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ABSTRACT 

The research detailed in this study investigates an internal vacuum as well as its 

optimal structural design, utilizing currently available materials, as an alternative 

to traditional gases to create and sustain buoyancy in lighter than air vehicles.  To 

date, the consideration of a vacuum lighter than air vehicle has been limited to 

three sources of literature, the earliest of which dates back to 1663.  This study 

will initially summarize and review this literature.  We will then combine finite 

element analysis, dimensional analysis, design of experiments, and response 

surface methodology studies to explore the feasibility, and the functional design 

of a vacuum lighter than air vehicle constrained by modern technology and 

materials. The process developed herein allows a designer to perform a broad 

scope initial structural response design space investigation based on user defined 

constraints to determine if and where structurally feasible regions or points lie. 

This research then specifically analyzes two cylindrical pultruded rod geometric 

frame designs with membrane skins stretched over the top vacuum lighter than air 

vehicle designs.  The first being an icosahedron frame and skin structure proposed 

by Metlen at the Air Force Institute of Technology. The second is a similar frame 

and skin concept, a hexakis icosahedron, designed by the author. The major 

findings resulting from the two case studies analyzed are: 1) The structural design 

space exploration methodology is a viable and cost effective way to perform an 

early-stage structural feasibility analysis on a vehicle design that relies heavily on 

its structural performance, 2) For the frame and skin vacuum lighter than air 

vehicle concepts analyzed, the beam thickness/beam radius ratio, as well as the 

frame specific modulus had the most significant effect on the max frame and skin 

stress responses, 3) The experimental test conducted to validate the frame 

modeling technique agreed with the finite element results, therefore validating the 

frame modeling technique, 4) Performing a dimensional analysis on a finite 

element system before performing a design of experiments resulted in a 

significant reduction in the number of terms to evaluate in order to represent the 

entire system, 5) Within the limits analyzed for both case studies, the icosahedron 

did not have a structurally feasible design region while the hexakis design had a 

significantly large region within the design space that was structurally feasible.  
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CONCEPTUAL DESIGN, STRUCTURAL ANALYSIS, AND DESIGN SPACE 

EXPLORATION OF A VACUUM LIGHTER THAN AIR VEHICLE 

I. Introduction 

To date, lighter than air vehicles (LTAV) achieve “lift” through the use of lighter 

than air gases. These gases produce the buoyant force necessary to float or lift the 

vehicles in air, where the force is equal to the weight of the fluid displaced by the 

volume. If the mass of the displaced fluid is greater than the mass of the volume, the 

volume will float or be positively buoyant. If the displaced mass is less than the volume’s 

mass, the volume will sink or be negatively buoyant. If the masses are equal then the 

volume will neither float nor sink, or be neutrally buoyant. With this concept in mind, a 

theoretical alternative to creating buoyancy in a vehicle is a vacuum. A vehicle could 

theoretically be made positively buoyant with a vacuum instead of a gas as long as the 

volume is maintained. However, a vacuum presents a unique set of challenges and 

requirements, namely that the vehicle’s structure would need to be rigid or semi-rigid, so 

that its volume is maintained, and the structure will need to be stiff enough to resist the 

compressive loads due to an internal vacuum and be light enough to float. A vacuum 

lighter than air vehicle (VLTAV) satisfying these requirements can certainly be designed, 

but can a design constrained by current technology and materials be feasibly 

manufactured that satisfies these requirements? This research addresses this question in 

two parts. First, the research combines finite element analysis (FEA), dimensional 

analysis (DA), design of experiments (DOE), and response surface methodology (RSM) 

to explore the structural response design space of a vacuum LTAV constrained by 

modern technology and materials. Second, the bounded design space will be analyzed to 



 

2 

 

evaluate if any structurally feasible regions exist within the design space. This process 

will include the analysis of the VLTAV design proposed by Metlen in 2012 [1], and then 

will be extended to a similar frame and skin design, hexakis icosahedron, developed by 

the author. 

This introduction begins with the motivation for the work as well as a review of 

previous relevant research, and ends with a list detailing the flow of the research work 

performed. 

Motivation 

To date, the only way to achieve lighter than air flight is with a lifting gas. Some 

of these gases are heated air, hydrogen, and helium. Helium is the primary lifting gas for 

all LTAVs. However, in the near future it is expected that the cost and availability of 

helium are going to change considerably. Due to a US law passed in 1996, all of the 

helium stored in the US National Helium Reserve must all be sold off by 2015 [2]. This 

gas field is by far the biggest store of helium in the world.  It is estimated that the world 

could run out of helium in 25 to 30 years. This is true because helium is a non-renewable 

resource. It is estimated that after 2016 the price of helium will increase 20-50 fold. 

Therefore, the need for a replacement will become necessary in the near future. The one 

proposed by this research is a vacuum. The lightest internal gas would be nothing, i.e. a 

vacuum. This concept is not a novel concept, however to date a vacuum “filled” vehicle 

does not exist. 

Since the conception of the idea of a vacuum lighter than air vehicle, proposed by 

Lana de Terzi in 1663 [3], a vacuum lighter than air vehicle has yet to be manufactured or 
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heavily investigated. Lana’s idea utilized a thin spherical shell consisting of a single 

material, copper. Lana, certainly had the right idea in choosing a sphere, but with shell 

buckling having not yet been developed, his design was destined for failure as further 

explained below. His spherical shell of copper with an internal vacuum would have failed 

due to shell buckling. Shell buckling occurs in this instance because of the geometric 

instability of the sphere under circumferential external pressure. The only way a sphere of 

this type would not fail due to shell buckling would be if the material chosen had a 

specific modulus,
𝐸

𝜌
, of approximately 4.9*108, which did not exist in 1663 [4].  Now if 

we fast forward 353 years to today, the material with the highest specific stiffness found 

in literature, a carbon nanotube composite, has a specific stiffness value that is half of 

what is necessary to create a thin shelled vacuum lighter than air sphere without shell 

buckling occurring.  

The weight-to-buoyancy ratio is a way to state the buoyancy strength of a lighter 

than air vehicle. A value less than 1 yields a positively buoyant structure, equal to 1 

yields neutrally buoyant, and greater than 1 yields negatively buoyant. A sphere is the 

most ideal geometry because it has the largest volume for the smallest surface area out of 

any geometric shape, and therefore the best weight-to-buoyancy potential if you ratio the 

surface area over the volume. The concept will be further discusses and developed in 

chapter II. 

Since a material to create a thin shelled vacuum sphere does not exist presently, 

we look to other design alternatives to see if this vacuum vehicle is feasible. In 2005, 

Andrey M. Akhmeteli and Andrey V. Gavrilin [4] developed a patent for a layered shell 
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vacuum balloon. This design utilized sandwich layering of materials to create a layered 

sphere to combat the shell buckling limit of de Terzi’s design. Within their patent, they 

theoretically showed that a vacuum vehicle of this design is feasible utilizing modern 

technology. However, the manufacturing difficulty of a layered balloon has prohibited 

this vehicle from being manufactured and tested to date. Again, the current state of 

technology appears to be the limiting factor for a vacuum lighter than air vehicle. 

In 2012, a design for a vacuum lighter than air vehicle (VLTAV) was proposed by 

Metlen that utilized a geodesic frame, an icosahedron, of cylindrical pultruded rods with 

a membrane skin stretched over the frame [1]. His design is shown in Figure 1 as a split 

view to show the frame and skin, where the black is empty space. Now, this design 

appears quite different from those proposed previously which utilize a spherical 

geometry. The icosahedron shape, which is formed by the skin, does attempt to 

approximate a sphere where each vertex of the icosahedron lies on a circumscribing 

sphere. The internal frame with membrane skin design, allows for and in fact encourages 

the skin to buckle so that it can acquire stiffness and apply the pressure load developed by 

the vacuum to the internal supporting frame. As long as the skin deflection is minimal 

and the internal volume loss is insignificant, the “empty” internal volume will produce a 

buoyant force. This vehicle was structurally analyzed using finite elements in 2012 and 

2014 by Metlen and Rodriguez at the Air Force Institute of Technology [1] [5]. When 

this vehicle was analyzed, the design was fairly constrained to fit a niche category of a 

small unmanned air vehicle, and the material properties utilized for the analyses were 

geared to the future and unattainable with any material found presently in the literature 

[6]- [7]. When Metlen and Rodriguez analyzed the icosahedron structure, they either 
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chose specific design points to analyze or only allowed some of the model input 

parameters of the vehicle to vary. The above analysis on the icosahedron VLTAV sets the 

foundation for the research work to be performed. 

 

Figure 1: Metlen Icosahedron Design 

 

Now, consider the icosahedron vehicle design or rather any design, they all have 

what is known as an input and output design spaces. An input design space is a 

multidimensional space that contains all combinations of the input variables for the 

design. An output design space is a multidimensional space that contains the observed 

responses of the design at all combinations of the input variables within the input design 

space. Theoretically, theses spaces are infinite. However, they can be viewed in finite 

regions where the design parameter are defined within a set of bounds. Looking back at 

the structural results obtained by Metlen and Rodriguez for the icosahedron design, their 

results along with their respective input parameters would fill portions of the theoretically 

infinite structural design space associated with the design. The design space regions 
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defined by their results, do however, contribute toward the regions that are infeasible to 

manufacture in the present day because of their materials selection [5] [1].  

This is where the research work proposed in the introduction develops significant 

merit. The research work will state the inputs of a VLTAV design finite element 

structural analysis into its defining parameters with a dimensional analysis. Then it will 

apply material and manufacturing constraints where applicable to the defining parameters 

and conduct a broad scope set of finite element analyses. A design of experiments (DOE) 

will then be developed as a first order approximation of the structural response design 

space (RSM) (within the input parameter limits established), and evaluate if feasible 

regions or points exist. These regions will be the answer to the question of “what makes 

this design work?” and “where do I start?” 

Document Outline 

The research presented in this dissertation begins with a literature review of 

lighter than air vehicles and previous research of vacuum lighter than air vehicles. Next, 

the methodology for constructing a finite element structural response design space and 

evaluating it for feasibility is developed. Before the proposed methodology is applied to 

the Metlen Icosahedron and subsequently the hexakis icosahedron designs, a baseline 

series of experiments were performed to validate the frame finite element modeling and 

analysis technique utilized in modeling both case study designs. The validation 

experiments were conducted on only the icosahedron frame, because the desire was to 

validate the modeling and analysis technique of a geometric frame composed of 

cylindrical rods, not necessarily the response of the icosahedron itself. Therefore, the 

results obtained by the validation experiment of the Metlen icosahedron were extended to 
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the hexakis icosahedron design.  With the modeling technique validated, the proposed 

structural DSE and analysis methodology was applied to the Metlen Icosahedron and the 

similar hexakis icosahedron designs. 

The process that was taken to conduct the proposed research and accomplish the 

goals of mapping the feasible design space associated with both vacuum lighter than air 

vehicle case studies are shown in the following steps:    

1. Develop the methodology to create and evaluate a structural response design 

space of a VLTAV structure to determine if a structurally feasible region or points 

exist with modern material and manufacturing limitations. 

2. Validate the finite element modeling and analysis technique of a geometric frame 

composed of cylindrical rods by designing and conducting a compression and 

modal analysis experiment on a 3D printed icosahedron frame. 

3. Analyze the Metlen Icosahedron and hexakis icosahedron case study for 

feasibility, utilizing the proposed methodology. 

a. Design and create mesh converged finite element models of the 

icosahedron and hexakis icosahedron frame and skin structures loaded 

with an internal vacuum. 

b. Determine the materials to be investigated for the analysis and the 

manufacturing limits for the proposed frame and skin structures. 

c. Characterize the inputs of the finite element analysis (FEA) system by 

utilizing a dimensional analysis or Buckingham Pi to determine how or if 

the input parameters are related to each other and create non-dimensional 

pi parameters that are composed of the original inputs to the system. These 



 

8 

 

pi parameters are valuable because they condense the original system of 

many inputs to a new system of relationships, where these relationships 

show how the system is driven. 

d. Utilize the non-dimensional quantities acquired from the dimensional 

analysis to conduct a design of experiments on both case studies to 

determine which input parameters significantly affect the structural 

responses of the structures. 

e. Use the DOE data and the resulting significant terms to create structural 

response surfaces for each of the case studies, and phrase the stress results 

into safety factor for feasibility assessment. 

4. Observe the structural response surfaces to determine where and if a feasible 

design region or points with respect to the input parameters and manufacturing 

constraints exist. 

5. Lastly, perform a general buckling analysis on the frames of the two case studies 

to indicate whether or not global buckling is a concern for the case studies 

evaluated within the input limits. 
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II. Background and Previous Work 

This chapter will discuss background information relating to lighter than air 

vehicles and previous work on designs for vacuum lighter than air vehicles. 

Lighter than Air Vehicles 

The working force behind all lighter than air vehicles is buoyancy. A buoyant 

force is an upward force felt on an object that is equal to the weight of the fluid displaced 

by the object, also known as the Archimedes principle, as shown in Figure 2. This 

principle is the foundation of lighter than air vehicles. All bodies have a buoyant force 

except when the body is in a vacuum. These forces range from negative, neutral, and 

positive buoyancy [8]. Negative buoyancy is created when the weight of the object is 

greater than the weight of the fluid displaced by the object, causing the object to sink. 

Neutral buoyancy is where the weight of the object is equal to the weight of the displaced 

fluid; the vessel will neither rise nor fall. Lastly, positive buoyancy is where the weight of 

the object is less than the weight of the displaced fluid, causing the object to float. Thus, 

for any vehicle to be considered a lighter than air vehicle, its weight needs to be less than 

the weight of the displaced fluid [8]. The buoyancy of a vehicle can be characterized by a 

ratio known as weight/buoyancy (W/B). Where a W/B less than one results in a floating 

vehicle, a W/B greater than one results in a sinking vehicle, and a W/B equal to one 

results a neutrally buoyancy vehicle. The optimal shape for a lighter than air vehicle is a 

sphere, which has the highest surface area/volume ratio of any shape. The surface 

area/volume ratio directly correlates to W/B, where surface area can be thought of as the 

weight (W) and volume can be thought of as the buoyant force (B). Current lighter than 

air vehicles are designed with a W/B less than one so that they will float, but they will not 
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increase in altitude forever. As altitude increases the air density decreases which 

decreases the buoyant force on the vehicle. Eventually, the altitude rise will decrease the 

buoyancy to equal the weight, and the vehicle will become neutrally buoyant. 

 

Figure 2: Buoyancy Illustration 

 

Traditional LTA have existed since 1783, where the first flight of the hot air 

balloon occurred on June 4th by the Montgolfier brothers [9]. Since then, there have been 

a few modern advancements with LTA vehicles. Lighter than air vehicles are structures 

that attain positive buoyancy through the use of an internal gas. Historically these internal 

gases have been helium, heated air, and hydrogen, with helium and heated air being the 

two currently used today. These LTA vehicles can be broken down into three different 

categories: non-rigid, rigid, and semi-rigid. 
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 Non-rigid LTAVs are vehicles that utilize a membrane or skin to enclose internal 

gas and take a non-rigid shape in order to achieve buoyancy. The gases typically used are 

hot air and helium. A non-rigid structure was the first lighter than air vehicle, specifically 

a hot air balloon, accomplished by Jacques-Étienne Montgolfier in 1783 [9]. These 

vehicles were originally utilized for transportation, however, as airships evolved the non-

rigid structures became less useful as passenger vehicles and are now commonly used for 

atmospheric experimentation, advertisements, and decoration. These vehicles can be 

more resilient over other LTAVs because the internal gas acts as the only structural 

support, so the skin can fold and not be damaged unlike a rigid airship [10]. These 

vehicles also tend to be cheaper and easier to manufacture over any other LTAV. 

Semi-rigid LTAVs are airships that have an inflated skin that maintains the 

vehicle’s shape and have an internal frame. The internal frame helps to distribute loads 

throughout the vehicle and it allows for control surface and engine mounting anywhere 

on the vehicle. With a gas bag to maintain the exterior shape, the internal frame does not 

have to be as robust and therefore the vehicle has less weight when compared to a rigid 

airship. The gas bag carries the majority of the aerodynamic loading and allows for the 

exterior of the airship to be more durable because the gas bag can deflate significantly 

before failure. 

Rigid airships consist of a rigid internal frame with a membrane covering the 

outside. Inside of the frame are separate bags that contain the lighter than air gas. The 

exterior membrane keeps the ship enclosed as well as helps distribute the air loads across 

the frame. The rigid frame has the same benefits as the semi-rigid design however, it 

allows for more significant payload and higher air load endurance [11]. These vehicles 
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have the worst weight to buoyancy ratio out of the three LTA categories. This 

construction allows for the expansion of designs that focus on the body shape to act as a 

lifting body, therefore, producing a hybrid lift vehicle. Hybrid lift is accomplished by 

utilizing both aerodynamic lift as well as lift attributed to buoyancy. The aerodynamic lift 

is produced through the vehicle’s body shape. This, in conjunction with varying the 

buoyancy of the vehicle, transforms a hybrid lift vehicle from a heavier than air vehicle to 

a lighter than air vehicle. However, these vehicles are subject to increased weight, and 

poor exterior damage tolerance [11].  

Previous Work on Vacuum LTAVs 

1670’s Spherical Shell  

In 1663, Francesco Lana de Terzi proposed an idea for a lighter than air vehicle. 

This vehicle was composed of four 7.5 m diameter thin foil copper spheres. The concept 

is shown below in Figure 3. While Francesco’s buoyancy calculations were correct for 

his proposed design, his vehicle would never float. This is because the spheres would 

have failed, due to collapse, during the evacuation process. It was later proved by 

Gottfried William Leibniz in 1710 that no material exists to date to construct a vacuum 

vehicle as de Terzi proposed [3]. 
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Figure 3: Francesco Lana de Terzi’s LTAV concept [3]. 

 

Layered Shell Vacuum Balloons 

In 2005, Andrey M. Akhmeteli and Andrey V. Gavrilin devised a design for a 

vacuum lighter than air vehicle. This vehicle is based off the same design as de Terzi in 

1663, but with a modern upgrade. Akhmeteli and Gavrilin go as far as to perform a 

complete analysis of a vacuum sphere composed of a single material, proving that this 

design still to this day cannot be achieved. The limiting factor for a single material is the 

collapse of that material due to buckling. Utilizing equation (1), where h is equal to 

(𝜌𝑎𝑅)/(3𝜌𝑠), a relationship can be formed that determines the material properties that 

will yield a neutrally buoyant vehicle composed of a single material [4]. This equation is 
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shown below in equation (2), where E is equal to the modulus of elasticity (the materials 

resistance to being deformed elastically or linear stiffness) and 𝜌𝑠 is equal to the materials 

density. If you let 𝜌𝑎 be sea level air density (1.225 kg/m3), 𝜇 be the Poisson’s ratio 

(0.3), and 𝑃𝑐𝑟 be sea level atmospheric pressure (101,325 Pa), the right side yields 

approximately 4.5 *105 kg-1m5s-2. In other words, a very stiff and light weight material 

would be necessary. With this constraint, no material is known to exist to create a 

vacuum LTAV out of a homogeneous shell.  

𝑃𝑐𝑟 =  
2𝐸ℎ2

√3(1 − 𝜇2)

1

𝑅2
 (1) 

𝐸

𝜌𝑠
2

=
9𝑃𝑐𝑟√3(1−𝜇2)

2𝜌𝑎
2   (2) 

 

 With this known, Akhmeteli and Gavrilin propose to construct a skin or “shell” 

out of multiple layers in a sandwich configuration. Their structure will be composed of 

three layers, two thin (top and bottom) layers and a relatively thick cellular core layer. 

The core’s material properties were low density, high compressive strength in the 

transverse direction, high out-of-plane shear strength, high compressive modulus in the 

transverse direction, and high out-of-plane shear modulus [4]. An example is a material 

called Plascore PAMG-XR 1 1.0-3/8-0007-5056. The inner and outer layers’ properties 

are high modulus of elasticity, low density, and high ultimate strength. Some of the 

materials considered were I220H beryllium, 546-3E boron carbide ceramic, and 

diamond-like carbon (DLC). The team performed a buckling analysis as well as a critical 

load analysis on their three-layer shell. With known equations for three layer buckling 
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and critical load, they were able to propose several possible floating configurations with 

the materials mentioned above. They also performed a finite element buckling analysis 

on their sphere to confirm their theoretical results. 

Akhmeteli and Gavrilin were able to determine, in general for their vehicle, if the 

mass of the core was equal to the mass of the top and bottom sheet layers, they would 

have a floating vehicle at any desired altitude. They next were able to develop a set of 

optimization constraints that would in turn determine the critical design region for 

specific materials that satisfy buckling as well as positive buoyancy. These equations and 

criteria are stated below where 𝐸1 and 𝐸2 are the inner and outer shell material moduli, 

respectively. ℎ1, ℎ2, and ℎ3 are the thicknesses of each layer with ℎ1 and ℎ2 being the 

inner and outer shell thicknesses and ℎ3 being the core thickness. 𝐸𝑐 is the core modulus, 

𝜇1 and 𝜇2 are the Poisson’s ratio of the inner and outer shells, and R is the radius of the 

sphere. The entire development of these criteria equations can be found in Akhmeteli and 

Gavrilin’s patent application. They developed the following criteria based off their 

observed results from the evaluation of many layer and material vehicle configurations 

[4].     

1. “Compressive strength values in the transverse direction of at least the same 

order of magnitude as the atmospheric pressure” 

2. “Out-of-plane shear strength values of at least the same order of magnitude as 

the atmospheric pressure.” 

3. “The value for the expressions 2𝐸1
ℎ1ℎ3

𝑅2
 and 2𝐸2

ℎ2ℎ3

𝑅2
 must be of the same 

order of magnitude as the atmospheric pressure.” 
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4. “The value for the expressions [16𝐸𝑐
2 𝐸1

1−𝜇1
2]

1/3 ℎ1

𝑅
 and [16𝐸𝑐

2 𝐸2

1−𝜇2
2]

1/3 ℎ2

𝑅
 

must likewise be at least of the same order of magnitude as the atmospheric 

pressure.” 

5. 4𝜋𝑅2(ℎ1𝜌1 + ℎ2𝜌2 + ℎ3𝜌𝑐) <
4

3
𝜋𝑅3𝜌𝑎 

The last equation deals with the buoyancy constraint, where the left side must be 

less than the right side for positive buoyancy. The first four constraints fight against the 

last constraint to define a narrow range of critical values that allow for a floating vehicle. 

An example, where beryllium face sheets and an aluminum honeycomb core are being 

considered is shown in Figure 4 where the z axis is safety factor, the x axis, h1, is 

weight/buoyancy, and the y axis, h3, is the thickness of the core [4].  
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Figure 4: Optimization contours for beryllium face sheets and an aluminum honeycomb 

core [4]. 

 Figure 4 demonstrates for a safety factor of one, there are a wide range of core 

thicknesses and weight/buoyancies that would lead to a viable floating vehicle. As the 

safety factor increases, the solution range gets significantly smaller with a maximum 

weight/buoyancy of approximately 0.82. These results show, quite convincingly, that a 

vehicle composed of layered spherical shells could certainly work if the manufacturing 

challenges associated with the design could be overcome. To date, this research work 

continues at Florida State University and the vehicle has yet to be constructed [4]. 
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Icosahedron Vacuum Lighter than Air Vehicle 

In 2012, at the Air Force Institute of Technology (AFIT), Trent Metlen developed 

the idea of a vacuum lighter than air vehicle utilizing a geometric frame and membrane 

skin. The design that Metlen considered was a geodesic stiffened sphere.  Metlen 

analyzed geodesic spheres ranging from a frequency of one, an icosahedron, to ten in 

order to determine trends in weight to buoyancy.  

To define frequency, we have to define what an icosahedron is first. An 

icosahedron is a 20 sided polyhedron, with 12 vertices where each vertex lies on 

circumscribing sphere. Frequency denotes the number of times the beams of the 

icosahedron are divided, where at the points of divisions, new vertices, are created and 

those vertices are then placed on the original circumscribing sphere. As the frequency 

number increases, the new geodesic frame grows in a similar way to the sphere its 

vertices lie on. This is shown in Figure 5, where the top frame (all red) is an icosahedron 

and the subsequent frames are incremented frequency divisions of the original 

icosahedron. To clarify, in Figure 5, the higher frequency frames appear larger than the 

original icosahedron. Figure 5 is presented this way to visualize the increased number of 

vertices and beams making up the higher frequency structures.  
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Figure 5: Increasing Geodesic Frequencies starting with 1, an icosahedron  

Metlen wrote a finite element analysis (FEA) code in Matlab that analyzed 

geodesic frames, of frequency one through ten, for material failure and buckling. The 

frame, making up the geodesic configuration, was a series of hollow cylindrical tubes 

joined at each vertex of the geodesic. An illustration of an icosahedron built in this 

manner is shown in Figure 6. Metlen was able to optimize each frequency for W/B with 

failure mode constraints. Metlen determined that the simplest and best configuration was 

an icosahedron, or a geodesic sphere of frequency one. The icosahedron proved to be the 

best, because of its symmetric nature in that all of the triangle leg lengths are identical. 

