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Abstract 

The rapid construction of expeditionary bases is associated with the forward 

deployment of Department of Defense (DoD) assets in response to contingency 

operations such as natural disasters, terrorist operations, or armed conflict. Usually 

expected to be transitory, expeditionary bases are constructed with temporary materials 

that can be erected quickly to provide an agile and flexible combat support. The Global 

War on Terrorism is entering its fifteenth year, and bases within Central Command that 

were expected to be temporary in duration have had an enduring presence.  The decision 

to transition a base from temporary construction or semi-permanent construction to 

permanent construction is difficult, as it requires a substantial capital investment for 

facility construction.  The decision is further complicated by unknown mission durations. 

The DoD has attempted to reduce the decision’s complexity with a model that guides the 

development of a base with a set of construction standards with suggested time horizons.  

This study evalulated the validity of the model through an economic analysis with 

the assumption a mission’s duration is unknown. A life-cycle cost model is developed to 

evaluate investments in temporary and permanent construction design alternatives to 

determine when or if permanent construction is fiscally advantageous for a given 

contingency duration. Despite limitations in the availability in cost data from Air Force 

Civil Engineer databases, the results show that temporary construction is preferable for 

contingency operations lasting up to twelve years in duration, while permanent 

construction is preferable after twelve years. With respect to the DoD’s construction 

standard model, this research’s results provide a different time horizon for choosing 

construction standards, when cost is the primary objective.
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AN ECONOMIC ANALYSIS OF A CONTINGENCY BASE’S TRANSITION TO 

ENDURING USING MONTE CARLO SIMULATIONS 

I.  Introduction 

Background 

Contingencies, or “…emergencies involving military forces caused by natural 

disasters, terrorists, or military operations,” often require the rapid construction of 

expeditionary bases to mitigate the emergency or conflict (Gibbs, 2012). Usually 

expected to be transitory, expeditionary bases are created with temporary construction in 

order to provide an agile and flexible means of providing support. The recent U.S. 

contingency operations in Middle East have, however, lasted much longer than most 

historical contingency operations or overseas conflicts. The ongoing mission to stabilize 

the region, coupled with the emergence of new threats, has required some expeditionary 

bases to remain open for over a decade. The longevity of the conflicts and the advent of 

new threats have led senior leaders to decide if they want to give bases a long-term, or 

enduring, status and provide more permanent construction or continue operations in an 

expeditionary state. A reduction in war funding and geo-political sensitivities has, 

however, made the decision to shift a base to an enduring status difficult to justify. The 

emergence of Islamic State in Iraq and Levant (ISIL) and the continued Afghan conflict 

have lead one to question what is the most cost effective mission support construction 

standard under uncertainties of a contingency operation.  
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Post 9/11 In-Country Troop and Funding Growth  

In an immediate response to Al Qaeda’s attacks on September 11, 2001, the US 

rapidly expanded its capability and footprint in the Middle East and increased in the 

Department of Defense’s (DoD) war-related spending. Within the first six months of 

Operation Enduring Freedom (OEF), the US established or significantly upgraded 12 

bases within the Central Command (CENTCOM) area of responsibility to provide agile 

combat support of air and ground missions. During the first year of the conflict, the US 

expeditionary base construction rate was comparable to the World War II requirement 

(Marion, 2006). The invasion of Iraq in 2003, coined Operation Iraqi Freedom (OIF) 

further expanded the US’s installation footprint within CENTCOM. By March of 2003, 

the number of deployed US troops had substantially grown from less than 20,000 to 

approximately 149,000 troops, supporting both OIF and OEF (Belasco, 2014). 

Consequently, the steady rise of deployed troops and the consistent expansion of the US’s 

Middle Eastern footprint forced the DoD to consistently increase war funding to sustain 

its operational capability. From 2001 to 2008, US overseas contingency spending rose 

from $36 billion to $195 billion, as shown in Figure 1. In short, the rapid expansion of the 

U.S’s footprint in the region contributed to the steady increase in the DoD’s war funding. 

 Budget Control Act of 2011 

The Budget Control Act of 2011 cut the DoD’s funding levels within 

CENTCOM. In response to the BCA’s passing, or sequestration as commonly known, the 

end of the Iraq mission, and the reduced mission in Afghanistan, the DoD reduced its war 

budget to $74 billion, cutting all war-related funding in half since 2011(Belasco, 2014). 
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The reduced war budget has made the large CENTCOM installation footprint difficult to 

sustain. 

 

 

Figure 1: Estimated War Funding By Operation (Belasco, 2014) 

 

Shift in Strategy 

After taking office in 2009, the Obama administration reevaluated of the US’s 

long term strategic plan in Iraq and Afghanistan to control the steady increase in war 

funding and footprint in the southwest Asia. The Obama administration’s new goal for 

the DoD was to begin a transition to a “advisory and assistance” role in Iraq and a “train 

and assistance role” in Afghanistan to bring closure to OIF and OEF (Belasco, 2014). The 

change in strategy, in both Iraq and Afghanistan, required significant reductions in US 

forces to facilitate a full turnover of operations to the Iraqi and Afghani security forces.  
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By December 2014, the US’s combat mission in Afghanistan had ended with conclusion 

of OEF and the shift to train, advise, and assist began with Operation Resolute Support 

(ORS) (NATO, 2015).  By the commencement of ORS, the US had 30 remaining 

expeditionary bases in the Afghanistan, which was previously 300 during the height of 

OEF (Lopez, 2015). To offset the force reduction in Afghanistan, some US owned 

expeditionary bases in nearby countries, including those shown in Figure 2, remained 

open and shifted to enduring locations. President Obama administration’s shift in 

strategy, thus, aligned the US’s future in the theater with anticipated reductions of the 

DoD’s budget. 

 

Figure 2: OEF and OIF Deployed U.S. Troops (Belasco, 2014) 
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New Threats 

The emergence of new threats has, however, made the US’s shift in strategy 

difficult and perhaps made a long-term presence a requirement for stability in the region. 

Aside from Al Qaeda, one of the most prominent threats in the Middle East has been the 

Islamic State in Iraq and Levant (ISIL). Three years after the final pullout of all US 

forces in Iraq, ISIL began an invasion that would eventually lead to the control of large 

portions of both Iraq and Syria. As ISIL continued to cause instability in the theater, the 

US launched a long-term campaign to counter the threat of ISIL in both Iraq and Libya 

(The White House, 2015). Russia’s actions in the Ukraine and expansion into Crimea 

have also become a key issue in the region. Since Crimea’s annexation to Russia, 

relations with Russia have grown tense because of a sizable growth of their military 

forces on the eastern Ukrainian boarder (Webber, 2014). Russia’s actions have 

encouraged the US to protect Ukraine and its neighbors from potential future aggression. 

Ultimately, new threats like ISIL and Russia make decisions in investing limited war 

funds difficult because the duration of potential operations that address these threats is 

difficult to predict. 

Problem Statement/Research Objective 

Overall, decisions that determine the allocation of funds for expeditionary bases 

have become more important now than ever in the history of the conflicts in the Middle 

East. The BCA of 2011 and strategy to reduce the US footprint in the Middle East have 

made investments in enduring locations with permanent construction more difficult to 



 

 

6 

 

justify. Conversely, the need for success in ORS and the emergence of new threats has 

created a demand for a sustained presence in the region.  As new threats materialize and 

the US’s interests move away from the President’s reduction strategy, the actual duration 

of the conflict becomes increasingly difficult to predict. Consequently, an investment 

decision in temporary or permanent construction for an expeditionary base transforms 

from a decision with some certainty to a decision with a great deal of uncertainty. Thus, 

the objective of this research is to conduct an economic analysis of investments in various 

forms of construction in order to determine the most economical choice, given mission 

duration is unknown. In order to meet these objectives, this study will attempt to answer 

the following investigative questions:  

1) How does a decision maker determine if a transition to an enduring status 

is advantageous? 

 

2) How does the duration of a contingency operation affect the decision to 

transition to an enduring status? 

 

3) How does an uncertainty in duration of a contingency operation affect the 

dynamics of the decision to transition to an enduring status? 

 

4) How does a decision maker’s attitude towards risk affect the decision to 

transition to an enduring status when uncertain about the duration of the 

mission? 

Scope 

 While the problem of interest is DoD contingency construction standards, the 

quantitative analysis was limited to Air Force lodging facilities.   The results of the 

literature review provides a decision framework that can be used by decision makers to 

evaluate the utility of committing significant resources towards the development of 



 

 

7 

 

contingency bases with permanent construction; this framework is applicable to all 

installations and all building types.  However, the analysis to determine the effect of 

mission duration on life cycle costs for contingency installations was scoped to consider 

only Air Force lodging facilities at the contingency bases of Al Udeid, Qatar and Al-

Dhafra, UAE. Consequently any inferences from the life cycle cost analysis should be 

appropriately caveated by the small scope.  

Implications 

Academic  

This study interprets DoD policy and doctrine to build a framework for evaluating 

contingency construction alternatives in the transformation of a contingency base to an 

enduring base.   

Practical 

This study produces a useable model to assist decision makers seeking to improve 

the infrastructure of an expeditionary base. The model incorporates the facility life cycle 

costs, a decision maker’s current state of information, and data describing the variance in 

mission duration in Afghanistan.  

Preview 

This study follows traditional five-chapter format. Chapter II provides an answer 

to the first investigative question through an examination of literature. Chapter II uses 

DoD doctrine on expeditionary base development and foundational concepts of decision 

analysis to break down the decision. Ultimately, Chapter II shall synthesize the DoD’s 
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expeditionary base model into measurable objectives. Chapter III provides methodologies 

to answer the next three investigative questions by focusing on only one of the objectives: 

minimizing cost. Chapter III focuses on the objective by providing a life cycle cost 

estimation model that evaluates and compares design alternatives used in contingency 

operations to provide recommendations. Chapter IV presents the results of the 

implementation the model with real data from contingency bases. Finally, Chapter V 

provides a discussion of the results with respect to each investigative question and 

provides recommendations for future research to enhance the research.  
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II. Literature Review 

Chapter Overview 

The purpose of the literature review is to provide a framework for decision 

makers that can be used evaluate if a contingency installation should use permanent 

construction standards of if the installation should continue to use temporary or semi-

permanent construction.  The DoD’s doctrine on expeditionary base development is 

examined and discussed to offer an in-depth understanding the objectives within the 

DoD’s model. Next, decision analysis techniques are used to synthesize the DoD’s 

doctrine into measurable objectives to enhance the DoD’s model. Each objective is 

examined and discussed to provide insight into how they may be measured. The chapter 

concludes by presenting a decision framework developed from the literature. 

Expeditionary Base Development 

 Expeditionary base development is the process of planning, constructing, 

sustaining, expanding, and divesting the assets of a expeditionary base in order to support 

a strategic mission (Quasney, 2012).  The DoD and AF have two to models to explain the 

expeditionary base development process.  The first model is the Air and Space 

Expeditionary Task Force (AETF) force module (FM) construct, which guides engineers 

through the concepts and operations of the initial stages of an expeditionary base’s 

construction.  The other model, the Construction Standards framework, builds on the 
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AETF FM construct and provides details on the construction standards used in the phases 

of an expeditionary base’s life cycle.  

AETF Force Module Phased Deployment 

Contingency operations often require the rapid beddown of forces in austere 

locations in order to support the expedient mitigation of an emergency or conflict.  

Engineers support the beddown of forces by constructing bare bases, which provide an 

initial platform to launch contingency operations (Quasney, 2012).  Bare bases are 

expeditionary bases that have minimum capabilities to sustain or support a strategic 

mission (Quasney, 2012).  Most expeditionary bases are initially constructed as bare 

bases under the AF’s AETF FM construct.  

The AETF FM construct is a concept that describes the systematic process of 

opening an airfield, establishing operational capability, and conducting subsequent air 

operations (Quasney, 2012).  The construct groups Unit Type Codes (UTCs), or a group 

of personnel and equipment providing specific capabilities, to deliver combat and 

engineering support functions into force modules (FM).  Each FM, therefore, plays a 

specific role in both the development of a bare base and the deployment of forces.  The 

deployment of each UTC is planned around force modules to methodically construct a 

bare base.  The modules are designed to build off of one another in a synergistic manner 

to provide seamless transitions and continuity in the bare base development process 

(Gorenc, 2006).  The construct, as shown in Figure 3, consists of six element which 

include open the airbase, command and control (C2), establish the airbase, generate the 

mission, operate the airbase, and robust the airbase (Gorenc, 2006). 
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Figure 3: AETF Force Module Phased Deployment (Gibbs, 2012) 

The first FM, Open the Airbase, initiates the bare base development process.  The 

UTCs provided in the Open the Airbase FM arrive first to the designated location and 

must fulfill three critical tasks within 36 hours of arrival.  The UTCs must secure the 

area, assess resources, and, most importantly, establish minimum operational capabilities 

(Gorenc, 2006).  Establishing minimum operational capabilities involves the construction 

of initial infrastructure and facilities, while either establishing or rehabilitating an airfield 

to support the arrival of subsequent UTCs.  Therefore, the first FM builds the foundation 

of the expeditionary base and its success is crucial to AETF FM construct.  

The next FM is the Command and Control (C2) FM.  The goal of the C2 FM is to 

establish an air expeditionary wing command and control structure at the location in 16 

hours upon arrival.  A typical air expeditionary wing C2 structure is comprised of aircraft 

maintenance, operations, mission support, and medical group staffs.  The group staffs 

work together to further coordinate the development of the expeditionary base and 

provide a command structure for their respective squadrons.  Once the UTCs of the C2 

force module have organized a structured expeditionary air wing, the leadership 
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personnel of the command structure assume command of the airbase, including all initial 

elements of the Open the Airbase FM.  In short the C2 FM establishes an organizational 

structure to the expeditionary airbase. 

Once all initial assets are built by the Open the Airbase UTCs, the Establish the 

Airbase FM UTCs arrive with the task to enhance the infrastructure of expeditionary 

base.  Since opening the airbase has few infrastructure requirements, the civil engineer 

services and mission related capabilities of the airbase are limited upon arrive of these 

UTCs.  Thus, the UTCs in the module either build new or adapt existing infrastructure to 

both establish mission related infrastructure and enhance other support infrastructure.   

For example, the UTCs construct liquid fuels infrastructure and munitions storage to 

provide the base’s first mission related capabilities.  Moreover, additional tents and 

support utilities, like water, electrical, and communications, are installed to improve the 

quality of life of the base (Gorenc, 2006).  Overall, the Establish the Airbase UTCs take 

about 10 days to enhance the expeditionary base’s infrastructure (Quasney, 2012).  

 Perhaps the force module with the most mission related importance is the 

Generate the Mission force module.  The module is designed to provide mission and 

aviation packages to the expeditionary base in order to align its operational capabilities 

with the vision of the combatant commander (CCDRs) (Gorenc, 2006).  UTCs in the FM 

sometimes arrive early in the bare base development process so that they can coordinate 

with UTCs tasked with opening the airbase, C2, and establishing the airbase.  Some 

services provided by the follow-on UTCs may be needed to fully generate the mission; 

therefore, the UTCs are given 80 hours from the start of the arrival of the follow-on force 
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module to complete their mission.  At completion the base should be able to adequately 

achieve its intended mission.  

The next two FMs are primarily transition the expeditionary base to a more robust 

and established location through UTCs providing mission support capabilities.  The 

Operate the Airbase FM contains UTCs required to enhance most, if not all, mission 

support capabilities in order to make the airbase fully operational within seven days.  The 

module provides equipment and mission support personnel to improve the installation’s 

force protection systems and quality of life conditions.  Perhaps the most important 

function of the module is that it initiates the transition from an austere or initial 

construction standards to temporary construction standard (Quasney, 2012). The next 

FM, Robust the Airbase, is ongoing until an airbase’s closure. The UTCs in the module 

arrive 30 days after the Establish the Airbase UTCs complete their tasks.  The UTCs 

deliver capabilities that support the sustainment and enhancement of the expeditionary 

base for the remainder of the base’s life.  Ultimately, the transition of an airbase from 

contingency to enduring occurs in these two-force modules.   

Construction Standards  

As shown in the AETF FM construct, an expeditionary base’s infrastructure is 

progressively improved to some degree with the deployment of each FM.  Joint 

publication (JP) 3-34,  Joint Engineer Operations, supplements the AETF FM construct 

by establishing a framework for both selecting and improving construction standards in 

the last two FMs.  Construction standards are, effectively, guidelines by which an airbase 

constructs or improves its infrastructure.  JP 3-34 provides five classifications of 
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construction standards which are intended  “to ensure efficient application of limited 

engineering assets and to responsively support the commander’s intent” for the 

contingency operation (Gortney, 2011).  The timeline provided in Figure 4 summarizes 

JP 3-34’s framework for the maturation of construction standards as a base develops in 

time.  The five classifications of construction standards are subdivided into the two 

phases of an expeditionary airbase’s development, which are the contingency phase and 

the enduring phase.  

 

Figure 4: Force Beddown and Basing Continuum (Gortney, 2011) 
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The contingency phase of an expeditionary airbase begins when the first UTCs 

arrive to open the airbase and continue until the two-year mark.  Standards typically used 

in the contingency phase include the organic, initial, and temporary construction 

standards.  Organic, or expeditionary, construction is used in the initial establishment of 

an expeditionary airbase, as described in the AETF FM construct.  Organic assets are 

assets that are necessary to move, receive and beddown forces in austere locations with 

no external engineering support (Quasney, 2012).  Organic construction is used to 

support an interim solution until subsequent engineering support arrives.  Organic 

construction is a subset of initial construction standards but is usually intended for use up 

to 90 days.  Initial construction is, also, intended for ephemeral operations but the 

standards generally include any facility designs that can be used for up to six months.  

According to JP 3-34 initial construction is “…characterized austere facilities requiring 

minimal engineer effort…” and is intended to bypass the challenges of resource 

availability in harsh locations (Gortney, 2011).  Finally, the most advanced form of 

construction used in the contingency phase is temporary construction standards.  

Temporary construction is a standard that include facilities that require additional 

engineer support, in comparison to initial standards. Temporary construction provides the 

infrastructure to extend an expeditionary base’s capabilities beyond those provided by 

initial construction.  Usually intended for use up to 24 months, temporary construction 

can be used to sustain non-transient operations for up to five years with additional 

engineering support and may replace initial construction.  In general, installations in the 

contingency phase use construction that is mobile, flexible, and short-lived.  
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The enduring phase of an expeditionary airbase begins after two years of 

contingency operations.  Semi-permanent and permanent construction standards are 

typical of the enduring phase of an expeditionary airbase because the mission is no longer 

expected to be transient.  Semi-permanent construction include facilities that are designed 

for “…moderate energy, maintenance, and life cycle costs…” and are typically used to 

enhance or modernize an installation’s current infrastructure, whether initial or temporary 

(Gortney, 2011).  According to JP 3-34 any facility design that has a “…life 

expectancy…” of more than 2 but less than 10 years is considered semi-permanent 

construction (Gortney, 2011).  In comparison permanent construction includes facilities 

that are designed for high-energy efficiency with low life cycle and maintenance costs.  

Permanent construction is best suited for missions lasting longer than 10 years because 

their qualities surpass those of semi-permanent construction.  In general enduring 

standards are intended for longer missions than those of contingency operations because 

of the efficiencies provided by semi-permanent and permanent facility designs best suite 

long-term use. 

Choosing Construction Standards 

Although the framework presents a timeline for all construction standards, the 

actual development of an expeditionary base is not always linear as the framework 

suggests.  For example, combatant commanders (CCDRs), the decision makers in 

expeditionary base development, may decide to either sustain initial standards, mature to 

the next standard, or skip a standard in the framework’s timeline (Gortney, 2011).  The 

future of the base is a result of their selection of an optimal standard that best suits the 
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contingency operation.  CCDRs select a standard that aligns with the strategic objectives 

of expeditionary base development, while considering the construction funding timelines, 

limitations of international policies, and the volatile environment.  

According to JP 3-34, CCDRs have two strategic objectives when selecting the 

optimal construction standard.  The first is selecting a construction standard that 

“…optimizes engineer effort on any given facility” (Gortney, 2011).  For example, 

CCDRs may choose to avoid a construction standard with facility designs that need 

extensive maintenance to sustain their requirements for the expected duration of their use. 

Generally, selecting a standard that optimizes engineer effort entails evaluating the long-

term investment of a facility design.  The second objective is ensuring that the facility 

designs of the standard are “…adequate for health, safety, and mission accomplishment” 

(Gortney, 2011).  Under the conditions and environment of the contingency, CCDRs 

must evaluate the facility design’s quality of life amenities and resilience to attack to 

provide optimal conditions for the users of the facility.  In short, CCDRs must select a 

construction standard that provides facilities that balance long-term costs and overall 

quality.  

In addition to achieving strategic objectives, CCDRs must also consider the 

implications of using military construction (MILCON), operations and maintenance 

(O&M), and 3080 funds for construction projects in the selection of a standard.  Most 

enduring construction projects are subject to the MILCON approval process because of 

their high cost.  According to Title 10 of the United States Code (USC), a construction 

project amounting to more than $1,000,000 in cost, which is not solely intended to 
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correct some deficiency in life, health, or safety, must be funded with MILCON funds 

(Hughes, 2005).  The challenge in using MILCON funds is the requirement of 

congressional approval before use.  Often times the wait for approval may delay projects 

for up to five years, making other construction standards with different funding venues 

more attractive.  Most contingency construction standards can, however, be procured and 

constructed faster than enduring projects because of their use of cheap, temporary 

materials.  For example, Title 10 says that any project cheaper than $1,000,000 can be 

funded Operations and Maintenance (O&M) funds, which are not subject to 

congressional review (Hughes, 2005).  Although O&M funds are readily available, the 

amount of O&M funds is limited because many other mission requirements, other than 

construction, compete for their use.  If a project is expensive, then it may be difficult to 

fund with O&M funds because the base may need a substantial amount of the funds to 

ensure continuity of its mission.  Because most construction projects are expensive and 

have an immediate need, investment equipment funds, or 3080 funds, are used because 

the amount of funds are more robust than that of O&M funds and they are readily 

available.  While 3080 funds are typically used for equipment purchases, they can also be 

used for construction purposes.  For example, if the construction is not permanent and a 

complete building system is less than $250,000, then 3080 funds can be used because the 

project can be reclassified as a procurement of equipment (Bolton, 2015).  Relocatable 

buildings (RLBs), a form of semi-permanent construction, are typically procured with 

3080 funds because they can be assembled as building systems costing less than 
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$250,000.  Overall, MILCON, O&M, and 3080 funds all have setbacks and advantages 

that a CCDR must consider in selecting a construction standard. 

CCDRs must also consider DoD and host nation policies that limit permanency.  

In some cases, the selection of a standard is either mandatory or highly discouraged by 

the DoD.  For example, if a RLB is being considered, then he/she must consult DoD 

policy.  A relocatable building, as defined by Department of Defense Instruction (DODI) 

4165.56, is “…a habitable prefabricated structure that is designed and constructed to be 

readily moved […], erected, disassembled, stored, and reused” (Esteves, 2013).  DODI 

4165.56 allows relocatable buildings to be used in one of two ways in contingency 

environments.  First, relocatable buildings can be used when they are the most cost 

effective way to deliver short-term facility requirements (Esteves, 2013).  For example, 

an installation may be awaiting congressional approval of a project that is intended to 

provide permanent construction but needs an interim facility.  Second, the DoD prefers 

the use of relocatable buildings can be used when the length of the mission requirement is 

unknown (Esteves, 2013).  Another example of a DoD policy that regulates the selection 

of a construction standard is AFI 32-1032’s policy on permanent construction. AFI 32-

1032 that emphasizes that permanent construction should only be used for anti-terrorism 

force protection or special mission operations (Green, 2014).  As a substitute the AFI 

promotes the use of relocatable buildings, encouraging their use as much as possible in 

contingency operations.  Aside from DoD policy, host nations (HNs) may have 

limitations on permanency.  HNs are nations that have agreed to host US forces on their 

nation’s soil.  However, some HNs may either lack a bilateral agreement with the US 
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clarifying the US’s long-term presence in their country or have an agreement with 

limitations on permanency.  If such circumstances exist, the US must resort to 

contingency standards for construction.  Ultimately, DoD and HN policies on 

permanency can limit a CCDR in their decision of choosing an optimal standard. 

Perhaps the most challenging constraint in the selection of a construction standard 

is the uncertainty of the duration’s mission.  Contingency operations are inherently 

volatile because they are responses to emergency situations.  As the emergency either 

diminishes or intensifies, the mission requirements needed to mitigate the emergency 

fluctuate.  Consequently, an expeditionary base’s mission requirements change with the 

operation’s requirements. Therefore, the expected life of an expeditionary base is difficult 

to predict in these conditions and the selection of each construction standard has risks. 

Decisions to maintain the initial standards, after beddown of initial forces, are indicative 

of a volatile contingency operation with much uncertainty in its longevity. Thus, decision 

makers seek to minimize risk by avoiding investments in new construction. Alternatively, 

stable conditions with minimal variance in mission requirements may bring clarity to the 

duration of an expeditionary base’s mission. If the decision maker has some confidence 

that the mission’s duration aligns with guidelines with or higher than the next standard, 

then they may seek to either mature to the next standard or skip the next standard to 

minimize the risk of a poor investment. Thus, combatant commanders (CCDRs) must 

evaluate the risks of each construction standard under the cloud of uncertainty.  



 

 

21 

 

Summary of Expeditionary Base Development 

JP 3-34 has demonstrated that the transition from contingency to enduring is a 

decision to improve an expeditionary base to a non-transient construction standard.  The 

AETF FM construct has illustrated that most, if not all, expeditionary bases are born with 

organic or initial standards. The JP 3-34’s construction standard framework becomes 

relevant to CCDRs after the initial beddown of forces. The framework serves merely as a 

guide for CCDRs to select an optimal standard for an expeditionary base in a contingency 

operation. Although the framework suggests timeframes for each construction standard, 

JP 3-34 argues that CCDR’s must consider the four strategic objectives of expeditionary 

base development, constraints of funding, international policy, and expected length of the 

contingency operation. The length of contingency operations, however, is difficult to 

predict. Thus, the decision to transition to an enduring status is a decision with multiple 

objectives with uncertainty.  

Decision Analysis 

Decision analysis is “…a philosophy and a social-technical process to create 

value for decision makers and stakeholders facing difficult decisions” (Parnell et al., 

2013).  Decision analysis is particularly useful for breaking down for decisions like the 

decision problem of transitioning to an enduring status. Clemens and Reilly (2013) argue 

that decision analysis is advantageous when a decision maker is faced with a complex 

decision that has uncertainty, multiple and competing objectives, and more than one 
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stakeholder. Moreover, decision analysis methods and techniques have been previously 

applied to infrastructure improvement situations.  

Karvetski et al. (2009) experienced many of the same problems of expeditionary 

base development when they used decision analysis methods to priortize infrastructure 

construction projects in Nangarhar, a border province of Afghanistan. The study was 

conducted in, 2008, in the midst of OEF, when conditions were extremely volatile in the 

region. At the time, the DoD and US Department of State were funding infrastructure 

projects to stimulate growth. Both agencies worked closely working with the Afghanistan 

military and Nangarhar civil authorities to rebuild the province. The goal of the authors 

was to develop a multi-criteria decision model that incorporated the values of all 

stakeholders to score and prioritize infrastructure improvement projects. To account for 

the volatile conditions of the region, Karvetski et al. included scenarios into their model 

that reflected emergent, or possible, conditions in the province. Some scenarios 

accounted for the safety of the population with security upturn or downturn scenarios. 

Others accounted for natural, normal, and abnormal disaster situations to understand the 

value of a infrastructure project during these events (Javed et al., 2009; Karvetski et al., 

2009). The resulting multi-criteria model proved to meet the requirements of each 

stakeholder. In general, Karvetski et al.’s model demonstrates that decision analysis is 

applicable to the decision to transition to an enduring status because the decision involves 

improving infrastructure.  

 Zhoa et al. (2004) used a real options approach, a branch of decision analysis, for 

a decision-making under uncertainty. The authors developed a multi-stage stochastic 
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model to select an optimal highway design, incorporating several uncertainties to account 

for political, social, and environmental changes. As opposed to Karvetski et al. (2009)’s 

model,  Zhoa et al. (2004)’s model only included an objective to maximize expected 

payoff. Some of these uncertainties were traffic demand, land price, and highway service 

quality. Traffic demand was used in the model to account for changes in the use of the 

potential highway design, as populations fluctuate over time due to external factors. Land 

price was included to account for changes in land use and market value. Highway service 

quality was used to account for the natural deterioration of the pavement material of the 

highway. The model also included a cost function to model the life cycle cost changes in 

time. Ultimately, a solution algorithm was developed from a Monte Carlo simulation was 

and a least squares regression. The result of the model provided a suggested a number of 

lanes, width of lanes, and expected payback of the recommended design (Zhao et al., 

2004).  Zho et al.’s model is similar to the decision to transition to an enduring status in 

that the selection of an optimal construction standards, or design, is of interest in an 

uncertain situation. 

  As illustrated in Karvetski et al. (2009)’s and Zhao et al. (2004)’s models, the 

practice of decision analysis can be broken down into two general categories: single 

objectives decision analysis and multiple objective decision analysis. Single objective 

decision analysis is the simpler form. In some cases decisions makers have one objective 

in selecting optimal alternatives. Often these lone objectives are monetary in nature 

because cost, profit, or revenue is of interest to the decision maker. Typically seen in 

business organizations, one common example of an objective in single objective decision 
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analysis is maximizing shareholder value using some monetary scale (Parnell et al., 

2013).  Zhao et al’s model was similar in that their model’s objective was to maximize 

expected payoff. The second form of decision analysis is multiple objective decision 

analysis (MODA). MODA offers a methodical process, of evaluating alternatives with 

multiple objectives. Often executive positions of large organizations have several 

objectives because other parties, who have a stake in the decision, have different goals. 

Some of these goals may be non-monetary objectives; therefore, MODA applications 

typically use a philosophy called Value Focused Thinking (VFT) to objectively quantify 

non-monetary objectives. According to Keeney (1994), VFT is a process that is 

“…designed to focus the decision maker on the essential activities that must occur prior 

to solving a decision problem”.  VFT starts with the values, generates better alternatives 

than those that already exist, creates better decision opportunities, and uses the values to 

generate better alternatives. Because MODA evaluates several objectives in one decision, 

it is especially useful in investigating tradeoffss in other values of an alternative. For 

example, in a decision to select an apartment to rent, one might pay more money for more 

livable space. Thus, there is a monetary trade of with more or less livable space. In 

Karvetski’s et al’s model, monetary tradeoffss between stakeholder values was 

investigated in their infrastructure prioritization model. Of the two branches of decision 

analysis, MODA is more commonly used, as complex decisions often have multiple 

objectives.  
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Figure 5: Organization of Decision Analysis Practice (Parnell et al., 2013) 

 

Application of Decision Analysis 

Parnell et al. (2013) suggest that the most important step in the decision analysis 

process is framing the decision. Framing the decision helps the decision maker clearly 

define the decision and the implications of the decision. A well-defined decision frame 

specifies the purpose of the decision, gives perspective on the decision situation, and 

properly scopes the decision to what needs to be considered (Parnell et al., 2013). Thus, 

in order to accurately define the decision to transition to an enduring status, the decision 

classification must be identified and the decision’s vision statement must be developed. 

According to Parnell et al. a decision is an irrevocable allocation of resources that 

has three classifications, or levels of hierarchy, as shown in Figure 6, that shed light on 

the perspective of the decision (Parnell et al., 2013). The first type of decision is a 
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strategic decision. Strategic decisions are high-level, foundational decisions that are 

typically made at the executive level of an organization. Strategic decisions are focused 

on the long range goals of an organization and address the future desired states of the 

organization (Parnell et al., 2013).  In contingency environments strategic decisions are 

made at the general officer level and establish the overall vision and mission to mitigate 

the threat or emergency. For example, a strategic decision in a contingency operation 

may be the selection of a location of an expeditionary base. Next, operational decisions 

are decisions that are generated from the outcome of strategic decisions. Operational 

decisions use the vision and missions of an organization to determine how resources are 

to be mobilized in order to meet those long-range objectives. The selection of a 

construction standard is prime example of an operational decision because the decision 

effects the allocation of funds and resources. Finally, the last classification of decisions is 

tactical decisions. Tactical decisions are routine, daily decisions and are generated from 

tactical decisions in the organization. In expeditionary base development, some example 

of tactical decisions may be decisions on where to construction facilities or maintenance 

strategies for the facilities. In general, the selection of a construction standard is an 

operational decision, as it is the focus of the process. 
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Figure 6: Decision Hierarchy (Parnell et al., 2013)  

 

A decision vision statement aids in defining the purpose and scope of the 

decision. A decision’s vision statement succinctly clarifies: 1) the definition of the 

decision, 2) the purpose of the decision, and 3) a precedent for success in the decision 

(Parnell et al., 2013). JP 3-34’s construction standards framework has defined most of the 

decision. JP 3-34 illustrated that the transition of contingency to enduring is a decision to 

improve to a higher construction standard. A decision in selection of a construction 

standard, however, is not an irrevocable allocation of resources as no tangible resources 

are tied to construction standard. A decision maker does not allocate resources if they 

were to select a specific construction standard. Conversely, selecting a design for 

construction at an expeditionary base is an irrevocable allocation of resources, as it 

requires funds, materials, and manpower. JP 3-34 did allude to the fact the construction 

standards are classifications of facility designs. For example, facility designs may be 
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classified as initial, temporary, semi-permanent, or permanent facility designs. 

Furthermore, semi-permanent and permanent design may be classified as enduring 

designs while initial or temporary design may be classified as contingency designs. In 

short, the decision to transition to an enduring status is made through evaluating design 

alternatives with respect to the demands and environment of the contingency operation.  

Next, the purpose of the decision was communicated through JP 3-34’s strategic 

objectives of selecting construction standards. The purpose of the decision is to optimize 

engineer effort and meet user requirements such as health, safety, and mission 

accomplishment.  

Finally, JP 3-34 established that there are multiple stakeholders in the decision. 

Some examples of stakeholders include host nations, users of the facilities, and the 

funding source of the construction of the facility. Thus, the precedent of success is when 

all stakeholders are satisfied with the selected facility design. Using JP 3-34 literature on 

the decision, a possible vision statement for selecting a construction standard is shown 

below in Figure 7. 

 

Figure 7: Vision Statement 
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Objectives and Value Measures 

The next step in evaluating the decision is the identification of objectives. 

According the Clemen and Reilly (2013), an objective is something specific that a 

decision maker wishes to achieve in the context of the decision’s frame. In decision 

analysis objectives are used to measure the value of an alternative with respect to the 

direction of preference of each objective.  For example, in order to determine which bases 

should be closed in the 2005 BRAC, decision makers sought to measure the maneuver 

space that each base provided (Ewing Jr. et al., 2006). If a base had a relatively large 

amount of maneuver space, then the base scored well in the objective because the 

direction of preference was to maximize maneuver space. Similarly, in a decision model 

for evaluating the US Marine Corps’ mobile protected weapons system, decision makers 

valued weapons systems that were accurate in non-stationary, long-range attacks (Buede 

& Bresnick, 1992). The Marine Corps’ objective was to maximize the accuracy of non-

stationary, long-range attacks. Thus, decision makers must identify all objectives that 

holistically conceptualize the desired qualities of an alternative, in order to build a 

reliable model that aids in decision-making.  

Each objective is quantified with a metric, or value measures, that properly 

communicates and measures how the alternatives score. Because there are multiple 

frameworks for measuring the achievement of objectives, value measures have four 

classifications: natural, constructed, direct, and proxy measures. A natural scale is a scale 

that is commonly used to measure an objective of interest. Dollars is a typical natural 

scale used in acquisition decision models. Conversely, constructed scales, or scales that 
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are developed to suite particular objectives, are used when natural scales cannot 

accurately or precisely quantify the achievement of an objective. In Ewing Jr. et al’s 

article on 2005 BRAC, the decision model included a constructed scale that measured the 

quality of available space at a particular base because no existing scale could effectively 

measure the objective (Ewing Jr et al., 2006). A direct scale directly measures the degree 

of attainment of an objective. Profit is a common direct scale metric that is used in 

objectives that seek to maximize income to an organization. On the other hand, proxy 

scales are indirect measurements through reflecting the degree of attainment of its 

associated objective (Kirkwood, 1996). In general, a value measure can either have a 

natural or constructed and direct or proxy scale, as shown in Figure 8. 

 

Figure 8: Example of Value Measures (Tryon, 2005) 

 

Since the frame has defined the decision as a selection of an optimal facility 

design, the objectives of the decision must measure a facility’s characteristics in relation 

to other facility designs. System lifecycle properties, or desired characteristics of systems 

that surface after the system has been put to use, can provide a means for measuring the 

characteristics facilities (de Weck, 2012). According to McManus et al (2007), system 
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lifecycle properties provide a way to change in response to the changes in the 

requirements and context of the system. Thus, engineers consider system lifecycle 

properties in the development of their facility designs. Among all others quality, safety, 

and reliability are some system lifecycle properties that JP 3-34 alludes, as it requires a 

facility that is adequate for “…health, safety, and mission requirements” and that 

“…optimizes engineer effort” (Gortney, 2011) 

Quality: Maximize Quality of Life of Personnel 

One of the most basic system lifecycle properties in expeditionary base 

development is a facility’s quality. According to DeWeck et al. (2011), quality is the 

ability of a system to achieve its intended function. In JP 3-34 the four real estate 

requirements are used to communicate four basic intended purposes of facility designs at 

expeditionary bases. The four real estate requirements are operational facilities, logistics 

facilities, common-use facilities, and force beddown facilities (Gortney, 2011). 

Operational facilities are designed to execute the mission by providing a platform for 

weapons systems or command and control capabilities.  For example, some common AF 

expeditionary operational facilities are aircraft hangers, airfields, and command post 

buildings. Logistical facilities are purposed for directly supporting mission requirements. 

Maintenance facilities, ammunitions supply points, and warehouses are examples of 

logistical facilities. Common use facilities are primarily dedicated for the transportation 

of goods and services, like roads or railroads. Finally, force beddown facilities are 

provide quality of life amenities and services to base personnel. Force beddown facilities 

include billeting, dining halls, medical clinics, and religious support facilities, along with 
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many other facilities. Thus, one objective in selecting a facility design may be measuring 

the degree to which it fulfills its mission requirements.  

Among all other facility on expeditionary bases, force beddown facilities are 

central in expeditionary base development. Not only do force beddown facilities 

represent the largest portion of an expeditionary base’s asset portfolio, but they also 

contribute directly to the health and readiness of personnel on the base. Because force 

beddown facilities are key in an expeditionary base’s development, the quality of life 

amenities and services provided by these facilities are of high importance to decision 

makers. For example, during the opening ceremony of the second Blatchford-Preston 

Complex dormitory at Al Udeid Airbase, Colonel Caroline Miller asserted that the dorms 

were built to improve the quality of life for deployed service members (Babcock, 2015). 

Additionally, force beddown facilities may contribute to the health, morale, and welfare 

of the deployed service members. Since no measure has been suggested other to measure 

quality of life, a direct constructed scale should be considered to measure the degree of 

the quality of life of a particular facility design. Because they are central to the transition, 

billeting facilities designs are the focus of this study. 

Safety: Maximize Antiterrorism Protection 

Another critical system lifecycle property in expeditionary base development, 

according to JP 3-34, is safety.  For the purposes of this research, safety is the ability of a 

system to protect its users and others from the harm of some other circumstance. Since 

expeditionary bases are constructed in austere environments, local threats in the 

environments pose the biggest safety risk to personnel. Some risks include vehicle born 
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improvised explosive devises, mortars, and small arms fire. To mitigate such risk and 

protect base personnel from a local threat, Antiterrorism (AT) standards of UFC 4-010-01 

are incorporated into base master planning and the selection of facility designs. 

According to Hudson et al. (2005), antiterrorism is the practice of “fostering awareness of 

potential threats, deterring aggressors, developing security measures, planning for future 

events, interdicting an event in process, and ultimately mitigating and managing the 

consequences of an event.” AT standards typically drive site planning because some 

policy requires standoff distances from roads for different types of facilities. In addition 

JP 3-34 suggests selection of construction standards and facility designs (Gortney, 2011). 

A comprehensive and transitory antiterrorism scale that measures a facility design’s 

ability to account for adverse threats, however, does not exist because all contingency 

environment have different threats. Thus, another objective in the selection of a facility 

design is maximizing antiterrorism protection; furthermore, a direct constructed scale 

should be developed to account for the contingency’s surrounding environment.  

Reliability: Minimize Life Cycle Costs 

Reliability is the ability of a system to consistently sustain a specified functional 

requirement or condition. While describing each construction standard and objective in 

the selection process, JP 3-34 makes several allusions to the need for reliable facility 

designs. For example, one of the strategic objectives in selecting construction standards is 

optimizing the “…engineer effort…” of any given facility (Gortney, 2011). Effectively, 

JP 3-34’s first strategic objective references the need to minimize maintenance efforts 

because externalities, including those shown in Figure 9, adversely affect a system’s 
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reliability (Grussing, 2006). As each component of the facility degrades over time, the 

need for maintenance increases because either the facility is no longer in an acceptable 

condition or the facility is not meeting some functional performance requirement (Labi, 

2014). Thus, based on JP 3-34’s strategic objective, a system that requires extensive or 

continuous maintenance to extend its useful life is not preferred.  

 

Figure 9: Factors Contributing to a Systems Condition (De Weck et al., 2011) 

 

While there are many tools for measuring a facility’s reliability, the purpose of 

measuring reliability is to plan maintenance strategies in order to minimize the total life 

cycle cost of a facility, or the total of all costs incurred over the facility’s life. According 

to De Weck et al. (2011), there are two types of maintenance strategies: preventative 

maintenance and corrective maintenance. Preventative maintenance is maintenance that is 

purposed for ensure that a facility does not fail to meet some preferred condition or 

functional requirement. Preventative maintenance actions are relatively low in cost take 

place periodically throughout the facility’s useful. Conversely, corrective maintenance 
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involves any repair or rehabilitation action to bring a facility back to either a suitable 

condition or functional state. Corrective maintenance actions are relatively higher in cost 

than preventative maintenance, and they typically occur after some deficiency has 

occurred in the facility (Hicks et al., 1999). Hicks et al demonstrates the difference in cost 

per maintenance strategy in pavement sustainment. As shown in the figure, preventative 

maintenance occurs during the time that a system is reliable so that the requirement is 

sustained for a longer period of time. On the other hand, correct maintenance occurs 

when the reliability of the system is relatively low because corrective maintenance is 

purposed for repairing or rehabilitating the facility. Thus, because cost is an integral part 

of selecting a maintenance strategy, minimizing life cycle cost is another objective in 

selecting a construction standard. 

 

Figure 10: The Costs of Different Maintenance Strategies (Hicks et al., 1999) 
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 In short, this study has observed three objectives in the selection of a design 

alternative. The first objective is to maximize quality.  Literature suggested that quality is 

the ability of a system to fulfill its intend purpose. Since the focus of this research is 

billeting facilities, the objective in the selection of a design alternative is to maximize the 

quality of life. Direct constructed scales are perhaps the most suitable scale for measuring 

quality. The second objective is maximize safety. Safety is the ability of a system to 

protect its users from harm or some other adverse consequence. With respect to this 

research, decision makers are interested in design alternatives that may protect against 

some adverse local threat of the contingency environment. Direct constructed scales are 

perhaps best suited for measuring the degree of safety of a design alternative.  Finally, the 

last objective is related to reliability. Reliability is the ability of a system to consistently 

perform its intended function. Since reliability of a system is closely tied to its 

preventative maintenance strategy, a life cycle cost is a more accurate measure of its 

reliability since they incorporate maintenance and operation costs. Therefore, life cycle 

cost will be a natural proxy measure for reliability. Overall, these three objectives align in 

two classifications of value measures, as shown in Table 1: 

Table 1: Decision Objective Value Measures 

 

Direct Proxy 

Natural N/A 

Reliability 

(Life Cycle 

Costs) 

Constructed 

Quality 

(Quality of Life); 

Safety 

(Degree of Safety) 

N/A 
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Potential Alternatives  

The third step in the decision process is identifying potential alternatives for 

evaluation. Tryon previously identified several construction alternatives that the Rapid 

Engineer Deployable Heavy Operational Repair Squadron Engineers (RED HORSE) uses 

in contingency locations. In particular, he identified four examples of billeting facility 

designs, including Basic Expeditionary Airfield Resource (BEAR) Small Shelter Systems 

(SSS), K-Spans, relocatabale buildings (RLBs), and pre-engineered buildings (PEBs).  

BEAR assets are war readiness assets that are configured, stored, and always 

ready to deploy as they are a quick means of constructing an expeditionary base. BEAR 

assets typically classified as initial construction standards because they are used during 

beddowns. BEAR SSSs are tent shelters used for billeting, work areas, latrines and 

showers, and storage during the initial stages of a beddown. When fully erected, BEAR 

SSSs measures 32.5 feet long by 20 feet. The external shell is made of a weaved plastic 

and the internal girders are made of high grade aluminum. 
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Figure 11: BEAR Assets (Col Darren P. Gibbs, 2012b) 

 

 K-Spans, as shown in Figure 12 are a facility design that is typically considered a 

semi-permanent or permeate form of construction, depending on their materials. K-Spans 

are constructed with fastened galvanized steel plates that are arched to form the shape of 

the building (Gibbs, 2012). Designs for K-Spans may vary because designs can be 

customized onsite via a device that forms the arch of the galvanized steel plates. K-spans 

are also considered semi-permanent because of their concrete foundation. The advantages 

of construction K-pans lie in the speed of construction and the cost per square foot for a 

facility (Tryon, 2005). While K-Spans are typically used as storage buildings and 

maintenance shops, they can also be used for troop housing during contingency 

operations.  
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Figure 12: K-Span Structures (Gibbs, 2012b) 

 

Relocatable buildings (RLBs) are perhaps the most flexible form of temporary or 

semi-permanent construction in contingency operations. Similar to that of intermodal 

shipping containers, relocatable buildings are constructed with steel or aluminum walls 

and can be modified to provide air conditioning, electricity, water, and wastewater 

systems. While some relocatable building designs only allow for the assembly of as stand 

alone facilities, others permit the assembly of multiple modular buildings they can be 

assembled as a building. RLBs are particularly cheap and, as stated previously, can be 

advantageous when there is an immediate demand for semi-permanent billeting.  
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Figure 13: Relocatable Buildings (RLBs)(Quasney, 2012) 

 

Depending on the design pre-engineered buildings (PEBs) can be considered 

semi-permanent or permanent facilities. According to Tryon (2005), a PEB is defined as 

a “metal building system that consists of a fully integrated, computer-designed, factory 

fabricated structural, roof, and exterior wall system.” PEBs are commonly used for 

offices, small aircraft hangars, large warehouses, or billeting depending of the amount of 

space provided by the design. PEBs are particularly advantageous in situations where a 

requirements is needed soon because they can be quickly constructed compared to 

traditional steel building designs   
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Figure 14: Pre-Engineered Building 

 

In short, this study has identified four different types of billeting facilities design 

used in contingency locations. BEAR assets, specifically small shelter systems, are used 

as organic or initial standards to satisfy requirements for the initial beddown of forces. 

RLBs, K-Spans, and PEBs, however, are used in the latter stages of expeditionary base 

development to robust the airbase. RLBs can typically considered to be classified under 

either temporary or semi-permanent standards, depending on the materials they are 

typically constructed with. Similarly, K-Spans and PEBs are either Semi-permanent or 

permanent construction depending on their materials. It should be noted that there are 

many more types of designs used in contingency environments; however, these four 

designs, summarized in Table 2, are commonly used. 

