 meters and 10,000 meters above ground level.
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The water vapor and oxygen presence in the atmosphere is captured in density

(pressure) and humidity (temperature and dew point) observations of the atmosphere.

As the atmosphere is never in a standard condition, it is important to capture these

variances from standard to account for the change in performance of a MMW radar

beam in the real atmosphere.

In order to account for attenuation, Bean and Dutton [2], modified from Van Vleck

[32], define three attenuation coefficients that quantify absorption due to oxygen in the

atmosphere (α1), attenuation due to water vapor at 40 GHz (α2), and attenuation due

to water vapor above 40 GHz (α3). These coefficients are calculated at nonstandard

temperature (T) (in oK), pressure (P) (in millibars) and density (ρ), (in g/m3) from

empirical observations using the Equations in Table 3 and line width values from

Table 4.

Table 3. Calculation of Absorption Coefficients due to Oxygen and Water Vapor [2]

Absorption Coefficient [dB/km] Intensity Calculation ∆νi Correction

α1
0.34
λ2

(
P

1013.25

) (
293
T

)2 ∆ν1
(

P
1013.25

) (
293
T

)3/4
and

∆ν2
(

P
1013.25

) (
300
T

)3/4
α2

ρ
0.318
λ2

(
293
T

)5/2
exp

(
−644

T

)
∆ν3

(
P

1013.25

) (
318
T

)1/2
(1 + .0046ρ)

α3

ρ
0.05
λ2

(
293
T

)
∆ν4

(
P

1013.25

) (
318
T

)1/2
(1 + .0046ρ)
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Table 4. ∆ν Values for Equations in Table 3 [2]

Line Width Reference Temperature [oK] Value [cm−1atm−1]

∆ν1 293 0.018

∆ν2 300 0.49

∆ν3 318 0.87

∆ν4 318 0.87

By using these Equations, an attenuation coefficient (in dB/km) can be calculated

from weather observations, and the oxygen and water vapor attenuation can be as-

signed a value which enhances the ability to predict attenuation of a signal of MMW

radar.

Suspended Water Droplet Effects.

As water droplets grow in size to become clouds and fog, their scattering properties

change as well (see Figure 3). Therefore, it is important to consider scattering due

to fog and clouds, which are defined as droplets with radii less than 100µm and

typically on the order of 10µm. The latter places cloud droplets mostly in the Rayleigh

scattering regime.

Densities of water in clouds are from 1 to 2.5 g/m3; however, some instances of 4.0

g/m3 have been reported. For clouds of ice, density is typically less than 0.5 g/m3

and often can be found at less than 0.1 g/m3. It is important to note that these

figures assume a uniform distribution of droplets, which may or may not be true.

However, at λ > 5mm, effects in attenuation due to inhomogeneities are negligible.

Furthermore, due to the random nature of water droplets, it is highly unlikely to

know for certain true water droplet distribution. Because of this, a uniform droplet

distribution is generally assumed.
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Gunn and East [15] created a method to determine the attenuation for a specific

wavelength due to cloud droplets in Equation 20 where ~k is defined in Section 2.1

and λ is wavelength in meters.

αclouds = 0.4343
6π

λ

ρdroplets
ρatmosphere

Im
(
~k
)

(20)

Due to the sparsity of crystals and small size of ice particles in ice clouds, atten-

uation may be neglected for consideration of MMW propagation [2].

Turbulence Effects.

As wind, wind shear, and temperature gradients create inhomogeneities in the

air, local fluctuations in the index of refraction and absorption coefficient occur and

create what is referred to as optical turbulence. While previous models discussed have

discounted turbulence as a prominent effect to MMW propagation, turbulence is a

function built into HELEEOS and may have tactical implications when determined.

The metric used to determine the strength turbulence has on EM propagation

is the index of refraction structure constant, C2
n. Much research has been done on

optical turbulence and an excellent reference for for a more in depth derivation and

calculations of C2
n than performed in this thesis can be found in V.I. Tatarski’s Wave

Propagation in a Turbulent Medium [30].

In order to determine C2
n from observations, temperature values at two points

are taken and used to calculate the temperature structure constant, C2
T , where T is

degrees in centigrade or Kelvin and r is measured in meters.

C2
T (r) =

[T (r1)− T (r2)]
2

|r2 − r1|2/3
(21)

In order to get from temperature structure constant to index of refraction constant,
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pressure in millibars is used (P).

C2
n(r) = C2

T (r)

[
79× 10−6

P (r)

T (r)2

]2
(22)

C2
n values on the order of 10−17m−2/3 are considered weak turbulence and when the

value reaches 10−13m−2/3, the turbulence is considered strong. By quantifying turbu-

lence values, a metric is created that allows for the distortion of EM radiation to be

determined [14]. However, the current level of research does not fully understand the

relationship between C2
n values in the optical versus MMW frequency bands. There-

fore, future research should be focused on determining what C2
n values, if any, are

significant in the MMW regime.

Refractive Effects.

A consequence of Equation 4 is refractive bending when radiation moves from

medium with one index of refraction to medium with a different index of refraction.

This phenomena is most noticeable in visible light; however, radar signals are affected

as well. In order to describe this, a value for N must be determined from atmospheric

observables.

Bohlander et. al, created an empirical fit for refractivity in the near-MMW regime

[3]. For this regime, refractivity can be described as a sum of a constant No which

accounts for contributions by lines at all frequencies (also referred to as continuum)

and a dispersion term Nd which accounts for refraction due to water and oxygen lines

in the region of interest. Unlike infrared and visible, the non dispersive term depends

strongly on water vapor, not just barometric pressure and temperature. An empirical

fit to index of refraction in the MMW regime is given in Equation 23

n = K1
Pa
T
Z−1a +K2

e

T
Z−1w +K3

e

T 2
Z−1w (23)
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where

K1 = 7.760oK/kPa

K2 = 7.15oK/kPa

K3 = 3.750× 104oK2/kPa

e = Water Vapor Partial Pressure

Za&Zw ≈ 1 (Correction for nonideal relation between ρ and P )

T = Atmospheric Pressure

(24)

When outside of strong absorption lines, the dispersive term is negligible and total

refractivity (N) is typically due to the value of No = 350ppm [3]. By being able to

assign a value to N, the bending of the radar beams can be determined as N changes

along propagation path. LEEDR is able to capture this effect, however, the effect has

yet to be implemented in HELEEOS at the time of this thesis. Current efforts are

focusing on adding refractivity capabilities to HELEEOS which will enable extracting

any bending of the radar beam as it propagates through an atmosphere.

Aerosols.

Aerosols are suspended in the atmosphere from man-made and natural sources.

Typical sizes of the largest aerosols are on the order of 1µm; most are much smaller.

Due to these small sizes, and referencing Figure 3, aerosols have negligible scattering

in the MMW regime. Therefore, for purposes of this research, aerosols are not antici-

pated to be significant contributers to MMW attenuation. This is demonstrated with

LEEDR and using increasing scaling on aerosol concentration on a 94 GHz signal in

an ExPERT atmosphere at Libreville. Table 5 shows attenuation using these scaling

factors. There is no difference at all between the various aerosol concentration factors

showing it is safe to neglect aerosol effects in the MMW regime.
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Table 5. Evaluation of Aerosol Concentration Effects on Path Specific Attenaution

Aerosol Concentration
Scaling Factor

Insoluble
(Parts/cm3)

Soot
(Parts/cm3)

Water Soluble
(Parts/cm3)

Path Specific Attenuation
(dB/km)

1 0.003740508 17.53191026 101.0169956 0.646643734
5 0.018702539 87.65955128 505.0849779 0.646643734
50 0.187025389 876.5955128 5050.849779 0.646643734
500 1.870253889 8765.955128 50508.49779 0.646643734
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Precipitation Effects.

Rain

Rain droplets are on the same size as MMW wavelengths which implies approach-

ing Mie Scattering. In order to account for attenuation due to a specific rain rate,

Crane and Blood developed the following Equation to determine attenuation, A, in

dB. Originally, these Equations were developed for space link attenuation in mi-

crowave frequencies, but the relationship still provides appropriate attenuation data

for radar operating in the same regime.

A =
αRp

β

cos θ

[
euβd − 1

uβ
− bβecβd

cβ
+
bβecβD

cβ

]
(25)

where

A = Total Path Attenuation due to Rain (dB)

α, β = Parameters from Figure Relating Attenuation to Frequency

Rp = Rain Rate in mm/hr

θ = Elevation Angle of Path (> 10o)

D = Horizontal Path Distance Through Rain Volume

u =
ln
(
becd
)

d

b = 2.3Rp
−0.17

c = 0.026− 0.03 lnRp

d = 3.8− 0.6 lnRp

(26)

α and β values can be determined from the graph in Figure 14.
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Figure 14. α and β Values from Equation 25
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If D < d:

A =
αRβ

p

cos θ

[
euβD − 1

uβ

]
(27)

If D = 0 and θ = 90o

A = (δH)
[
αRβ

p

]
(28)

where δH is the path height through the rain area. These Equations provide excellent

fitting with measurements in the 1 GHz - 100 GHz range and allow for calculation of

attenuation due to rain [4].

The effect of various rain rates are demonstrated in Figure 15. Note that as

rain rate increases, a nonlinear response to path attenuation arises and the shape of

the attenuation versus wavelength curve changes slightly. These effects are vital to

capture when propagating radar in the MMW regime.

Snow

Many assumptions must be made when determining absorption from snow. This

is because snow can assume a wide variety of shapes, sizes, types (i.e. wet or dry), and

orientations. A proposed method from Nicholas Currie of determining attenuation

due to snow is found in Equation 29.

α = 0.00349
R1.6

λ4
+ 0.00224

R

λ
(29)

where R is the snowfall rate in millimeters of water per hour. This Equation clearly

has a lot of inherent assumptions; however, in the MMW regime, this Equation has

been validated against experiment [5].
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Figure 15. LEEDR generated attenuation at 2500 meters in 5, 25, and 75 mm/hr rain rate. Note differences in shape and
values in the MMW regime. Simulation was run in the 1976 Standard Atmosphere.
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Ice Precipitation

In the section on suspended water droplets, it was determined that due to the

small size and sparsity of ice, the affect on radar attenuation is negligible.

Previous Measurements of MMW Propagation.

As mentioned in Section 1.1, MMW radar systems are expensive to test. Fur-

thermore, the classified nature of many military systems results in data not being

published. Because of these limitations, it is difficult to get actual data for MMW

propagation in real atmospheric conditions. A report was found from the Ballistic

Research Laboratory (BRL) in 1983 [33]. This thorough analysis provided mea-

surements of attenuation due to water vapor, fog, smoke and dust, rain, and snow.

Unfortunately, not enough is known about their specific radar patterns, powers, and

atmospheric conditions to enable an accurate correlation between HELEEOS and ex-

perimental radar test measurements. While providing correlated results is outside the

scope of this research, future research will require a controlled experimental scenario

with well known atmospheric and radar pattern information. Once these data are

provided, HELEEOS dB loss with respect to reference irradiance can be correlated

with actual experimental radar measurements to provide a useful tool for analyzing

MMW propagation.
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III. Research Methodology

3.1 General Methodology

The principal goal of this research is a proof of concept that HELEEOS can be

used to show a 3-D MMW radar pattern propagate in the atmosphere. It is important

to note that this research will only be focusing on the far field pattern of the MMW

radar. For purposes of this thesis, the far field is defined as the region in which

Fraunhofer diffraction is dominant. The crossover radius is given by Equation 30,

where D is the largest dimension of the antenna [21]. By capturing atmospheric

effects with climatology or numerical weather models, HELEEOS should prove a

valuable tool for modeling MMW radar patterns by returning to first principles of

radiative transfer.