This proves to be valuable because, as the geodesic frequency increases, some of the legs 

of the triangle experience more stress due to the dissimilar leg lengths amongst the higher 

frequency frames. A frequency of one also results in the lowest amount of surface area 
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and weight in the frame itself. The optimal design for the frame proposed by Metlen used 

a UHM carbon epoxy frame, which yielded a W/B of 0.57. It is noted that this is for the 

frame only, and it does not include any skin that would enclose the frame to contain the 

internal vacuum [1].  

 

Figure 6: Icosahedron Frame 

 For the skin, Metlen considered using Zylon fibers as the material. In reality, the 

fibers would need to be integrated into a laminate so that a skin could be manufactured. 

When this occurs, the material properties of the laminate will be less than that of the 

Zylon fibers alone. He performed a FEA on a membrane segment, considering a single 

triangular face, to estimate the stresses and displacements in the skin face segment. The 

approximated skin stress and Zylon’s material yield strength were then used to optimize 

the skin thickness, such that the stress in the skin did not exceed the materials yield 

strength. The thickness of the skin was computed to be 0.0259 mm thick, and the W/B of 
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the skin alone was 0.37. This results in a total W/B of 0.94. Metlen’s proposed geodesic 

sphere just barely achieves theoretical floating with a W/B less than one [1].  

Continuing with Metlen’s icosahedron development, Ruben Rodriguez in 2012-

2014 [5] at AFIT constructed a, icosahedron frame with covering skin within a finite 

element model. Rodriguez’s focus was modeling the skin’s interaction with the frame. 

The full icosahedron model developed by Rodriguez is shown in Figure 7. In order to 

model the icosahedron and its skin, the dimensions of the frame (structure radius, beam 

radius, beam thickness, and skin thickness) needed to be determined. The approach taken 

by Rodriguez to determine the dimensions of the skin and the beams of the icosahedron, 

was to select a W/B value for the vehicle with a specified set of material properties and 

compute the skin thickness, beam radius, and beam thickness that satisfy the selected 

W/B. The author completed a full stress analyses for a wide range of materials and W/B 

with an icosahedron frame and covering skin [5]. The materials and their material 

properties that Rodriguez considered to model the frame and skin with are shown in 

Table 1. Table 2 then shows seven model configurations with the materials for the frame 

and skin indicated as well as the W/B, dimensions, and total number of finite elements 

for the skin and frame respectively. The total W/B for each configuration is determined 

by adding the W/B for the frame and skin together. 
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Figure 7: Full skin-frame icosahedral model 
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Table 1: Material properties for possible materials 

 

Table 2: Model Configurations for Rodriguez  

 

 Rodriguez utilized his finite element model (FEM) to analyze five different 

material configurations with a W/B of 0.9 and two configurations with a W/B of 0.8 as 
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shown in Table 2. A configuration was determined valid, if the maximum frame and skin 

stress in the configuration predicted by the FEM, was less than the material yield strength 

of the frame and skin materials in the configuration respectively. The comparison of max 

predicted stress and the material yield strength is known as the material safety factor.  

The safety factor is equal to material yield strength/max predicted stress. If the safety 

factor ratio is greater than or equal to 1, then the material is predicted to not fail. If the 

safety factor ratio is less than 1, then the material is predicted to fail. The results from his 

tests indicated that the only configurations that did not fail due to material failure were 

configurations 3 and 7 with finite element (FE) stress singularities in the skin removed. A 

singularity in FEA occurs when a corner is modeled with a single point. This occurs in 

Rodriguez’s model, because he models the beams as 2D wires instead of 3D hollow rods. 

The intersection of the beams are modeled with a single points because the beams are 

modeled as 2D wires. This is shown in Figure 8, where the skin folds over the 2D wire 

beams, making a crease and creating the sharp corners on the skin at the vertices. The 

sharp corners in the frame create a large stress concentration to occur in the skin because 

the skin only has a single point to interact or contact the frame. This drives the stress 

solution at the corners to not converge and create stress singularities resulting in overly 

large stress values. If the singularities are removed, the maximum stress is greatly 

reduced in the skin and the safety factors for the frame and skin of configurations 3 and 7 

are 1.47 and 1.16 and 1.94 and 1.72, respectively [5]. A summary of these two designs, 

detailing the model dimensions, material properties, frame and skin stress values, and 
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displacement values, is shown in Table 3. It should be pointed out that the singularities 

are by-products of the elastic constitutive relationships. 

 In summary, an icosahedron frame and skin constructed completely of carbon 

nanotubes (CNT) (configuration 3 and 7) is shown to have W/B less than one frame and 

skin safety factors greater than one with an internal vacuum. The cause of failure in all of 

the other models was material failure or frame and skin safety factors less than one. The 

maximum stress in the skin for all models could be significantly reduced if the stress 

singularities were removed [5]. 

 

Figure 8: Singularities in the skin due to tie constraints. 
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Table 3: Feasible Models for Rodriguez. 

 

Chapter II Summary 

The objective of this chapter was to outline the background information detailing 

general LTAV and previous work detailing VLTAV designs. The previous work shows 

that very little work has been performed on the investigation of a modern day vacuum 

lighter than air vehicle. In reviewing the three structure concepts that have been 

investigated to date: a thin shelled sphere, a sandwich sphere, and a geodesic oriented 

frame with a membrane skin, the limiting factor for all of the proposed designs are 

manufacturing limitations and non-existent materials. 

III. Structural Design Space Exploration and Feasibility Analysis Methodology 

This chapter develops the general methodology that will be used to conduct the 

structural feasibility analysis of the Metlen icosahedron and the hexakis icosahedron 
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VLTAV structure. This chapter details two main sections. The first section details the 

tools and techniques utilized to develop the structural response design space for 

exploration. The second section focuses on utilizing the created structural design space to 

determine if and where feasible regions or points exist within the input boundaries. A 

structural response design space or any design space for that matter can be thought of as a 

multi-dimensional space or region with dimensions of the independent variables defining 

the region of the space. The points that define the space are the dependent variables, or in 

this case the FE stress and displacement solutions with respect to the independent 

variables (FE model geometry, material properties, loadings, and boundary conditions). 

The process to construct the design space will be to first define what the independent and 

dependent variables are and how they relate to each other for the FE model. This will be 

performed utilizing a technique known as dimensional analysis. Let it be noted, that the 

strategy described subsequently to construct a design space, a dimensional analysis is not 

an integral step. It was the decision of the author to perform this analysis to gain the 

benefits of performing a dimensional analysis. Specifically, the ability to reduce the 

number or independent variables defining the FEMs so that the number of individual 

FEA’s required by the DOE to be performed is minimized. Dimensional analysis is used 

to analyze the dimensions that make up the independent and dependent variables that 

define a system, in this case the FEM is the system. The dimensions of the variables are 

used to deduce any possible relationship between the independent variables themselves 

and the dependent variables. These relationships simplify the original complex set of 

independent and dependent variables with relationships. This is explained in further detail 

in the following Dimensional Analysis section.  With the independent (FE model 
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geometry, material properties, loadings, and boundary conditions) and dependent (FE 

stress and displacement) variables characterizing the FE system, the structural response 

design space for the system can be constructed. Now, a design space for any design or 

system is theoretically infinite. This is because the independent variables defining the 

system could take on an infinite number of values and combinations. Thus an infinite 

number of solutions or dependent variables are produced. To remedy this, the 

independent variables need to be bounded. Once the independent variables are bounded, 

the design space becomes finite. The next objective is to populate the design space. 

However, even with the independent variables bounded there are now an infinite number 

of combinations of the independent variables within the bounds to be evaluated to 

populate the entire bounded design space. To avoid performing an infinite number of 

experiments or FEA to populate the structural response design space a technique known 

as design of experiments (DOE) is utilized to perform a systematic number of 

experiments to give a representation of the infinite number of solutions within the 

bounded structural response design space. The results from the systematic number of 

experiments can then be used to construct what is known as response surfaces which 

approximate the design space based on the response data gathered from the experiments 

conducted. Once constructed, the structural response design spaces for the FE stress and 

displacements of the models can be observed for feasibility.  

Structural Design Space Creation 

The structural design space creation will occur in four steps, each building off of 

the results from the previous step. The first step will be to define and construct the 

vacuum LTAV FEMs to be analyzed for stresses and displacements to determine 
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feasibility. The second step will be to phrase the FEM systems in terms of their 

independent and dependent variables so that a dimensional analysis can be performed on 

system to simplify the original set of variables into relationships of each other. With the 

system simplified by the dimensional analysis, the third step will bound and use the 

relationships produced by the dimensional analysis to conduct a design of experiments to 

map the structural responses of the FEM experiments with an internal vacuum. The last 

step will be to take the structural response data obtained by the DOE to construct 

response surfaces that approximate the bounded design space. 

Step 1: Finite Element Modeling and Analysis 

To approximate the stress and displacement values to be evaluated for feasibility, 

a FEM needs to be created and analyzed. To create a FEM for analysis, the structure’s 

geometry, material properties, boundary conditions, loading conditions, element 

definitions, and mesh discretization all need to be provided. The two case studies to be 

analyzed are both frame and skin structures. Both case studies will share the same 

material properties, boundary conditions, loading conditions, and element definitions due 

to their likeness in design. The only difference between the two VLTAV case studies is 

their structure’s geometry, and therefore their mesh discretization will be different as 

well. The structure geometries, material properties, boundary conditions, loading 

conditions, and mesh discretization for each FEM will be detailed in their respective case 

studies developed in chapters V and VI. 

Once the model is developed, a solver needs to be chosen to compute the 

estimated stresses and displacements of the modeled structure for feasibility. The 

feasibility of the models will be assessed in terms of material and geometric instability. 
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The material feasibility will be determined in the same way as Rodriguez had for his 

models in chapter II, by computing a frame and skin safety factor. The geometric 

instability will be assessed by analyzing the frame’s critical buckling pressure. The 

material instability will be analyzed using the non-linear solver in Abaqus, and the 

geometric instability will be analyzed using the linear buckling solver. The following 

sub-sections will discuss the beam and membrane elements used to develop the FEMs, 

and the solvers used to estimate the structural responses of the models related to material 

and geometric instability. 

Beam and Membrane Elements 

The finite element analyses performed in chapters V, and VI, use membrane and 

beams elements to model the VLTAV structures. The beam elements are used to model 

the frame structure. The membrane elements are used to model the membrane skin. Beam 

elements were chosen because they approximate the behavior of structural components 

that undergo both axial and transverse loads. The important factor to note is when 

selecting which type of beam element to use. Abaqus offers two main types of beams, 

those being Euler-Bernoulli and Timoshenko beams. Both beams can be used to model 

slender beams in 2D or 3D space. The benefits to using a beam element instead of pure 

three-dimensional elements is that they are geometrically easier to model, and they 

require a significantly smaller amount of computing time to solve. Beam elements can be 

used to resemble beams with sold, thin-walled closed, and thin-walled open cross 

sections. This approximation relies on the assumption that the deformation of the beam 

along the beam’s axis only is sufficient to estimate the displacements of a comparable 

three-dimensional beam. The main difference between Euler-Bernoulli and Timoshenko 
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beam theories is that in the Euler-Bernoulli beam, the plane sections initially normal to 

the beam’s axis remain normal to the beam axis. The transverse shear deformation is not 

allowed. The Timoshenko beam allows for rotation between the cross section and the 

bending line, which yields the transverse shear deformation [12]. 

Membrane elements are used to represent thin surfaces that transmit in-plane 

forces only, no moments, and have no bending stiffness. These elements are considered 

surface elements and can be used for planar and curved surfaces in three dimensions. An 

example of where to use a membrane element would be for the skin that makes up a latex 

balloon. One issue to consider when dealing with membrane elements is that initially flat 

and stress free membranes have no stiffness. This lack of stiffness when out-of-plane 

loading is applied, such as a pressure load, causes numerical singularities and 

convergence complications. Two options are available to mitigate this problem. These are 

to pre-stress the membrane before the analysis is conducted such that the membrane has 

an initial stiffness or to use a feature called adaptive stabilization within Abaqus. The 

stabilization technique adds viscous forces to the model to overcome local instabilities 

such as an out-of-plane loaded membrane with no initial stiffness. The adaptive portion 

of the stabilization technique varies the damping factor of the added viscous forces to 

minimize the effect of the forces in order to achieve a converged solution. Once the 

membrane has developed some out-of-plane deformation with the assistance of the 

stabilization, the membrane acquires some stiffness which is then used to resist the out-

of-plane loading instead of the added viscous forces for the remainder of the analysis 

[12].    
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Finite Element Nonlinear Solver 

The non-linear solver was used to compute the stresses and displacements of the 

vacuum FEMs because of the non-linear displacements expected in the membrane skin. 

Typically, when studying the behavior of a body under load, linear analysis tools are 

used. When considering small displacements and solid structures, these linear modeling 

tools provide an acceptable approximation to the real model. The nonlinear analysis is 

needed for the vacuum FEMs because the membrane undergoes large displacement 

compared to its thickness. In addition, the pressure loading must be applied normal to the 

membrane displacement. This is referred to as a follower force. These tools require 

iterative numerical techniques to solve load and displacement equilibrium equations to 

capture the actual structural behavior. A structure’s nonlinear behavior can arise from 

geometric and material nonlinearities. The geometric nonlinearities come from large 

displacements within the structure, where the structures stiffness changes due to 

deformation. The nonlinear solver used for the finite element analysis in this research is 

the Newton Raphson Technique, which is an iterative technique that solves the nonlinear 

static equilibrium equations at small steps. The technique increments the load and 

determines the residual between the load and solution path, and this residual is used to 

update the displacement associated with the load. This process is incremented until the 

residual becomes small and converges where the equilibrium equations are satisfied. A 

brief description of the theory for a one-dimensional case is given below. 

As stated above the technique begins by selecting a load increment 𝑅𝑡+Δt, 

followed by determining the initial slope 𝐾𝑡 =
𝜕𝐹𝑡

𝜕𝑈𝑡
 where F is the starting or previous load 

value and U is the starting or previous displacement value. A displacement step is then 
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chosen, 𝑈𝑡+Δt = 𝑈𝑡 + 𝑈 and the residual is solved for by using equation (3). From here, a 

new displacement is determined using equation (4) and the iterative process continues 

until 𝑅𝑡+Δt − 𝐹𝑡+Δt
(𝑖−1)

 becomes sufficiently small and that iteration is determined converged. 

This process is continued until the final load value is reached. An illustration of this 

technique for one iteration is shown in Figure 9. 

𝐾𝑡+Δt

(𝑖−1)
ΔUi = 𝑅𝑡+Δt − 𝐹𝑡+Δt

(𝑖−1)
 (3) 

 

𝑈𝑡+∆𝑡
𝑖 = 𝑈𝑡+∆𝑡

(𝑖−1)
+ ∆𝑈𝑖 (4) 

 

 

Figure 9: Newton Raphson technique for a single iteration 
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Finite Element Linear Buckling Solver 

The finite element linear solver was used to estimate the case study frames’ 

critical buckling load through an eigenvalue/eigenvector analysis. The eigenvalue 

buckling problem within Abaqus applies incremented load magnitudes in the direction 

prescribed by the user until the model stiffness matrix becomes singular. The load values 

that cause the stiffness matrix to become singular are estimated critical buckling loads for 

the structure. The eigenvalue problem is shown in equation (5). 

(𝐾0
𝑁𝑀 + 𝜆𝑖𝐾Δ

𝑁𝑀)𝑣𝑖
𝑀 = 0 (5) 

Where 𝐾0
𝑁𝑀 is the initial stiffness matrix with any preloads, 𝑃𝑁, included. 𝐾Δ

𝑁𝑀 is the 

differential stress matrix from the initial matrix due to the incremental loading pattern, 

𝑄𝑁. 𝜆𝑖 and 𝑣𝑖
𝑀 are the eigenvalues and the eigenvectors that correspond to the stiffness 

matrix singularities with respect to the load increments 𝑄𝑁. The M and N indicate the 

degrees of freedom for the entire model and i indicates the ith buckling mode. Where the 

first buckling mode is the only mode and eigenvalue of interest, because if the frame will 

buckle it will happen at the first mode and eigenvalue first. The critical buckling loads are 

denoted by equation 6 where 𝑃𝑁 is the preload pattern and 𝑄𝑁 is the applied load pattern 

on the structure [12].  

𝑃𝑐𝑟𝑖𝑡,𝑖 = 𝑃𝑁 + 𝜆𝑖𝑄
𝑁 (6) 

 

Step 2: Dimensional Analysis 

Dimensional analysis (DA) is a method of analyzing a system in terms of the 

dimensions of its independent and dependent variables. Where, independent and 
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dependent variables are the input and outputs of a system, respectively. Bridgman in 

1969 states, “The principal use of dimensional analysis is to deduce from a study of the 

dimensions of the variables in any physical system certain limitations on the form of any 

possible relationship between those variables. The method is of great generality and 

mathematical simplicity”. By doing this, the number of independent variables that define 

the dependent variables are reduced. Dimensional analysis is rooted in the concept of 

similarity. Mathematical similarity is where the independent and dependent variables can 

be transformed such that the number of independent variables are reduced. The 

transformation creates relationships (ratios) known as invariants that are non-

dimensional. If two different models have the same invariants and the invariants are 

equal, then there exists equivalence between the two models even though they are 

different. For example, if the variables defining the forces acting on a small scale wind 

tunnel aircraft model, and a full scale aircraft are identical, then relationships between the 

variables and the forces can be created (invariants). Under special circumstances these 

relationships can be equal, and if so a direct relationship between their forces can be 

formed. This idea is known as scale-invariance.  

The ultimate purpose of the dimensional analysis to be performed on the FEMs, is 

to provide valuable relationships between the independent and dependent variables that 

define the system and to reduce the complexity of the model. Since the intent is to 

conduct a design of experiments (DOE) on the FEMs, the number of independent 

variables should be minimized if possible. Minimization of the independent variables is 

ideal in this case because the number of independent variables has a direct effect on the 

number of experiments required for a DOE. For example, if a two level full factorial 
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design were chosen for the DOE, the number of minimum experiments required is 2k, 

where k is the number of independent variables. If there were originally four independent 

variables defining a system, the minimum number of experiments required to perform the 

DOE would be 24 or 16. Now, if the number of independent variables were reduced to 

one by performing a DA, the new DOE would be a 21 or 2 experiments which results in a 

reduction of 93.75% experiments. Due to the transformation performed by the DA, the 

original four variables can be represented by one variable. The 2 experiments with the 

one variable yield the same amount of information about the dependent variable as the 16 

experiments varying all four of the original independent variables. 

The dimensional analysis technique that will be detailed for this research is 

Buckingham’s Pi theorem. This theorem can be thought to have four steps as indicated in  

[13]. 

The first step is to define the complete set of independent quantities 𝑥2 … 𝑥𝑘 that 

define the dependent variable 𝑥1. 

𝑥1 = 𝑓(𝑥2, 𝑥3, … , 𝑥𝑘) (7) 

The set 𝑥2 … 𝑥𝑘  is considered complete only if no other variable can affect the dependent 

variable 𝑥1. Additionally, the independent set is only considered independent if changing 

the value of any variable in the set has no effect on any of the other variables in the set. It 

is important to make sure the set of independent variables is correct with respect to the 

dependent variable because once 𝑥2 … 𝑥𝑘 are specified, the equality in equation (7) is 

maintained regardless of the base units used to measure the 𝑥 quantities. 
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 The second step is to define the dimensions that make up the dependent and 

independent variables 𝑥1 and (𝑥2 … 𝑥𝑘). This process can be performed by inspection of 

the variables themselves. If the variables are part of a mechanical system, for instance 

where all of the variables are made up of mass, length, and time then [𝑥𝑘] quantities are 

represented by equation (8). It is noted that if an independent variable is dimensionless, 

its dimensions are denoted by [𝑥𝑘] = [1] and that variable is inherently already a 

Π parameter. 

[𝑥𝑘] = 𝐿𝑙𝑘𝑀𝑚𝑘𝑡𝜏𝑘 (8) 

 

In equation (8), the exponents 𝑙𝑘, 𝑚𝑘, 𝜏𝑘 are dimensionless numbers that indicate the units 

for each quantity. For example, if 𝑥2 were modulus of elasticity, having units 
𝑀

𝐿𝑇2 , it can 

be written using equation (8) as [𝑥2] = 𝐿−1𝑀1𝑡−2. Now, let’s call a variable r the number 

of the basic units needed to characterize the independent and dependent variables. In this 

case r=3 for length (L), mass (M) and time (t). The number of Π parameters that will be 

created is (k-r).  

The third step is to pick r independent variables within (𝑥2 … 𝑥𝑘) that will be used 

to generate the Π parameters. These variables can be thought of as a dimensionally 

independent subset of the independent variables.  The selection of these variables is 

somewhat arbitrary, but there are some “rules”: Each dimension should be represented by 

the subset chosen, variables with the same dimension or exponent of that dimension 

should never be chosen (i.e. length and area), the dependent variable should never be 

chosen, and the dimensions of each one cannot be created by combining the dimensions 
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of the others. The main thing to note is that the variables selected could appear in each Π

 parameter and therefore define them. For this example where r is equal to three, three 

independent variables out of the independent variables need to be chosen. Let’s suppose 

that the subset chosen is 𝑥2, 𝑥3, 𝑥4.  

 The fourth step is to now compute the Π𝑖  parameters using the subset chosen 

above and the remaining dependent and independent variables. As stated above, there 

will be (k-r) Π parameters. The procedure for computing the Π𝑖  parameters is as follows, 

and will be conducted (k-r) times: 

First select one of the independent or dependent variables that are not within the subset 

chosen (𝑥2, 𝑥3, 𝑥4). This will be called 𝑥𝑗, where typically it begins with j =1 continuing 

to k ignoring the xn’s that are part of the independent subset, in this case 𝑥2, 𝑥3, and, 𝑥4. 

Π𝑖 = 𝑥𝑗𝑥2
𝑎𝑥3

𝑏𝑥4
𝑐 (9) 

Where a, b, and c are dimensionless coefficients and 𝑥2, 𝑥3, 𝑎𝑛𝑑 𝑥4 are the dimensionally 

independent subset. Now, recalling equation (8), taking into account each x’s dimensions, 

and assuming that Π𝑖 is dimensionless, we can write equation (9) as: 

𝐿0𝑀0𝑡0 = 𝐿𝑙𝑗𝑀𝑚𝑗𝑡𝜏𝑗(𝐿𝑙2𝑀𝑚2𝑡𝜏2)𝑎(𝐿𝑙3𝑀𝑚3𝑡𝜏3)𝑏(𝐿𝑙4𝑀𝑚4𝑡𝜏4)𝑐 (10) 

 

Now, we write the following r equations (in this case 3) to solve for a, b, and c. (Note, the 

left side must be set equal to zero) 
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0 = 𝑙𝑗 + 𝑎𝑙2 + 𝑏𝑙3 + 𝑐𝑙4

0 = 𝑚𝑗 + 𝑎𝑚2 + 𝑏𝑚3 + 𝑐𝑚4

0 = 𝑡𝑗 + 𝑎𝑡2 + 𝑏𝑡3 + 𝑐𝑡4

 (11) 

With a, b, and c solved, the coefficients can be plugged back into equation (9), where 

now one of the (k-r) Π terms is determined. Once all the Π terms have been solved for, 

they can be written as a function of the dependent Π term, in this case Π1. 

Π1 = 𝑓(Π2, Π3, … , Π𝑘−𝑟) (12) 

 

 Once the Π parameters or now invariants are determined, the boundaries for the 

each invariant needs to be assigned so that each invariant has an upper and lower bound. 

These boundaries form the limits of the inputs to the DOE, and therefore constrain the 

structural response design space to be constructed.  

Step 3: Design of Experiments  

A great way to learn about the operation of a system or process is to observe it. 

However, it is not as simple as just watching. Every system or process has an input factor 

or factors that govern a response. In order to understand how the input(s) affect the 

response, the input(s) need to be changed deliberately. This idea is known as conducting 

an experiment on the system. When a series of experiments are performed, the response 

is observed such that we may identify the reasons for its change. The response data 

obtained can be used to determine which input variables produce the most significant 

effect on the response with the use of an analysis of variance (ANOVA).  
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Unreplicated 2k Factorial Design 

   The design of experiments “design” that will be utilized for this research is an 

unreplicated 2k full factorial design. This factorial design is typically chosen to perform a 

“screening” analysis on a system when the effects and interactions of the input 

parameters are generally unknown and a relatively quick analysis is desired. This avoids 

performing unnecessary and potentially costly experiments to investigate the response. 

This is a design with only one observation, or experiment at each test case. These 

types of designs are used where k is very large or the expense (time and/or money) is 

significant for a single experiment. This design evaluates each factor at two levels, a high 

and low value, to quantify the effect of the factor on the response. The k in the 2k 

represents the number of factors or independent variables. The number of experiments 

required to perform the DOE is equal to 2k, referred to as N. For instance if k=3 then the 

minimum number of experiments required is 23 [14]. 

There are of course risks to running a DOE with no replicates, where a replicate is 

a repeated experiment. The first risk is that the response captured at a given test point 

could be unusual and therefore not indicative of the average response of that test case. 