Table 2: Summary of Identified Designs 

Design  Construction Standard 

BEAR assets  Organic/ Initial 

RLBs Temporary/Semi-Permanent 

K-Span Semi-Permanent/Permanent 

PEBs Semi-Permanent/Permanent 
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Chapter Summary 

In summary, a synthesis of DoD doctrine with decision analysis methods has 

provided insight into how decision maker determines if a transition to an enduring status 

is advantageous. The AETF FM construct and the construction standard framework have 

illustrated that the transition from contingency to enduring is a decision to enhance a 

base’s infrastructure to a higher construction standard. An investigation into DoD 

doctrine also revealed that the decision has many objectives, constraints, and uncertain 

conditions. Decision analysis, however, offers a framework that aids in breaking down 

the elements of the decision through a five-step process. The construction of the decision 

frame precisely defined the decision as the selection of an optimal force beddown facility 

designs, as opposed to the selection of a construction standard. The objectives of the 

decision were discovered to be a facility’s system lifecycle properties, including but not 

limited to quality, safety, and reliability. Finally, some commonly used billeting facility 

designs were discussed to provide an understanding of what available alternatives 

decision makers have in facing the decision to transition. These designs include, BEAR 

assets, RLBs, K-Spans, and PEBs. Ultimately, the decision to transition to an enduring 

status requires evaluating the system lifecycle properties of force beddown facilities, like 

those identified in the decision hierarchy below in Figure 15. 
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Figure 15: Decision Hierarchy 
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III. Methodology 

Chapter Overview 

Literature review has suggested an answer to the first investigative question in 

that decisions to transition to an enduring status are made on the basis of several 

objectives. These decisions involve selecting optimal lodging facility designs to best suit 

the environment of the contingency operation with respect to each objective in the 

decision. Decision makers must select designs that maximize quality of life and safety 

and minimize cost to the government. Chapter Three focuses strictly on providing a 

methodology in evaluating alternatives with the cost objective.  

Furthermore, the methodology provided in this chapter specifically focuses on 

answering the second, third, and fourth investigative questions with respect to the cost 

objective. The second investigative question asks how the duration of a contingency 

operation affects the transition to an enduring status. In order to answer this question, a 

sensitivity analysis on the duration of a contingency operation is suggested to investigate 

changes in the cheapest alternative. The third investigate question asks how uncertainty 

in duration affects the decision. A methodology is, therefore, proposed that relaxes the 

assumption of a certainty, using two probabilistic distributions to describe the duration of 

a contingency. Finally, the fourth investigative question asks how a decision maker’s risk 

attitude affects the decision. Utility theory is, thus, proposed to incorporate into the model 

to account potential differences in risk attitudes among decision makers. In short, all 
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three of these proposed methodologies are to be executed in chapter four using real data 

from Air Force Civil Engineer databases.  

Analysis of Selection Under Certain Conditions 

The second investigative question of this research inquires into how the duration 

of a contingency operation affects the decision to transition to an enduring status. JP 3-34 

has shown that organic, initial, and temporary standards are indicative of a contingency 

status, while semi-permanent or permanent construction standards are typically for an 

enduring status. Moreover, JP 3-34 suggests that these semi-permanent and permanent 

construction standards are suitable for non-transient contingencies because they are 

energy efficient, require minimal maintenance, and have relatively low life cycle costs. 

The goal of this portion of the research is to validate JP 3-34’s assumptions by comparing 

the life cycle costs of design alternatives to investigate how the duration of a contingency 

affects preferred alternatives. This portion of the analysis assumed a contingency 

operation’s expected duration is a certainty and was treated as the independent variable, 

while a design alternative’s life cycle cost was treated as the dependent variable. 

Life Cycle Cost Analysis (LCCA) 

One technique used to investigate the costs of a design alternative is a life cycle 

cost analysis (LCCA). LCCA compares the cost-effectiveness of an investment of an 

design alternative for decision makers interested in the economic trade-offs (Norris, 

2001). LCCA quantifies the total cost of an investment of a design alternative by 

summing all known costs that a design experiences during the time of its use. Other than 
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initial cost, some of the costs incurred during a facility’s life include the cost of repair, 

maintenance, operations, and demolition (Uddin et al., 2013). A design’s life cycle cost is 

typically used as a decision metric, as its resulting value cannot be used for budgeting 

purposes. When comparing two or more designs, the design that has the lowest life cycle 

cost is considered the cheapest alternative. Thus, quantifying each facility design’s life 

cycle cost enables a decision maker to determine the cheapest facility design in order to 

minimize the cost of the transition to enduring. 

Another useful tool in evaluating facility design costs is the net present worth 

method. The present worth method consolidates the costs of an alternatives into a single 

value by assuming that money spent today is not equal to money spent in the future 

(Ross, 1995). Including the effects of inflation and interest rates, the method allows a 

decision maker to conceptualize an investment in a design alternative with a single value 

that currently reflects a dollar’s value. Uddin et al. (2013) expresses the model for the 

present worth of a facility design’s life cycle cost as: 

𝑇𝑃𝑊𝐶𝑥1,𝑛 = (𝐼𝐶𝐶)𝑥1 + ∑{𝑝𝑤𝑓𝑖,𝑡[(𝐶𝐶)𝑥1,𝑡 + (𝑂𝑀)𝑥1,𝑡 + (𝑈𝐶)𝑥1,𝑡]} − 𝑝𝑤𝑓𝑖,𝑛(𝑆𝑉)𝑥1,𝑛

𝑛

𝑡=0

 

Where, 

𝑇𝑃𝑊𝐶𝑥1,𝑛 = total present worth of costs for alternative x1, for analysis period of n years 

(𝐼𝐶𝐶)𝑥1 = initial capital costs of construction, etc., for alternative x1                                

(𝐶𝐶)𝑥1,𝑡 = capital cost of construction, etc., for alternative x1, in year t, where t <n 

𝑝𝑤𝑓𝑖,𝑡 = present worth factor for discount rate, i, for t years = 
1

(1+𝑖)𝑡
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(𝑂𝑀)𝑥1,𝑡 = maintenance plus operation costs for alternative x1 in year t 

(𝑈𝐶)𝑥1,𝑡 = user costs, if applicable for alternative 1 in year t 

(𝑆𝑉)𝑥1,𝑛 = salvage value for alternative x1, at the end of the analysis period, n yearss 

 The variables in Uddin et al.’s model have three categories: acquisition costs, 

service life costs, and divestment costs. Acquisitions costs are any costs required for 

purchasing the facility and take place prior to the use of the facility. Two types of 

acquisition costs are initial capital construction costs (ICC) and capital construction costs 

(CC). ICCs are any initial costs needed to begin the construction of the facility. An 

example of an ICC is a down payment to a construction contractor so the contractor can 

begin work on the facility. Capital costs of construction (CC) are subject to interest rates 

because they are subsequent to the ICC. Because some construction contracts require 

payment by progress, Uddin et al includes CCs to account for the interest gained by 

payments made after the initial cost. The second dimension, service life costs, includes 

any costs incurred during the facility’s use. Operations and maintenance costs (OM) and 

user costs (UC) are two types of service life costs. OM costs are costs gained through 

operating, repairing, or maintaining the facility. Some examples of OM costs are energy 

costs, corrective repair costs, and reoccurring maintenance cost. User costs are costs 

incurred by the user. Each of these costs is calculated for a given payment period. For 

buildings payment periods are typically assumed to be years; therefore, each year of a 

service life cost is summed to represent that variables contribution to the LCC (Asiedu & 

Gu, 1998).  Finally, divestment costs are costs incurred after the facility’s use. One of the 

most common examples of a divestment cost is the cost to dispose of the facility; 
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however, Uddin et al includes salvage value into the model to account for any benefit 

gained from selling the facility. Generally, acquisition costs, service life costs, and 

divestment costs are common in a facility’s life cycle.  

Model Modifications 

Some adjustments to the model were made to scope Uddin et al’s model to align 

with the intent of this research effort. While a complete LCCA includes all potential 

incurred costs of a design, the scope of this research is limited to an LCCA that only 

includes construction, maintenance, and disposal costs. Therefore, the model was 

adjusted to include one acquisition cost, one service life cost, and one divestment cost. 

Initial costs of construction were used as an acquisition cost, maintenance costs were 

used as a service life cost, and disposal costs were used as a divestment cost of the model. 

Although salvage value is typically in an LCCA, facilities in contingency operations are 

typically demolished and disposed of at the end of a contingency operation.  

 The model was also adjusted to account for variance in costs. This research 

treated design alternative’s initial construction, maintenance, and disposal costs as a 

random variable to account for the variance within a design alternative, unless the data 

suggests that these values are constant. Touran, Wiser, and Chau suggested that cost data 

can typically be described by the lognormal distribution; therefore, the model was 

adjusted to represent each cost as a random variable from the lognormal distribution 

(Touran & Wiser, 1992; Wing Chau, 1995). With respect to the present worth factor, the 

model’s discount rate was assumed to be uniform distribution with minimum and 

maximum values of 2 to 3%. The modified model for this research is as follows:  
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𝑁𝑃𝑊(𝑡)𝑥1 =  𝐴𝐶(𝑙𝑛(𝜇, 𝜎))𝑥1 + ∑ {(
1

(1 + 𝑖)𝑡
) [𝑀𝐶((𝑙𝑛(𝜇, 𝜎)))]𝑥1,𝑡} + [(

1

(1 + 𝑖)𝑡
 ) (𝐷𝐶(𝑙𝑛(𝜇, 𝜎)))𝑥1]

𝑛

𝑡=0

 

Where, 

𝑁𝑃𝑊𝑥1 = net present worth of costs for facility design x1, for analysis period of t years 

(𝐴𝐶)𝑥1 = acquisition cost for alternative x1 

[𝑀𝐶]𝑥1,𝑡 = maintenance costs for alternative x1 in year t 

(𝐷𝐶)𝑥1 = disposal cost for alternative x1, at the end of the analysis period, t years 

𝑖 = discount rate for t years 

Monte Carlo Simulation 

Since the model deals with random variables from particular distributions, Monte 

Carlo Simulations (MCS) were used to simulate design alternative’s distribution of life 

cycle costs. A MCS is a method that approximates random variables through the 

generation of a large sample of random numbers to repeatedly calculate a mathematical 

or empirical operation (Ang & Tang, 2007). For this research a MCS generated random 

numbers from the lognormal distribution of acquisition, annual maintenance, and disposal 

costs to simulate a distribution of life cycle costs for a potential design alternative. Using 

R statistical software, each MCS generated 10,000 random numbers for each random 

variable in the model, and the result showed the variance in life cycle costs for each 

design alternative for a particular length of a contingency. 

In order to simulate multiple scenarios of different durations of contingency 

operations, a sensitivity analysis was performed on the number of years a contingency 

operation is expected to last. Assuming a year for construction and a year for disposal of 
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a facility, the results sensitivity analysis showed how the distributions of life cycle costs 

change when a used for longer or shorter periods of time. Because JP 3-34’s proposed 

timeline spans for contingencies lasting up to 10 years, the sensitivity analysis includes 

scenarios of three to ten year contingencies. Additionally, a design alternative that 

represents each construction standard was included to see if JP 3-34’ construct aligns 

with the results of the analysis. An individual investigation of each scenario shows which 

construction standard is preferable for that particular scenario.   

Within each scenario, the resulting distributions for each design alternative was 

tested for independence to determine if there is an actual difference in the life cycle costs 

of each design alternative. Depending on the resulting data, either a two sample Student’s 

t-Test or the Wilcoxon Ranked Sum Test was used to test independence. The t-test is a 

test for independence when comparing two independently sampled populations that are 

normally distributed. Flexible for any population size, the Student’s t-test assumes that 

each population under comparison have the same variance (Ruxton, 2006). The central 

tendency, or mean, of the distributions are of interest in the Student’s T Test and test the 

following hypotheses: 

Ho: The means of the two populations are equal 

Ha: The means of the populations are not equal 

If the test suggests that the null hypothesis should be rejected, then it can be inferred that 

the populations are not equal. If the test suggests that the null hypothesis has failed to be 

rejected, then the populations are, effectively, equal. Alternatively, the Mann-Whitney 

Ranked Sum test is a nonparametric form of the student’s t-test. The Man-Whitney, or 
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Wilcoxon, Ranked Sum test compares the differences in central tendencies between two 

populations, of equal or unequal variance (Mann & Whitney, 1947). The test operates 

under three basic assumptions. The first assumption is that the data that it is comparing is 

not of the normal distribution. The second assumption is that all observations have 

independence. Finally, the third assumption is that the response variable is continuous or 

ordinal. Although the Mann-Whitey ranked sum test assumes that the data is non-normal, 

the test is similar to the two-sample t-test in that it tests the following hypotheses: 

Ho: The distributions from both populations are equal 

Ha: The distributions from both populations are not equal 

For both tests the overall significance level, αe , was 0.05. Since there is a danger 

of a type one error with multiple tests for each scenario, the Boneferroni Correction 

Method was used to adjust the significance level of each test. The overall significance 

level was divided by the number of comparisons executed in each sensitivity analysis 

scenario. Therefore, each tests significance level, αc, was 0.0167. Each test will be 

conducted using R statistical software. Ultimately, the two sample Student’s T test will 

be used if the resulting data is normal with equal variance, and the Mann Whitney 

Ranked Sum test will be used if the resulting data is not normal with unequal variance.  

Analysis of Selection Under Uncertain Conditions 

Since the third investigative question inquires into how uncertainty in duration 

may change the dynamics of the decision, this portion of the research sought to answer 

this question by treating the duration of a contingency operation as an uncertainty. Using 
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the methodology proposed for selection under certain conditions, the duration of a 

contingency operation was treated as a random variable. Treating a contingency 

operation’s duration as a random variable more accurately reflects the realities of the 

decision, as duration is rarely known with an absolute certainty. Like the previously 

mentioned methodology, the independent variable is duration and the dependent variable 

is the life cycle costs of particular design alternative. However, the independent variable 

was represented in two different ways in this research.   

Operation Enduring Freedom Simulation 

First, the duration of a contingency operation was assumed to follow the 

distributions of duration of OEF forward operating bases (FOB) in Afghanistan. The 

purpose of incorporating such data was to investigate if historical data in the life of a 

FOB Afghanistan may shed light on the decision to transition to enduring, if a 

contingency operation is expected to evolve as OEF did. Data that reflects the year of 

each base’s opening establishment and decommissioning was gathered Wikipedia and 

verified via Wikipedia’s sources. If a base’s opening or closure year cannot be verified, 

then the data was not used in the research. Since the data will be the number of years in 

the form of integers, the data was tested for goodness of fit to the Poisson distribution. If 

the distribution of durations passes the goodness of fit test, then the parameter of the 

Poisson distribution was used in the MCS to generate random durations.  

Similar to the methodology proposed for decisions under certain conditions, each 

design alternative’s distribution of life cycle costs was tested for independence. If the 

simulated data is normal with equal variance, the paired Student’s T test was used. Using 
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the same assumptions and hypotheses as the two sample Student’s t-test, the paired 

student’s t-test compares distributions of equal sizes that have matched observations in 

each distribution. If the simulated data is not normal with unequal variance, then the 

Wilcoxon Signed Rank test was used to make comparisons. The Wilcoxon Signed Rank 

test is a nonparametric form of the paired student’s t-test. The test is conducted under 

three assumptions. First, the data is assumed to be paired and from the same population. 

The next assumption is that the pair of each population is generated randomly. The final 

assumption is that the data is ordinal and can be ranked(Wilcoxon, 1945). In contrast to 

the Wilcoxon summed rank test, the Wilcoxon Signed Rank test uses the median to make 

a determination on the following hypotheses:  

Ho: The difference between the pairs follows a symmetric distribution around zero 

Ha: The difference between the pairs follows a symmetric distribution around zero 

For both tests the overall significance level, αe, was 0.05. Since there is a danger 

of a type one error with multiple tests for each scenario, the overall significance level was 

divided by the number of tests that were completed in each scenario. Therefore, each tests 

significance level, αc, was 0.0167. Each test was conducted using R statistical software. 

Ultimately, the two sample Student’s T test was used if the resulting data is normal with 

equal variance, and the Mann Whitney Ranked Sum test was used if the resulting data is 

not normal with unequal variance.  

Lack of Knowledge Simulations 

The second representation of the duration of a contingency was the through the 

triangular distribution. As literature revealed contingency operations are inherently 
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volatile, and decision makers have difficulty predicting their duration. Therefore, 

selections of construction standards, or design alternatives, are dependent on a decision 

maker’s uncertain feeling of the duration of the mission due to a lack of knowledge. 

Many applications of qualitative risk analysis have used a triangular distribution to 

describe the uncertainty of a decision maker due to their lack of knowledge (Hoffman & 

Hammonds, 1994). For this research, the triangular distribution’s range of possible 

values, along with its mode, can be used to represent the worst case, best case, and most 

likely scenario for the duration of a contingency. To have a full understanding in how 

uncertainty may affect the decision, a sensitivity analysis was conducted on the mode of 

the triangular distribution to represent all possible scenarios of uncertainty within JP 3-

34’ ten year framework. Furthermore, the resulting distributions of life cycle costs was 

tested for independence using the previously calculated significances levels and 

compared to JP 3-34’s framework to find similarities and differences between the models 

with respect to cost.  

Risk Analysis in Selection Under Uncertain Conditions  

The final investigative question of this research inquires into how a decision 

maker’s risk attitude may change the decision to transition to enduring. In economics, an 

alternative’s utility is often measured to compare competing investments with potential 

costs or benefits. Expected utility theory is a concept that concerns the preference of a 

decision maker with regard to an uncertain outcome. The theory suggests that decision 
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makers have risk attitudes that reflect a decision maker’s feelings on avoiding or seeking 

risky deals.  

Expected utility theory is based on five basic assumptions or rules. The first rule 

of expected utility theory states that alternatives must be described as uncertain events. 

Since this research in grounded in the assumption that durations of contingencies are 

uncertain, the life cycle costs of alternatives are, therefore, uncertain. The second rule 

states that a decision maker can order alternatives based on some preference, and the 

ordering is transitive. This research assumes that decision makers are seeking investments 

that minimize life cycle costs; therefore, alternatives are to be order with respect to cost 

and prefer alternatives with lower costs. The third rule states that certain equivalence 

between deals can be created. For example, consider a situation in which a decision 

maker prefers alternative A to alternative B to alternative C. Expected utility theory 

suggests that a probability, p, can be specified such that the decision maker would be 

indifferent between receiving alternative B with certainty or a uncertain deal with the 

probability, p, of receiving alternative A and probability (1-p) of receiving alternative C.  

The fourth rule builds off the third rule in that the rule suggests that uncertain deals can 

be substituted with their respective certain equivalent deal because the decision maker 

would be indifferent to them. Finally, the fifth rule of expected utility theory assumes that 

decision makers prefer to take deals that have high probabilities of attaining some 

preferred outcome (Clemen & Reilly, 2013; Rabin, 2000; Schoemaker, 1982).  

Utility theory incorporates the delta property to describe a decision maker’s 

attitude towards risk. The delta property suggests that decision makers are inherently risk 
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averse, as they are restricted by budgets or a current state of wealth. The delta property’s 

concept, effectively, states that if some cost is added to each possible outcome of an 

uncertain investment or deal, then the certain equivalent must also increase by that 

amount. The delta property also suggests that a monetary unit of measure, or a dollar’s, 

utility can be expressed through an exponential function, and the function incorporates a 

parameter, R, that reflects a decision maker’s risk attitude. The risk aversion parameter 

can be obtained by asking a decision maker a series of questions that compares uncertain 

deals of winning or losing money (Rabin, 2000). Ultimately, repeatedly asking a decision 

maker this question with different amounts for wins or losses forces a decision maker to 

settle on a value of wins or losses. This value is then used to produces the risk aversion 

parameter for that particular decision maker. For the purposes of this study, the utility 

function, with the risk aversion parameter, was adapted to incorporate life cycle costs, as 

shown below: 

𝑢(𝑁𝑃𝑊𝑥1) =  1 − 𝑒−(
𝑁𝑃𝑊𝑥1

𝑅
) 

 

Where, 

u = the expected utility 

NPW = Net Present  Worth of Design alternative, x1 

R = a decision maker’s risk aversion parameter  

 

 The expected utility function was incorporated into the OEF simulation and the 

lack of knowledge simulations. Because this study is limited on time, two risk tolerances 

was tried to understand the changes in preferred alternatives. One risk attitude was 
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significantly risk averse, while the other was moderately risk averse. The Wilcoxon 

Signed Rank test was used to test the independence of the distributions of utility. 

Ultimately, time was treated at the independent variable and expected utility will be 

treated as the dependent variable.   

Chapter Summary 

This research has proposed a model to answer the second, third, and fourth 

investigative questions of this research. The second investigative question will be 

answered through the analysis of selection in certain conditions. This analysis will use the 

model with durations of conditions ranging from three to nine years. The third 

investigative question will be answered through the analysis of selection in uncertain 

conditions. The analysis will be split into two parts. The first part will assume that there 

is a decision maker has some knowledge of uncertainty in duration. For example, the 

model will be incorporated with a distribution of durations of FOBs in Afghanistan, 

meaning that the decision maker feels that a contingency will be similar to OEF.  The 

second part assumes that there is a lack of knowledge in uncertainty. Thus, the triangular 

distribution will be used to describe an uncertainty in the duration of a contingency 

operation.  Finally, the fourth investigative question will be answered through the risk 

analysis of selection in uncertain conditions, using the two parts of the selection in 

uncertain conditions. The methodology is summarized in Figure 16. 
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Figure 16: Methodology Summary Chart 
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IV. Analysis and Results 

Chapter Overview 

The purpose of chapter is to analyze the developed life-cycle cost model and to 

provide results. First, data was obtained from Air Force civil engineer databases and 

analyzed to describe its stochastic properties. The data’s properties were then used in the 

life cycle cost model development. Next, the life cycle cost model was evaluated with the 

assumption of a certainty in duration of a contingency operation. Seven scenarios of 

different durations were simulated to understand changes in life cycle cost.  

The life cycle model was then evaluated with the assumption of an uncertainty in 

the duration of a contingency operation, using two different distributions to represent it. 

First, the distribution of durations of FOBs in Afghanistan during OEF was used to 

evaluate the model. The model assumed that the decision maker believes that a 

contingency operation will be similar to OEF. Next, the triangular distribution was used 

to evaluate the model to simulate a decision maker’s lack of knowledge in duration, using 

the mode representing the most likely duration. A sensitivity analysis was conducted that 

changed the mode, simulation seven different most likely scenarios. 

Finally, risk attitude was incorporated into the model using expected utility theory 

to investigate how a decision maker’s risk attitude changes the preferred alternative. Two 

risk averse attitudes were tried to investigate changes in the preferred alternative, with 

both previously identified distributions of duration.  
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Data Collection 

The data collection process consisted of three parts. First, samples of design 

alternatives were selected for analysis from the AF’s real property data in the Automated 

Civil Engineer System Real Property database (ACES-RP). Next, cost data from the 

identified design alternatives was collected from three sources, including ACES-RP, 

IWIMS, and the AFCEC historical AF cost estimation handbook. Finally, goodness-of-fit 

test were conducted on the data to provide model inputs. 

Sample Selection  

 Of the AF’s civil engineer databases, ACES-RP provided the best means of 

identifying and selecting samples for analysis. ACES-RP is a comprehensive inventory 

database that contains detailed information about the AF’s real property assets. In 

particular the database annotates the location and purpose of each asset through the 

database’s Installation Code field and Category Code field, respectively. An Installation 

Code is a four-digit alphanumeric identification code that represents the asset’s owning 

installation, while Category Codes identify a facility’s purpose though six digit 

alphanumeric code. Since the goal of this research is to provide an analysis of the life 

cycle costs of billeting facility designs in expeditionary environments, real property 

assets with installation and category codes, like those shown in Table 3 and Table 4, were 

considered for analysis. Thus, the installation and category codes were used for a query 

within the ACES-RP database. The result of the query provided data of billeting facilities 

located at Al Udeid Air Base (AUAB), Al Dhafra Air Base (ADAB), and Ali Al Salem 

Air Base (ASAB). 
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Table 3: Installation Codes Used for Sample Identification 

Installation Code Installation Name 

ADAB Al Dhafra Air Base 

AUAB Al Udeid Air Base 

ASAB Ali Al Salem Air Base 

 

Table 4: Lodging Facility Category Codes Used for Sample Identification 

Category Code Description 

721312 Enlisted Unaccompanied Personnel Housing 

721314 Enlisted Unaccompanied Personnel Housing 

721315 Enlisted Unaccompanied Personnel Housing, Transient 

724417 Officer Unaccompanied Personnel Housing 

725513 Officer Housing, Transient 

 

Since ACES-RP does not provide information on the design of each asset, the 

similarities in the design between assets and their construction standards classification 

could not be determined without additional information or assumptions. The data from 

ACES-RP did indicate, however, that many of the billeting facilities at expeditionary 

locations had similar dates of construction and sizes. For example, many of the identified 

facilities showed similar values in ACES-RP’s Year Completed field and Area field. The 

Year Completed field reflects the year in which construction of the facility was 

completed and handed over to the government for use. The Area field reports the gross 

area of the facility in square feet. Therefore, billeting facilities at the same location with 

approximately the same size and year of construction were assumed to share the same 

design, which consolidated the facilities into three groups, or designs alternatives. 

Moreover, the facility numbers of the facilities within each group were provided to the 

sponsor in order to determine each design alternative’s construction standard. Ultimately, 
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the three design alternatives entered into the analysis portion of the research were 

categorized as a temporary, semi-permanent, or permanent construction standard. These 

designs will be referred to as Relocatable Buildings (RLBs), Trailers, and Blatchford-

Preston Complexes (BPCs). The details of each design alternative are provided in Table 

5.  

Table 5: Design Alternatives Used in Analysis 

Design 

Alternative 
Location 

Construction 

Standard 

Category 

Code 

Year 

Completed 

Size 

(SF) 

Number 

of 

Facilities 

BPC AUAB Permanent 721314 2008 77016 9 

Trailer AUAB Semi-Permanent 721314 2008 4100 134 

RLB ADAB Temporary 721312 2013 1320 35 

 

Although the database query and assumptions produced three design alternatives, 

ACES-RP’s limitations significantly reduced the potential validity and reliability of the 

analysis. For example, the three design alternatives are not representative of all 

construction standards, particularly those in the beginning stages of a force beddown. 

According to AFI 32-9007, real property is capitalized DoD assets that are not movable; 

therefore, initial force beddown facility designs, like small shelter systems, are not 

included in ACES-RP’s inventory. Because data was not available for initial design 

alternatives, this research cannot determine if initial standards are the cheapest alternative 

in each scenario under analysis. Another limitation of ACES-RP is that it does not retain 

historical data of facilities that have been divested. Therefore, the analysis was limited to 

facilities that are currently in use, preventing a holistic life cycle cost analysis on designs 

that have been divested. In short, availability of data limited the scope of the research.   
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Life Cycle Cost Data Collection  

Life Cycle Cost data of the facilities of each design alternatives was collected 

from three sources. The acquisition cost of each facility was collected from ACES-RP’s 

Cost Basis Field. The Cost Basis Field reports any asset’s construction cost amounting to 

more than $100,000. Since ACES-RP does not provide data of any other initial capital 

costs of construction, each facility’s construction cost in reported ACES-RP was assumed 

to be its acquisition cost. Data collection of service life costs was limited to the AF’s 

Interim Work Information Management System (IWIMS) database. The purpose of 

IWIMS is to manage maintenance work orders for AF real property assets. For example, 

IWIMS annually stores information of every maintenance action, including the cost and 

labor hours of a work order, in order to track the resources spent on a particular asset. 

Annual work order reports for each facility were used to determine the annual 

maintenance cost for each design alternative. Because government facilities are not 

typically salvaged in contingencies operations, data was collected on cost to dispose of a 

facility. The Automated Civil Engineer System – Program Management (ACES-PM) 

database was initially surveyed for historical demolition project costs. However, no 

projects were found that represent the demolition of designs that were comparable to 

those of interest to the analysis. Thus, disposal costs were estimated with demolition 

estimates in the Historical Air Force Cost Estimation Handbook and the RS Means cost 

estimation handbook. The handbook uses historical data from ACES, programming forms 

(DD 1391), the Parametric Cost Engineering System (PACES), and detailed quantity 

takeoff estimates from typical designs to calculate reliable demolition costs per square 
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foot of a particular design. The handbook provided four estimates for the demolition of a 

wood, steel, and concrete structure. Similarly, the RS Means cost estimation handbook 

provided one estimate for a wood, steel, and concrete structure. For the purposes of this 

research, the BPC design was assumed to be a concrete design, the trailer design was 

considered to be a wood design, and the RLB was considered to be a steel design. Since 

each disposal cost is equally likely to be selected for demolition, the estimates were 

averaged and multiplied by the size of each facility. The disposal estimates per square 

foot for each design are provided in Table 6.  

Table 6: Estimated Disposal Costs 

Disposal Estimate 

BPC  

(Concrete - 

Multi Story) 

Trailer 

(Wood -

One Story) 

RLB     

(Steel - 

Multi Story) 

AFCEC: No Dump Fee $5.34/SF $4.08/SF $4.68/SF 

AFCEC: $10/CY Dump Fee $10.50/SF $11.10/SF $11.10/SF 

AFCEC: $20/CY Dump Fee $15.60/SF $17.40/SF $17.40/SF 

AFCEC: $30/CY Dump Fee $21.00/SF $23.40/SF $24.00/SF 

RS Means: No Dump Fee $6.36/SF $4.92/SF $4.44/SF 

Average $11.76/SF $12.18/SF $12.32/SF 

 

Of the three sources used for life cycle cost data collection, IWIMS introduced 

additional limitations to the study. IWIMS’s availability of historical work order data was 

perhaps the most significant limitation of the study. IWIMS only provided six years of 

work orders for the BPC and trailer design, while only three years of work order was 

available for the RLB design. As the RLB design only has three years of data, an analysis 

of comparisons of each alternative could only be performed for up to three years of use. 

However, an older RLB design, which is used at ADAB, was found to be comparable to 
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the one of interest to this study; therefore, the three years of work order data of the older 

RLB design were used as the fifth, sixth, and seventh year of maintenance costs for the 

RLB design. In addition the limited amount of historical work order data, material costs 

of work orders for the RLB facilities was not available in ADAB’s IWIMS database. In 

order to normalize the comparison between the three designs, material costs of work 

orders for BPC and trailer facilities were excluded from the analysis. Although this 

limitation excludes a portion of a maintenance cost of a facility, material costs are often 

not substantial portion of a work order because IWIMS work orders are typically minor 

maintenance and repair projects. Thus, the analysis continued under the assumption that 

material costs are not substantially consequential to the overall life-cycle costs of a 

facility. The last limitation discovered in the IWIMS data was missing of faulty years of 

maintenance data. The BPC and trailer maintenance data showed that 2011’s work order 

data was unreliable, as many of the work orders were programmed against facilities that 

did not exist. Thus, the BPC’s and trailer’s work order data for 2011 was not used in the 

analysis. Additionally, a fourth year of maintenance was not available for the RLB design 

alternative. Although maintenance cost data for two RLB designs was combined to 

provide more information on an RLB’s annual maintenance, the two designs only 

provided the first three years and the fifth, sixth, and seven year of annual maintenance. 

Adjustments to compensate faulty or missing data will be discussed in the distribution 

fitting section. 
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Distribution Fitting 

JMP
®
’s statistical software was used to conduct distribution fitting and goodness-

of-fit tests. All acquisitions and annual maintenance cost data was fit to the lognormal 

distribution, as suggested by Touran et al. (1992) and Chau (1995). JMP
®
 uses the 

Komologorov-Smirnov (KS) test to test the data’s goodness of fit to the lognormal 

distribution. The KS test calculates a test statistic, Kolmogorov’s D, that is used to 

determine if the variance in a continuous set of data can be described by a specified 

distribution (Massey Jr, 1951). Since goodness of fit to the lognormal distribution is of 

interest, the KS test’s null and alternative hypotheses were: 

 Ho: The sample comes from the population of a lognormal distribution 

 

 Ha: The sample does not come from the population of a lognormal  

       distribution 

 

Distribution fitting was largely successful, but two adjustments had to be made to the 

model. The first adjustment to the model was made for the BPC’s acquisition costs. The 

BPC acquisition costs in ACES-RP were discovered to be constant across each observed 

facility; thus, the design’s acquisition costs were considered deterministic and were not 

tested. The trailer and RLB designs’ acquisition costs, on the other hand, were considered 

random variables and tested for goodness of fit because they were found to be 

continuous. The second adjustment was made because of abnormalities in labor rates for 

each year’s maintenance costs. Initially, many data sets failed the goodness of fit tests, so 

the IWIMS annual work order reports for each design alternative were consulted to 

investigate any data entry errors. No data entry errors were found, but hourly labor rates 
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were found to vary per work order for each design alternative. As a result, each year’s 

maintenance hours were tested for goodness of fit to the lognormal distribution, instead 

of each year’s maintenance costs. With the exception of the trailer’s fourth year of 

maintenance hours, the lognormal distribution proved to generally describe the variance 

in annual maintenance hours of each design alternative. The results of each data set’s KS 

tests for fitting to the lognormal distribution are provided in Table 8 and Table 9. The 

mean and standard deviation of the resulting distribution were noted for use in simulation 

portion of the analysis. In order to solve the problem of missing years of maintenance 

data in each design, an average location and scale parameters were calculated using the 

parameters prior to and after the missing year of data.   
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Table 7: BPC KS Test Results for the Lognormal Distribution 

Distribution Source 
Location 

Parameter 
Median 

Scale 

Parameter 

Kolmogorov's 

D 
Prob>D 

MX Hrs Year 1 (2009) IWIMS 1945.51 1874.07 237.45 0.166 0.15 

MX Hrs Year 2 (2010) IWIMS 1514.84 1530.48 428.53 0.207 0.15 

MX Hrs Year 4 (2012) IWIMS 712.24 733.91 111.39 0.213 0.15 

MX Hrs Year 5 (2013) IWIMS 3495.18 3657.66 743.86 0.182 0.15 

MX Hrs Year 6 (2014) IWIMS 2585.56 2499.9 223.73 0.201 0.15 

MX Hrs Year 7 (2015) IWIMS 2450.57 2466.3 411.25 0.184 0.15 

 

Table 8: Trailer KS Test Results for the Lognormal Distribution 

Distribution Source 
Location 

Parameter 
Median 

Scale 

Parameter 

Kolmogorov's 

D 
Prob>D 

Acquisition ($) ACES - RP 1135101.1 1139381 23936.44 0.119 0.01* 

MX Hrs Year 1 (2009) IWIMS 119.47 111 40.27 0.048 0.15 

MX Hrs Year 2 (2010) IWIMS 99.98 96.83 43.19 0.068 0.118 

MX Hrs Year 4 (2012) IWIMS 44.47 41.62 15.18 0.079 0.042* 

MX Hrs Year 5 (2013) IWIMS 191.99 284.24 61.03 0.043 0.15 

MX Hrs Year 6 (2014) IWIMS 185.57 177.65 125.88 0.073 0.079 

MX Hrs Year 7 (2015) IWIMS 168.35 162.5 52.04 0.053 0.15 

 

Table 9: RLB KS Test Results for the Lognormal Distribution 

Distribution Source 
Location 

Parameter 
Median 

Scale 

Parameter 

Kolmogorov's 

D 
Prob>D 

Acquisition ($) ACES - RP 118787.61 87000 48563.73 0.33 0.01* 

MX Hrs Year 1 (2013) IWIMS 52.43 47 30.39 0.097 0.15 

MX Hrs Year 2 (2104) IWIMS 203.71 186.2 82.99 0.096 0.15 

MX Hrs Year 3 (2015) IWIMS 141.47 123 56.62 0.133 0.141 

MX Hrs Year 5 (2013) 

(Comparable Design) 

IWIMS 
175.43 159.5 82.85 0.084 0.15 

MX Hrs Year 6 (2014) 

(Comparable Design) 

IWIMS 
163.323 165.75 89.81 0.139 0.0947 

MX Hrs Year 7 (2015) 

(Comparable Design) 

IWIMS 
252.88 233.75 171.66 0.105 0.15 
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Analysis of Selection in Certain Conditions 

The purpose of the analysis of selection in certain conditions was to understand 

how the life cycle costs of each design alternative changes as the duration of the mission 

changes. Since changes in cost were of interest, the analysis took on the form of a 

sensitivity analysis with a key underlying assumption of a certainty in the longevity of the 

mission. The sensitivity analysis was done for durations of contingency operations 

ranging from three to nine years because the data could only describe seven maintenance 

years with one year for construction and one year for disposal. The analysis of selection 

in certain conditions was broken down into two Monte Carlo simulations. The first 

strictly simulated and summed costs for each design alternative to understand their life 

cycle costs. The second Monte Carlo Simulation simulated and summed costs with a 

capacity adjustment factor, which enabled a proportionately equivalent comparison for 

billeting a fixed number of personnel for each respective design alternative.  Each 

simulation investigated contingency durations of three to nine years using the following 

model: 

𝑁𝑃𝑊(𝑡)𝑥1 =  𝐴𝐶(𝑙𝑛(𝜇, 𝜎))𝑥1 + ∑ {(
1

(1 + 𝑖)𝑡
) [𝑀𝐶((𝑙𝑛(𝜇, 𝜎)))]𝑥1,𝑡} + [(

1

(1 + 𝑖)𝑡
 ) (𝐷𝐶(𝑙𝑛(𝜇, 𝜎)))𝑥1]

𝑛

𝑡=0

 

Where, 

𝑁𝑃𝑊𝑥1 = net present worth of costs for facility design x1, for analysis period of t years 

(𝐴𝐶)𝑥1 = acquisition cost for alternative x1 

[𝑀𝐶]𝑥1,𝑡 = maintenance costs for alternative x1 in year t 

(𝐷𝐶)𝑥1 = disposal cost for alternative x1, at the end of the analysis period, t years 
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𝑖 = discount rate for t years 

Unadjusted Simulation Results 

The Monte Carlo Simulation with the unadjusted costs was executed under three 

key assumptions. The first assumption addressed the interest rates for present worth 

calculations. Interest rates of two to three percent are typically used for independent 

government estimates at AFCEC. Thus, interest rates were assumed to be of the uniform 

distribution with a rage of two to three percent. Using these interest rate random 

variables, acquisition and maintenance costs for each design were brought to the present 

from the year in which they were spent. Disposal costs, however, were assumed to be 

present worth dollars. The second assumption was a fixed shop labor rate per the location 

of a design alternative. The sponsor provided current shop rates for AUAB and ADAB, 

which were reported to be $44.06 and $38.00 respectively. These shop rates are different 

because local national labor in incorporated into the calculation of a base’s respective 

shop rate. Each year’s maintenance hour distribution was multiplied by the shop labor 

rates to simulate a randomly generated maintenance labor cost for the respective year. 

The maintenance hour distributions for the RLB design alternative used ADAB’s shop 

labor rate, while the BPC and trailer design alternatives used AUAB’s labor rate. Finally, 

the analysis assumed that the maintenance years are independent within a design 

alternative. This assumption was made in light of the results from correlation matrices. 

Each design’s correlation matrix showed little to no correlation.  Therefore, randomly 

generated maintenance hours were not adjusted for covariance between years. In general, 

the assumptions of a fixed interest rate, fixed shop labors rate, and independency between 
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the maintenance hours for each year of a design were consistent in subsequent 

simulations of the research.  

The results of the unadjusted analysis showed that acquisitions costs are the 

largest contributor to total life cycle cost for each design alternative. As shown in Figure 

17, Figure 18, and Figure 19, each design alternative’s acquisition cost was substantially 

larger than cumulative maintenance costs and disposal costs for each scenario. 

Additionally, the labor costs for maintenance actions do not contribute significantly to 

changes in the life cycle cost for each design alternative.  

 

Figure 17: BPC Costs Per Years of Use 
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Figure 18: Trailer Costs Per Years of Use 

 

Figure 19: RLB Costs Per Years of Use 
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Each scenario showed that the BPC’s large size makes it the most expensive of 

the design alternatives. Although it is semi-permanent, the RLB design is the cheapest 

among the alternatives for each scenario. The RLB design’s stochastic dominance over 

the trailer design can be attributed to the trailer’s large upfront cost. The mean of the 

trailer’s acquisition cost is approximately $1.4 million while the RLB’s acquisition costs 

is $170 thousand. In general, the results of the unadjusted analysis further motivated the 

requirement of an adjustment to the costs to compensate for the number of personnel they 

are designed to house. Descriptive statistics of the costs of each contingency scenario can 

be found in Appendix B.  

 

Figure 20: Life Cycle Cost Per Years of Use 
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Adjusted Simulation Results 

While the unadjusted simulation only communicated the cheapest design 

regardless of its housing capacity, the adjusted simulation incorporated housing capacity 

to illustrate the total cost of billeting a fixed number of personnel. The adjusted 

simulation integrated a capacity adjustment factor that reflected the number facilities 

needed to meet a requirement for a fixed number of personnel. To calculate the 

adjustment factors for each design, the sponsor provided surge capacity data, shown in 

Table 10, of each design alternative. Surge capacity is the absolute maximum amount of 

personnel the facility can house in the event of a surge, or the introduction of a new 

mission to the base. Since the BPC has the largest capacity, its capacity was used as a 

baseline the adjustments. The BPC’s capacity was divided by trailer’s and RLB’s 

capacity to calculate an adjustment factors for their designs, resulting in the values shown 

in Table 10.  

Table 10:  Capacity Adjustment Factors for Design Alternatives 

Design 
Capacity at Surge 

(Number of Personnel) 

Adjustment 

Factor 

BPC 392 N/A 

Trailer 120 3.26 

RLB 8 49 

  

 In contrast to the unadjusted analysis, the Wilcoxon ranked sum test was used to 

compare the life cycle cost of each design alternative. The results of the Wilcoxon ranked 

sum test were used to determine: 1) if the simulated distributions of life cycle cost are 

statically different, and 2) which design alternative is stochastically cheaper. The p-
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values were used to determine if the independence of the distributions of life cycle costs. 

Since the overall significance level for a scenario, αe, was 0.05, the p-value must be less 

than the individual test significance level, αc, which is 0.0167. The signs of the 

differences in location were used to which design alternative was stochastically cheaper 

of the two in comparison. For example, if sample x and sample y is being compared and 

the sign in the difference in location is negative, then sample x is stochastically cheaper. 

The results of Wilcoxon ranked sum tests showed that the RLB design alternative was 

stochastically the most expensive and the trailer design alternative was stochastically the 

cheapest in each scenario, as shown in Figure 21. Since the trailers are the stochastically 

cheapest, the results suggest that a semi-permanent construction standard is optimal for 

contingencies ranging from three to nine years in length. The results of each Wilcoxon 

text are reported in  
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Table 11. 
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Table 11: Adjusted Simulation Wilcoxon Ranked Sum Test Results 

Years 

of Use 
Comparison W p-value 

90% Confidence 

Interval 

Difference in 

Location 

3 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [15.19, 15.25] 15.23 

BPC to RLB 19065000 <0.0001* [-23.33, -22.22] -22.77 

Trailer to RLB 4185300 <0.0001* [-38.54, -37.45] -38.00 

4 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [15.80, 15.86] 15.84 

BPC to RLB 14668000 <0.0001* [-27.00, -26.03] -26.52 

Trailer to RLB 2540900 <0.0001* [-42.83, -41.85] -42.35 

5 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [16.20, 16.26] 16.23 

BPC to RLB 12842000 <0.0001* [-27.32, -26.24] -26.78 

Trailer to RLB 1435500 <0.0001* [-43.55, -42.48] -43.02 

6 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [16.47, 16.54] 16.51 

BPC to RLB 10206000 <0.0001* [-31.53, -30.51] -31.02 

Trailer to RLB 952370 <0.0001* [-48.03, -47.02] -47.53 

7 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [17.84, 17.91] 17.88 

BPC to RLB 8012200 <0.0001* [-33.47, -32.47] -32.97 

Trailer to RLB 379010 <0.0001* [-51.35, -50.35] -50.85 

8 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [18.77, 18.84] 18.81 

BPC to RLB 6650600 <0.0001* [-35.40, -34.41] -34.91 

Trailer to RLB 182850 <0.0001* [-54.21, -53.22] -53.72 

9 Years 

BPC to Trailer 1.00*10
8
 <0.0001* [19.63, 19.70] 19.67 

BPC to RLB 4697900 <0.0001* [-39.50, -38.51] -39.01 

Trailer to RLB 54163 <0.0001* [-59.17, -58.18] -58.68 
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Figure 21: Adjusted Simulated Life Cycle Cost 

 

 Since the MCS produced distributions of life cycle costs, a deeper investigation in 

each scenario was conducted to investigate the probability that one design is cheaper or 

more expensive than the other. In each scenario, the BPC and trailer design’s had very 

little variance in life cycle cost, while the RLB had a substantial amount of variance. The 

RLB’s large range of variance, as shown in Figure 22, introduces some uncertainty into a 

decision, as some of the observations of the BPC’s and trailer’s life cycle costs are more 

expensive than that of the simulated observations of the RLB’s. For scenarios with 

durations of three years, most all trailer life cycle cost observations were found to be 

cheaper than the observations of the BPC, as shown in Figure 22. Approximately 80.2% 
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life cycle cost observations for the RLB were larger than the BPC’s, and approximately 

85.9% of the RLB’s observations were larger than that of the trailer’s.  

 

Figure 22: Year 3 LCC Histograms 

 

Each scenario was, subsequently, investigated for changes in stochastic dominance. No 

significant changes, however, were discovered leading up to the nine-year scenario. The 

nine-year scenario showed a shift in costs to the right and showed less of a probability 

that the life cycle costs of either the BPC or trailer is less expensive that the RLB. These 

results indicated that there is more of a certainty that the RLB design is the most 

expensive. The result of all scenarios, shown in Table 12, indicates that the probability 

that the RLB is the most expensive alternative increases as duration increases. For 

example, the nine year scenario, shown in Figure 23, depicts a shift to the right in the 
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RLB’s life cycle costs. Descriptive statistics of each scenario can be found in Appendix 

B.  

Table 12: Adjusted Simulation Stochastic Dominance Chart 

Scenario P(BPC < TRA) P(BPC < RLB) P(TRA < RLB) 

3 Years 0 0.8089 0.9579 

4 Years 0 0.8537 0.975 

5 Years 0 0.8725 0.9857 

6 Years 0 0.8987 0.9912 

7 Years 0 0.9218 0.9961 

8 Years 0 0.9333 0.998 

9 Years 0 0.9528 0.9994 

 

 

Figure 23: Year 9 LCC Histograms 

 

In addition to comparisons of their life cycle costs, the distribution of the 

difference of the observations of each design’s life cycle costs was investigated to see if 
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the means of the differences are approaching zero. Since the difference is being taken of 

positive costs, then the sign indicates which design alternative is stochastically cheaper. 

For example, if sample x and sample y is being compared and the difference is negative, 

then sample x is stochastically cheaper. Otherwise, sample y is stochastically cheaper. 

The difference in observations of the BPC and trailer showed that the mean almost 

crosses zero for contingencies lasting nine years. Additionally, the upper tail of the 90 

percent confidence interval crosses zero after 8 years of use, as shown in Figure 24. This 

indicates that the trailer is preferred for contingencies up to 9 years in length. 

 

Figure 24: Difference in Observations for BPC and Trailer 

 

The distribution of differences between the BPC and RLB showed that zero was 

always included within the 90 percent confidence interval. Additionally, the mean was 

found to be positive after seven years of use, indicating that with the trailers there is a 
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greater probability that the RLB design will be cheaper than the BPC design. The 

comparison between the trailer and RLBs showed similar results. The mean was found to 

be positive after seven years of, and the zero was always included within the 90 percent 

confidence interval. Effectively, RLBs are the cheaper option in scenarios that are less 

than seven years, with respect to the other two designs. The visual illustrations of these 

investigations are shown in Figure 25 and Figure 26. Descriptive statistics of the 

difference calculations can be found in Appendix B. 