Rf =
2D2

λ
(30)

Because HELEEOS was designed for laser propagation modeling, it does not have

the capability to propagate a radar pattern (see Figures 16 and 17), which is char-

acterized by a main lobe in the middle and smaller sidelobes off to the sides in all

directions. These sidelobes are a result of diffraction of the antenna and are im-

portant to capture because the side lobes still represent energy which could cause

another receiver to pick up the energy. Nonetheless, this research will assess and

evaluate HELEEOS’ capability to discern MMW pattern propagation through an

inhomogeneous atmosphere.

In order to account for the various lobes and complex radar patterns in HELEEOS,

each degree of directionality will be treated as a “laser source” at the appropriate

wavelength and power of the lobe. Then the HELEEOS script will be run over the

pattern, sweeping out range intervals and determining the strength of the signal at

each range. By repeating this method across all angles, a picture can be built of the
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Figure 16. Simple sample radar antenna pattern in 3-D. Plot is normalized so that 0
dB is 100% of available power is emitted in the given azimuth and elevation angle.

Figure 17. Simple sample radar antenna pattern in 2-D (0 Degree Elevation). Plot is
normalized so that 0 dB is 100% of available power is emitted in the given azimuth
angle.
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strength of the various lobes at each angle, thereby creating the MMW pattern in

space. Resolution of the model can be enhanced by creating finer angular resolution in

the radar pattern. Figure 18 shows a two dimensional representation of this method

where the each line is associated with a specific power and angle off boresight. The

stars are points where HELEEOS will calculate the power received and path trans-

mittance. This two dimensional figure will sweep around 360 degrees of azimuth to

build a three dimensional representation of the radar pattern.

Figure 18. Two Dimensional Figure Depicting Calculation of Three Dimensional
Radar Pattern

The traditional radar range Equation (Equation 14) has a 1/r4 proportionality to

account for the loss of power as the main lobe spreads out in a spherical pattern on the

outbound and return legs. The 1/r2 dependence for this research is accounted for in
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the wave propagation code that HELEEOS applies to a beam. The fall off of power

is proportional to 1/r2 and therefore that factor from the radar range equation is

present in this analysis combined with other atmospheric effects. The gridding of the

points is significant, as is spot size. It is possible that depending upon the spot size,

there is a possibility that areas (especially close to the transmitter) could potentially

overlap and wash out some of the resolution of the beam. As radar patterns get more

complex and higher fidelity is demanded, future research should be done to ensure

the pattern is being reproduced faithfully in the far field.

Refractive Bending.

Currently, a key limitation of HELEEOS is its inability to ingest refractive bending

from LEEDR. In order to assess the significance of refraction, LEEDR was used to

calculate refractive bending at 35 and 94 GHz, in atmospheric profiles of interest

(see Section 3.7). These results are displayed in Table 6. Data shows, that even

for very high humidity conditions, maximum refractivity accounts for well under

1o error over 10 km. Furthermore, little difference in the refractive displacement

is calculated between the various scenarios. Because of these facts, refractivity can

safely be neglected for purposes of this research. However, for more exact calculations,

or perhaps a different wavelength, this error will need to be captured. At current

program limitations, LEEDR would have to separately run the calculation to get path

refractivity to provide for the bent path. This link between LEEDR and HELEEOS

has yet to be implemented. Being able to research the effect of refractive bending

will greatly enhance the understanding of ducting by the radar in the MMW regime.

Ducting and trapping occurs when a radar beam is guided with the curvature of

the earth and experiences less attenuation than had the ducts not been present at

all. These effects could be addressed with future research in the MMW regime using
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HELEEOS and LEEDR as tools to characterize the atmosphere and propagation of

the shorter wavelengths.

Turbulence.

HELEEOS models turbulence essentially as a loss factor due to beam spreading

and scattering. Crane and Blood qualify this source of attenuation to only be a loss

of 1-2 dB per kilometer in the microwave frequencies, relatively small considering

other attenuation mechanisms at play [4] [8]. While the discussion and development

of C2
n was included in Section 2.3, due to time constraints, this research was unable

to compare turbulence effects on patterns generated in HELEEOS. This is an area

ripe for further research in the future, especially in the atmosphere near the boundary

layer where there is an abrupt change in the characteristics of air.

Atmospheres Used.

This research will assess two generic radar array patterns as impacted by various

atmospheres and weather conditions and show the effects that HELEEOS is able to

highlight. The utility of using climatology and ingesting numerical weather model

data will be shown by comparing patterns to standard and vacuum atmospheres. A

flowchart of this methodology is shown in Figure 19. Various weather conditions

include light (5 mm/hr), heavy (25 mm/hr), and extreme (75 mm/hr) rain. Further-

more the characteristics of fog and ice fog will be evaluated. Cloud effects will be

investigated using clean continental cumulus clouds as these are the relatively simple

clouds and found in most climates. LEEDR has the capability to model other types

of clouds, and future research may address the effects that various cloud type have

on MMW propagation.
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Table 6. LEEDR Generated Path Refraction Comparison for 35 and 94 GHz

Atmosphere Vertical Path Displacement (in meters) over 10 km Original Zenith (deg) Corrected Zenith (deg) Angular Correction Needed (deg)

35 GHz
Standard Tropical 0.594305 90.0045 90.000008139 0.004491862
ExPERT (Panama City) 0.594351 90.0045 90.000013897 0.004486103
Cumulus Clean Continental Cloud 0.594445 90.0045 90.000011248 0.004488752

94 GHz
Standard Tropical 0.594212 90.0045 90.000008142 0.004491858
ExPERT (Panama City) 0.594296 90.0045 90.000013898 0.004486102
Cumulus Clean Continental Cloud 0.594351 90.0045 90.000011249 0.004488751
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Figure 19. Flowchart detailing the method used to determine how HELEEOS can be used to model MMW radar propagation.
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Table 7. Summary of Test Engagement Scenarios

Radar Array Frequency (GHz) Platform Altitude (meters) Look Angle (degrees) Atmosphere Type Weather Type Weather Low Alt (meters) Weather High Alt (meters)

PPA 35 5 45 U.S. 1976 Standard
PPA 35 300 0 U.S. 1976 Standard
PPA 94 300 0 U.S. 1976 Standard
PPA 35 300 0 Standard - Tropical
PPA 94 300 0 Standard - Tropical
PPA 35 3048 0 U.S. 1976 Standard
PPA 35 3048 0 Standard - Tropical
PPA 94 3048 0 Standard - Tropical
PPA 35 12192 0 Standard - Tropical
ULA 94 1524 -45 U.S. 1976 Standard
PPA 35 5 45 ExPERT
PPA 94 5 45 ExPERT
PPA 35 300 0 ExPERT
PPA 94 300 0 ExPERT
ULA 94 1524 -45 ExPERT
PPA 35 5 45 NWP Atmosphere Fog 0 300
PPA 35 5 45 NWP Atmosphere
PPA 35 5 45 NWP Atmosphere Ice Fog 0 300
PPA 35 3048 0 NWP Atmosphere Light Rain (5 mm/hour) 2500 3500
PPA 94 3048 0 NWP Atmosphere Light Rain (5 mm/hour) 2500 3500
PPA 35 3048 0 NWP Atmosphere Heavy Rain (25 mm/hour) 2500 3500
PPA 94 3048 0 NWP Atmosphere Heavy Rain (25 mm/hour) 2500 3500
PPA 35 3048 0 NWP Atmosphere Extreme Rain (75 mm/hour) 2500 3500
PPA 94 3048 0 NWP Atmosphere Extreme Rain (75 mm/hour) 2500 3500
PPA 35 3048 0 NWP Atmosphere Cumulus Continental Clean (cucc) 2500 3500
PPA 94 3048 -45 NWP Atmosphere Cumulus Continental Clean (cucc) 1500 2500
PPA 35 3048 0 NWP Atmosphere
ULA 94 1524 -45 NWP Atmosphere
ULA 35 3048 0 NWP Atmosphere Cumulus Continental Clean (cucc) 1500 2500
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3.2 Summary of Test Conditions

Table 7 shows a list of engagements used to thoroughly test all conditions. A va-

riety of geometries are used that simulate air-to-air, ground-to-air, and air-to-ground

scenarios.

3.3 Coding Considerations

Due to the fact that HELEEOS is a laser propagation code running on MAT-

LAB (which operates single threaded by default), fully simulating a radar pattern

as depicted in Figure 18 can become very computationally intensive. Presuming 1o

sampling for source simulation, one could expect 180 azimuth and 180 elevation val-

ues, effectively creating 32,400 “laser beams” that must be calculated at each range

point. Each data point (i.e. each azimuth, zenith, and range point) can take up to

one second for HELEEOS to calculate depending upon complexity of the atmosphere.

Adding suspended droplets and other weather conditions can further increase com-

putation time as HELEEOS runs a Mie code. Several efforts described below enabled

more efficient computing without significant loss of accuracy and scope of coverage

for the pattern.

First, in order to capture only the most pertinent information, only the 20 degrees

off boresight (0 degree azimuth and elevation) were sampled. As can be seen in Figures

26a, 26c, 27a, and 27c, values outside of 20o are at -40 dB and below, effectively

undetectable in most scenarios. Therefore, the data generated only includes a pyramid

of 40 degrees in the vertical and horizontal directions.

Second, finding a balance between resolution of range points and computation time

was crucial. The scenarios tested calculated from 5 meters from the aperture in 500

meter steps out to 10,005 meters. The maximum of 10 kilometers was chosen because

with current technology, this is approximately the maximum range that a MMW
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radar could expect to transmit at lower altitudes with higher amounts of water vapor

present. These point spacings provided a grid that allowed the atmospheric effects

to be seen without having to run the HELEEOS code too many times, preventing

acceptable computation time.

Third, thresholds were set in the MATLAB code that would stop calculating for

a given range once power was below a certain value. The code would then step to the

next direction to calculate. If a given direction emitted a power that was below the

threshold, the elevation and azimuth was skipped altogether. This greatly decreases

computation time as the computer was not attempting to calculate minuscule values

that would not be detectable by current radar receiver technology.

MATLAB does have a parallel computing toolbox and it would be greatly ben-

eficial to run these functions using a multi-threading capable machine, or even a

high performance computer. However, one of the conditions of parallelized code in

MATLAB is the inability to put conditional statements inside the loop. Therefore,

it would actually take longer to parallelize the code (due to the third consideration

above) because the code would be forced to calculate all ranges. Some attempts were

made to load the script to the high performance computer; however, limited research

schedule prevented those codes from being run.

3.4 HELEEOS Output Variables

For every engagement calculated, HELEEOS has many outputs that help end

users characterize the quality and power of a laser beam. Of interest to this research

is Power in the Bucket (PIB) and irradiance.

Power in the bucket is measured in units of Watts and is dependent upon “bucket

size”, which is simply a measurement of power that is deposited in a “bucket”, which

is a standardized area on a target that is known to be vulnerable. In HELEEOS, the
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standard bucket size is a 5 cm diameter and is defined by a 1000 x 1000 matrix of

points. PIB values have been known to break down and decrease in accuracy when

the laser spot size approaches the dimensions of the bucket [17]. These are important

considerations when evaluating radar propagation using PIB from a MMW radar

source. Nonetheless, the script is written so that PIB will be output to determine if

it is an acceptable form of measuring radar power.

The more direct measurement of radar power on target is irradiance. Irradiance

is measured in watts per meter squared and is simply the flux of energy per unit

area. Irradiance differs from radiance in that radiance has a dependence upon solid

angle, therefore radiance values are conserved with distance; irradiance drops off with

the square of distance from a source. This makes irradiance ideal to measure radar

energy as the R2 factor is inherently accounted for.