The next risk is determining the spacing of the factor levels, since there are only two 

levels at each factor. One needs to make sure that the levels are sufficiently far apart so 

that the estimated response is outside of potential “noise”. However, there is a chance that 

the relationship between the low and high case is curved and two points will not be able 

to represent the curvature, therefore incorrect conclusions could be drawn. This is shown 

in Figure 10, where the line connecting the L and H points is curved and not linear.  
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Figure 10: True underlying curved relationship between low and high factor level 

The researcher should have some understanding of the factors in order to make 

good judgements on what the levels should be, in order to avoid misinterpreting the 

response of the system. In the case for this research the results presented by [1], [5] were 

used. However, if there is not enough information about the system, a common way to 

check for curvature is to add a center point to a 2k full factorial DOE. A center point is a 

test case where all of the factors are evaluated at a level that is mid-way in-between the 

high and low level values. The curvature or lack thereof is investigated by comparing the 

center point test results with the averaged results from all the other test points. If the 

center point test is approximately equal to the response averages, it is concluded that 

there is no curvature and the data obtained is sufficient to create a regression fit for 

response surface modeling and design space investigation. If the center point results are 

significantly different, greater or less than, the averaged response(s), it is concluded that 

curvature is present. If there is curvature, then a new DOE would need to be conducted 

with a test matrix designed to capture the nonlinearities present in the design space [14].  
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The next issue, which is described in detail in the ANOVA section, is how to 

analyze the factor and interaction effects when replicates are typically needed to do so. 

Without replicates, analyzing the effect strength of all the factors and interactions is 

impossible. Typically, in order to analyze some of the factors and interactions, higher 

order interactions are ignored. This is known as the sparsity of effects principle; that is, 

most systems are dominated by the main effects and low order interactions, and most 

high order interactions are negligible. This effect has been studied by Li, Sudarsanam, 

and Frey in 2006 as well as Bergquist, Vanhatalo, and Nordenvaad in 2011. Both of their 

results largely agree with each other in that about 40% of the experiments studied main 

effects were significant, 11% two-factor interactions were significant, and higher order 

interactions were rare making up 5% of the experiments [14]. 

Structural Analysis Process Flow 

A continuous multi-step process was developed to perform the finite element 

analyses on either the Metlen icosahedron or the hexakis icosahedron structures. The 

strategy laid out in this section provides the process used in order to collect the structural 

response data to be used in an ANOVA to characterize the model being analyzed. This 

process was developed using a combination of Matlab programming, Python scripting, 

and Abaqus for the finite element evaluation. A flow chart of the process is shown in 

Figure 11. The input design parameters for the structures are the invariants determined by 

the dimensional analysis for the respective finite element system. 



 

43 

 

 

Figure 11: DOE Evaluation Process Diagram 

The first step in the evaluation process is that a Matlab routine imports the DOE 

test matrix and scans in the parameter values for the factors and their levels. The 

continuous process in Figure 11 starts with the factor levels specified for experiment 1. 

The Matlab routine would then write in the values for the input parameters or invariants 

determined by the dimensional analysis. An Abaqus python input script is created, which 

details how the model’s geometry is to be created, the parameters that define it, such as 

material properties or skin thickness, and the loads and boundary conditions. Once the 

script is created with the Matlab values the python input script is submitted to the Abaqus 

standard solver for structural analysis. While the finite element analysis is being 

conducted, the Matlab routine waits until a solved or unsolved feedback response is sent 

through Abaqus to Matlab. If solved, a separate prewritten python script is executed to 
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read in the Abaqus results and write them to text files which Matlab can import and 

operate on. Specifically, the Abaqus outputs of stress and displacements are read into 

Matlab so that the maximum value of stress in the frame and skin can be recorded. The 

displacement results are used to compute the final internal volume of the structure due to 

deformation. This volume is then used to compute the final weight-to-buoyancy ratio. 

The evaluation of the internal volume is necessary because it is initially assumed that the 

weight-to-buoyancy ratio is equal to one for vehicle sizing. Yet, when the pressure is 

applied, the skin and frame deform inward thus reducing the assumed initial volume. This 

entire process is executed for every experiment number in the DOE test matrix. Each test 

point has different inputs for each factor and therefore a different model is analyzed at 

each point. The responses observed by this process, stress and final W/B, and the 

corresponding input values are next analyzed using an analysis of variance. 

Analysis of Variance (ANOVA) – Fixed Effects Model  

The analysis of variance is a way to determine whether or not a factor and its 

possible interactions has a significant effect on the response. The term factor is the same 

as independent variable.  When performing an ANOVA, there are three different types of 

models that can be used. These are fixed effects, random effects and mixed effects. A 

fixed effects model is when all of the factors and their levels are controlled and non-

random. A random effects model is when the factors are treated as if they come from 

random occurrences. A mixed model is when some of the factors are random and some 

are fixed. For this research, a fixed effects model will be outlined because all of the 

factors and their levels are controlled and non-random. 
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For the ease of explanation, a simple unreplicated 22 full factorial analysis of the 

fixed effects model will be explained in which it can be expanded readily for more 

involved models. In this case, there exists two factors with two levels as shown in Table 

4.  The two factors are denoted by ‘A’ and ‘B’ and their interaction is ‘AB’. The 

interaction of ‘A’ and ‘B’, making up ‘AB’, represents the response, y. The interaction is 

defined as an attempt to evaluate whether ‘A’ and ‘B’ are coupled. A ‘1’ indicates the 

factor is at its low level and a ‘2’ indicates the factor is at its high level. The response 

column 𝑦𝑖𝑗𝑘 denotes the response corresponding to the levels of ‘A’ (i), ‘B’ (j), and the 

replicate number (k). (An example of a response that is observed for the FEA is the 

stresses within the model once analyzed.) For instance, in the first row of Table 4, both 

‘A’ and ‘B’ are low, and it is the first time this experiment at this level combination is 

run, therefore 𝑦𝑖𝑗𝑘 = 𝑦111. An example of ‘A’ and ‘B’ that could be used in the 

subsequent analysis performed in chapter V could be frame material properties and 

design altitude, respectively. 

Table 4: 22 Unreplicated Full Factorial Design Test Matrix and Response 

 

A geometric representation of the design is shown in Figure 12, where �̅�𝑖𝑗. is 

equal to the average of the responses y at the specific level combination. The “dot” in �̅�𝑖𝑗. 

in place where k used to be indicates a summation over the subscript it has replaced. In 

Response

A B yijk

1 1 y111

2 1 y211

1 2 y121

2 2 y221

Factor

22 Unreplicated Full Factorial Design
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our example, since no replicates are present, k is constant and a summation over it is not 

possible. If we observe the top right corner of Figure 12, �̅�22. could very well be replaced 

with 𝑦221 since no replicates are present. The notation of a’s, b’s, and (1) is just a way of 

indicating which factor is at its high level, so for instance looking back at the top right 

corner, if both A and B are at their high level it is written that �̅�22. = 𝑎𝑏. Additionally, a 

and b indicate the number of levels (low and high) each factor has. In this example, a and 

b are both equal to 2, which is utilized throughout the ANOVA process. 

 

Figure 12: 22 Factorial Design Treatment Representation 

With the data collected and labeled as shown in Table 4, and represented in 

Figure 12, the next step in the process to determine which factors have significance. This 

is performed by first computing each factor and their interactions sum of squares (SS). 

The sum of square term is the way to determine the variation of the individual factor and 

interaction from the total average of all the experiments. The equations for computing the 

sum of squares for the factors and interactions in a 22 unreplicated full factorial analysis 

with a single output is shown below, using the same notation as defined above. 
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𝑆𝑆𝐴 =  
1

𝑏𝑛
∑ 𝑦𝑖..

2 −
𝑦…

2

𝑎𝑏𝑛

𝑎

𝑖=1

 (13) 

 

𝑆𝑆𝐵 =  
1

𝑎𝑛
∑ 𝑦.𝑗.

2 −
𝑦…

2

𝑎𝑏𝑛

𝑏

𝑗=1

 (14) 

 

𝑆𝑆𝐴𝐵 = 𝑆𝑆𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙(𝐴𝐵) − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 (15) 

 

𝑆𝑆𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙𝑠(𝐴𝐵) =  
1

𝑛
∑ ∑ 𝑦𝑖𝑗.

2 −
𝑦…

2

𝑎𝑏𝑛

𝑏

𝑗=1

𝑎

𝑖=1

 (16) 

Where, for example 𝑆𝑆𝐴 =  
1

(2)(1)
[(𝑦111 + 𝑦121)2 + (𝑦211 + 𝑦221)2] −

[(𝑦111 + 𝑦121 + 𝑦211 + 𝑦221)2 (2)(2)(1)⁄ ] referencing Table 4. 

 The next step is to compute the total sum of squares (SST) and the sum of squares 

error (SSE), which are used to compute the mean square values shown in Table 5. 

𝑆𝑆𝑇 =  ∑ ∑ ∑ 𝑦𝑖𝑗𝑘
2 −

𝑦…
2

𝑎𝑏𝑛

𝑛

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

 (17) 

 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴𝐵 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 (18) 
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Table 5: 22 Example ANOVA Table with Equations 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F0 

A 𝑆𝑆𝐴 𝑎 − 1 𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑎 − 1
 𝐹0 =

𝑀𝑆𝐴

𝑀𝑆𝐸
 

B 𝑆𝑆𝐵 𝑏 − 1 𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑏 − 1
 𝐹0 =

𝑀𝑆𝐵

𝑀𝑆𝐸
 

AB 𝑆𝑆𝐴𝐵 (𝑎 − 1)(𝑏 − 1) 𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑎 − 1)(𝑏 − 1)
 𝐹0 =

𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
 

Error 𝑆𝑆𝐸 𝑎𝑏(𝑛 − 1) 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑎𝑏(𝑛 − 1)
  

Total 𝑆𝑆𝑇 𝑎𝑏𝑛 − 1   

 

It is now desired to determine whether or not the factor that produced these 

observations is significant. This is performed by testing whether the null hypothesis that 

the factor has no effect is true. The way we evaluate this is by computing a ratio known 

as 𝐹0. This is shown in equation 19 for the treatment of A.  

𝐹0,𝐴 =  
𝑆𝑆𝐴/(𝑎 − 1)

𝑆𝑆𝐸/𝑎𝑏(𝑛 − 1)
=  

𝑀𝑆𝐴

𝑀𝑆𝐸
 (19) 
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If  𝐹0,𝐴 > 𝐹𝛼,𝑎−1,𝑁−𝑎 , where 𝐹𝛼,𝑎−1,𝑁−𝑎 is the critical value with significance 

level, 𝛼, typically taken to be 0.05 the null hypothesis can be rejected and the factor 

determined to be significant. This critical value is obtained by using a critical  𝐹0 lookup 

table [14]. This procedure can be expanded to any number of factors and levels to 

determine whether or not the factors have a significant effect on the observations. 

Additionally, this process can be expanded to consider if an observation is effected by 

changing a main factor alone or by changing the factor with others at the same time, this 

is known as cross effects or interactions. Sometimes the interaction effect could be more 

significant than the main effects themselves.  

Now that the process for computing an ANOVA and determining significance has 

been detailed, a pitfall with respect to the unreplicated 2k factorial design will be 

discussed. Typically, in a DOE analysis replicate tests are performed so that when 

computing the error term it does not equate to zero when all of the treatments are being 

analyzed. In other words, if 8 tests were completed for a 22 full factorial, that would mean 

that 4 of the 8 tests were replicated or extra. When computing the sum of squares error, 

SSE in equation (18), considering the 2 factors and their interaction, 7 (abn -1, where 

a,b,n =2) degrees of freedom (DOF) are available for the sum of squares total (SST). 

Knowing that the SS for each treatment or effect and interaction takes up 1 DOF as 

shown in the first 3 rows of Table 5, where a and b = 2 that leave 7-3 = 4 DOF left over 

to compute error ab(n-1) = 4 where n = 2. Now, if the replicates were not performed then 

the total DOF would equal abn-1=3 where a, b=2 and n=1, and  if all the treatments were 

analyzed just as before, the treatments would take up the 3 total DOF 3-3=0 and no DOF 

would be left over for the error term. This is a problem when conducting a 2k 
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unreplicated designs and all of the treatments want to be initially observed for 

significance because there is no error term, and with no error term the mean square 

cannot be computed and thus the F0 cannot be computed as well to test for significance 

[14]. 

Fortunately, there are ways around this obstacle for unreplicated designs. The 

simplest remedy to this problem is to initially ignore some of the factors or interactions to 

gain DOF for the error term. The problem is, what factors or interactions should you 

ignore if you know nothing about the significance of the factors or interactions in the 

model? Therefore, another technique known as Lenth’s pseudo-standard error (PSE) is 

used. Lenth’s PSE is utilized to approximate an initial pseudo error value when the SSE 

value is equal to zero.  To obtain this error value, first compute each factor and 

interaction’s estimated effect. Continuing with the example above, the estimated effect or 

contrast of A is computed by taking the difference in the averaged response when A is at 

its high value and when A is at its low value or the difference in the average response of 

the system on the right hand side and left hand side of Figure 12. The equation for this is 

shown in equation (20). The same representation can be performed for B and AB [14].  

𝑐𝐴 =  �̅�𝐴+ − �̅�𝐴− =  
𝑎𝑏 + 𝑎

2𝑛
−

𝑏 + (1)

2𝑛
 (20) 

 

Once the treatment contrasts have been computed, Lenth’s PSE can be calculated. The 

equation for the PSE is shown in equation 22. After the PSE is obtained the individual 

contrast is compared to a value known as the simultaneous margin of error (SME) to 

determine initial significance. The equation for SME is shown in equation (23). 
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𝑠0 = 1.5 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑐𝑗|) (21) 

 

Where for a 22 factorial design 𝑐 = [𝑐𝐴, 𝑐𝐵, 𝑐𝐴𝐵] 

𝑃𝑆𝐸 = 1.5 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑐𝑗|: |𝑐𝑗| < 2.5𝑠0) (22) 

𝑆𝑀𝐸 = 𝑡𝛾,𝑑 − 𝑃𝑆𝐸 (23) 

Where,  𝛾 = 1 −
1+0.95

1
𝑚

2
 , = 𝑚/3 , 𝑚 = size of 𝑐, and 𝑡𝛾,𝑑 is determined from a lookup 

table. 

Each contrast 𝑐𝑗 that is greater than the SME value is said to be significant using Lenth’s 

method [14]. After this process is completed, the terms that are determined insignificant 

can be excluded from the model and their DOF will be included in the error term so that 

the ANOVA for the model can be computed with a nonzero error term. 

Regression Model 

A useful model that can be developed from the response of a DOE is a regression 

model. Regression models are used to fit a set of sample data to a function where the 

response(s) is a function of the independent or regressor variables. The effects results 

from a DOE and ANOVA can be used to establish a function or multiple functions 𝜙 to 

approximate a response variable(s). The focus of this description will be on linear 

regression models. As stated above a response variable, 𝑦, is fit to 𝛽𝑖 parameters which 

are known as the regression coefficients multiplied by its corresponding regressor 

variable 𝑥𝑖. A general form of the first-order fit is shown in equation (24). This general 

form can be extended to second, third, fourth, etc. order fits. As an example a first-order 
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response surface model with interactions for two factors is shown in equation (25). This 

equation can be equated to equation (26) if we let 𝑥3 = 𝑥1
2, 𝑥4 = 𝑥2

2, 𝑥5 = 𝑥1𝑥2, 𝛽3 =

𝛽11, 𝛽4 = 𝛽22, 𝑎𝑛𝑑 𝛽5 =  𝛽12 . 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖 (24) 

 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝜖 (25) 

 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝜖 (26) 

 

Reformulating equation (25) to equation (26), creates a linear regression model since the 

𝛽 parameters are linearized. A regression model that has linear regression coefficients is 

considered to be linear even if the shape of the response surface is not. 

 The next step in the regression model is to estimate the 𝛽 parameters, and this is 

typically done using the method of least squares. A complete derivation of this method 

will not be shown here but can be acquired in [14], however simplified matrix 

representation is shown below.  

𝒚 = 𝑿𝜷 + 𝝐 (27) 

 

Where: 
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𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] , 𝑿 = [

1 𝑥11 𝑥12 … 𝑥1𝑘

1 𝑥21 𝑥22 … 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

] , 𝜷 = [

𝛽1

𝛽2

⋮
𝛽𝑛

] , 𝑎𝑛𝑑  𝝐 = [

𝜖1

𝜖2

⋮
𝜖𝑛

] (28) 

 

Using this setup, the next step is to determine a set of least squares estimators, �̂� that 

minimizes the least squares function: 

𝐿 = ∑ 𝜖𝑖
2

𝑛

𝑖=1

= 𝝐′𝝐 = (𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷) (29) 

 

Through rearrangement and evaluation, this function simplifies to equation (30), where 

the fitted regression model is represented by equation (31) and the residual is shown in 

equation (32). 

𝑿′𝑿�̂� = 𝑿′𝒚 or �̂� = (𝑿′𝑿)−𝟏𝑿′𝒚 (30) 

 

�̂� = 𝑿�̂� (31) 

 

𝒆 = 𝒚 − �̂� (32) 

 

The residual is then used to determine the residual sum of squares, shown in equation 33. 

Which is an important term because it can be used to determine the how well the model 

fits the data [14]. 
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𝑆𝑆𝐸 = 𝒚′𝒚 − �̂�′𝑿′𝒚 (33) 

Step 4: Response Surface Methodology 

Response surface methodology or RSM is a technique used to model a system or 

process with respect to any number of control variables or inputs. In order to model the 

system, a system model needs to be generated. Two of the main models are a first order 

model, which is discussed in the above section, and a second order model. These models 

can be used to predict response values within the range of the model inputs not 

previously tested, as well as determine optimal settings for the inputs to maximize or 

minimize the observed response. An illustration of data points obtained by a DOE and the 

generated response surface are shown in Figure 13. The graph on the left side of Figure 

13 shows the response data points obtained by a DOE plotted with respect to its 

independent variables. Likewise, the graph on the right side shows the response surface 

generated by a second order model to approximate the response data points shown on the 

left chart. 
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Figure 13: Illustration of plotted DOE data points and the generated Response Surface. 

The response surface shown on the right of Figure 13 uses a model generated 

from the data on the left to predict the response of the system at the points where data 

was not explicitly obtained by the DOE to create a continuous surface. More data points 

obtained by the DOE creates a more accurate prediction that the model makes to create 

the continuous surface. Linear or first order models only need data points at the corners 

of the design space, and typically have at least one data point at the center to check for 

curvature to create a response surface. Non-linear or second order models need data 

points spread throughout the design space as shown in Figure 13, to capture the non-

linearities occurring within the design space. Typically, if the true response of a system 

has curvature or non-linearity, a first order model with interactions cannot appropriately 

capture the curvature, which is when a second degree model is necessary. However, when 

a first order or second order model is desired, the DOE has to be specially designed to 

produce data points that allow for the respective models to be created [15] [16]. 
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Structural Feasibility Analysis 

The structural feasibility analysis will be conducted in two parts. The first is a 

material safety factor analysis and the second is a geometric instability analysis. 

The material safety factor analysis will be conducted by converting the max frame 

and skin stress values from the regression models into safety factors. This will be 

performed by dividing the max stresses from the regression fits obtained above by their 

materials yield strength values. This will produce what is known as a safety factor value 

for the frame and skin stress responses obtained from the finite element analyses. This 

computation is shown in equation (34). If the safety factor is above or equal to 1 for both 

the skin and frame at a design point, then the design parameters associated with that 

design are said to have produced a structurally feasible design with respect to material 

failure.  

𝑆𝐹𝑠,𝑓 =
𝜎𝑦𝑠,𝑓

𝜎𝑚𝑎𝑥𝑠,𝑓

 (34) 

The geometric instability of the vacuum frame-skin structures for the two case 

study designs will be analyzed using the linear buckling solver described in Step 1. This 

is known as solving the linear elastic buckling eigenvalue problem. The eigenvalue 

problem is shown again for conscience in equation (35). 

(𝐾0
𝑁𝑀 + 𝜆𝑖𝐾Δ

𝑁𝑀)𝑣𝑖
𝑀 = 0 (35) 

 Where 𝐾0
𝑁𝑀 is the initial stiffness matrix with any preloads, 𝑃𝑁, included. 𝐾Δ

𝑁𝑀 is the 

differential stress matrix from the initial matrix due to the incremental loading pattern, 

𝑄𝑁. 𝜆𝑖 and 𝑣𝑖
𝑀 are the eigenvalues and the eigenvectors that correspond to the stiffness 
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matrix singularities with respect to the load increments 𝑄𝑁. The M and N indicate the 

degrees of freedom for the entire model and i indicates the ith buckling mode. As 

developed in Step 1 above, the linear buckling solver searches for loads in the applied 

direction where the model stiffness matrix, K, becomes singular. The model stiffness 

matrix is composed of two parts, the material stiffness matrix (𝐾0
𝑁𝑀), which is a function 

of the material properties, and the geometric stiffness matrix (𝐾Δ
𝑁𝑀), which is a function 

of the component forces produced by the boundary conditions and applied loads.  

In order to estimate the pressure required to produce geometric instability in the 

two VLTAV case studies, the frame of the designs were analyzed without the skin. The 

skin is excluded because Rodriguez shows in his research, [5] that a large quantity of the 

critical loads predicted for the icosahedron frame-skin model are skin dominated and 

significantly smaller than when the frame is considered by itself. Therefore, one would 

need to extract a large number of critical loads (eigenvalues) to attempt to capture any 

frame dominated states (modes), which are the modes (eigenvectors) of interest. In order 

to avoid extracting potentially thousands of modes to view frame dominated features, a 

buckling analysis of the frame alone will be conducted. This was performed by 

constructing reference points at the center of each planar face and coupling those 

reference points to its triangles beams with coupling constraints. A point load equal to the 

external pressure times the area of each triangle was applied to the reference point to be 

distributed by the coupling constraints to each triangle as if the skin were present. An 

example of this is shown in Figure 14 for a triangular section. Both case studies, the 

Metlen icosahedron and the hexakis icosahedron have, frame structures with planar 

triangular faces that make up the geometry and therefore the frame buckling analysis 
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technique will be performed using that same reference point technique developed by 

Rodriguez [5].  

 

Figure 14: Triangular frame section with reference point and coupling constraint. The 

reference point is where the arrow points to and the coupling constraint is denoted by the 

blue lines. 

The critical loads predicted this way will be an indication of the pressure 

necessary to produce global buckling in the frame. The evaluation will not be a perfect 

representation of the frame-skin model because the loads applied to the frame in the 

buckling analysis, were applied without the skin. The skin adds additional boundary 

conditions and stiffness not represented when the frame is alone [5].  

The goal of the frame buckling analysis is to determine an indication if geometric 

instability within the frame could cause the structures in either case study to fail before 

material failure. It is important to note that the critical buckling load predicted by the 

buckling solver will be conservative because the skin is not present in the analysis. To 

determine if geometric instability in the frame could cause failure, a frame buckling 

analysis will be performed at a design point in the SF design space where SF is equal to 
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one, if that point exists. The reason why the analysis would be performed at this design 

point is that the only reason to investigate geometric instability is if the structure does not 

fail first due to material failure. If the estimated critical buckling pressure, at the design 

point of SF equal to one, is greater than the pressure (101,325 Pa) applied, then geometric 

instability will be determined to be a non-factor in terms of structural feasibility. The 

reason why additional analyses at other points would not be necessary is because any 

design that has a SF greater than one would have a higher frame stiffness and therefore a 

larger estimated critical buckling pressure. 

Chapter III Summary 

This chapter discussed the methodology to be applied to the two case studies in 

chapters V and VI. The methodology highlighted the four step process which begins with 

the development of finite element models to produce the structural response outputs to be 

used to determine the potential feasible design space. The next step involved 

parameterizing the finite element system in terms of its inputs and outputs with a 

dimensional analysis to non-dimensionalize the inputs into relational ratios or invariants, 

to condense the number of inputs. So that the numbers of DOE factors to be analyzed for 

the system were minimized. The next step detailed the process to establish, perform, and 

analyze the design of experiments for the two case studies. This research focused on 

creating a broad scope first order DOE design so that the numerous 

inputs/invariants/factors could be tested while minimizing the number of initial 

experiments to gain a feel of what the design space looks like. The final step in the 

process detailed the response surface methodology for constructing first order surfaces 

based on the DOE data obtained. The last section of this chapter detailed the process that 
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will be used to evaluate the structural feasibility of the design space in terms of material 

and geometric instability.  
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IV. Geometric Frame Considerations and Modeling and Analysis Technique 

Validation 

 A model is only as good as the reality it predicts. With this in mind, it was 

desirable to develop a physical experiment that could be used to validate the finite 

element models. When developing the ideal experiment, one would want to create an 

experiment that matches the loading scenario being modeled. A test specimen frame 

covered by a membrane skin with an internal vacuum would be quite difficult to develop 

and execute that would be equivalent to the finite element model without an excess of 

cost and time. Since experimentation is desired and sensors and data collection are a 

function of that, an experiment needs to be developed such that accurate and reliable data 

can be obtained in order to compare against a finite element model. Therefore, a 

simplified yet similar loading scenario to the vacuum cause was developed. The scenario 

was to consider the frame alone and to load the frame in compression in a single direction 

with an MTS device. This experiment allows us to characterize the deformation of a 

geometric structure, in this case the icosahedron, under compression. As long as the 

experiment results are adequately captured with a corresponding model, confidence in the 

predicted results of the more complex vacuum model could be established and justified. 

In order to conduct the proposed experiment, a frame needed to be manufactured. 