 

Figure 25: Difference in Observations for BPC and RLB 

 



 

 

83 

 

 

Figure 26: Difference in Observations for Trailer and RLB 

 

Table 13: Difference Analysis Stochastic Dominance Chart 

 
P(Diff > 0 ) 

Scenario BPC - Trailer BPC - RLB Trailer - RLB 

3 Years 1 0.1973 0.1035 

4 Years 1 0.2549 0.1585 

5 Years 1 0.3302 0.2291 

6 Years 0.9997 0.4586 0.3679 

7 Years 0.9844 0.5621 0.4907 

8 Years 0.8591 0.7569 0.7247 

9 Years 0.6089 0.8973 0.8936 

 

50 Year Life Cycle Comparison 

Since the BPC has a fifty-year life cycle, its life cycle cost will be conceptually 

cheap because its design is more resilient and reliable.  The purpose of the fifty-year life 
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cycle comparison was to investigate if the BPC’s reliability will make it the most 

economic alternative in scenarios for which the duration of the contingency is long. As in 

the previous analysis, changes in stochastic dominance are of interest.  In order to 

investigate changes in stochastic dominance, the cost to house personnel with the trailer 

and RLB designs must be calculated for a period of fifty year, matching the BPC’s life 

cycle. Thus, the BPC was assumed to have a fifty-year service life, while the RLB and 

trailer designs were assumed to have a ten-year service life. 

 Major assumptions were made to simulate fifty-year service lives with limited 

data. For example, maintenance year’s one through seven were repeated for the BPC 

design in order to simulation a fifty-year life cycle.  Alternatively, maintenance years one 

through seven were used to simulate the first seven years of the trailer’s and RLB’s 

service lives. Moreover, the last three years were assumed to be similar to years five, six, 

and seven. Acquisitions and disposal costs were, also, added five times to simulate the 

disposal of a dilapidated facility and a construction of a new facility in its place.  

 The simulation demonstrated that permanent construction is preferred for periods 

greater than or equal to 12 years, while semi-permanent construction is preferred for 

periods less than 11 years. The RLB design was consistently the most expensive design; 

however, the first five years of the design’s service life seem to overlap with the other 

two design’s distribution of life cycle costs.  Ultimately, these results suggest that semi-

permanent designs are preferable for contingencies less than 12 years, while permanent 

standards for preferable for contingencies of 12 years or more. Descriptive statistics of 
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each contingency scenario can be found in Appendix B.

 

Figure 27: 50 Year Comparison Means Plot 

Analysis of Selection in Uncertain Conditions 

The purpose of the analysis of selection in uncertain conditions was to understand 

how the life cycle costs of each design alternative changes as the certainty of a mission 

duration changes. In contrast to analysis under certain conditions, the probabilistic 

analysis introduced uncertainty in the selection of a design alternative. The probabilistic 

analysis was broken down into two Monte Carlo simulations. The first simulation 

assumed the duration of a mission that followed the distribution of durations of forward 

operation bases used during Operation Enduring Freedom (OEF). The second 

simulation’s purpose was to provide bring some utility to the model, as it sought to 
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resemble a decision maker’s feeling of certainty of mission duration. With time as a 

random variable, each simulation used the adjustment factors with the following model: 

𝑁𝑃𝑊(𝑡)𝑥1 =  𝐴𝐶(𝑙𝑛(𝜇, 𝜎))𝑥1 + ∑ {(
1

(1 + 𝑖)𝑡
) [𝑀𝐶((𝑙𝑛(𝜇, 𝜎)))]𝑥1,𝑡} + [(

1

(1 + 𝑖)𝑡
 ) (𝐷𝐶(𝑙𝑛(𝜇, 𝜎)))𝑥1]

𝑛

𝑡=0

 

Where, 

𝑁𝑃𝑊𝑥1 = net present worth of costs for facility design x1, for analysis period of t years 

(𝐴𝐶)𝑥1 = acquisition cost for alternative x1 

[𝑀𝐶]𝑥1,𝑡 = maintenance costs for alternative x1 in year t 

(𝐷𝐶)𝑥1 = disposal cost for alternative x1, at the end of the analysis period, t years 

𝑖 = discount rate for t years 

Operation Enduring Freedom Simulation  

The OEF simulation’s key assumption was that a base’s life cycle could be 

modeled via the distribution of OEF forward operating base durations of Operation 

Enduring Freedom. Data on the open and closure dates of several FOBs were collected 

from various sources and subtracted to calculate a net duration for each observation. 

Since the result was integer, time based data, the Poisson distribution was tried for 

goodness-of-fit.  Similar to the cost data distribution fitting, JMP
®
 was used to test 

durations with the KS The results of the goodness of fit test from JMP
®
 are shown in 

Figure 28. 
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Figure 28: Duration Goodness of Fit Test 

 

Unlike the analysis of selection in certain conditions, the variance in distribution 

of time forced the Monte Carlo simulation to generate random scenarios of contingency 

duration. Therefore, the simulation calculated 10,000 life cycle costs that were calculated 

for each generated scenario of a contingency. In contrast to the analysis under certain 

conditions, the Wilcoxon signed rank test was executed to compare the differences of the 

observations of each design. The results of the tests, shown in Table 14, indicated that 

each distributions of life cycle costs are independent. Moreover, the trailer was found to 

be stochastically cheaper than the other designs. This simulation’s histograms are shown 

in Figure 29 and the comparisons are shown in  

 

Table 15. Descriptive statistics of the simulation can be found in Appendix C. 

Table 14: OEF Simulation Wilcoxon Signed Rank Test Results 

Comparison V p-value 
90% Confidence 

Interval 

Pseudo 

median 

BPC to. Trailer 50005000 <0.0001* [19.64, 19.67] 19.65 

BPC To RLB 291620 <0.0001* [-42.75, -41.67] -42.21 

Trailer to RLB 95 <0.0001* [-62.42, -61.34] -61.88 
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Figure 29: OEF Simulation LCC Histograms 

 

Table 15: OEF Simulation Stochastic Dominance Chart 

Comparison Probability 

BPC < TRA 0 

BPC < RLB 0.9571 

TRA < RLB 0.9997 

 

Lack of Knowledge Simulations 

The lack of knowledge simulations’ purpose was to model a decision maker’s 

uncertainty on a potential duration of a contingency. As literature suggested, a triangular 

distribution was assumed to describe a decision maker’s uncertainty on the duration of a 

mission. The minimum and maximum values for the distribution were assumed to be 
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three and nine, respectively. The mode, on the other hand, was changed from 3 years to 9 

years to simulate a decision maker’s estimate on a likely scenario. Thus, this portion of 

the analysis was similar to the adjusted analysis under certainty.  

Like the OEF simulation, the expected value, or mean, of the distribution of a 

design’s life cycle cost can shed light on which design alternative is statically cheapest. 

The Wilcoxon Signed Rank test tested the paired differences of each scenario and 

determined if the distributions are statistically independent. The results, shown in Table 

16, indicated that each distribution was statistically independent. Additionally, the RLB 

was found to be the most expensive design, while the trailer was found to be the least 

expensive design, as shown in Figure 30. Descriptive statistics of each scenario are 

provided in Appendix C. 
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Table 16: Lack of Knowledge Simulations Wilcoxon Signed Rank Test Results 

Years 

of Use 
Comparison V p-value 

90% Confidence 

Interval 
Pseudomedian 

3 

Years 

BPC to Trailer 50005000 <0.0001* [19.65, 19.69] 19.67 

BPC To RLB 295870 <0.0001* [-42.13, -41.03] -41.58 

Trailer to RLB 57 <0.0001* [-61.80, -60.70] -61.25 

4 

Years 

BPC to Trailer 50005000 <0.0001* [19.67, 19.70] 19.69 

BPC To RLB 298100 <0.0001* [-42.58, -41.49] -42.04 

Trailer to RLB 71 <0.0001* [-62.27, -61.18] -61.73 

5 

Years 

BPC to Trailer 50005000 <0.0001* [19.64, 19.68] 19.66 

BPC To RLB 340270 <0.0001* [-41.92, -40.80] -41.36 

Trailer to RLB 248 <0.0001* [-61.59, -60.48] -61.03 

6 

Years 

BPC to Trailer 50005000 <0.0001* [19.63, 19.67] 19.66 

BPC To RLB 345900 <0.0001* [-42.31, -41.19] -41.76 

Trailer to RLB 282 <0.0001* [-61.97, -60.85] -61.41 

7 

Years 

BPC to Trailer 50005000 <0.0001* [19.65 19.69] 19.68 

BPC To RLB 335000 <0.0001* [-41.75, -40.64] -41.20 

Trailer to RLB 2 <0.0001* [-61.43, -60.33] -60.88 

8 

Years 

BPC to Trailer 50005000 <0.0001* [19.66, 19.69] 19.68 

BPC To RLB 316700 <0.0001* [-42.28, -41.18] -41.74 

Trailer to RLB 92 <0.0001* [-61.96, -60.86] -61.42 

9 

Years 

BPC to Trailer 50005000 <0.0001* [19.63, 19.67] 19.66 

BPC To RLB 320130 <0.0001* [-42.44, -41.34] -41.90 

Trailer to RLB 184 <0.0001* [-62.11, -61.01] -61.56 
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Figure 30: Expected Value of LCC for each Design in Each Scenario 

 

In addition, each scenario was individually investigated to further understand 

stochastic dominance. The results found that the trailer was consistently the cheapest 

design, while the RLB was the most expensive design. The variance of each design, 

however, introduces uncertainty in a clear answer of the cheapest design; therefore, the 

probability that one design is cheaper than another is a more accurate measurement. The 

histograms of the three and nine year scenarios, in Figure 31 and Figure 32, do not show 

significant changes in stochastic dominance. Moreover, Table 17 reflects this observation 

of minimal changes in the results of each comparison of each design alternatives. 

Descriptive statistics of each scenario can be found in Appendix C.   
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 Figure 31: Simulated LCC for 3 Years of Use Most Probable 

 

Figure 32: Simulated LCC for 9 Years of Use Most Probable 
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Table 17: Lack of Knowledge Simulation Stochastic Dominance Chart 

Scenario P(BPC < TRA) P(BPC < RLB) P(TRA < RLB) 

3 0 0.9564 0.9994 

4 0 0.9577 0.9995 

5 0 0.955 0.9992 

6 0 0.9525 0.9989 

7 0 0.9557 0.9999 

8 0 0.9555 0.9995 

9 0 0.9544 0.9993 

Risk Analysis Under Uncertain Conditions  

The purpose of the risk analysis was to understand how a decision makers risk 

profile might affect the outcome of a decision. Whereas all aforementioned analysis 

reported results of risk neutral risk profiles, the risk analysis under uncertain conditions 

assumes that decision makers are inherently risk averse and prefer alternatives that have 

the least expected utility. The two risk averse profiles shown in Figure 33, were tried in 

the simulation, describing a two different tolerances of risk with respect to a decision 

maker’s current budget or state of wealth. The risk aversion profiles are described though 

the expected utility function and its risk aversion parameter, ρ. For the purposes of this 

research, risk profile #1 and #2 assumes that a decision maker has a risk aversion factor 

of 30,000,000 and 5,000,000, respectively. Risk profile #1 is considered as a highly risk 

averse profile while risk profile #2 is moderately risk averse. Since this research deals 

with costs, small utility values indicate preferred alternatives for the OEF simulation and 

lack of knowledge simulation. The two simulations conducted in the analysis under 

uncertain conditions were performed with the life cycle cost model and then transformed 

to an expected utility, using the function shown below.  
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𝑢(𝑁𝑃𝑊𝑥1) =  1 − 𝑒−(
𝑁𝑃𝑊𝑥1

𝑅
) 

 

Where, 

u = the expected utility 

NPW = Net Present Worth of Design alternative, x1 

R = a decision maker’s risk aversion parameter  

 

 

Figure 33: Risk Profiles Used In Analysis 

 

 Operation Enduring Freedom Simulation 

The introduction of the two decision maker risk profiles did not change the 

preferred alternatives. As in the analysis for selection in uncertain conditions, the OEF 

simulation resulted in the trailer as being the preferred alternative for both risk profiles. 

Risk profile #1’s distributions of utility for each design alternative scored lower than that 
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of risk profile #2, as shown in Figure 34. Since smaller scores are better when 

considering costs, this indicates that all design alternatives are less risky with risk profile 

1. Alternatively, the alternatives are more risky with risk profile #2 because of the 

decision maker’s budget or current state of wealth. The results of the simulation were 

tested for independence with the Wilcoxon Signed Ranked test, and the three designs 

were found to be statistically independent, as indicated in Table 18. The comparisons for 

each risk profile are shown in  

Table 19. Descriptive statistics of the simulations can be found in Appendix D. 

Table 18: OEF Simulation Risk Analysis Wilcoxon Signed Rank Test Results 

Risk 

Profile 
Comparison V p-value 90% Confidence Interval Pseudomedian 

1 

BPC to Trailer 50005000 <0.0001* [0.054, 0.054] 0.054 

BPC To RLB 362500 <0.0001* [-0.102, -0.099] -0.101 

Trailer to RLB 154 <0.0001* [-0.156, -0.153] -0.222 

2 

BPC to Trailer 50005000 <0.0001* [0.124, 0.124] 0.124 

BPC To RLB 458550 <0.0001* [-0.135, -0.132] -0.134 

Trailer to RLB 173 <0.0001* [-0.259, -0.257] -0.258 
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Figure 34: OEF Risk Analysis Histograms 

 

Table 19: OEF Simulation Risk Analysis Comparisons 

Comparison 
Risk 

Profile 1 

Risk 

Profile 2 

P(BPC < Trailer) 0 0 

P(BPC < RLB) 0.9531 0.9531 

P(Trailer < RLB) 0.9991 0.9991 
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Lack of Knowledge Simulations 

Like the OEF Risk analysis, the incorporation of the two risk profiles did not change the 

preferred alternatives for all scenarios. The trailer was consistently found to be the 

desired design alternative as it had the lowest expected utility of the three designs. The 

results of each scenario were tested for independence through the Wilcoxon Signed Rank 

test, and the results are reported in  
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Table 21. The three designs’ distribution of utility for each risk profile was found to be 

statistically independent for all scenarios.  

To provide some depth of understand for the results, each scenario was 

investigated to understand the stochastic dominance of each design. There were no 

significant changes in expected utility in the scenarios for three years of use to nine years 

of use, as shown in their respective histograms in Figure 35 and Figure 36. Table 20 

shows this observation in detail. Descriptive statistics of the results are provided in 

Appendix D.  

 

Figure 35: Risk Analysis Results for 3-Year Scenario 
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Figure 36: Risk Analysis Results for 9-Year Scenario 

 

Table 20: Lack of Knowledge Risk Analysis Comparisons 

 

 

 

  

Risk Profile Year BPC < TRA BPC < RLB TRA < RLB 

1 

3 0 0.9524 0.9991 

4 0 0.952 0.9995 

5 0 0.9541 0.9993 

6 0 0.9583 0.9997 

7 0 0.9572 0.9995 

8 0 0.9559 0.9994 

9 0 0.9555 0.999 

2 

3 0 0.9524 0.9991 

4 0 0.952 0.9995 

5 0 0.9541 0.9993 

6 0 0.9583 0.9997 

7 0 0.9572 0.9995 

8 0 0.9559 0.9994 

9 0 0.9555 0.999 
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Table 21: Wilcoxon Signed Rank Test Results 

Risk 

Profile 

Years 

of Use 
Comparison V p-value 

90% Confidence 

Interval 
Pseudomedian 

1 

3 Years 

BPC to Trailer 50005000 <0.0001* [0.054, 0.054] 0.054 

BPC To RLB 365230 <0.0001* [-0.102, -0.099] -0.101 

Trailer to RLB 187 <0.0001* [-0.156, -0.153] -0.155 

4 Years 

BPC to Trailer 50005000 <0.0001* [0.053, 0.054] 0.054 

BPC To RLB 326800 <0.0001* [-0.102, -0.099] -0.101 

Trailer to RLB 35 <0.0001* [-0.156, -0.153] -0.155 

5 Years 

BPC to Trailer 50005000 <0.0001* [0.053, 0.054] 0.054 

BPC To RLB 331460 <0.0001* [-0.102, -0.100] -0.102 

Trailer to RLB 55 <0.0001* [-0.156, -0.154] -0.156 

6 Years 

BPC to Trailer 50005000 <0.0001* [0.054, 0.054] 0.054 

BPC To RLB 302170 <0.0001* [-0.102, -0.100] -0.101 

Trailer to RLB 29 <0.0001* [-0.156, -0.154] -0.155 

7 Years 

BPC to Trailer 50005000 <0.0001* [0.059, 0.054] 0.054 

BPC To RLB 295860 <0.0001* [-0.102, -0.100] -0.102 

Trailer to RLB 45 <0.0001* [-0.156, -0.154] -0.156 

8 Years 

BPC to Trailer 50005000 <0.0001* [0.053, 0.054] 0.054 

BPC To RLB 329420 <0.0001* [-0.103, -0.100] -0.102 

Trailer to RLB 135 <0.0001* [-0.157, -0.154] -0.156 

9 Years 

BPC to Trailer 50005000 <0.0001* [0.053, 0.054] 0.054 

BPC To RLB 341310 <0.0001* [-0.101, -0.099] -0.101 

Trailer to RLB 153 <0.0001* [-0.155, -0.153] -0.155 

2 

3 Years 

BPC to Trailer 50005000 <0.0001* [0.124, 0.124] 0.124 

BPC To RLB 451160 <0.0001* [-0.134, -0.132] -0.133 

Trailer to RLB 214 <0.0001* [-0.258, -0.256] -0.258 

4 Years 

BPC to Trailer 50005000 <0.0001* [0.123, 0.124] 0.124 

BPC To RLB 389350 <0.0001* [-0.134, -0.132] -0.134 

Trailer to RLB 39 <0.0001* [-0.259, -0.256] -0.258 

5 Years 

BPC to Trailer 50005000 <0.0001* [0.123, 0.124] 0.124 

BPC To RLB 407570 <0.0001* [-0.135, -0.133] -0.134 

Trailer to RLB 55 <0.0001* [-0.259, -0.257] -0.258 

6 Years 

BPC to Trailer 50005000 <0.0001* [0.124, 0.124] 0.124 

BPC To RLB 371430 <0.0001* [-0.135, -0.132] -0.134 

Trailer to RLB 29 <0.0001* [-0.259, -0.256] -0.258 

7 Years 

BPC to Trailer 50005000 <0.0001* [0.123, 0.124] 0.124 

BPC To RLB 368220 <0.0001* [-0.135, -0.133] -0.135 

Trailer to RLB 49 <0.0001* [-0.259, -0.257] -0.259 

8 Years 

BPC to Trailer 50005000 <0.0001* [0.123, 0.124] 0.124 

BPC To RLB 405960 <0.0001* [-0.135, -0.133] -0.135 

Trailer to RLB 156 <0.0001* [-0.259, -0.257] -0.259 

9 Years 

BPC to Trailer 50005000 <0.0001* [0.123, 0.123] 0.124 

BPC To RLB 436670 <0.0001* [-0.134, -0.132] -0.134 

Trailer to RLB 159 <0.0001* [-0.258, -0.256] -0.258 
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Chapter Summary 

In short, the model development and simulations discussed in chapter three were 

successfully executed with historical ACES-RP and IWIMS data. The results of the 

simulations, however, are limited in making significant conclusions because many 

problems presented themselves in the data collection process. Several assumptions were 

made to address limitations. Nevertheless, the results consistently suggested that the 

trailer design alternative is the cheapest design if a contingency is to last anywhere 

between three and nine years. Additionally, the fifty-year analysis suggested that the BPC 

may be the cheapest alternative for contingencies greater than 12 years, while the trailer 

was shown to be the cheapest alternative for contingencies less than 12 years.  
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V.  Conclusions and Recommendations 

Chapter Overview 

The purpose of chapter five is to synthesize the results reported in chapter four in 

order to answer the investigative questions. In this chapter, answers that reflect the results 

of the study are provided for all investigative questions. In addition, areas for future 

research are suggested to enhance the model to provide more reliable information for 

decision makers considering the transition to enduring.    

Investigative Questions Answered 

This study was motivated by five investigative questions to provide insight into 

the decision to transition a contingency base to an enduring status.  

Investigative Question 1 

How does a decision maker determine if a transition to an enduring status is 

advantageous? 

 

 JP 3-34’s guidelines presented the argument that a transition to an enduring status 

is, effectively, a decision to enhance a contingency base’s infrastructure to a higher 

construction standard. Construction standards are guidelines by which a base constructs 

or maintains its infrastructure and have five classifications. According to JP 3-34 

framework, organic, initial, and temporary standards are suggested for use in 

contingencies less than two years, while semi-permanent and permanent standards are for 

those longer than two years. Moreover, JP 3-34 suggests that decision makers should 

consider the host nation’s interests, the COCOM’s strategy, and cost efficiency to when 
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considering improving a base’s infrastructure. The decision, however, is often made 

under a substantial amount of uncertainty with several stakeholders having an in interest 

in the outcome.  

Literature strongly supported the idea that uncertain decision situations, similar to 

that of considering a transition to enduring status, can be simplified into measurable 

objectives using Multi Objective Decision Analysis (MODA). MODA offers a method of 

quantifying the monetary and intrinsic value of several alternatives when faced with more 

than one objective.  With respect to a decision to transition to an enduring status, 

literature suggested that some objectives might include minimizing life cycle cost, 

maximizing the quality of life, and maximizing force protection of billeting facilities. In 

order to holistically assess if a transition to an enduring status is advantageous, the 

economic and intrinsic value of all design alternatives must quantified and evaluated. If 

an enduring design alternative scores the highest with respect to each objective, then the 

decision maker can say with some certainty that a transition is advantageous. 

Investigative Question 2 

How does the duration of a contingency operation affect the decision to transition 

to an enduring status? 

 

Literature revealed that external and internal factors affect be the reliability over 

the time the facility is used because materials deteriorate. A decrease in an assets 

reliability lead to an increase in its maintenance cost over time; therefore, the duration of 

use of a facility affects its life cycle cost. The results of the analysis under certain 

conditions aligned with literature, as it suggested that cost does increase with time. 
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Moreover, the results suggested that a semi-permanent design, the trailer, might be the 

cheapest for contingencies lasting from 3 to 9 years. The results were also in alignment in 

what is expected of a temporary design because it was found to be the most expensive for 

all scenarios. Additionally, the 50-year horizon aligned with literature, as it suggested 

that permanent designs are optimal for contingencies greater than 12 years. Ultimately, 

the results showed that duration does seem to affect a design’s life cycle.  

It should be noted, however, that the results of the analysis under certain 

conditions are not conclusive because of significant limitations in the model. 

Acquisitions, maintenance, and disposal costs were only able to be included in the model, 

as user and operational cost data was not available for each design. In addition, the 

maintenance data did not include material costs, which explains why maintenance is not a 

significant contributor to life cycle costs. Additionaly, it appears that if material costs 

were also included, the preferred time horizon for permanent construction would be less 

than 12 years. Based on these limitations, one might expect the true optimal transition 

period to be less than 12 years. 

Aside from limitations in data, more research is needed to bring more clarity to 

the answer of this question because other important objectives of this decision were not 

included in this scope of this research. It may be the case that temporary designs are 

valuable to decision makers in certain contingency operations because they provide 

certain capababilities that fit certain situations. If future research determines this, this 

may change the time horizons for perfered alternatives.  
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Investigative Question 3 

Can an uncertainty in duration of a contingency operation be quantified and 

incorporated into the decision to transition to an enduring status? 

 

While literature suggested that uncertainty might change the preferred alternative, 

the analysis under uncertain conditions suggested otherwise. Despite the introduction of 

an uncertainty in duration, the analysis’s results were consistent with that of the analysis 

under certain conditions, in that trailer was still found to be the cheapest design 

alternative. The OEF simulation suggested that if a contingency is expected to be similar 

to that of OEF, then a trailer might be the cheapest design alternative. Similarly, the lack 

of knowledge simulation suggested, modeling a decision maker’s uncertainty with the 

triangular distribution, suggested the same. Since there is a high amount of variance in 

the cost of an RLB, this does present the possibility that there may be events where the 

RLB is the cheapest design alternative. If additional maintenance cost data was 

incorporated into the model, it may shrink the variance in the RLB costs or change the 

preferred alternative. Overall, uncertainty in the duration of the mission did produced 

different results from that of the analysis under certain conditions.  

Investigative Question 4 

Since risk in inherent in any uncertain decision, how does a decision maker’s risk 

attitude affect the decision to transition to an enduring status? 

 

Literature suggested that a decision maker’s risk attitude could affect the expected 

utility of alternatives in uncertain decisions. In addition, literature suggested that decision 

makers typically follow the delta property; therefore, they tend to be risk averse. Because 

the analysis under certain conditions’ results showed that the BPC design alternative is 
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stochastically cheaper in all scenarios, the two risk averse profiles did not produce any 

change in the preferred alternative. The analysis did show, however, that expected utility 

did change as a risk attitude approaches risk neutrality. This suggests that a risk-seeking 

profile might show that the trailer or RLB is desired over the BPC design because the 

decision maker seeks risk in decisions. Nonetheless, the results showed that risk profiles 

do change the results but the analysis showed no change in the preferred alternative.  

Recommendations for Future Research 

In light of an analysis of the result of this study, more research should be done to 

enhance the model and better inform decision makers facing this decision. With respect 

to an economical analysis, a few more practical and easily executable studies could 

include additional information into Uddin et al’s model. Future research should include 

the material cost for maintenance in a comparison of the designs. During the data 

collection process of this study, it was discovered that material costs at AUAB were 

being collected and stored in IWIMS. If a study were to include this data, it could at least 

shed more light on the comparison of the BPC to the trailer designs. Additionally, it is 

recommended that any subsequent studies to this research investigate sources of 

information for user and operational costs. Including these costs to the model will provide 

a stronger analysis of the comparison of the design alternatives as it includes all variables 

in Uddin et al’s life cycle cost model. Finally, future research should be conducted that 

include historical costs for all variables in Uddin et al’s model. This research could 
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provide substantial reliability in its results because all costs have been spent and no 

prediction or extrapolation is needed. 

Outside of an economic analysis, a MODA application that includes all objectives 

in the decision should be done to determine which alternative is optimal for all involved 

stakeholders. Since a MODA application incorporates all objectives in a decision, it can 

include the results from an economic analysis, similar to this study, in its model. This 

would provide a better understanding of preferred alternatives, when considering all 

objectives. Furthermore, better alternatives may be developed as a result of such a model. 

Perhaps the most interesting academic contribution a MODA application would 

accomplish would be the process of measuring quality of life. The quality of life of a 

design is a difficult and abstract objective; however, it must be included in a decision to 

enduring is of interest because it is central to the decision.  It is highly recommended that 

MODA be used in future research as it provides a holistic understanding of the decision 

to transition to enduring and it may provide better insight into the time horizons of 

preferred alternatives. 

Summary 

 In conclusion, the goal of this research was to understand the decision of 

transitioning a contingency base to an enduring status. The study provided a review of 

literature to investigate how the decision is currently solved and find some additional 

tools that could be used to make the decision easier. As results of the literature review, a 

methodology was developed that focused solely on providing an analysis of the life cycle 
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costs of potential design alternatives. The methodology was executed on three design 

alternatives; however, data availability significantly limited the results of the analysis. 

Nevertheless, the results showed that the semi-permanent design alternative was 

stochastically the cheapest design for scenarios where contingencies last anywhere from 

three to twelve year. For scenarios greater than 12 years, permanent construction 

standards are stochastically cheapest.  

Ultimately, the decision to transition a contingency base to an enduring status is 

an evaluation of facility designs with respect to a senior decision maker’s objectives in a 

contingency operation. Although this research identified some objectives and quantified 

some life cycle costs, the decision has not yet been completely been conceptualized. 

Indeed, this research has shown that cost is an integral piece of the decision; however, 

multi-objective frameworks quantify both cost and value of designs alternatives. These 

frameworks are powerful as they allow decision makers to evaluate tradeoffs of designs. 

Thus, such frameworks should be used to evaluate which bases remain open as Operation 

Resolute Support continues closing its bases. Moreover, such a framework could be 

leveraged for future contingency operations to empower decision makers to make 

informed construction decisions for FOBs in the contingency. Nevertheless, future 

research in this field is imperative if the DoD is to continue to sustain a presence in the 

Middle East with limited funds and personnel. 
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Appendix A: Data Collection 

Distribution Mean 

Standard 

Deviation 

MX Hrs Year 1 (2009) 7.56 0.117 

MX Hrs Year 2 (2010) 7.28 0.31 

MX Hrs Year 3 (2011) 6.91 0.241 

MX Hrs Year 4 (2012) 6.56 0.171 

MX Hrs Year 5 (2013) 8.14 0.216 

MX Hrs Year 6 (2014) 7.85 0.086 

MX Hrs Year 7 (2015) 7.79 0.171 

 

Distribution Mean 
Standard 

Deviation 

Acquisition ($) 13.94 0.021 

MX Hrs Year 1 (2009) 4.73 0.338 

MX Hrs Year 2 (2010) 4.51 0.468 

MX Hrs Year 3 (AVG) 4.13 0.378 

MX Hrs Year 4 (2012) 3.75 0.288 

MX Hrs Year 5 (2013) 5.21 0.329 

MX Hrs Year 6 (2014) 5.12 0.412 

MX Hrs Year 7 (2015) 5.07 0.324 

 

Distribution Mean 
Standard 

Deviation 

Acquisition ($) 11.61 0.372 

MX Hrs Year 1 (2013) 3.77 0.661 

MX Hrs Year 2 (2014) 5.22 0.444 

MX Hrs Year 3 (2015) 4.85 0.422 

MX Hrs Year 4 (AVG) 4.95 0.451 

MX Hrs Year 5 (2013) 5.06 0.479 

MX Hrs Year 6 (2014) 4.89 0.739 

MX Hrs Year 7 (2015) 5.33 0.689 

 

  



 

 

110 

 

Appendix B: Analysis for Selection Under Certain Conditions 

 
Design Alternative Cost Descriptive Statistics ($100K) 

Design Year Cost Type Mean 
Standard 

Deviation 

Standard 

Error 

Confidence 

Interval 

BPC 3 Acquisition 53.186 1.196 0.012 0.020 

BPC 3 Disposal 9.057 0.000 0.000 0.000 

BPC 3 Life Cycle 62.266 1.196 0.012 0.020 

BPC 3 Maintenance 0.023 0.003 0.000 0.000 

BPC 4 Acquisition 53.186 1.196 0.012 0.020 

BPC 4 Disposal 9.057 0.000 0.000 0.000 

BPC 4 Life Cycle 63.042 1.230 0.012 0.020 

BPC 4 Maintenance 0.799 0.241 0.002 0.004 

BPC 5 Acquisition 53.186 1.196 0.012 0.020 

BPC 5 Disposal 9.057 0.000 0.000 0.000 

BPC 5 Life Cycle 63.565 1.246 0.012 0.020 

BPC 5 Maintenance 1.322 0.278 0.003 0.005 

BPC 6 Acquisition 53.186 1.196 0.012 0.020 

BPC 6 Disposal 9.057 0.000 0.000 0.000 

BPC 6 Life Cycle 63.912 1.255 0.013 0.021 

BPC 6 Maintenance 1.669 0.289 0.003 0.005 

BPC 7 Acquisition 53.186 1.196 0.012 0.020 

BPC 7 Disposal 9.057 0.000 0.000 0.000 

BPC 7 Life Cycle 65.575 1.311 0.013 0.022 

BPC 7 Maintenance 3.331 0.459 0.005 0.008 

BPC 8 Acquisition 53.186 1.196 0.012 0.020 

BPC 8 Disposal 9.057 0.000 0.000 0.000 

BPC 8 Life Cycle 66.776 1.333 0.013 0.022 

BPC 8 Maintenance 4.533 0.476 0.005 0.008 

BPC 9 Acquisition 53.186 1.196 0.012 0.020 

BPC 9 Disposal 9.057 0.000 0.000 0.000 

BPC 9 Life Cycle 67.889 1.341 0.013 0.022 

BPC 9 Maintenance 5.646 0.516 0.005 0.008 

RLB 3 Acquisition 1.661 0.689 0.007 0.011 

RLB 3 Disposal 0.166 0.000 0.000 0.000 

RLB 3 Life Cycle 1.850 0.690 0.007 0.011 

RLB 3 Maintenance 0.022 0.017 0.000 0.000 

RLB 4 Acquisition 1.665 0.690 0.007 0.011 

RLB 4 Disposal 0.166 0.000 0.000 0.000 

RLB 4 Life Cycle 1.936 0.691 0.007 0.011 

RLB 4 Maintenance 0.104 0.042 0.000 0.001 

RLB 5 Acquisition 1.667 0.695 0.007 0.011 

RLB 5 Disposal 0.166 0.000 0.000 0.000 

RLB 5 Life Cycle 1.992 0.696 0.007 0.011 

RLB 5 Maintenance 0.158 0.047 0.000 0.001 

RLB 6 Acquisition 1.670 0.702 0.007 0.012 

RLB 6 Disposal 0.166 0.000 0.000 0.000 

RLB 6 Life Cycle 2.058 0.704 0.007 0.012 
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RLB 6 Maintenance 0.221 0.057 0.001 0.001 

RLB 7 Acquisition 1.676 0.700 0.007 0.012 

RLB 7 Disposal 0.166 0.000 0.000 0.000 

RLB 7 Life Cycle 2.137 0.705 0.007 0.012 

RLB 7 Maintenance 0.294 0.069 0.001 0.001 

RLB 8 Acquisition 1.670 0.678 0.007 0.011 

RLB 8 Disposal 0.166 0.000 0.000 0.000 

RLB 8 Life Cycle 2.200 0.684 0.007 0.011 

RLB 8 Maintenance 0.363 0.091 0.001 0.001 

RLB 9 Acquisition 1.669 0.708 0.007 0.012 

RLB 9 Disposal 0.166 0.000 0.000 0.000 

RLB 9 Life Cycle 2.299 0.717 0.007 0.012 

RLB 9 Maintenance 0.464 0.121 0.001 0.002 

TRA 3 Acquisition 13.841 0.427 0.004 0.007 

TRA 3 Disposal 0.499 0.000 0.000 0.000 

TRA 3 Life Cycle 14.403 0.428 0.004 0.007 

TRA 3 Maintenance 0.062 0.022 0.000 0.000 

TRA 4 Acquisition 13.839 0.435 0.004 0.007 

TRA 4 Disposal 0.499 0.000 0.000 0.000 

TRA 4 Life Cycle 14.452 0.437 0.004 0.007 

TRA 4 Maintenance 0.114 0.034 0.000 0.001 

TRA 5 Acquisition 13.841 0.425 0.004 0.007 

TRA 5 Disposal 0.499 0.000 0.000 0.000 

TRA 5 Life Cycle 14.487 0.429 0.004 0.007 

TRA 5 Maintenance 0.147 0.036 0.000 0.001 

TRA 6 Acquisition 13.836 0.422 0.004 0.007 

TRA 6 Disposal 0.499 0.000 0.000 0.000 

TRA 6 Life Cycle 14.505 0.426 0.004 0.007 

TRA 6 Maintenance 0.169 0.037 0.000 0.001 

TRA 7 Acquisition 13.842 0.431 0.004 0.007 

TRA 7 Disposal 0.499 0.000 0.000 0.000 

TRA 7 Life Cycle 14.602 0.436 0.004 0.007 

TRA 7 Maintenance 0.261 0.048 0.000 0.001 

TRA 8 Acquisition 13.841 0.426 0.004 0.007 

TRA 8 Disposal 0.499 0.000 0.000 0.000 

TRA 8 Life Cycle 14.685 0.433 0.004 0.007 

TRA 8 Maintenance 0.345 0.061 0.001 0.001 

TRA 9 Acquisition 13.842 0.428 0.004 0.007 

TRA 9 Disposal 0.499 0.000 0.000 0.000 

TRA 9 Life Cycle 14.762 0.436 0.004 0.007 

TRA 9 Maintenance 0.420 0.064 0.001 0.001 
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Adjusted Life Cycle Cost Descriptive Statistics ($100K) 

Design Year Mean 
Standard 

Deviation 

Standard 

Error 

5th 

Percentile 

95th 

Percentile 

BPC 3 62.215 1.192 0.012 60.376 64.111 

BPC 4 62.993 1.233 0.012 61.093 64.945 

BPC 5 63.512 1.241 0.012 61.584 65.465 

BPC 6 63.862 1.246 0.012 61.939 65.817 

BPC 7 65.522 1.321 0.013 63.440 67.636 

BPC 8 66.715 1.321 0.013 64.631 68.821 

BPC 9 67.824 1.336 0.013 65.750 69.959 

RLB 3 91.101 33.985 0.340 48.626 153.976 

RLB 4 95.192 34.312 0.343 52.554 158.745 

RLB 5 98.164 34.210 0.342 55.525 162.740 

RLB 6 101.259 34.927 0.349 57.643 165.795 

RLB 7 103.914 34.333 0.343 61.020 167.821 

RLB 8 108.134 34.726 0.347 64.511 173.107 

RLB 9 113.221 34.480 0.345 69.131 177.930 

TRA 3 47.000 1.396 0.014 44.753 49.325 

TRA 4 47.175 1.386 0.014 44.941 49.463 

TRA 5 47.283 1.376 0.014 45.091 49.565 

TRA 6 47.339 1.402 0.014 45.081 49.685 

TRA 7 47.668 1.418 0.014 45.406 50.012 

TRA 8 47.909 1.408 0.014 45.676 50.233 

TRA 9 48.174 1.412 0.014 45.880 50.540 

 

 



 

 

115 

 

 
 

 



 

 

116 

 



 

 

117 

 



 

 

118 

 



 

 

119 

 



 

 

120 

 



 

 

121 

 



 

 

122 

 

 

  



 

 

123 

 

Difference Comparisons Descriptive Statistics 

Comparison Year Mean 
Standard 

Deviation 

Standard 

Error 

Confidence 

Interval 

5th 

Percentile 

95th 

Percentile 

BPC vs RLB 3 -2744689 3394358 33944 55837 -387553 -7880 

BPC vs RLB 4 -2317256 3400501 34005 55938 -428999 -36369 

BPC vs RLB 5 -1784969 3425263 34253 56346 -461312 2530051 

BPC vs RLB 6 -825248 3514688 35147 57817 -569833 3737708 

BPC vs RLB 7 51485 3659270 36593 60195 -814404 5027657 

BPC vs RLB 8 2503213 4228001 42280 69551 -1160212 8862678 

BPC vs RLB 9 6446948 5537517 55375 91092 -1726582 15585589 

BPC vs Trailer 3 -193900 115877 1159 1906 -9140372 1494111 

BPC vs Trailer 4 -228816 119884 1199 1972 -8720123 1943267 

BPC vs Trailer 5 -240921 131880 1319 2169 -8202693 2530051 

BPC vs Trailer 6 -287942 168618 1686 2774 -7302008 3737708 

BPC vs Trailer 7 -417951 233550 2336 3842 -6533869 5027657 

BPC vs Trailer 8 -524098 371768 3718 6116 -4569353 8862678 

BPC vs Trailer 9 -689373 606056 6061 9970 -2033447 15585589 

Trailer vs RLB 3 -2550789 3397544 33975 55890 -8926510 1702897 

Trailer vs RLB 4 -2088440 3403704 34037 55991 -8488873 2191181 

Trailer vs RLB 5 -1544048 3428639 34286 56401 -7950506 2764364 

Trailer vs RLB 6 -537306 3518133 35181 57874 -7008792 4017127 

Trailer vs RLB 7 398554 3662653 36627 60251 -6137730 5331141 

Trailer vs RLB 8 2956429 4231100 42311 69602 -4153474 9385371 

Trailer vs RLB 9 7065439 5540130 55401 91135 -1354812 16204052 
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50 Year Horizon Descriptive Statistics 

Design Year Mean 
Standard 

Deviation 

Standard 

Error 
5th Percentile 95th Percentile 

BPC 1 53.176 1.202 0.012 51.307 55.050 

BPC 2 62.233 1.202 0.012 60.364 64.107 

BPC 3 62.256 1.202 0.012 60.386 64.132 

BPC 4 63.035 1.243 0.012 61.106 64.955 

BPC 5 63.554 1.256 0.013 61.610 65.497 

BPC 6 63.902 1.261 0.013 61.942 65.854 

BPC 7 65.566 1.323 0.013 63.484 67.642 

BPC 8 66.763 1.336 0.013 64.659 68.868 

BPC 9 67.867 1.352 0.014 65.729 70.011 

BPC 10 67.890 1.352 0.014 65.750 70.034 

BPC 11 68.669 1.433 0.014 66.390 70.984 

BPC 12 69.188 1.456 0.015 66.873 71.519 

BPC 13 69.536 1.463 0.015 67.214 71.891 

BPC 14 71.200 1.602 0.016 68.649 73.842 

BPC 15 72.397 1.619 0.016 69.809 75.043 

BPC 16 73.501 1.655 0.017 70.858 76.227 

BPC 17 73.524 1.655 0.017 70.881 76.250 

BPC 18 74.303 1.758 0.018 71.503 77.236 

BPC 19 74.822 1.786 0.018 71.976 77.774 

BPC 20 75.170 1.793 0.018 72.305 78.146 

BPC 21 76.834 1.977 0.020 73.672 80.177 

BPC 22 78.031 1.997 0.020 74.830 81.399 

BPC 23 79.135 2.044 0.020 75.884 82.562 

BPC 24 79.158 2.045 0.020 75.908 82.586 

BPC 25 79.937 2.157 0.022 76.517 83.576 

BPC 26 80.456 2.188 0.022 76.982 84.155 

BPC 27 80.804 2.196 0.022 77.309 84.509 

BPC 28 82.468 2.404 0.024 78.695 86.541 

BPC 29 83.665 2.425 0.024 79.861 87.768 

BPC 30 84.769 2.479 0.025 80.868 88.931 

BPC 31 84.792 2.480 0.025 80.892 88.960 

BPC 32 85.571 2.598 0.026 81.533 89.954 

BPC 33 86.090 2.629 0.026 81.981 90.537 

BPC 34 86.438 2.637 0.026 82.318 90.918 

BPC 35 88.102 2.860 0.029 83.654 92.958 

BPC 36 89.299 2.882 0.029 84.829 94.185 

BPC 37 90.403 2.940 0.029 85.813 95.386 

BPC 38 90.426 2.940 0.029 85.835 95.409 

BPC 39 91.205 3.061 0.031 86.443 96.399 

BPC 40 91.724 3.093 0.031 86.921 97.001 

BPC 41 92.072 3.101 0.031 87.266 97.383 

BPC 42 93.736 3.333 0.033 88.596 99.414 

BPC 43 94.933 3.355 0.034 89.739 100.638 

BPC 44 96.037 3.416 0.034 90.730 101.808 

BPC 45 96.060 3.416 0.034 90.752 101.830 

BPC 46 96.839 3.538 0.035 91.370 102.868 

BPC 47 97.358 3.571 0.036 91.839 103.444 

BPC 48 97.706 3.579 0.036 92.188 103.806 

BPC 49 99.370 3.816 0.038 93.492 105.874 

BPC 50 100.567 3.839 0.038 94.640 107.100 

RLB 1 81.945 34.293 0.343 39.566 145.432 

RLB 2 90.097 34.293 0.343 47.718 153.585 

RLB 3 91.189 34.298 0.343 48.872 154.784 

RLB 4 95.215 34.335 0.343 52.600 158.449 

RLB 5 97.875 34.353 0.344 55.274 161.538 

RLB 6 100.939 34.408 0.344 58.198 164.845 

RLB 7 104.452 34.437 0.344 61.509 168.481 

RLB 8 107.898 34.593 0.346 64.934 172.120 
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RLB 9 112.925 34.859 0.349 69.256 177.824 

RLB 10 116.439 34.984 0.350 72.445 181.293 

RLB 11 119.885 35.383 0.354 75.153 185.854 

RLB 12 124.912 36.059 0.361 78.563 191.542 

RLB 13 216.100 69.550 0.696 129.472 345.511 

RLB 14 220.127 69.614 0.696 133.105 349.525 

RLB 15 222.786 69.645 0.696 135.683 351.964 

RLB 16 225.850 69.717 0.697 138.512 355.648 

RLB 17 229.364 69.819 0.698 141.686 359.321 

RLB 18 232.810 70.158 0.702 144.536 363.253 

RLB 19 237.837 70.737 0.707 148.067 369.206 

RLB 20 241.350 70.885 0.709 151.191 373.287 

RLB 21 244.796 71.341 0.713 153.644 377.052 

RLB 22 249.823 72.118 0.721 157.125 383.083 

RLB 23 341.012 105.350 1.053 208.224 536.731 

RLB 24 345.038 105.422 1.054 212.255 540.804 

RLB 25 347.698 105.457 1.055 214.539 543.341 

RLB 26 350.762 105.535 1.055 217.319 547.351 

RLB 27 354.275 105.660 1.057 220.755 550.634 

RLB 28 357.721 106.058 1.061 223.217 555.067 

RLB 29 362.748 106.738 1.067 226.546 560.688 

RLB 30 366.262 106.893 1.069 229.806 564.343 

RLB 31 369.708 107.367 1.074 232.130 568.418 

RLB 32 374.735 108.177 1.082 235.688 574.625 

RLB 33 465.923 141.281 1.413 287.144 727.814 

RLB 34 469.950 141.357 1.414 290.677 732.191 

RLB 35 472.609 141.395 1.414 293.218 734.954 

RLB 36 475.673 141.475 1.415 296.134 738.413 

RLB 37 479.187 141.611 1.416 299.137 741.887 

RLB 38 482.633 142.038 1.420 301.723 746.318 

RLB 39 487.660 142.768 1.428 305.074 752.286 

RLB 40 491.174 142.926 1.429 308.382 755.702 

RLB 41 494.619 143.409 1.434 310.547 760.336 

RLB 42 499.646 144.236 1.442 314.250 766.167 

RLB 43 590.835 177.264 1.773 365.240 920.213 

RLB 44 594.861 177.343 1.773 369.329 924.212 

RLB 45 597.521 177.382 1.774 371.786 926.458 

RLB 46 600.585 177.463 1.775 374.661 930.002 

RLB 47 604.099 177.606 1.776 377.597 933.907 

RLB 48 607.545 178.050 1.780 380.616 937.599 

RLB 49 612.571 178.809 1.788 383.603 944.385 

RLB 50 616.085 178.970 1.790 386.936 947.343 

TRA 1 55.356 1.699 0.017 52.635 58.185 

TRA 2 57.354 1.699 0.017 54.632 60.182 

TRA 3 57.604 1.705 0.017 54.868 60.437 

TRA 4 57.809 1.712 0.017 55.069 60.654 

TRA 5 57.942 1.714 0.017 55.195 60.794 

TRA 6 58.028 1.715 0.017 55.284 60.886 

TRA 7 58.392 1.721 0.017 55.650 61.262 

TRA 8 58.730 1.729 0.017 55.958 61.598 

TRA 9 59.029 1.733 0.017 56.247 61.901 

TRA 10 59.394 1.747 0.017 56.606 62.273 

TRA 11 59.731 1.768 0.018 56.884 62.660 

TRA 12 60.031 1.777 0.018 57.182 62.984 

TRA 13 117.636 3.453 0.035 112.081 123.352 

TRA 14 117.840 3.462 0.035 112.278 123.554 

TRA 15 117.973 3.464 0.035 112.411 123.722 

TRA 16 118.059 3.466 0.035 112.495 123.803 

TRA 17 118.423 3.478 0.035 112.853 124.172 

TRA 18 118.761 3.495 0.035 113.170 124.527 

TRA 19 119.061 3.503 0.035 113.444 124.872 
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TRA 20 119.425 3.519 0.035 113.782 125.255 