The issue with using irradiance in HELEEOS is the fact that the output variable

is peak irradiance which looks at the laser spot and calculated the average over all

time steps of the peak value. In order to determine if peak irradiance varies from the

irradiance that is present over most of the target, several runs were done using the

GUI of HELEEOS at 2500, 5000, 7500, and 10000 meters. These runs were done at

35 and 94 GHz in a standard atmosphere at 3048 meters and the results can be seen

in Figure 20. The far field spot was displayed, and by using the color bar values, the

difference between irradiance at the center and outer portions were determined to be

very small (on the order of at least .1 watts/m2). Therefore, for MMW radar, it can

be assumed that the peak irradiance is a realistic value to use and can represent far

field radar power. For further reference, Figures 22 and 23 represent the entire spot

distribution. The 94 GHz is still more focused than the 35 GHz, however they both

subtend a large spot at 5000 meters. Similar spreads are found throughout the full

ranges this research is investigating.
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Figure 20. 35 GHz Irradiance Spot Distribution at various ranges from transmitter. Note the spread on the color bar is very
small between radius = 0 and radius = .25 meters. This shows the spot is very large and homogeneous Therefore, irradiance
is fairly constant and not focused like a laser beam.
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Figure 21. 94 GHz Irradiance Spot Distribution at various ranges from transmitter. Like 35 GHz in Figure 20, the spread
on the color bar is very small between radius = 0 and radius = .25 meters.
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Figure 22. 35 GHz Spot Distribution at 5000 Meters. Note the x and y axes
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Figure 23. 94 GHz Spot Distribution at 5000 Meters. Note the x and y axes
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Because irradiance is a representation of actual power received at a target after

all diffraction and atmospheric effect are accounted for, the irradiance will be the

primary metric used to determine the power from the radar receiver that is present

at a given point. PIB values were collected and analyzed, and the results were quite

similar to irradiance, however no results shown will display the PIB plotted values.

3.5 Method of Interpreting Outputs

In order to get from raw irradiance or PIB values to generating a pattern as it

propagates in space, several post calculation processing treatments will occur. First,

the data will be stored in a .mat format which includes the following values:

• Vector of all the azimuth values in degrees

- Note: azimuth and elevation have been placed in a meshgrid format.

• Vector of all elevation values in degrees

• Peak irradiance from all effects

• PIB from all effects

• Powers vector that specifies the power emitted in each azimuth/elevation coor-

dinate from the aperture. This is the power tied to each “laser” source.

• Target altitude matrix - describes the height of the query point after performing

trigonometry for specific angle and range.

- Defining this avoids having to redo the trigonometry calculations based

off sensor look angle and elevation and azimuth values.

• Transmissivity vector of the fraction of power transmitted to each point
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Once these values have been imported, there are several possible ways to look at

the PIB or irradiance values:

• Plot the raw irradiance or PIB values

• Plot the irradiance or PIB values in dB attenuation as a ratio to:

- The power transmitted in that particular elevation/azimuth coordinate at

the aperture

- The power that would have been present at that point if the pattern

propagated in a vacuum

- The maximum power transmitted in any direction from the aperture

- The PIB or irradiance received at a specific range

– In the particular elevation/azimuth coordinate

– In the maximum power coordinate

– Fraunhofer diffraction region could be driving factor to specific range

chosen

Ultimately, the method chosen to provide the best scientific look at attenuation

is the decibel loss with the reference power being vacuum irradiance at the crossover

from Fresnel to Fraunhofer diffraction region. This allows the removal of actual power

values to look at ratios using the decibel relationship described in detail in the next

section.

Conversion to Decibel Attenuation.

In order to evaluate HELEEOS, IMOM and AREPS models will evaluate radar

strengths in various atmospheres and report MMW radar strength at various points

in the atmosphere and this will be compared with HELEEOS’ calculations. It is
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important to note these programs give outputs in decibel (dB) which is simply a ratio

of power transmitted at antenna to the power received at another point. Equation 31

gives the value in decibels in reference to a reference power (Po) and a received power

(P ). The section below, Determining Reference Irradiance, develops the reference

power used and the reasoning for selecting it.

L = 10log10

(
P

Po

)
(31)

Because the reference power used to calculate decibel loss in HELEEOS is differ-

ent from reference powers used in traditional radar measurements and models, such

as AREPS and IMOM, a direct comparison is difficult. The signal attenuation values

are much higher in AREPS and IMOM than they are in HELEEOS. This is because

the ratio used to calculate the decibel loss is based on a different reference power in

HELEEOS than in typical radar modeling and testing. HELEEOS is calculating an

irradiance value (in watts per square meter)for a “laser” at each point in an atmo-

sphere and post processing will compare the calculated irradiance with a reference

irradiance in order to calculate a decibel loss. This is the reason that future cor-

relation studies against actual MMW data will allow a scaling to develop between

irradiance and dB radar loss. Despite the fact that this research uses a different ref-

erence power for determining the power ratio for dB loss, the dB values will still be

correlated and a more negative dB will equate to stronger attenuation of a signal.
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Determining Reference Irradiance.

Because this research attempts to characterize the far field radiation pattern, it is

important that our reference irradiance is in the Fraunhofer region defined in Equation

30. For the 35 GHz signal the crossover occurs at 58.3 meters and at 156.6 meters for

94 GHz. Figure 24 shows the irradiance values at a point for 35 and 94 GHz and also

a 1/r2 reference line to show the irradiance falling off as expected. Nothing significant

occurs with the irradiance crossing into the Fraunhofer Diffraction Region, however,

using lower irradiance values than those found closer to the aperture creates higher

contrast in the attenuation plots.

It is important to note that attenuation values, when expressed in dB, will not

necessarily convert directly to dB attenuation from a radar transmitter. Because the

reference power used in calculating the decibel losses are different in this research

compared to typical radar calculations, the dB loss values will be correlated, but not

exact. Therefore, future research should be focused on correlating HELEEOS dB

outputs with raw values measured by a radar receiver. Some data has been collected

at MMW frequencies in weather conditions [33], however much additional research

needs to be done to fully understand the current effect of weather on the MMW radar

bands.

Once the values for power or attenuation have been calculated, the coordinates

are switched from spherical to Cartesian and MATLAB Scatter3 plot is used to plot

the values in three dimensional space, allowing easy interpretation of atmospheric

effects and the propagation of the radar pattern.
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Figure 24. Main Beam Irradiance in Vacuum for 35 and 94 GHz
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3.6 Radar Frequencies, Power, and Patterns Evaluated

Radar Frequencies.

Because this research focuses on the MMW regime, frequencies chosen will be

pertinent to applications in the MMW regime such as active denial systems, com-

munication links, and microwave satellite sensors. As much utility in MMW radar

systems are at the lower end of the MMW regime, frequencies tested will be 35 GHz

and 94 GHz, which coincide with relative windows in the atmosphere.

Power.

Transmitters in the MMW regime are typically gyrotrons. These generate power

in a way that avoids typical heat increases seen in traditional microwave power tubes

at higher frequencies. An example of a gyrotron power generator is the Navy’s VGB-

8194 Warloc, which is capable of producing 100 kW maximum power at 94.2 GHz

± 700 MHz [27]. The HELEEOS simulation will be set up with the transmitter

power at 100 kW and losses will be reported in dB, as calculated by Equation 31.

By reporting attenuation in dB, the actual power at the source will be irrelevant as

the calculated values will simply be a ratio between source power and propagated

power. To determine the power in a specific direction of the antenna, the total power

provided by the transmitter will be divided over the area of the array. This will allow

for a conversion between power per unit area. The 0 dB value corresponds to 100

percent of available power in that specific direction.

Radar Patterns.

Radar patterns are based off the following generic antennae, geometries, and di-

mensions:
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• Phased Plane Array (PPA) - Figure 25a

Circular Planar, Rectangular Lattice

0.1 Meter Radius

λ
2

Element Spacing

Back Baffled

No Taper or Steering

• Uniform Linear Array (ULA) - Figure 25b

0.2 Meters Long

100 Elements

Back Baffled

No Taper or Steering

Radiation patterns for 35 and 94 GHz were generated for the ULA and PPA with

MATLAB’s Sensor Array Toolbox found in version R2015a. Details for generating

and exporting the radar pattern data can be found in Appendix B. Two and three

dimensional representations of each pattern are displayed in Figures 26 and 27. The

patterns are normalized such that 0 dB is considered 100 % of the radar’s power being

directed in that given direction.
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(a) Phased Plane Array Geometry

(b) Uniform Linear Array Geometry

Figure 25. Test Radar Geometries
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(a) PPA 35 GHz Two Dimensional Representation of Pattern
(Zero Elevation Line)

(b) PPA 35 GHz Three Dimensional Representation of Pattern
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(c) PPA 94 GHz Two Dimensional Representation of Pattern
(Zero Elevation Line)

(d) PPA 94 GHz Three Dimensional Representation of Pattern

Figure 26. Phased Plane Array 35 and 94 GHz Patterns
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(a) ULA 35 GHz Two Dimensional Representation of Pattern
(Zero Elevation Line)

(b) ULA 35 GHz Three Dimensional Representation of Pattern
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(c) ULA 94 GHz Two Dimensional Representation of Pattern
(Zero Elevation Line)

(d) ULA 94 GHz Three Dimensional Representation of Pattern

Figure 27. Uniform Linear Array 35 and 94 GHz Patterns
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3.7 Atmospheric Conditions Evaluated

All tests will initially be done in a 1976 U.S. Standard Atmosphere. The purpose of

this is to provide a baseline that traditional models such as AREPS and IMOM usually

assume. Then, by comparing non-standard atmospheres, effects that are currently

not accounted for can be shown in comparison to the Standard Atmosphere. The

tests will be performed in an air-to-air configuration at 3048 meters (10,000 feet) and

12,192 meters (40,000 feet). Furthermore an air-to-surface from 1524 meters (5000

feet) and surface-to-air scenario will be simulated. Also, due to the fact that the

ExPERT atmosphere reverts to standard above the boundary layer, some ExPERT

air-to-air scenarios will occur at 500 meters (1640 feet). Various atmospheric effects

that will be considered are as follows. A more detailed listing of specific engagements

is given in Section 3.2

• U.S. 1976 Standard Atmosphere

- Moist, and Tropical

• Nonstandard Temperature Lapse - i.e. ExPERT and NOMADS Data Ingested

- All ExPERT information is for Panama City, Panama (due to the high

humidity) at during summer using 50th percentile relative humidity from 1200-

1500 Local.

- All NWP data is from Panama City, Panama using the Global Forecast

System (GFS) 0600 model cycle forecasting for 1200 Zulu (1700 Local Time).

• Rain

- 5 mm/hr

- 25 mm/hr

- 75 mm/hr
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• Clouds

• Fog

• Ice Fog - simulates hail with a 1-3 mm size discrimination

Types of Humidity.

A quality discussion of the various measurements of humidity can be found in

Ahrens [1]. Humidity can be measured in absolute humidity, specific humidity, and

relative humidity. Absolute humidity is the ratio of mass of water to the volume of

the air parcel as defined in Equation 32. Absolute humidity is a measurement that

takes into account of the volume of parcel of air and typical units are grams per meter

cubed.

Absolute Humidity =
Mass of Water Vapor

Volume of Air
(32)

Specific humidity is the mass of water vapor to the total mass of air as shown in

Equation 33. This does not have a volume dependency and units are typically given

in grams of water vapor per kilograms of air. This specific humidity remains constant

as long as the moisture content of a parcel of air remains constant.