The manufacturing process used to construct the frame specimen was additive 

manufacturing, in the form of plastic resin stereolithographic 3D printing. The specific 

printer was an Objet Eden 500V 3D printer [17]. When utilizing this style of additive 

manufacturing, there are printing constraints to be considered. These constraints are 

overall scale of the object, minimum thicknesses, and geometry (hollow or solid). The 
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Objet Eden 500V has an approximate 7 inch z-axis or object height limit, able only to 

print solid parts if closed contours exist in the model. Additionally, a 3D printed 

specimen used in an experimental loading scenario needs to be sufficiently strong enough 

to provide usable data. Therefore, the dimensionality of the object needs to be carefully 

considered such that the specimen is not too fragile, nor too stiff for the loading device.  

This chapter begins with a development of cylindrical beam global and local 

buckling, and the effect that the wall thickness/beam radius has on the design. The global 

and local cylindrical beam buckling is developed because the frame in the Metlen 

icosahedron and the hexakis icosahedron are both composed of cylindrical beams. The 

second section details the experimental tests performed to validate the frame finite 

element modeling and analysis technique.  

Cylindrical Beam Buckling Development and Thickness/Radius Ratio Analysis 

The first section will describe global column/beam buckling and collapse. It is 

important to understand this phenomenon because the frames being considered for the 

construction of a vacuum LTAV would be built using column/beam like profiles. The 

second section describes the local buckling that can occur when dealing with thin walled 

cylindrical columns. The last section combines both the global and local buckling 

equations to perform and an analysis on the predicted buckling loads for a cylindrical 

column with respect to its wall thickness/ radius ratio. 

Global Cylindrical Beam/Column Instability 

Bifurcation buckling is a mathematical explanation for collapse within a column. 

The bifurcation is a function of compressive energy. When the compressive potential 
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energy of the external load exceeds the internal ability to resist this energy, the form of 

movement is required to maintain equilibrium. That movement is a curved shape of the 

column leading to bending. The bifurcation is an attempt at nonlinearity using linear 

relationships. When a real column buckles it takes the physical shape of one of its mode 

shapes. This is shown in Figure 15, where the 1st mode is indicated when the beam bends 

upward as indicated by the lower illustration in Figure 15.  

 

Figure 15: First two mode shapes for a simply supported column. 

The mode shape is dependent on the load applied as well as boundary conditions. 

The critical load at which the column will buckle can be determined by solving an 

eigenvalue problem with respect to the governing equation and boundary conditions. The 

solution, for a simply supported column is shown in equation (363636363636363636) 

[18], where n is the mode shape of interest. Typically, one is used, and l is the effective 

length. A more general form of this equation can be produced for the first mode 

specifically to represent multiple boundary conditions. This equation is shown in 

equation (373737), where c is the coefficient of defining the boundary condition of the 

column. An illustration depicting the various boundary conditions and the corresponding 
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value of c is shown in Figure 16, where for instance a c =0.25 indicates a clamped-free 

condition, shown as the third scenario from the left. 

𝑃𝑐𝑟𝑖𝑡 =  
𝑛2𝜋2𝐸𝐼

𝑙2   (36) 

 

𝑃𝑐𝑟𝑖𝑡 =  
𝑐2𝜋2𝐸𝐼

𝑙2   (37) 

Where, E is the modulus of elasticity, I is the bending moment of inertia,  l is the beam or 

column length, and c is the parameter between 1 and 4 denoting the boundary condition 

of the beam or column. 

 

 

Figure 16: First buckling mode for various boundary conditions and its corresponding c 

value. 

It is noted that for a real life scenario one cannot truly produce a perfectly 

clamped end, therefore a c value of 2 is typically used for clamped ends. A typical load 

displacement curve for a buckled column is shown in Figure 17. The structure reaches the 
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critical load B and produces large displacement for little increased load. Note, that the 

critical load B is below the failure load of the material indicated by C in Figure 17 [19].  

 

 

Figure 17: Load displacement curve for a buckled column. 

Local Thin-Walled Circular Cylinder Instability 

The following section will describe beam buckling, considering isotropic thin-

walled circular cylinders under axial compression and bending. The concept behind 

determining the buckling load of a circular cylindrical shell is similar to that of a beam-

column or plate.. The buckling load for a circular cylindrical shell under axial 

compression is shown in equation (38) [20]. 

𝑁𝑥 =  −𝐷 [
𝑛2𝜋2

𝐿2
+

𝐸ℎ𝐿2

𝐷𝑅2𝑛2𝜋2
] (38) 

𝐷 =
𝐸ℎ3

12(1 − 𝜈2)
 (39) 

Where, D is the wall flexural stiffness per unit width, E is the modulus of elasticity, h is 

the wall thickness, L is the beam length, R is the beam radius, and 𝜈 is the materials 

Poisson’s ratio.  
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This equation states that any axial load 𝑁𝑥 will cause a lateral displacement which is 

known as buckling. The variable 𝑛, just as when considering the column scenario, 

denotes the unique buckling mode shape and buckling load. Since it is desired to know 

what the critical or minimum buckling load is for the shell, the lowest mode and 

respectively the lowest buckling load is desired. Therefore when we let 𝑛 = 1 in equation 

(38), it reduces to equation (40). 

𝑁𝑥𝑐𝑟𝑖𝑡
=  −𝐷 [

𝜋2

𝐿2
+

𝐸ℎ𝐿2

𝐷𝑅2𝜋2
] (40) 

This equation can be reduced further if we take the derivative of 𝑁𝑥 with respect to L 

equal to 0, this would then represent the length at which minimum buckling occurs. 

Substituting equation (41) into equation (40), one obtains the minimum buckling load. 

The resulting reduced equation is valid when the length of the cylinder is greater than or 

equal to the length obtained in equation (41). In order to obtain the critical axial buckling 

stress, equation (42) is divided by the thickness of the cylinder, shown in equation (43) 

[20]. 

𝐿 = 𝜋 [
𝑅2ℎ2

12(1 − 𝜈2)
]

1/4

 (41) 

 

𝑁𝑥𝑚𝑖𝑛
=  − 

𝐸ℎ2

𝑅√3(1 − 𝜈2)
 (42) 
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𝜎𝑥𝑐𝑟
=  

𝑁𝑥𝑚𝑖𝑛

ℎ
=  − 

𝐸ℎ

𝑅√3(1 − 𝜈2)
 (43) 

 

The same development is used when considering a thin cylindrical shell column under 

pure bending. In practice however, it has been experimentally found that on average a 

cylindrical column in bending, has a 30% higher buckling load, than the same column in 

axial compression [20].  

Cylindrical Beam Thickness/Radius Ratio Buckling Analysis 

A beam profile study was conducted by Rodriguez, where he found for a hollow 

beam the more you reduce the beam thickness to radius ratio the better the beam 

“performs”. This statement is true for the range of beam thickness/radius ratio that 

Rodriguez performed. The method that was used to evaluate the performance of the beam 

profile is Euler buckling as described in the global column buckling section above. This 

is illustrated in Figure 18, where the beam moment bending moment of inertia and 

critical buckling load increase as the beams max stress and displacement decrease as the 

beams thickness/radius ratio (
𝑡𝑏

𝑟𝑏
) decreases. This increasing trends occur because as the 

ratio decreases the beams radius gets larger which directly increase the bending moment 

of inertia and critical buckling load since I is in the numerator of the column buckling 

equation (37). The decreasing trends in max stress and displacement occur because the 

increase in bending moment of inertia increases the beams stiffness.  
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Figure 18: Solid vs. Hollow Beam Profile Study [5] (the top left plot is beam bending 

moment of inertia (In) versus (𝒕𝒃/𝒓𝒃), the top right plot is maximum beam stress (Smax) 

versus (𝒕𝒃/𝒓𝒃), the bottom left plot is maximum beam displacement (Umax) versus (𝒕𝒃/𝒓𝒃), 

and the bottom right plot is critical buckling load (Pcrit) versus (𝒕𝒃/𝒓𝒃)). 

If a hollow beams “performance” did in fact get infinitely better as (
𝑡𝑏

𝑟𝑏
) decreased, 

then one would assume that all beams would be hollow beams and their radii would be 

large and thicknesses very small. This however is not the case due to local shell buckling 

and a beams (
𝑡𝑏

𝑟𝑏
) does have a limit. Equation (43) illustrates the buckling of a thin-walled 

circular cylinder as a function of the beams thickness to radius. As the walls of the beam 

continually get thinner, it is expected that the beam will buckle due to local skin 

buckling, as opposed to global Euler buckling occurring first. A study was conducted on 

the beam profile in the same manner as was done in Rodriguez’s study, with the addition 

of the buckling load, due to local skin buckling as a function of beam thickness to radius 

ratio. This is shown in Figure 19, where the shaded regions are the critical regions. The 
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transparent black region denotes that the beam will fail due to local buckling and the blue 

region denotes that the beam will fail due to Euler buckling. 

 

Figure 19: Critical buckling Load of a hollow beam with varying thickness/radius ratio. 

 Observations from , show that beam thickness/radius ratios below 0.02 have a 

significant increase in Euler buckling, but are predicted to fail in local buckling first. This 

local failure can be prevented by building in ring stiffeners within the hollow beam, or by 

internally pressurizing the hollow beams [20]. If local buckling can be prevented then 

there would be a significant growth in the beams buckling performance below a beam 

thickness/radius ratio of 0.02. This would follow the Euler buckling theory instead of the 

thin cylindrical shell buckling theory. It is important to note that the buckling FEA 

performed on the structures frames in the chapters V and VI  cannot capture the local 
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buckling phenomena. The beams are modeled using 2D wires with a circular hollow 

profile, not 3D elements where the stress through the thickness of the beam can be 

properly modeled. As a result, the buckling analysis that Abaqus performs cannot account 

for the thinness of the beam when computing the critical buckling load of the structure. 

The analysis will tend to show increased structure performance as the beam 

thickness/radius ratio decreases. In the analyses performed in chapters V and VI, where 

beam thickness/radius ratio is less than the limit of approximately 0.02, local buckling 

could become a dominating factor. Thus, creating the potential for localized failures 

before material failure or global buckling can occur. This study in effect sets the 

manufacturing limit for the thickness/radius ratio of an unsupported hollow beam without 

considering local buckling. 

Frame Finite Element Analysis Modeling Technique Validation 

An icosahedron model was developed in Solidworks to be printed. The 

dimensions of the model are as follows: 17.78 cm frame diameter and 0.47625 cm solid 

beam diameter. The specimen was modeled as one continuous part and therefore solid 

beams had to be used so that they would comply with the printer’s constraints. A single 

piece model was developed to eliminate any user error or unintended failure points from 

assembly. The 17.78 cm frame diameter was chosen because it maximized the limits of 

the printer and a “large” frame produced more slender beams, 𝑟𝑏 ≪ 𝐿𝑏 than if the frame 

diameter were smaller. Slender beams were desired because they are used in the vacuum 

models. The beam’s diameter was chosen such that the frame would be stiff enough to 

handle the minimum load required to collect usable data on the MTS device and slender 

enough to be within the printer’s thickness tolerances. The usable data range is 
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considered to be the range of force measurements greater than the tolerance of the load 

cell. This is required such that the data recorded is not primarily near the tolerance of the 

load cell where the response is subject to significant error. The error tolerance is shown in 

Table 6 for MTS force transducer 661.19E-03 [21]. The beams minimum dimension was 

limited on the manufacturing process because during manufacturing, a secondary support 

material is printed which encompasses the part and needs to be removed after printing. 

During removal of the secondary material, if the interior part is too fragile it is likely to 

break. Therefore, a beam diameter dimension of 0.47625 cm was chosen because it was 

thought to be large enough to remain intact during cleaning. A buckling analysis, which 

is detailed below, was performed to indicate that a 17.78 cm icosahedron with 0.47625 

cm beam diameter would be stiff enough to properly load the MTS device above its error 

tolerance. Therefore, it was deemed that a 0.47625 cm beam diameter was satisfactory 

and no other beam dimensions for experimentation were investigated.  

Table 6: MTS 661.19E-03 Force Transducer Error Data  [21] 

 

 

MTS Setup 

With the icosahedron specimen’s dimensions determined and printed, the 

experiment can be set up. The experiment utilized an MTS 810 Material Test System 

servo-hydraulic load frame (661.19E-03), shown in Figure 20. The MTS was fitted with 

T-shaped plates that were inserted into the tension grips so that a flat top and bottom 

Force Range 

(N)

Max Measurment 

Error (%)

Max Measurment 

Error (N)

± 15000 0.16 ± 24

MTS 661.19E-03 Force Transducer
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surface could be created for compression testing. The MTS has its own load cell to 

measure both tension and compression loads and displacement sensor to measure the 

displacement of the loading hydraulic cylinder. The load cell was within calibration, but 

the displacement sensor was unknown. Therefore, a validation test of the displacement 

feedback from the MTS was performed to ensure that the data collected was reliable 

throughout the desired range. The validation for the MTS displacement feedback was 

performed using a Linear Variable Differential Transformer (LVDT). The specific model 

was a LBB-315-PA-100-1 and was calibrated. The test was performed by clamping the 

LVDT above the lower actuated cylinder and commanding the cylinder to move upward, 

and comparing the LVDT results to the MTS displacement results. The results of this test 

were that the maximum error between the two was approximately 5% and the average 

error was 1.7%. With the average error being small, the MTS displacement feedback was 

determined to be adequate for experimentation.  

The specimen was placed in the center of the bottom plate, where the vertical 

position of the plate was controlled by a servo-hydraulic piston. To compress the frame, 

the bottom plate was driven upward into the top plate, which was fixed. The load 

response data was recorded by a load cell connected in line above the top plate, shown in 

Figure 21. The data collection was performed using the MTS FlexTest 40 digital 

controller and data logger. The software used was the FlexTest 40 station manager and 

MultiPurpose TestWare application. The loading of the icosahedron was performed using 

displacement control. The model was manually moved up into the top plate until there 

was no gap between the top of the icosahedron and top plate. The load cell and 

displacement were tared to 0 at this point. The model displaced at a constant rate of 0.02 
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mm/s (0.047 in/min) into the top plate until a displacement of 2 mm was reached, then 

the model was unloaded at the same rate.  

 

Figure 20. AFIT MTS with compression plates 
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Figure 21. MTS with Icosahedron frame 

MTS FE Setup 

Since, the beams in the fabricated model are solid instead of hollow, as in the 

vacuum model, a solid beam model was generated in Abaqus to match the model that was 

printed. The material properties, modulus, density, and Poisson’s ratio, used for the 

model were chosen via the material datasheet for VeroBlue RGD840 from Stratasys [17]. 

The values are 2.295 GPa, 1190 kg/m3, and 0.35 respectively. A literature search showed 

that the material properties of the printed materials could be far removed from the quoted 

values. The materials investigation indicated that the material properties of a printed 

object can vary significantly based on the geometry and placement of the specimen 

within the machine. Research work from Virginia Tech shows this issue occurring, 

therefore it is difficult to know what the material properties of the printed object are [22]. 

Since the properties could not be exactly determined, a range was chosen based on data 
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from VT and in house material testing at AFIT. The range for the material properties used 

in the analysis is shown in Table 7. 

Table 7. VeroBlue Material Property Range. 

 

 The next step in the model development is establishing the boundary conditions. 

The boundary conditions were placed on two opposing triangular faces vertices, where 

the top vertices’ displacements were restricted only in the x and y direction. The bottom 

vertices were pinned restricting all displacements and allowing rotations. The “load” was 

applied using displacement control at the top vertices in the downward z-direction. The 

boundary conditions and loading are depicted in Figure 22. The boundary and loading 

conditions were chosen to create the same scenario as the physical experiment. The 

elements and seeding for this model are the same, 20 B32 beam elements per edge, used 

for the model developed by Rodriguez. The analyses performed on the model were both a 

buckling and non-linear static analysis. 

VeroBlue-VPI VeroBlue-Stratasys

Density 1190 1190 kg/m^3

Poisson's Ratio 0.35 0.35

Modulus of Elasticity 1.874-1.000 2.295 Mpa
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Figure 22. Boundary Conditions and Loading for MTS FE model. 

Icosahedron MTS FE Results 

 The analysis was conducted in two parts: linear buckling analysis and non-linear 

static standard analysis. The linear buckling analysis approximated the buckling load and 

mode shape for the icosahedron frame under the loading and boundary conditions shown 

in Figure 22. The material properties used for this analysis used a range of modulus 

values defined in Table 8, because the modulus properties are unknown for the printed 

frame. The first mode shape and corresponding eigenvalue that did not detail rigid body 

motion was the mode of interest. This mode is the first failure mode and is what is 

expected that the frame will exhibit when loaded by the MTS. The higher modes are not 

significant because the frame will have already collapsed at the first mode. The result of 

the 2.295 GPa modulus buckling analysis depicting the first mode and eigenvalue is 

shown in Figure 23. The same analysis was performed four additional times with each 

having a degraded modulus value. The eigenvalues obtained from the analysis can readily 
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be converted to the critical load value using equation (44). The corresponding critical 

loads for the various moduli analyses are shown in Table 8 [23]. 

 𝐹𝑐𝑟𝑖𝑡 = 𝜆𝑐𝑟𝑖𝑡𝐹𝑟𝑒𝑓 (44) 

 

Where: 𝐹𝑐𝑟𝑖𝑡 = Critical buckling load 

  𝜆𝑐𝑟𝑖𝑡 = lowest eigenvalue from buckling analysis 

  𝐹𝑟𝑒𝑓 = magnitude of reference load applied for the buckling analysis 

(usually a unit load) 

Table 8. Critical buckling load of 3D print icosahedron estimated by buckling analysis for 

various modulus. 

 

 

  

Test # Modulus of Elasticity (MPa) Fcrit (N)

1 2.295 650.09

2 1.874 481.98

3 1.577 405.59

4 1.176 302.46

5 1 257.2
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Figure 23. First failure mode of icosahedron under MTS loading conditions. 

 After the linear buckling analysis, a non-linear static analysis was performed to 

map the nonlinear displacements and stresses of the frame as it undergoes deformation in 

order to compare the buckling load predicted by the linear buckling analysis. The same 

frame and boundary conditions were used for the non-linear analysis as well as the linear 

buckling. The load applied to the frame was performed using displacement control at the 

top of the frame. The forced displacement was 0.002 m applied in the downward 

direction at the three top vertices as shown in Figure 22. As the displacement occurs, the 

frame can fail in two ways, collapse or material failure. The non-linear analysis can be 

used to estimate which will occur first. The load versus displacement curves of the frame 

tracing the displacement at the top and reaction at the bottom for the various modulus 

values are shown in Figure 24. These curves all show that the structure reaches a limit 
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where linear displacement no longer occurs, and after this limit the structure continues to 

carry load but at a reduced stiffness. In the models produced, the structures will infinitely 

be able to carry an increasing amount of load no matter the displacement because there is 

no material plasticity definition in the model. Realistically when a structure begins to 

deform non-linearly, it can either continue to carry load at a reduced stiffness until 

material failure or lose its ability to carry further load and displace until local instability, 

either geometric or material. A model without plasticity relationships cannot accurately 

predict post buckling behavior. It can show whether structural yielding occurs first, as 

long as the calculated stress values are lower than the materials yield strength and 

deformations are relatively small. Looking at Table 8 and Figure 24, all of the load points 

where the onset of non-linear behavior occurs coincide closely to the critical load values 

estimated by the linear buckling analysis. If the material strength is estimated to be 

approximately 2% of the modulus as indicated by the data collected by VT, it can be 

estimated whether or not material failure or structural yielding will occur first. The 

estimated material strengths and max stress values at 2mm vertical compression with 

their corresponding moduli are shown in Table 9. As shown in the table, the stress values 

at 2mm displacement are below the estimated material strengths. Thus, it is estimated that 

structural yield would occur before material failure at the point where the load vs. 

displacement curve goes non-linear. 
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Table 9: Estimated Material Strength and Stress at 2mm vertical displacement of VeroBlue 

FE Models 

 

 

 

Figure 24. Load vs. Displacement for various moduli icosahedron modeled with Abaqus 

Icosahedron MTS Results 

With the response of the experimental specimen generally unknown for this 

loading case, all we had was an estimate from the FE model. Therefore, initial very small 

Modulus of Elasticity 

(Gpa)

Estimated Material 

Strength (Mpa) 

Estimated Max Stress at 2mm 

Displacement (Abaqus) (Mpa)

2.295 45.9 39.85

1.874 37.48 32.55

1.577 31.54 27.39

1.176 23.52 20.43

1 20 17.37

VeroBlue Material Model
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displacement test cases, approximately 0.5-1mm compression, were performed on the 

printed frame. These test cases allowed us to see whether the frames response measured 

by the MTS system was repeatable and allowed us to determine which orientation of the 

icosahedron gave consistent results. Loading of up to 1mm was chosen because that was 

the limit where non-linear displacement began to occur in the FE models, and permanent 

deformation of the frame was not desired at this point. With consistent and repeatable test 

runs, it was determined that the behavior of the frame was sufficiently captured to load 

the frame to failure. Figure 25, shows the failure test run load vs. displacement along with 

the 1 GPa modulus FE model analysis. The experiment indicates that structural yielding 

occurs first at approximately 1 mm because the frame continues to carry the load. The 

material failure occurs due to the large deformations brought about by the structural 

yielding at approximately 2 mm. The deformations produce necking, which increases the 

stress, causing material failure. The results obtained lie almost exactly with the 1 GPa 

Abaqus model, up until material failure in the experiment around 2 mm. A side by side of 

the FEM and experimental model frame in their deformed and un-deformed states are 

superimposed on themselves and are shown in Figure 26. The important thing to note in 

Figure 26 is the similarities of the displacement magnitude and direction of the beams 

between the FEM and the test specimen. The green image is the deformed state for both 

of the models. The black on the left and the orange on the right are the unreformed states 

of the FEM and test specimen. The images to produce the right image in Figure 26 were 

captured using a high speed camera recording at 40 frames per second.  
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Figure 25. Load vs. Displacement of Abaqus MTS and Experiment 

 

Figure 26: Superimposed before and after deformation images. Abaqus images-Left, High 

speed camera experimental images-Right. (Green color is deformed image) 
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3D printed Icosahedron Frequency Analysis Setup 

Due to the fact that the material properties of the printed icosahedron frame are 

somewhat ambiguous as pointed out by VT, further testing was desired to see if the 

material properties determined from the MTS experiment could be confirmed. Therefore, 

a non-destructive test was developed to investigate the material properties of the printed 

icosahedron. This test was to conduct an experimental and FE frequency modal analysis 

on the icosahedron frame in order to compare them. The modal analysis in Abaqus 

reports the eigenvalues and eigenvectors that satisfy the general eigenvalue problem for 

an undamped FE model. This general expression is shown in equation (45). Where MMN 

is the mass matrix, KMN is the stiffness matrix, 𝜆 are the eigenvalues, and UN are the 

displacements or eigenvectors that produce the eigenvalues. This equation can be 

rewritten in terms of natural frequencies, shown in equation (46). Where 𝜔2 is the natural 

frequency and 𝜙𝑁 is the corresponding eigenvector. Equation (46) can estimate (MN) 

number of eigenvalues and eigenvectors for the FEM within Abaqus. For this analysis, 

the eigenvalues or frequencies that are of interest are the low modes which are typically 

referred to as first bending and first torsion modes, disregarding rigid body modes. These 

are the smallest eigenvalues that produce a bending or torsion eigenvector shape. 

𝑀𝑀𝑁𝑈𝑁𝜆 + 𝐾𝑀𝑁𝑈𝑁 = 0 (45) 

(−𝜔2𝑀𝑀𝑁 + 𝐾𝑀𝑁)𝜙𝑁 = 0 (46) 

 When conducting a frequency analysis, the only parameters that have an effect of 

the eigenvalues are the stiffness, mass, damping, and boundary conditions of the system. 

It is assumed that the system is undamped or there is no additional damping other than 

the structures natural damping associated with its mass and stiffness. With the mass and 
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stiffness of the system determined by the structures geometry and material properties, it 

leaves only the boundary conditions to be defined. It was desired for this experiment to 

use what is known as a free-free boundary condition or “no” boundary condition. This is 

simple to execute within Abaqus, where the user just applies no boundary conditions to 

the model and runs the frequency analysis. However, in an experimental setting, it is not 

as simple as just not applying a boundary condition. Simply floating the object in the air 

and having it remain in relatively the same position is not an option unless the experiment 

were conducted in space. The experimental specimen needs to have some sort of 

boundary condition. Fortunately, creating the environment of effectively no boundary 

condition, or free-free condition, is not overly difficult. The free-free boundary condition 

for the icosahedron model was conducted by selecting one of the vertices, with no 

particular importance, and looping a string around it and hang the icosahedron in air. This 

free-free experimental boundary condition is shown in Figure 27. The experimental data 

was obtained and analyzed using a Polytec PSV-500 laser vibrometer system, shown in 

Figure 28. In addition to the Polytec system, an impulse hammer was used to excite the 

system so that the natural frequencies could be extracted. The impulse hammer, PCB 

product model number 086C01, is shown in Figure 29. The hammer was fitted with the 

soft tip and the extended mass so that low frequency values would be excited and 

therefore measured by the Polytec system. With sufficient practice, the hammer was used 

to strike the icosahedron on the blue point in Figure 27, a series of three times to obtain 

the modal response.  
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Figure 27: 3D printed Icosahedron hanging with a free-free boundary condition. The red 

dot indicated where the laser vibrometer was focused and the blue dot indicates where the 

structure was excited.  