TRA 21 119.763 3.543 0.035 114.058 125.628 

TRA 22 120.062 3.554 0.036 114.365 125.967 

TRA 23 177.667 5.221 0.052 169.293 186.327 

TRA 24 177.871 5.230 0.052 169.487 186.523 

TRA 25 178.004 5.233 0.052 169.623 186.652 

TRA 26 178.090 5.234 0.052 169.698 186.753 

TRA 27 178.454 5.248 0.052 170.049 187.130 

TRA 28 178.792 5.269 0.053 170.328 187.518 

TRA 29 179.092 5.278 0.053 170.596 187.863 

TRA 30 179.456 5.295 0.053 170.942 188.247 

TRA 31 179.794 5.320 0.053 171.246 188.631 

TRA 32 180.094 5.331 0.053 171.547 188.951 

TRA 33 237.698 6.993 0.070 226.476 249.305 

TRA 34 237.902 7.002 0.070 226.646 249.501 

TRA 35 238.036 7.005 0.070 226.796 249.662 

TRA 36 238.121 7.006 0.070 226.888 249.745 

TRA 37 238.486 7.022 0.070 227.230 250.124 

TRA 38 238.823 7.044 0.070 227.497 250.487 

TRA 39 239.123 7.054 0.071 227.767 250.852 

TRA 40 239.488 7.071 0.071 228.115 251.232 

TRA 41 239.825 7.096 0.071 228.419 251.621 

TRA 42 240.125 7.108 0.071 228.729 251.934 

TRA 43 297.729 8.768 0.088 283.629 312.295 

TRA 44 297.934 8.777 0.088 283.825 312.511 

TRA 45 298.067 8.780 0.088 283.970 312.649 

TRA 46 298.153 8.781 0.088 284.055 312.727 

TRA 47 298.517 8.797 0.088 284.378 313.121 

TRA 48 298.854 8.820 0.088 284.680 313.462 

TRA 49 299.154 8.830 0.088 284.940 313.838 

TRA 50 299.519 8.848 0.088 285.301 314.224 
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Appendix C: Analysis for Selection Under Uncertain Conditions 

 

Design Mean 
Standard 

Deviation 

Standard 

Error 
Median 

5th 

Percentile 

95th 

Percentile 

BPC 67.853 1.349 0.013 67.820 65.775 70.000 

Trailer 48.175 1.407 0.014 48.149 45.902 50.497 

RLB 113.071 34.512 0.345 107.363 68.658 176.658 
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Design Year Mean 
Standard 

Deviation 

Standard 

Error 

5th 

Percentile 

95th 

Percentile 
Median 

BPC 3 67.854 1.341 0.013 65.745 69.996 67.830 

BPC 4 67.855 1.345 0.013 65.758 70.009 67.825 

BPC 5 67.853 1.335 0.013 65.757 69.979 67.825 

BPC 6 67.857 1.347 0.013 65.739 70.014 67.848 

BPC 7 67.859 1.345 0.013 65.744 70.007 67.837 

BPC 8 67.857 1.341 0.013 65.758 69.992 67.831 

BPC 9 67.859 1.351 0.014 65.739 70.039 67.824 

RLB 3 112.746 34.777 0.348 68.858 177.117 106.533 

RLB 4 113.124 34.505 0.345 69.063 176.989 107.058 

RLB 5 112.702 35.159 0.352 68.903 178.550 106.076 

RLB 6 113.022 35.088 0.351 68.197 180.368 106.859 

RLB 7 112.321 34.686 0.347 68.749 177.811 106.113 

RLB 8 112.814 34.415 0.344 68.848 178.455 107.046 

RLB 9 113.094 34.952 0.350 68.742 178.706 106.823 

TRA 3 48.177 1.405 0.014 45.921 50.515 48.164 

TRA 4 48.166 1.413 0.014 45.897 50.496 48.152 

TRA 5 48.186 1.421 0.014 45.897 50.510 48.165 

TRA 6 48.197 1.420 0.014 45.935 50.533 48.171 

TRA 7 48.180 1.421 0.014 45.853 50.545 48.170 

TRA 8 48.179 1.430 0.014 45.871 50.587 48.141 

TRA 9 48.201 1.414 0.014 45.955 50.594 48.167 
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Appendix D: Risk Analysis Under Uncertain Conditions 

 

Profile Design Mean 
Standard 

Deviation 

Standard 

Error 

5th 

Percentile 

95th 

Percentile 
Median 

1 BPC 0.20245 0.00356 0.00004 0.19675 0.20808 0.20248 

1 RLB 0.30818 0.07483 0.00075 0.20383 0.44376 0.14838 

1 TRA 0.14841 0.00402 0.00004 0.14193 0.15497 0.29888 

2 BPC 0.74255 0.00690 0.00007 0.73140 0.75335 0.74269 

2 RLB 0.87249 0.06956 0.00070 0.74530 0.97038 0.61852 

2 TRA 0.61846 0.01080 0.00011 0.60085 0.63589 0.88122 
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Profile Year Design Mean Median 
Standard 

Deviation 

Standard 

Error 

5th 

Percentile 

95 

Percentile 

1 

3 BPC 0.2025 0.2025 0.0036 0.0000 0.1968 0.2082 

3 RLB 0.3082 0.1483 0.0753 0.0008 0.1418 0.1551 

3 TRA 0.1484 0.2984 0.0041 0.0000 0.2034 0.4458 

4 BPC 0.2025 0.2025 0.0036 0.0000 0.1968 0.2082 

4 RLB 0.3088 0.1484 0.0755 0.0008 0.1418 0.1550 

4 TRA 0.1484 0.2986 0.0040 0.0000 0.2034 0.4484 

5 BPC 0.2024 0.2025 0.0036 0.0000 0.1968 0.2082 

5 RLB 0.3087 0.1484 0.0742 0.0007 0.1418 0.1551 

5 TRA 0.1484 0.2994 0.0041 0.0000 0.2046 0.4450 

6 BPC 0.2025 0.2024 0.0036 0.0000 0.1968 0.2081 

6 RLB 0.3088 0.1484 0.0747 0.0007 0.1419 0.1551 

6 TRA 0.1484 0.2993 0.0040 0.0000 0.2060 0.4447 

7 BPC 0.2024 0.2024 0.0036 0.0000 0.1968 0.2081 

7 RLB 0.3091 0.1484 0.0745 0.0007 0.1419 0.1551 

7 TRA 0.1484 0.2999 0.0041 0.0000 0.2065 0.4438 

8 BPC 0.2025 0.2024 0.0036 0.0000 0.1968 0.2081 

8 RLB 0.3092 0.1484 0.0751 0.0008 0.1420 0.1550 

8 TRA 0.1484 0.3002 0.0040 0.0000 0.2052 0.4482 

9 BPC 0.2024 0.2024 0.0036 0.0000 0.1968 0.2081 

9 RLB 0.3079 0.1485 0.0737 0.0007 0.1420 0.1551 

9 TRA 0.1485 0.2980 0.0040 0.0000 0.2053 0.4426 

2 

3 BPC 0.7426 0.7427 0.0070 0.0001 0.1968 0.2082 

3 RLB 0.8723 0.6183 0.0698 0.0007 0.1418 0.1551 

3 TRA 0.6184 0.8808 0.0109 0.0001 0.2034 0.4458 

4 BPC 0.7426 0.7426 0.0070 0.0001 0.1968 0.2082 

4 RLB 0.8729 0.6186 0.0692 0.0007 0.1418 0.1550 

4 TRA 0.6185 0.8810 0.0108 0.0001 0.2034 0.4484 

5 BPC 0.7426 0.7426 0.0070 0.0001 0.1968 0.2082 

5 RLB 0.8733 0.6186 0.0688 0.0007 0.1418 0.1551 

5 TRA 0.6185 0.8818 0.0109 0.0001 0.2046 0.4450 

6 BPC 0.7426 0.7426 0.0070 0.0001 0.1968 0.2081 

6 RLB 0.8732 0.6185 0.0687 0.0007 0.1419 0.1551 

6 TRA 0.6185 0.8816 0.0108 0.0001 0.2060 0.4447 

7 BPC 0.7425 0.7426 0.0069 0.0001 0.1968 0.2081 

7 RLB 0.8737 0.6185 0.0684 0.0007 0.1419 0.1551 

7 TRA 0.6185 0.8822 0.0109 0.0001 0.2065 0.4438 

8 BPC 0.7426 0.7426 0.0070 0.0001 0.1968 0.2081 

8 RLB 0.8735 0.6185 0.0692 0.0007 0.1420 0.1550 

8 TRA 0.6184 0.8825 0.0107 0.0001 0.2052 0.4482 

9 BPC 0.7425 0.7426 0.0070 0.0001 0.1968 0.2081 

9 RLB 0.8726 0.6188 0.0689 0.0007 0.1420 0.1551 

9 TRA 0.6187 0.8804 0.0108 0.0001 0.2053 0.4426 
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Appendix E: R Code 

Unadjusted Analysis.R 

Ryan 

Thu Feb 11 05:19:09 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 3a"
) 
 
# Assumptions 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
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BPC.DCPSF3 <- 15.60 
BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
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RLB2.MX2015.mean <- 5.333 
RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Present Worth of Life Cycle Cost Function 
LCC <- function (t, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  if(t == 3){ 
    LCC <- AC + MX1 + DC 
  } 
  if(t == 4){ 
    LCC <- AC + MX1 + MX2 + DC 
  } 
  if(t == 5){ 
    LCC <- AC + MX1 + MX2 + MX3 + DC 
  } 
  if(t == 6){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC 
  } 
  if(t == 7){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC 
  } 
  if(t == 8){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC 
  } 
  if(t == 9){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 + DC 
  } 
  return(LCC) 
} 
 
# 3 Year Duration Simulation 
t <- 3 
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BPC.AC.3 <- BPC.AC * FGP(8,i)  
BPC.MX1.3 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.3 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.3 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.3 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.3 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.3 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.3 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.3 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.3 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.3 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.3 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.3 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.3 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.3 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.DC.3 <- array(TRA.DC.AVG, n) * TRA.size   
 
RLB.AC.3 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.3 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.3 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.3 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.3 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.3 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
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shop.rate * FGP(2,i)  
RLB.MX7.3 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.DC.3 <- array(RLB.DC.AVG, n) * RLB.size   
 
BPC.MX.3 <- BPC.MX1.3 
TRA.MX.3 <- TRA.MX1.3 
RLB.MX.3 <- RLB.MX1.3 
 
BPC.LCC.3 <- LCC(t, BPC.AC.3, BPC.MX1.3, BPC.MX2.3, BPC.MX3.3, BPC.MX4.
3, BPC.MX5.3, BPC.MX6.3, BPC.MX7.3, BPC.DC.3)  
TRA.LCC.3 <- LCC(t, TRA.AC.3, TRA.MX1.3, TRA.MX2.3, TRA.MX3.3, TRA.MX4.
3, TRA.MX5.3, TRA.MX6.3, TRA.MX7.3, TRA.DC.3) 
RLB.LCC.3 <- LCC(t, RLB.AC.3, RLB.MX1.3, RLB.MX2.3, RLB.MX3.3, RLB.MX4.
3, RLB.MX5.3, RLB.MX6.3, RLB.MX7.3, RLB.DC.3) 
 
# 4 Year Duration Simulation 
t <- 4 
 
BPC.AC.4 <- BPC.AC * FGP(8,i) 
BPC.MX1.4 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.4 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.4 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.4 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.4 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.4 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.4 <- BPC.MX1.4 + BPC.MX2.4 
BPC.DC.4 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.4 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.4 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.4 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.4 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
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TRA.MX5.4 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.4 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.4 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.4 <- TRA.MX1.4 + TRA.MX2.4 
TRA.DC.4 <- array(TRA.DC.AVG, n) * TRA.size  
 
RLB.AC.4 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.4 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.4 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.4 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.4 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.4 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.4 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.4 <- RLB.MX1.4 + RLB.MX2.4 
RLB.DC.4 <- array(RLB.DC.AVG, n) * RLB.size   
 
BPC.LCC.4 <- LCC(t, BPC.AC.4, BPC.MX1.4, BPC.MX2.4, BPC.MX3.4, BPC.MX4.
4, BPC.MX5.4, BPC.MX6.4, BPC.MX7.4, BPC.DC.4) 
TRA.LCC.4 <- LCC(t, TRA.AC.4, TRA.MX1.4, TRA.MX2.4, TRA.MX3.4, TRA.MX4.
4, TRA.MX5.4, TRA.MX6.4, TRA.MX7.4, TRA.DC.4)  
RLB.LCC.4 <- LCC(t, RLB.AC.4, RLB.MX1.4, RLB.MX2.4, RLB.MX3.4, RLB.MX4.
4, RLB.MX5.4, RLB.MX6.4, RLB.MX7.4, RLB.DC.4)  
 
# 5 Year Duration Simulation 
t <- 5 
 
BPC.AC.5 <- BPC.AC * FGP(8,i) 
BPC.MX1.5 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.5 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.5 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.5 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
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BPC.MX5.5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.5 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.5 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.5 <- BPC.MX1.5 + BPC.MX2.5 + BPC.MX3.5 
BPC.DC.5 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.5 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.5 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.5 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.5 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.5 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.5 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.5 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.5 <- TRA.MX1.5 + TRA.MX2.5 + TRA.MX3.5 
TRA.DC.5 <- array(TRA.DC.AVG, n) * TRA.size  
 
RLB.AC.5 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.5 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.5 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.5 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.5 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.5 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.5 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.5 <- RLB.MX1.5 + RLB.MX2.5 + RLB.MX3.5 
RLB.DC.5 <- array(RLB.DC.AVG, n) * RLB.size   
 
BPC.LCC.5 <- LCC(t, BPC.AC.5, BPC.MX1.5, BPC.MX2.5, BPC.MX3.5, BPC.MX4.
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5, BPC.MX5.5, BPC.MX6.5, BPC.MX7.5, BPC.DC.5) 
TRA.LCC.5 <- LCC(t, TRA.AC.5, TRA.MX1.5, TRA.MX2.5, TRA.MX3.5, TRA.MX4.
5, TRA.MX5.5, TRA.MX6.5, TRA.MX7.5, TRA.DC.5)  
RLB.LCC.5 <- LCC(t, RLB.AC.5, RLB.MX1.5, RLB.MX2.5, RLB.MX3.5, RLB.MX4.
5, RLB.MX5.5, RLB.MX6.5, RLB.MX7.5, RLB.DC.5)  
 
# 6 Year Duration Simulation 
t <- 6 
 
BPC.AC.6 <- BPC.AC * FGP(8,i) 
BPC.MX1.6 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.6 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.6 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.6 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.6 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.6 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.6 <- BPC.MX1.6 + BPC.MX2.6 + BPC.MX3.6 + BPC.MX4.6 
BPC.DC.6 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.6 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.6 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.6 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.6 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.6 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.6 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.6 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.6 <- TRA.MX1.6 + TRA.MX2.6 + TRA.MX3.6 + TRA.MX4.6  
TRA.DC.6 <- array(TRA.DC.AVG, n) * TRA.size  
 
RLB.AC.6 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
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RLB.MX1.6 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.6 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.6 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.6 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.6 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.6 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.6 <- RLB.MX1.6 + RLB.MX2.6 + RLB.MX3.6 + RLB.MX4.6  
RLB.DC.6 <- array(RLB.DC.AVG, n) * RLB.size   
 
BPC.LCC.6 <- LCC(t, BPC.AC.6, BPC.MX1.6, BPC.MX2.6, BPC.MX3.6, BPC.MX4.
6, BPC.MX5.6, BPC.MX6.6, BPC.MX7.6, BPC.DC.6) 
TRA.LCC.6 <- LCC(t, TRA.AC.6, TRA.MX1.6, TRA.MX2.6, TRA.MX3.6, TRA.MX4.
6, TRA.MX5.6, TRA.MX6.6, TRA.MX7.6, TRA.DC.6)  
RLB.LCC.6 <- LCC(t, RLB.AC.6, RLB.MX1.6, RLB.MX2.6, RLB.MX3.6, RLB.MX4.
6, RLB.MX5.6, RLB.MX6.6, RLB.MX7.6, RLB.DC.6)  
 
# 7 Year Duration Simulation 
t <- 7 
 
BPC.AC.7 <- BPC.AC * FGP(8,i) 
BPC.MX1.7 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.7 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.7 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.7 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.7 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.7 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.7 <- BPC.MX1.7 + BPC.MX2.7 + BPC.MX3.7 + BPC.MX4.7 + BPC.MX5.7 
BPC.DC.7 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.7 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
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TRA.MX1.7 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.7 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.7 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.7 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.7 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.7 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.7 <- TRA.MX1.7 + TRA.MX2.7 + TRA.MX3.7 + TRA.MX4.7 + TRA.MX5.7 
TRA.DC.7 <- array(TRA.DC.AVG, n) * TRA.size  
 
RLB.AC.7 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.7 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.7 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.7 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.7 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.7 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.7 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.7 <- RLB.MX1.7 + RLB.MX2.7 + RLB.MX3.7 + RLB.MX4.7 + RLB.MX5.7 
RLB.DC.7 <- array(RLB.DC.AVG, n) * RLB.size  
 
BPC.LCC.7 <- LCC(t, BPC.AC.7, BPC.MX1.7, BPC.MX2.7, BPC.MX3.7, BPC.MX4.
7, BPC.MX5.7, BPC.MX6.7, BPC.MX7.7, BPC.DC.7) 
TRA.LCC.7 <- LCC(t, TRA.AC.7, TRA.MX1.7, TRA.MX2.7, TRA.MX3.7, TRA.MX4.
7, TRA.MX5.7, TRA.MX6.7, TRA.MX7.7, TRA.DC.7)  
RLB.LCC.7 <- LCC(t, RLB.AC.7, RLB.MX1.7, RLB.MX2.7, RLB.MX3.7, RLB.MX4.
7, RLB.MX5.7, RLB.MX6.7, RLB.MX7.7, RLB.DC.7)  
 
# 8 Year Duration Simulation 
t <- 8 
 
BPC.AC.8 <- BPC.AC * FGP(8,i) 
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BPC.MX1.8 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.8 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.8 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.8 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.8 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.8 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.8 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.8 <- BPC.MX1.8 + BPC.MX2.8 + BPC.MX3.8 + BPC.MX4.8 + BPC.MX5.8 + 
BPC.MX6.8 
BPC.DC.8 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.8 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.8 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)   
TRA.MX2.8 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.8 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
TRA.MX4.8 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.8 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.8 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.8 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.8 <- TRA.MX1.8 + TRA.MX2.8 + TRA.MX3.8 + TRA.MX4.8 + TRA.MX5.8 + 
TRA.MX6.8 
TRA.DC.8 <- array(TRA.DC.AVG, n) * TRA.size   
 
RLB.AC.8 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.8 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.8 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.8 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.8 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
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RLB.MX5.8 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)   
RLB.MX6.8 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.8 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.8 <- RLB.MX1.8 + RLB.MX2.8 + RLB.MX3.8 + RLB.MX4.8 + RLB.MX5.8 + 
RLB.MX6.8 
RLB.DC.8 <- array(RLB.DC.AVG, n) * RLB.size  
 
BPC.LCC.8 <- LCC(t, BPC.AC.8, BPC.MX1.8, BPC.MX2.8, BPC.MX3.8, BPC.MX4.
8, BPC.MX5.8, BPC.MX6.8, BPC.MX7.8, BPC.DC.8) 
TRA.LCC.8 <- LCC(t, TRA.AC.8, TRA.MX1.8, TRA.MX2.8, TRA.MX3.8, TRA.MX4.
8, TRA.MX5.8, TRA.MX6.8, TRA.MX7.8, TRA.DC.8)  
RLB.LCC.8 <- LCC(t, RLB.AC.8, RLB.MX1.8, RLB.MX2.8, RLB.MX3.8, RLB.MX4.
8, RLB.MX5.8, RLB.MX6.8, RLB.MX7.8, RLB.DC.8)  
 
# 9 Year Duration Simulation 
t <- 9 
 
BPC.AC.9 <- BPC.AC * FGP(8,i) 
BPC.MX1.9 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.9 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.9 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.9 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.9 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.9 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.9 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.9 <- BPC.MX1.9 + BPC.MX2.9 + BPC.MX3.9 + BPC.MX4.9 + BPC.MX5.9 + 
BPC.MX6.9 + BPC.MX7.9 
BPC.DC.9 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.9 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i)  
TRA.MX1.9 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i)  
TRA.MX2.9 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i)  
TRA.MX3.9 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i)  
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TRA.MX4.9 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i)  
TRA.MX5.9 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i)  
TRA.MX6.9 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
TRA.MX7.9 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i)  
TRA.MX.9 <- TRA.MX1.9 + TRA.MX2.9 + TRA.MX3.9 + TRA.MX4.9 + TRA.MX5.9 + 
TRA.MX6.9 + TRA.MX7.9 
TRA.DC.9 <- array(TRA.DC.AVG, n) * TRA.size   
 
RLB.AC.9 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i)  
RLB.MX1.9 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX2.9 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX3.9 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX4.9 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i))  
RLB.MX5.9 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i)  
RLB.MX6.9 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i)  
RLB.MX7.9 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i)  
RLB.MX.9 <- RLB.MX1.9 + RLB.MX2.9 + RLB.MX3.9 + RLB.MX4.9 + RLB.MX5.9 + 
RLB.MX6.9 + RLB.MX7.9 
RLB.DC.9 <- array(RLB.DC.AVG, n) * RLB.size   
 
BPC.LCC.9 <- LCC(t, BPC.AC.9, BPC.MX1.9, BPC.MX2.9, BPC.MX3.9, BPC.MX4.
9, BPC.MX5.9, BPC.MX6.9, BPC.MX7.9, BPC.DC.9) 
TRA.LCC.9 <- LCC(t, TRA.AC.9, TRA.MX1.9, TRA.MX2.9, TRA.MX3.9, TRA.MX4.
9, TRA.MX5.9, TRA.MX6.9, TRA.MX7.9, TRA.DC.9)  
RLB.LCC.9 <- LCC(t, RLB.AC.9, RLB.MX1.9, RLB.MX2.9, RLB.MX3.9, RLB.MX4.
9, RLB.MX5.9, RLB.MX6.9, RLB.MX7.9, RLB.DC.9)  
 
# Data Frame Construction 
# Simulation Histograms and Means Plots Data Frames 
design.array <- c(array("BPC",28*n),array("TRA",28*n),array("RLB",28*n)
) 
year.array <- rep(c(array(3,n), array(4,n), array(5,n), array(6,n), arr
ay(7,n), array(8,n), array(9,n)),12) 
cost.type.array <- rep(c(array("Acquisition",7*n), array("Maintenance",
7*n), array("Disposal",7*n), array("Life Cycle",7*n)),3) 
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BPC.AC <- (c(BPC.AC.3, BPC.AC.4, BPC.AC.5, BPC.AC.6, BPC.AC.7, BPC.AC.8
, BPC.AC.9))/10000 
BPC.MX <- (c(BPC.MX.3, BPC.MX.4, BPC.MX.5, BPC.MX.6, BPC.MX.7, BPC.MX.8
, BPC.MX.9))/10000 
BPC.DC <- (c(BPC.DC.3, BPC.DC.4, BPC.DC.5, BPC.DC.6, BPC.DC.7, BPC.DC.8
, BPC.DC.9))/10000 
BPC.LCC <- (c(BPC.LCC.3, BPC.LCC.4, BPC.LCC.5, BPC.LCC.6, BPC.LCC.7, BP
C.LCC.8, BPC.LCC.9))/10000 
BPC <- c(BPC.AC, BPC.MX, BPC.DC, BPC.LCC) 
 
TRA.AC <- (c(TRA.AC.3, TRA.AC.4, TRA.AC.5, TRA.AC.6, TRA.AC.7, TRA.AC.8
, TRA.AC.9))/10000 
TRA.MX <- (c(TRA.MX.3, TRA.MX.4, TRA.MX.5, TRA.MX.6, TRA.MX.7, TRA.MX.8
, TRA.MX.9))/10000 
TRA.DC <- (c(TRA.DC.3, TRA.DC.4, TRA.DC.5, TRA.DC.6, TRA.DC.7, TRA.DC.8
, TRA.DC.9))/10000 
TRA.LCC <- (c(TRA.LCC.3, TRA.LCC.4, TRA.LCC.5, TRA.LCC.6, TRA.LCC.7, TR
A.LCC.8, TRA.LCC.9))/10000 
TRA <- c(TRA.AC, TRA.MX, TRA.DC, TRA.LCC) 
 
RLB.AC <- (c(RLB.AC.3, RLB.AC.4, RLB.AC.5, RLB.AC.6, RLB.AC.7, RLB.AC.8
, RLB.AC.9))/10000 
RLB.MX <- (c(RLB.MX.3, RLB.MX.4, RLB.MX.5, RLB.MX.6, RLB.MX.7, RLB.MX.8
, RLB.MX.9))/10000 
RLB.DC <- (c(RLB.DC.3, RLB.DC.4, RLB.DC.5, RLB.DC.6, RLB.DC.7, RLB.DC.8
, RLB.DC.9))/10000 
RLB.LCC <- (c(RLB.LCC.3, RLB.LCC.4, RLB.LCC.5, RLB.LCC.6, RLB.LCC.7, RL
B.LCC.8, RLB.LCC.9))/10000 
RLB <- c(RLB.AC, RLB.MX, RLB.DC, RLB.LCC) 
 
Designs.MX.Year <- data.frame(Design = c(array("BPC",7*n), array("TRA",
7*n), array("RLB",7*n)),Year = rep(c(array(1,n), array(2,n), array(3,n)
, array(4,n), array(5,n), array(6,n), array(7,n)),3), Cost = (c(BPC.MX1
.3,BPC.MX2.3,BPC.MX3.3,BPC.MX4.3,BPC.MX5.3,BPC.MX6.3,BPC.MX7.3,TRA.MX1.
3,TRA.MX2.3,TRA.MX3.3,TRA.MX4.3,TRA.MX5.3,TRA.MX6.3,TRA.MX7.3,RLB.MX1.3
,RLB.MX2.3,RLB.MX3.3,RLB.MX4.3,RLB.MX5.3,RLB.MX6.3,RLB.MX7.3))/10000) 
cost.array <- c(BPC, TRA, RLB) 
Cost.Data <- data.frame(Design = design.array, Year = year.array, Type 
= cost.type.array, Cost = cost.array) 
Cost.Data.Summary <- summarySE(Cost.Data, measurevar = "Cost", groupvar
s = c("Design", "Year", "Type"), conf.interval = .90) 
 
# Plot Construction 
# Simulation Means Plots 
Designs.AC.Sum <- subset(Cost.Data.Summary, Type == "Acquisition" & Yea
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r == 3 , select = c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.MX.Year.Sum <- summarySE(Designs.MX.Year, measurevar = "Cost", 
groupvars = c("Design","Year"), conf.interval = .90) 
Designs.MX.Sum <- subset(Cost.Data.Summary, Type == "Maintenance", sele
ct = c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.DC.Sum <- subset(Cost.Data.Summary, Type == "Disposal" & Year =
= 3, select = c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.LCC.Sum <- subset(Cost.Data.Summary, Type == "Life Cycle" , sel
ect = c(Design, Year, Type, N, Cost, sd, se, ci)) 
 
AC.Means.Plot <- ggplot(data=Designs.AC.Sum, aes(x = Design ,y= Cost, f
ill = Design)) +  
  geom_bar(stat = "identity") +  
  labs(title = "Means of Aquisition Cost") +  
  guides(fill=FALSE) +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) + 
  scale_x_discrete(name="") + 
  scale_y_continuous(name="Cost ($10K)") 
MX.Means.Year.Plot <- ggplot(data=Designs.MX.Year.Sum) +  
  geom_line(aes(x = Year,y = Cost,colour=Design)) +  
  geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= Cost+ci), width = 0.1) 
+  
  labs(title = "Means of MX Cost Per Year") + 
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) + 
  scale_y_continuous(name="Cost ($10K)") 
MX.Means.Cum.Plot <- ggplot(data=Designs.MX.Sum) +  
  geom_line(aes(x=Year,y=Cost,colour=Design)) +  
  geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= Cost+ci), width = 0.1) 
+  
  labs(title = "Means of Cumulatiove MX Cost") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
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axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) + 
  scale_y_continuous(name="Cost ($10K)") 
DC.Means.Plot <- ggplot(data=Designs.DC.Sum, aes(x = Design ,y= Cost, f
ill = Design)) +  
  geom_bar(stat = "identity") +  
  labs(title = "Simulated Means of Disposal Cost") +  
  guides(fill=FALSE) +  
  labs(title = "Means of Disposal Cost") + 
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) + 
  scale_x_discrete(name="") + 
  scale_y_continuous(name="Cost ($10K)") 
LCC.Means.Plot <- ggplot(data=Designs.LCC.Sum) +  
  geom_line(aes(x=Year,y=Cost,colour=Design)) +  
  labs(title = "Means of Life Cycle Cost") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) +  
  scale_y_continuous(name="Cost ($10K)") 
 
BPC.Cost.Sum <- subset(Cost.Data.Summary, Design == "BPC", select = c(T
ype, Year, Cost, sd, se, ci)) 
TRA.Cost.Sum <- subset(Cost.Data.Summary, Design == "TRA", select = c(T
ype, Year, Cost, sd, se, ci)) 
RLB.Cost.Sum <- subset(Cost.Data.Summary, Design == "RLB", select = c(T
ype, Year, Cost, sd, se, ci)) 
 
BPC.Means.Plot <- ggplot(BPC.Cost.Sum) +   
  geom_line(aes(x = Year, y = Cost, colour = Type)) + 
  geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= Cost+ci), width = 0.1) 
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+  
  labs(title = "Contribution to Total LCC: BPC") + 
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Cost\nType") +  
  scale_y_continuous(name="Cost ($10K)") 
TRA.Means.Plot <- ggplot(TRA.Cost.Sum) +  
  geom_line(aes(x = Year, y = Cost, colour = Type)) +  
  geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= Cost+ci), width = 0.1) 
+  
  labs(title = "Contribution to Total LCC: Trailers") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Cost Type") +  
  scale_y_continuous(name="Cost ($10K)") 
RLB.Means.Plot <- ggplot(RLB.Cost.Sum) + 
  geom_line(aes(x = Year, y = Cost, colour = Type)) +  
  geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= Cost+ci), width = 0.1) 
+  
  labs(title = "Contribution to Total LCC: RLBs") + 
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold")) + 
  scale_colour_discrete(name  ="Cost Type") +  
  scale_y_continuous(name="Cost ($10K)") 
 
# Print All Plots 
AC.Means.Plot 

 

ggsave("AC_Means_Plot.jpg", width = 6, height = 5) 
MX.Means.Year.Plot 
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ggsave("MX_Means_Plot.jpg", width = 6, height = 5) 
MX.Means.Cum.Plot 

 

ggsave("MX_Means_Cum_Plot.jpg", width = 6, height = 5) 
DC.Means.Plot 

 

ggsave("DC_Means_Plot.jpg", width = 6, height = 5) 
LCC.Means.Plot 

 

ggsave("LCC_Means_Plot.jpg", width = 6, height = 5) 
BPC.Means.Plot 

 

ggsave("BPC_Means_Plot.jpg", width = 6, height = 5) 
TRA.Means.Plot 

 

ggsave("TRA_Means_Plot.jpg", width = 6, height = 5) 
RLB.Means.Plot 

 

ggsave("RLB_Means_Plot.jpg", width = 6, height = 5) 
 
Cost.Data.Summary <- rename(Cost.Data.Summary, replace = c("Type"="Cost 
Type", "Cost"= "Mean", "sd"="Standard Deviation", "se"="Standard Error"
, "ci"="Confidence Interval")) 
write.csv(Cost.Data.Summary, "3a_Data.csv") 
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Adjusted Analysis.R 

Ryan 

Thu Feb 11 05:27:47 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 3b"
) 
 
# Assumptions 
TRA.Adjustment.Factor <- 3.266667 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
BPC.DCPSF3 <- 15.60 
BPC.DCPSF4 <- 21.00 
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BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
RLB2.MX2015.mean <- 5.333 
RLB2.MX2015.stdev <- 0.690 
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RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Present Worth of Life Cycle Cost Function 
LCC <- function (t, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  if(t == 3){ 
    LCC <- AC + MX1 + DC 
  } 
  if(t == 4){ 
    LCC <- AC + MX1 + MX2 + DC 
  } 
  if(t == 5){ 
    LCC <- AC + MX1 + MX2 + MX3 + DC 
  } 
  if(t == 6){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC 
  } 
  if(t == 7){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC 
  } 
  if(t == 8){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC 
  } 
  if(t == 9){ 
    LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 + DC 
  } 
  return(LCC) 
} 
 
# 3 Year Duration Simulation 
t <- 3 
 
BPC.AC.3 <- BPC.AC * FGP(8,i)  
BPC.MX1.3 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
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op.rate * FGP(7,i) 
BPC.MX2.3 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.3 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.3 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.3 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.3 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.3 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.3 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.3 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.3 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.3 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.3 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.3 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.3 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.3 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.3 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.3 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.3 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.3 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.3 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.3 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
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shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.3 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.3 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.MX.3 <- BPC.MX1.3 
TRA.MX.3 <- TRA.MX1.3 
RLB.MX.3 <- RLB.MX1.3 
 
BPC.LCC.3 <- LCC(t, BPC.AC.3, BPC.MX1.3, BPC.MX2.3, BPC.MX3.3, BPC.MX4.
3, BPC.MX5.3, BPC.MX6.3, BPC.MX7.3, BPC.DC.3)  
TRA.LCC.3 <- LCC(t, TRA.AC.3, TRA.MX1.3, TRA.MX2.3, TRA.MX3.3, TRA.MX4.
3, TRA.MX5.3, TRA.MX6.3, TRA.MX7.3, TRA.DC.3) 
RLB.LCC.3 <- LCC(t, RLB.AC.3, RLB.MX1.3, RLB.MX2.3, RLB.MX3.3, RLB.MX4.
3, RLB.MX5.3, RLB.MX6.3, RLB.MX7.3, RLB.DC.3) 
 
# 4 Year Duration Simulation 
t <- 4 
 
BPC.AC.4 <- BPC.AC * FGP(8,i) 
BPC.MX1.4 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.4 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.4 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.4 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.4 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.4 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.4 <- BPC.MX1.4 + BPC.MX2.4 
BPC.DC.4 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.4 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.4 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.4 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.4 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
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op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.4 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.4 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.4 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.4 <- TRA.MX1.4 + TRA.MX2.4 
TRA.DC.4 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.4 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.4 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.4 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.4 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.4 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.4 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.4 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.4 <- RLB.MX1.4 + RLB.MX2.4 
RLB.DC.4 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.4 <- LCC(t, BPC.AC.4, BPC.MX1.4, BPC.MX2.4, BPC.MX3.4, BPC.MX4.
4, BPC.MX5.4, BPC.MX6.4, BPC.MX7.4, BPC.DC.4) 
TRA.LCC.4 <- LCC(t, TRA.AC.4, TRA.MX1.4, TRA.MX2.4, TRA.MX3.4, TRA.MX4.
4, TRA.MX5.4, TRA.MX6.4, TRA.MX7.4, TRA.DC.4)  
RLB.LCC.4 <- LCC(t, RLB.AC.4, RLB.MX1.4, RLB.MX2.4, RLB.MX3.4, RLB.MX4.
4, RLB.MX5.4, RLB.MX6.4, RLB.MX7.4, RLB.DC.4)  
 
# 5 Year Duration Simulation 
t <- 5 
 
BPC.AC.5 <- BPC.AC * FGP(8,i) 
BPC.MX1.5 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.5 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.5 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 



 

 

169 

 

BPC.MX4.5 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.5 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.5 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.5 <- BPC.MX1.5 + BPC.MX2.5 + BPC.MX3.5 
BPC.DC.5 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.5 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.5 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.5 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.5 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.5 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.5 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.5 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.5 <- TRA.MX1.5 + TRA.MX2.5 + TRA.MX3.5 
TRA.DC.5 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.5 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.5 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.5 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.5 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.5 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.5 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.5 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
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RLB.MX.5 <- RLB.MX1.5 + RLB.MX2.5 + RLB.MX3.5 
RLB.DC.5 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.5 <- LCC(t, BPC.AC.5, BPC.MX1.5, BPC.MX2.5, BPC.MX3.5, BPC.MX4.
5, BPC.MX5.5, BPC.MX6.5, BPC.MX7.5, BPC.DC.5) 
TRA.LCC.5 <- LCC(t, TRA.AC.5, TRA.MX1.5, TRA.MX2.5, TRA.MX3.5, TRA.MX4.
5, TRA.MX5.5, TRA.MX6.5, TRA.MX7.5, TRA.DC.5)  
RLB.LCC.5 <- LCC(t, RLB.AC.5, RLB.MX1.5, RLB.MX2.5, RLB.MX3.5, RLB.MX4.
5, RLB.MX5.5, RLB.MX6.5, RLB.MX7.5, RLB.DC.5)  
 
# 6 Year Duration Simulation 
t <- 6 
 
BPC.AC.6 <- BPC.AC * FGP(8,i) 
BPC.MX1.6 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.6 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.6 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.6 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.6 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.6 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.6 <- BPC.MX1.6 + BPC.MX2.6 + BPC.MX3.6 + BPC.MX4.6 
BPC.DC.6 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.6 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.6 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.6 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.6 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.6 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.6 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.6 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
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op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.6 <- TRA.MX1.6 + TRA.MX2.6 + TRA.MX3.6 + TRA.MX4.6  
TRA.DC.6 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.6 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.6 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.6 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.6 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.6 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.6 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.6 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.6 <- RLB.MX1.6 + RLB.MX2.6 + RLB.MX3.6 + RLB.MX4.6  
RLB.DC.6 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.6 <- LCC(t, BPC.AC.6, BPC.MX1.6, BPC.MX2.6, BPC.MX3.6, BPC.MX4.
6, BPC.MX5.6, BPC.MX6.6, BPC.MX7.6, BPC.DC.6) 
TRA.LCC.6 <- LCC(t, TRA.AC.6, TRA.MX1.6, TRA.MX2.6, TRA.MX3.6, TRA.MX4.
6, TRA.MX5.6, TRA.MX6.6, TRA.MX7.6, TRA.DC.6)  
RLB.LCC.6 <- LCC(t, RLB.AC.6, RLB.MX1.6, RLB.MX2.6, RLB.MX3.6, RLB.MX4.
6, RLB.MX5.6, RLB.MX6.6, RLB.MX7.6, RLB.DC.6)  
 
# 7 Year Duration Simulation 
t <- 7 
 
BPC.AC.7 <- BPC.AC * FGP(8,i) 
BPC.MX1.7 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.7 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.7 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.7 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.7 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.7 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
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BPC.MX7.7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.7 <- BPC.MX1.7 + BPC.MX2.7 + BPC.MX3.7 + BPC.MX4.7 + BPC.MX5.7 
BPC.DC.7 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.7 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.7 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.7 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.7 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.7 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.7 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.7 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.7 <- TRA.MX1.7 + TRA.MX2.7 + TRA.MX3.7 + TRA.MX4.7 + TRA.MX5.7 
TRA.DC.7 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.7 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.7 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.7 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.7 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.7 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.7 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.7 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.7 <- RLB.MX1.7 + RLB.MX2.7 + RLB.MX3.7 + RLB.MX4.7 + RLB.MX5.7 
RLB.DC.7 <- array(RLB.DC.AVG, n) * RLB.size * RLB.Adjustment.Factor 
 
BPC.LCC.7 <- LCC(t, BPC.AC.7, BPC.MX1.7, BPC.MX2.7, BPC.MX3.7, BPC.MX4.
7, BPC.MX5.7, BPC.MX6.7, BPC.MX7.7, BPC.DC.7) 
TRA.LCC.7 <- LCC(t, TRA.AC.7, TRA.MX1.7, TRA.MX2.7, TRA.MX3.7, TRA.MX4.
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7, TRA.MX5.7, TRA.MX6.7, TRA.MX7.7, TRA.DC.7)  
RLB.LCC.7 <- LCC(t, RLB.AC.7, RLB.MX1.7, RLB.MX2.7, RLB.MX3.7, RLB.MX4.
7, RLB.MX5.7, RLB.MX6.7, RLB.MX7.7, RLB.DC.7)  
 
# 8 Year Duration Simulation 
t <- 8 
 
BPC.AC.8 <- BPC.AC * FGP(8,i) 
BPC.MX1.8 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.8 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.8 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.8 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.8 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.8 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.8 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.8 <- BPC.MX1.8 + BPC.MX2.8 + BPC.MX3.8 + BPC.MX4.8 + BPC.MX5.8 + 
BPC.MX6.8 
BPC.DC.8 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.8 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.8 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor  
TRA.MX2.8 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.8 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.8 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.8 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.8 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.8 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.8 <- TRA.MX1.8 + TRA.MX2.8 + TRA.MX3.8 + TRA.MX4.8 + TRA.MX5.8 + 
TRA.MX6.8 
TRA.DC.8 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
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RLB.AC.8 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.8 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.8 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.8 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.8 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.8 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor  
RLB.MX6.8 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.8 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.8 <- RLB.MX1.8 + RLB.MX2.8 + RLB.MX3.8 + RLB.MX4.8 + RLB.MX5.8 + 
RLB.MX6.8 
RLB.DC.8 <- array(RLB.DC.AVG, n) * RLB.size * RLB.Adjustment.Factor 
 
BPC.LCC.8 <- LCC(t, BPC.AC.8, BPC.MX1.8, BPC.MX2.8, BPC.MX3.8, BPC.MX4.
8, BPC.MX5.8, BPC.MX6.8, BPC.MX7.8, BPC.DC.8) 
TRA.LCC.8 <- LCC(t, TRA.AC.8, TRA.MX1.8, TRA.MX2.8, TRA.MX3.8, TRA.MX4.
8, TRA.MX5.8, TRA.MX6.8, TRA.MX7.8, TRA.DC.8)  
RLB.LCC.8 <- LCC(t, RLB.AC.8, RLB.MX1.8, RLB.MX2.8, RLB.MX3.8, RLB.MX4.
8, RLB.MX5.8, RLB.MX6.8, RLB.MX7.8, RLB.DC.8)  
 
# 9 Year Duration Simulation 
t <- 9 
 
BPC.AC.9 <- BPC.AC * FGP(8,i) 
BPC.MX1.9 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.9 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.9 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.9 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.9 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.9 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.9 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.9 <- BPC.MX1.9 + BPC.MX2.9 + BPC.MX3.9 + BPC.MX4.9 + BPC.MX5.9 + 
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BPC.MX6.9 + BPC.MX7.9 
BPC.DC.9 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.9 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.9 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.9 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.9 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.9 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.9 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.9 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.9 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.9 <- TRA.MX1.9 + TRA.MX2.9 + TRA.MX3.9 + TRA.MX4.9 + TRA.MX5.9 + 
TRA.MX6.9 + TRA.MX7.9 
TRA.DC.9 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.9 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.9 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.9 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.9 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.9 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.9 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.9 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.9 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.9 <- RLB.MX1.9 + RLB.MX2.9 + RLB.MX3.9 + RLB.MX4.9 + RLB.MX5.9 + 
RLB.MX6.9 + RLB.MX7.9 
RLB.DC.9 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.9 <- LCC(t, BPC.AC.9, BPC.MX1.9, BPC.MX2.9, BPC.MX3.9, BPC.MX4.
9, BPC.MX5.9, BPC.MX6.9, BPC.MX7.9, BPC.DC.9) 
TRA.LCC.9 <- LCC(t, TRA.AC.9, TRA.MX1.9, TRA.MX2.9, TRA.MX3.9, TRA.MX4.
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9, TRA.MX5.9, TRA.MX6.9, TRA.MX7.9, TRA.DC.9)  
RLB.LCC.9 <- LCC(t, RLB.AC.9, RLB.MX1.9, RLB.MX2.9, RLB.MX3.9, RLB.MX4.
9, RLB.MX5.9, RLB.MX6.9, RLB.MX7.9, RLB.DC.9)  
 
# Comparison Simulation 
BPC.AC.CA <- BPC.AC * FGP(8,i) 
BPC.MX1.CA <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.s
hop.rate * FGP(7,i) 
BPC.MX2.CA <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.s
hop.rate * FGP(6,i) 
BPC.MX3.CA <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB
.shop.rate * FGP(5,i) 
BPC.MX4.CA <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.s
hop.rate * FGP(4,i) 
BPC.MX5.CA <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.s
hop.rate * FGP(3,i) 
BPC.MX6.CA <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.s
hop.rate * FGP(2,i)  
BPC.MX7.CA <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.s
hop.rate * FGP(1,i) 
BPC.MX.3YR.CA <- BPC.MX1.CA  
BPC.MX.4YR.CA <- BPC.MX1.CA + BPC.MX2.CA 
BPC.MX.5YR.CA <- BPC.MX1.CA + BPC.MX2.CA + BPC.MX.3YR.CA 
BPC.MX.6YR.CA <- BPC.MX1.CA + BPC.MX2.CA + BPC.MX.3YR.CA + BPC.MX.4YR.C
A 
BPC.MX.7YR.CA <- BPC.MX1.CA + BPC.MX2.CA + BPC.MX.3YR.CA + BPC.MX.4YR.C
A + BPC.MX.5YR.CA 
BPC.MX.8YR.CA <- BPC.MX1.CA + BPC.MX2.CA + BPC.MX.3YR.CA + BPC.MX.4YR.C
A + BPC.MX.5YR.CA + BPC.MX.6YR.CA  
BPC.MX.9YR.CA <- BPC.MX1.CA + BPC.MX2.CA + BPC.MX.3YR.CA + BPC.MX.4YR.C
A + BPC.MX.5YR.CA + BPC.MX.6YR.CA + BPC.MX.7YR.CA 
BPC.DC.CA <- array(BPC.DC.AVG, n) * BPC.size  
 