Specific Humidity =
Mass of Water Vapor

Total Mass of Air
(33)

Finally, relative humidity is the ratio of the amount of water vapor in the air with

respect to the total amount that parcel could hold as defined in Equation 34. Relative

humidity is the most common reported measurement of humidity but not the best

measurement of how well an EM signal will propagate through it.

Relative Humidity =
Amount of Water Vapor in Air

Amount of Water Vapor Air Can Hold
(34)
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As EM radiation is attenuated by the actual amount of water in the parcel of

air, absolute humidity is the strongest indicator of water vapor for propagation cal-

culations. Meteorologists often report relative humidity, and it is loosely related to

amount of water vapor present. The dew point temperature is a proxy for absolute

humidity in that the higher amount of water in a parcel of air, the higher its dew

point. Therefore, the best way to correlate humidity effects with radar attenuation

will be to consider dew point as that is the most widely reported and recorded vari-

able that is tied to amount of moisture in a volume of air as the EM radiation passes

through.
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IV. Results

HELEEOS’ performance can be assessed for multiple scenarios: vacuum prop-

agation, standard, ExPERT, and Numerical Weather Prediction (NWP) generated

atmospheres, and additionally weather (fog, rain clouds) effects. In turn, performance

can be evaluated relative to 3-D radar propagation and attenuation throughout the

pattern. The following sections demonstrate how HELEEOS was able to replicate

these various effects. Finally, these plots are qualitatively compared to AREPS and

IMOM evaluations of similar scenarios to ensure that HELEEOS accurately propa-

gated the pattern and gave realistic results.

4.1 Propagation in Vacuum

In order to ensure that the MATLAB script and HELEEOS were accurately por-

traying the radar patterns, a vacuum free space propagation was calculated. This

script ran at each azimuth and elevation angle from 5 to 10,000 meters in 500 meter

increments. In addition to providing a check on the pattern, this allowed comparison

between Power in the Bucket (PIB) and irradiance and determine if the two variables

were giving similar propagation patterns.

The method of analyzing the data that produced the best results was using a

decibel attenuation between the irradiance or PIB at specific azimuth, elevation, and

range point with respect to the boresight data point the crossover to Fraunhofer

Diffraction as discussed on Page 67. This provided the most realistic re-creation

of the pattern and made the most scientific sense by comparing like values without

having to scale between raw emitted power and irradiance or PIB.
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PPA Antennas.

Figures 28 and 29 demonstrate that indeed, HELEEOS was able to replicate the

radar pattern in a vacuum and qualitatively, the pattern appears to be representative

of how the source pattern would propagate in three dimensional space. Because of

the larger wavelength and the SHARE toolbox propagating the beam, note that large

portions of the beam were below threshold values of 1 watt per meter squared with

only 1/r2 drop off and diffraction.

Because these runs occurred in vacuum, there are no interesting atmospheric ef-

fects such as non-uniform attenuation. Note that there is attenuation as high as -11

dB in some areas, indicating that a MMW antenna concentrates energy in a very

narrow main lobe as these swaths are only 20 degrees off boresight. Note that the

94 GHz is more narrow than the 35 GHz. However, there are still sidelobes that are

present and could be detected by a sensor not aligned with boresight.

Figure 28. HELEEOS Generated Irradiance Values of a PPA 35 GHz in a vacuum.
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Figure 29. HELEEOS Generated Irradiance Values of a PPA 94 GHz in a vacuum.

ULA Antennas.

The ULA patterns can also be plotted in vacuum as shown in Figures 30 and 31.

The higher frequency effect is more apparent in the ULA patterns as the main lobe

is much more pointed and there is some interference patterns present in the 94 GHz

pattern. Similar attenuation is shown with distance as found in the PPA patterns.

Note the script stopped calculating many areas on the PPA antennas where the ULA

patterns would run at each 500 meter step out to the maximum of 10 kilometers. This

shows the high directivity of the PPA patterns with respect to the ULA antennas.
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Figure 30. HELEEOS Generated Irradiance Values of a ULA 35 GHz in a vacuum.

Figure 31. HELEEOS Generated Irradiance Values of a ULA 94 GHz in a vacuum.
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4.2 Standard Atmosphere

Several engagements were modeled in an atmosphere using standard temperature,

pressure, and humidity values from the U.S. 1976 Standard Atmosphere. No weather

effects were included. Even less water vapor at higher altitudes, the oxygen absorption

contributes to an appreciable amount of extinction from the 60 GHz resonance band.

Figure 32 shows attenuation of the pattern. However, under 5 km range, there is a

significant amount of energy still spreading into the sidelobes of the radar pattern.

Figures 32 and 33 show a standard atmosphere pattern at 3048 meters (approxi-

mately 3 km). At this altitude, there is little moisture compared to lower altitudes.

There are very slight differences, highlighted with the green circle, in the far field

pattern. These patterns looked very similar to higher altitudes and had similar at-

tenuation. Because of these lack of differences, a standard atmosphere may be a good

approximation for MMW patterns above 3048 meters. This is also supported by the

fact that pressure broadening of spectral absorption lines is more dominant at lower

altitudes (due to higher pressures). Therefore, the higher altitude limits the effects of

pressure broadening. This assertion is supported further by the fact that the pattern

only slightly changes at 12,192 meters in a tropical standard atmosphere.
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Figure 32. 35 GHz PPA aperture propagating in U.S. 1976 Standard Atmosphere at
3048 meters above the ground.

Figure 33. PPA 35 GHz at 3048 meters in Standard Tropical Atmosphere.

Figure 34 demonstrates a surface-to-air scenario in the same standard atmosphere.
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This demonstrates more attenuation at lower altitudes (note the change in the color

bar scale); however, similar ranges are seen still. In certain scenarios near the surface,

the higher amounts of water vapor in the standard atmosphere created interesting

phenomena. The boundary layer represents the transition between turbulent flow

near the surface and more laminar flow at higher altitudes, and serves as a trap for

more moist air. The standard atmospheres only serve to roughly approximate the

lowest 1500 meters of the boundary layer. Even so, this creates a situation where on

top of the rough boundary layer, radar propagated more freely than regimes within

the rough boundary layer. It also created a situation where attenuation was greater

in the lowest part of the simulated atmosphere.

Figure 34. PPA 35 GHz Surface to Air in Standard Atmosphere

By implementing a standard tropical atmosphere, the previous figures are little

affected; however, a slight amount of additional attenuation is measured when looking

at individual data values. It is uncommon for there to not be significant moisture

levels at lower altitudes. Therefore, the weather effects in Section 4.6 will show the
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importance of capturing these effects.

Identical analysis was done on the PPA 94 GHz and ULA 35 and 94 GHz patterns

and the results were similar. The higher frequencies had more pointed structure (as

seen in Figure 35), yet similar attenuation values at altitude.

Figure 35. PPA 94 GHz at 3048 meters in Standard Tropical Atmosphere. Note the
more pointed structure to the pattern yet similar attenuation to the 35 GHz pattern

4.3 ExPERT Atmosphere

There are many effects at lower altitudes that may be overlooked if only using a

standard atmosphere, which represents conditions which are never replicated in direct

observation. HELEEOS is able to capture these effects, such as a realistic boundary

layer characterization, and show the impacts on attenuation. An ExPERT atmo-

sphere only is advantageous within the boundary layer. Above the boundary layer,

ExPERT returns to a standard atmosphere based on the latitude of the site, tropical

standard for Panama City, Panama. One limitation of the ExPERT atmosphere is

that the ExPERT atmosphere reverts to a standard atmosphere above the boundary
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layer. As LEEDR defined the PBL at 500 meters for the scenarios ran, no results for

above 500 meters will be shown because they would be identical to propagation in a

standard tropical atmosphere.

At frequencies where refraction is important, future versions of HELEEOS may

(with the help of LEEDR) show bending of lobes that travel through more refractive

portions of atmosphere. A key limitation of this method is the refractive bending is

ignored for reasons discussed in Subsection 3.1. The ExPERT atmosphere incorpo-

rates nonstandard (hence realistic) moisture and temperature gradients within the

boundary layer Naturally, combining ExPERT with actual weather phenomena in-

creases accuracy even further. Using an ExPERT atmosphere allows for calculations

in diverse climates without having access to numerical weather data. ExPERT calcu-

lations provide increased accuracy over standard atmospheres without the increased

computation time and data that is required for NWP generated atmospheres.

The vertical profile for the ExPERT atmosphere that was generated for these cal-

culations in HELEEOS is shown in Figure 36. The high dew point values are indicative

of a high absolute humidity, thus an increased amount of water vapor present in the

atmosphere for this particular scenario which will contribute to increased molecular

absorption.
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Figure 36. Vertical Atmospheric Profile for ExPERT Atmosphere in HELEEOS
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The following examples show HELEEOS results in which an atmosphere using

ExPERT climatology and boundary layer characterization was employed. Figures

37a and 37b models a PPA 35 GHz and 94 GHz radar at 300 meters in an air-to-air

scenario. Note the greater attenuation in the pattern, specifically in sidelobes, than

present in the higher altitudes of the standard atmosphere.

(a) PPA 35 GHz at 300 meters in an ExPERT Atmosphere.

(b) PPA 94 GHz at 300 meters in an ExPERT Atmosphere.

Figure 37. PPA 35 and 94 GHz at 300 Meters in ExPERT Atmosphere

In the following surface-to-air and air-to-surface scenarios, ExPERT shows slight

affects in attenuation (shape and strength of signal) that is not captured in the

standard atmosphere to include the lower elevations of the beam being slightly more
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attenuated than the top portion of the beam. Also, the change in decibel attenuation

is over distance is different as will be discussed in Section 4.7.

(a) PPA 35 GHz Surface-to-Air in ExPERT Atmosphere

(b) PPA 94 GHz Surface-to-Air in ExPERT Atmosphere

Figure 38. Surface-to-Air Scenarios, PPA 35 and 94 GHz (ExPERT Atmosphere)
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4.4 Numerical Weather Prediction Generated Atmosphere

By using numerical weather model information ingested via the NOMADS database,

real time environmental effects can be introduced into the calculation rater than com-

posite climatology captured in ExPERT. The weather model information ingested is

from the Global Forecast System (GFS). It is important to consider that models may

not be as accurate in observation sparse regions as they are in areas where there

are a lot of observations. Mountainous and low population density regions do not

have sufficient infrastructure to support a large array of surface based observations

which means that model outputs in those regions may not be as quality as in other

regions. With satellite and aircraft observations being ingested, this model quality

is improved; however, it is still an important consideration when relying upon NWP

information to provide a realistic forecast.

On the particular day of 1 Sept 2015, the GFS run was chosen to be the morning

(7 am local) the day of a thunderstorm. The ground layer of fog had just warmed up

enough to dissipate and create a very humid morning. The Aviation Routine Weather

Report (METAR) closest to the weather model run gave the following observations

listed below [31]. Note that presence of weather phenomena such as clouds does not

mean the clouds are included in NWP models. Their inclusion from the METAR is

meant to serve as an indicator of the presence of moist rising air which would affect

temperature and dew point levels.

• Temperature and dew point of 78.8o F (26o C)

• Relative Humidity of 100%

• Barometer rising through 29.89 inches mercury (1012.19 millibars)

• Few cumulus clouds at 800 and 1600 feet
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• Few towering cumulonimbus clouds with bases at 1800 feet

• Scattered clouds at 9000 feet

• Winds calm

Because Panama City, Panama is a coastal environment where temperatures are

very warm (even in September), there was a lot of moisture in the air this day.