 

Figure 28: Polytec PSV-500 Laser Vibrometer Frequency Analysis System. 
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Figure 29: 3D printed icosahedron frequency analysis experimental set-up. 

 With the experiment set up, a corresponding FE model was developed to estimate 

the eigenvalues associated with the 3D printed icosahedron with 1 GPa modulus of 

elasticity. The geometry and mesh of the model is the same as the MTS model, shown in 

Figure 30. The difference here is that there are no loads or boundary conditions applied 

and a frequency step is used to extract the eigenvalues and eigenvectors of the 

icosahedron. 
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Figure 30: FE Icosahedron model for frequency analysis. (Red dot indicates the traced 

beam for experiment comparison.) 

 

3D printed Icosahedron Frequency Analysis Results 

In order to extract experimental natural frequencies from the icosahedron, the 

laser of the laser vibrometer needs to be focused on a particular point or series of points 

along the structure. Focusing on more than one point of the structure would allow the 

user to view quasi mode shapes. They would not be the full shape of the structure only 

because a single laser is being used and the displacement magnitudes and directions can 

only be tracked in a single plane. If the complete picture were desired then a three 

dimensional array of lasers would need to be set up. Extracting and viewing the mode 

shapes were not the priority of this experiment, therefore a single laser is sufficient 

enough to capture the natural frequencies of interest. An important consideration, when 

using a laser vibrometer to scan a point for a frequency analysis, is that the frequency 

results will be specific to the point scanned, not the global structure. With that in mind, 
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the frequency response computed by the vibrometer software will only capture the 

frequencies with the largest harmonic response at the point scanned. This is important to 

note when looking to compare the experimental results to FE frequency results, which is 

discussed below. The input signal, coherence, and frequency response of the point 

scanned in Figure 27, with three averaged impulse hammer excitations are shown in 

Figure 31, Figure 32, and Figure 33. 

 

Figure 31: Impulse Hammer Input Signal 

 

Figure 32: Coherence of Input Signal to Laser Response 

It is important to excite the structure more than once and average the data. 

Without doing this, a coherence value cannot be obtained and the data obtained could be 
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heavily subject to noise. The averaging of the power spectrums associated with the input 

and output signals allows for the noise values to be approximated. A coherence value 

close to 1 indicates that the signal-to-noise ratio is high, or good. This means that the 

power input to the system by the hammer is reflected strongly in the power measured by 

the vibrometer. This evaluation is performed across the power spectrum which is why the 

coherence magnitude changes with respect to frequency. The averaged input signal in 

Figure 31, shows that all of the strikes were single impacts and not multiple impacts, 

which would show up as an oscillatory component on the input signal. Additionally, the 

input signal was flat across the frequency spectrum which ensures that differing amounts 

of energy were not input at differing frequencies. In other words, the same amount of 

energy or power was provided across all of the frequencies. This is important when 

analyzing the frequency response function (FRF), because it ensures that a constant 

amount of power is provided across the entire frequency band analyzed. If the power 

input were not constant, than the FRF would reflect those inconsistencies, which produce 

error in determining which frequencies are resonant. 

In analyzing the FRF in Figure 33, and confirming that good coherence is 

achieved in Figure 32, at the peaks, the frequencies of 229 Hz and 439 Hz were 

determined to be the first two natural frequencies of the scanned beam. From here it was 

necessary to determine whether the experimental boundary condition provided was 

indeed a free-free condition. According to McConnell [24], an experimental free-free 

condition is met when the measured rigid body frequency is 10 times less than the first 

measured natural frequency. In this case this rigid body frequency measured was 13 Hz 
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and the first natural frequency was 229 Hz, which is 17 times greater than the rigid body 

frequency, ensuring that the assumption of a free-free boundary condition is met.  

 

Figure 33: 1st and 2nd modes computed from the frequency analysis of the experimental 

Icosahedron by the Polytec software. 

With the free-free boundary condition confirmed, the natural frequencies 

extracted from the Polytec system can be compared to the eigenvalues estimated by 

Abaqus. Comparing the two evaluations is not completely straightforward as comparing 

the experimental values to the first two eigenvalues estimated by Abaqus. When Abaqus 

estimates the eigenvalues, it is looking at the entire discretized structure and not just one 

point as in the experimental set-up. Therefore, Abaqus lists the eigenvalues from low to 

high of the entire structure, and the results need to be “filtered” to specially focus on the 

response of the beam scanned in the experiment. A point, having the same position as the 
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one scanned by the laser vibrometer was identified in the FEM, and its eigenvalues and 

eigenvectors were observed. Since the laser vibrometer scans for velocity values of the 

point it is scanning the frequencies that produce the largest change in displacement with 

the specimen are associated with the points natural frequencies. A single scanning laser 

vibrometer can only measure the velocity component in the direction normal to the laser 

head. Since this is true the eigenvalues and eigenvectors of the point observed within the 

Abaqus model needs to be observed from the perspective of the laser vibrometer to be 

able to compare the their respective natural frequencies or eigenvalues. Therefore, the 

only eigenvalues that were considered natural frequencies of the point observed in the 

FEM were those whose eigenvector directions matched the direction the laser vibrometer 

was scanning in. These eigenvectors were singled out and their respective eigenvalues 

were 240.58 Hz and 430.10 Hz within Abaqus. This is shown in Figure 34. The error 

between the experimental values and Abaqus values are 4% and 2% respectively for the 

two modes from lowest to highest with the modulus of elasticity equal to one GPa in the 

Abaqus model. This serves as another point of confirmation alongside the MTS results 

that that modulus of the printed icosahedron is approximately one GPa.  
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Figure 34: Eigenvalues and Eigenvectors of the first two modes in Abaqus associated with 

the beam scanned from the laser vibrometer experiment (the red dot indicates the point 

observed in the model, matching the laser vibrometer). 

Chapter IV Summary 

The objective of this chapter was to first describe the buckling theory related to 

cylindrical beams and the effect that the wall thickness/beam radius has on the estimated 

critical buckling loads. Next, the chapter describes the two experimental tests conducted, 

MTS and modal analysis, on a 3D printed icosahedron. The experiments were to validate 

the icosahedron FEMs, as well as the technique of modeling them. It was shown that the 

load versus displacement response of the frame in the MTS and the modal analysis 

frequencies were approximated almost exactly by their respective Abaqus models. 

However, there were problems that arose with the 3D printed material, where it is highly 

subject to variability in its material properties. This required further experimental testing 

to approximate with good confidence what the exact material properties were. The 
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experiments proved the validity of the modeling technique, and it proved that a robust 

model has been developed which will be used in the next two case study analyses.  
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V. Metlen Icosahedron VLTAV DSE and Feasibility Assessment Case Study 

This chapter applies the methodology developed in chapter III on the icosahedron 

design proposed by Metlen in 2012 with modern material and manufacturing constraints. 

The chapter begins with a discussion on the development of the icosahedron finite 

element models (FEM) to be analyzed for stresses, displacements, and critical buckling 

loads. Once, the FEMs are developed a model convergence study is performed to 

determine what mesh settings are necessary to produce converged responses (stresses, 

displacements, and critical buckling loads). With a converged model mesh criteria, the 

DSE methodology developed in chapter III is performed, beginning with the dimensional 

analysis and ending with a structural response design space. The space will then be 

evaluated to determine if any feasible icosahedron designs exist within the boundaries 

applied.  

Icosahedron Finite Element Models Development 

Icosahedron Geometry Development 

An icosahedron is a platonic solid that has 20 faces, 30 edges, and 12 vertices. 

Each face of the icosahedron is composed of the same unit equilateral triangle, making it 

a regular polyhedron. In order to model the structure, the geometry has to be established. 

The parameters defining the geometry of the icosahedron are vertex locations, surface 

area, and volume. Considering the vertex locations, it is noted that the vertices of the 

icosahedron all lie on sphere circumscribing the polyhedron. Therefore, the only 

parameter needed to determine the vertex locations is the radius of the circle that 

inscribes the icosahedron. In spherical coordinates (𝜙, 𝜃, 𝑟), we will identify the 12 

vertices. The first and last will be top and bottom vertices, followed by two groups of five 
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vertices in between the top and bottom points. The vertex points in spherical coordinates 

are shown in Table 10, where ricos is equal to the radius of the sphere circumscribing the 

icosahedron. In addition, two illustrations of the vertex locations are shown in Figure 35 

(a top down view) and Figure 36 (an isometric view). It is also shown in Figure 36 how 

the vertices lie on a circumscribing sphere, by noticing the vertices that lie on the dotted 

circle. 

Table 10: Icosahedron vertex locations. 

 

Point φ (degrees) θ (degrees) r (meters)

1 90 0 ricos

2 tan-1(1/2) 0 ricos

3 tan-1(1/2) 72 ricos

4 tan-1(1/2) 144 ricos

5 tan-1(1/2) 216 ricos

6 tan-1(1/2) 288 ricos

7 -tan-1(1/2) 36 ricos

8 -tan-1(1/2) 108 ricos

9 -tan-1(1/2) 180 ricos

10 -tan-1(1/2) 252 ricos

11 -tan-1(1/2) 324 ricos

12 -90 0 ricos

Icosaedron vertex locations
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Figure 35: Icosahedron top view (The green dot indicates the top and bottom vertices, the 

blue dots indicate the top group of five vertices, and the blue dots indicate the bottom group 

of five vertices). 

 

Figure 36: Icosahedron Frame with vertex labels (The green dot indicates the top and 

bottom vertices, the blue dots indicate the top group of five vertices, and the blue dots 

indicate the bottom group of five vertices).  
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The importance of using spherical coordinates is that the scale or radius of the 

vehicle can be altered by adjusting only the 𝑟𝑖𝑐𝑜𝑠 parameter. With the vertex locations 

known, and the fact that every edge is the same length, the length of one of the edges can 

be determined by computing the distance between any two adjacent vertices with 

equation (47) in Cartesian coordinates. Additionally, the edge length can also be 

computed using equation (48), where 𝜓 is equal to the golden ratio (
1+√5

2
). With the edge 

length known, the surface area, AI, and volume, VI, can be readily computed using 

equations (49) and (50) [1], [5]. 

𝑎 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 (47) 

 

𝑎 =
2𝑟𝑖𝑐𝑜𝑠

√𝜓√5

=
4𝑟𝑖𝑐𝑜𝑠

√10 + 2√5
 

(48) 

 

𝐴𝐼 = 5√3𝑎2 (49) 

 

𝑉𝐼 =  
5

12
(3 + √5)𝑎3 (50) 

 

Icosahedron Sizing Equations 

In order to model the Metlen icosahedron in Abaqus for analysis, the independent 

variables that define the geometry need to be computed. These variables are beam radius 

and thickness for the frame (hollow rods) and skin thickness for the skin. To determine 
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these parameters, the sizing equation, (51), developed by Rodriguez [5] will be utilized. 

Equation (51) is a general formula to compute the W/B for any frame-skin structure with 

an internal vacuum.  

 𝑊

𝐵
=  

𝑉𝑠𝜌𝑠 +  𝑉𝑓𝜌𝑓 +  (𝑉𝑖 − 𝑉𝑟)𝜌𝑎𝑖𝑟,𝑖

(𝑉𝑖 − 𝑉𝑟)𝜌𝑎𝑖𝑟,𝑜
 (51) 

Where, 𝑉𝑓 and 𝑉𝑠 are the frame and skin volume respectively; 𝜌𝑓, 𝜌𝑠, 𝜌𝑎𝑖𝑟,𝑖, and 𝜌𝑎𝑖𝑟,𝑜 are 

the frame, skin, internal air, and external air density respectively; 𝑉𝑖 and 𝑉𝑟 are the initial 

internal volume and the volume lost or reduced due to the structure deforming when an 

internal vacuum is present. The W and B are the weight and buoyant force of the vehicle 

respectively. In order to compute the frame and skin dimensions for the icosahedron 

VLTAV, the first step is to set the left hand side (W/B) of equation (51) to an initial 

value. For instance, if an icosahedron design was desired to float or carry a payload the 

initial value of W/B in equation (51) would be set to a number less than one (indicating a 

positively buoyant design). Now, for this example, just because a positively buoyant 

vehicle can be geometrically sized does not mean the design would actually float or carry 

any payload in reality. The proposed design not only has satisfy the W/B constraint of 

being less than one, it has to not fail due to material and geometric instability as well. It is 

noted, that the W/B value can only be less than one when the weight of the vehicle is less 

than the buoyant force produced. Therefore, when this is performed, any amount of 

weight given up for buoyancy, directly reduces the design’s resistance to material and 

geometric instability. For this research, since the objective is to determine if structurally 

feasible designs exist within a bounded design space the W/B value for all designs will be 

set to one. This value was chosen because it is desired to give every design considered its 
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best chance for structural feasibility and technically produce a floating design. A W/B 

equal to one does not produce a VLTAV that can rise, however, it does produce a 

VLTAV that can float (neutrally buoyant). It is noted that the initial W/B value selected 

is only an initial value so that the vehicle can be sized. After an FEA is conducted, the 

final W/B is determined by calculating the internal volume based on the displacements 

within the frame and skin.   

The next step, is to specify what percentage of the designs weight (W) is to be 

dedicated to the frame and skin. To do this, Rodriguez introduced two variables, 

𝑊

𝐵 𝑓
 and 

𝑊

𝐵 𝑠
, frame W/B and skin W/B where the total of these W/B’s is equal to the W/B 

on the left hand side of equation (51). Utilizing equation (51) and the introduction of 

𝑊

𝐵 𝑓
 and 

𝑊

𝐵 𝑠
 Rodriguez developed equations (52-54) to compute an icosahedron VLTAV 

design’s frame and skin dimensions.  

 

 

𝑟𝑏𝑖𝑐𝑜𝑠
= 𝑟𝑖𝑐𝑜𝑠

√

𝑊
𝐵 𝑓

𝜌𝑎

39.0742(2𝑐 − 𝑐2)𝜌𝑓
 

(52) 

 
𝑐 =

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

 
(53) 

 

𝑡𝑠𝑖𝑐𝑜𝑠
=

𝑟𝑖𝑐𝑜𝑠𝜌𝑎
𝑊
𝐵 𝑠

3.77523𝜌𝑠
 

 

(54) 
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 Where, 𝑟𝑏𝑖𝑐𝑜𝑠
 is equal to the icosahedron frame beam radius, 𝑡𝑏𝑖𝑐𝑜𝑠

 is equal to the frame 

beam thickness, and 𝑡𝑠𝑖𝑐𝑜𝑠
 is equal to the icosahedron skin thickness. 

Icosahedron Finite Element Models 

Now that the dimensions of any icosahedron VLTAV design can be determined, 

utilizing equations (52-54) with 
𝑊

𝐵
,

𝑊

𝐵 𝑓
and 

𝑊

𝐵 𝑠
 specified (

𝑊

𝐵
= 1 in this research), FEMs 

can be constructed to analyze the stresses, displacements, and critical buckling pressure 

of the design. Before any analysis can be conducted, three additional independent 

variables are required to perform the structural analysis. These are, the frame and skin’s 

material modulus of elasticity (Eb, and Es), Poisson’s ratio (𝜈), and pressure applied to 

the membrane (P). For this research, the Poisson’s ratio (𝜈) will be a constant 0.33 for all 

materials. This value is based on the Poisson’s ratio that Rodriguez used in his analyses. 

Rodriguez showed in his research, that altering Poisson’s ratio had very little effect on 

the overall structural response [5]. As stated in chapter III, two Abaqus solvers (linear 

and non-linear) will be utilized to approximate the icosahedron design’s stresses, 

displacements, and critical buckling pressure. The solver used to approximate the stresses 

and displacements will be the non-linear solver. The FEM for this analysis will include 

both the frame and skin coupled together, shown in Figure 37. Remember, the membrane 

stresses and displacements can only be analyzed with a non-linear solver because of the 

pressure load and expected large displacements compared to its thickness. The FEM in  

utilizes numerical tie constraints to tie the membrane to the mid-section of the wire 

beams at the points where the membrane and beams overlap. This allows the external 

pressure applied to the membrane to evenly distribute the pressure load to the frame. The 
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boundary conditions are applied to the frame at any two opposite vertices where vertical 

movement and rotations are allowed. These constraints are consistent with those 

developed by Rodriguez [5].  

 

Figure 37. Boundary Conditions and Loads for the Icosahedron FE model. 

The solver used to approximate the critical buckling load of a design, will be the linear 

buckling solver. As stated in the structural feasibility analysis section of chapter III, the 

only viable way to perform a buckling analysis on the icosahedron VLTAV is to consider 

the frame alone, as Rodriguez did [5]. The FEM for this analysis will include the frame 

alone with reference points added. So that the “pressure” load can be distributed to the 

frames beams as if the membrane were there. This is shown in Figure 38. The boundary 

conditions for the linear FEM are the same as described for the non-linear model. 
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Figure 38: Icosahedron Frame with Reference Point Loading 

  

The finite element models developed for this research were analyzed using 

Abaqus. The beams of the frame were modeled using 2D wire-beam elements in 3D 

space. The beam elements were given a hollow circular profile based on the beam radius 

and thickness specified in the sizing equations. The beam element chosen in Abaqus was 

the B32 element, which is a quadratic element with three nodes and six degrees of 

freedom (DOF) at each node and is based on Timoshenko’s beam theory. This element’s 

DOF, translation and rotation, allow it to capture both axial and transverse loads. The 

Timoshenko beam theory was chosen because it allows for a wide variety of beam cross 

sections and length to be chosen without sacrificing accuracy of the solution, as well as 

the ability to capture in-plane deformation. The skin of the structure was modeled using 

membrane elements for the static non-linear analysis. The membrane elements chosen 
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were M3D3. The M3D3 element is a triangular element with three nodes and three 

displacement DOF at each node. 

Icosahedron FE Mesh Convergence Study 

To ensure that the stresses, displacements, and critical buckling loads 

approximated by the non-linear and linear solvers are accurate, the FEM’s need to have a 

converged mesh. The mesh in finite elements, is the discretization of the model into what 

are called elements. Hence, the beam and membrane elements discussed above. For 

example, let’s consider one of the legs of one of the triangles that make up the 

icosahedron. During the FEA, displacements and stresses are computed along the length 

of the beam. If the leg is represented by a single element, the stresses computed for that 

analysis would be far lower than what they would be in reality. This is because when 

only a single element is used, the leg in the model has only 6 DOF on each end and 

cannot accurately predict the displacements and stresses. Therefore model convergence 

tests are carried out on FEMs to determine what discretization of the model is necessary 

to produce converged displacement and stress results. 

The convergence study performed on the icosahedron model, was performed 

using the non-linear solver with the frame-skin FEM. The model was analyzed at a single 

design point repeatedly, with only the number of elements varying, to determine what 

minimum element discretization produces a converged stress and displacement response. 

The design point chosen for the repeated analysis is shown in Table 11, where the values 

chosen are based on the bounds decided in the following DOE section.  
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Table 11: Icosahedron Convergence Study Parameters. 

 

The number of elements per edge or seed number per edge that were tested were: 

[5, 10, 15, 20, 25, 30, and 35]. The results of the convergence study are shown in Figure 

39, where max frame stress, max skin stress, final W/B, and Abaqus CPU solver time are 

plotted versus seed number per edge.  

Parameter Units

W/Bf 0.9

W/Bs 0.1

ρa 1.225 kg/m3

ρb 1250 kg/m3

ρs 970 kg/m3

c 0.005

ricos 0.1524 m

Eb 2.93E+11 Pa

Es 1.72E+11 Pa

P 101325 Pa

Icosahedron Convergence Study Parameters
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Figure 39: Icosahedron Vacuum FE model mesh convergence study. 

 The percent error term in all of the plots was computed by using equation (55). 

Where 𝑝 represents the output values, stress and final W/B, and 𝑖 denotes the current 

iteration. The error term was the percent difference between each seeding iteration.  

(
𝑝𝑖 − 𝑝𝑖−1

𝑝𝑖
) 100 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (55) 

 

The number of elements per edge that was determined to yield a converged solution was 

20 elements per edge. This seeding produced a frame stress, skin stress, and final W/B 

solution that was 4%, 0.3%, and 0.007% different than the solution with 35 elements per 

edge. This seeding also produced a CPU computation time of approximately 1 minute, 

82% less time than it took to solve the 35 elements per edge model. 
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Icosahedron VLTAV FEM Dimensional Analysis 

As stated in chapter III, “The ultimate purpose of the dimensional analysis to be 

performed on the FEMs, is to provide valuable relationships between the independent and 

dependent variables that define the system and to reduce the complexity of the model.”  

 The dimensional analysis will be conducted on only the icosahedron frame-skin 

model and not the frame alone model. This is because, the frame-skin model is the FEM 

that the stresses and displacements will be extracted from during the DOE. The 

dimensional analysis on the frame-skin FEM will follow the steps indicated in chapter III. 

Step 1: Determine independent and dependent variables 

  The icosahedron model is defined in terms of its sizing and FE inputs. Recall 

equations (52-54), where the dimensions of the frame and skin are determined. These 

equations can be expresses in terms of their inputs, as shown in Table 12 in the first 

column. Now, recall the necessary FE inputs to define the FEM for analysis, as shown in 

Table 12 in the second column. With all of the variables that define the FEM system 

listed, we can select which variables that are independent and define the FEM 

completely. Beginning with the first column of Table 12 we select the first instance of the 

variables on the right hand side of the equations. These variables are listed in red. Note, 

that air density (𝜌𝑎) does appear on the right hand side but is not selected to be an 

independent variable. This is because air density depends on another variable, altitude 

(h). Continuing to the second column of independent variables, we have frame and skin 

modulus of elasticity, pressure, and Poisson’s ratio. The variables that are selected as 

independent are listed in red (moduli and pressure). Note, that pressure (P) is also a 

function of altitude. Therefore we must choose to include either air density (𝜌𝑎) or 
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pressure (P) as an independent variable but not both. When one is specified the other is as 

well and therefore both are dependent on each other. The last column of Table 12 

indicates the dependent variables or FEM responses that are desired to be observed. They 

are max frame stress (𝜎𝑓𝑚𝑎𝑥
), max skin stress (𝜎𝑠𝑚𝑎𝑥

), and displacement (u). With the 

independent and dependent variables determined, their relationship can be written as 

equation (56).   

Table 12: Icosahedron FEM Independent Variables. 

 

𝜎𝑓𝑚𝑎𝑥
, 𝜎𝑠𝑚𝑎𝑥

, 𝑢 = 𝑓 (
𝑾

𝑩 𝒇
, 𝒄, 𝝆𝒃, 𝒓𝒊𝒄𝒐𝒔,

𝑾

𝑩 𝒔
, 𝝆𝒔, 𝑬𝒃, 𝑬𝒔, 𝑷) (56) 

For this model there are three dependent variables and nine independent variables, 

making the constant k = 12. Additionally, equation (56) can be rewritten as equation (57). 

𝑥𝑘 =  (𝜎𝑓𝑚𝑎𝑥
, 𝜎𝑠𝑚𝑎𝑥

, 𝑢,
𝑊

𝐵 𝑓
, 𝑐, 𝜌𝑏 , 𝑟𝑖𝑐𝑜𝑠,

𝑊

𝐵 𝑠
, 𝜌𝑠, 𝐸𝑏 , 𝐸𝑠, 𝑃) (57) 

 

Step 2: Define Dimensions 

The independent variables are known as the dimensioned quantities that make up 

the physical law for the model (dependent variables), which in this case is the FEA of 
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either the icosahedron. The fundamental dimensions that make up the dimensioned 

quantities are M = mass, L = length, and T = time. With the fundamental dimensions 

known, the independent and dependent variables can be represented by their dimensions, 

shown in Table 13.  

Table 13: Icosahedron FEM Independent and Dependent Variable Dimensions. 

 

Step 3: Select the Dimensionally Independent Subset 

Since we have three dimensions making up the model (L, M, and T) we can select up to 

three independent variables to be in the dimensionally independent subset. Following the 

rules laid out in chapter III for selecting the subset, the variables 𝑟𝑖𝑐𝑜𝑠, 𝜌𝑏 , and 𝐸𝑏 are 

chosen. These three variable are chosen because they are not any of the dependent 

variables, they are not dimensionless, and their dimensions cannot be created by 

combining the other two in the subset. Note, that the FEM has two terms with dimensions 
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of density (𝜌𝑏 , 𝜌𝑠) and three terms with dimensions Pa (𝐸𝑠, 𝐸𝑏 , 𝑃). When selecting the 

subset, 𝜌𝑠 could have been selected instead of 𝜌𝑏, and either of the other terms with units 

Pa could have been selected instead of 𝐸𝑏. 𝑟𝑖𝑐𝑜𝑠 had to be selected because it was the only 

independent variable with units of only length (L). 

Step 4: Compute Pi Parameters  

Now that a subset has been chosen the Π terms can be solved for. Since this 

model has 12 terms and three parameters in the subset, there are nine Π terms to be 

solved for. Conveniently, three of the independent variables are non-dimensional 

(
𝑊

𝐵 𝑓
,

𝑊

𝐵 𝑠
, and 

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

) and therefore are inherently Π parameters. The remaining 

independent and dependent variables that are not in the dimensionally independent subset 

are plugged into equation (58) to create the remaining Π parameters as shown in chapter 

III. An example of how to compute Π1 will be shown, and the same procedure will be 

used to compute the remaining Π terms, but will not be shown. 