 
TRA.AC.CA <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.
Adjustment.Factor 
TRA.MX1.CA <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.s
hop.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.CA <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.s
hop.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.CA <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB
.shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.CA <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.s
hop.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.CA <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.s
hop.rate * FGP(3,i) * TRA.Adjustment.Factor 
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TRA.MX6.CA <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.s
hop.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.CA <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.s
hop.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.3YR.CA <- TRA.MX1.CA  
TRA.MX.4YR.CA <- TRA.MX1.CA + TRA.MX2.CA 
TRA.MX.5YR.CA <- TRA.MX1.CA + TRA.MX2.CA + TRA.MX.3YR.CA 
TRA.MX.6YR.CA <- TRA.MX1.CA + TRA.MX2.CA + TRA.MX.3YR.CA + TRA.MX.4YR.C
A 
TRA.MX.7YR.CA <- TRA.MX1.CA + TRA.MX2.CA + TRA.MX.3YR.CA + TRA.MX.4YR.C
A + TRA.MX.5YR.CA 
TRA.MX.8YR.CA <- TRA.MX1.CA + TRA.MX2.CA + TRA.MX.3YR.CA + TRA.MX.4YR.C
A + TRA.MX.5YR.CA + TRA.MX.6YR.CA  
TRA.MX.9YR.CA <- TRA.MX1.CA + TRA.MX2.CA + TRA.MX.3YR.CA + TRA.MX.4YR.C
A + TRA.MX.5YR.CA + TRA.MX.6YR.CA + TRA.MX.7YR.CA 
TRA.DC.CA <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.CA <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.
Adjustment.Factor 
RLB.MX1.CA <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB
.shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.CA <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB
.shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.CA <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB
.shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.CA <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.ra
te * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.CA <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB
.shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.CA <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB
.shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.CA <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB
.shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.3YR.CA <- RLB.MX1.CA  
RLB.MX.4YR.CA <- RLB.MX1.CA + RLB.MX2.CA 
RLB.MX.5YR.CA <- RLB.MX1.CA + RLB.MX2.CA + RLB.MX.3YR.CA 
RLB.MX.6YR.CA <- RLB.MX1.CA + RLB.MX2.CA + RLB.MX.3YR.CA + RLB.MX.4YR.C
A 
RLB.MX.7YR.CA <- RLB.MX1.CA + RLB.MX2.CA + RLB.MX.3YR.CA + RLB.MX.4YR.C
A + RLB.MX.5YR.CA 
RLB.MX.8YR.CA <- RLB.MX1.CA + RLB.MX2.CA + RLB.MX.3YR.CA + RLB.MX.4YR.C
A + RLB.MX.5YR.CA + RLB.MX.6YR.CA  
RLB.MX.9YR.CA <- RLB.MX1.CA + RLB.MX2.CA + RLB.MX.3YR.CA + RLB.MX.4YR.C
A + RLB.MX.5YR.CA + RLB.MX.6YR.CA + RLB.MX.7YR.CA 
RLB.DC.CA <- array(RLB.DC.AVG, n) * RLB.size * RLB.Adjustment.Factor 
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# Comparison Analysis 
# BPC vs Trailer 
BPC.TRA.SC <- BPC.AC.CA - TRA.AC.CA 
BPC.TRA.MX.3YR <- BPC.MX.3YR.CA - TRA.MX.3YR.CA 
BPC.TRA.MX.4YR <- BPC.MX.4YR.CA - TRA.MX.4YR.CA 
BPC.TRA.MX.5YR <- BPC.MX.5YR.CA - TRA.MX.5YR.CA 
BPC.TRA.MX.6YR <- BPC.MX.6YR.CA - TRA.MX.6YR.CA 
BPC.TRA.MX.7YR <- BPC.MX.7YR.CA - TRA.MX.6YR.CA 
BPC.TRA.MX.8YR <- BPC.MX.8YR.CA - TRA.MX.8YR.CA 
BPC.TRA.MX.9YR <- BPC.MX.9YR.CA - TRA.MX.9YR.CA 
 
BPC.TRA.3YR <- BPC.TRA.SC - BPC.TRA.MX.3YR 
BPC.TRA.4YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR 
BPC.TRA.5YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR - BPC.TRA.M
X.5YR 
BPC.TRA.6YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR - BPC.TRA.M
X.5YR - BPC.TRA.MX.6YR 
BPC.TRA.7YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR - BPC.TRA.M
X.5YR - BPC.TRA.MX.6YR - BPC.TRA.MX.7YR 
BPC.TRA.8YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR - BPC.TRA.M
X.5YR - BPC.TRA.MX.6YR - BPC.TRA.MX.7YR - BPC.TRA.MX.8YR 
BPC.TRA.9YR <- BPC.TRA.SC - BPC.TRA.MX.3YR - BPC.TRA.MX.4YR - BPC.TRA.M
X.5YR - BPC.TRA.MX.6YR - BPC.TRA.MX.7YR - BPC.TRA.MX.8YR - BPC.TRA.MX.9
YR 
 
# BPC vs Relocatable Building 
BPC.RLB.SC <- BPC.AC.CA - RLB.AC.CA 
BPC.RLB.MX.3YR <- BPC.MX.3YR.CA - RLB.MX.3YR.CA 
BPC.RLB.MX.4YR <- BPC.MX.4YR.CA - RLB.MX.4YR.CA 
BPC.RLB.MX.5YR <- BPC.MX.5YR.CA - RLB.MX.5YR.CA 
BPC.RLB.MX.6YR <- BPC.MX.6YR.CA - RLB.MX.6YR.CA 
BPC.RLB.MX.7YR <- BPC.MX.7YR.CA - RLB.MX.6YR.CA 
BPC.RLB.MX.8YR <- BPC.MX.8YR.CA - RLB.MX.8YR.CA 
BPC.RLB.MX.9YR <- BPC.MX.9YR.CA - RLB.MX.9YR.CA 
 
BPC.RLB.3YR <- BPC.RLB.SC - BPC.RLB.MX.3YR 
BPC.RLB.4YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR 
BPC.RLB.5YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR - BPC.RLB.M
X.5YR 
BPC.RLB.6YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR - BPC.RLB.M
X.5YR - BPC.RLB.MX.6YR 
BPC.RLB.7YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR - BPC.RLB.M
X.5YR - BPC.RLB.MX.6YR - BPC.RLB.MX.7YR 
BPC.RLB.8YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR - BPC.RLB.M
X.5YR - BPC.RLB.MX.6YR - BPC.RLB.MX.7YR - BPC.RLB.MX.8YR 
BPC.RLB.9YR <- BPC.RLB.SC - BPC.RLB.MX.3YR - BPC.RLB.MX.4YR - BPC.RLB.M
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X.5YR - BPC.RLB.MX.6YR - BPC.RLB.MX.7YR - BPC.RLB.MX.8YR - BPC.RLB.MX.9
YR 
 
#Trailer vs Relocatable Building 
TRA.RLB.SC <- TRA.AC.CA - RLB.AC.CA 
TRA.RLB.MX.3YR <- TRA.MX.3YR.CA - RLB.MX.3YR.CA 
TRA.RLB.MX.4YR <- TRA.MX.4YR.CA - RLB.MX.4YR.CA 
TRA.RLB.MX.5YR <- TRA.MX.5YR.CA - RLB.MX.5YR.CA 
TRA.RLB.MX.6YR <- TRA.MX.6YR.CA - RLB.MX.6YR.CA 
TRA.RLB.MX.7YR <- TRA.MX.7YR.CA - RLB.MX.6YR.CA 
TRA.RLB.MX.8YR <- TRA.MX.8YR.CA - RLB.MX.8YR.CA 
TRA.RLB.MX.9YR <- TRA.MX.9YR.CA - RLB.MX.9YR.CA 
 
TRA.RLB.3YR <- TRA.RLB.SC - TRA.RLB.MX.3YR 
TRA.RLB.4YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR 
TRA.RLB.5YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR - TRA.RLB.M
X.5YR 
TRA.RLB.6YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR - TRA.RLB.M
X.5YR - TRA.RLB.MX.6YR 
TRA.RLB.7YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR - TRA.RLB.M
X.5YR - TRA.RLB.MX.6YR - TRA.RLB.MX.7YR 
TRA.RLB.8YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR - TRA.RLB.M
X.5YR - TRA.RLB.MX.6YR - TRA.RLB.MX.7YR - TRA.RLB.MX.8YR 
TRA.RLB.9YR <- TRA.RLB.SC - TRA.RLB.MX.3YR - TRA.RLB.MX.4YR - TRA.RLB.M
X.5YR - TRA.RLB.MX.6YR - TRA.RLB.MX.7YR - TRA.RLB.MX.8YR - TRA.RLB.MX.9
YR 
 
# Data Frame Construction 
# Simulation Histograms and Means Plots Data Frames 
design.array <- c(array("BPC",28*n),array("TRA",28*n),array("RLB",28*n)
) 
year.array <- rep(c(array(3,n), array(4,n), array(5,n), array(6,n), arr
ay(7,n), array(8,n), array(9,n)),12) 
cost.type.array <- rep(c(array("Acquisition",7*n), array("Maintenance",
7*n), array("Disposal",7*n), array("Life Cycle",7*n)),3) 
 
BPC.AC <- (c(BPC.AC.3, BPC.AC.4, BPC.AC.5, BPC.AC.6, BPC.AC.7, BPC.AC.8
, BPC.AC.9))/100000 
BPC.MX <- (c(BPC.MX.3, BPC.MX.4, BPC.MX.5, BPC.MX.6, BPC.MX.7, BPC.MX.8
, BPC.MX.9))/100000 
BPC.DC <- (c(BPC.DC.3, BPC.DC.4, BPC.DC.5, BPC.DC.6, BPC.DC.7, BPC.DC.8
, BPC.DC.9))/100000 
BPC.LCC <- (c(BPC.LCC.3, BPC.LCC.4, BPC.LCC.5, BPC.LCC.6, BPC.LCC.7, BP
C.LCC.8, BPC.LCC.9))/100000 
BPC <- c(BPC.AC, BPC.MX, BPC.DC, BPC.LCC) 
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TRA.AC <- (c(TRA.AC.3, TRA.AC.4, TRA.AC.5, TRA.AC.6, TRA.AC.7, TRA.AC.8
, TRA.AC.9))/100000 
TRA.MX <- (c(TRA.MX.3, TRA.MX.4, TRA.MX.5, TRA.MX.6, TRA.MX.7, TRA.MX.8
, TRA.MX.9))/100000 
TRA.DC <- (c(TRA.DC.3, TRA.DC.4, TRA.DC.5, TRA.DC.6, TRA.DC.7, TRA.DC.8
, TRA.DC.9))/100000 
TRA.LCC <- (c(TRA.LCC.3, TRA.LCC.4, TRA.LCC.5, TRA.LCC.6, TRA.LCC.7, TR
A.LCC.8, TRA.LCC.9))/100000 
TRA <- c(TRA.AC, TRA.MX, TRA.DC, TRA.LCC) 
 
RLB.AC <- (c(RLB.AC.3, RLB.AC.4, RLB.AC.5, RLB.AC.6, RLB.AC.7, RLB.AC.8
, RLB.AC.9))/100000 
RLB.MX <- (c(RLB.MX.3, RLB.MX.4, RLB.MX.5, RLB.MX.6, RLB.MX.7, RLB.MX.8
, RLB.MX.9))/100000 
RLB.DC <- (c(RLB.DC.3, RLB.DC.4, RLB.DC.5, RLB.DC.6, RLB.DC.7, RLB.DC.8
, RLB.DC.9))/100000 
RLB.LCC <- (c(RLB.LCC.3, RLB.LCC.4, RLB.LCC.5, RLB.LCC.6, RLB.LCC.7, RL
B.LCC.8, RLB.LCC.9))/100000 
RLB <- c(RLB.AC, RLB.MX, RLB.DC, RLB.LCC) 
 
Designs.MX.Year <- data.frame(Design = c(array("BPC",7*n), array("TRA",
7*n), array("RLB",7*n)),Year = rep(c(array(1,n), array(2,n), array(3,n)
, array(4,n), array(5,n), array(6,n), array(7,n)),3), Cost = c(BPC.MX1.
3,BPC.MX2.3,BPC.MX3.3,BPC.MX4.3,BPC.MX5.3,BPC.MX6.3,BPC.MX7.3,TRA.MX1.3
,TRA.MX2.3,TRA.MX3.3,TRA.MX4.3,TRA.MX5.3,TRA.MX6.3,TRA.MX7.3,RLB.MX1.3,
RLB.MX2.3,RLB.MX3.3,RLB.MX4.3,RLB.MX5.3,RLB.MX6.3,RLB.MX7.3)) 
cost.array <- c(BPC, TRA, RLB) 
Cost.Data <- data.frame(Design = design.array, Year = year.array, Type 
= cost.type.array, Cost = cost.array) 
Cost.Data.Summary <- summarySE(Cost.Data, measurevar = "Cost", groupvar
s = c("Design", "Year", "Type"), conf.interval = .90) 
 
# Comparison Analysis Data Frames 
comparison.array.CA <- c(array("BPC vs Trailer", 7*n), array("BPC vs RL
B", 7*n), array("Trailer vs RLB", 7*n)) 
year.array.CA <- rep(c(array(3,n), array(4,n), array(5,n), array(6,n), 
array(7,n), array(8,n), array(9,n)),3) 
LCC.DIFF <- (c(BPC.TRA.3YR, BPC.TRA.4YR, BPC.TRA.5YR, BPC.TRA.6YR, BPC.
TRA.7YR, BPC.TRA.8YR, BPC.TRA.9YR, BPC.RLB.3YR, BPC.RLB.4YR, BPC.RLB.5Y
R, BPC.RLB.6YR, BPC.RLB.7YR, BPC.RLB.8YR, BPC.RLB.9YR, TRA.RLB.3YR, TRA
.RLB.4YR, TRA.RLB.5YR, TRA.RLB.6YR, TRA.RLB.7YR, TRA.RLB.8YR, TRA.RLB.9
YR)/100000) 
DIFF.data <- data.frame(Comparison = comparison.array.CA, Year = year.a
rray.CA, Difference = LCC.DIFF) 
DIFF.data.Sum <- summarySE(DIFF.data, measurevar = "Difference", groupv
ars = c("Comparison", "Year"), conf.interval = .90) 
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BPC.TRA.Lower <- c(quantile(BPC.TRA.3YR,c(0.05)),quantile(BPC.TRA.4YR,c
(0.05)), quantile(BPC.TRA.5YR,c(0.05)), quantile(BPC.TRA.6YR,c(0.05)),q
uantile(BPC.TRA.7YR,c(0.05)), quantile(BPC.TRA.8YR,c(0.05)), quantile(B
PC.TRA.9YR,c(0.05))) 
BPC.TRA.Upper <- c(quantile(BPC.TRA.3YR,c(0.95)),quantile(BPC.TRA.4YR,c
(0.95)), quantile(BPC.RLB.5YR,c(0.95)), quantile(BPC.RLB.6YR,c(0.95)),q
uantile(BPC.RLB.7YR,c(0.95)), quantile(BPC.RLB.8YR,c(0.95)), quantile(B
PC.RLB.9YR,c(0.95))) 
BPC.RLB.Lower <- c(quantile(BPC.RLB.3YR,c(0.05)),quantile(BPC.RLB.4YR,c
(0.05)), quantile(BPC.RLB.5YR,c(0.05)), quantile(BPC.RLB.6YR,c(0.05)),q
uantile(BPC.RLB.7YR,c(0.05)), quantile(BPC.RLB.8YR,c(0.05)), quantile(B
PC.RLB.9YR,c(0.05))) 
BPC.RLB.Upper <- c(quantile(BPC.RLB.3YR,c(0.95)),quantile(BPC.RLB.4YR,c
(0.95)), quantile(BPC.RLB.5YR,c(0.95)), quantile(BPC.RLB.6YR,c(0.95)),q
uantile(BPC.RLB.7YR,c(0.95)), quantile(BPC.RLB.8YR,c(0.95)), quantile(B
PC.RLB.9YR,c(0.95))) 
TRA.RLB.Lower <- c(quantile(TRA.RLB.3YR,c(0.05)),quantile(TRA.RLB.4YR,c
(0.05)), quantile(TRA.RLB.5YR,c(0.05)), quantile(TRA.RLB.6YR,c(0.05)),q
uantile(TRA.RLB.7YR,c(0.05)), quantile(TRA.RLB.8YR,c(0.05)), quantile(T
RA.RLB.9YR,c(0.05))) 
TRA.RLB.Upper <- c(quantile(TRA.RLB.3YR,c(0.95)),quantile(TRA.RLB.4YR,c
(0.95)), quantile(TRA.RLB.5YR,c(0.95)), quantile(TRA.RLB.6YR,c(0.95)),q
uantile(TRA.RLB.7YR,c(0.95)), quantile(TRA.RLB.8YR,c(0.95)), quantile(T
RA.RLB.9YR,c(0.95))) 
Lower <- c(BPC.TRA.Lower,BPC.RLB.Lower,TRA.RLB.Lower) 
Upper <- c(BPC.TRA.Upper,BPC.RLB.Upper,TRA.RLB.Upper) 
DIFF.data.Sum <- cbind(DIFF.data.Sum,Lower) 
DIFF.data.Sum <- cbind(DIFF.data.Sum,Upper) 
DIFF.data.Sum <- rename(DIFF.data.Sum, replace = c("Difference" = "Mean
","sd" = "Standard Deviation", "se" = "Standard Error", "ci" = "Confide
nce Interval", "Lower" = "5th Percentile", "Upper" = "95th Percentile")
) 
write.csv(DIFF.data.Sum, "3b_Differences_data.csv") 
 
DIFF.BPC.TRA <- subset(DIFF.data, Comparison == "BPC vs Trailer", selec
t = c(Comparison, Year, Difference)) 
DIFF.BPC.RLB <- subset(DIFF.data, Comparison == "BPC vs RLB", select = 
c(Comparison, Year, Difference)) 
DIFF.TRA.RLB <- subset(DIFF.data, Comparison == "Trailer vs RLB", selec
t = c(Comparison, Year, Difference)) 
 
# Plot Construction 
# Simulation Means Plots 
Designs.AC.Sum <- subset(Cost.Data.Summary, Type == "Acquisition" , sel
ect = c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.MX.Year.Sum <- summarySE(Designs.MX.Year, measurevar = "Cost", 
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groupvars = c("Design","Year"), conf.interval = .90) 
Designs.MX.Sum <- subset(Cost.Data.Summary, Type == "Maintenance", sele
ct = c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.DC.Sum <- subset(Cost.Data.Summary, Type == "Disposal", select 
= c(Design, Year, Type, N, Cost, sd, se, ci)) 
Designs.LCC.Sum <- subset(Cost.Data.Summary, Type == "Life Cycle" , sel
ect = c(Design, Year, Type, N, Cost, sd, se, ci)) 
 
LCC.Means.Plot <- ggplot(data=Designs.LCC.Sum) +  
  geom_line(aes(x=Year,y=Cost,colour=Design)) +  
  labs(title = "Means of Life Cycle Cost") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold"), legend.position=c(.9,.6)) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) +  
  scale_y_continuous(name="Cost ($100K)") 
 
# Simulation Histograms 
Designs.LCC <- subset(Cost.Data, Type == "Life Cycle", select = c("Desi
gn","Year","Cost")) 
LCC.Sum <- summarySE(Designs.LCC, measurevar = "Cost", groupvars = c("D
esign","Year"),conf.interval = .90) 
BPC.Lower <- c(quantile(BPC.LCC.3, c(.05)), quantile(BPC.LCC.4, c(.05))
,quantile(BPC.LCC.5, c(.05)),quantile(BPC.LCC.6, c(.05)),quantile(BPC.L
CC.7, c(.05)),quantile(BPC.LCC.8, c(.05)),quantile(BPC.LCC.9, c(.05))) 
BPC.Upper <- c(quantile(BPC.LCC.3, c(.95)), quantile(BPC.LCC.4, c(.95))
,quantile(BPC.LCC.5, c(.95)),quantile(BPC.LCC.6, c(.95)),quantile(BPC.L
CC.7, c(.95)),quantile(BPC.LCC.8, c(.95)),quantile(BPC.LCC.9, c(.95))) 
TRA.Lower <- c(quantile(TRA.LCC.3, c(.05)), quantile(TRA.LCC.4, c(.05))
,quantile(TRA.LCC.5, c(.05)),quantile(TRA.LCC.6, c(.05)),quantile(TRA.L
CC.7, c(.05)),quantile(TRA.LCC.8, c(.05)),quantile(TRA.LCC.9, c(.05))) 
TRA.Upper <- c(quantile(TRA.LCC.3, c(.95)), quantile(TRA.LCC.4, c(.95))
,quantile(TRA.LCC.5, c(.95)),quantile(TRA.LCC.6, c(.95)),quantile(TRA.L
CC.7, c(.95)),quantile(TRA.LCC.8, c(.95)),quantile(TRA.LCC.9, c(.95))) 
RLB.Lower <- c(quantile(RLB.LCC.3, c(.05)), quantile(RLB.LCC.4, c(.05))
,quantile(RLB.LCC.5, c(.05)),quantile(RLB.LCC.6, c(.05)),quantile(RLB.L
CC.7, c(.05)),quantile(RLB.LCC.8, c(.05)),quantile(RLB.LCC.9, c(.05))) 
RLB.Upper <- c(quantile(RLB.LCC.3, c(.95)), quantile(RLB.LCC.4, c(.95))
,quantile(RLB.LCC.5, c(.95)),quantile(RLB.LCC.6, c(.95)),quantile(RLB.L
CC.7, c(.95)),quantile(RLB.LCC.8, c(.95)),quantile(RLB.LCC.9, c(.95))) 
Lower = (c(BPC.Lower,RLB.Lower,TRA.Lower)/100000) 
Upper = (c(BPC.Upper,RLB.Upper,TRA.Upper)/100000) 
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LCC.Sum <- cbind(LCC.Sum, Lower) 
LCC.Sum <- cbind(LCC.Sum, Upper) 
LCC.Sum <- rename(LCC.Sum, replace = c("Cost" = "Mean","sd" = "Standard 
Deviation", "se" = "Standard Error", "ci" = "Confidence Interval", "Low
er" = "5th Percentile", "Upper" = "95th Percentile")) 
write.csv(LCC.Sum,file = "3b_cost_data.csv") 
 
Year.Design.Hist.free <- ggplot(Designs.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, colour = "black") +  
  facet_grid(Design ~ Year, scale = "free") +  
  labs(title = "Simulated LCCs per Designs") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold"), legend.position=c(.9,.6)) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) +  
  scale_x_continuous(name="Cost ($100K)")  
 
 
Year.3.LCC <- subset(Cost.Data, Year == 3 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.3.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.3), mean(RLB.LCC
.3), mean(TRA.LCC.3))/100000), Design = c("BPC","RLB","TRA"))  
Year.3.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.3, c(.05))
, quantile(RLB.LCC.3, c(.05)), quantile(TRA.LCC.3, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.3.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.3, c(.95))
, quantile(RLB.LCC.3, c(.95)), quantile(TRA.LCC.3, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.3.Hist <- ggplot(Year.3.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.3.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.3.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.3.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 3 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
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  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.3.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.3),mean(RLB.LCC.3),mean(TRA.LCC.3))/100000)) 
Year.3.Hist.Overlay <- ggplot(Year.3.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.3.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) + 
  labs(title = "Simulated LCC for 3 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.4.LCC <- subset(Cost.Data, Year == 4 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.4.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.4), mean(RLB.LCC
.4), mean(TRA.LCC.4))/100000), Design = c("BPC","RLB","TRA"))  
Year.4.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.4, c(.05))
, quantile(RLB.LCC.4, c(.05)), quantile(TRA.LCC.4, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.4.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.4, c(.95))
, quantile(RLB.LCC.4, c(.95)), quantile(TRA.LCC.4, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.4.Hist <- ggplot(Year.4.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.4.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.4.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.4.vline.upper, size = .5) +  
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  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 4 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.4.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.4),mean(RLB.LCC.4),mean(TRA.LCC.4))/100000)) 
Year.4.Hist.Overlay <- ggplot(Year.4.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.4.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 4 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.5.LCC <- subset(Cost.Data, Year == 5 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.5.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.5), mean(RLB.LCC
.5), mean(TRA.LCC.5))/100000), Design = c("BPC","RLB","TRA"))  
Year.5.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.5, c(.05))
, quantile(RLB.LCC.5, c(.05)), quantile(TRA.LCC.5, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.5.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.5, c(.95))
, quantile(RLB.LCC.5, c(.95)), quantile(TRA.LCC.5, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.5.Hist <- ggplot(Year.5.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.5.vline.me
an, size = .5) +  
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  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.5.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.5.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) + 
  labs(title = "Simulated LCC for 5 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
   
Year.5.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.5),mean(RLB.LCC.5),mean(TRA.LCC.5))/100000)) 
Year.5.Hist.Overlay <- ggplot(Year.5.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.5.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 5 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.6.LCC <- subset(Cost.Data, Year == 6 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.6.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.6), mean(RLB.LCC
.6), mean(TRA.LCC.6))/100000), Design = c("BPC","RLB","TRA"))  
Year.6.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.6, c(.05))
, quantile(RLB.LCC.6, c(.05)), quantile(TRA.LCC.6, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.6.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.6, c(.95))
, quantile(RLB.LCC.6, c(.95)), quantile(TRA.LCC.6, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.6.Hist <- ggplot(Year.6.LCC, aes(x = Cost)) +  
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  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.6.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.6.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.6.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 6 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.6.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.6),mean(RLB.LCC.6),mean(TRA.LCC.6))/100000)) 
Year.6.Hist.Overlay <- ggplot(Year.6.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") + 
  geom_vline(data=Year.6.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 6 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.7.LCC <- subset(Cost.Data, Year == 7 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.7.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.7), mean(RLB.LCC
.7), mean(TRA.LCC.7))/100000), Design = c("BPC","RLB","TRA"))  
Year.7.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.7, c(.05))
, quantile(RLB.LCC.7, c(.05)), quantile(TRA.LCC.7, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
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Year.7.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.7, c(.95))
, quantile(RLB.LCC.7, c(.95)), quantile(TRA.LCC.7, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.7.Hist <- ggplot(Year.7.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.7.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.7.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.7.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 7 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.7.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.7),mean(RLB.LCC.7),mean(TRA.LCC.7))/100000)) 
Year.7.Hist.Overlay <- ggplot(Year.7.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.7.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 7 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.8.LCC <- subset(Cost.Data, Year == 8 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.8.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.8), mean(RLB.LCC
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.8), mean(TRA.LCC.8))/100000), Design = c("BPC","RLB","TRA"))  
Year.8.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.8, c(.05))
, quantile(RLB.LCC.8, c(.05)), quantile(TRA.LCC.8, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.8.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.8, c(.95))
, quantile(RLB.LCC.8, c(.95)), quantile(TRA.LCC.8, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.8.Hist <- ggplot(Year.8.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.8.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.8.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.8.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 8 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.8.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.8),mean(RLB.LCC.8),mean(TRA.LCC.8))/100000)) 
Year.8.Hist.Overlay <- ggplot(Year.8.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.8.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 8 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
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Year.9.LCC <- subset(Cost.Data, Year == 9 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.9.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.9), mean(RLB.LCC
.9), mean(TRA.LCC.9))/100000), Design = c("BPC","RLB","TRA"))  
Year.9.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.9, c(.05))
, quantile(RLB.LCC.9, c(.05)), quantile(TRA.LCC.9, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.9.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.9, c(.95))
, quantile(RLB.LCC.9, c(.95)), quantile(TRA.LCC.9, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.9.Hist <- ggplot(Year.9.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.9.vline.me
an, size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.9.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.9.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Simulated LCC for 9 Years of Use") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.9.Means <- data.frame(Mean = c("BPC","RLB","TRA"), Value = (c(mean
(BPC.LCC.9),mean(RLB.LCC.9),mean(TRA.LCC.9))/100000)) 
Year.9.Hist.Overlay <- ggplot(Year.9.LCC, aes(x = Cost)) + 
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.9.Means, aes(xintercept = Value,  colour = Mean)
,linetype="dashed", size=1) +  
  labs(title = "Simulated LCC for 9 Years of Use Adjusted") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
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axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
# Comparison Analysis Histograms 
BPC.TRA.vline.mean <- data.frame(Mean = (c(mean(BPC.TRA.3YR), mean(BPC.
TRA.4YR), mean(BPC.TRA.5YR), mean(BPC.TRA.6YR), mean(BPC.TRA.7YR), mean
(BPC.TRA.8YR), mean(BPC.TRA.9YR))/100000), Year = c(3,4,5,6,7,8,9))  
BPC.TRA.vline.lower <- data.frame(Lower = (c(quantile(BPC.TRA.3YR, c(.0
5)), quantile(BPC.TRA.4YR, c(.05)), quantile(BPC.TRA.5YR, c(.05)), quan
tile(BPC.TRA.6YR, c(.05)), quantile(BPC.TRA.7YR, c(.05)), quantile(BPC.
TRA.8YR, c(.05)), quantile(BPC.TRA.9YR, c(.05)))/100000), Year = c(3,4,
5,6,7,8,9))  
BPC.TRA.vline.upper <- data.frame(Upper = (c(quantile(BPC.TRA.3YR, c(.9
5)), quantile(BPC.TRA.4YR, c(.95)), quantile(BPC.TRA.5YR, c(.95)), quan
tile(BPC.TRA.6YR, c(.95)), quantile(BPC.TRA.7YR, c(.95)), quantile(BPC.
TRA.8YR, c(.95)), quantile(BPC.TRA.9YR, c(.95)))/100000), Year = c(3,4,
5,6,7,8,9)) 
BPC.TRA.CA.Hist <- ggplot(DIFF.BPC.TRA, aes(x = Difference)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Year, scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), BPC.TRA.vline.m
ean, size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), BPC.TRA.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), BPC.TRA.vline.upper, size = .5) + 
  theme(legend.title=element_blank()) +  
  labs(title = "Comparison of BPC to Trailer Adjusted") +  
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.position="none") 
 
BPC.RLB.vline.mean <- data.frame(Mean = (c(mean(BPC.RLB.3YR), mean(BPC.
RLB.4YR), mean(BPC.RLB.5YR), mean(BPC.RLB.6YR), mean(BPC.RLB.7YR), mean
(BPC.RLB.8YR), mean(BPC.RLB.9YR))/100000), Year = c(3,4,5,6,7,8,9))  
BPC.RLB.vline.lower <- data.frame(Lower = (c(quantile(BPC.RLB.3YR, c(.0
5)), quantile(BPC.RLB.4YR, c(.05)), quantile(BPC.RLB.5YR, c(.05)), quan
tile(BPC.RLB.6YR, c(.05)), quantile(BPC.RLB.7YR, c(.05)), quantile(BPC.
RLB.8YR, c(.05)), quantile(BPC.RLB.9YR, c(.05)))/100000), Year = c(3,4,
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5,6,7,8,9))  
BPC.RLB.vline.upper <- data.frame(Upper = (c(quantile(BPC.RLB.3YR, c(.9
5)), quantile(BPC.RLB.4YR, c(.95)), quantile(BPC.RLB.5YR, c(.95)), quan
tile(BPC.RLB.6YR, c(.95)), quantile(BPC.RLB.7YR, c(.95)), quantile(BPC.
RLB.8YR, c(.95)), quantile(BPC.RLB.9YR, c(.95)))/100000), Year = c(3,4,
5,6,7,8,9)) 
BPC.RLB.CA.Hist <- ggplot(DIFF.BPC.RLB, aes(x = Difference)) +  
  geom_histogram(binwidth = 10, colour = "black") +  
  facet_grid(.~Year, scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), BPC.RLB.vline.m
ean, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th & 95th\nPercentile
"), BPC.RLB.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th  95th\nPercentile"
), BPC.RLB.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Comparison of BPC to RLBs Adjusted") +  
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.position="none") 
 
TRA.RLB.vline.mean <- data.frame(Mean = (c(mean(TRA.RLB.3YR), mean(TRA.
RLB.4YR), mean(TRA.RLB.5YR), mean(TRA.RLB.6YR), mean(TRA.RLB.7YR), mean
(TRA.RLB.8YR), mean(TRA.RLB.9YR))/100000), Year = c(3,4,5,6,7,8,9))  
TRA.RLB.vline.lower <- data.frame(Lower = (c(quantile(TRA.RLB.3YR, c(.0
5)), quantile(TRA.RLB.4YR, c(.05)), quantile(TRA.RLB.5YR, c(.05)), quan
tile(TRA.RLB.6YR, c(.05)), quantile(TRA.RLB.7YR, c(.05)), quantile(TRA.
RLB.8YR, c(.05)), quantile(TRA.RLB.9YR, c(.05)))/100000), Year = c(3,4,
5,6,7,8,9))  
TRA.RLB.vline.upper <- data.frame(Upper = (c(quantile(TRA.RLB.3YR, c(.9
5)), quantile(TRA.RLB.4YR, c(.95)), quantile(TRA.RLB.5YR, c(.95)), quan
tile(TRA.RLB.6YR, c(.95)), quantile(TRA.RLB.7YR, c(.95)), quantile(TRA.
RLB.8YR, c(.95)), quantile(TRA.RLB.9YR, c(.95)))/100000), Year = c(3,4,
5,6,7,8,9)) 
TRA.RLB.CA.Hist <- ggplot(DIFF.TRA.RLB, aes(x = Difference)) +  
  geom_histogram(binwidth = 10, colour = "black") +  
  facet_grid(.~Year, scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), TRA.RLB.vline.m
ean, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), TRA.RLB.vline.lower, size = .5) +  
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  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), TRA.RLB.vline.upper, size = .5) +  
  theme(legend.title=element_blank()) +  
  labs(title = "Comparison of Trailers to RLBs Adjusted") +  
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.position="none") 
 
 
# Print All Plots 
LCC.Means.Plot 

 

ggsave("LCC_Means_Plot.jpg", width = 5, height = 5) 
Year.Design.Hist.free 

 

ggsave("Facet_Plot.jpg", width = 7, height = 7) 
Year.3.Hist 

 

ggsave("Year3_Designs_Plot.jpg", width = 7, height = 5) 
Year.3.Hist.Overlay 

 

ggsave("Year3_OL_Plot.jpg", width = 7, height = 5) 
Year.4.Hist 

 

ggsave("Year4_Designs_Plot.jpg", width = 7, height = 5) 
Year.4.Hist.Overlay 

 

ggsave("Year4_OL_Plot.jpg", width = 7, height = 5) 
Year.5.Hist 
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ggsave("Year5_Designs_Plot.jpg", width = 7, height = 5) 
Year.5.Hist.Overlay 

 

ggsave("Year5_OL_Plot.jpg", width = 7, height = 5) 
Year.6.Hist 

 

ggsave("Year6_Designs_Plot.jpg", width = 7, height = 5) 
Year.6.Hist.Overlay 

 

ggsave("Year6_OL_Plot.jpg", width = 7, height = 5) 
Year.7.Hist 

 

ggsave("Year7_Design_Plot.jpg", width = 7, height = 5) 
Year.7.Hist.Overlay 

 

ggsave("Year7_OL_Plot.jpg", width = 7, height = 5) 
Year.8.Hist 

 

ggsave("Year8_Designs_Plot.jpg", width = 7, height = 5) 
Year.8.Hist.Overlay 

 

ggsave("Year8_OL_Plot.jpg", width = 7, height = 5) 
Year.9.Hist 

 

ggsave("Year9_Designs_Plot.jpg", width = 7, height = 5) 
Year.9.Hist.Overlay 

 

ggsave("Year9_OL_Plot.jpg", width = 7, height = 5) 
BPC.TRA.CA.Hist 
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ggsave("BPC_TRA_CA_Plot.jpg", width = 7, height = 5) 
BPC.RLB.CA.Hist 

 

ggsave("BPC_RLB_CA_Plot.jpg", width = 7, height = 5) 
TRA.RLB.CA.Hist 

 

ggsave("TRA_RLB_CA_Plot.jpg", width = 7, height = 5) 
 
 
##Results 
# 3 Years  
wilcox.test(BPC.LCC.3/100000, TRA.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.3/1e+05 and TRA.LCC.3/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  15.17860 15.24376 
## sample estimates: 
## difference in location  
##                15.2112 

wilcox.test(BPC.LCC.3/100000, RLB.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.3/1e+05 and RLB.LCC.3/1e+05 
## W = 19046000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -23.61816 -22.66132 
## sample estimates: 
## difference in location  
##              -23.13043 

wilcox.test(TRA.LCC.3/100000, RLB.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  
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##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.3/1e+05 and RLB.LCC.3/1e+05 
## W = 4282000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -38.83359 -37.86557 
## sample estimates: 
## difference in location  
##              -38.34673 

# 4 Years  
wilcox.test(BPC.LCC.4/100000, TRA.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.4/1e+05 and TRA.LCC.4/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  15.81608 15.88162 
## sample estimates: 
## difference in location  
##               15.84887 

wilcox.test(BPC.LCC.4/100000, RLB.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.4/1e+05 and RLB.LCC.4/1e+05 
## W = 14514000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -26.71892 -25.65760 
## sample estimates: 
## difference in location  
##              -26.18819 

wilcox.test(TRA.LCC.4/100000, RLB.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
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##  
## data:  TRA.LCC.4/1e+05 and RLB.LCC.4/1e+05 
## W = 2481300, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.55526 -41.50466 
## sample estimates: 
## difference in location  
##              -42.03183 

# 5 Years  
wilcox.test(BPC.LCC.5/100000, TRA.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.5/1e+05 and TRA.LCC.5/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  16.21399 16.27990 
## sample estimates: 
## difference in location  
##               16.24694 

wilcox.test(BPC.LCC.5/100000, RLB.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.5/1e+05 and RLB.LCC.5/1e+05 
## W = 11599000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -29.14394 -28.09799 
## sample estimates: 
## difference in location  
##              -28.62339 

wilcox.test(TRA.LCC.5/100000, RLB.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.5/1e+05 and RLB.LCC.5/1e+05 
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## W = 1457400, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -45.38625 -44.33790 
## sample estimates: 
## difference in location  
##              -44.86151 

# 6 Years  
wilcox.test(BPC.LCC.6/100000, TRA.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.6/1e+05 and TRA.LCC.6/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  16.49590 16.56162 
## sample estimates: 
## difference in location  
##               16.52875 

wilcox.test(BPC.LCC.6/100000, RLB.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.6/1e+05 and RLB.LCC.6/1e+05 
## W = 9847800, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -31.88382 -30.80074 
## sample estimates: 
## difference in location  
##              -31.33813 

wilcox.test(TRA.LCC.6/100000, RLB.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.6/1e+05 and RLB.LCC.6/1e+05 
## W = 901040, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
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## 90 percent confidence interval: 
##  -48.40566 -47.32172 
## sample estimates: 
## difference in location  
##              -47.86306 

# 7 Years  
wilcox.test(BPC.LCC.7/100000, TRA.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.7/1e+05 and TRA.LCC.7/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  17.84252 17.91016 
## sample estimates: 
## difference in location  
##               17.87636 

wilcox.test(BPC.LCC.7/100000, RLB.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.7/1e+05 and RLB.LCC.7/1e+05 
## W = 7756700, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -33.28299 -32.35374 
## sample estimates: 
## difference in location  
##               -32.8161 

wilcox.test(TRA.LCC.7/100000, RLB.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.7/1e+05 and RLB.LCC.7/1e+05 
## W = 441840, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -51.16344 -50.23206 
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## sample estimates: 
## difference in location  
##              -50.69701 

# 8 Years  
wilcox.test(BPC.LCC.8/100000, TRA.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.8/1e+05 and TRA.LCC.8/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  18.78043 18.84820 
## sample estimates: 
## difference in location  
##                18.8143 

wilcox.test(BPC.LCC.8/100000, RLB.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.8/1e+05 and RLB.LCC.8/1e+05 
## W = 7111200, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -35.81114 -34.80860 
## sample estimates: 
## difference in location  
##               -35.3097 

wilcox.test(TRA.LCC.8/100000, RLB.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.8/1e+05 and RLB.LCC.8/1e+05 
## W = 269320, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -54.62107 -53.61685 
## sample estimates: 



 

 

201 

 

## difference in location  
##              -54.11754 

# 9 Years  
wilcox.test(BPC.LCC.9/100000, TRA.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.9/1e+05 and TRA.LCC.9/1e+05 
## W = 1e+08, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.62749 19.69570 
## sample estimates: 
## difference in location  
##                19.6616 

wilcox.test(BPC.LCC.9/100000, RLB.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  BPC.LCC.9/1e+05 and RLB.LCC.9/1e+05 
## W = 4473800, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -39.74989 -38.73603 
## sample estimates: 
## difference in location  
##              -39.24348 

wilcox.test(TRA.LCC.9/100000, RLB.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = FALSE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  TRA.LCC.9/1e+05 and RLB.LCC.9/1e+05 
## W = 70168, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -59.40382 -58.39526 
## sample estimates: 
## difference in location  
##              -58.89902 
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#Comparisons 
Comparison.data <- data.frame(Year = c(3,4,5,6,7,8,9), One = c((sum(BPC
.LCC.3 < TRA.LCC.3)/10000), (sum(BPC.LCC.4 < TRA.LCC.4)/10000), (sum(BP
C.LCC.5 < TRA.LCC.5)/10000), (sum(BPC.LCC.6 < TRA.LCC.6)/10000), (sum(B
PC.LCC.7 < TRA.LCC.7)/10000), (sum(BPC.LCC.8 < TRA.LCC.8)/10000), (sum(
BPC.LCC.9 < TRA.LCC.9)/10000)), Two = c((sum(BPC.LCC.3 < RLB.LCC.3)/100
00), (sum(BPC.LCC.4 < RLB.LCC.4)/10000), (sum(BPC.LCC.5 < RLB.LCC.5)/10
000), (sum(BPC.LCC.6 < RLB.LCC.6)/10000), (sum(BPC.LCC.7 < RLB.LCC.7)/1
0000), (sum(BPC.LCC.8 < RLB.LCC.8)/10000), (sum(BPC.LCC.9 < RLB.LCC.9)/
10000)), Three = c((sum(TRA.LCC.3 < RLB.LCC.3)/10000), (sum(TRA.LCC.4 < 
RLB.LCC.4)/10000), (sum(TRA.LCC.5 < RLB.LCC.5)/10000), (sum(TRA.LCC.6 < 
RLB.LCC.6)/10000), (sum(TRA.LCC.7 < RLB.LCC.7)/10000), (sum(TRA.LCC.8 < 
RLB.LCC.8)/10000), (sum(TRA.LCC.9 < RLB.LCC.9)/10000))) 
Comparison.data <- rename(Comparison.data, replace = c("One"= "BPC < TR
A", "Two" = "BPC < RLB", "Three" = "TRA < RLB")) 
write.csv(Comparison.data,file = "3b_Comparison_results.csv") 
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50_Year_Horizon.R 

Ryan 

Thu Feb 11 05:52:05 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/50 Year Hori
zon") 
 
 
# Assumptions 
TRA.Adjustment.Factor <- 4 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
BPC.DCPSF3 <- 15.60 
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BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
RLB2.MX2015.mean <- 5.333 
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RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Present Worth of Life Cycle Cost Function (Definite Use) 
LCC <- function (t, design, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  if(design == "BPC"){ 
    ifelse(t == 1, LCC <- AC, NA) 
    ifelse(t == 2, LCC <- AC + DC, NA) 
    ifelse(t == 3, LCC <- AC + MX1 + DC, NA) 
    ifelse(t == 4, LCC <- AC + MX1 + MX2 + DC, NA) 
    ifelse(t == 5, LCC <- AC + MX1 + MX2 + MX3 + DC, NA)  
    ifelse(t == 6, LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC, NA) 
    ifelse(t == 7, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC, NA) 
    ifelse(t == 8, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC, 
NA) 
    ifelse(t == 9, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 
+ DC, NA) 
    ifelse(t == 10, LCC <- AC + (MX1*2) + MX2 + MX3 + MX4 + MX5 + MX6 + 
MX7 + DC, NA) 
    ifelse(t == 11, LCC <- AC + (MX1*2) + (MX2*2) + MX3 + MX4 + MX5 + M
X6 + MX7 + DC, NA) 
    ifelse(t == 12, LCC <- AC + (MX1*2) + (MX2*2) + (MX3*2) + MX4 + MX5 
+ MX6 + MX7 + DC, NA) 
    ifelse(t == 13, LCC <- AC + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*2) + 
MX5 + MX6 + MX7 + DC, NA) 
    ifelse(t == 14, LCC <- AC + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*2) + 
(MX5*2) + MX6 + MX7 + DC, NA) 
    ifelse(t == 15, LCC <- AC + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*2) + 
(MX5*2) + (MX6*2) + MX7 + DC, NA) 
    ifelse(t == 16, LCC <- AC + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*2) + 
(MX5*2) + (MX6*2) + (MX7*2) + DC, NA) 
    ifelse(t == 17, LCC <- AC + (MX1*3) + (MX2*2) + (MX3*2) + (MX4*2) + 
(MX5*2) + (MX6*2) + (MX7*2) + DC, NA) 
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    ifelse(t == 18, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*2) + (MX4*2) + 
(MX5*2) + (MX6*2) + (MX7*2) + DC, NA) 
    ifelse(t == 19, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*2) + 
(MX5*2) + (MX6*2) + (MX7*2) + DC, NA) 
    ifelse(t == 20, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*3) + 
(MX5*2) + (MX6*2) + (MX7*2) + DC, NA) 
    ifelse(t == 21, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*3) + 
(MX5*3) + (MX6*2) + (MX7*2) + DC, NA) 
    ifelse(t == 22, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*3) + 
(MX5*3) + (MX6*3) + (MX7*2) + DC, NA) 
    ifelse(t == 23, LCC <- AC + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*3) + 
(MX5*3) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 24, LCC <- AC + (MX1*4) + (MX2*3) + (MX3*3) + (MX4*3) + 
(MX5*3) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 25, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*3) + (MX4*3) + 
(MX5*3) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 26, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*3) + 
(MX5*3) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 27, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*4) + 
(MX5*3) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 28, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*4) + 
(MX5*4) + (MX6*3) + (MX7*3) + DC, NA) 
    ifelse(t == 29, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*4) + 
(MX5*4) + (MX6*4) + (MX7*3) + DC, NA) 
    ifelse(t == 30, LCC <- AC + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*4) + 
(MX5*4) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 31, LCC <- AC + (MX1*5) + (MX2*4) + (MX3*4) + (MX4*4) + 
(MX5*4) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 32, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*4) + (MX4*4) + 
(MX5*4) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 33, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*4) + 
(MX5*4) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 34, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*5) + 
(MX5*4) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 35, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*5) + 
(MX5*5) + (MX6*4) + (MX7*4) + DC, NA) 
    ifelse(t == 36, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*5) + 
(MX5*5) + (MX6*5) + (MX7*4) + DC, NA) 
    ifelse(t == 37, LCC <- AC + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*5) + 
(MX5*5) + (MX6*5) + (MX7*5) + DC, NA) 
    ifelse(t == 38, LCC <- AC + (MX1*6) + (MX2*5) + (MX3*5) + (MX4*5) + 
(MX5*5) + (MX6*5) + (MX7*5) + DC, NA) 
    ifelse(t == 39, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*5) + (MX4*5) + 
(MX5*5) + (MX6*5) + (MX7*5) + DC, NA) 
    ifelse(t == 40, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*6) + (MX4*5) + 
(MX5*5) + (MX6*5) + (MX7*5) + DC, NA) 
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    ifelse(t == 41, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*6) + (MX4*6) + 
(MX5*5) + (MX6*5) + (MX7*5) + DC, NA) 
    ifelse(t == 42, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*6) + (MX4*6) + 
(MX5*6) + (MX6*5) + (MX7*5) + DC, NA) 
    ifelse(t == 43, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*6) + (MX4*6) + 
(MX5*6) + (MX6*6) + (MX7*5) + DC, NA) 
    ifelse(t == 44, LCC <- AC + (MX1*6) + (MX2*6) + (MX3*6) + (MX4*6) + 
(MX5*6) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 45, LCC <- AC + (MX1*7) + (MX2*6) + (MX3*6) + (MX4*6) + 
(MX5*6) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 46, LCC <- AC + (MX1*7) + (MX2*7) + (MX3*6) + (MX4*6) + 
(MX5*6) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 47, LCC <- AC + (MX1*7) + (MX2*7) + (MX3*7) + (MX4*6) + 
(MX5*6) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 48, LCC <- AC + (MX1*7) + (MX2*7) + (MX3*7) + (MX4*7) + 
(MX5*6) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 49, LCC <- AC + (MX1*7) + (MX2*7) + (MX3*7) + (MX4*7) + 
(MX5*7) + (MX6*6) + (MX7*6) + DC, NA) 
    ifelse(t == 50, LCC <- AC + (MX1*7) + (MX2*7) + (MX3*7) + (MX4*7) + 
(MX5*7) + (MX6*7) + (MX7*6) + DC, NA) 
    return(LCC) 
  } 
  if(design == "TRA"){ 
    ifelse(t == 1, LCC <- AC, NA) 
    ifelse(t == 2, LCC <- AC + DC, NA) 
    ifelse(t == 3, LCC <- AC + MX1 + DC, NA) 
    ifelse(t == 4, LCC <- AC + MX1 + MX2 + DC, NA) 
    ifelse(t == 5, LCC <- AC + MX1 + MX2 + MX3 + DC, NA)  
    ifelse(t == 6, LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC, NA) 
    ifelse(t == 7, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC, NA) 
    ifelse(t == 8, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC, 
NA) 
    ifelse(t == 9, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 
+ DC, NA) 
    ifelse(t == 10, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + MX6 + 
MX7 + DC, NA) 
    ifelse(t == 11, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + (MX6*
2) + MX7 + DC, NA) 
    ifelse(t == 12, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + (MX6*
2) + (MX7*2) + DC, NA) 
    ifelse(t == 13, LCC <- (AC*2) + (MX1*2) + MX2 + MX3 + MX4 + (MX5*2) 
+ (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 14, LCC <- (AC*2) + (MX1*2) + (MX2*2) + MX3 + MX4 + (MX
5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 15, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + MX4 + 
(MX5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 