Because there was a thunderstorm in the afternoon, it can be inferred there was

a lot of instability and lifting action as well. This is demonstrated in Figure 39

where the relative humidity is relatively high at higher altitudes indicative of lifting

mechanisms which are present and indicative of moisture being brought higher in

the atmosphere. Also the planetary boundary layer appears to be present (note the

spike in the RH), however a temperature inversion at the top of the boundary layer is

not present according to the NWP data. When HELEEOS calculated the boundary

layer, the value given for this particular scenario was at 500 meters indicating its

characterization as an ocean environment. This is likely realistic due to its close

proximity to two oceans. This adds additional utility and realism to the atmospheric

model.

92



Figure 39. Atmospheric Profile for NWP Atmosphere in HELEEOS
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Figure 40 shows the impact that a NWP atmosphere has at 300 meters altitude.

This is not significantly different than a standard or ExPERT atmosphere at this

altitude. However, one can see the additional attenuation present in the sidelobes

and highlighted in the figures. Because the 35 GHz antenna was more spread out,

there was more energy in sidelobes to be attenuated. This effect was not noticed

with the 94 GHz scenario. Likewise, the ULA antennas at altitude also had little

distinguishable differences between the ExPERT and standard atmospheres.

(a) PPA 35 GHz at 300 meters in NWP Atmosphere.

(b) PPA 35 GHz at 300 meters in Standard Tropical
Atmosphere.

Figure 40. PPA 35 GHz at 300 Meters in Air-to-Air Scenario with NWP and Standard
Tropical Atmosphere.
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Like with ExPERT, using NWP data for scenarios in which the transmitter is near

the surface, the added features of the atmosphere enhance the ability to predict the

beam. Figure 41 shows a ULA transmitter looking at surface. The signal is heavily

attenuated as the beam gets closer to the surface where the high humidity resides.

The decreased range would not be captured with a standard atmosphere.

Figure 41. ULA 94 GHz from 1542 meters to Surface in NOMADS Atmosphere

The NOMADS database of NWP enables real time atmospheric conditions to be

ingested into HELEEOS, which increases accuracy in range and attenuation of radar

beams. This shows great promise for HELEEOS in being able to interrogate a realistic

model of the atmosphere to provide insight towards MMW propagation.
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4.5 Atmospheric Humidity Effects

Along with oxygen, water is a primary contributor to absorption. As discussed in

Section 2.1 and shown in Figure 5, attenuation increases with frequency. Therefore,

the results seen in the preceding analysis verify that the primary driver of attenuation

is water content. For instance, the 94 GHz had greater amounts of attenuation than

the 35 GHz. This can be seen in the plots of molecular absorption and absolute

humidity in Figures 42 and 43. Note the stronger molecular absorption values for the

94 GHz versus that for the 35 GHz and also the fact that molecular absorption tracks

almost exactly with water content. This explains the similarities between the two

patterns in Figure 40; this similarity is directly attributable to the absolute humidity

values shown in Figure 43, where the NWP, ExPERT, and Standard Tropical absolute

humidity values are relatively close to the same value at 300 meters. Due to the lack

of water absorption in lower frequencies, any significant effects in the 35 GHz regime

will be attributed to weather phenomena such as rain or clouds. However this analysis

reveals that as higher frequencies are interrogated, the amount of water absorption

will become a major factor in attenuation. Figures 42 and 43 also demonstrates that

the ExPERT atmosphere reverts to a standard atmosphere above the boundary layer

(1500 meters).

96



Figure 42. 35 GHz Molecular Absorption and Absolute Humidity vs. Altitude
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Figure 43. 94 GHz Molecular Absorption and Absolute Humidity vs. Altitude
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4.6 Weather Effects

A strong advantage HELEEOS brings to HEL propagation modeling is the ability

to simulate weather effects on a laser beam. A major goal of this research is to in-

vestigate if it is possible to exploit this capability for MMW radar. As mentioned in

Section 2.3, by virtue of the scatterers (rain, hail, and suspended water droplets) hav-

ing a size on the order of MMW wavelengths, strong attenuation can completely block

a beam. This is important to account for from a tactical standpoint because weather

effects can often impact operations and one’s ability to employ radar capabilities.

Running the Mie code in HELEEOS for large particles such as cloud droplets and

precipitation is computationally intensive and can take several seconds to compute

a single data point. However, this time is well spent because it shows great promise

to provide a comprehensive picture of radar patterns as they are affected by weather

conditions. The remainder of this section is devoted to evaluating HELEEOS’ ca-

pabilities simulating MMW propagation and observations regarding various weather

effects on MMW performance.

The following figures show a PPA transmitter at 35 and 94 GHz in an air-to-air

configuration at 3048 meters in a summer ExPERT atmosphere for Panama City,

Panama in Summer using the 50th Percentile relative humidity (RH) conditions.

Various vertical blocks of rain intensities were defined from 2500 to 3500 meters to

fully obscure the radar transmitter.

Prior to proceeding, the following plotted data appears to suggest increasing RF

intensity as the rain rate increases for altitudes above the transmitter. It may be

tempting to conclude energy is being scattered into the upper portions of the MMW

propagation pattern. However, a key limitation of this research is that the script

written assigns each data point in the propagation field to a specific angle of the

MMW source. Therefore, photons scattered off each lobe’s central axis are not ac-
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counted for in other areas of the pattern. Once multiple scattering is implemented

into HELEEOS, it will be possible to determine if there is any enhancement of the

beam due to scattering from portions of the pattern affected by weather. This would

be achieved by storing a matrix of scattered values of radiation from each previous

loop in the engagement.

Light Rain (5 mm/hour).

For light rain (5 mm/hr), there is a very noticeable significant attenuation after

the 4 km range in Figure 44. The attenuation is similar for the 35 and 94 GHz,

although it is a more abrupt drop off in strength for the 94 GHz. This is most likely

due to the fact that there are more droplets in the size distribution near the 3 mm λ

than the 8 mm λ. Therefore, there is more attenuation with the 94 GHz.

Heavy Rain (25 mm/hr).

Referencing Equation 25, which shows a direct correlation between rain rate and

intensity, as the intensity increases to heavy rain (25 mm/hr), attenuation increases

in areas where rain is present more than in the light rain scenarios. This relationship

is also supported in Figure 15. In Figure 45, note the main beam does not travel

as far in this scenario either. Furthermore, even the sidelobes are attenuated to the

point of not being detectable with current radar receiver technology. This proves that

at areas above 25 mm/hr rain it is possible that the weather can lead to significant

decreases in MMW radar system capability especially in the 94 GHz regime due to

greater beam directionality. Also, because the shorter wavelength of 3 millimeters is

closer to the size of the rain which causes a greater increase in scattering.
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Extreme Rain (75 mm/hr).

As shown in Figure 46, extreme rain has a substantial impact on the MMW

radar ability to propagate. Propagation is heavily influenced by the frequency of

the transmitter. The 94 GHz can only go a little over half of the distance the 35

GHz signal can propagate. This is simply due to the high number of scattering and

absorbing particles near the 3 millimeter wavelength of the 94 GHz radar as opposed

to the 35 GHz (3 millimeter) radar.
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(a) PPA 35 in Light Rain at 3048 meters. Note the attenuation is much
greater to the lower lobes, especially after 4 km range.

(b) PPA 94 in Light Rain at 3048 meters. Note the attenuation is much
greater to the lower lobes, especially after 4 km range.

Figure 44. Light Rain (5 mm/hr) in an Air-to-Air scenario at 3048 meters
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(a) PPA 35 in Heavy Rain at 3048 meters. As expected, more attenuation than
the light rain.

(b) PPA 94 in Heavy Rain at 3048 meters. As expected, more attenuation than
the light rain. Note the range values.

Figure 45. Heavy Rain (25 mm/hr) in an Air-to-Air scenario at 3048 meters
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(a) PPA 35 in Extreme Rain at 3048 meters. As expected, much greater attenua-
tion than light or heavy rain.

(b) PPA 94 in Extreme Rain at 3048 meters. Note the range values - 94 GHz is
much more attenuated than 35 GHz in the same scenario.

Figure 46. Extreme Rain (75 mm/hr) in an Air-to-Air scenario at 3048 meters
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Cumulus Clouds.

The HELEEOS cloud model used was clean (no suspended pollutants) cumulus

continental. The clouds were from 2500 - 3500 meters and the aperture for the

air-to-air scenario was at 3048 meters. The cloud attenuates slightly the 35 GHz

but not nearly the same effect as the rain has on the signal. This is important to

realize that as a cloud builds and increases moisture content and vertical motion,

it becomes much more opaque once rain droplets reach a size on the order of the

wavelength. Furthermore, HELEEOS shows the capability to capture the effect of

the rain providing more attenuation below the cloud than above or within the cloud.

In an air-to-ground scenario with a cloud deck from 2500 - 3500 meters, the radar

does propagate; however, HELEEOS is able to predict increased attenuation as the

radar travels through the clouds.

Figure 47. PPA 35 GHz in NWP Atmosphere with Cumulus Cloud at 3048 meters
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Figure 48. PPA 94 in Air-to-Ground in a NWP atmosphere with Clouds at 2000-3000
Feet.

Fog.

Fog is of particular interest to the surface-to-air scenarios because a large amount

of moisture in the air has potential to greatly inhibit MMW transmission. In this

research, fog was modeled from surface to 300 meters (roughly 1000 feet). This is very

thick fog, and typically fog only extends a couple hundred feet in the air. However,

modeling such a thick segment of fog gives a worst case scenarios for these radars.

Figure 49 shows a ULA pattern in a standard atmosphere with and without fog.

Note the significant change in attenuation of the main beam. More interesting is

that the sidelobe energy below the main beam is completely absorbed in the layer of

fog. This effect is shown by a weaker signal in the far field pattern, indicated with

the green oval in Figure 49a. Depending on the application, fog has the potential to

completely absorb a MMW transmission. This fact certainly is a factor that many

radar models do not fully account for and any additional information (provided it is

appropriately validated via experiment) will add to further understanding of MMW
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propagation.

(a) PPA 35 GHz in Surface-to-Air Scenario for comparison to the same
scenario with a layer of fog (Figure 49b)

(b) PPA 35 GHz in Surface-to-Air Scenario with Fog Layer from Surface
to 1000 Feet.

Figure 49. PPA 35 in Surface-to-Air Scenario using Standard Atmosphere with (Fig-
ure 49b) and without (Figure 49a) fog layer. Both scenarios are very similar, however
it can be seen that the fog slightly increases attenuation
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Ice Fog.

An Ice fog layer from surface to 305 meters(1000 feet) created a much weaker

attenuation than that of regular fog, leading to the conclusion that ice fog does not

cause any appreciable effects to MMW propagation at 35 and 94 GHz as anticipated

from the discussion on Page 39.

Figure 50. PPA 35 GHz in Standard Atmosphere

Figure 51. PPA 35 GHz Surface-to-Air in Ice Fog. Compare to Figure 50.

4.7 Main Beam Attenuation

The simplest way to look at the attenuation of the radar pattern is to evaluate

the main beam (0o Azimuth and Elevation) and look at the attenuation at each range

point. As with plotting the entire pattern, this method looks at the irradiance at
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a point and compares it to the irradiance at corresponding vacuum reference point.

In the following figures, they all appear to have a 1/r2 relationship which validates

the assumptions made in Subsection 3.1. It also allows an easy way to compare the

attenuation of various scenarios and demonstrate quantifiable impacts from weather

and atmosphere on radar propagation. Furthermore, comparing the values between

various scenarios allows a quick way to determine if HELEEOS is able to calculate a

large difference in propagation strengths.

Path attenuation is heavily dependent upon any rain, for reasons discussed in

Section 4.6 and on Page 39. Figure 52 shows the difference in total extinction path

lengths for light, heavy, and extreme rain. HELEEOS, with the help of LEEDR, is

able to account for the fact that during 75 mm/hr rain, the effective range is less than

half of that in light rain.