Π𝑖 = 𝑥𝑗𝑥6
𝑎𝑥7

𝑏𝑥10
𝑐  (58) 

Π1 =  𝑥1𝑥6
𝑎𝑥7

𝑏𝑥10
𝑐 : 

𝐿0𝑀0𝑡0 = 𝐿−1𝑀1𝑡−2(𝐿−3𝑀1𝑡0)𝑎(𝐿1𝑀0𝑡0)𝑏(𝐿−1𝑀1𝑡−2)𝑐 

 

0 = −1 − 𝑎3 + 𝑏1 − 𝑐1
0 = 1 + 𝑎1 + 𝑏0 + 𝑐1

0 = −2 + 𝑎0 + 𝑏0 − 𝑐2
 

Solve for a, b, and c: 
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𝑎 = 0
𝑏 = 0

𝑐 = −1
 

Plug a, b, and c into Π1 =  𝑥1𝑥6
𝑎𝑥7

𝑏𝑥10
𝑐 : 

Π1 =
𝑥1

𝑥10
=

𝜎𝑓𝑚𝑎𝑥

𝐸𝑏
 

Repeating for the remaining independent and dependent variables that are not in the 

dimensionally independent subset and placing in the initial non-dimensional values 

(
𝑊

𝐵 𝑓
,

𝑊

𝐵 𝑠
, and 

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

) yields: 

Π𝑖 = (
𝜎𝑓𝑚𝑎𝑥

𝐸𝑏
) , (

𝜎𝑠𝑚𝑎𝑥

𝐸𝑏
) , (

𝑢

𝑟𝑖𝑐𝑜𝑠
) , (

𝑊

𝐵 𝑓
) , (

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

) , (
𝑊

𝐵 𝑠
) , (

𝜌𝑠

𝜌𝑏
) , (

𝐸𝑠

𝐸𝑏
) , (

𝑃

𝐸𝑏
) (59) 

 

Where, the dependent Π parameters with a dependent variable in it can be written as a 

function of the remaining Π’s. This is shown in equation (60). 

Π1 = 𝑓(Π4, Π5, Π6, Π7, Π8, Π9)
Π2 = 𝑓(Π4, Π5, Π6, Π7, Π8, Π9)
Π3 = 𝑓(Π4, Π5, Π6, Π7, Π8, Π9)

 (60) 

 

 The dimensional analysis provides us with unique benefits after determining all of 

the Π parameters or invariant quantities. These benefits are similarity and out-of-scale 

modeling. Similarity states that if all of the independent invariants between two different 

designs are the same then their dependent invariants are actually equal as well. Out-of-

scale modeling states that the performance of a full-scale system can be realized by 
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testing a geometrically similar smaller scale model. For the icosahedron FEM invariants, 

the independent Π parameters address this. If all of the independent Π parameters 

remain equal then scale of the vehicle can be increased or decreased and the stresses 

would remain constant (Π1and Π2). However, as the vehicle scales the displacements will 

scale proportionally with the vehicle size, as indicated by Π3 = (
𝑢

𝑟𝑖𝑐𝑜𝑠
). Therefore, if the 

stresses of a larger radii vehicle were desired, a test on a smaller scale model would yield 

the stress results for the larger vehicle as long as all the independent Π parameters 

remain constant. This scaling concept is powerful because the FEA results obtained for 

one model are the results for infinitely many radii models as long as the invariant 

parameters remain constant. 

In order to test the concept of structural scaling and if the stress and relative 

displacement solution, remain constant, as long as the invariant quantities remained 

constant, the icosahedron model was analyzed at 6 different radii from 3-96 inches 

keeping all other inputs constant. The results are shown in Table 15. The constant 

invariant ratios are shown in Table 14. The analysis proved that if only changing the 

vehicle radii, no effect in the stress and relative displacement resulted, as indicated by the 

near zero percent difference between all models when comparing them to the 3 inch 

model.  
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Table 14: Icosahedron Invariants for scaling example 

 

Table 15: Icosahedron Scale vs. FE Model Outputs and % Difference 

 

DOE Analysis Results and Discussion for the Icosahedron Vacuum Vehicle 

This section will detail the setup and execution of the DOE to collect stress and 

displacement data of many icosahedron designs, so that the bounded structural design 

space can be created. The DOE analysis is broken down into five steps. The first step is 

to determine the factors and levels that will be used to perform the DOE. The factors for 

this analysis will be invariants (Π′𝑠) developed in the dimensional analysis. Note, the 

DOE could have very well been performed without conducting the dimensional analysis 

first. (The factors would have been the nine independent variables on the right side of 

Icosahedron 

Radius (in)

Frame Stress 

(Pa)

% Difference 

(%)

Skin Stress 

(Pa)

% Difference 

(%)
Final W/B

% Difference 

(%)

3 3.938E+09 0.0000 2.042E+09 0.0000 1.0069 0.0000

6 3.938E+09 0.0013 2.042E+09 0.0000 1.0068 0.0094

12 3.938E+09 0.0008 2.042E+09 0.0001 1.0067 0.0153

24 3.938E+09 0.0012 2.042E+09 0.0001 1.0066 0.0209

48 3.938E+09 0.0013 2.042E+09 0.0002 1.0066 0.0217

96 3.938E+09 0.0016 2.042E+09 0.0002 1.0066 0.0230
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equation (56).) The high and low levels or input ranges on the factors were developed 

with material and manufacturing constraints applied, where applicable. The second step 

was to perform a set of experiments prescribed by an unreplicated  2k full factorial 

design. The third step will apply an ANOVA on the input and response data obtained 

from the DOE, to determine which factors and interactions had significant effects on the 

stress and displacement responses of the icosahedron frame and skin designs. The last 

step will create regression fits of the response data from the DOE using only the 

significant factors and interactions, where the fit and curvature of the DOE response data 

will be evaluated. 

Determine Factors and Levels 

With a converged FE model and the input parameters characterized by the 

dimensional analysis, the design of experiments can be setup. The DOE will be 

conducted using a full factorial 2k unreplicated design. An unreplicated design is being 

used because the solver or simulator is a deterministic process where performing 

replicates will not yield different solutions from the original test case. Typically in a 

DOE, replicates are necessary to reduce the risk of outliers or bad tests in the test data. 

The input parameters or factors chosen for the factorial analysis are taken from the 

invariant quantities produced by the Buckingham Pi analysis.  

Typically, when a dimensional analysis is performed before a DOE, the invariants 

are used outright as the factors for the DOE. This, in general, simplifies the analysis of 

the system being investigated. For the icosahedron FEM some of the invariants had to be 

manipulated so that their parameters could be integrated into the model generation 

process. When this was performed some of the factors developed for the DOE will 
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become dimensional again. Note, when this is performed the end user must use SI units 

when utilizing approximation models generated by the ANOVA, in the following section. 

This is not an ideal scenario, but the benefits of similarly, out-of-scale modeling, and 

independent variable reduction are still maintained from the dimensional analysis. The 

six invariants produced by the dimensional analysis, as shown in equation (59), will be 

manipulated to produce five factors, to be used for the FEM DOE. 

The two invariants (
𝑊

𝐵 𝑠
) and (

𝑊

𝐵 𝑓
) will be reduced to a single invariant by forcing 

the total of their ratios to equal 1 for the factorial analysis. This is shown in equation (61). 

𝑊

𝐵 𝑠
will be the first factor for the DOE.  

𝑊

𝐵 𝑓
=

𝑊

𝐵 𝑇𝑜𝑡
−  

𝑊

𝐵 𝑠
 (61) 

 

Where, 
𝑊

𝐵 𝑇𝑜𝑡
= 1 

The next two factors are produced by combining the (
𝜌𝑠

𝜌𝑏
)

−1

and (
𝐸𝑠

𝐸𝑏
) invariant quantities. 

This is performed, because a materials density and modulus are coupled with each other.  

When combined, these invariants equal 
𝜌𝑏𝐸𝑠

𝜌𝑠𝐸𝑏
. Where, this ratio contains the material 

property, specific stiffness (
𝐸

𝜌
), for both the frame and skin. Now, the combined ratio can 

be separated into two quantities, frame and skin specific modulus 
Eb

ρb
 and 

Es

ρs
 , so that their 

coupling can be accounted for. At any time these parameters be recombined to form the 
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original invariant if desired. The fourth factor is the c-ratio 
𝑡𝑏

𝑟𝑏
 or beam thickness-to-radius 

ratio. The last factor will be produced from the (
𝑃

𝐸𝑏
) invariant where the pressure term P 

will be represented as altitude (h), in which P is a function of (𝑃(ℎ)). The denominator 

𝐸𝑏 will be ignored. Again, the original invariant (
𝑃

𝐸𝑏
) can be reconstructed for any design 

considered.  Thus, the factor to represent this invariant will be ℎ or altitude. These five 

factors account for all six of the invariants determined from the dimensional analysis. The 

five invariant factors to model the FEA outputs are shown in Table 16.  

Table 16: Factors for the DOE created from the Invariants of the Dimensional Analysis 

 

Performing the dimensional analysis before setting up the DOE reduced the 

number of factors or invariants to represent the model from the original nine independent 

variables to the five factors shown in Table 16. The five factors will be evaluated at a 

high and low level, producing a 25 un-replicated full factorial analysis. This analysis 

requires a minimum of 32 experiments to conduct an ANOVA and determine which 

factors and interactions significantly affect the response parameters. If the dimensional 
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analysis had not been conducted initially, a minimum of 29 or 512 experiments would 

have been required to determine which parameters were significant. That is 

approximately a 93.75% reduction in the number of tests required to characterize the 

model. 

The 25 full factorial DOE analysis will be conducted in a multi-step process with 

the assistance of a statistical analysis software package JMP. The first step will be to 

construct the DOE test matrix. Within JMP, the user specifies the DOE design (2k), 

number of factors (5), levels (2), replicates (0), and center points (1). A randomized or 

structured design matrix is then constructed containing at least the minimum number of 

experiments required (33) to perform an ANOVA on the data collected. The test matrix 

constructed, details the experiment number (FEA) and the corresponding levels for the 

frame specific modulus, skin specific modulus, altitude, c-ratio, and 
𝑊

𝐵 𝑠
 for each of the 33 

experiments (FEA) to be performed. The tests within the matrix were assigned randomly 

and are shown in Table 17, where 1 indicates low factor level, 2 indicates high factor 

level, and 0 indicates a mid-level (center point).  
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Table 17: DOE Experimental Test Matrix 

 

The factors and levels for the DOE of the icosahedron are shown in Table 18. 

Additionally, Table 19 shows the vector of outputs that were observed for the factorial 

analysis. The development of the level values chosen for the frame and skin specific 

Test #
Frame Specific 

Modulus

Skin Specific 

Modulus
Altitude C-ratio Skin W/B

1 1 2 1 2 2

2 2 1 1 2 1

3 1 1 2 1 2

4 1 2 2 2 1

5 1 2 1 1 1

6 1 1 2 2 2

7 2 2 1 1 2

8 2 2 2 2 2

9 1 2 2 1 2

10 2 1 2 1 1

11 1 1 2 2 1

12 2 2 1 1 1

13 2 1 1 1 2

14 1 2 2 1 1

15 2 1 1 1 1

16 1 1 1 2 2

17 2 1 2 2 1

18 2 1 1 2 2

19 2 1 2 1 2

20 1 2 1 2 1

21 2 2 2 1 1

22 2 2 2 1 2

23 1 1 1 1 1

24 1 2 1 1 2

25 2 2 2 2 1

26 1 2 2 2 2

27 2 2 1 2 1

28 2 1 2 2 2

29 1 1 1 1 2

30 1 1 1 2 1

31 2 2 1 2 2

32 1 1 2 1 1

33 0 0 0 0 0
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modulus are detailed in the Materials and Manufacturing Constraints Study section 

below. The levels for altitude, c-ratio, and skin W/B were not constrained by material or 

manufacturing limitations, and therefore some freedom existed when determining what 

range of values to choose for the levels. In order to gain a broad view of the structural 

design space for the icosahedron and produce finite element models that converged to a 

solution, the factors not driven by material properties were chosen so that their range was 

large. The actual magnitude of the ranges were determined by performing initial spot 

check structural analyses to determine if the set of inputs would allow for the finite 

element solver to converge to a solution with a reasonable amount of time. The definition 

of reasonable amount of time was setting a maximum of six hours for an analysis to be 

performed. To put into perspective, an icosahedron model with “good” design parameters 

took approximately 20-30 minutes to solve. Therefore the levels for altitude, c-ratio, and 

skin W/B were selectively arbitrarily chosen so that their range was large enough to 

provide a broad scope view of the structural design space to evaluate potential feasibility.     

Table 18: Icosahedron Factors and Levels for a 25 Factorial Design 
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Table 19: Icosahedron DOE Observations 

 

Materials and Manufacturing Constraints Study  

In order for a vacuum LTAV to be constructed, very specific material properties 

are necessary. Within the discussions authored by Akhmeteli, Gavrilin, Metlen, and 

Rodriguez, there is a common theme with regard to the materials considered to construct 

a vacuum LTAV. These materials need to have high ultimate strength, high modulus of 

elasticity, and low density. The following variables, high specific strength and high 

specific modulus were combined. As was pointed out by Akhmeteli, there exists no 

individual material that can resist buckling when built as a thin shell sphere with an 

internal vacuum [4]. Therefore, the need to develop some type of reinforcement is 

necessary. Rodriguez showed that with an icosahedron stiffened structure, buckling was 

indeed not the limiting factor; material failure was [5]. This is known as the materials 

ultimate strength. Metlen showed that utilizing a carbon fiber composite showed promise 

in constructing the frame of the structure. Metlen only investigated a unidirectional fiber 

epoxy combination for the frame that yielded a modulus of 538 GPa, which rivals that of 

the materials in Table 1 that could theoretically be used for the construction of a vacuum 

LTAV [1]. Let it be noted, that some of the materials quoted by Rodriguez cannot be 

used in their pure form to manufacture the components of a stiffened frame. These 

materials are CNT, Spectra, and Zylon. The materials presented by Rodriguez exhibited 
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properties that would produce a vacuum LTAV if constructed with an icosahedron frame 

and skin numerically. CNT, until recently, could not be constructed on a macro scale and 

therefore is approaching a functional material. Specifically, research is being performed 

where carbon nanotubes (CNT) are being utilized to make CNT fabrics. They have very 

low density and thicknesses [25] [26] [27].  Work is being performed where these fabrics 

are being stretched so that the CNT’s are aligned and high unidirectional composite 

properties are generated and even exceeding that of Spectra fiber alone [6] [28]. Spectra 

and Zylon fibers can be formed into a composite where the bulk modulus and ultimate 

strength will decrease because of the bonding epoxy. Larger fill percentages of the fiber 

can be used to attempt to stay as close to the natural fiber properties. Studies recently 

have been performed that combine carbon nanotubes with epoxy resin to increase the 

modulus and strength of the epoxy by as much as 36-42% and 25%, respectively [29]. 

These types of epoxies could be utilized in the construction of composites with UHM, 

Spectra, and Zylon fibers. The models in this research will focus on utilizing current and 

near future materials for the investigation of a vacuum LTAV, such as, CNT, Spectra, 

Zylon, and UHM composites. 

 The materials used for the models in this research are materials that currently exist 

and can be purchased from a supplier. They  have been created and tested in a lab setting 

but are not currently available for purchase, or have not been created with properties 

estimated from literature. The material properties derived from the “materials” that have 

not been created serve as a future material benchmarks that are not far removed from 

reality. The materials selected are shown in Table 20. 
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Table 20: List of Materials for Vacuum Models Development 

 

The properties for skin material 1 are the material properties of a membrane 

laminate constructed by Cubic Tech using CT155HB UHMWPE [30]. These properties are 

shown in Figure 40.  

 

Figure 40: Cubic Tech CT155HB UHMWPE material properties [30]. 

Skin material 2’s properties are that of Spectra alone and denote what material properties 

would be desired for a future membrane laminate [31] [30]. Currently, Spectra fibers with 

these material properties do exist, and therefore constructing a laminate membrane with 

the material properties of the bulk material is currently not available. It certainly is not far 

removed from reality in the near future. Frame material 1's properties are estimated from 
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what a unidirectional spectra composite with CNT epoxy would yield and is equivalent to 

IM10 in terms of specific modulus and strength according to Figure 42 [28] [6]. On 

average, when looking at unidirectional composites, the modulus and yield strength of the 

composite are approximately 50% and 60% less than the fiber alone [1]. Yet, with a CNT 

epoxy included, this reduction can be estimated to be 30% and 40% for the modulus and 

yield strength respectively [32] [29] [33]. Additionally, the properties estimated for the 

Spectra composite align very well with existing high strength composites, such as IM10 in 

Figure 42. Frame material 2’s material properties are the most aggressive of all the material 

stated yet this material has been manufactured and tested in a lab setting. This material is 

a CNT fiber composite manufactured on the macro scale. The manufacturing technique is 

a novel technique developed by X. Wang et al at North Carolina State University [28]. The 

technique uses a novel stretch winding process where high volume fractions of long CNTs 

can be incorporated into a polymer matrix while simultaneously stretching and aligning the 

CNTs. This process is shown in Figure 41. The process allows for CNT composites or 

prepregs to be directly manufactured in a “one-step” process. The CNT type used for the 

composite are multi-walled nano-tubes (MWNT) and the matrix is bismaleimide (BMI) 

[28]. A comparison of this composites material properties to other high performance 

engineering composites is shown in Figure 42. Figure 42 (a) plots tensile strength versus 

modulus of elasticity, where the work performed at NCSU in red along with high 

performance carbon fiber composites. The material properties that are desired for the 

icosahedron VLTAV design are high tensile strength and high modulus of elasticity (the 

top right corner of Figure 42 (a)). Figure 42 (b) plots specific strength versus specific 

modulus, where the desirable region is again the top right corner for the icosahedron 
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VLTAV. Since material density plays such an important role in the vehicles buoyancy, any 

material that has high specific strength and modulus is desirable.  

 

Figure 41: (a) Illustration of straightening the CNT fibers then combining them with the 

polymer matrix and layering them in a composite fashion. (b) Illustration of the stretch-

winding process [28]. 
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Figure 42: Comparison of the CNT composite (red dots) material properties with other high 

performance engineering composites. (a) Tensile Strength vs. Young’s Modulus. (b) Specific 

Strength vs. Specific Modulus [28]. 
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Skin Manufacturing 

The manufacturing technique that is recommended to be utilized for setting the 

manufacturing limits for a membrane skin is a laminate technique. The laminate 

technique uses oriented laminates to allow for “the ability to optimize weight, thickness, 

and strength at particular locations or along predetermined load paths”.  Laminate 

composites tend to have linear properties that can be used in the design of the membrane. 

In addition to the high strength of laminate fabrics, they have the ability to incorporate 

seams that can even be stronger than the base material itself, where typically seams are 

the limiting point in a material. Possible ways to fabricate the seams are sewing, adhesive 

bonding, heat welding, ultrasonic welding, and laser enhanced bonding [30].  Examples 

of some fabricated laminates are shown in Figure 43.  

The manufacturing membrane thickness limit that will be used for this research 

will be taken from the data published by Cubic Tech and Khoury in Airship Technology 

[30] [31]. The medium and heavy weight laminate membranes produced by Cubic Tech 

[30] had an approximate average of 0.2mm in their study. Work by Khoury, in Airship 

Technology, illustrates the material layers utilized for LTAV membranes and their 

thicknesses. The average membrane thickness for his work was approximately 0.23mm 

for manufactured membranes, shown in Figure 44. The manufacturing skin thickness 

limit that will be used for this research will be 0.2mm. Note, that the skin thickness limit 

does not affect the structural feasibility of the icosahedron designs, it only dictates how 

thin a membrane could be manufactured. However, the skin thickness limit does dictate 

size or scale of a manufacturable icosahedron design. The effect of this limit is shown in 

the vehicle sizing section of this chapter.    
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Figure 43: Laminate Composites [30]. 
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Figure 44: Lighter than Air Membrane Manufacturing thicknesses [31]. 
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Experiments and Results 

The FEAs prescribed by the DOE test matrix in Table 17 were automatically 

conducted utilizing the cyclic process identified in Figure 11, where it took 

approximately 11 hours to run the 33 experiments. The results of the DOE are shown in 

Table 21, where the inputs with engineering units instead of level indicator (0, 1, or 2) are 

shown to the left of the red line, and the FEA responses are shown to the right of the red 

line. For example, referencing the test matrix constructed in Table 17, the first 

experiment had factors [1, 2, 1, 2, and 2] for [
𝐸𝑏

𝜌𝑏
,

𝐸𝑠

𝜌𝑠
, ℎ,

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

, and 
𝑊

𝐵 𝑠
]. Now, referencing 

the levels determined in Table 18, the factors, in engineering units for the first test were 

[1.289E8 m2/s2, 1.773E8 m2/s2, 0 m, 0.05, and 0.4], respectively. The max frame stress, 

max skin stress, and final W/B responses for the first FEA were extracted from the stress 

and displacement data acquired, and were [2.576E9 Pa, 4.571E9 Pa, and 1.0536], 

respectively. Once all of the FEA’s were complete, the input and output data in 

engineering units was input into the software package JMP to perform an ANOVA on the 

data. (as indicated in chapter III) To analyze the factor and interaction effects on the three 

responses (max frame stress, max skin stress, and final W/B) for the entire data set in 

Table 21. 
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Table 21: Icosahedron DOE Inputs and Results 
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Analysis of Variance 

For a 25 full factorial analysis there are five degrees of effects and interactions. If 

we let the five factors described above (
𝐸𝑏

𝜌𝑏
,

𝐸𝑠

𝜌𝑠
, ℎ,

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

 and 
𝑊

𝐵 𝑠
) be labeled as A, B, C, D, 

and E, their combinations will produce interactions up to a 5th degree or a five way 

interaction. Table 22 shows the main factor terms and all their possible combinations or 

interactions. With a full factorial DOE, all of these terms can be analyzed for significance 

in the ANOVA. Recall, in chapter III that for an unreplicated full factorial design, as 

performed for the icosahedron analysis, there is no way to naturally determine the 

significance of all of the terms for the ANOVA. This occurs because there exists no DOF 

(extra experiments or ignored interaction terms) to compute the sum of squares error 

(SSE) necessary to calculate significance. However, the initial work-around is to use 

Lenth’s PSE, detailed in chapter III, to compute an estimation of error, to conduct initial 

significance analysis. Lenth’s PSE will be used to estimate the insignificant factors or 

interactions, which will be discarded so that a natural ANOVA can be conducted, where 

the discarded factors or interactions will allow for SSE to be computed.  
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Table 22: 25 Full Factorial Terms 
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The initial significance data was obtained using Lenth’s PSE method and is 

represented with both a half normal plot and Pareto chart. The half normal plot plots the 

absolute value of the estimated effect values or contrasts along with a fitted line which 

indicates where the effect would fall if the effect value was zero. The terms that deviate 

significantly from the fitted line are deemed significant terms and all the others are 

deemed not significant. The Pareto chart depicts similar information where the bar values 

are the absolute value of the effect and the vertical red line is the SME value calculated 

by Lenth’s PSE value. Any term with an estimated effect greater than the critical value is 

deemed to be significant and anything less is not significant. These plots for the output of 

max frame stress is shown in Figure 45. Charts showing the same information for the 

remaining outputs are shown in Appendix A. Table 23 shows a summary of the effects 

that were determined to be significant for all of the outputs utilizing Lenth’s PSE. 
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Figure 45: Half Normal Plot and Pareto Chart of the Effects with respect to Max Frame 

Stress (pseudo standard error term). 
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Table 23: Summary of Icosahedron Initial Significant Effect Terms 

 

The initial use of Lenth’s PSE allowed for 18 interactions indicated in Table 22 to 

be discarded. Table 23 shows the factors and interactions that were indicated to be 

significant for each respective response by inspecting their half normal and Pareto charts. 

Now that 18 interactions have been discarded, a natural ANOVA can be proceed with 

where the 18 discarded interactions make up the error term necessary to compute the 

ANOVA. 

 The ANOVA was computed using the combined significant terms between the 3 

responses (max frame stress, max skin stress and final W/B), which are shown in the 

combined effects column of Table 23. The combined column was chosen so that all of the 

responses could be analyzed simultaneously as well as to see if any new terms out of the 

initially estimated significant terms using Lenth’s PSE became significant. Utilizing the 

JMP software, the 18 insignificant interactions were removed from the analysis and the 

ANOVA was computed for the max frame stress, max skin stress, and final W/B with 

Max Frame Stress Max Skin Stress Final W/B Combined

A A A A

B B B B

C C C C

D D D D

E E E E

AD AD AD

AE AE AE

BD BD BD BD

BE BE

CD CD CD

DE DE DE DE

ADE ADE ADE

BDE BDE

Icosahedron Significant Effects 
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respect to the remaining 13 factors and interactions listed in the combined column of 

Table 23. The ANOVA data computed for the max frame stress response considering all 

33 FEAs is shown in Table 24. Table 24 details the sum of squares (SS) values, the 

computed F ratio, and whether or not the effect is significant for each of the 13 factors 

and interactions included in the ANOVA. The individual sum of squares and F ratios 

were computed using the theory detailed in the ANOVA section of chapter III. Table 25 

shows additional ANOVA information for each of the three responses, specifically 

SSModel (SSTotal) and SSE, which are used to compute the F ratios in Table 24. 