 

 

208 

 

    ifelse(t == 16, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 17, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 18, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*3) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 19, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*3) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 20, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*3) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 21, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 22, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*2), NA) 
    ifelse(t == 23, LCC <- (AC*3) + (MX1*3) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 24, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 25, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 26, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 27, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 28, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*5) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 29, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*5) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 30, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*5) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 31, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 32, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*3), NA) 
    ifelse(t == 33, LCC <- (AC*4) + (MX1*4) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 34, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 35, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 36, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 37, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 38, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*7) + (MX7*6) + (DC*4), NA) 
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    ifelse(t == 39, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*7) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 40, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*7) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 41, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 42, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*4), NA) 
    ifelse(t == 43, LCC <- (AC*5) + (MX1*5) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 44, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 45, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 46, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 47, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 48, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*9) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 49, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*9) + (MX7*9) + (DC*5), NA) 
    ifelse(t == 50, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*10) + (MX6*9) + (MX7*9) + (DC*5), NA) 
    return(LCC) 
  } 
  if(design == "RLB"){ 
    ifelse(t == 1, LCC <- AC, NA) 
    ifelse(t == 2, LCC <- AC + DC, NA) 
    ifelse(t == 3, LCC <- AC + MX1 + DC, NA) 
    ifelse(t == 4, LCC <- AC + MX1 + MX2 + DC, NA) 
    ifelse(t == 5, LCC <- AC + MX1 + MX2 + MX3 + DC, NA)  
    ifelse(t == 6, LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC, NA) 
    ifelse(t == 7, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC, NA) 
    ifelse(t == 8, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC, 
NA) 
    ifelse(t == 9, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 
+ DC, NA) 
    ifelse(t == 10, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + MX6 + 
MX7 + DC, NA) 
    ifelse(t == 11, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + (MX6*
2) + MX7 + DC, NA) 
    ifelse(t == 12, LCC <- AC + MX1 + MX2 + MX3 + MX4 + (MX5*2) + (MX6*
2) + (MX7*2) + DC, NA) 
    ifelse(t == 13, LCC <- (AC*2) + (MX1*2) + MX2 + MX3 + MX4 + (MX5*2) 
+ (MX6*2) + (MX7*2) + (DC*2), NA) 
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    ifelse(t == 14, LCC <- (AC*2) + (MX1*2) + (MX2*2) + MX3 + MX4 + (MX
5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 15, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + MX4 + 
(MX5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 16, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*2) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 17, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*2) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 18, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*3) + (MX7*2) + (DC*2), NA) 
    ifelse(t == 19, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*3) + (MX6*3) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 20, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*3) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 21, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*3) + (DC*2), NA) 
    ifelse(t == 22, LCC <- (AC*2) + (MX1*2) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*2), NA) 
    ifelse(t == 23, LCC <- (AC*3) + (MX1*3) + (MX2*2) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 24, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*2) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 25, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
2) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 26, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*4) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 27, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*4) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 28, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*5) + (MX7*4) + (DC*3), NA) 
    ifelse(t == 29, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*5) + (MX6*5) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 30, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*5) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 31, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*5) + (DC*3), NA) 
    ifelse(t == 32, LCC <- (AC*3) + (MX1*3) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*3), NA) 
    ifelse(t == 33, LCC <- (AC*4) + (MX1*4) + (MX2*3) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 34, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*3) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 35, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
3) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 36, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*6) + (MX6*6) + (MX7*6) + (DC*4), NA) 
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    ifelse(t == 37, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*6) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 38, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*7) + (MX7*6) + (DC*4), NA) 
    ifelse(t == 39, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*7) + (MX6*7) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 40, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*7) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 41, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*7) + (DC*4), NA) 
    ifelse(t == 42, LCC <- (AC*4) + (MX1*4) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*4), NA) 
    ifelse(t == 43, LCC <- (AC*5) + (MX1*5) + (MX2*4) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 44, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*4) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 45, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
4) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 46, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*8) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 47, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*8) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 48, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*9) + (MX7*8) + (DC*5), NA) 
    ifelse(t == 49, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*9) + (MX6*9) + (MX7*9) + (DC*5), NA) 
    ifelse(t == 50, LCC <- (AC*5) + (MX1*5) + (MX2*5) + (MX3*5) + (MX4*
5) + (MX5*10) + (MX6*9) + (MX7*9) + (DC*5), NA) 
    return(LCC) 
  }  
} 
 
##Simulation 
BPC.AC <- BPC.AC * FGP(8,i)  
BPC.MX1 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) 
BPC.MX2 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) 
BPC.MX3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) 
BPC.MX4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) 
BPC.MX5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) 
BPC.MX6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i)  
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BPC.MX7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) 
BPC.DC <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.Adj
ustment.Factor 
TRA.MX1 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.Adj
ustment.Factor 
RLB.MX1 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rate 
* (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
##Calculations 
BPC.1 <- LCC(1, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.2 <- LCC(2, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.3 <- LCC(3, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
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MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.4 <- LCC(4, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.5 <- LCC(5, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.6 <- LCC(6, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.7 <- LCC(7, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.8 <- LCC(8, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.9 <- LCC(9, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.
MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.10 <- LCC(10, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.11 <- LCC(11, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.12 <- LCC(12, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.13 <- LCC(13, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.14 <- LCC(14, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.15 <- LCC(15, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.16 <- LCC(16, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.17 <- LCC(17, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.18 <- LCC(18, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.19 <- LCC(19, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.20 <- LCC(20, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.21 <- LCC(21, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.22 <- LCC(22, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.23 <- LCC(23, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.24 <- LCC(24, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.25 <- LCC(25, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.26 <- LCC(26, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
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C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.27 <- LCC(27, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.28 <- LCC(28, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.29 <- LCC(29, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.30 <- LCC(30, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.31 <- LCC(31, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.32 <- LCC(32, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.33 <- LCC(33, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.34 <- LCC(34, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.35 <- LCC(35, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.36 <- LCC(36, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.37 <- LCC(37, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.38 <- LCC(38, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.39 <- LCC(39, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.30 <- LCC(30, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.31 <- LCC(31, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.32 <- LCC(32, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.33 <- LCC(33, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.34 <- LCC(34, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.35 <- LCC(35, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.36 <- LCC(36, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.37 <- LCC(37, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.38 <- LCC(38, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.39 <- LCC(39, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
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C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.40 <- LCC(40, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.41 <- LCC(41, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.42 <- LCC(42, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.43 <- LCC(43, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.44 <- LCC(44, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.45 <- LCC(45, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.46 <- LCC(46, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.47 <- LCC(47, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.48 <- LCC(48, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.49 <- LCC(49, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
BPC.50 <- LCC(50, "BPC", BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
 
TRA.1 <- LCC(1, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.2 <- LCC(2, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.3 <- LCC(3, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.4 <- LCC(4, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.5 <- LCC(5, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.6 <- LCC(6, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.7 <- LCC(7, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.8 <- LCC(8, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.9 <- LCC(9, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.
MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.10 <- LCC(10, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.11 <- LCC(11, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
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TRA.12 <- LCC(12, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.13 <- LCC(13, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.14 <- LCC(14, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.15 <- LCC(15, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.16 <- LCC(16, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.17 <- LCC(17, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.18 <- LCC(18, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.19 <- LCC(19, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.20 <- LCC(20, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.21 <- LCC(21, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.22 <- LCC(22, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.23 <- LCC(23, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.24 <- LCC(24, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.25 <- LCC(25, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.26 <- LCC(26, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.27 <- LCC(27, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.28 <- LCC(28, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.29 <- LCC(29, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.30 <- LCC(30, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.31 <- LCC(31, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.32 <- LCC(32, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.33 <- LCC(33, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.34 <- LCC(34, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
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TRA.35 <- LCC(35, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.36 <- LCC(36, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.37 <- LCC(37, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.38 <- LCC(38, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.39 <- LCC(39, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.30 <- LCC(30, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.31 <- LCC(31, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.32 <- LCC(32, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.33 <- LCC(33, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.34 <- LCC(34, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.35 <- LCC(35, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.36 <- LCC(36, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.37 <- LCC(37, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.38 <- LCC(38, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.39 <- LCC(39, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.40 <- LCC(40, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.41 <- LCC(41, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.42 <- LCC(42, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.43 <- LCC(43, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.44 <- LCC(44, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.45 <- LCC(45, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.46 <- LCC(46, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.47 <- LCC(47, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
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TRA.48 <- LCC(48, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.49 <- LCC(49, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
TRA.50 <- LCC(50, "TRA", TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC)  
 
RLB.1 <- LCC(1, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.2 <- LCC(2, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.3 <- LCC(3, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.4 <- LCC(4, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.5 <- LCC(5, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.6 <- LCC(6, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.7 <- LCC(7, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.8 <- LCC(8, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.9 <- LCC(9, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.
MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.10 <- LCC(10, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.11 <- LCC(11, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.12 <- LCC(12, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.13 <- LCC(13, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.14 <- LCC(14, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.15 <- LCC(15, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.16 <- LCC(16, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.17 <- LCC(17, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.18 <- LCC(18, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.19 <- LCC(19, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.20 <- LCC(20, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
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B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.21 <- LCC(21, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.22 <- LCC(22, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.23 <- LCC(23, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.24 <- LCC(24, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.25 <- LCC(25, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.26 <- LCC(26, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.27 <- LCC(27, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.28 <- LCC(28, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.29 <- LCC(29, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.30 <- LCC(30, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.31 <- LCC(31, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.32 <- LCC(32, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.33 <- LCC(33, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.34 <- LCC(34, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.35 <- LCC(35, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.36 <- LCC(36, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.37 <- LCC(37, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.38 <- LCC(38, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.39 <- LCC(39, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.30 <- LCC(30, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.31 <- LCC(31, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.32 <- LCC(32, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.33 <- LCC(33, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
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B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.34 <- LCC(34, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.35 <- LCC(35, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.36 <- LCC(36, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.37 <- LCC(37, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.38 <- LCC(38, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.39 <- LCC(39, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.40 <- LCC(40, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.41 <- LCC(41, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.42 <- LCC(42, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.43 <- LCC(43, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.44 <- LCC(44, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.45 <- LCC(45, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.46 <- LCC(46, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.47 <- LCC(47, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.48 <- LCC(48, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.49 <- LCC(49, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
RLB.50 <- LCC(50, "RLB", RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC)  
 
design.array <- c(array("BPC",50*n), array("TRA",50*n), array("RLB",50*
n)) 
year.array <- rep(c(array(1,n),array(2,n,),array(3,n), array(4,n), arra
y(5,n), array(6,n), array(7,n), array(8,n), array(9,n),array(10,n),arra
y(11,n),array(12,n),array(13,n), array(14,n), array(15,n), array(16,n), 
array(17,n), array(18,n), array(19,n),array(20,n),array(21,n),array(22,
n),array(23,n), array(24,n), array(25,n), array(26,n), array(27,n), arr
ay(28,n), array(29,n),array(30,n),array(31,n),array(32,n),array(33,n), 
array(34,n), array(35,n), array(36,n), array(37,n), array(38,n), array(
39,n),array(40,n),array(41,n),array(42,n),array(43,n), array(44,n), arr
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ay(45,n), array(46,n), array(47,n), array(48,n), array(49,n),array(50,n
)),3) 
BPC.LCC.array <- c(BPC.1,BPC.2,BPC.3,BPC.4,BPC.5,BPC.6,BPC.7,BPC.8,BPC.
9,BPC.10,BPC.11,BPC.12,BPC.13,BPC.14,BPC.15,BPC.16,BPC.17,BPC.18,BPC.19
,BPC.20,BPC.21,BPC.22,BPC.23,BPC.24,BPC.25,BPC.26,BPC.27,BPC.28,BPC.29,
BPC.30,BPC.31,BPC.32,BPC.33,BPC.34,BPC.35,BPC.36,BPC.37,BPC.38,BPC.39,B
PC.40,BPC.41,BPC.42,BPC.43,BPC.44,BPC.45,BPC.46,BPC.47,BPC.48,BPC.49,BP
C.50) 
TRA.LCC.array <- c(TRA.1,TRA.2,TRA.3,TRA.4,TRA.5,TRA.6,TRA.7,TRA.8,TRA.
9,TRA.10,TRA.11,TRA.12,TRA.13,TRA.14,TRA.15,TRA.16,TRA.17,TRA.18,TRA.19
,TRA.20,TRA.21,TRA.22,TRA.23,TRA.24,TRA.25,TRA.26,TRA.27,TRA.28,TRA.29,
TRA.30,TRA.31,TRA.32,TRA.33,TRA.34,TRA.35,TRA.36,TRA.37,TRA.38,TRA.39,T
RA.40,TRA.41,TRA.42,TRA.43,TRA.44,TRA.45,TRA.46,TRA.47,TRA.48,TRA.49,TR
A.50) 
RLB.LCC.array <- c(RLB.1,RLB.2,RLB.3,RLB.4,RLB.5,RLB.6,RLB.7,RLB.8,RLB.
9,RLB.10,RLB.11,RLB.12,RLB.13,RLB.14,RLB.15,RLB.16,RLB.17,RLB.18,RLB.19
,RLB.20,RLB.21,RLB.22,RLB.23,RLB.24,RLB.25,RLB.26,RLB.27,RLB.28,RLB.29,
RLB.30,RLB.31,RLB.32,RLB.33,RLB.34,RLB.35,RLB.36,RLB.37,RLB.38,RLB.39,R
LB.40,RLB.41,RLB.42,RLB.43,RLB.44,RLB.45,RLB.46,RLB.47,RLB.48,RLB.49,RL
B.50) 
LCC.array <- (c(BPC.LCC.array,TRA.LCC.array,RLB.LCC.array)/100000) 
 
LCC.data <- data.frame(Design = design.array, Year = year.array, Cost = 
LCC.array) 
LCC.summary <- summarySE(LCC.data, measurevar = "Cost", groupvars = c("
Design","Year"), conf.interval = .90) 
BPC.Lower <- c(quantile(BPC.1, c(.05)),quantile(BPC.2, c(.05)),quantile
(BPC.3, c(.05)),quantile(BPC.4, c(.05)),quantile(BPC.5, c(.05)),quantil
e(BPC.6, c(.05)),quantile(BPC.7, c(.05)),quantile(BPC.8, c(.05)),quanti
le(BPC.9, c(.05)), quantile(BPC.10, c(.05)), quantile(BPC.11, c(.05)),q
uantile(BPC.12, c(.05)),quantile(BPC.13, c(.05)),quantile(BPC.14, c(.05
)),quantile(BPC.15, c(.05)),quantile(BPC.16, c(.05)),quantile(BPC.17, c
(.05)),quantile(BPC.18, c(.05)),quantile(BPC.19, c(.05)),quantile(BPC.2
0, c(.05)), quantile(BPC.21, c(.05)),quantile(BPC.22, c(.05)),quantile(
BPC.23, c(.05)),quantile(BPC.24, c(.05)),quantile(BPC.25, c(.05)),quant
ile(BPC.26, c(.05)),quantile(BPC.27, c(.05)),quantile(BPC.28, c(.05)),q
uantile(BPC.29, c(.05)),quantile(BPC.30, c(.05)), quantile(BPC.31, c(.0
5)),quantile(BPC.32, c(.05)),quantile(BPC.33, c(.05)),quantile(BPC.34, 
c(.05)),quantile(BPC.35, c(.05)),quantile(BPC.36, c(.05)),quantile(BPC.
37, c(.05)),quantile(BPC.38, c(.05)),quantile(BPC.39, c(.05)),quantile(
BPC.40, c(.05)), quantile(BPC.41, c(.05)),quantile(BPC.42, c(.05)),quan
tile(BPC.43, c(.05)),quantile(BPC.44, c(.05)),quantile(BPC.45, c(.05)),
quantile(BPC.46, c(.05)),quantile(BPC.47, c(.05)),quantile(BPC.48, c(.0
5)),quantile(BPC.49, c(.05)),quantile(BPC.50,c(.05))) 
BPC.Upper <- c(quantile(BPC.1, c(.95)),quantile(BPC.2, c(.95)),quantile
(BPC.3, c(.95)),quantile(BPC.4, c(.95)),quantile(BPC.5, c(.95)),quantil
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e(BPC.6, c(.95)),quantile(BPC.7, c(.95)),quantile(BPC.8, c(.95)),quanti
le(BPC.9, c(.95)), quantile(BPC.10, c(.95)), quantile(BPC.11, c(.95)),q
uantile(BPC.12, c(.95)),quantile(BPC.13, c(.95)),quantile(BPC.14, c(.95
)),quantile(BPC.15, c(.95)),quantile(BPC.16, c(.95)),quantile(BPC.17, c
(.95)),quantile(BPC.18, c(.95)),quantile(BPC.19, c(.95)),quantile(BPC.2
0, c(.95)), quantile(BPC.21, c(.95)),quantile(BPC.22, c(.95)),quantile(
BPC.23, c(.95)),quantile(BPC.24, c(.95)),quantile(BPC.25, c(.95)),quant
ile(BPC.26, c(.95)),quantile(BPC.27, c(.95)),quantile(BPC.28, c(.95)),q
uantile(BPC.29, c(.95)),quantile(BPC.30, c(.95)), quantile(BPC.31, c(.9
5)),quantile(BPC.32, c(.95)),quantile(BPC.33, c(.95)),quantile(BPC.34, 
c(.95)),quantile(BPC.35, c(.95)),quantile(BPC.36, c(.95)),quantile(BPC.
37, c(.95)),quantile(BPC.38, c(.95)),quantile(BPC.39, c(.95)),quantile(
BPC.40, c(.95)), quantile(BPC.41, c(.95)),quantile(BPC.42, c(.95)),quan
tile(BPC.43, c(.95)),quantile(BPC.44, c(.95)),quantile(BPC.45, c(.95)),
quantile(BPC.46, c(.95)),quantile(BPC.47, c(.95)),quantile(BPC.48, c(.9
5)),quantile(BPC.49, c(.95)),quantile(BPC.50,c(.95))) 
TRA.Lower <- c(quantile(TRA.1, c(.05)),quantile(TRA.2, c(.05)),quantile
(TRA.3, c(.05)),quantile(TRA.4, c(.05)),quantile(TRA.5, c(.05)),quantil
e(TRA.6, c(.05)),quantile(TRA.7, c(.05)),quantile(TRA.8, c(.05)),quanti
le(TRA.9, c(.05)), quantile(TRA.10, c(.05)), quantile(TRA.11, c(.05)),q
uantile(TRA.12, c(.05)),quantile(TRA.13, c(.05)),quantile(TRA.14, c(.05
)),quantile(TRA.15, c(.05)),quantile(TRA.16, c(.05)),quantile(TRA.17, c
(.05)),quantile(TRA.18, c(.05)),quantile(TRA.19, c(.05)),quantile(TRA.2
0, c(.05)), quantile(TRA.21, c(.05)),quantile(TRA.22, c(.05)),quantile(
TRA.23, c(.05)),quantile(TRA.24, c(.05)),quantile(TRA.25, c(.05)),quant
ile(TRA.26, c(.05)),quantile(TRA.27, c(.05)),quantile(TRA.28, c(.05)),q
uantile(TRA.29, c(.05)),quantile(TRA.30, c(.05)), quantile(TRA.31, c(.0
5)),quantile(TRA.32, c(.05)),quantile(TRA.33, c(.05)),quantile(TRA.34, 
c(.05)),quantile(TRA.35, c(.05)),quantile(TRA.36, c(.05)),quantile(TRA.
37, c(.05)),quantile(TRA.38, c(.05)),quantile(TRA.39, c(.05)),quantile(
TRA.40, c(.05)), quantile(TRA.41, c(.05)),quantile(TRA.42, c(.05)),quan
tile(TRA.43, c(.05)),quantile(TRA.44, c(.05)),quantile(TRA.45, c(.05)),
quantile(TRA.46, c(.05)),quantile(TRA.47, c(.05)),quantile(TRA.48, c(.0
5)),quantile(TRA.49, c(.05)),quantile(TRA.50,c(.05))) 
TRA.Upper <- c(quantile(TRA.1, c(.95)),quantile(TRA.2, c(.95)),quantile
(TRA.3, c(.95)),quantile(TRA.4, c(.95)),quantile(TRA.5, c(.95)),quantil
e(TRA.6, c(.95)),quantile(TRA.7, c(.95)),quantile(TRA.8, c(.95)),quanti
le(TRA.9, c(.95)), quantile(TRA.10, c(.95)), quantile(TRA.11, c(.95)),q
uantile(TRA.12, c(.95)),quantile(TRA.13, c(.95)),quantile(TRA.14, c(.95
)),quantile(TRA.15, c(.95)),quantile(TRA.16, c(.95)),quantile(TRA.17, c
(.95)),quantile(TRA.18, c(.95)),quantile(TRA.19, c(.95)),quantile(TRA.2
0, c(.95)), quantile(TRA.21, c(.95)),quantile(TRA.22, c(.95)),quantile(
TRA.23, c(.95)),quantile(TRA.24, c(.95)),quantile(TRA.25, c(.95)),quant
ile(TRA.26, c(.95)),quantile(TRA.27, c(.95)),quantile(TRA.28, c(.95)),q
uantile(TRA.29, c(.95)),quantile(TRA.30, c(.95)), quantile(TRA.31, c(.9
5)),quantile(TRA.32, c(.95)),quantile(TRA.33, c(.95)),quantile(TRA.34, 
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c(.95)),quantile(TRA.35, c(.95)),quantile(TRA.36, c(.95)),quantile(TRA.
37, c(.95)),quantile(TRA.38, c(.95)),quantile(TRA.39, c(.95)),quantile(
TRA.40, c(.95)), quantile(TRA.41, c(.95)),quantile(TRA.42, c(.95)),quan
tile(TRA.43, c(.95)),quantile(TRA.44, c(.95)),quantile(TRA.45, c(.95)),
quantile(TRA.46, c(.95)),quantile(TRA.47, c(.95)),quantile(TRA.48, c(.9
5)),quantile(TRA.49, c(.95)),quantile(TRA.50,c(.95))) 
RLB.Lower <- c(quantile(RLB.1, c(.05)),quantile(RLB.2, c(.05)),quantile
(RLB.3, c(.05)),quantile(RLB.4, c(.05)),quantile(RLB.5, c(.05)),quantil
e(RLB.6, c(.05)),quantile(RLB.7, c(.05)),quantile(RLB.8, c(.05)),quanti
le(RLB.9, c(.05)), quantile(RLB.10, c(.05)), quantile(RLB.11, c(.05)),q
uantile(RLB.12, c(.05)),quantile(RLB.13, c(.05)),quantile(RLB.14, c(.05
)),quantile(RLB.15, c(.05)),quantile(RLB.16, c(.05)),quantile(RLB.17, c
(.05)),quantile(RLB.18, c(.05)),quantile(RLB.19, c(.05)),quantile(RLB.2
0, c(.05)), quantile(RLB.21, c(.05)),quantile(RLB.22, c(.05)),quantile(
RLB.23, c(.05)),quantile(RLB.24, c(.05)),quantile(RLB.25, c(.05)),quant
ile(RLB.26, c(.05)),quantile(RLB.27, c(.05)),quantile(RLB.28, c(.05)),q
uantile(RLB.29, c(.05)),quantile(RLB.30, c(.05)), quantile(RLB.31, c(.0
5)),quantile(RLB.32, c(.05)),quantile(RLB.33, c(.05)),quantile(RLB.34, 
c(.05)),quantile(RLB.35, c(.05)),quantile(RLB.36, c(.05)),quantile(RLB.
37, c(.05)),quantile(RLB.38, c(.05)),quantile(RLB.39, c(.05)),quantile(
RLB.40, c(.05)), quantile(RLB.41, c(.05)),quantile(RLB.42, c(.05)),quan
tile(RLB.43, c(.05)),quantile(RLB.44, c(.05)),quantile(RLB.45, c(.05)),
quantile(RLB.46, c(.05)),quantile(RLB.47, c(.05)),quantile(RLB.48, c(.0
5)),quantile(RLB.49, c(.05)),quantile(RLB.50,c(.05))) 
RLB.Upper <- c(quantile(RLB.1, c(.95)),quantile(RLB.2, c(.95)),quantile
(RLB.3, c(.95)),quantile(RLB.4, c(.95)),quantile(RLB.5, c(.95)),quantil
e(RLB.6, c(.95)),quantile(RLB.7, c(.95)),quantile(RLB.8, c(.95)),quanti
le(RLB.9, c(.95)), quantile(RLB.10, c(.95)), quantile(RLB.11, c(.95)),q
uantile(RLB.12, c(.95)),quantile(RLB.13, c(.95)),quantile(RLB.14, c(.95
)),quantile(RLB.15, c(.95)),quantile(RLB.16, c(.95)),quantile(RLB.17, c
(.95)),quantile(RLB.18, c(.95)),quantile(RLB.19, c(.95)),quantile(RLB.2
0, c(.95)), quantile(RLB.21, c(.95)),quantile(RLB.22, c(.95)),quantile(
RLB.23, c(.95)),quantile(RLB.24, c(.95)),quantile(RLB.25, c(.95)),quant
ile(RLB.26, c(.95)),quantile(RLB.27, c(.95)),quantile(RLB.28, c(.95)),q
uantile(RLB.29, c(.95)),quantile(RLB.30, c(.95)), quantile(RLB.31, c(.9
5)),quantile(RLB.32, c(.95)),quantile(RLB.33, c(.95)),quantile(RLB.34, 
c(.95)),quantile(RLB.35, c(.95)),quantile(RLB.36, c(.95)),quantile(RLB.
37, c(.95)),quantile(RLB.38, c(.95)),quantile(RLB.39, c(.95)),quantile(
RLB.40, c(.95)), quantile(RLB.41, c(.95)),quantile(RLB.42, c(.95)),quan
tile(RLB.43, c(.95)),quantile(RLB.44, c(.95)),quantile(RLB.45, c(.95)),
quantile(RLB.46, c(.95)),quantile(RLB.47, c(.95)),quantile(RLB.48, c(.9
5)),quantile(RLB.49, c(.95)),quantile(RLB.50,c(.95))) 
Lower <- (c(BPC.Lower,RLB.Lower,TRA.Lower)/100000) 
Upper <- (c(BPC.Upper,RLB.Upper,TRA.Upper)/100000) 
LCC.summary <- cbind(LCC.summary,Lower) 
LCC.summary <- cbind(LCC.summary,Upper) 
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LCC.Means.Plot <- ggplot(data=LCC.summary) +  
  geom_line(aes(x=Year,y=Cost,colour=Design)) +  
  geom_errorbar(aes(x=Year,ymin = Cost-sd ,ymax= Cost+sd), width = 0.1) 
+  
  labs(title = "Simulated Means of Life Cycle Cost") + 
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold"), legend.position=c(.1,.6)) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) +  
  scale_y_continuous(name="Cost ($100K)") 
 
 
LCC.Means.Plot 

 

ggsave("Plot.jpg", width = 7, height = 5) 
LCC.summary <- rename(LCC.summary,replace = c("Cost"= "Mean", "sd"="Sta
ndard Deviation", "se"="Standard Error", "ci"= "Confidence Interval", "
Lower"="5th Percentile", "Upper"="95th Percentile")) 
write.csv(LCC.summary, file = "50_Year_Horizon_data.csv") 
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OEF FOB Simulation.R 

Ryan 

Thu Feb 11 05:30:19 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 4a"
) 
 
# Assumptions 
TRA.Adjustment.Factor <- 3.266667 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
t <- rpois(n, 5.962) 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
BPC.DCPSF3 <- 15.60 
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BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
RLB2.MX2015.mean <- 5.333 
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RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Present Worth of Life Cycle Cost Function 
LCC <- function (t, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  ifelse(t <= 3, LCC <- AC + MX1 + DC, NA) 
  ifelse(t == 4, LCC <- AC + MX1 + MX2 + DC, NA) 
  ifelse(t == 5, LCC <- AC + MX1 + MX2 + MX3 + DC, NA)  
  ifelse(t == 6, LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC, NA) 
  ifelse(t == 7, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC, NA) 
  ifelse(t == 8, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC, NA
) 
  ifelse(t >= 9, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 + 
DC, NA) 
  return(LCC) 
} 
 
# Simulation 
BPC.AC <- BPC.AC * FGP(8,i)  
BPC.MX1 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) 
BPC.MX2 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) 
BPC.MX3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) 
BPC.MX4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) 
BPC.MX5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) 
BPC.MX6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i)  
BPC.MX7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) 
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BPC.DC <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.Adj
ustment.Factor 
TRA.MX1 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.Adj
ustment.Factor 
RLB.MX1 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rate 
* (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC <- LCC(t, BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BPC.MX5, 
BPC.MX6, BPC.MX7, BPC.DC)  
TRA.LCC <- LCC(t, TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TRA.MX5, 
TRA.MX6, TRA.MX7, TRA.DC) 
RLB.LCC <- LCC(t, RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RLB.MX5, 
RLB.MX6, RLB.MX7, RLB.DC) 
 
## Histograms Construction 
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BPC.array <- array("BPC",n) 
TRA.array <- array("TRA",n) 
RLB.array <- array("RLB",n) 
 
BPC.data <- data.frame(Design = BPC.array, LCC = BPC.LCC/100000) 
TRA.data <- data.frame(Design = TRA.array, LCC = TRA.LCC/100000) 
RLB.data <- data.frame(Design = RLB.array, LCC = RLB.LCC/100000) 
LCC.data <- data.frame(Design = c(BPC.array, TRA.array, RLB.array), LCC 
= (c(BPC.LCC, TRA.LCC, RLB.LCC)/100000)) 
LCC.Means <- data.frame(Median = c("BPC", "TRA", "RLB"), Value = (c(med
ian(BPC.LCC),median(TRA.LCC), median(RLB.LCC))/100000)) 
 
BPC.hist <- ggplot(BPC.data, aes(x = LCC)) +  
  geom_histogram(binwidth = .5, colour = "black", fill = "white")  +   
  geom_vline(aes(xintercept = mean(LCC), linetype = "Estimated Mean"),  
size = 1) +  
  geom_vline(aes(xintercept = quantile(LCC, c(.05)), linetype = "5th & 
95th\nPercentile"), size = 1) +  
  geom_vline(aes(xintercept=quantile(LCC, c(.95)), linetype="5th & 95th
\nPercentile"), size=1) +  
  geom_vline(aes(xintercept=median(LCC), linetype = "Median"), size = 2
) + 
  labs(title = "Simulated LCC Histogram of BPC") +  
  scale_linetype_discrete(name = "Legend") + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
TRA.hist <- ggplot(TRA.data, aes(x = LCC)) + 
  geom_histogram(binwidth = .5, colour = "black", fill = "white")  +  
  geom_vline(aes(xintercept = mean(LCC), linetype = "Estimated Mean"),  
size = 1) +  
  geom_vline(aes(xintercept = quantile(LCC, c(.05)), linetype = "5th & 
95th\nPercentile"), size = 1) +  
  geom_vline(aes(xintercept=quantile(LCC, c(.95)), linetype="5th & 95th
\nPercentile"), size=1) +  
  geom_vline(aes(xintercept=median(LCC), linetype = "Median"), size = 2
) + 
  labs(title = "Simulated LCC Histogram of Trailers") +  
  scale_linetype_discrete(name = "Legend") + 
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  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
RLB.hist <- ggplot(RLB.data, aes(x = LCC)) +  
  geom_histogram(binwidth = 10, colour = "black", fill = "white") +  
  geom_vline(aes(xintercept = mean(LCC), linetype = "Estimated Mean"),  
size = 1) +  
  geom_vline(aes(xintercept = quantile(LCC, c(.05)), linetype = "5th & 
95th\nPercentile"), size = 1) +  
  geom_vline(aes(xintercept=quantile(LCC, c(.95)), linetype="5th & 95th
\nPercentile"), size=1) +  
  geom_vline(aes(xintercept=median(LCC), linetype = "Median"), size = 2
) + 
  labs(title = "Simulated LCC Histogram of Relocatable Buildings") +  
  scale_linetype_discrete(name = "Legend") + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
LCC.hist <- ggplot(LCC.data, aes(x = LCC)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=LCC.Means, aes(xintercept = Value,  colour = Median),
linetype="dashed", size=1) +  
  labs(title = "Histogram Comparison of Designs") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
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axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
   
 
# Print Plots 
BPC.hist 

## Warning in data.frame(xintercept = structure(65.7470670193022, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(69.9866700247191, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 

 

ggsave("BPC_Plot.jpg", width = 7, height = 5) 

## Warning in data.frame(xintercept = structure(65.7470670193022, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(69.9866700247191, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 

TRA.hist 

## Warning in data.frame(xintercept = structure(45.8580929160928, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(50.5344548015969, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 
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ggsave("TRA_Plot.jpg", width = 7, height = 5) 

## Warning in data.frame(xintercept = structure(45.8580929160928, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(50.5344548015969, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 

RLB.hist 

## Warning in data.frame(xintercept = structure(68.8400319146533, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(176.154222049055, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 

 

ggsave("RLB_Plot.jpg", width = 7, height = 5) 

## Warning in data.frame(xintercept = structure(68.8400319146533, .Name
s = 
## "5%"), : row names were found from a short variable and have been di
scarded 

## Warning in data.frame(xintercept = structure(176.154222049055, .Name
s 
## = "95%"), : row names were found from a short variable and have been 
## discarded 

LCC.hist 

 

ggsave("LCC_Plot.jpg", width = 7, height = 5) 
 
 
#Results 
wilcox.test(BPC.LCC/100000, TRA.LCC/100000, alternative = "two.sided", 
mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  
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##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC/1e+05 and TRA.LCC/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.66898 19.70610 
## sample estimates: 
## (pseudo)median  
##       19.68758 

wilcox.test(BPC.LCC/100000, RLB.LCC/100000, alternative = "two.sided", 
mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC/1e+05 and RLB.LCC/1e+05 
## V = 295030, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.60030 -41.51152 
## sample estimates: 
## (pseudo)median  
##      -42.05539 

wilcox.test(TRA.LCC/100000, RLB.LCC/100000, alternative = "two.sided", 
mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC/1e+05 and RLB.LCC/1e+05 
## V = 40, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -62.28492 -61.19659 
## sample estimates: 
## (pseudo)median  
##      -61.73922 

LCC.stats <- data.frame(Design = c("BPC","Trailer","RLB"), Lower = (c(q
uantile(BPC.LCC, c(0.05)), quantile(TRA.LCC, c(0.05)), quantile(RLB.LCC
, c(0.05)))/100000), Mean = (c(mean(BPC.LCC), mean(TRA.LCC), mean(RLB.L
CC))/100000), Upper = (c(quantile(BPC.LCC, c(0.95)), quantile(TRA.LCC, 
c(0.95)), quantile(RLB.LCC, c(0.95)))/100000), sd = (c(sd(BPC.LCC),sd(T
RA.LCC),sd(RLB.LCC))/100000), se = (c((sd(BPC.LCC)/sqrt(length(BPC.LCC)
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)), (sd(TRA.LCC)/sqrt(length(TRA.LCC))), (sd(RLB.LCC)/sqrt(length(RLB.L
CC))))/100000),Median = (c(median(BPC.LCC),median(TRA.LCC),median(RLB.L
CC))/100000)) 
LCC.stats <- rename(LCC.stats, replace = c("Lower"="5th Percentile", "U
pper"="95th Percentile", "sd"="Standard Deviation", "se"="Standard Erro
r")) 
write.csv(LCC.stats, file = "4a_LCC_stats.csv") 
 
Comparison.data <- data.frame(Comparison = c("BPC < TRA","BPC < RLB", "
TRA < RLB"), Probability = c((sum(BPC.LCC < TRA.LCC)/10000),(sum(BPC.LC
C < RLB.LCC)/10000),(sum(TRA.LCC < RLB.LCC)/10000))) 
write.csv(Comparison.data,file = "4a_comparsions.csv") 
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Lack of Knowledge Simulations.R 

Ryan 

Thu Feb 11 05:38:39 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

library(triangle) 
setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 4b"
) 
 
 
# Assumptions 
TRA.Adjustment.Factor <- 3.266667 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
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BPC.DCPSF3 <- 15.60 
BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
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RLB2.MX2015.mean <- 5.333 
RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Present Worth of Life Cycle Cost Function  
LCC<- function (t, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  ifelse(t <= 3, LCC <- AC + MX1 + DC, NA) 
  ifelse(t == 4, LCC <- AC + MX1 + MX2 + DC, NA) 
  ifelse(t == 5, LCC <- AC + MX1 + MX2 + MX3 + DC, NA)  
  ifelse(t == 6, LCC <- AC + MX1 + MX2 + MX3 + MX4 + DC, NA) 
  ifelse(t == 7, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC, NA) 
  ifelse(t == 8, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + DC, NA
) 
  ifelse(t >= 9, LCC <- AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + MX7 + 
DC, NA) 
  return(LCC) 
} 
 
# Comparisons for Uncertain Duration - Year 3 Most Probable 
t3 <- round(rtriangle(n,3,9,3), 0) 
 
BPC.AC.3 <- BPC.AC * FGP(8,i)  
BPC.MX1.3 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.3 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.3 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.3 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.3 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
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op.rate * FGP(2,i)  
BPC.MX7.3 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.3 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.3 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.3 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.3 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.3 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.3 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.3 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.3 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.3 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.3 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.3 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.3 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.3 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.3 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.3 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.3 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.3 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.MX.3 <- BPC.MX1.3 
TRA.MX.3 <- TRA.MX1.3 
RLB.MX.3 <- RLB.MX1.3 
 
BPC.LCC.3 <- LCC(t3, BPC.AC.3, BPC.MX1.3, BPC.MX2.3, BPC.MX3.3, BPC.MX4
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.3, BPC.MX5.3, BPC.MX6.3, BPC.MX7.3, BPC.DC.3)  
TRA.LCC.3 <- LCC(t3, TRA.AC.3, TRA.MX1.3, TRA.MX2.3, TRA.MX3.3, TRA.MX4
.3, TRA.MX5.3, TRA.MX6.3, TRA.MX7.3, TRA.DC.3) 
RLB.LCC.3 <- LCC(t3, RLB.AC.3, RLB.MX1.3, RLB.MX2.3, RLB.MX3.3, RLB.MX4
.3, RLB.MX5.3, RLB.MX6.3, RLB.MX7.3, RLB.DC.3) 
 
# Comparisons for Uncertain Duration - Year 4 Most Probable 
t4 <- round(rtriangle(n,3,9,4), 0) 
 
BPC.AC.4 <- BPC.AC * FGP(8,i) 
BPC.MX1.4 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.4 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.4 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.4 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.4 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.4 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.4 <- BPC.MX1.4 + BPC.MX2.4 
BPC.DC.4 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.4 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.4 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.4 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.4 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.4 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.4 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.4 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.4 <- TRA.MX1.4 + TRA.MX2.4 
TRA.DC.4 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
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RLB.AC.4 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.4 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.4 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.4 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.4 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.4 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.4 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.4 <- RLB.MX1.4 + RLB.MX2.4 
RLB.DC.4 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.4 <- LCC(t3, BPC.AC.4, BPC.MX1.4, BPC.MX2.4, BPC.MX3.4, BPC.MX4
.4, BPC.MX5.4, BPC.MX6.4, BPC.MX7.4, BPC.DC.4)  
TRA.LCC.4 <- LCC(t3, TRA.AC.4, TRA.MX1.4, TRA.MX2.4, TRA.MX3.4, TRA.MX4
.4, TRA.MX5.4, TRA.MX6.4, TRA.MX7.4, TRA.DC.4) 
RLB.LCC.4 <- LCC(t3, RLB.AC.4, RLB.MX1.4, RLB.MX2.4, RLB.MX3.4, RLB.MX4
.4, RLB.MX5.4, RLB.MX6.4, RLB.MX7.4, RLB.DC.4) 
 
# Comparisons for Uncertain Duration - Year 5 Most Probable 
t5 <- round(rtriangle(n,3,9,5), 0) 
 
BPC.AC.5 <- BPC.AC * FGP(8,i) 
BPC.MX1.5 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.5 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.5 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.5 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.5 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.5 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.5 <- BPC.MX1.5 + BPC.MX2.5 + BPC.MX3.5 
BPC.DC.5 <- array(BPC.DC.AVG, n) * BPC.size  
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TRA.AC.5 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.5 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.5 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.5 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.5 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.5 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.5 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.5 <- TRA.MX1.5 + TRA.MX2.5 + TRA.MX3.5 
TRA.DC.5 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.5 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.5 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.5 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.5 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.5 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.5 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.5 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.5 <- RLB.MX1.5 + RLB.MX2.5 + RLB.MX3.5 
RLB.DC.5 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.5 <- LCC(t3, BPC.AC.5, BPC.MX1.5, BPC.MX2.5, BPC.MX3.5, BPC.MX4
.5, BPC.MX5.5, BPC.MX6.5, BPC.MX7.5, BPC.DC.5)  
TRA.LCC.5 <- LCC(t3, TRA.AC.5, TRA.MX1.5, TRA.MX2.5, TRA.MX3.5, TRA.MX4
.5, TRA.MX5.5, TRA.MX6.5, TRA.MX7.5, TRA.DC.5) 
RLB.LCC.5 <- LCC(t3, RLB.AC.5, RLB.MX1.5, RLB.MX2.5, RLB.MX3.5, RLB.MX4
.5, RLB.MX5.5, RLB.MX6.5, RLB.MX7.5, RLB.DC.5) 
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# Comparisons for Uncertain Duration - Year 6 Most Probable 
t6 <- round(rtriangle(n,3,9,6), 0) 
 
BPC.AC.6 <- BPC.AC * FGP(8,i) 
BPC.MX1.6 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.6 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.6 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.6 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.6 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.6 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.6 <- BPC.MX1.6 + BPC.MX2.6 + BPC.MX3.6 + BPC.MX4.6 
BPC.DC.6 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.6 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.6 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.6 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.6 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.6 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.6 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.6 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.6 <- TRA.MX1.6 + TRA.MX2.6 + TRA.MX3.6 + TRA.MX4.6  
TRA.DC.6 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.6 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.6 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.6 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
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RLB.MX3.6 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.6 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.6 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.6 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.6 <- RLB.MX1.6 + RLB.MX2.6 + RLB.MX3.6 + RLB.MX4.6  
RLB.DC.6 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.6 <- LCC(t3, BPC.AC.6, BPC.MX1.6, BPC.MX2.6, BPC.MX3.6, BPC.MX4
.6, BPC.MX5.6, BPC.MX6.6, BPC.MX7.6, BPC.DC.6)  
TRA.LCC.6 <- LCC(t3, TRA.AC.6, TRA.MX1.6, TRA.MX2.6, TRA.MX3.6, TRA.MX4
.6, TRA.MX5.6, TRA.MX6.6, TRA.MX7.6, TRA.DC.6) 
RLB.LCC.6 <- LCC(t3, RLB.AC.6, RLB.MX1.6, RLB.MX2.6, RLB.MX3.6, RLB.MX4
.6, RLB.MX5.6, RLB.MX6.6, RLB.MX7.6, RLB.DC.6) 
 
# Comparisons for Uncertain Duration - Year 7 Most Probable 
t7 <- round(rtriangle(n,3,9,7), 0) 
 
BPC.AC.7 <- BPC.AC * FGP(8,i) 
BPC.MX1.7 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.7 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.7 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.7 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.7 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.7 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.7 <- BPC.MX1.7 + BPC.MX2.7 + BPC.MX3.7 + BPC.MX4.7 + BPC.MX5.7 
BPC.DC.7 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.7 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.7 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.7 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
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op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.7 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.7 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.7 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.7 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.7 <- TRA.MX1.7 + TRA.MX2.7 + TRA.MX3.7 + TRA.MX4.7 + TRA.MX5.7 
TRA.DC.7 <- array(TRA.DC.AVG, n) * TRA.size * TRA.Adjustment.Factor 
 
RLB.AC.7 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.7 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.7 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.7 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.7 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.7 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.7 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.7 <- RLB.MX1.7 + RLB.MX2.7 + RLB.MX3.7 + RLB.MX4.7 + RLB.MX5.7 
RLB.DC.7 <- array(RLB.DC.AVG, n) * RLB.size * RLB.Adjustment.Factor 
 
BPC.LCC.7 <- LCC(t3, BPC.AC.7, BPC.MX1.7, BPC.MX2.7, BPC.MX3.7, BPC.MX4
.7, BPC.MX5.7, BPC.MX6.7, BPC.MX7.7, BPC.DC.7)  
TRA.LCC.7 <- LCC(t3, TRA.AC.7, TRA.MX1.7, TRA.MX2.7, TRA.MX3.7, TRA.MX4
.7, TRA.MX5.7, TRA.MX6.7, TRA.MX7.7, TRA.DC.7) 
RLB.LCC.7 <- LCC(t3, RLB.AC.7, RLB.MX1.7, RLB.MX2.7, RLB.MX3.7, RLB.MX4
.7, RLB.MX5.7, RLB.MX6.7, RLB.MX7.7, RLB.DC.7) 
 
# Comparisons for Uncertain Duration - Year 8 Most Probable 
t8 <- round(rtriangle(n,3,9,8), 0) 
 
BPC.AC.8 <- BPC.AC * FGP(8,i) 
BPC.MX1.8 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
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BPC.MX2.8 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.8 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.8 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.8 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.8 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.8 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.8 <- BPC.MX1.8 + BPC.MX2.8 + BPC.MX3.8 + BPC.MX4.8 + BPC.MX5.8 + 
BPC.MX6.8 
BPC.DC.8 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.8 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.8 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor  
TRA.MX2.8 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.8 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.8 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.8 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.8 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.8 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.8 <- TRA.MX1.8 + TRA.MX2.8 + TRA.MX3.8 + TRA.MX4.8 + TRA.MX5.8 + 
TRA.MX6.8 
TRA.DC.8 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.8 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.8 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.8 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.8 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.8 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 



 

 

246 

 

RLB.MX5.8 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor  
RLB.MX6.8 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.8 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.8 <- RLB.MX1.8 + RLB.MX2.8 + RLB.MX3.8 + RLB.MX4.8 + RLB.MX5.8 + 
RLB.MX6.8 
RLB.DC.8 <- array(RLB.DC.AVG, n) * RLB.size * RLB.Adjustment.Factor 
 
BPC.LCC.8 <- LCC(t3, BPC.AC.8, BPC.MX1.8, BPC.MX2.8, BPC.MX3.8, BPC.MX4
.8, BPC.MX5.8, BPC.MX6.8, BPC.MX7.8, BPC.DC.8)  
TRA.LCC.8 <- LCC(t3, TRA.AC.8, TRA.MX1.8, TRA.MX2.8, TRA.MX3.8, TRA.MX4
.8, TRA.MX5.8, TRA.MX6.8, TRA.MX7.8, TRA.DC.8) 
RLB.LCC.8 <- LCC(t3, RLB.AC.8, RLB.MX1.8, RLB.MX2.8, RLB.MX3.8, RLB.MX4
.8, RLB.MX5.8, RLB.MX6.8, RLB.MX7.8, RLB.DC.8) 
 