As mentioned earlier, frequency effects in the MMW regime are very important

to capture, and while the different frequencies may not have appreciable differences

in attenuation in scenarios without weather, such as Figure 54, there are accountable

differences when in heavy rain situations such as Figure 53.

In order to see how closely the HELEEOS results correlate with equations derived

in Section 2.3, Equation 25 was applied to the 35 and 94 GHz frequencies and cal-

culated attenuations displayed in Table 8. Comparing Table 8 with Figure 52, the

dB attenuations do not align well at all. This is because irradiance needs to scale

differently and there needs to be a correlation study done as well as ensuring the dB

attenuation is accurately matching up with expected values. However, as expected,

the higher rain rates and frequencies do cause a greater loss of the signal but it is not

clear why this was not represented to the same value in the HELEEOS script.

The type of atmosphere obviously has an impact on main beam attenuation.

Using main beam analysis on various atmospheres sampled, HELEEOS can break out

109



the effects on the main beam. Interestingly enough, Figure 55 demonstrates strong

similarities between a ExPERT and NWP atmosphere at 35 GHz. This similarity

is anticipated by referring back to Figure 42 where the ExPERT and NWP profiles

have a very similar absolute humidity profile for this given day. Having experimental

data will provide a real truth to allow a fit to which atmosphere can produce the

most realistic radar strength measurements. Nonetheless, there are differences in the

35 and 94 GHz that are significant enough to make a difference in path loss. The real

value of HELEEOS may lie in capturing the energy spread in various atmospheres.

While not the entire picture, looking at main beam attenuation allows a quick

analysis of atmospheric effects on power loss of the radar. Comparing various scenarios

communicates which effects are important to capture in tactical scenario development.

Table 8. Calculated Rain Attenuation Intensities for 35 and 94 GHz

Rain Rate 5 25 75

Frequency (GHz) 35 94 35 94 35 94

Alpha 0.242 0.94 0.242 0.940 0.242 0.940

Beta 1.04 0.720 1.040 0.720 1.04 0.720

Attenuation (dB/km) 5.746 24.873 11.015 27.103 22.851 34.110
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Figure 52. Decibel Attenuation Comparison for Main Beam in Varying Levels of Rain for PPA 35 GHz
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Figure 53. Decibel Attenuation Comparison for Main Beam in Varying Levels of Rain for PPA 94 GHz
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Figure 54. PPA 35 GHz and 94 GHz Main Beam dB Attenuation in ExPERT Atmosphere
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Figure 55. Comparison of Types of Atmospheres in Main Beam Attenuation at 35 GHz
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4.8 Comparing HELEEOS Outputs to AREPS and IMOM

Both AREPS and IMOM have unique issues that made it difficult for a full quan-

titative analysis of the correlation between HELEEOS outputs with AREPS and

IMOM. The most obvious advantage to a HELEEOS analysis is the three dimen-

sional aspect. Both AREPS and IMOM were only able to produce two dimensional

altitude-range plots for one azimuth angle. This meant that HELEEOS can give a

three dimensional propagation for non-symmetric and complex patterns as it propa-

gates through an atmosphere that varies not only in the vertical, but horizontal as

well. Another strength of HELEEOS is the fact that weather conditions could be

inserted whereas AREPS and IMOM did not have the ability to put in precipitation

and cloud layers. This amount of fidelity and detail came at a cost; HELEEOS was

the most time intensive to run (on the order of hours) and AREPS ran the quickest

(under one minute for a scenario). Time to run an IMOM scenario varied between

1-3 minutes.

Comparison to AREPS.

The GUI for AREPS only allows frequencies of radar up to 57 GHz. Because of

this, only the 35 GHz PPA comparison was performed. The propagation was assumed

to be similar between PPA and ULA due to the same frequency. The following

atmospheres were tested in the AREPS program:

• Standard Atmosphere

• ExPERT Atmosphere (Using imported data from HELEEOS)

• NOMADS Atmosphere (Using imported data from HELEEOS)

AREPS enabled the direct input of temperature, dew point, humidity, and wind

profiles from the LEEDR generated atmospheres. Each atmosphere was tested at
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3048 meters, and in a surface-to-air and air-to-surface configuration. AREPS also

only allows for elevation angles of ±10o. This led to some bouncing off the ground for

the surface-to-air scenario, this effect was ignored in the HELEEOS scripts. However,

even with these limitations, it is still possible to evaluate HELEEOS’ performance

relative to traditional radar code, if the two programs produce similar patterns and

strengths. Recall in Subsection 2.2 that AREPS is able to generate propagation factor

and propagation loss. While propagation loss will be the primary method of analysis,

propagation factor charts will be included as well for reference in Appendix A.

Standard Atmosphere.

In the air-to-air scenario, AREPS produced lobe patterns similar to those gener-

ated from HELEEOS. The pattern also appeared to propagate in strongest form out

to 10 kilometers. The angular dispersion from boresight was similar and the strongest

areas of energy are towards the center. The propagation factor chart supports this

“cone” of energy radiating from the antenna. For comparison to the HELEEOS

model generated, Figure 57 show just the 0o azimuth value pulled from the stan-

dard moist atmosphere model run. As performed in this research, HELEEOS did

not provide as much fidelity as the AREPS model. However, with more computation

power, HELEEOS would be able to provide a more fine grid of computed irradiances.

Nonetheless, there is still evidence of the patterns correlating and propagating at

similar lengths and shapes.

Being limited to a maximum of 10o declination created issues with being able to see

any changes occur with decreasing altitude, such as in Figure 58. The air-to-surface

scenario is similar to the air-to-air scenario in pattern and attenuation.
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Figure 56. 35 GHz AREPS Propagation Loss for Air-to-Air Scenario in Standard Atmosphere at 3048 meters

117



Figure 57. HELEEOS Side Cut for 35 GHz AREPS Propagation Factor for Air-to-Air Scenario in Standard Atmosphere
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Figure 58. 35 GHz AREPS Propagation Loss for Air-to-Surface Scenario in Standard Atmosphere at 5,000 Feet
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Figure 59. 35 GHz AREPS Propagation Loss for Surface-to-Air Scenario in Standard Atmosphere
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The surface-to-air scenario had interesting effects from the surface bounce and the

low altitude of the transmitter. The low altitude also had strong attenuation effects

on the signal. This example of multipath effects is a prime example of a capability

that needs to be implemented into HELEEOS in order to provide a more robust

capability to predict MMW radar propagation.

ExPERT Atmosphere.

Using the atmosphere generated by HELEEOS, the atmospheric profile for Panama

City, Panama was able to be generated and imported into an AREPS environment.

Figure 61 shows the corresponding HELEEOS script run that calculated the same

scenario. Like the standard atmosphere, HELEEOS was able to calculate similar

angles and patterns. However, again, the structure is lost with the coarse grid of

points.

Figures 62 through 79 show the air-to-surface and surface-to-air AREPS plots

and they are very similar to the standard atmosphere in terms of beam shape and

propagation distance.
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Figure 60. 35 GHz AREPS Propagation Loss for Air-to-Air Scenario in ExPERT Atmosphere at 3048 meters
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Figure 61. HELEEOS Side Cut for 35 GHz AREPS Propagation Factor for Surface-to-Air Scenario in ExPERT Atmosphere
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Figure 62. 35 GHz AREPS Propagation Loss for Air-to-Surface Scenario in ExPERT Atmosphere at 5,000 Feet
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Figure 63. 35 GHz AREPS Propagation Loss for Surface-to-Air Scenario in ExPERT Atmosphere
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NWP Atmosphere.

Because the NWP and ExPERT atmosphere were similar in values, the AREPS

propagation is very similar to the ExPERT propagation paths. The HELEEOS side

cut (in Figure 65) agrees with the AREPS pattern as well, however the AREPS

pattern slightly more attenuated than it was in the standard atmosphere. The air-

to-surface and surface-to-air scenarios are similar as well and shown in Figures 66

through 77.
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Figure 64. 35 GHz AREPS Propagation Loss for Air-to-Air Scenario in NOMADS Atmosphere at 3048 meters
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Figure 65. HELEEOS Side Cut for 35 GHz AREPS Propagation Factor for Air-to-Air Scenario in NOMADS Atmosphere
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Figure 66. 35 GHz AREPS Propagation Loss for Air-to-Surface Scenario in NOMADS Atmosphere at 5,000 Feet
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Figure 67. 35 GHz AREPS Propagation Loss for Surface-to-Air Scenario in ExPERT Atmosphere at
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Comparison to IMOM.

As discussed in Section 2.2, IMOM does not have the capability to define a cus-

tom atmosphere with temperature, pressure, and humidity gradients like that in

HELEEOS and even AREPS. The following analysis of the PPA and ULA radar an-

tennas were done using the Signal Analyzer tool and choosing MMWave propagation

engine with a humid atmosphere. All four patterns show similar results to HELEEOS

and AREPS. IMOM’s frequency dependence and resolution seems to be better than

AREPS, however it is difficult to tell due to the differences in presenting the informa-

tion. Both IMOM and HELEEOS appear to provide adequate pattern information

of the radar. It is apparent a more careful evaluation comparing the capabilities of

the various models is needed.

Figure 68. IMOM PPA 35 GHz Humid Atmosphere at 3048 meters
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Figure 69. IMOM PPA 94 GHz Humid Atmosphere at 3048 meters

Figure 70. IMOM ULA 35 GHz Humid Atmosphere at 3048 meters
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Figure 71. IMOM ULA 94 GHz Humid Atmosphere at 3048 meters

Qualitatively, utilizing AREPS and IMOM models demonstrate that HELEEOS

is capable of reproducing a pattern with similar range values and provides strong sup-

port to the hypothesis that HELEEOS is able to be engineered into a tactical decision

and research aid for MMW radar propagation with complex patterns. However, much

research needs to be performed on correlating the alternative reference power used in

this research with typical reference powers for radar research. This is the next logical

step in enabling HELEEOS to perform as a MMW radar modeling tool.
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V. Conclusion

5.1 Summary of Results and Significance

HELEEOS has shown the potential to provide a more comprehensive view of a

radar pattern as it propagates through a real atmosphere in three dimensions than

current radar models. This capability is crucial towards enhancing the understand-

ing of atmospheric effects on MMW frequencies. HELEEOS shows the potential

to demonstrate the fact that certain phenomena are more critical to consider. Areas

with high humidity, clouds, and precipitation can heavily attenuate, if not completely

block, a radar signal.

At higher altitudes (3048 meters and above), there are far fewer attenuation effects

that require attention. However, when operating in lower atmosphere or in weather

conditions, MMW radar experiences frequency dependent effects that must be ac-

counted for. These effects drastically affect the usable range of the system as well as

where energy from the sidelobes are directed to.

By ingesting ExPERT atmospheric climatology data, a radar pattern can be prop-

agated in an atmosphere that is climatologically typical for a given location. If looking

for real-time data, internet-based NWP meteorological data can be ingested, which

provides numerical weather model output to build the atmosphere and provide at-

tenuation data via LEEDR.

These capabilities are useful for military and civil applications, as weather con-

ditions are never standard and tactical implications of weather should always be

considered. As radar technology continues to mature in the MMW regime, thorough

understanding of the first principles of radiative transfer and their effects on propa-

gation become increasingly important to understanding limitations and capabilities

of these systems.
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5.2 Future Work

While this thesis has provided a successful proof of concept for enabling radar

patterns to be propagated with HELEEOS and LEEDR software packages, there is

still much to be done to ensure atmospheric effects are captured as completely and

accurately as possible. It would be ideal to have future work based on actual radar

propagation experimental data that enables validation of the LEEDR and HELEEOS

code in the MMW regime. Determining how the ShARE toolbox is focusing the beam

and how realistic a focused beam is to MMW radar propagation will further enhance

understanding of HELEEOS’ effectiveness in predicting propagation patterns.