Table 24: ANOVA Results for Icosahedron Max Frame Stress 

 

Y Source DF Sum of Squares F Ratio Prob > F Significant

Frame Stress Frame Specific Modulus (A) 1 3.12E+19 951.4134 <.0001 TRUE

Frame Stress Skin Specific Modulus (B) 1 2.16E+18 65.8228 <.0001 TRUE

Frame Stress Altitude [C] 1 3.11E+17 9.4866 0.0062 TRUE

Frame Stress C-ratio (D) 1 3.33E+18 101.4179 <.0001 TRUE

Frame Stress %skin [E] 1 3.09E+17 9.3999 0.0064 TRUE

Frame Stress Frame Specific Modulus*C-ratio (AD) 1 3.47E+17 10.5606 0.0042 TRUE

Frame Stress Frame Specific Modulus*%skin (AE) 1 1.11E+16 0.3377 0.568 FALSE ^

Frame Stress Skin Specific Modulus*C-ratio (BD) 1 6.32E+17 19.2458 0.0003 TRUE

Frame Stress Skin Specific Modulus*%skin (BE) 1 2.43E+17 7.3982 0.0136 TRUE

Frame Stress Altitude*C-ratio (CD) 1 2.84E+17 8.642 0.0084 TRUE

Frame Stress C-ratio*%skin (DE) 1 7.90E+18 240.679 <.0001 TRUE

Frame Stress Frame Specific Modulus*C-ratio*%skin (ADE) 1 6.77E+17 20.6147 0.0002 TRUE

Frame Stress Skin Specific Modulus*C-ratio*%skin (BDE) 1 1.61E+16 0.4901 0.4924 FALSE

(^ a higher order term containing this term is significant)
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Table 25: Model ANOVA values (SST and SSE values) - Icosahedron 

 

 With the F-ratios computed, the next step is to determine if the factors and 

interactions are significant with respect to their F values. As outlined in the ANOVA 

section of chapter III, the factor and interaction F ratio will be compared to a critical F 

value obtained from an F statistic table. The critical F ratio, 𝐹𝛼,𝑎−1,𝑁−𝑎, for this analysis 

was determined to be 4.17 by taking 𝛼 to be 0.05, which is commonly chosen [14], a = 2 

(2 levels), and N = 33 (total number of experiments). Equation (62) is then used to 

determine if the factor or interaction (Treatment) F-ratio is greater than the critical ratio. 

If the treatment F-ratio is greater than the critical ratio the factor or interaction 

(treatment) is determined to be significant. This same analysis was conducted for the 

remaining outputs and can be seen in Appendix A.  

𝐹𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 > 𝐹𝛼,𝑎−1,𝑁−𝑎 (62) 

It is noted, that when the ANOVA was computed additional significant terms were 

acquired for the max frame stress output as well as all the other outputs compared to the 

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 13 4.74E+19 3.65E+18 111.1311 <.0001

Error 19 6.24E+17 3.28E+16

C. Total 32 4.80E+19

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 13 6.35E+19 4.88E+18 117.4046 <.0001

Error 19 7.91E+17 4.16E+16

C. Total 32 6.43E+19

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 13 0.007048305 0.000542177 38.9669 <.0001

Error 19 0.000264362 1.39138E-05

C. Total 32 0.007312667

Final W/B Model ANOVA 

Max Frame Stress Model ANOVA 

Max Skin Stress Model ANOVA 
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ones estimate by Lenth’s PSE. A new final significant effects summary for all the 

responses based on the computed ANOVA and F ratios are shown in Table 26. 

Table 26: Summary of Icosahedron Final Significant Effect Terms 

 

Interaction plots can be created to visually observe the main effect and interaction 

effects, using the ANOVA data. A cube interaction plot and main effects with 2nd degree 

interactions chart for the max frame stress are shown in Figure 46 and Figure 48. The 

interaction plots for the other two outputs are shown in Appendix A. 

The cube plot shows the discrete effect on the output at the boundaries or corner 

points of each input and their combinations. These corner points are the values where 

each input is at either its high or low value or combination thereof. Since, the model was 

constructed using five factors, the only way to visualize all 32 experimental test, 

excluding the center point, results on a single chart is to use four cubes. Where, on a 

single cube three of the factors and their levels can be represented and the other two 

factors levels are represented by the additional cubes where each cube constitutes a high, 

Max Frame Stress Max Skin Stress Final W/B Combined

A A A A

B B B B

C C C C

D D D D

E E E E

AD AD AD

AE AE AE

BD BD BD BD

BE BE BE

CD CD CD

DE DE DE DE

ADE ADE ADE

BDE BDE

Icosahedron Significant Effects 
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low, or combination thereof level. Since, the factorial design has only two levels for each 

factor all 32 test results can be viewed utilizing four cubes.  

 

Figure 46: Cube Interaction Plot for the Max Frame Stress – Icosahedron 

 

Figure 47: Example Representation of a 23 Factorial Main Effect and Interactions Contrasts 
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The data within the cube plot is used to determine the main effect and interaction 

strength values as well as develop the data for Figure 48. For instance, the slope of the 

main effect, frame specific modulus, shown in Figure 48 on the top left plot can be 

computed using the data represented in Figure 46. The way this is performed is to 

average all of the points where the frame specific modulus was high and low separately 

to obtain two values. The high level data points are on the right faces of the four cubes 

and the low level data points are on the left faces of the four cubes. A graphic of this is 

shown in Figure 47 for a single cube. The two averaged number can then be used to 

create the line shown in the top left plot of Figure 48. All of the other plots on Figure 48 

are performed in a similar fashion referencing Figure 47. 

 

Figure 48: Main effects and 2nd degree interactions effects for Max Frame Stress – 

Icosahedron 
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The main effects and 2 way interactions plot in Figure 48 shows the effects of the 

factors and their interactions on max frame stress at the factors high and low levels. 

Observing the effects chart, it is shown that there are specific main effects and 

interactions that have a dominating effect on the response when compared to all the other 

factors and interactions. The main effects that are considerably dominate are the graphs 

that have steep slopes connecting the averaged response value when the factor was low to 

when the factor was high. The interactions that are considerable are the ones that have 

slopes that are significantly different from each other in the graph. The dominate main 

effects and interactions for the max frame stress are the frames material properties, 
𝐸𝑏

𝜌𝑏
, the 

frames geometry, 
𝑡𝑏

𝑟𝑏
, the combination of the frames geometry and the weighting of skin to 

frame, 
𝑡𝑏

𝑟𝑏

𝑊

𝐵 𝑠
, and the skins material properties, 

𝐸𝑠

𝜌𝑠
. These effects and interactions are 

highlighted by the red boxes in Figure 48. The same observations were made for the max 

skin stress and the terms that are dominate are the frames geometry, 
𝑡𝑏

𝑟𝑏
, the skins material 

properties, 
𝐸𝑠

𝜌𝑠
, the frames material properties, 

𝐸𝑏

𝜌𝑏
, the combination of frame geometry and 

the weighting of skin to frame, 
𝑡𝑏

𝑟𝑏

𝑊

𝐵 𝑠
, and the combination of skin material properties and 

frame geometry, 
𝐸𝑠

𝜌𝑠

𝑡𝑏

𝑟𝑏
.  The final weight-to-buoyancy, had the frames geometry, 

𝑡𝑏

𝑟𝑏
, 

altitude, ℎ, and the skin material property, 
𝐸𝑠

𝜌𝑠
, terms to be considerably dominate. 

Curvature Assessment 

In order to continue to the regression fitting, the curvature of the responses needs 

to be investigated. Curvature of a response is determined if the center point data is 
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significantly difference from the mean of the response. Table 27 shows the mean of the 

response of the center point data in the first two rows. A percent difference between these 

rows was taken and the results are shown in the 3rd row of the table. It is shown that the 

error for the frame stress, skin stress, and final W/B is approximately 5%, 5%, and 1% 

respectively. Since the percent difference is fairly small and comparatively equal to the 

percent root mean square error (RSME) of the mean response, it indicated that the center 

point has no more error than any other point in the data set. It is therefore concluded that 

curvature does not exist for the three observed outputs, and the existing DOE data can be 

used to perform the regression fits. 

Table 27: Icosahedron Curvature Analysis 

 

 

Regression Fits and Fit Assessment 

With the factorial design reduced to primarily only significant terms, a linear 

regression fit on the outputs can be performed. This regression model that will be 

computed is a least squares linear regression model. This is performed by calculating the 

estimators, �̂� in equation (63), where 𝑿 are the set of inputs or factors and 𝒚 are the 

outputs corresponding to the inputs. An estimator is computed for each significant term in 

the model per output considered. Therefore, three least squares regression fits are 

Frame Stress Skin Stress Final_W_B

Mean of Response 3.968E+09 3.259E+09 1.031

Center Point Response 4.177E+09 3.439E+09 1.020

% Center Point Error 5.266 5.530 1.111

% RSME of Mean Response 4.566 6.259 0.362

Icosahedron Curvature Study
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constructed to model all three of the responses considered for the icosahedron model 

(max frame stress, max skin stress, and final W/B). The fitted regression model is 

constructed to look like equation (64), where �̂� is the fitted model, �̂�𝑘  are the 

estimators, 𝑥𝑘 are the significant terms and 𝜖 is the error [14]. 

�̂� = (𝑿′𝑿)−𝟏𝑿′𝒚 (63) 

 

�̂� =  �̂�0 + �̂�1𝑥1 + �̂�2𝑥2 + ⋯ + �̂�𝑘𝑥𝑘 + 𝜖 (64) 

 

 The least squares regression equation for the icosahedron model is shown in 

Figure 49, where the 𝛽 terms for each output parameter are defined in Table 28. The  𝛽 

terms are computed using the response data, y, and the corresponding inputs, X, provided 

by the DOE data, using equation (63) where only the 13 significant effects determined 

previously are considered. Figure 49 was generated through the use of JMP, where the 𝛽 

parameters are scaled dimensionally with the subtracting constants. With the model now 

defined from the DOE data the fit of the model to the real data can be tested by 

evaluating the model at the DOE data points and comparing the results. The plots of the 

regression fits of the three responses are shown in Figure 50 with 95% confidence 

intervals. 



 

143 

 

𝑦𝑖𝑐𝑜𝑠 = 𝛽0 + βA (
𝐸𝑏

𝜌𝑏
) + 𝛽𝐵 (

𝐸𝑠

𝜌𝑠
) + 𝛽𝐶(ℎ) + 𝛽𝐷 (

𝑡𝑏

𝑟𝑏
 ) + 𝛽𝐸 (

𝑊

𝐵 𝑠
)

+ (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑡𝑏

𝑟𝑏
 − 0.0275) 𝛽𝐴𝐷)

+  (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑊

𝐵 𝑠
 − 0.25) 𝛽𝐴𝐸)

+ (
𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑡𝑏

𝑟𝑏
 − 0.0275) 𝛽𝐵𝐷)

+   (
𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑊

𝐵 𝑠
− 0.25) 𝛽𝐵𝐸) + (ℎ − 7500) ((

𝑡𝑏

𝑟𝑏
 − 0.0275) 𝛽𝐶𝐷)

+ (
𝑡𝑏

𝑟𝑏
− 0.0275) ((

𝑊

𝐵 𝑠
 − 0.25) 𝛽𝐷𝐸)

+ (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑡𝑏

𝑟𝑏
− 0.0275) ((

𝑊

𝐵 𝑠
 − 0.25) 𝛽𝐴𝐷𝐸))

+ (
𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑡𝑏

𝑟𝑏
− 0.0275) ((

𝑊

𝐵 𝑠
 − 0.25) 𝛽𝐵𝐷𝐸)) 

Figure 49: Least squares regression general equation for the icosahedron model 
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Table 28: Least Squares Regression Estimates – Icosahedron Model Outputs 

 

Coefficient Max Frame Stress Max Skin Stress Final W/B

β0 1294694887 1392717264 1.050358468

βA 18.71777355 -5.217387414 -1.08114E-10

βB -6.331392714 11.91944425 -5.81414E-11

βC -13153.1872 13196.10453 -9.98935E-07

βD 14335566657 53616018562 0.45792722

βE -654652304.2 -1529662408 0.013771423

βAD 87.66680832 -69.16238472 -2.08588E-09

βAE 2.351367126 8.136964824 -4.61441E-11

βBD -152.162163 185.0910597 -2.62763E-09

βBE -14.15122939 -16.46715089 -2.63484E-11

βCD -557956.5037 575184.4978 6.66285E-06

βDE -1.47226E+11 -68903376796 -0.396552314

βADE -816.5609657 616.9378339 1.51817E-09

βBDE 161.8834764 -1116.930266 1.09624E-10

Least Squares Regression Estimates -Icosahedron
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Figure 50: Least Squares Regression Fit for the Icosahedron Model Outputs 

The graphs in Figure 50 are plotted with the actual design response data points on 

the vertical axis versus the estimated values generated using the regression equation in 

Figure 49, with the respective response set of 𝛽 estimators in Table 28. How well the 

regression model fits the actual data can be observed by observing the fits root mean 

square error (RSME), and the R-square or R-square Adj. The RSME is effectively the 

averaged error between the fit and the actual data points for all the experiments 

conducted. Ideally, you want the RSME value to be small compared to the average 

response of the system that is being observed. If the regression fits RSME is similar to 

the average of all the responses then it can be concluded that the fit being used is not a 

good fit for the data set. For the icosahedron model the RSME values for all the 
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responses was compared to the average response of the data and is shown in the % RSME 

of Mean Response in Table 29. The RSME for max frame stress, max skin stress, and 

final W/B compared to the mean of the response was [4.56%, 6.26%, and 0.36%] 

respectively. This indicates that the regression fit has an average of [4.56%, 6.26%, and 

0.36%] error when approximating the actual respective responses of the FEM. Typically, 

error values less than 10% are considered “good”.  When viewing the R-square or R-

square Adj value, values close to one tend to indicate that the regression fit is “good”. 

But, there are some pitfalls when observing the R-square or R-square Adj value. One 

reason that the value could be high is because of an over-fitted model. Over-fitted models 

are models that include too many factors and interactions to estimate the response 

compared to the number of experiments. For instance, if you include all of the factors and 

interactions to predict a response the R-square or R-square Adj value will always be one. 

For this research, since the RSME value is small compared to the average of the 

responses, the models fits will be considered “good”.  

Table 29: Summary of Regression Fit Information – Icosahedron Model 

 

Frame Stress Skin Stress Final_W_B

RSquare 0.987 0.988 0.964

RSquare Adj 0.978 0.979 0.939

Root Mean Square Error 1.8118E+08 2.0398E+08 0.004

Mean of Response 3.9676E+09 3.2588E+09 1.031

% RSME of Mean Response 4.566 6.259 0.362

Observations (or Sum Wgts) 33 33 33

Summary of Regression Fit - Icosahedron Model
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Icosahedron Response Surfaces 

It is now possible to produce surface plots with the first order regression models 

of the design space associated with the icosahedron model revolving around the DOE test 

points for the three outputs. The median surface plots for max frame and skin stress along 

with final W/B are shown in Figure 51, Figure 52, and Figure 53. In the figures, the black 

points at the corners of the surfaces represent the data points (FEA) obtained from the 

DOE, which the response surface is based on. The stress contours are plotted with respect 

to c-ratio and skin percentage to show the shape of the response surface that remains 

constant when the remaining factors are altered. When the material properties are varied, 

the response surface shifts up and down the vertical axis along the red arrows while 

maintaining its shape. The red arrows indicate the range of travel of the response surface 

when the factor levels of the non-plotted factors, frame and skin specific modulus, are 

moved from low to high.  

 

Figure 51: Icosahedron Max Frame Stress Response Surface 
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Figure 52: Icosahedron Max Skin Stress Response Surface 

 

Figure 53: Icosahedron Final W/B Response Surface 

At this point in the analysis it is now possible to develop the feasible design space 

for the icosahedron vehicle with respect to material failure. This process is performed by 
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taking the data from the stress response surfaces and converting it to indicate whether or 

not the structure has failed material wise. This is done by dividing the stress values for 

the frame and skin at each point by its materials yield strength value (𝜎𝑦). This produces 

the safety factor for the frame and skin. As long as the stress in the frame and skin 

respectively is lower than the respective materials yield value, then a safety factor greater 

than one will be produced. All designs with both the frame and skin safety factors equal 

to or above one will be considered feasible in terms of material failure. The above 

manipulation of the stress surfaces was performed for both the frame and skin and the 

safety factor surfaces are shown in Figure 54 and Figure 55 with the slicing grid pattern 

indicating where a SF of one lies. The next step in the analysis process will focus in on 

Figure 54 and Figure 55 to determine if and where the feasible design space lies for the 

icosahedron model. 

 

 

Figure 54: Icosahedron Frame SF Response Surface 
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Figure 55: Icosahedron Skin SF Response Surface 

Icosahedron VLTAV Structural Feasibility Assessment and Response 

Discussion 

Icosahedron Material Safety Factor Analysis 

Starting with the SF response surfaces in Figure 54 and Figure 55, the possible 

feasible design space was investigated. With the requirement that both the frame and skin 

SF need to be equal to or greater than 1 to produce a feasible icosahedron structure 

material wise, both SF surfaces were observed simultaneously on a contour plot. A 

surface a contour plot showing both frame and skin SF contours with respect to c-ratio 

and skin percentage is shown in Figure 56. The material properties for this plot set to 

maximize the frame and skin SF’s simultaneously. The material property values happen 

to be the high level setting for both frame and skin specific modulus. The exact factor 

settings for the contour plot can be observed in top portion of Figure 56.    
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It is observed from the contour plot in Figure 56 that the icosahedron model tested 

across the factor levels does not achieve a feasible design anywhere in the constructed 

design space and is limited by the frame safety factor. The shaded regions in Figure 56 

indicate safety factors equal to and less than 1, with the blue denoting the frame safety 

factor region and the red denoting the skin safety factor region. The best case icosahedron 

within the limits of the test locations is located the bottom left corner of Figure 56. This 

point was one of the DOE test points and the FEA results are shown in Figure 57, Figure 

58, and Figure 59. The input values for the best case icosahedron VLTAV are shown in 

Table 30.  
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Figure 56: Icosahedron Contour Plot of Frame and Skin Safety Factor with respect to the 

input variables or factors. 
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Table 30: Icosahedron Input Parameters for Optimal Point 

 

 

Figure 57: Icosahedron Skin Instance only FEA results for the optimum point 

Frame Specific 

Stiffness/Strength (m2/s2)
2.34E+08 3.04E+06

Skin Specific 

Stiffness/Strength (m2/s2)
1.77E+08 3.09E+06

Altitude (ft,m)

C-ratio

% Skin

0

0.005

10

Icosahedron Properties
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Figure 58: Icosahedron Frame Instance FEA results for the optimum point 

 

Figure 59: Icosahedron Displacement contour and resulting Final W/B. 
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The max stress in the frame, shown in Figure 58, of the icosahedron is located 

symmetrically at all of the vertices. This occurs because the frame is modeled as 2D line 

elements. This produces corners in the frame that would in reality not exist because the 

frame vertices would be filleted or curved in nature and not form a sharp corner. 

Therefore, it is expected that if 3D elements were used to create a fully 3 dimensional 

icosahedron frame and skin model that the max stress would occur at the vertices but the 

magnitude of the stress concentration would be less than what the current model predicts. 

Therefore, even though no accommodation was made, the max stress values in the frame 

would be consider to be an over estimate compared to a 3D model.  

The maximum stress in the skin, shown in Figure 57, occurs at the center of the 

triangular faces when the 
𝑊

𝐵 𝑠
is small, less than approximately 0.2 and when the 

𝑊

𝐵 𝑠
is 

large, greater than approximately 0.3 the max stress moves to on top of the vertices. The 

max stress location on top of the vertices is what Rodriguez had observed when he 

evaluated the Metlen icosahedron. Rodriguez attributed the max stress to a singularity at 

the vertices for the skin. It is thought that when the 
𝑊

𝐵 𝑠
term is small and the frame makes 

up the significant portion of the weight, the skin does not aid so much in stiffening the 

structure but distributes the load from the internal vacuum. This was observed when 

investigating the max stress values in the frame and skin while only varying 
𝑊

𝐵 𝑠
. When 

𝑊

𝐵 𝑠
is large, the skin stress values are greater than the frame and as the 

𝑊

𝐵 𝑠
 term is reduced 

there is a point where the skin and frame max stress are effectively equal. If the 
𝑊

𝐵 𝑠
is 

continued to be reduced, then the max stress in the frame becomes greater than the skin. 
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Depending on the materials selected for a design, it would be desired for the max stress to 

be in the frame and the skin to have a reduced load carrying role. The maximum 

deflection in the model, shown in Figure 59, was always observed at the center of all of 

the faces. Additionally, the W/B final response that was observed had a minimum 

increase from the original design W/B of 1 to 1.01 and a maximum increase of 1.06 

looking at the entire data set from the DOE. This response agrees with the results 

obtained by Rodriguez in that the skin and frame deflection results in a small reduction in 

the internal volume which in turn increased the final W/B ratio of the design. If the 

icosahedron design space evaluated had any viable designs, they would have technically 

been negatively buoyant because of the volume loss due to the frame and skin deflection. 

However, if a viable design were found and the W/B final was observed to be the worst 

case of 1.06, that design would be redesigned and structurally analyzed starting with an 

initial W/B of at least 0.94 to account for the expected volume loss if a neutrally or 

slightly positively buoyant design was desired. 

Icosahedron Geometric Instability Analysis 

Since, a very small design window was found to almost satisfy the SF constraints 

for the icosahedron model within the DOE range, a buckling analysis was not performed 

on the “lowest stiffness” design. It was performed on the “highest stiffness” or best 

performing design within the design space because that is where the SF was the highest. 

This design was the point where frame and skin specific modulus were both at their high 

level and the remaining factors were all at their low level. Figure 60 shows the first 

buckling mode of the icosahedron frame with uniform pressure applied to the frame 

though the use of reference points as illustrated in the beginning of the chapter. The 
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critical buckling pressure for this mode was 966,486 Pa, which is 9.5 times greater than 

the applied pressure of 101,325 Pa. Therefore, there is no reason to believe that global 

buckling would occur in the structure before material failure would occur. Let it be noted 

that this design utilized beams with a c-ratio equal to 0.005 which exceeds the minimum 

value estimated for local buckling in chapter IV of 0.02. This does not mean that local 

buckling is guaranteed to occur because the approximation is based on a hollow cylinder 

with a simple support where the beams in the icosahedron have a differing BC. 

Nonetheless, it is important to note that it is a possibility. If this design were to be 

pursued then considering adding internal pressure to the beams or providing extra support 

by means of ring stiffeners would be advised. 

 

Figure 60: Icosahedron Critical Buckling Pressure at Optimal Design Point 
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Icosahedron Design Trades and Vehicle Sizing  

Since no feasible design was found within the factor levels chosen for the DOE, a 

separate what-if analysis was performed to determine what potential factor levels would 

be necessary to potentially produce a feasible icosahedron design. By observing the 

regression fits beyond the current factor limits, a feasible icosahedron VLTAV would be 

potentially possible if the frames material properties were to increase, c-ratio were to 

decrease, or the skin percentage were to decrease. The fit equations were used to estimate 

what values of these parameters would be required to produce a feasible design by 

varying them one-by-one. This was performed, and the resulting values for frame specific 

modulus, c-ratio, and skin percentage were 2.4296E8, 0.0009, and 0.050 respectively to 

produce a frame SF = 1. These results show that either a 4% increase in frame specific 

modulus, a 100% reduction in c-ratio, or a 50% reduction in skin percentage from their 

respective limits of 2.34E8, 0.005, and 0.1 would produce a feasible icosahedron 

VLTAV. Let it be noted from the beam analysis performed in chapter IV, reducing the c-

ratio can potentially have negative effects on the stability of the structure in terms of local 

buckling. Therefore, increasing the material properties or decreasing the skin percentage 

may be a more optimal choice. A contour plot with this expanded region is shown in 

Figure 61 where the white region is the region that would potentially produce a feasible 

icosahedron VLTAV. 
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Figure 61: Icosahedron Contour Plot of Frame and Skin Safety Factor with expanded 

factor levels. 

 

With a potentially feasible design space realized for the icosahedron it is now 

appropriate to apply the manufacturing constraints detailed earlier in the chapter. In order 

to realistically build a structure the dimensions of the structure need to be functional. The 

functional constraints that were determined through the materials research were that the 

minimum manufacturable membrane thickness was approximately 0.2mm and a 

minimum composite thickness was also 0.2 mm. Therefore, the skin and beam thickness 

for a feasibly manufacturable icosahedron VLTAV need to be equal to or greater than 

0.2mm.  
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 Since the DOE was composed of all of the invariant quantities that define the 

frame-skin finite analysis system, the results obtained from the DOE are all scale-

invariant. This means that the structure dimensions can be scaled for any design points 

results with certainty that the results will remain constant. With the ability of scaling, the 

vehicle sizing equation can be recomposed so that all of the design parameters or factors 

are defined from the feasible region determined by the DOE and the vehicle radius solved 

for so that the manufacturing constraints of 0.2mm thicknesses are satisfied. This was 

performed for the icosahedron in the expanded potentially feasible zone and the results 

are shown in Figure 62. The line depicts the minimum structure size when the frame SF 

is constrained to equal 1 between the bounds of  
𝑊

𝐵 𝑠
𝜖 (0.009,0.05)  

and 
𝑡𝑏

𝑟𝑏
 𝜖 (0.0009,0.005). When 

𝑊

𝐵 𝑠
is maximized, the structure minimum structure radius 

is 6m and when 
𝑡𝑏

𝑟𝑏
 is maximized the minimum structure radius is 12m. 