# Comparisons for Uncertain Duration - Year 9 Most Probable 
t9 <- round(rtriangle(n,3,9,9), 0) 
 
BPC.AC.9 <- BPC.AC * FGP(8,i) 
BPC.MX1.9 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.9 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.9 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.9 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.9 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.9 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.9 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.MX.9 <- BPC.MX1.9 + BPC.MX2.9 + BPC.MX3.9 + BPC.MX4.9 + BPC.MX5.9 + 
BPC.MX6.9 + BPC.MX7.9 
BPC.DC.9 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.9 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.9 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.9 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.9 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
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shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.9 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.9 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.9 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.9 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.MX.9 <- TRA.MX1.9 + TRA.MX2.9 + TRA.MX3.9 + TRA.MX4.9 + TRA.MX5.9 + 
TRA.MX6.9 + TRA.MX7.9 
TRA.DC.9 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.9 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.9 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.9 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.9 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.9 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.9 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.9 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.9 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX.9 <- RLB.MX1.9 + RLB.MX2.9 + RLB.MX3.9 + RLB.MX4.9 + RLB.MX5.9 + 
RLB.MX6.9 + RLB.MX7.9 
RLB.DC.9 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.LCC.9 <- LCC(t3, BPC.AC.9, BPC.MX1.9, BPC.MX2.9, BPC.MX3.9, BPC.MX4
.9, BPC.MX5.9, BPC.MX6.9, BPC.MX7.9, BPC.DC.9)  
TRA.LCC.9 <- LCC(t3, TRA.AC.9, TRA.MX1.9, TRA.MX2.9, TRA.MX3.9, TRA.MX4
.9, TRA.MX5.9, TRA.MX6.9, TRA.MX7.9, TRA.DC.9) 
RLB.LCC.9 <- LCC(t3, RLB.AC.9, RLB.MX1.9, RLB.MX2.9, RLB.MX3.9, RLB.MX4
.9, RLB.MX5.9, RLB.MX6.9, RLB.MX7.9, RLB.DC.9) 
 
# Data Frame Construction 
# Simulation Histograms and Means Plots Data Frames 
design.array <- c(array("BPC",28*n),array("TRA",28*n),array("RLB",28*n)
) 
year.array <- rep(c(array(3,n), array(4,n), array(5,n), array(6,n), arr
ay(7,n), array(8,n), array(9,n)),12) 
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cost.type.array <- rep(c(array("Acquisition",7*n), array("Maintenance",
7*n), array("Disposal",7*n), array("Life Cycle",7*n)),3) 
 
BPC.AC <- c(BPC.AC.3, BPC.AC.4, BPC.AC.5, BPC.AC.6, BPC.AC.7, BPC.AC.8, 
BPC.AC.9) 
BPC.MX <- c(BPC.MX.3, BPC.MX.4, BPC.MX.5, BPC.MX.6, BPC.MX.7, BPC.MX.8, 
BPC.MX.9) 
BPC.DC <- c(BPC.DC.3, BPC.DC.4, BPC.DC.5, BPC.DC.6, BPC.DC.7, BPC.DC.8, 
BPC.DC.9) 
BPC.LCC <- c(BPC.LCC.3, BPC.LCC.4, BPC.LCC.5, BPC.LCC.6, BPC.LCC.7, BPC
.LCC.8, BPC.LCC.9) 
 
BPC <- c(BPC.AC, BPC.MX, BPC.DC, BPC.LCC) 
 
TRA.AC <- c(TRA.AC.3, TRA.AC.4, TRA.AC.5, TRA.AC.6, TRA.AC.7, TRA.AC.8, 
TRA.AC.9) 
TRA.MX <- c(TRA.MX.3, TRA.MX.4, TRA.MX.5, TRA.MX.6, TRA.MX.7, TRA.MX.8, 
TRA.MX.9) 
TRA.DC <- c(TRA.DC.3, TRA.DC.4, TRA.DC.5, TRA.DC.6, TRA.DC.7, TRA.DC.8, 
TRA.DC.9) 
TRA.LCC <- c(TRA.LCC.3, TRA.LCC.4, TRA.LCC.5, TRA.LCC.6, TRA.LCC.7, TRA
.LCC.8, TRA.LCC.9) 
TRA <- c(TRA.AC, TRA.MX, TRA.DC, TRA.LCC) 
 
RLB.AC <- c(RLB.AC.3, RLB.AC.4, RLB.AC.5, RLB.AC.6, RLB.AC.7, RLB.AC.8, 
RLB.AC.9) 
RLB.MX <- c(RLB.MX.3, RLB.MX.4, RLB.MX.5, RLB.MX.6, RLB.MX.7, RLB.MX.8, 
RLB.MX.9) 
RLB.DC <- c(RLB.DC.3, RLB.DC.4, RLB.DC.5, RLB.DC.6, RLB.DC.7, RLB.DC.8, 
RLB.DC.9) 
RLB.LCC <- c(RLB.LCC.3, RLB.LCC.4, RLB.LCC.5, RLB.LCC.6, RLB.LCC.7, RLB
.LCC.8, RLB.LCC.9) 
RLB <- c(RLB.AC, RLB.MX, RLB.DC, RLB.LCC) 
 
cost.array <- (c(BPC, TRA, RLB)/100000) 
Cost.Data <- data.frame(Design = design.array, Year = year.array, Type 
= cost.type.array, Cost = cost.array) 
Cost.Data.Summary <- summarySE(Cost.Data, measurevar = "Cost", groupvar
s = c("Design", "Year", "Type")) 
 
# Plot Construction 
# Simulation Means Plots 
Designs.LCC.Sum <- subset(Cost.Data.Summary, Type == "Life Cycle", sele
ct = c(Design, Year, Type, N, Cost, sd, se, ci)) 
LCC.Means.Plot <- ggplot(data=Designs.LCC.Sum) + geom_line(aes(x=Year,y
=Cost,colour=Design)) + geom_errorbar(aes(x=Year,ymin = Cost-ci ,ymax= 



 

 

249 

 

Cost+ci), width = 0.1) + labs(title = "Simulated Means of Life Cycle Co
st")   
BPC.Lower <- c(quantile(BPC.LCC.3, c(.05)), quantile(BPC.LCC.4, c(.05))
,quantile(BPC.LCC.5, c(.05)),quantile(BPC.LCC.6, c(.05)),quantile(BPC.L
CC.7, c(.05)),quantile(BPC.LCC.8, c(.05)),quantile(BPC.LCC.9, c(.05))) 
BPC.Upper <- c(quantile(BPC.LCC.3, c(.95)), quantile(BPC.LCC.4, c(.95))
,quantile(BPC.LCC.5, c(.95)),quantile(BPC.LCC.6, c(.95)),quantile(BPC.L
CC.7, c(.95)),quantile(BPC.LCC.8, c(.95)),quantile(BPC.LCC.9, c(.95))) 
TRA.Lower <- c(quantile(TRA.LCC.3, c(.05)), quantile(TRA.LCC.4, c(.05))
,quantile(TRA.LCC.5, c(.05)),quantile(TRA.LCC.6, c(.05)),quantile(TRA.L
CC.7, c(.05)),quantile(TRA.LCC.8, c(.05)),quantile(TRA.LCC.9, c(.05))) 
TRA.Upper <- c(quantile(TRA.LCC.3, c(.95)), quantile(TRA.LCC.4, c(.95))
,quantile(TRA.LCC.5, c(.95)),quantile(TRA.LCC.6, c(.95)),quantile(TRA.L
CC.7, c(.95)),quantile(TRA.LCC.8, c(.95)),quantile(TRA.LCC.9, c(.95))) 
RLB.Lower <- c(quantile(RLB.LCC.3, c(.05)), quantile(RLB.LCC.4, c(.05))
,quantile(RLB.LCC.5, c(.05)),quantile(RLB.LCC.6, c(.05)),quantile(RLB.L
CC.7, c(.05)),quantile(RLB.LCC.8, c(.05)),quantile(RLB.LCC.9, c(.05))) 
RLB.Upper <- c(quantile(RLB.LCC.3, c(.95)), quantile(RLB.LCC.4, c(.95))
,quantile(RLB.LCC.5, c(.95)),quantile(RLB.LCC.6, c(.95)),quantile(RLB.L
CC.7, c(.95)),quantile(RLB.LCC.8, c(.95)),quantile(RLB.LCC.9, c(.95))) 
Lower <- (c(BPC.Lower,RLB.Lower,TRA.Lower)/100000) 
Upper <- (c(BPC.Upper,RLB.Upper,TRA.Upper)/100000) 
BPC.Median <- c(median(BPC.LCC.3),median(BPC.LCC.4),median(BPC.LCC.5),m
edian(BPC.LCC.6),median(BPC.LCC.7),median(BPC.LCC.8),median(BPC.LCC.9)) 
TRA.Median <- c(median(TRA.LCC.3),median(TRA.LCC.4),median(TRA.LCC.5),m
edian(TRA.LCC.6),median(TRA.LCC.7),median(TRA.LCC.8),median(TRA.LCC.9)) 
RLB.Median <- c(median(RLB.LCC.3),median(RLB.LCC.4),median(RLB.LCC.5),m
edian(RLB.LCC.6),median(RLB.LCC.7),median(RLB.LCC.8),median(RLB.LCC.9)) 
Median <- (c(BPC.Median,RLB.Median,TRA.Median)/100000) 
Designs.LCC.Sum <- cbind(Designs.LCC.Sum, Lower) 
Designs.LCC.Sum <- cbind(Designs.LCC.Sum, Upper) 
Designs.LCC.Sum <- cbind(Designs.LCC.Sum, Median) 
Designs.LCC.Sum <- rename(Designs.LCC.Sum, replace = c("Cost" = "Mean",
"sd" = "Standard Deviation", "se" = "Standard Error", "ci" = "Confidenc
e Interval", "Lower" = "5th Percentile", "Upper" = "95th Percentile")) 
write.csv(Designs.LCC.Sum,file = "4b_cost_data.csv") 
 
 
# Simulation Histograms 
Designs.LCC <- subset(Cost.Data, Type == "Life Cycle", select = c("Desi
gn","Year","Cost")) 
 
 
Year.Design.Hist.free <- ggplot(Designs.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, colour = "black") +  
  facet_grid(Design ~ Year, scale = "free") +  
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  labs(title = "Simulated LCCs per Designs") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), plot.title = element_text(li
neheight=.8, face="bold", size = 20), legend.title = element_text(colou
r="black", size=15, face="bold"), legend.position=c(.9,.6)) + 
  scale_colour_discrete(name  ="Design\nAlternative", breaks=c("BPC", "
RLB","TRA"), labels=c("BPC", "RLB","Trailer")) +  
  scale_x_continuous(name="Cost ($100K)")  
 
 
Year.3.LCC <- subset(Cost.Data, Year == 3 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.3.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.3), mean(RLB.LCC
.3), mean(TRA.LCC.3))/100000), Design = c("BPC","RLB","TRA"))  
Year.3.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.3, c(.05))
, quantile(RLB.LCC.3, c(.05)), quantile(TRA.LCC.3, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.3.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.3, c(.95))
, quantile(RLB.LCC.3, c(.95)), quantile(TRA.LCC.3, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.3.vline.median <- data.frame(Median = (c(median(BPC.LCC.3), median
(RLB.LCC.3), median(TRA.LCC.3))/100000), Design = c("BPC","RLB","TRA"))  
Year.3.Hist <- ggplot(Year.3.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.3.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.3.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.3.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.3.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "3 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
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Year.3.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.3),median(RLB.LCC.3),median(TRA.LCC.3))/100000)) 
Year.3.Hist.Overlay <- ggplot(Year.3.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.3.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) + 
  labs(title = "3 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.4.LCC <- subset(Cost.Data, Year == 4 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.4.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.4), mean(RLB.LCC
.4), mean(TRA.LCC.4))/100000), Design = c("BPC","RLB","TRA"))  
Year.4.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.4, c(.05))
, quantile(RLB.LCC.4, c(.05)), quantile(TRA.LCC.4, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.4.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.4, c(.95))
, quantile(RLB.LCC.4, c(.95)), quantile(TRA.LCC.4, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.4.vline.median <- data.frame(Median = (c(median(BPC.LCC.4), median
(RLB.LCC.4), median(TRA.LCC.4))/100000), Design = c("BPC","RLB","TRA"))  
Year.4.Hist <- ggplot(Year.4.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.4.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.4.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.4.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.4.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "4 Years of Use Expected") +  
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  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.4.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.4),median(RLB.LCC.4),median(TRA.LCC.4))/100000)) 
Year.4.Hist.Overlay <- ggplot(Year.4.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.4.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "4 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.5.LCC <- subset(Cost.Data, Year == 5 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.5.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.5), mean(RLB.LCC
.5), mean(TRA.LCC.5))/100000), Design = c("BPC","RLB","TRA"))  
Year.5.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.5, c(.05))
, quantile(RLB.LCC.5, c(.05)), quantile(TRA.LCC.5, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.5.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.5, c(.95))
, quantile(RLB.LCC.5, c(.95)), quantile(TRA.LCC.5, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.5.vline.median <- data.frame(Median = (c(median(BPC.LCC.5), median
(RLB.LCC.5), median(TRA.LCC.5))/100000), Design = c("BPC","RLB","TRA"))  
Year.5.Hist <- ggplot(Year.5.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.5.vline.me
an, size = .5) +  
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  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.5.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.5.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.5.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) + 
  labs(title = "5 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.5.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.5),median(RLB.LCC.5),median(TRA.LCC.5))/100000)) 
Year.5.Hist.Overlay <- ggplot(Year.5.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.5.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "5 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.6.LCC <- subset(Cost.Data, Year == 6 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.6.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.6), mean(RLB.LCC
.6), mean(TRA.LCC.6))/100000), Design = c("BPC","RLB","TRA"))  
Year.6.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.6, c(.05))
, quantile(RLB.LCC.6, c(.05)), quantile(TRA.LCC.6, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.6.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.6, c(.95))
, quantile(RLB.LCC.6, c(.95)), quantile(TRA.LCC.6, c(.95)))/100000), De
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sign = c("BPC","RLB","TRA"))  
Year.6.vline.median <- data.frame(Median = (c(median(BPC.LCC.6), median
(RLB.LCC.6), median(TRA.LCC.6))/100000), Design = c("BPC","RLB","TRA"))  
Year.6.Hist <- ggplot(Year.6.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.6.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.6.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.6.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.6.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "6 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.6.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.6),median(RLB.LCC.6),median(TRA.LCC.6))/100000)) 
Year.6.Hist.Overlay <- ggplot(Year.6.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") + 
  geom_vline(data=Year.6.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "6 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.7.LCC <- subset(Cost.Data, Year == 7 & Type == "Life Cycle", selec
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t = c("Design", "Type", "Cost")) 
Year.7.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.7), mean(RLB.LCC
.7), mean(TRA.LCC.7))/100000), Design = c("BPC","RLB","TRA"))  
Year.7.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.7, c(.05))
, quantile(RLB.LCC.7, c(.05)), quantile(TRA.LCC.7, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.7.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.7, c(.95))
, quantile(RLB.LCC.7, c(.95)), quantile(TRA.LCC.7, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.7.vline.median <- data.frame(Median = (c(median(BPC.LCC.6), median
(RLB.LCC.6), median(TRA.LCC.6))/100000), Design = c("BPC","RLB","TRA"))  
Year.7.Hist <- ggplot(Year.7.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.7.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.7.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.7.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.7.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "7 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.7.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.7),median(RLB.LCC.7),median(TRA.LCC.7))/100000)) 
Year.7.Hist.Overlay <- ggplot(Year.7.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.7.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "7 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
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  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.8.LCC <- subset(Cost.Data, Year == 8 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.8.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.8), mean(RLB.LCC
.8), mean(TRA.LCC.8))/100000), Design = c("BPC","RLB","TRA"))  
Year.8.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.8, c(.05))
, quantile(RLB.LCC.8, c(.05)), quantile(TRA.LCC.8, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.8.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.8, c(.95))
, quantile(RLB.LCC.8, c(.95)), quantile(TRA.LCC.8, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.8.vline.median <- data.frame(Median = (c(median(BPC.LCC.8), median
(RLB.LCC.8), median(TRA.LCC.8))/100000), Design = c("BPC","RLB","TRA"))  
Year.8.Hist <- ggplot(Year.8.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.8.vline.me
an, size = .5) +  
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.8.vline.lower, size = .5) +  
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.8.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.8.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "8 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.8.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.8),median(RLB.LCC.8),median(TRA.LCC.8))/100000)) 
Year.8.Hist.Overlay <- ggplot(Year.8.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
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  geom_vline(data=Year.8.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "8 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
 
Year.9.LCC <- subset(Cost.Data, Year == 9 & Type == "Life Cycle", selec
t = c("Design", "Type", "Cost")) 
Year.9.vline.mean <- data.frame(Mean = (c(mean(BPC.LCC.9), mean(RLB.LCC
.9), mean(TRA.LCC.9))/100000), Design = c("BPC","RLB","TRA"))  
Year.9.vline.lower <- data.frame(Lower = (c(quantile(BPC.LCC.9, c(.05))
, quantile(RLB.LCC.9, c(.05)), quantile(TRA.LCC.9, c(.05)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.9.vline.upper <- data.frame(Upper = (c(quantile(BPC.LCC.9, c(.95))
, quantile(RLB.LCC.9, c(.95)), quantile(TRA.LCC.9, c(.95)))/100000), De
sign = c("BPC","RLB","TRA"))  
Year.9.vline.median <- data.frame(Median = (c(median(BPC.LCC.9), median
(RLB.LCC.9), median(TRA.LCC.9))/100000), Design = c("BPC","RLB","TRA"))  
Year.9.Hist <- ggplot(Year.9.LCC, aes(x = Cost)) +  
  geom_histogram(binwidth = .5, colour = "black") +  
  facet_grid(.~Design , scale = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), Year.9.vline.me
an, size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th\nPercenti
le"), Year.9.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th\nPercenti
le"), Year.9.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), Year.8.vlin
e.median, size = 1) + 
  theme(legend.title=element_blank()) +  
  labs(title = "9 Years of Use Expected") +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
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axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10)) 
 
Year.9.Medians <- data.frame(Median = c("BPC","RLB","TRA"), Value = (c(
median(BPC.LCC.9),median(RLB.LCC.9),median(TRA.LCC.9))/100000)) 
Year.9.Hist.Overlay <- ggplot(Year.9.LCC, aes(x = Cost)) + 
  geom_histogram(binwidth = 1, alpha =0.5, aes(fill = Design), position 
= "identity") +  
  geom_vline(data=Year.9.Medians, aes(xintercept = Value,  colour = Med
ian),linetype="dashed", size=1) +  
  labs(title = "9 Years of Use Expected") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.6)) 
 
# Print All Plots 
LCC.Means.Plot 

 

ggsave("LCC_Means_Plot.jpg", width = 7, height = 5) 
Year.Design.Hist.free 

 

ggsave("Facet_Plot.jpg", width = 7, height = 7) 
Year.3.Hist 

 

ggsave("Year3_Designs_Plot.jpg", width = 7, height = 5) 
Year.3.Hist.Overlay 

 

ggsave("Year3_OL_Plot.jpg", width = 7, height = 5) 
Year.4.Hist 

 

ggsave("Year4_Designs_Plot.jpg", width = 7, height = 5) 
Year.4.Hist.Overlay 
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ggsave("Year4_OL_Plot.jpg", width = 7, height = 5) 
Year.5.Hist 

 

ggsave("Year5_Designs_Plot.jpg", width = 7, height = 5) 
Year.5.Hist.Overlay 

 

ggsave("Year5_OL_Plot.jpg", width = 7, height = 5) 
Year.6.Hist 

 

ggsave("Year6_Designs_Plot.jpg", width = 7, height = 5) 
Year.6.Hist.Overlay 

 

ggsave("Year6_OL_Plot.jpg", width = 7, height = 5) 
Year.7.Hist 

 

ggsave("Year7_Design_Plot.jpg", width = 7, height = 5) 
Year.7.Hist.Overlay 

 

ggsave("Year7_OL_Plot.jpg", width = 7, height = 5) 
Year.8.Hist 

 

ggsave("Year8_Designs_Plot.jpg", width = 7, height = 5) 
Year.8.Hist.Overlay 

 

ggsave("Year8_OL_Plot.jpg", width = 7, height = 5) 
Year.9.Hist 

 

ggsave("Year9_Designs_Plot.jpg", width = 7, height = 5) 
Year.9.Hist.Overlay 
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ggsave("Year9_OL_Plot.jpg", width = 7, height = 5) 
 
##Results 
# 3 Years  
wilcox.test(BPC.LCC.3/100000, TRA.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.3/1e+05 and TRA.LCC.3/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.65846 19.69632 
## sample estimates: 
## (pseudo)median  
##       19.67741 

wilcox.test(BPC.LCC.3/100000, RLB.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.3/1e+05 and RLB.LCC.3/1e+05 
## V = 268040, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.49165 -41.39255 
## sample estimates: 
## (pseudo)median  
##      -41.94035 

wilcox.test(TRA.LCC.3/100000, RLB.LCC.3/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.3/1e+05 and RLB.LCC.3/1e+05 
## V = 115, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -62.17162 -61.07246 
## sample estimates: 
## (pseudo)median  
##      -61.62009 
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# 4 Years  
wilcox.test(BPC.LCC.4/100000, TRA.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.4/1e+05 and TRA.LCC.4/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.65230 19.69035 
## sample estimates: 
## (pseudo)median  
##       19.67134 

wilcox.test(BPC.LCC.4/100000, RLB.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.4/1e+05 and RLB.LCC.4/1e+05 
## V = 290370, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -41.84872 -40.78379 
## sample estimates: 
## (pseudo)median  
##      -41.31453 

wilcox.test(TRA.LCC.4/100000, RLB.LCC.4/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.4/1e+05 and RLB.LCC.4/1e+05 
## V = 104, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.52227 -60.45635 
## sample estimates: 
## (pseudo)median  
##      -60.98655 
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# 5 Years  
wilcox.test(BPC.LCC.5/100000, TRA.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.5/1e+05 and TRA.LCC.5/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.65679 19.69415 
## sample estimates: 
## (pseudo)median  
##       19.67548 

wilcox.test(BPC.LCC.5/100000, RLB.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.5/1e+05 and RLB.LCC.5/1e+05 
## V = 340640, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -41.92362 -40.84122 
## sample estimates: 
## (pseudo)median  
##      -41.38064 

wilcox.test(TRA.LCC.5/100000, RLB.LCC.5/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.5/1e+05 and RLB.LCC.5/1e+05 
## V = 370, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.60155 -60.51750 
## sample estimates: 
## (pseudo)median  
##      -61.05853 
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# 6 Years  
wilcox.test(BPC.LCC.6/100000, TRA.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.6/1e+05 and TRA.LCC.6/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.65955 19.69710 
## sample estimates: 
## (pseudo)median  
##       19.67831 

wilcox.test(BPC.LCC.6/100000, RLB.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.6/1e+05 and RLB.LCC.6/1e+05 
## V = 297140, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.05282 -40.96639 
## sample estimates: 
## (pseudo)median  
##      -41.50803 

wilcox.test(TRA.LCC.6/100000, RLB.LCC.6/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.6/1e+05 and RLB.LCC.6/1e+05 
## V = 2, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.72722 -60.63982 
## sample estimates: 
## (pseudo)median  
##      -61.18314 
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# 7 Years  
wilcox.test(BPC.LCC.7/100000, TRA.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.7/1e+05 and TRA.LCC.7/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.63832 19.67600 
## sample estimates: 
## (pseudo)median  
##       19.65712 

wilcox.test(BPC.LCC.7/100000, RLB.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.7/1e+05 and RLB.LCC.7/1e+05 
## V = 296840, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.24897 -41.16038 
## sample estimates: 
## (pseudo)median  
##       -41.7026 

wilcox.test(TRA.LCC.7/100000, RLB.LCC.7/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.7/1e+05 and RLB.LCC.7/1e+05 
## V = 98, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.91466 -60.82807 
## sample estimates: 
## (pseudo)median  
##      -61.36833 
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# 8 Years  
wilcox.test(BPC.LCC.8/100000, TRA.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.8/1e+05 and TRA.LCC.8/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.63557 19.67293 
## sample estimates: 
## (pseudo)median  
##       19.65423 

wilcox.test(BPC.LCC.8/100000, RLB.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.8/1e+05 and RLB.LCC.8/1e+05 
## V = 328900, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.29344 -41.20035 
## sample estimates: 
## (pseudo)median  
##      -41.74517 

wilcox.test(TRA.LCC.8/100000, RLB.LCC.8/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90,conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.8/1e+05 and RLB.LCC.8/1e+05 
## V = 137, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.95194 -60.86043 
## sample estimates: 
## (pseudo)median  
##      -61.40474 
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# 9 Years  
wilcox.test(BPC.LCC.9/100000, TRA.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.9/1e+05 and TRA.LCC.9/1e+05 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  19.63485 19.67260 
## sample estimates: 
## (pseudo)median  
##       19.65367 

wilcox.test(BPC.LCC.9/100000, RLB.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.LCC.9/1e+05 and RLB.LCC.9/1e+05 
## V = 315960, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -42.08228 -40.98610 
## sample estimates: 
## (pseudo)median  
##      -41.53222 

wilcox.test(TRA.LCC.9/100000, RLB.LCC.9/100000, alternative = "two.side
d", mu = 0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.LCC.9/1e+05 and RLB.LCC.9/1e+05 
## V = 20, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -61.74359 -60.64576 
## sample estimates: 
## (pseudo)median  
##      -61.19317 

#Comparisons 
Comparison.data <- data.frame(Year = c(3,4,5,6,7,8,9), One = c((sum(BPC
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.LCC.3 < TRA.LCC.3)/10000), (sum(BPC.LCC.4 < TRA.LCC.4)/10000), (sum(BP
C.LCC.5 < TRA.LCC.5)/10000), (sum(BPC.LCC.6 < TRA.LCC.6)/10000), (sum(B
PC.LCC.7 < TRA.LCC.7)/10000), (sum(BPC.LCC.8 < TRA.LCC.8)/10000), (sum(
BPC.LCC.9 < TRA.LCC.9)/10000)), Two = c((sum(BPC.LCC.3 < RLB.LCC.3)/100
00), (sum(BPC.LCC.4 < RLB.LCC.4)/10000), (sum(BPC.LCC.5 < RLB.LCC.5)/10
000), (sum(BPC.LCC.6 < RLB.LCC.6)/10000), (sum(BPC.LCC.7 < RLB.LCC.7)/1
0000), (sum(BPC.LCC.8 < RLB.LCC.8)/10000), (sum(BPC.LCC.9 < RLB.LCC.9)/
10000)), Three = c((sum(TRA.LCC.3 < RLB.LCC.3)/10000), (sum(TRA.LCC.4 < 
RLB.LCC.4)/10000), (sum(TRA.LCC.5 < RLB.LCC.5)/10000), (sum(TRA.LCC.6 < 
RLB.LCC.6)/10000), (sum(TRA.LCC.7 < RLB.LCC.7)/10000), (sum(TRA.LCC.8 < 
RLB.LCC.8)/10000), (sum(TRA.LCC.9 < RLB.LCC.9)/10000))) 
Comparison.data <- rename(Comparison.data, replace = c("One"= "BPC < TR
A", "Two" = "BPC < RLB", "Three" = "TRA < RLB")) 
write.csv(Comparison.data,file = "4b_Comparison_results.csv") 
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OEF Risk Analysis.R 

Ryan 

Thu Feb 11 05:40:50 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 5a"
) 
 
# Assumptions 
rt1 <- 30000000 
rt2 <- 5000000 
TRA.Adjustment.Factor <- 3.266667 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
t <- rpois(n, 5.962) 
 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
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BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
BPC.DCPSF3 <- 15.60 
BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
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RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
RLB2.MX2015.mean <- 5.333 
RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Expected Utility of Life Cycle Cost Function 
EU <- function (t, rt, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  PWF <- function(t,i){ 
    PWF <- 1/((1+i)^t) 
  } 
  ifelse(t <= 3, EU <- 1-exp(-(AC + MX1 + DC)/rt), NA) 
  ifelse(t == 4, EU <- 1-exp(-(AC + MX1 + MX2 + DC)/rt), NA) 
  ifelse(t == 5, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + DC)/rt), NA) 
  ifelse(t == 6, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + DC)/rt), NA
) 
  ifelse(t == 7, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC)/r
t), NA) 
  ifelse(t == 8, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + 
DC)/rt), NA) 
  ifelse(t >= 9, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + 
MX7 + DC)/rt), NA) 
  return(EU) 
} 
 
# Simulation 
BPC.AC <- BPC.AC * FGP(8,i)  
BPC.MX1 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) 
BPC.MX2 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) 
BPC.MX3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) 
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BPC.MX4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) 
BPC.MX5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) 
BPC.MX6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i)  
BPC.MX7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) 
BPC.DC <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.Adj
ustment.Factor 
TRA.MX1 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.shop
.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.shop
.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.sh
op.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.shop
.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.shop
.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.shop
.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.shop
.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.Adj
ustment.Factor 
RLB.MX1 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rate 
* (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.sh
op.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.sh
op.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.sh
op.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
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BPC.EU.rt1 <- EU(t, rt1, BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
TRA.EU.rt1 <- EU(t, rt1, TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC) 
RLB.EU.rt1 <- EU(t, rt1, RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC) 
BPC.EU.rt2 <- EU(t, rt2, BPC.AC, BPC.MX1, BPC.MX2, BPC.MX3, BPC.MX4, BP
C.MX5, BPC.MX6, BPC.MX7, BPC.DC)  
TRA.EU.rt2 <- EU(t, rt2, TRA.AC, TRA.MX1, TRA.MX2, TRA.MX3, TRA.MX4, TR
A.MX5, TRA.MX6, TRA.MX7, TRA.DC) 
RLB.EU.rt2 <- EU(t, rt2, RLB.AC, RLB.MX1, RLB.MX2, RLB.MX3, RLB.MX4, RL
B.MX5, RLB.MX6, RLB.MX7, RLB.DC) 
 
# Histogram Construction 
Risk.Data <- data.frame(Profile = rep(c(array("Risk Profile 1",n), arra
y("Risk Profile 2",n))), Design = c(array("BPC",2*n),array("TRA",2*n),a
rray("RLB",2*n)), Utility = c(BPC.EU.rt1,BPC.EU.rt2,TRA.EU.rt1,TRA.EU.r
t2,RLB.EU.rt1,RLB.EU.rt2)) 
 
BPC.data <- subset(Risk.Data, Design == "BPC", select = c(Profile,Desig
n,Utility)) 
BPC.vline.mean <- data.frame(Mean = c(mean(BPC.EU.rt1), mean(BPC.EU.rt2
)), Profile = c("Risk Profile 1","Risk Profile 2"))  
BPC.vline.lower <- data.frame(Lower = c(quantile(BPC.EU.rt1, c(.05)), q
uantile(BPC.EU.rt2, c(.05))), Profile = c("Risk Profile 1","Risk Profil
e 2"))  
BPC.vline.upper <- data.frame(Upper = c(quantile(BPC.EU.rt1, c(.95)), q
uantile(BPC.EU.rt2, c(.95))), Profile = c("Risk Profile 1","Risk Profil
e 2")) 
BPC.vline.median <- data.frame(Median = c(median(BPC.EU.rt1), median(BP
C.EU.rt2)), Profile = c("Risk Profile 1","Risk Profile 2"))  
TRA.data <- subset(Risk.Data, Design == "TRA", select = c(Profile,Desig
n,Utility)) 
TRA.vline.mean <- data.frame(Mean = c(mean(TRA.EU.rt1), mean(TRA.EU.rt2
)),Profile = c("Risk Profile 1","Risk Profile 2"))  
TRA.vline.lower <- data.frame(Lower = c(quantile(TRA.EU.rt1, c(.05)), q
uantile(TRA.EU.rt2, c(.05))), Profile = c("Risk Profile 1","Risk Profil
e 2"))  
TRA.vline.upper <- data.frame(Upper = c(quantile(TRA.EU.rt1, c(.95)), q
uantile(TRA.EU.rt2, c(.95))), Profile = c("Risk Profile 1","Risk Profil
e 2")) 
TRA.vline.median <- data.frame(Median = c(median(TRA.EU.rt1), median(TR
A.EU.rt2)), Profile = c("Risk Profile 1","Risk Profile 2"))  
RLB.data <- subset(Risk.Data, Design == "RLB", select = c(Profile,Desig
n,Utility)) 
RLB.vline.mean <- data.frame(Mean = c(mean(RLB.EU.rt1), mean(RLB.EU.rt2
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)), Profile = c("Risk Profile 1","Risk Profile 2"))  
RLB.vline.lower <- data.frame(Lower = c(quantile(RLB.EU.rt1, c(.05)), q
uantile(RLB.EU.rt2, c(.05))), Profile = c("Risk Profile 1","Risk Profil
e 2"))  
RLB.vline.upper <- data.frame(Upper = c(quantile(RLB.EU.rt1, c(.95)), q
uantile(RLB.EU.rt2, c(.95))), Profile = c("Risk Profile 1","Risk Profil
e 2"))  
RLB.vline.median <- data.frame(Median = c(median(RLB.EU.rt1), median(RL
B.EU.rt2)), Profile = c("Risk Profile 1","Risk Profile 2"))  
 
EU.vline.mean <- data.frame(Value = c(median(BPC.EU.rt1),median(TRA.EU.
rt1),median(RLB.EU.rt1), median(BPC.EU.rt2), median(TRA.EU.rt2), median
(RLB.EU.rt2)), Profile = c(array("Risk Profile 1",3),array("Risk Profil
e 2",3)), Median = rep(c("BPC","TRA","RLB"),2)) 
 
BPC.hist <- ggplot(BPC.data, aes(x = Utility)) + 
  geom_histogram(binwidth = .001, colour = "black", fill = "white") +  
  facet_grid(. ~  Profile, scales = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), BPC.vline.mean, 
size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th Percentil
e"), BPC.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th Percentil
e"), BPC.vline.upper, size = .5) + 
  geom_vline(aes(xintercept = Median, linetype = "Median"), BPC.vline.m
edian, size = 1) + 
  labs(title= "BPC Expected Utility") +  
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(legend.title=element_blank()) + 
  scale_linetype_discrete(name = "Legend") + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.8)) 
 
TRA.hist <- ggplot(TRA.data, aes(x = Utility)) + 
  geom_histogram(binwidth = .001, colour = "black", fill = "white") + 
  facet_grid(. ~  Profile, scales = "free_x") +  
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), TRA.vline.mean, 
size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th Percentil
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e"), TRA.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th Percentil
e"), TRA.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), TRA.vline.m
edian, size = 1) + 
  labs(title= "Trailer Expected Utility") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(legend.title=element_blank()) + 
  scale_linetype_discrete(name = "Legend") + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.9,.8)) 
 
RLB.hist <- ggplot(RLB.data, aes(x = Utility)) + 
  geom_histogram(binwidth = .01, colour = "black", fill = "white") + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  geom_vline(aes(xintercept = Mean, linetype = "Mean"), RLB.vline.mean, 
size = .5) + 
  geom_vline(aes(xintercept = Lower, linetype = "5th and 95th Percentil
e"), RLB.vline.lower, size = .5) + 
  geom_vline(aes(xintercept = Upper, linetype = "5th and 95th Percentil
e"), RLB.vline.upper, size = .5) +  
  geom_vline(aes(xintercept = Median, linetype = "Median"), RLB.vline.m
edian, size = 1) + 
  labs(title= "RLB Expected Utility") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(legend.title=element_blank()) + 
  scale_linetype_discrete(name = "Legend") + 
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"), legend.position=c(.6,.8)) 
 
EU.hist <- ggplot(Risk.Data, aes(x = Utility)) + 
  geom_histogram(binwidth = .001, alpha =0.5, aes(fill = Design), posit
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ion = "identity") + 
  facet_grid(. ~  Profile, scales = "free_x") +  
  geom_vline(data=EU.vline.mean, aes(xintercept = Value,  colour = Medi
an),linetype="dashed", size=1) + 
  labs(title= "Expected Utility Per Risk Profile") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Cost ($100K)") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
#Print All Plots 
BPC.hist 

 

ggsave("BPC_Plot.jpg", width = 7, height = 5) 
TRA.hist 

 

ggsave("TRA_Plot.jpg", width = 7, height = 5) 
RLB.hist 

 

ggsave("RLB_Plot.jpg", width = 7, height = 5) 
EU.hist 

 

ggsave("EU_Plot.jpg", width = 7, height = 5) 
 
 
#Results  
wilcox.test(BPC.EU.rt1, TRA.EU.rt1, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  
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##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.rt1 and TRA.EU.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05394020 0.05407077 
## sample estimates: 
## (pseudo)median  
##      0.0540147 

wilcox.test(BPC.EU.rt1, RLB.EU.rt1, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.rt1 and RLB.EU.rt1 
## V = 303980, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1033652 -0.1008845 
## sample estimates: 
## (pseudo)median  
##     -0.1021219 

wilcox.test(TRA.EU.rt1, RLB.EU.rt1, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.rt1 and RLB.EU.rt1 
## V = 17, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1573896 -0.1549090 
## sample estimates: 
## (pseudo)median  
##     -0.1561495 

wilcox.test(BPC.EU.rt2, TRA.EU.rt2, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
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## data:  BPC.EU.rt2 and TRA.EU.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1239150 0.1242116 
## sample estimates: 
## (pseudo)median  
##      0.1240717 

wilcox.test(BPC.EU.rt2, RLB.EU.rt2, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.rt2 and RLB.EU.rt2 
## V = 366400, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1361875 -0.1337845 
## sample estimates: 
## (pseudo)median  
##     -0.1349634 

wilcox.test(TRA.EU.rt2, RLB.EU.rt2, alternative = "two.sided", mu = 0, 
paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.rt2 and RLB.EU.rt2 
## V = 17, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2601823 -0.2577937 
## sample estimates: 
## (pseudo)median  
##     -0.2589995 

Risk.data.summary <- summarySE(Risk.Data,measurevar = "Utility", groupv
ars = c("Profile","Design"), conf.interval = 0.90) 
Median.data <- c(median(BPC.EU.rt1), median(TRA.EU.rt1), median(RLB.EU.
rt1), median(BPC.EU.rt2), median(TRA.EU.rt2), median(RLB.EU.rt2)) 
Lower <- c(quantile(BPC.EU.rt1,c(0.05)), quantile(RLB.EU.rt1,c(0.05)), 
quantile(TRA.EU.rt1,c(0.05)), quantile(BPC.EU.rt2,c(0.05)),quantile(RLB
.EU.rt2,c(0.05)),quantile(TRA.EU.rt2,c(0.05))) 
Upper <- c(quantile(BPC.EU.rt1,c(0.95)), quantile(RLB.EU.rt1,c(0.95)), 
quantile(TRA.EU.rt1,c(0.95)), quantile(BPC.EU.rt2,c(0.95)),quantile(RLB
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.EU.rt2,c(0.95)),quantile(TRA.EU.rt2,c(0.95))) 
Risk.data.summary <- cbind(Risk.data.summary,Lower) 
Risk.data.summary <- cbind(Risk.data.summary,Upper) 
Risk.data.summary <- cbind(Risk.data.summary,Median.data) 
Risk.data.summary <- rename(Risk.data.summary, replace = c("Utility"= "
Mean","sd"= "Standard Deviation", "se"="Standard Error","ci"="Confidenc
e Interval","Median.data"="Median", "Lower"= "5th Percentile", "Upper"=
"95th Percentile")) 
write.csv(Risk.data.summary, file = "5a_Riskdata.csv") 
 
Comparison.data <- data.frame(Profile = c(1,2), One = c((sum(BPC.EU.rt1 
< TRA.EU.rt1)/10000),(sum(BPC.EU.rt2 < TRA.EU.rt2)/10000)), Two = c((su
m(BPC.EU.rt1 < RLB.EU.rt1)/10000),(sum(BPC.EU.rt2 < RLB.EU.rt2)/10000))
, Three = c((sum(TRA.EU.rt1 < RLB.EU.rt1)/10000),(sum(TRA.EU.rt2 < RLB.
EU.rt2)/10000))) 
Comparison.data <- rename(Comparison.data, replace = c("Profile" = "Ris
k Profile", "One"="BPC < Trailer","Two"="BPC < RLB", "Three"="Trailer < 
RLB")) 
write.csv(Comparison.data, file = "5a_Comparisons.csv") 
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Lack of Knowledge Risk Analysis.R 

Ryan 

Thu Feb 11 05:44:13 2016 

library(Rmisc) 

## Loading required package: lattice 
## Loading required package: plyr 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.2.3 

library(triangle) 
rt1 <- 30000000 
rt2 <- 5000000 
setwd("/Users/Ryan/Desktop/Thesis/Data Analysis/R - Output/Question 5b"
) 
 
 
# Assumptions 
TRA.Adjustment.Factor <- 3.266667 
RLB.Adjustment.Factor <- 49 
n <- 10000 
i <- runif(n,.02,.03) 
ADAB.shop.rate <- 38.00 
AUAB.shop.rate <- 44.06 
 
# BPC Data 
BPC.size <- 77016 
BPC.AC <- array(4362453.80, n) 
BPC.MX2009.mean <- 3.772 
BPC.MX2009.stdev <- 0.118 
BPC.MX2010.mean <- 7.283 
BPC.MX2010.stdev <- 0.310 
BPC.MX2012.mean <- 6.556 
BPC.MX2012.stdev <- 0.171 
BPC.MX2013.mean <- 8.139 
BPC.MX2013.stdev <- 0.216 
BPC.MX2014.mean <- 7.854 
BPC.MX2014.stdev <- 0.086 
BPC.MX2015.mean <- 7.791 
BPC.MX2015.stdev <- 0.171 
BPC.MXA2011.mean <- ((BPC.MX2010.mean + BPC.MX2012.mean)/2) 
BPC.MXA2011.stdev <- ((BPC.MX2010.stdev + BPC.MX2012.stdev)/2) 
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BPC.DCPSF1 <- 5.34 
BPC.DCPSF2 <- 10.50 
BPC.DCPSF3 <- 15.60 
BPC.DCPSF4 <- 21.00 
BPC.DCPSF5 <- 6.36 
BPC.DC.AVG <- mean(c(BPC.DCPSF1,BPC.DCPSF2,BPC.DCPSF3,BPC.DCPSF4,BPC.DC
PSF5)) 
 
# Trailer Data 
TRA.size <- 4100 
TRA.AC.mean <- 13.942 
TRA.AC.stdev <- 0.021 
TRA.MX2009.mean <- 4.728 
TRA.MX2009.stdev <- 0.338 
TRA.MX2010.mean <- 4.501 
TRA.MX2010.stdev <- 0.468 
TRA.MX2012.mean <- 3.750 
TRA.MX2012.stdev <- 0.288 
TRA.MX2013.mean <- 5.206 
TRA.MX2013.stdev <- 0.329 
TRA.MX2014.mean <- 5.124 
TRA.MX2014.stdev <- 0.412 
TRA.MX2015.mean <- 5.058 
TRA.MX2015.stdev <- 0.324 
TRA.MXA2011.mean <- ((TRA.MX2010.mean+TRA.MX2012.mean)/2) 
TRA.MXA2011.stdev <- ((TRA.MX2010.stdev+TRA.MX2012.stdev)/2) 
TRA.DCPSF1 <- 4.08 
TRA.DCPSF2 <- 11.10 
TRA.DCPSF3 <- 17.40 
TRA.DCPSF4 <- 23.40 
TRA.DCPSF5 <- 4.92 
TRA.DC.AVG <- mean(c(TRA.DCPSF1,TRA.DCPSF2,TRA.DCPSF3,TRA.DCPSF4,TRA.DC
PSF5)) 
 
# RLB Data 
RLB.size <- 1350 
RLB.AC.mean <- 11.848 
RLB.AC.stdev <- 0.400 
RLB1.MX2013.mean <- 3.772 
RLB1.MX2013.stdev <- 0.660 
RLB1.MX2014.mean <- 5.221 
RLB1.MX2014.stdev <- 0.444 
RLB1.MX2015.mean <- 4.850 
RLB1.MX2015.stdev <- 0.422 
RLB2.MX2013.mean <- 5.059 
RLB2.MX2013.stdev <- 0.479 
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RLB2.MX2014.mean <- 4.891 
RLB2.MX2014.stdev <- 0.739 
RLB2.MX2015.mean <- 5.333 
RLB2.MX2015.stdev <- 0.690 
RLB.MXA.mean <- ((RLB1.MX2015.mean+RLB2.MX2013.mean)/2) 
RLB.MXA.stdev <-  ((RLB1.MX2015.stdev+RLB2.MX2013.stdev)/2) 
RLB.DCPSF1 <- 4.68 
RLB.DCPSF2 <- 11.10 
RLB.DCPSF3 <- 17.40 
RLB.DCPSF4 <- 24.00 
RLB.DCPSF5 <- 4.44 
RLB.DC.AVG <- mean(c(RLB.DCPSF1,RLB.DCPSF2,RLB.DCPSF3,RLB.DCPSF4,RLB.DC
PSF5)) 
 
# F/P Tranformation Function 
FGP <- function(t,i){ 
  FGP <- (1+i)^t 
} 
 
# Expected Utility of Life Cycle Cost Function 
EU <- function (t, rt, AC, MX1, MX2, MX3, MX4, MX5, MX6, MX7, DC){  
  PWF <- function(t,i){ 
    PWF <- 1/((1+i)^t) 
  } 
  ifelse(t <= 3, EU <- 1-exp(-(AC + MX1 + DC)/rt), NA) 
  ifelse(t == 4, EU <- 1-exp(-(AC + MX1 + MX2 + DC)/rt), NA) 
  ifelse(t == 5, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + DC)/rt), NA) 
  ifelse(t == 6, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + DC)/rt), NA
) 
  ifelse(t == 7, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + DC)/r
t), NA) 
  ifelse(t == 8, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + 
DC)/rt), NA) 
  ifelse(t >= 9, EU <- 1-exp(-(AC + MX1 + MX2 + MX3 + MX4 + MX5 + MX6 + 
MX7 + DC)/rt), NA) 
         return(EU) 
} 
 
# Comparisons for Uncertain Duration - Year 3 Most Probable 
t3 <- round(rtriangle(n,3,9,3), 0) 
 
BPC.AC.3 <- BPC.AC * FGP(8,i)  
BPC.MX1.3 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.3 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
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BPC.MX3.3 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.3 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.3 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.3 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.3 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.3 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.3 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.3 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.3 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.3 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.3 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.3 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.3 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.3 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.3 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.3 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.3 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.3 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.3 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.3 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.3 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.3 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.3 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
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RLB.DC.3 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.3.rt1 <- EU(t3, rt1, BPC.AC.3, BPC.MX1.3, BPC.MX2.3, BPC.MX3.3, 
BPC.MX4.3, BPC.MX5.3, BPC.MX6.3, BPC.MX7.3, BPC.DC.3)  
TRA.EU.3.rt1 <- EU(t3, rt1, TRA.AC.3, TRA.MX1.3, TRA.MX2.3, TRA.MX3.3, 
TRA.MX4.3, TRA.MX5.3, TRA.MX6.3, TRA.MX7.3, TRA.DC.3) 
RLB.EU.3.rt1 <- EU(t3, rt1, RLB.AC.3, RLB.MX1.3, RLB.MX2.3, RLB.MX3.3, 
RLB.MX4.3, RLB.MX5.3, RLB.MX6.3, RLB.MX7.3, RLB.DC.3) 
BPC.EU.3.rt2 <- EU(t3, rt2, BPC.AC.3, BPC.MX1.3, BPC.MX2.3, BPC.MX3.3, 
BPC.MX4.3, BPC.MX5.3, BPC.MX6.3, BPC.MX7.3, BPC.DC.3)  
TRA.EU.3.rt2 <- EU(t3, rt2, TRA.AC.3, TRA.MX1.3, TRA.MX2.3, TRA.MX3.3, 
TRA.MX4.3, TRA.MX5.3, TRA.MX6.3, TRA.MX7.3, TRA.DC.3) 
RLB.EU.3.rt2 <- EU(t3, rt2, RLB.AC.3, RLB.MX1.3, RLB.MX2.3, RLB.MX3.3, 
RLB.MX4.3, RLB.MX5.3, RLB.MX6.3, RLB.MX7.3, RLB.DC.3) 
 