Despite the coding efficiencies added in Section 3.3, the amount of time to com-

pute a full radar pattern was much greater than the time that would be available

for conducting large batch runs for parameterization studies and operational studies.

Naturally, as computer processing speed grows in accordance with Moore’s Law, com-

putation time will decrease. However, in the near term, there is much optimization

to be done with parallel computing and other mechanisms to decrease computation

time from hours to minutes or even seconds. A different means of parallelizing the

code and running the scripts on a high performance computer will allow for much

quicker analysis that could potentially aid in creating a real-time decision aid.

More evaluation needs to be done in the realms of turbulence effects on MMW

beams. Furthermore, analysis on existing field studies can be expanded upon to deter-

mine if the scaling laws HELEEOS use is applicable to MMW frequencies. HELEEOS

is able to calculate extinction due to turbulent effects, but it remains to be known

how accurate the specific turbulence profiles and C2
n values, and derived radiative

effects, are for the MMW regimes.

Furthermore, much evaluation needs to be done to ensure that refractive bending

is more easily and accurately implemented in code. A metric could be developed that
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will relate how much a beam is bent over a path length. This metric will characterize

how much correction would need to be applied in order to ensure a radar is pointing

where it needs to point, thus increasing targeting accuracy. Refraction research will

also enable engineers to understand the effects of ducting in the MMW regime and

more thoroughly understand the possibilities of ducting and trapping due to the fact

that MMW may respond differently than traditional radar wavelengths.

Another area of interest concerns multiple scattering. Once HELEEOS has the

capability to implement multiple scattering, radar in the MMW regime may have

some unique characteristics that are captured. For instance, if a rain deck heavily

scatters energy in a certain direction, it is possible that other areas of the radar pattern

may be enhanced by the scattered energy. However, this will require much additional

research and the code to calculate these effects will be much more computationally

intensive than this research.

It is also important to note that this research did not account for multipath

radar. When a propagation path intersected the surface, the code stopped calculating.

Future research could evaluate the dielectric constant at the surface and determine the

direction and strength of any bounced signal and examine if LEEDR and HELEEOS

give realistic results for multipath scenarios.

Multipath effects also closely relate to the RCS calculation aspect of MMW radar.

Of unique interest to the Department of Defense is the effect of MMW radar on

existing RCS data. It is possible that HELEEOS could be adapted to predict how

MMW radar will scatter off smaller portions of a target’s surface. If it is possible to

determine the amount of energy that will be reflected normal to path of incidence,

the capability to calculate a target’s monostatic RCS at a specific frequency can be

proven.

This research only evaluated two MMW arrays and frequencies. Evaluating dif-
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ferent transmitters such as a Horn Antenna and Luneburg Lens will continue to

demonstrate the utility of HELEEOS in radar propagation prediction. Furthermore,

experimental validation will also show which frequencies HELEEOS provides realistic

results.

It is important to note these radar patterns were highly idealized and there are

very specific patterns and powers that can be calculated using HELEEOS. How-

ever,this research had little or no experimental data for comparison that could be

used to exactly correlate to atmospheric conditions observed and frequency and pat-

terns of radars used. The next step of research should be to gather actual data from

a transmitter receiver setup, import the radar pattern to HELEEOS using methods

derived here, and use the HELEEOS output to correlate dB attenuation values to

what was actually received. With enough data points, it would be possible to ensure

HELEEOS has the corrections necessary to provide actual attenuation information

for a three dimensional pattern. The comparisons against AREPS and IMOM were

useful for determining similarities in patterns; however, even AREPS and IMOM may

not be accurate for strength values in the MMW regime.

Long term, a merging of capabilities between existing radar propagation models

that excel in radar frequency and waveform calculations and LEEDR/HELEEOS

which excel in three dimensional atmospheric effects, could provide a very powerful

program that would enable MMW radar propagation to be done very accurately and

for much less computational cost. Exploiting these research efforts could perhaps lead

to a very capable scenario and engagement package able to simulate the full MMW

pattern effects throughout a three dimensional atmosphere.
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Appendix A. AREPS Propagation Factor Figures

Figure 72. 35 GHz AREPS Propagation Factor for Air-to-Air Scenario in Standard
Atmosphere at 3048 meters
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Figure 73. 35 GHz AREPS Propagation Factor for Air-to-Surface Scenario in Stan-
dard Atmosphere at 5,000 Feet

Figure 74. 35 GHz AREPS Propagation Factor for Surface-to-Air Scenario in Stan-
dard Atmosphere
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Figure 75. 35 GHz AREPS Propagation Factor for Air-to-Air Scenario in NOMADS
Atmosphere at 3048 meters

Figure 76. 35 GHz AREPS Propagation Factor for Air-to-Surface Scenario in NO-
MADS Atmosphere at 5,000 Feet
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Figure 77. 35 GHz AREPS Propagation Factor for Surface-to-Air Scenario in NO-
MADS Atmosphere

Figure 78. 35 GHz AREPS Propagation Factor for Air-to-Surface Scenario in Ex-
PERT Atmosphere at 5,000 Feet
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Figure 79. 35 GHz AREPS Propagation Factor for Surface-to-Air Scenario in Ex-
PERT Atmosphere

Figure 80. 35 GHz AREPS Propagation Loss for Air-to-Air Scenario in ExPERT
Atmosphere at 3048 meters
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Appendix B. How To Use MATLAB Sensor Array Analyzer
to Generate Radar Patterns

2.1 Step 1: Open Sensor Array Analyzer in MATLAB R2015a or Later

Note that this is an extra toolbox that must be purchased on your respective

license and then installed.

Figure 81. Sensor Array Analyzer Toolbox

2.2 Step 2: Define Radar Antenna Parameters

The toolbox supports various styles of antennas. This research used circular pla-

nar and uniform linear arrays. Various parameters are self explanatory and easily

customizable. The figure on the right side of the toolbox allows for a preview of what

the array looks like once hitting the “Apply” button.
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Figure 82. Sensor Array Analyzer: Defining Parameters

2.3 Step 3: Select Various Displays of Radar Pattern

By selecting different options from the drop down menu in the “Visualizations”

section, various plots can be generated to give a preview of what the radar pattern

will look like.
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(a) 2-D Representation of Radar Pattern Preview (b) 2-D Representation of Radar Pattern Preview

Figure 83. Sensor Array Analyzer: Various Pattern Representations
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Once satisfied with the antenna and pattern, code can be generated (File > Gen-

erate MATLAB Code) to allow the user to create exportable and savable figure files

(.fig or .png) (see Section 2.4) or generate tabulated data that includes the decibel

directivity of the pattern (see Section 2.5).

2.4 Step 4: Use Generated Code to Produce Exportable Figures

Below is what the output of code may look like (may vary depending on if you

selected 2-D or 3-D visualization)

Figure 84. Sensor Array Analyzer: MATLAB Generated Code

Ensure you change “directivity” to “powerdB” in the pattern command. This

ensures that output data is normalized such that 0 dB is the maximum power of the

antenna.
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Figure 85. Generated Code: Ensure “directivity” is Changed to “powerdB” to Nor-
malize Power Data

Once you run the script, a figure is generated that can be manipulated and saved

as MATLAB’s .fig or a portable network graphics (.png) file.
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Figure 86. Exportable Radar Pattern Image

2.5 Use Generated Code to Produce Decibel Data

In the generated code, add the following output to the pattern function line:

[PAT, AZ ANG, EL ANG] = pattern(...)
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Figure 87. Exporting Power Data for Radar Pattern

After running the script, the PAT, AZ ANG, and EL ANG variable will be present

in the workspace. Run the following commands using the command window to convert

the PAT data to Watts in order to ingest the information into your HELEEOS script:

% This corrects for antenna efficiency, default is ant eff = 1

P o = ant PWR * ant eff;

% This changes the dB power to actual Watts for each angle

PAT W = 10.ˆ(PAT ./ 10) * P o;

% Save all the variables to a .MAT file

% (replace filename with preferred name)

save('filename','PAT W','AZ ANG','EL ANG');

149



Appendix C. MATLAB Script for Running Pattern
Through Various Engagements

function cook RunHELEEOS()

clear all; close all;

% Version 2.0

% Fixed issue where wavelength was not being assigned before runAtmosphere.

% Improved radar data retrieval

% clear all; close all;

format long

%% Load all the various engagement scenarios

load('engagements final.mat');

% Input the folder for all the radar files

radar folder = 'W:\Documents\Cook\cook RunHELEEOS\radarData';

% Define power thresholds and maximum zenith and azimuth angles

threshold = .1; % For PIB

irr threshold = 1; % Irradiance Peak

max azimuth = 20;

max zenith = 20;

% Define boresight range distances

bs ranges = [5:500:10005]';

% Initiate RunHELEEOS Wrapper

R = RunHELEEOS([]);

R.resetCache();

150



% Turn on file output

R.toggleFileOutputOff();

R.toggleDebuggerOff;

for engage ind = 29 % loop through all engagements

% Get Radar Data for PPA or ULA and 35 or 94 GHz

wavelength = 2.99e8/(engagement list.Frequency(engage ind)*10ˆ9);

% Get radar data

[azimuths, zeniths, powers] = inputRadarData(engagement list.RadarArray(engage ind),...

engagement list.Frequency(engage ind), radar folder, threshold, max azimuth, max zenith);

% Set up inputs

in = RunHELEEOS.getDefaultInputs();

platAngle = engagement list.platformAngle(engage ind);

platAlt = engagement list.platformAltitude(engage ind);

in.platform.setInitialAltitude(platAlt);

% Turn on observer (causes problems in the Phase function calc - see ln 226 of RunHELEEOS.m)

in.setUseObserver(true);

in.setWindGroundSpeed(0); % Turn off wind speed

% Set turbulence defined in engagement list

in.turbulence.setType(Turbulence.zero);

in.setAerosols(Aerosols.standard)

in.setAerosolsStandardType(Aerosols.standardModels.clear)
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% Input Weather Conditions (if applicable)

TYPE LIST = {'Cumulus Continental Clean (cucc)', ...

'Cumulus Continental Polluted (cucp)', ...

'Cumulus Maritime (cuma)', ...

'Stratus Continental (stco)', ...

'Stratus Maritime (stma)', ...

'Fog', ...

'Ice Fog', ...

'Cirrus (-25C)', ...

'Cirrus (-50C)', ...

'Cirrus + Small Particles (-50C)', ...

'Drizzle (2 mm/hour)', ...

'Very Light Rain (2 mm/hour)', ...

'Light Rain (5 mm/hour)', ...

'Moderate Rain (12.5 mm/hour)', ...

'Heavy Rain (25 mm/hour)', ...

'Extreme Rain (75 mm/hour)'};

weather = engagement list.weather{engage ind};

weatherLowAlt = engagement list.weatherLowAlt(engage ind);

weatherHighAlt = engagement list.weatherHighAlt(engage ind);

if ~strcmp(weather, '')

weatherType = find(strcmp(TYPE LIST, weather));

in.addWeather(weatherType, weatherLowAlt, weatherHighAlt);

end

% Get atmosphere type from list and assign values

if strcmp(engagement list.atmosphereType(engage ind),'standard')

in.setAtmosphere(Atmosphere.standard);
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if strcmp(engagement list.standardType(engage ind),'us1976Dry')

in.setAtmosphereStandardType('U.S. 1976 Std Dry (No Season)')

elseif strcmp(engagement list.standardType(engage ind),'us1976')

in.setAtmosphereStandardType('U.S. 1976 Std (No Season)')

elseif strcmp(engagement list.standardType(engage ind),'tropical')

in.setAtmosphereStandardType('Tropical')

else

error('No standard atmosphere type selected (std, std dry, or tropical)')

end

elseif strcmp(engagement list.atmosphereType(engage ind),'expert')

in.setAtmosphere(Atmosphere.expert)

in.setLatitude(8.98); % For Panama City

in.setLongitude(-79.55);

in.setTimeOfDay(globals.ExPERT.timeOfDay.from12to15); % For time of day

else % Nomads Data

in.setAtmosphere(Atmosphere.nomads);

in.nomads.setFilename('201509010600012');

in.nomads.setYear(2015)

in.nomads.setDay(01)

in.nomads.setMonth(09)

in.nomads.setCycle('0600')

in.nomads.setTime('012')

in.setLatitude(8.98); % For Panama City

in.setLongitude(-79.55);

end % If atmosphere loop

% Upload inputs
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R.resetCache();

R.upload('in', in, 'new');

R.load('new')

% Set Wavelength

R.prof.inputs.setWavelength(wavelength);

% Run the atmosphere that will be standard for all engagement runs

R.runAtmosphere();

% Initialize matrix of stored values

pib = ones([length(zeniths), length(bs ranges)]);

irradiancepeak = ones([length(zeniths), length(bs ranges)]);

trans = ones([length(zeniths), length(bs ranges)]);

targAlt = ones([length(zeniths), length(bs ranges)]);

los range = ones([length(zeniths), length(bs ranges)]);

% Define the specific variables for this azimuth and elevation and run the

% engagement, loop through all.

for i = 1:length(powers)

R.prof.inputs.platform.setPower(powers(i));

R.prof.inputs.platform.setInitialRelativeAzimuth(azimuths(i));

for k = 1:length(bs ranges)

% Calculate target altitude

targAlt(i,k) = bs ranges(k)*sind(platAngle + zeniths(i)) + platAlt;

% Calculate Line of Sight Range at that particular angle

los range(i,k) = bs ranges(k);
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% Run the engagement if good geometry

if targAlt(i,k) > 0

% Set distance and altitude

R.prof.inputs.target.setInitialAltitude(targAlt(i,k));

R.prof.inputs.platform.setInitialDistance(los range(i,k));

disp(['working on zenith: ' num2str(zeniths(i)) ' azimuth: ' ...

num2str(azimuths(i)) ' range: ' num2str(bs ranges(k))])

R.runEngagement();

% Store the values calculated

pib(i,k) = R.prof.outputs.averages.getIrradianceAllEffectsPib();

irradiancepeak(i,k) = R.prof.outputs.averages.getIrradianceAllEffectsPeak();

trans(i,k) = R.prof.outputs.averages.getTotalTrans();

else

pib(i,k) = NaN;

irradiancepeak(i,k) = NaN;

trans(i,k) = NaN;

end

% If values fall below threshold, stop terminating that

% range

if pib(i,k) < threshold && irradiancepeak(i,k) < irr threshold

if i == numel(zeniths) % If very last direction

pib(i,k:end) = NaN;

irradiancepeak(i,k:end) = NaN;

trans(i,k:end) = NaN;

else

% Set rest of range to NaN

pib(i,k+1:end) = NaN;

irradiancepeak(i,k+1:end) = NaN;
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trans(i,k+1:end) = NaN;

end

break

else

end

end % For ranges

end % For zeniths

%Save power in the bucket into an output folder that will be saved in

%the input folder

% Create a variable of information about this engagement for

% verification

platform altitude = R.prof.inputs.platform.getInitialAltitude;

atmosphere type = R.prof.inputs.getAtmosphere;

std type = R.prof.inputs.getAtmosphereStandardType;

weather = R.prof.inputs.getWeather;

if ~isempty(weather)

weather low alt = weather(2);

weather high alt = weather(3);

weather type = TYPE LIST{weather(1)};

name = strcat(engagement list.RadarArray(engage ind),' ',...

num2str(engagement list.Frequency(engage ind)),' ',...

engagement list.atmosphereType(engage ind),' ',...

engagement list.standardType(engage ind),' WX Num ',...
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num2str(weather(1)),' ',num2str(weatherLowAlt),' ',...

num2str(weatherHighAlt),' platAlt ',num2str(platAlt),...

' look ',num2str(platAngle));

else

weather low alt = [];

weather high alt = [];

weather type = [];

weather = [];

name = strcat(engagement list.RadarArray(engage ind),' ',...

num2str(engagement list.Frequency(engage ind)),' ',...

engagement list.atmosphereType(engage ind),' ',...

engagement list.standardType(engage ind),' platAlt ',...

num2str(platAlt),' look ',num2str(platAngle));

end

engagement info = v2struct(platform altitude,weather,...

weather high alt, weather low alt,weather type,...

atmosphere type,std type, platAngle);

fileName = [radar folder, '\', name{1}];

matfile(fileName, 'Writable', true);

save(fileName, 'pib');

save(fileName, 'irradiancepeak', '-append');

save(fileName, 'trans', '-append');

save(fileName, 'zeniths', '-append');

save(fileName, 'azimuths', '-append');

save(fileName, 'los range', '-append');
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save(fileName, 'targAlt', '-append');

save(fileName, 'powers', '-append');

save(fileName, 'engagement info', '-append');

disp(['Complete with radar file ' name{1}])

end % For engagement list

end

3.1 inputRadarData MATLAB Function (Needed By Script)

function [azimuths, zeniths, powers] = inputRadarData(array,frequency, ...

radar folder, threshold, max azimuth, max zenith)

%Get the name of the radar data file in question

baseFilename = strcat(array,' ',num2str(frequency),' Watts-1.mat');

baseFilename = baseFilename{1};

%read radar data file

radarData = load([radar folder '/' baseFilename]);

azimuths = radarData.AZ ANG;

zeniths = radarData.EL ANG;

powers = radarData.PAT W SQ MET;

%If negative, convert to positive equivalent

% azimuths(azimuths < 0) = azimuths(azimuths < 0) + 360;

% zeniths(zeniths < 0) = zeniths(zeniths < 0) + 360;

% Throw away data outside the cone

zeniths = zeniths((91 - max zenith):(91 + max zenith));

azimuths = azimuths((181 - max azimuth):(181 + max azimuth));

powers = powers((91 - max zenith):(91 + max zenith),...
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(181 - max azimuth):(181 + max azimuth));

%Cut off data where power is less than the threshold

[azimuths, zeniths] = meshgrid(zeniths, azimuths);

zeniths = zeniths(powers >= threshold);

azimuths = azimuths(powers >= threshold);

powers = powers(powers >= threshold);

% Take transpose to rotate 90 degrees so ULAs slice vertically

% powers = powers;

end
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Appendix D. MATLAB Script for Generating Plots from
Calculated Data

function final image processing(userin)

% This function plots a set of .mat files in a folder and plots the dB

% attenuation with respect to the PIB/IRR value that user defines

% Richard D Cook - AFIT/ENP

% Note for using v2struct and userin structure - Example Structure creation

%

% savefigtoggleon = true; % Toggles save .fig and .png if true

% xy res = 1000; % Resolution for interpolation in the plane perpendicular to the range

% interpolate = 0; % 1 if you want to interpolate according to xy res (not currently functional)

% datatype = 'irr'; % Either irr or pib for irradiance or power in the bucket

% inputFolder = '/Users/Richard Cook MBP/Documents/MATLAB/Thesis Data/Results 20 deg cone/new reference analysis/94 GHz'; % Location of raw data files

% figpath = '/Users/Richard Cook MBP/Documents/MATLAB/Thesis Data/Results 20 deg cone/new reference analysis/94 GHz'; % Path to save the generated figures in.

% pt size = 60; % Size of each filled circle in scatter3 plot

% ref value 35 = 1.4e6; % dB reference value for a 35 GHz file

% ref value 94 = 1.56e6; % dB reference value for a 94 GHz file

% userin = v2struct(savefigtoggleon,xy res,interpolate,datatype,...

% inputFolder,figpath,pt size);

format long g % So no Sci Not in altitude coordinate

%% **** Begin User Inputs ****

v2struct(userin) % v2struct.m can be found on File Exchange
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% **** End User Inputs ****

%% Inport the Data Files

rawDataFiles = dir(fullfile(inputFolder,'*.mat'));

for ii = 1:length(rawDataFiles) % Loop through all data files

% Get name of file

name = rawDataFiles(ii).name;

[~,basename,~] = fileparts([inputFolder '/' name]);

% Load the actual atmosphere file

load([inputFolder '/' name]);

if strcmp(datatype,'irr')

data = irradiancepeak;

else

data = pib;

end

% Trim off last azimuth/elevation pair (goes to full range)

data = data(1:end-1,:);

azimuths = azimuths(1:end-1,:);

zeniths = zeniths(1:end-1,:);

los range = los range(1:end-1,:);

targAlt = targAlt(1:end-1,:);
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% Setup the colormap

cmap = load('/Users/Richard Cook MBP/Documents/MATLAB/functions/fireCMAP.mat');

cmap = cmap.FireCMAP/255;

%% Plot Data

bs ranges = [5:500:10005]';

for i = 1:size(los range,2) % Loop through each range value

data temp = data(:,i);

targAlt temp = targAlt(:,i);

azimuth temp = azimuths;

zenith temp = zeniths;

los range temp = ones(size(zenith temp));

los range temp = bs ranges(i) * los range temp;

% Pull out NaN Values if there is a NaN in any of the three arrays

% (data, az, or zenith)

ix = isnan(data temp);

azimuth temp(ix) = [];

zenith temp(ix) = [];

los range temp(ix) = [];

targAlt temp(ix) = [];

data temp(ix) = [];

% Calculate dB attenuation based off what vacuum value would have been

% at that point

if strcmp(basename(5:6),'35')

dB atten = log10(data temp/ref value 35);
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elseif strcmp(basename(5:6),'94')

dB atten = log10(data temp/ref value 94);

else

error('Data did not include a 35 or 94 GHz file name')

end

% Convert to Cartesian coordinates for scatter3 plot

[x,y,z] = sph2cart(deg2rad(azimuth temp),deg2rad(zenith temp),los range temp);

z = (z+targAlt temp)/1000 ; % Correct for actual altitude and send to kilometers

x = x/1000; % Range to km

y = y/1000;

scatter3(x,y,z,pt size,dB atten,'filled');

hold on

colormap(cmap);

colorbar

h = colorbar;

if strcmp(datatype,'irr')

ylabel(h, 'dB Attenuation of Irradiance (Watts/mˆ2)')

else

ylabel(h,'dB Attenuation Power in the Bucket (Watts)')

end

end

% title([basename,descriptor],'interpreter','none');

ylabel('Lateral Distance from Aperture (in kilometers)')

xlabel('Range (in kilometers)')

zlabel('Above Ground Level (in kilometers)')

view(-18,6) % Standardize look angle

% set(gca,'YTickLabel','')
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% set(gca,'DataAspectRatio',[1 1 1]) % Standardize aspect ratio

caxis([-11,0]) % Standardize colorbar axis

xlim([0,10]);

sdf(1,'spotsize'); % See fileexchange for sdf.m subfunction

pause % Wait for user to adjust image and final approval

%% Save Figure

if savefigtoggleon

if strcmp(datatype,'irr')

saveas(gcf, fullfile(figpath, [basename,' irr ',descriptor]));

print(gcf,fullfile(figpath,[basename,' irr ',descriptor]),'-dpng','-r500');

else

saveas(gcf, fullfile(figpath, [basename,' pib ',descriptor]));

print(gcf,fullfile(figpath,[basename,' pib ',descriptor]),'-dpng','-r500');

end

close all;

else

end

end
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