Risk.Data.Yr3 <- data.frame(Year = array(3,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.3.rt1,TRA.E
U.3.rt1,RLB.EU.3.rt1,BPC.EU.3.rt2,TRA.EU.3.rt2,RLB.EU.3.rt2)) 
 
 
# Comparisons for Uncertain Duration - Year 4 Most Probable 
t4 <- round(rtriangle(n,3,9,4), 0) 
 
BPC.AC.4 <- BPC.AC * FGP(8,i)  
BPC.MX1.4 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.4 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.4 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.4 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.4 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.4 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.4 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.4 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.4 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.4 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.4 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
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op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.4 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.4 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.4 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.4 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.4 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.4 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.4 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.4 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.4 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.4 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.4 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.4 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.4 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.4 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.4 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.4.rt1 <- EU(t4, rt1, BPC.AC.4, BPC.MX1.4, BPC.MX2.4, BPC.MX3.4, 
BPC.MX4.4, BPC.MX5.4, BPC.MX6.4, BPC.MX7.4, BPC.DC.4)  
TRA.EU.4.rt1 <- EU(t4, rt1, TRA.AC.4, TRA.MX1.4, TRA.MX2.4, TRA.MX3.4, 
TRA.MX4.4, TRA.MX5.4, TRA.MX6.4, TRA.MX7.4, TRA.DC.4) 
RLB.EU.4.rt1 <- EU(t4, rt1, RLB.AC.4, RLB.MX1.4, RLB.MX2.4, RLB.MX3.4, 
RLB.MX4.4, RLB.MX5.4, RLB.MX6.4, RLB.MX7.4, RLB.DC.4) 
BPC.EU.4.rt2 <- EU(t4, rt2, BPC.AC.4, BPC.MX1.4, BPC.MX2.4, BPC.MX3.4, 
BPC.MX4.4, BPC.MX5.4, BPC.MX6.4, BPC.MX7.4, BPC.DC.4)  
TRA.EU.4.rt2 <- EU(t4, rt2, TRA.AC.4, TRA.MX1.4, TRA.MX2.4, TRA.MX3.4, 
TRA.MX4.4, TRA.MX5.4, TRA.MX6.4, TRA.MX7.4, TRA.DC.4) 
RLB.EU.4.rt2 <- EU(t4, rt2, RLB.AC.4, RLB.MX1.4, RLB.MX2.4, RLB.MX3.4, 
RLB.MX4.4, RLB.MX5.4, RLB.MX6.4, RLB.MX7.4, RLB.DC.4) 
 
Risk.Data.Yr4 <- data.frame(Year = array(4,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
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C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.4.rt1,TRA.E
U.4.rt1,RLB.EU.4.rt1,BPC.EU.4.rt2,TRA.EU.4.rt2,RLB.EU.4.rt2)) 
 
# Comparisons for Uncertain Duration - Year 5 Most Probable 
t5 <- round(rtriangle(n,3,9,5), 0) 
 
BPC.AC.5 <- BPC.AC * FGP(8,i)  
BPC.MX1.5 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.5 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.5 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.5 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.5 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.5 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.5 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.5 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.5 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.5 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.5 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.5 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.5 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.5 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.5 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.5 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.5 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.5 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.5 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.5 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
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shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.5 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.5 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.5 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.5 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.5 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.5 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.5.rt1 <- EU(t5, rt1, BPC.AC.5, BPC.MX1.5, BPC.MX2.5, BPC.MX3.5, 
BPC.MX4.5, BPC.MX5.5, BPC.MX6.5, BPC.MX7.5, BPC.DC.5)  
TRA.EU.5.rt1 <- EU(t5, rt1, TRA.AC.5, TRA.MX1.5, TRA.MX2.5, TRA.MX3.5, 
TRA.MX4.5, TRA.MX5.5, TRA.MX6.5, TRA.MX7.5, TRA.DC.5) 
RLB.EU.5.rt1 <- EU(t5, rt1, RLB.AC.5, RLB.MX1.5, RLB.MX2.5, RLB.MX3.5, 
RLB.MX4.5, RLB.MX5.5, RLB.MX6.5, RLB.MX7.5, RLB.DC.5) 
BPC.EU.5.rt2 <- EU(t5, rt2, BPC.AC.5, BPC.MX1.5, BPC.MX2.5, BPC.MX3.5, 
BPC.MX4.5, BPC.MX5.5, BPC.MX6.5, BPC.MX7.5, BPC.DC.5)  
TRA.EU.5.rt2 <- EU(t5, rt2, TRA.AC.5, TRA.MX1.5, TRA.MX2.5, TRA.MX3.5, 
TRA.MX4.5, TRA.MX5.5, TRA.MX6.5, TRA.MX7.5, TRA.DC.5) 
RLB.EU.5.rt2 <- EU(t5, rt2, RLB.AC.5, RLB.MX1.5, RLB.MX2.5, RLB.MX3.5, 
RLB.MX4.5, RLB.MX5.5, RLB.MX6.5, RLB.MX7.5, RLB.DC.5) 
 
Risk.Data.Yr5 <- data.frame(Year = array(5,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.5.rt1,TRA.E
U.5.rt1,RLB.EU.5.rt1,BPC.EU.5.rt2,TRA.EU.5.rt2,RLB.EU.5.rt2)) 
 
# Comparisons for Uncertain Duration - Year 6 Most Probable 
t6 <- round(rtriangle(n,3,9,6), 0) 
 
BPC.AC.6 <- BPC.AC * FGP(8,i)  
BPC.MX1.6 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.6 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.6 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.6 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.6 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.6 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
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op.rate * FGP(2,i)  
BPC.MX7.6 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.6 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.6 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.6 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.6 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.6 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.6 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.6 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.6 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.6 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.6 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.6 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.6 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.6 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.6 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.6 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.6 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.6 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.6 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.6 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.6.rt1 <- EU(t6, rt1, BPC.AC.6, BPC.MX1.6, BPC.MX2.6, BPC.MX3.6, 
BPC.MX4.6, BPC.MX5.6, BPC.MX6.6, BPC.MX7.6, BPC.DC.6)  
TRA.EU.6.rt1 <- EU(t6, rt1, TRA.AC.6, TRA.MX1.6, TRA.MX2.6, TRA.MX3.6, 
TRA.MX4.6, TRA.MX5.6, TRA.MX6.6, TRA.MX7.6, TRA.DC.6) 
RLB.EU.6.rt1 <- EU(t6, rt1, RLB.AC.6, RLB.MX1.6, RLB.MX2.6, RLB.MX3.6, 
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RLB.MX4.6, RLB.MX5.6, RLB.MX6.6, RLB.MX7.6, RLB.DC.6) 
BPC.EU.6.rt2 <- EU(t6, rt2, BPC.AC.6, BPC.MX1.6, BPC.MX2.6, BPC.MX3.6, 
BPC.MX4.6, BPC.MX5.6, BPC.MX6.6, BPC.MX7.6, BPC.DC.6)  
TRA.EU.6.rt2 <- EU(t6, rt2, TRA.AC.6, TRA.MX1.6, TRA.MX2.6, TRA.MX3.6, 
TRA.MX4.6, TRA.MX5.6, TRA.MX6.6, TRA.MX7.6, TRA.DC.6) 
RLB.EU.6.rt2 <- EU(t6, rt2, RLB.AC.6, RLB.MX1.6, RLB.MX2.6, RLB.MX3.6, 
RLB.MX4.6, RLB.MX5.6, RLB.MX6.6, RLB.MX7.6, RLB.DC.6) 
 
Risk.Data.Yr6 <- data.frame(Year = array(6,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.6.rt1,TRA.E
U.6.rt1,RLB.EU.6.rt1,BPC.EU.6.rt2,TRA.EU.6.rt2,RLB.EU.6.rt2)) 
 
# Comparisons for Uncertain Duration - Year 7 Most Probable 
t7 <- round(rtriangle(n,3,9,7), 0) 
 
BPC.AC.7 <- BPC.AC * FGP(8,i)  
BPC.MX1.7 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.7 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.7 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.7 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.7 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.7 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.7 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.7 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.7 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.7 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.7 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.7 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.7 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.7 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.7 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
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op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.7 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.7 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.7 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.7 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.7 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.7 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.7 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.7 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.7 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.7 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.7 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.7.rt1 <- EU(t7, rt1, BPC.AC.7, BPC.MX1.7, BPC.MX2.7, BPC.MX3.7, 
BPC.MX4.7, BPC.MX5.7, BPC.MX6.7, BPC.MX7.7, BPC.DC.7)  
TRA.EU.7.rt1 <- EU(t7, rt1, TRA.AC.7, TRA.MX1.7, TRA.MX2.7, TRA.MX3.7, 
TRA.MX4.7, TRA.MX5.7, TRA.MX6.7, TRA.MX7.7, TRA.DC.7) 
RLB.EU.7.rt1 <- EU(t7, rt1, RLB.AC.7, RLB.MX1.7, RLB.MX2.7, RLB.MX3.7, 
RLB.MX4.7, RLB.MX5.7, RLB.MX6.7, RLB.MX7.7, RLB.DC.7) 
BPC.EU.7.rt2 <- EU(t7, rt2, BPC.AC.7, BPC.MX1.7, BPC.MX2.7, BPC.MX3.7, 
BPC.MX4.7, BPC.MX5.7, BPC.MX6.7, BPC.MX7.7, BPC.DC.7)  
TRA.EU.7.rt2 <- EU(t7, rt2, TRA.AC.7, TRA.MX1.7, TRA.MX2.7, TRA.MX3.7, 
TRA.MX4.7, TRA.MX5.7, TRA.MX6.7, TRA.MX7.7, TRA.DC.7) 
RLB.EU.7.rt2 <- EU(t7, rt2, RLB.AC.7, RLB.MX1.7, RLB.MX2.7, RLB.MX3.7, 
RLB.MX4.7, RLB.MX5.7, RLB.MX6.7, RLB.MX7.7, RLB.DC.7) 
 
Risk.Data.Yr7 <- data.frame(Year = array(7,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.7.rt1,TRA.E
U.7.rt1,RLB.EU.7.rt1,BPC.EU.7.rt2,TRA.EU.7.rt2,RLB.EU.7.rt2)) 
 
# Comparisons for Uncertain Duration - Year 8 Most Probable 
t8 <- round(rtriangle(n,3,9,8), 0) 
 
BPC.AC.8 <- BPC.AC * FGP(8,i)  
BPC.MX1.8 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
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op.rate * FGP(7,i) 
BPC.MX2.8 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.8 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.8 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.8 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.8 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.8 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.8 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.8 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.8 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.8 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.8 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.8 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.8 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.8 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.8 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.8 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.8 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.8 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.8 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.8 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.8 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.8 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.8 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
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shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.8 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.8 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.8.rt1 <- EU(t8, rt1, BPC.AC.8, BPC.MX1.8, BPC.MX2.8, BPC.MX3.8, 
BPC.MX4.8, BPC.MX5.8, BPC.MX6.8, BPC.MX7.8, BPC.DC.8)  
TRA.EU.8.rt1 <- EU(t8, rt1, TRA.AC.8, TRA.MX1.8, TRA.MX2.8, TRA.MX3.8, 
TRA.MX4.8, TRA.MX5.8, TRA.MX6.8, TRA.MX7.8, TRA.DC.8) 
RLB.EU.8.rt1 <- EU(t8, rt1, RLB.AC.8, RLB.MX1.8, RLB.MX2.8, RLB.MX3.8, 
RLB.MX4.8, RLB.MX5.8, RLB.MX6.8, RLB.MX7.8, RLB.DC.8) 
BPC.EU.8.rt2 <- EU(t8, rt2, BPC.AC.8, BPC.MX1.8, BPC.MX2.8, BPC.MX3.8, 
BPC.MX4.8, BPC.MX5.8, BPC.MX6.8, BPC.MX7.8, BPC.DC.8)  
TRA.EU.8.rt2 <- EU(t8, rt2, TRA.AC.8, TRA.MX1.8, TRA.MX2.8, TRA.MX3.8, 
TRA.MX4.8, TRA.MX5.8, TRA.MX6.8, TRA.MX7.8, TRA.DC.8) 
RLB.EU.8.rt2 <- EU(t8, rt2, RLB.AC.8, RLB.MX1.8, RLB.MX2.8, RLB.MX3.8, 
RLB.MX4.8, RLB.MX5.8, RLB.MX6.8, RLB.MX7.8, RLB.DC.8) 
 
Risk.Data.Yr8 <- data.frame(Year = array(8,6*n),Profile = c(array("Risk 
Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("BP
C",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.8.rt1,TRA.E
U.8.rt1,RLB.EU.8.rt1,BPC.EU.8.rt2,TRA.EU.8.rt2,RLB.EU.8.rt2)) 
 
# Comparisons for Uncertain Duration - Year 9 Most Probable 
t9 <- round(rtriangle(n,3,9,9), 0) 
 
BPC.AC.9 <- BPC.AC * FGP(8,i)  
BPC.MX1.9 <- exp(rnorm(n, BPC.MX2009.mean, BPC.MX2009.stdev)) * AUAB.sh
op.rate * FGP(7,i) 
BPC.MX2.9 <- exp(rnorm(n, BPC.MX2010.mean, BPC.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) 
BPC.MX3.9 <- exp(rnorm(n, BPC.MXA2011.mean, BPC.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) 
BPC.MX4.9 <- exp(rnorm(n, BPC.MX2012.mean, BPC.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) 
BPC.MX5.9 <- exp(rnorm(n, BPC.MX2013.mean, BPC.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) 
BPC.MX6.9 <- exp(rnorm(n, BPC.MX2014.mean, BPC.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i)  
BPC.MX7.9 <- exp(rnorm(n, BPC.MX2015.mean, BPC.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) 
BPC.DC.9 <- array(BPC.DC.AVG, n) * BPC.size  
 
TRA.AC.9 <- exp(rnorm(n, TRA.AC.mean, TRA.AC.stdev)) * FGP(8,i) * TRA.A
djustment.Factor 
TRA.MX1.9 <- exp(rnorm(n, TRA.MX2009.mean, TRA.MX2009.stdev)) * AUAB.sh
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op.rate * FGP(7,i) * TRA.Adjustment.Factor 
TRA.MX2.9 <- exp(rnorm(n, TRA.MX2010.mean, TRA.MX2010.stdev)) * AUAB.sh
op.rate * FGP(6,i) * TRA.Adjustment.Factor 
TRA.MX3.9 <- exp(rnorm(n, TRA.MXA2011.mean, TRA.MXA2011.stdev)) * AUAB.
shop.rate * FGP(5,i) * TRA.Adjustment.Factor 
TRA.MX4.9 <- exp(rnorm(n, TRA.MX2012.mean, TRA.MX2012.stdev)) * AUAB.sh
op.rate * FGP(4,i) * TRA.Adjustment.Factor 
TRA.MX5.9 <- exp(rnorm(n, TRA.MX2013.mean, TRA.MX2013.stdev)) * AUAB.sh
op.rate * FGP(3,i) * TRA.Adjustment.Factor 
TRA.MX6.9 <- exp(rnorm(n, TRA.MX2014.mean, TRA.MX2014.stdev)) * AUAB.sh
op.rate * FGP(2,i) * TRA.Adjustment.Factor 
TRA.MX7.9 <- exp(rnorm(n, TRA.MX2015.mean, TRA.MX2015.stdev)) * AUAB.sh
op.rate * FGP(1,i) * TRA.Adjustment.Factor 
TRA.DC.9 <- array(TRA.DC.AVG, n) * TRA.size  * TRA.Adjustment.Factor 
 
RLB.AC.9 <- exp(rnorm(n, RLB.AC.mean, RLB.AC.stdev)) * FGP(4,i) * RLB.A
djustment.Factor 
RLB.MX1.9 <- exp(rnorm(n, RLB1.MX2013.mean, RLB1.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX2.9 <- exp(rnorm(n, RLB1.MX2014.mean, RLB1.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX3.9 <- exp(rnorm(n, RLB1.MX2015.mean, RLB1.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.MX4.9 <- exp(rnorm(n, RLB.MXA.mean, RLB.MXA.stdev)) * ADAB.shop.rat
e * (FGP(2,i)) * RLB.Adjustment.Factor 
RLB.MX5.9 <- exp(rnorm(n, RLB2.MX2013.mean, RLB2.MX2013.stdev)) * ADAB.
shop.rate * FGP(3,i) * RLB.Adjustment.Factor 
RLB.MX6.9 <- exp(rnorm(n, RLB2.MX2014.mean, RLB2.MX2014.stdev)) * ADAB.
shop.rate * FGP(2,i) * RLB.Adjustment.Factor 
RLB.MX7.9 <- exp(rnorm(n, RLB2.MX2015.mean, RLB2.MX2015.stdev)) * ADAB.
shop.rate * FGP(1,i) * RLB.Adjustment.Factor 
RLB.DC.9 <- array(RLB.DC.AVG, n) * RLB.size  * RLB.Adjustment.Factor 
 
BPC.EU.9.rt1 <- EU(t9, rt1, BPC.AC.9, BPC.MX1.9, BPC.MX2.9, BPC.MX3.9, 
BPC.MX4.9, BPC.MX5.9, BPC.MX6.9, BPC.MX7.9, BPC.DC.9)  
TRA.EU.9.rt1 <- EU(t9, rt1, TRA.AC.9, TRA.MX1.9, TRA.MX2.9, TRA.MX3.9, 
TRA.MX4.9, TRA.MX5.9, TRA.MX6.9, TRA.MX7.9, TRA.DC.9) 
RLB.EU.9.rt1 <- EU(t9, rt1, RLB.AC.9, RLB.MX1.9, RLB.MX2.9, RLB.MX3.9, 
RLB.MX4.9, RLB.MX5.9, RLB.MX6.9, RLB.MX7.9, RLB.DC.9) 
BPC.EU.9.rt2 <- EU(t9, rt2, BPC.AC.9, BPC.MX1.9, BPC.MX2.9, BPC.MX3.9, 
BPC.MX4.9, BPC.MX5.9, BPC.MX6.9, BPC.MX7.9, BPC.DC.9)  
TRA.EU.9.rt2 <- EU(t9, rt2, TRA.AC.9, TRA.MX1.9, TRA.MX2.9, TRA.MX3.9, 
TRA.MX4.9, TRA.MX5.9, TRA.MX6.9, TRA.MX7.9, TRA.DC.9) 
RLB.EU.9.rt2 <- EU(t9, rt2, RLB.AC.9, RLB.MX1.9, RLB.MX2.9, RLB.MX3.9, 
RLB.MX4.9, RLB.MX5.9, RLB.MX6.9, RLB.MX7.9, RLB.DC.9) 
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Risk.Data.Yr9 <- data.frame(Year = array(9,6*n), Profile = c(array("Ris
k Profile 1",3*n), array("Risk Profile 2",3*n)), Design = rep(c(array("
BPC",n),array("TRA",n),array("RLB",n)),2), Utility = c(BPC.EU.9.rt1,TRA
.EU.9.rt1,RLB.EU.9.rt1,BPC.EU.9.rt2,TRA.EU.9.rt2,RLB.EU.9.rt2)) 
 
#Plot Construction 
Year.3.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.3.rt1),median(RLB.EU.3.rt1),median(TRA.EU.3.rt1),
median(BPC.EU.3.rt2),median(RLB.EU.3.rt2),median(TRA.EU.3.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
3","Risk Profile 2","Risk Profile 2")) 
T3.Risk.Hist <- ggplot(Risk.Data.Yr3, aes(x = Utility)) +  
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") +  
  geom_vline(data=Year.3.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) +  
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "3 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
 
Year.4.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.4.rt1),median(RLB.EU.4.rt1),median(TRA.EU.4.rt1),
median(BPC.EU.4.rt2),median(RLB.EU.4.rt2),median(TRA.EU.4.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T4.Risk.Hist <- ggplot(Risk.Data.Yr4, aes(x = Utility)) +  
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") + 
  geom_vline(data=Year.4.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) +  
  facet_grid(. ~  Profile, scales = "free_x") + 
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  labs(title= "4 Years Most Probable")+ 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
Year.5.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.5.rt1),median(RLB.EU.5.rt1),median(TRA.EU.5.rt1),
median(BPC.EU.5.rt2),median(RLB.EU.5.rt2),median(TRA.EU.5.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T5.Risk.Hist <- ggplot(Risk.Data.Yr5, aes(x = Utility)) + 
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") +  
  geom_vline(data=Year.5.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "5 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
Year.6.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
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ity = c(median(BPC.EU.6.rt1),median(RLB.EU.6.rt1),median(TRA.EU.6.rt1),
median(BPC.EU.6.rt2),median(RLB.EU.6.rt2),median(TRA.EU.6.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T6.Risk.Hist <- ggplot(Risk.Data.Yr6, aes(x = Utility)) + 
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") + 
  geom_vline(data=Year.6.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "6 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
Year.7.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.7.rt1),median(RLB.EU.7.rt1),median(TRA.EU.7.rt1),
median(BPC.EU.7.rt2),median(RLB.EU.7.rt2),median(TRA.EU.7.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T7.Risk.Hist <- ggplot(Risk.Data.Yr7, aes(x = Utility)) +  
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") + 
  geom_vline(data=Year.7.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "7 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
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axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
Year.8.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.8.rt1),median(RLB.EU.8.rt1),median(TRA.EU.8.rt1),
median(BPC.EU.8.rt2),median(RLB.EU.8.rt2),median(TRA.EU.8.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T8.Risk.Hist <- ggplot(Risk.Data.Yr8, aes(x = Utility)) + 
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") +  
  geom_vline(data=Year.8.medians, aes(xintercept = Utility,  colour = m
edian),linetype="dashed", size=1) + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "8 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
Year.9.medians <- data.frame(median = rep(c("BPC","RLB","TRA"),2), Util
ity = c(median(BPC.EU.9.rt1),median(RLB.EU.9.rt1),median(TRA.EU.9.rt1),
median(BPC.EU.9.rt2),median(RLB.EU.9.rt2),median(TRA.EU.9.rt2)), Profil
e = c("Risk Profile 1","Risk Profile 1","Risk Profile 1","Risk Profile 
2","Risk Profile 2","Risk Profile 2")) 
T9.Risk.Hist <- ggplot(Risk.Data.Yr9, aes(x = Utility)) +  
  geom_histogram(binwidth = .01, alpha =0.5, aes(fill = Design), positi
on = "identity") +  
  geom_vline(data=Year.9.medians, aes(xintercept = Utility,  colour = m
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edian),linetype="dashed", size=1) + 
  facet_grid(. ~  Profile, scales = "free_x") + 
  labs(title= "9 Years Most Probable") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  
  theme(plot.title = element_text(lineheight=.8, face="bold", size = 20
)) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  scale_x_continuous(name="Expected Utility") +  
  theme(axis.title.x = element_text(face="bold", colour="black", size=1
5), axis.title.y = element_text(face="bold", colour="black", size=15), 
axis.text.x = element_text(colour = "black", size = 10), axis.text.y = 
element_text(colour = "black", size = 10), legend.title = element_text(
colour="black", size=15, face="bold"))+ 
  scale_colour_discrete(name  ="Median", breaks=c("BPC", "RLB","TRA"), 
labels=c("BPC", "RLB","Trailer")) + 
  scale_fill_discrete(name  ="Design\nAlternative", breaks=c("BPC", "RL
B","TRA"), labels=c("BPC", "RLB","Trailer"))   
 
 
# Print All Plots 
T3.Risk.Hist 

 

ggsave("Year3_Plot.jpg", width = 7, height = 5) 
T4.Risk.Hist 

 

ggsave("Year4_Plot.jpg", width = 7, height = 5) 
T5.Risk.Hist 

 

ggsave("Year5_Plot.jpg", width = 7, height = 5) 
T6.Risk.Hist 

 

ggsave("Year6_Plot.jpg", width = 7, height = 5) 
T7.Risk.Hist 

 

ggsave("Year7_Plot.jpg", width = 7, height = 5) 
T8.Risk.Hist 
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ggsave("Year8_Plot.jpg", width = 7, height = 5) 
T9.Risk.Hist 

 

ggsave("Year9_Plot.jpg", width = 7, height = 5) 
 
##Results 
#Year 3-Risk 1 
wilcox.test(BPC.EU.3.rt1, TRA.EU.3.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.3.rt1 and TRA.EU.3.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05399979 0.05410170 
## sample estimates: 
## (pseudo)median  
##     0.05404518 

wilcox.test(BPC.EU.3.rt1, RLB.EU.3.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.3.rt1 and RLB.EU.3.rt1 
## V = 351420, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.10191935 -0.09948515 
## sample estimates: 
## (pseudo)median  
##     -0.1006863 

wilcox.test(TRA.EU.3.rt1, RLB.EU.3.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.3.rt1 and RLB.EU.3.rt1 
## V = 144, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
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## 90 percent confidence interval: 
##  -0.1559663 -0.1535320 
## sample estimates: 
## (pseudo)median  
##     -0.1547452 

#Year 3-Risk 2 
wilcox.test(BPC.EU.3.rt2, TRA.EU.3.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.3.rt2 and TRA.EU.3.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1239908 0.1242190 
## sample estimates: 
## (pseudo)median  
##       0.124109 

wilcox.test(BPC.EU.3.rt2, RLB.EU.3.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.3.rt2 and RLB.EU.3.rt2 
## V = 438170, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1348929 -0.1325066 
## sample estimates: 
## (pseudo)median  
##     -0.1337046 

wilcox.test(TRA.EU.3.rt2, RLB.EU.3.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.3.rt2 and RLB.EU.3.rt2 
## V = 158, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2589467 -0.2565530 
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## sample estimates: 
## (pseudo)median  
##     -0.2577472 

#Year 4-Risk 1 
wilcox.test(BPC.EU.4.rt1, TRA.EU.4.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.4.rt1 and TRA.EU.4.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05400906 0.05408918 
## sample estimates: 
## (pseudo)median  
##     0.05404162 

wilcox.test(BPC.EU.4.rt1, RLB.EU.4.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.4.rt1 and RLB.EU.4.rt1 
## V = 292400, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1033959 -0.1009262 
## sample estimates: 
## (pseudo)median  
##     -0.1021634 

wilcox.test(TRA.EU.4.rt1, RLB.EU.4.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.4.rt1 and RLB.EU.4.rt1 
## V = 60, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1574268 -0.1549516 
## sample estimates: 
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## (pseudo)median  
##     -0.1561877 

#Year 4-Risk 2 
wilcox.test(BPC.EU.4.rt2, TRA.EU.4.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.4.rt2 and TRA.EU.4.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1239804 0.1242536 
## sample estimates: 
## (pseudo)median  
##      0.1241321 

wilcox.test(BPC.EU.4.rt2, RLB.EU.4.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.4.rt2 and RLB.EU.4.rt2 
## V = 360350, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1361195 -0.1337468 
## sample estimates: 
## (pseudo)median  
##     -0.1349358 

wilcox.test(TRA.EU.4.rt2, RLB.EU.4.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.4.rt2 and RLB.EU.4.rt2 
## V = 63, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2601754 -0.2578289 
## sample estimates: 
## (pseudo)median  
##     -0.2590008 
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#Year 5-Risk 1 
wilcox.test(BPC.EU.5.rt1, TRA.EU.5.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.5.rt1 and TRA.EU.5.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05403551 0.05414891 
## sample estimates: 
## (pseudo)median  
##     0.05410315 

wilcox.test(BPC.EU.5.rt1, RLB.EU.5.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.5.rt1 and RLB.EU.5.rt1 
## V = 330460, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.10220132 -0.09972471 
## sample estimates: 
## (pseudo)median  
##     -0.1009646 

wilcox.test(TRA.EU.5.rt1, RLB.EU.5.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.5.rt1 and RLB.EU.5.rt1 
## V = 118, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1562902 -0.1538158 
## sample estimates: 
## (pseudo)median  
##     -0.1550531 
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#Year 5-Risk 2 
wilcox.test(BPC.EU.5.rt2, TRA.EU.5.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.5.rt2 and TRA.EU.5.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1241096 0.1243586 
## sample estimates: 
## (pseudo)median  
##      0.1242219 

wilcox.test(BPC.EU.5.rt2, RLB.EU.5.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.5.rt2 and RLB.EU.5.rt2 
## V = 407840, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1347128 -0.1323407 
## sample estimates: 
## (pseudo)median  
##     -0.1335481 

wilcox.test(TRA.EU.5.rt2, RLB.EU.5.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.5.rt2 and RLB.EU.5.rt2 
## V = 122, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2588729 -0.2564789 
## sample estimates: 
## (pseudo)median  
##     -0.2577013 
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#Year 6-Risk 1 
wilcox.test(BPC.EU.6.rt1, TRA.EU.6.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.6.rt1 and TRA.EU.6.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05395007 0.05406160 
## sample estimates: 
## (pseudo)median  
##     0.05402189 

wilcox.test(BPC.EU.6.rt1, RLB.EU.6.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.6.rt1 and RLB.EU.6.rt1 
## V = 371240, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1029417 -0.1004707 
## sample estimates: 
## (pseudo)median  
##     -0.1017052 

wilcox.test(TRA.EU.6.rt1, RLB.EU.6.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.6.rt1 and RLB.EU.6.rt1 
## V = 190, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1569591 -0.1544854 
## sample estimates: 
## (pseudo)median  
##     -0.1557177 
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#Year 6-Risk 2 
wilcox.test(BPC.EU.6.rt2, TRA.EU.6.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.6.rt2 and TRA.EU.6.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1239145 0.1241768 
## sample estimates: 
## (pseudo)median  
##       0.124043 

wilcox.test(BPC.EU.6.rt2, RLB.EU.6.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.6.rt2 and RLB.EU.6.rt2 
## V = 465730, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1356382 -0.1332408 
## sample estimates: 
## (pseudo)median  
##      -0.134442 

wilcox.test(TRA.EU.6.rt2, RLB.EU.6.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.6.rt2 and RLB.EU.6.rt2 
## V = 224, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2595905 -0.2571680 
## sample estimates: 
## (pseudo)median  
##     -0.2583774 
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#Year 7-Risk 1 
wilcox.test(BPC.EU.7.rt1, TRA.EU.7.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.7.rt1 and TRA.EU.7.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05402649 0.05412445 
## sample estimates: 
## (pseudo)median  
##     0.05406795 

wilcox.test(BPC.EU.7.rt1, RLB.EU.7.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.7.rt1 and RLB.EU.7.rt1 
## V = 287710, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1035063 -0.1009904 
## sample estimates: 
## (pseudo)median  
##     -0.1022268 

wilcox.test(TRA.EU.7.rt1, RLB.EU.7.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.7.rt1 and RLB.EU.7.rt1 
## V = 127, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1575639 -0.1550440 
## sample estimates: 
## (pseudo)median  
##     -0.1562824 
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#Year 7-Risk 2 
wilcox.test(BPC.EU.7.rt2, TRA.EU.7.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.7.rt2 and TRA.EU.7.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1240337 0.1242809 
## sample estimates: 
## (pseudo)median  
##      0.1241778 

wilcox.test(BPC.EU.7.rt2, RLB.EU.7.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.7.rt2 and RLB.EU.7.rt2 
## V = 367700, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1363425 -0.1339816 
## sample estimates: 
## (pseudo)median  
##     -0.1351564 

wilcox.test(TRA.EU.7.rt2, RLB.EU.7.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.7.rt2 and RLB.EU.7.rt2 
## V = 130, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2604004 -0.2580450 
## sample estimates: 
## (pseudo)median  
##     -0.2592061 
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#Year 8-Risk 1 
wilcox.test(BPC.EU.8.rt1, TRA.EU.8.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.8.rt1 and TRA.EU.8.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05402965 0.05413740 
## sample estimates: 
## (pseudo)median  
##     0.05405921 

wilcox.test(BPC.EU.8.rt1, RLB.EU.8.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.8.rt1 and RLB.EU.8.rt1 
## V = 319990, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1033710 -0.1008854 
## sample estimates: 
## (pseudo)median  
##     -0.1021281 

wilcox.test(TRA.EU.8.rt1, RLB.EU.8.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.8.rt1 and RLB.EU.8.rt1 
## V = 51, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1574662 -0.1549758 
## sample estimates: 
## (pseudo)median  
##     -0.1562249 
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#Year 8-Risk 2 
wilcox.test(BPC.EU.8.rt2, TRA.EU.8.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.8.rt2 and TRA.EU.8.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1240953 0.1243427 
## sample estimates: 
## (pseudo)median  
##      0.1242406 

wilcox.test(BPC.EU.8.rt2, RLB.EU.8.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.8.rt2 and RLB.EU.8.rt2 
## V = 394560, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1359632 -0.1335666 
## sample estimates: 
## (pseudo)median  
##     -0.1347617 

wilcox.test(TRA.EU.8.rt2, RLB.EU.8.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.8.rt2 and RLB.EU.8.rt2 
## V = 57, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2601287 -0.2577302 
## sample estimates: 
## (pseudo)median  
##     -0.2589563 
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#Year 9-Risk 1 
wilcox.test(BPC.EU.9.rt1, TRA.EU.9.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.9.rt1 and TRA.EU.9.rt1 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.05393808 0.05406720 
## sample estimates: 
## (pseudo)median  
##     0.05401215 

wilcox.test(BPC.EU.9.rt1, RLB.EU.9.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.9.rt1 and RLB.EU.9.rt1 
## V = 318590, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1018605 -0.0993823 
## sample estimates: 
## (pseudo)median  
##     -0.1006141 

wilcox.test(TRA.EU.9.rt1, RLB.EU.9.rt1, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.9.rt1 and RLB.EU.9.rt1 
## V = 85, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1558931 -0.1534132 
## sample estimates: 
## (pseudo)median  
##     -0.1546474 
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#Year 9-Risk 2 
wilcox.test(BPC.EU.9.rt2, TRA.EU.9.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE)  

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.9.rt2 and TRA.EU.9.rt2 
## V = 50005000, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  0.1238799 0.1241688 
## sample estimates: 
## (pseudo)median  
##      0.1240387 

wilcox.test(BPC.EU.9.rt2, RLB.EU.9.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  BPC.EU.9.rt2 and RLB.EU.9.rt2 
## V = 386590, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.1345231 -0.1321231 
## sample estimates: 
## (pseudo)median  
##     -0.1333183 

wilcox.test(TRA.EU.9.rt2, RLB.EU.9.rt2, alternative = "two.sided", mu = 
0, paired = TRUE, conf.level = 0.90, conf.int = TRUE) 

##  
##  Wilcoxon signed rank test with continuity correction 
##  
## data:  TRA.EU.9.rt2 and RLB.EU.9.rt2 
## V = 88, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 
## 90 percent confidence interval: 
##  -0.2585291 -0.2560985 
## sample estimates: 
## (pseudo)median  
##     -0.2573064 

#Results 
Risk.Data <- rbind(Risk.Data.Yr3,Risk.Data.Yr4,Risk.Data.Yr5,Risk.Data.
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Yr6,Risk.Data.Yr7,Risk.Data.Yr8,Risk.Data.Yr9) 
Risk.data.summary <- summarySE(Risk.Data,measurevar = "Utility", groupv
ars = c("Year","Profile","Design"), conf.interval = 0.90) 
Median.data <- c(median(BPC.EU.3.rt1), median(TRA.EU.3.rt1), median(RLB
.EU.3.rt1), median(BPC.EU.3.rt2), median(TRA.EU.3.rt2), median(RLB.EU.3
.rt2), median(BPC.EU.4.rt1), median(TRA.EU.4.rt1), median(RLB.EU.4.rt1)
, median(BPC.EU.4.rt2), median(TRA.EU.4.rt2), median(RLB.EU.4.rt2), med
ian(BPC.EU.5.rt1), median(TRA.EU.5.rt1), median(RLB.EU.5.rt1), median(B
PC.EU.5.rt2), median(TRA.EU.5.rt2), median(RLB.EU.5.rt2), median(BPC.EU
.6.rt1), median(TRA.EU.6.rt1), median(RLB.EU.6.rt1), median(BPC.EU.6.rt
2), median(TRA.EU.6.rt2), median(RLB.EU.6.rt2), median(BPC.EU.7.rt1), m
edian(TRA.EU.7.rt1), median(RLB.EU.7.rt1), median(BPC.EU.7.rt2), median
(TRA.EU.7.rt2), median(RLB.EU.7.rt2), median(BPC.EU.8.rt1), median(TRA.
EU.8.rt1), median(RLB.EU.8.rt1), median(BPC.EU.8.rt2), median(TRA.EU.8.
rt2), median(RLB.EU.8.rt2), median(BPC.EU.9.rt1), median(TRA.EU.9.rt1), 
median(RLB.EU.9.rt1), median(BPC.EU.9.rt2), median(TRA.EU.9.rt2), media
n(RLB.EU.9.rt2)) 
Lower <- c(quantile(BPC.EU.3.rt1, c(0.05)), quantile(TRA.EU.3.rt1, c(0.
05)), quantile(RLB.EU.3.rt1, c(0.05)), quantile(BPC.EU.3.rt1, c(0.05)), 
quantile(TRA.EU.3.rt1, c(0.05)), quantile(RLB.EU.3.rt1, c(0.05)), quant
ile(BPC.EU.4.rt1, c(0.05)), quantile(TRA.EU.4.rt1, c(0.05)), quantile(R
LB.EU.4.rt1, c(0.05)), quantile(BPC.EU.4.rt1, c(0.05)), quantile(TRA.EU
.4.rt1, c(0.05)), quantile(RLB.EU.4.rt1, c(0.05)), quantile(BPC.EU.5.rt
1, c(0.05)), quantile(TRA.EU.5.rt1, c(0.05)), quantile(RLB.EU.5.rt1, c(
0.05)), quantile(BPC.EU.5.rt1, c(0.05)), quantile(TRA.EU.5.rt1, c(0.05)
), quantile(RLB.EU.5.rt1, c(0.05)), quantile(BPC.EU.6.rt1, c(0.05)), qu
antile(TRA.EU.6.rt1, c(0.05)), quantile(RLB.EU.6.rt1, c(0.05)), quantil
e(BPC.EU.6.rt1, c(0.05)), quantile(TRA.EU.6.rt1, c(0.05)), quantile(RLB
.EU.6.rt1, c(0.05)), quantile(BPC.EU.7.rt1, c(0.05)), quantile(TRA.EU.7
.rt1, c(0.05)), quantile(RLB.EU.7.rt1, c(0.05)), quantile(BPC.EU.7.rt1, 
c(0.05)), quantile(TRA.EU.7.rt1, c(0.05)), quantile(RLB.EU.7.rt1, c(0.0
5)), quantile(BPC.EU.8.rt1, c(0.05)), quantile(TRA.EU.8.rt1, c(0.05)), 
quantile(RLB.EU.8.rt1, c(0.05)), quantile(BPC.EU.8.rt1, c(0.05)), quant
ile(TRA.EU.8.rt1, c(0.05)), quantile(RLB.EU.8.rt1, c(0.05)), quantile(B
PC.EU.9.rt1, c(0.05)), quantile(TRA.EU.9.rt1, c(0.05)), quantile(RLB.EU
.9.rt1, c(0.05)), quantile(BPC.EU.9.rt1, c(0.05)), quantile(TRA.EU.9.rt
1, c(0.05)), quantile(RLB.EU.9.rt1, c(0.05))) 
Upper <- c(quantile(BPC.EU.3.rt1, c(0.95)), quantile(TRA.EU.3.rt1, c(0.
95)), quantile(RLB.EU.3.rt1, c(0.95)), quantile(BPC.EU.3.rt1, c(0.95)), 
quantile(TRA.EU.3.rt1, c(0.95)), quantile(RLB.EU.3.rt1, c(0.95)), quant
ile(BPC.EU.4.rt1, c(0.95)), quantile(TRA.EU.4.rt1, c(0.95)), quantile(R
LB.EU.4.rt1, c(0.95)), quantile(BPC.EU.4.rt1, c(0.95)), quantile(TRA.EU
.4.rt1, c(0.95)), quantile(RLB.EU.4.rt1, c(0.95)), quantile(BPC.EU.5.rt
1, c(0.95)), quantile(TRA.EU.5.rt1, c(0.95)), quantile(RLB.EU.5.rt1, c(
0.95)), quantile(BPC.EU.5.rt1, c(0.95)), quantile(TRA.EU.5.rt1, c(0.95)
), quantile(RLB.EU.5.rt1, c(0.95)), quantile(BPC.EU.6.rt1, c(0.95)), qu
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antile(TRA.EU.6.rt1, c(0.95)), quantile(RLB.EU.6.rt1, c(0.95)), quantil
e(BPC.EU.6.rt1, c(0.95)), quantile(TRA.EU.6.rt1, c(0.95)), quantile(RLB
.EU.6.rt1, c(0.95)), quantile(BPC.EU.7.rt1, c(0.95)), quantile(TRA.EU.7
.rt1, c(0.95)), quantile(RLB.EU.7.rt1, c(0.95)), quantile(BPC.EU.7.rt1, 
c(0.95)), quantile(TRA.EU.7.rt1, c(0.95)), quantile(RLB.EU.7.rt1, c(0.9
5)), quantile(BPC.EU.8.rt1, c(0.95)), quantile(TRA.EU.8.rt1, c(0.95)), 
quantile(RLB.EU.8.rt1, c(0.95)), quantile(BPC.EU.8.rt1, c(0.95)), quant
ile(TRA.EU.8.rt1, c(0.95)), quantile(RLB.EU.8.rt1, c(0.95)), quantile(B
PC.EU.9.rt1, c(0.95)), quantile(TRA.EU.9.rt1, c(0.95)), quantile(RLB.EU
.9.rt1, c(0.95)), quantile(BPC.EU.9.rt1, c(0.95)), quantile(TRA.EU.9.rt
1, c(0.95)), quantile(RLB.EU.9.rt1, c(0.95))) 
Risk.data.summary <- cbind(Risk.data.summary,Lower) 
Risk.data.summary <- cbind(Risk.data.summary,Upper) 
Risk.data.summary <- cbind(Risk.data.summary,Median.data) 
Risk.data.summary <- rename(Risk.data.summary, replace = c("Utility"= "
Mean","Median.data"="Median","sd"="Standard Deviation", "se"="Standard 
Error", "ci"="Confidence Interval")) 
write.csv(Risk.data.summary, file = "5b_Riskdata.csv") 
 
#Comparisons 
Comparison.rt1.data <- data.frame(Risk = array(30000000,7),Year = c(3,4
,5,6,7,8,9), One = c((sum(BPC.EU.3.rt1 < TRA.EU.3.rt1)/10000), (sum(BPC
.EU.4.rt1 < TRA.EU.4.rt1)/10000), (sum(BPC.EU.5.rt1 < TRA.EU.5.rt1)/100
00), (sum(BPC.EU.6.rt1 < TRA.EU.6.rt1)/10000), (sum(BPC.EU.7.rt1 < TRA.
EU.7.rt1)/10000), (sum(BPC.EU.8.rt1 < TRA.EU.8.rt1)/10000), (sum(BPC.EU
.9.rt1 < TRA.EU.9.rt1)/10000)), Two = c((sum(BPC.EU.3.rt1 < RLB.EU.3.rt
1)/10000), (sum(BPC.EU.4.rt1 < RLB.EU.4.rt1)/10000), (sum(BPC.EU.5.rt1 
< RLB.EU.5.rt1)/10000), (sum(BPC.EU.6.rt1 < RLB.EU.6.rt1)/10000), (sum(
BPC.EU.7.rt1 < RLB.EU.7.rt1)/10000), (sum(BPC.EU.8.rt1 < RLB.EU.8.rt1)/
10000), (sum(BPC.EU.9.rt1 < RLB.EU.9.rt1)/10000)), Three = c((sum(TRA.E
U.3.rt1 < RLB.EU.3.rt1)/10000), (sum(TRA.EU.4.rt1 < RLB.EU.4.rt1)/10000
), (sum(TRA.EU.5.rt1 < RLB.EU.5.rt1)/10000), (sum(TRA.EU.6.rt1 < RLB.EU
.6.rt1)/10000), (sum(TRA.EU.7.rt1 < RLB.EU.7.rt1)/10000), (sum(TRA.EU.8
.rt1 < RLB.EU.8.rt1)/10000), (sum(TRA.EU.9.rt1 < RLB.EU.9.rt1)/10000))) 
Comparison.rt1.data <- rename(Comparison.rt1.data, replace = c("Risk"="
Risk Profile","One"= "BPC < TRA", "Two" = "BPC < RLB", "Three" = "TRA < 
RLB")) 
Comparison.rt2.data <- data.frame(Risk = array(5000000,7),Year = c(3,4,
5,6,7,8,9), One = c((sum(BPC.EU.3.rt2 < TRA.EU.3.rt2)/10000), (sum(BPC.
EU.4.rt2 < TRA.EU.4.rt2)/10000), (sum(BPC.EU.5.rt2 < TRA.EU.5.rt2)/1000
0), (sum(BPC.EU.6.rt2 < TRA.EU.6.rt2)/10000), (sum(BPC.EU.7.rt2 < TRA.E
U.7.rt2)/10000), (sum(BPC.EU.8.rt2 < TRA.EU.8.rt2)/10000), (sum(BPC.EU.
9.rt2 < TRA.EU.9.rt2)/10000)), Two = c((sum(BPC.EU.3.rt2 < RLB.EU.3.rt2
)/10000), (sum(BPC.EU.4.rt2 < RLB.EU.4.rt2)/10000), (sum(BPC.EU.5.rt2 < 
RLB.EU.5.rt2)/10000), (sum(BPC.EU.6.rt2 < RLB.EU.6.rt2)/10000), (sum(BP
C.EU.7.rt2 < RLB.EU.7.rt2)/10000), (sum(BPC.EU.8.rt2 < RLB.EU.8.rt2)/10
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000), (sum(BPC.EU.9.rt2 < RLB.EU.9.rt2)/10000)), Three = c((sum(TRA.EU.
3.rt2 < RLB.EU.3.rt2)/10000), (sum(TRA.EU.4.rt2 < RLB.EU.4.rt2)/10000), 
(sum(TRA.EU.5.rt2 < RLB.EU.5.rt2)/10000), (sum(TRA.EU.6.rt2 < RLB.EU.6.
rt2)/10000), (sum(TRA.EU.7.rt2 < RLB.EU.7.rt2)/10000), (sum(TRA.EU.8.rt
2 < RLB.EU.8.rt2)/10000), (sum(TRA.EU.9.rt2 < RLB.EU.9.rt2)/10000))) 
Comparison.rt2.data <- rename(Comparison.rt2.data, replace = c("Risk"="
Risk Profile","One"= "BPC < TRA", "Two" = "BPC < RLB", "Three" = "TRA < 
RLB")) 
Comparison.data <- rbind(Comparison.rt1.data,Comparison.rt2.data) 
write.csv(Comparison.data, file = "5b_Comparisons.csv") 
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