 

Figure 62: Possible Feasible Icosahedron Structure Dimensions for Frame SF = 1 
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All in all for the DOE investigation of the icosahedron VLTAV, it was 

determined which design parameters or invariants had a significant effect on the outputs. 

These invariants are 
𝐸𝑏

𝜌𝑏
, 

𝑡𝑏

𝑟𝑏
, 

𝑡𝑏

𝑟𝑏

𝑊

𝐵 𝑠
, 

𝐸𝑠

𝜌𝑠
, and 

𝐸𝑠

𝜌𝑠

𝑡𝑏

𝑟𝑏
. Within the range that the icosahedron 

vehicle was analyzed it showed that, with the materials and structure dimensionality 

chosen, an icosahedron VLTAV is not feasible. It also was shown that with some 

adjustments, a feasible vehicle could be designed using the regression equations 

developed as long as extrapolating the results beyond the tested range is appropriate. 

Utilizing the scaling-invariance, the minimum structure radius was determined that 

satisfied the manufacturing constraints of 0.2 mm skin and beam thicknesses.  

 

Chapter V Summary 

  This chapter’s objective was to perform the steps indicated in the methodology to 

create a structural design space bounded by present material and manufacturing 

limitations on the Metlen icosahedron VLTAV design. The chapter first developed the 

finite element model to produce the stress and displacement responses so that the 

maximum stresses for the skin and frame could be extracted as well as the final W/B. 

Next, a DA was performed on the finite element system input and out parameters to form 

the inputs into invariants, which are non-dimensional relational quantities of the original 

inputs. This allowed the original 10 model inputs to be reduced to five without 

eliminating any of the original 10 terms. Next, a 33 experiment DOE was performed to 

develop the data to determine which invariants from the DA, and their interactions had a 

significant effect on the structural response of the Metlen icosahedron design. The DOE 
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data was then used to create first order regression fits which were used to create first 

order response surfaces of the structural design space of the Metlen icosahedron within 

the limits of the levels prescribed. Through the evaluation of the design space, it was 

determined that utilizing present day materials did not produce any feasible designs with 

the corresponding limit chosen for altitude, c-ratio, and skin W/B. However, if the lower 

limits of c-ratio and skin W/B were relaxed further keeping the same material limits, it is 

predicted that a feasible design could exist.  

VI. Hexakis Icosahedron DSE and Feasibility Assessment Case Study  

Hexakis Icosahedron Selection 

Stiffening of shells or membranes with an interior frame is not uncommon; 

however, the unique problem of managing large compressive stresses and being 

incredibly light weight is one that is rather new. An ideal structural shape to handle this 

loading scenario would be a sphere as indicated in chapter I. This has given rise to 

geodesic structures which use repeating geometric shapes, such as a triangle, connected 

to each other creating the shell of a “sphere”. These types of structures maximize load 

carrying capacity, while minimizing the amount of supporting structure. However when 

considering a vacuum lighter than air vehicle, Metlen determined that an icosahedron was 

the most ideal geodesic because all of the edges were the same length, and the faces were 

composed of a single unit equilateral triangle. These properties give rise to its symmetry 

classification of icosahedral symmetry. This symmetry appears to be the root of why the 

icosahedron design outperformed the more complex geodesics analyzed by Metlen. 

Additionally, the icosahedron along with similar polyhedron all can be thought of as 

geometric shapes that approximate a sphere with their segmented geometry while 
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keeping the faces planar. To have an idea of how closely the structures approximate a 

sphere, a parameter known as the isoperimetric quotient (IQ) is used [34].  An IQ of one 

yields a sphere; therefore any other convex solid has an IQ less than 1. With this, it is 

desired to choose a geometry that has a high IQ value. The equation for IQ is shown in 

equation 65, where V is volume and S is surface area. 

𝐼𝑄 = 36𝜋
𝑉2

𝑆3
 (65) 

When considering a new frame design to evaluate, the necessary features are 

icosahedral symmetry, a single unit planar face, and a shape that approximates a sphere, 

ideally better than the icosahedron. Icosahedral symmetry involves 6 five-fold rotation 

axes passing through the vertices, 10 three-fold axes through each face, and 15 two-fold 

axes through the edges of an icosahedron [35].  An image of this is shown in Figure 63.  

There happens to be a group of polyhedron that have all of these features and that group 

is known an isohedron. Within this group, there are seven shapes that have icosahedral 

symmetry and vary by their vertex locations, unit face shape, and number of faces. These 

solids are shown in Figure 64. As indicated above an ideal polyhedron would be one that 

has icosahedral symmetry, a single unit planar face and approximate a sphere the best. 

Out of these seven shapes, the 120 faced disdyakis triacontahedron or hexakis 

icosahedron falls out as the best. This shape is indicated by the one with the box around it 

in Figure 64. As a point of comparison, the IQ value of an icosahedron is approximately 

0.83 and the hexakis icosahedron is approximately 0.95. The hexakis icosahedron will be 

the second structure considered for structural feasibility design space exploration. 
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Figure 63: Icosahedral Symmetry 

 

Figure 64: Full icosahedral symmetry isohedron shapes 
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Hexakis Icosahedron Finite Element Model Development 

Hexakis Icosahedron Geometry Development 

A hexakis icosahedron is a Catalan solid with 120 faces, 180 edges, and 62 

vertices. The face configuration for this shape is V4.6.10, where there are 12 vertices 

with four lines intersecting, 20 vertices with six lines intersecting, and 30 vertices with 

ten lines intersecting. This polyhedron is composed of 120 identical scalene triangles. 

This shape is shown in Figure 65. The 12 vertices with four line intersections mark the 

vertices that represent an inscribed icosahedron.  

 

Figure 65: Hexakis Icosahedron 

 Similarly to the icosahedron, the vertex locations, surface area, and volume are 

necessary for modeling this structure. The 62 vertex locations of the hexakis icosahedron 

are determined by referencing Table 31. The following set of equations designating the C 
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values in Table 31 are shown in Table 32 based off an inscribed icosahedron with a unit 

edge length in Cartesian coordinates. Where, the inscribed icosahedrons vertices lie on 

the twelve vertices of the hexakis that have ten edges connecting at one point. 

Table 31: Hexakis Icosahedron Vertex Locations 

 

V0  = (0.0, 0.0,  C8) V20 = (-C3, 0.0,  C6) V41 = ( C5, -C0, -C2)

V1  = (0.0, 0.0, -C8) V21 = (-C3, 0.0, -C6) V42 = (-C5,  C0,  C2)

V2  = ( C8, 0.0, 0.0) V22 = ( C6,  C3, 0.0) V43 = (-C5,  C0, -C2)

V3  = (-C8, 0.0, 0.0) V23 = ( C6, -C3, 0.0) V44 = (-C5, -C0,  C2)

V4  = (0.0,  C8, 0.0) V24 = (-C6,  C3, 0.0) V45 = (-C5, -C0, -C2)

V5  = (0.0, -C8, 0.0) V25 = (-C6, -C3, 0.0) V46 = ( C2,  C5,  C0)

V6  = (0.0,  C1,  C7) V26 = (0.0,  C6,  C3) V47 = ( C2,  C5, -C0)

V7  = (0.0,  C1, -C7) V27 = (0.0,  C6, -C3) V48 = ( C2, -C5,  C0)

V8  = (0.0, -C1,  C7) V28 = (0.0, -C6,  C3) V49 = ( C2, -C5, -C0)

V9  = (0.0, -C1, -C7) V29 = (0.0, -C6, -C3) V50 = (-C2,  C5,  C0)

V10 = ( C7, 0.0,  C1) V30 = ( C0,  C2,  C5) V51 = (-C2,  C5, -C0)

V11 = ( C7, 0.0, -C1) V31 = ( C0,  C2, -C5) V52 = (-C2, -C5,  C0)

V12 = (-C7, 0.0,  C1) V32 = ( C0, -C2,  C5) V53 = (-C2, -C5, -C0)

V13 = (-C7, 0.0, -C1) V33 = ( C0, -C2, -C5) V54 = ( C4,  C4,  C4)

V14 = ( C1,  C7, 0.0) V34 = (-C0,  C2,  C5) V55 = ( C4,  C4, -C4)

V15 = ( C1, -C7, 0.0) V35 = (-C0,  C2, -C5) V56 = ( C4, -C4,  C4)

V16 = (-C1,  C7, 0.0) V36 = (-C0, -C2,  C5) V57 = ( C4, -C4, -C4)

V17 = (-C1, -C7, 0.0) V37 = (-C0, -C2, -C5) V58 = (-C4,  C4,  C4)

V18 = ( C3, 0.0,  C6) V38 = ( C5,  C0,  C2) V59 = (-C4,  C4, -C4)

V19 = ( C3, 0.0, -C6) V39 = ( C5,  C0, -C2) V60 = (-C4, -C4,  C4)

V40 = ( C5, -C0,  C2) V61 = (-C4, -C4, -C4)

Hexakis Icosahedron Vertex Locations
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Table 32: Hexakis Icosahedron coordinate equations. 

 

 From here the edge lengths of the unit scalene triangle that makes up the hexakis 

framework can be determined by using equations (66-68). lse, lme, lle represent the short, 

medium, and long leg lengths of the triangle. With the edge lengths known, the surface 

area is computed using equation (69) and the number of triangles, shown in equations 

(69-70). Finally, the volume is readily computed using equation (71). 

𝑙𝑠𝑒 = 𝑟𝑖𝑐𝑜𝑠

5

11
√49 −

65√5

3
 (66) 
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𝑙𝑚𝑒 = 𝑟𝑖𝑐𝑜𝑠

1

11
√81 − 21√5 (67) 

 

𝑙𝑙𝑒 = 𝑟𝑖𝑐𝑜𝑠2√7
3⁄ − √5 (68) 

 

𝑝ℎ𝑡 =  
𝑙𝑠𝑒 + 𝑙𝑚𝑒 + 𝑙𝑙𝑒

2
 (69) 

 

𝐴𝐻𝐼 = 120√𝑝ℎ𝑡(𝑝ℎ𝑡 − 𝑙𝑠𝑒)(𝑝ℎ𝑡 − 𝑙𝑚𝑒)(𝑝ℎ𝑡 − 𝑙𝑙𝑒) (70) 

 

𝑉𝐻𝐼 =
𝑟𝑖𝑐𝑜𝑠

3 100

3√53 +
118

√5

 
(71) 

 

Hexakis Icosahedron Sizing Equations  

The sizing equation for the hexakis icosahedron is the same sizing equation 

developed for the icosahedron where the only difference are the equations to compute the 

beam radius and skin thickness. The equations for the beam radius and skin thickness are 

shown in equations 72 and 73. The beam thickness is computed the same way as the 

icosahedron with the c-ratio using equation 53. 
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𝑟𝑏ℎ𝑒𝑥
=  √

𝑊
𝐵 𝑓

𝜌𝑎𝑉𝐻𝐼

((𝜋60(2𝑐 − 𝑐2))(𝑙𝑠𝑒 + 𝑙𝑚𝑒 + 𝑙𝑙𝑒)) 𝜌𝑓

 (72) 

 

𝑡𝑠ℎ𝑒𝑥
=  

𝜌𝑎
𝑊
𝐵 𝑠

𝑉𝐻𝐼

𝐴𝐻𝐼𝜌𝑠
 

(73) 

  

Hexakis Icosahedron Finite Element Models 

The hexakis icosahedron finite element model was modeled using the same B32 

beam elements for the frame and M3D3 membrane for the skin as in the icosahedron 

model, established in the previous case study. The boundary conditions and pressure 

loading were applied in the same fashion for the hexakis icosahedron model as in the 

icosahedron model and the vacuum finite element model is shown in Figure 66 with the 

converged mesh, boundary conditions, and loading shown. Figure 67 shows the finite 

element model developed to perform the frame buckling analysis in the feasibility section 

of the methodology. This model was developed using the same reference point technique 

developed for the icosahedron. 
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Figure 66. Boundary Conditions and Loads for the Hexakis Icosahedron VLTAV FE model. 

 

 

Figure 67: Hexakis Icosahedron Frame with Reference Point Loading 
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Hexakis Icosahedron FE Mesh Convergence Study 

The hexakis icosahedron model developed was analyzed to determine mesh 

convergence. The model parameters for this investigation were the same as the 

icosahedron. The model properties for the convergence study are shown in Table 33. 

Table 33: Hexakis Convergence Study Parameters 

 

 The seeding for the hexakis model was performed in a similar but different 

manner to the icosahedron. Since the edge lengths of the hexakis icosahedron are not all 

identical as they were for the icosahedron, the seeding was performed by choosing a 

global element size instead of number of elements per edge. The global element sizes for 

the convergence analysis were [0.1, 0.0167, 0.0091, 0.0063, 0.0048, 0.0038, 0.0032, and 

0.0028]. The results of this convergence analysis are shown in Figure 68. The seed size 

that produced a converged solution was 0.0048 or approximately 18,000 elements. This 

seeding produced a frame stress, skin stress, and final W/B solution that was 2.7%, 2.5%, 

and 0.004% different than the solution with approximately 46,000 elements or 0.0028 

Parameter Units

W/Bf 0.9

W/Bs 0.1

ρa 1.225 kg/m3

ρb 1250 kg/m3

ρs 970 kg/m3

c 0.005

ricos 0.1524 m

Eb 2.93E+11 Pa

Es 1.72E+11 Pa

P 101325 Pa

Hexakis Convergence Study Parameters
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seed size. This seeding also produced a CPU computation time of approximately 9 

minutes, 55% less time than it took to solve the 46,000 element model. 

 

Figure 68: Hexakis Icosahedron Vacuum FE model mesh convergence study. 

Additionally, these element seed sizes are particular to the scale of the vehicle. 

For instance, these sizes produced the number of elements and the convergence analysis 

for the six inch (0.1524 m) radius hexakis structure as shown in Figure 68. If the scale of 

the vehicle was smaller or larger, the global seed size numbers would have to be scaled 

respectively. The process of performing the seed size scaling is shown in equation (74).  

𝑠# =  𝑠𝑐 (
𝑟𝑖𝑐𝑜𝑠

6
) (74) 

Where, 𝑠# is the seed size, 𝑠𝑐 is the converged seed size determined from the 

convergence analysis, 𝑟𝑖𝑐𝑜𝑠 is the hexakis radius, and the constant of six comes from the 
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fact that the 𝑠𝑐 term was determined from analyzing a 6 inch (0.1524 m) radius hexakis 

icosahedron. Equation (74) ensures that no matter the structures radius, each model will 

have effectively the same converged discretization found in Figure 68. 

Hexakis Icosahedron VLTAV FEA Dimensional Analysis 

The input parameters for the hexakis icosahedron dimensional analysis are the 

same parameters developed for the icosahedron model. The parameters are identically the 

same because the designs are effectively the same with the only difference being the 

structure geometry.  

Since the design parameters are the same for the hexakis icosahedron, the 

invariants will also be the same as for the icosahedron design. They are repeated here in 

equation (75) for convenience.  

Π𝑖 = (
𝜎𝑓𝑚𝑎𝑥

𝐸𝑏
) , (

𝜎𝑠𝑚𝑎𝑥

𝐸𝑏
) , (

𝑢

𝑟𝑖𝑐𝑜𝑠
) , (

𝑊

𝐵 𝑓
) , (

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

) , (
𝑊

𝐵 𝑠
) , (

𝜌𝑠

𝜌𝑏
) , (

𝐸𝑠

𝐸𝑏
) , (

𝑃

𝐸𝑏
) (75) 

In the same fashion as the icosahedron, a scale study was performed on the 

hexakis icosahedron design. The analysis also proved that only changing the vehicle radii 

has no effect on the stress and relative displacement results, as indicated by the near zero 

percent difference between all models when comparing them to the 3 inch (0.0762 m) 

model. The results are shown in Table 34. 
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Table 34: Hexakis Icosahedron Scale vs. FE Model Outputs and % Difference 

 

DOE Analysis Results and Discussion for the Hexakis Icosahedron Vacuum Vehicle 

The DOE for the hexakis icosahedron case study will use the same five steps 

outlined in the icosahedron study. In fact the only difference between the hexakis 

icosahedron DOE and the icosahedron DOE are the high levels for the c-ratio and skin 

percentage, and the structural response values of max frame and skin stress and final 

W/B. The DOE test matrix used to perform the hexakis FEAs followed the same 

arrangement as the icosahedron.  

Determine Factors and Levels 

The factor levels for the hexakis icosahedron analysis remained mainly the same 

as the levels defined in the icosahedron case study. The values that are different are the 

high levels for the c-ratio and skin percentage, which were made smaller than the 

icosahedron DOE. The reason for the more narrow range comes from the nature of the 

model and the ability to produce FE solutions within a “reasonable” amount of time. The 

factors and their levels to be investigated are shown in Table 35. The hexakis structure 

will look at the same outputs as in the icosahedron investigation pointed out in Table 19. 

Hexakis 

Icosahedron 

Radius (in)

Frame Stress 

(Pa)

% Difference 

(%)

Skin Stress 

(Pa)

% Difference 

(%)
Final W/B

% Difference 

(%)

3 1.915E+09 0.0000 1.320E+09 0.0000 1.0074 0.0000

6 1.915E+09 0.0099 1.319E+09 0.0107 1.0074 0.0016

12 1.915E+09 0.0032 1.319E+09 0.0051 1.0074 0.0038

24 1.915E+09 0.0010 1.319E+09 0.0054 1.0074 0.0019

48 1.915E+09 0.0016 1.319E+09 0.0059 1.0074 0.0016

96 1.915E+09 0.0089 1.319E+09 0.0064 1.0074 0.0016



 

175 

 

Table 35: Hexakis Icosahedron Factors 

 

Experiments and Results 

The DOE test matrix for the hexakis structure was the same as for the icosahedron 

structure shown in Table 18. The DOE was automatically conducted utilizing the cyclic 

process identified in Figure 11 where it took approximately 20 hours to run the 33 FEA. 
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Table 36: Hexakis Icosahedron DOE Inputs and Results 
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Analysis of Variance 

As with the icosahedron analysis, the same main effects (
𝐸𝑏

𝜌𝑏
,

𝐸𝑠

𝜌𝑠
, ℎ,

𝑡𝑏𝑖𝑐𝑜𝑠

𝑟𝑏𝑖𝑐𝑜𝑠

 and 
𝑊

𝐵 𝑠
)  

and interactions effects estimation was conducted to determine remove insignificant 

factors and/or interactions from the model so that an ANOVA can be conducted. Lenth’s 

PSE will be used just as in the icosahedron analysis to produce a pseudo error for the 

initial determination of significant parameters for each response. The Pareto chart and 

half normal plot for the frame safety factor are shown in Figure 69, will be analyzed to 

determine which factors and interactions to keep in the model for the ANOVA. Charts 

showing the same information for the remaining responses are shown in . 
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Figure 69: Initial Pareto chart and half normal plot for the frame safety factor of the 

hexakis icosahedron structure. 
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Table 37: Initial Significant Factor Terms for the outputs of the hexakis icosahedron DOE. 

 

The initial use of Lenth’s PSE allowed for 14 interactions indicated in Table 22 to 

be discarded. Table 37 shows the factors and interactions that were indicated to be 

significant for each respective response by inspecting their half normal and Pareto charts. 

Now that 14 interactions have been discarded, a natural ANOVA can be proceed with 

where the 14 discarded interactions make up the error term necessary to compute the 

ANOVA. 

The ANOVA was computed using the combined significant terms between the 3 

responses (max frame stress, max skin stress and final W/B), which are shown in the 

combined effects column of Table 37. The combined column was chosen so that all of the 

responses could be analyzed simultaneously as well as to see if any new terms out of the 

initially estimated significant terms using Lenth’s PSE became significant. Utilizing the 

Max Frame Stress Max Skin Stress Final W/B Combined

A A A A

B B B B

C C C C

D D D D

E E E E

AB AB AB AB

AC AC

AD AD AD AD

AE AE

BD BD BD BD

BE BE BE

CD CD CD CD

DE DE

ACD ACD

ADE ADE

BDE BDE

CDE CDE

Hexakis Icosahedron Significant Effects 
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JMP software, the 14 insignificant interactions were removed from the analysis and the 

ANOVA was computed for the max frame stress, max skin stress, and final W/B with 

respect to the remaining 17 factors and interactions listed in the combined column of 

Table 37. The ANOVA data computed for the max frame stress response considering all 

33 FEAs is shown in Table 38. Table 38 details the sum of squares (SS) values, the 

computed F ratio, and whether or not the effect is significant for each of the 17 factors 

and interactions included in the ANOVA. The individual sum of squares and F ratios 

were computed using the theory detailed in the ANOVA section of chapter III. With the 

F-ratios computed, the next step is to determine if the factors and interactions are 

significant with respect to their F values. As outlined in the ANOVA section of chapter 

III, the factor and interaction F ratio will be compared to a critical F value obtained from 

an F statistic table. The critical F ratio, 𝐹𝛼,𝑎−1,𝑁−𝑎, for this analysis was determined to be 

4.17 by taking 𝛼 to be 0.05, which is commonly chosen , a = 2 (2 levels), and N = 33 

(total number of experiments). Equation (62) is then used to determine if the factor or 

interaction (Treatment) F-ratio is greater than the critical ratio. If the treatment F-ratio is 

greater than the critical ratio the factor or interaction (treatment) is determined to be 

significant. The resulting significant terms utilizing the error computed in the ANOVA 

for all of the responses is shown in Table 40. 

Table 39 shows additional ANOVA information for each of the three responses, 

specifically SSModel (SSTotal) and SSE, which are used to compute the F ratios in Table 38.  
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Table 38: ANOVA Results for Hexakis Icosahedron Frame Safety Factor 

 

With the F-ratios computed, the next step is to determine if the factors and 

interactions are significant with respect to their F values. As outlined in the ANOVA 

section of chapter III, the factor and interaction F ratio will be compared to a critical F 

value obtained from an F statistic table. The critical F ratio, 𝐹𝛼,𝑎−1,𝑁−𝑎, for this analysis 

was determined to be 4.17 by taking 𝛼 to be 0.05, which is commonly chosen [14], a = 2 

(2 levels), and N = 33 (total number of experiments). Equation (62) is then used to 

determine if the factor or interaction (Treatment) F-ratio is greater than the critical ratio. 

If the treatment F-ratio is greater than the critical ratio the factor or interaction 

(treatment) is determined to be significant. The resulting significant terms utilizing the 

error computed in the ANOVA for all of the responses is shown in Table 40. 

Y Source DF Sum of Squares F Ratio Prob > F Significant

Frame Stress Frame Specific Mod [A] 1 4.66E+18 8002.3807 <.0001 TRUE

Frame Stress Skin Specific Mod [B] 1 5.59E+16 95.9534 <.0001 TRUE

Frame Stress Altitude [C] 1 2.45E+15 4.2138 0.0593 TRUE

Frame Stress C-ratio [D] 1 5.23E+18 8987.1437 <.0001 TRUE

Frame Stress %skin [E] 1 3.46E+17 593.46 <.0001 TRUE

Frame Stress Frame Specific Mod*Skin Specific Mod [AB] 1 2.90E+15 4.9831 0.0424 TRUE

Frame Stress Frame Specific Mod*Altitude [AC] 1 1.74E+15 2.9945 0.1055 FALSE ^

Frame Stress Frame Specific Mod*C-ratio [AD] 1 5.70E+16 97.8125 <.0001 TRUE

Frame Stress Frame Specific Mod*%skin [AE] 1 3.05E+16 52.4343 <.0001 TRUE

Frame Stress Skin Specific Mod*C-ratio [BD] 1 2.57E+16 44.1927 <.0001 TRUE

Frame Stress Skin Specific Mod*%skin [BE] 1 1.24E+16 21.3041 0.0004 TRUE

Frame Stress Altitude*C-ratio [CD] 1 1.12E+16 19.1897 0.0006 TRUE

Frame Stress Altitude*%skin [CE] 1 4.62E+13 0.0793 0.7824 FALSE

Frame Stress C-ratio*%skin [DE] 1 1.23E+14 0.2111 0.653 FALSE

Frame Stress Frame Specific Mod*Altitude*C-ratio [ACD] 1 3.60E+15 6.1763 0.0262 TRUE

Frame Stress Frame Specific Mod*C-ratio*%skin [ADE] 1 4.43E+13 0.0761 0.7867 FALSE

Frame Stress Skin Specific Mod*C-ratio*%skin [BDE] 1 3.47E+14 0.5952 0.4533 FALSE

Frame Stress Altitude*C-ratio*%skin [CDE] 1 3.95E+14 0.6788 0.4238 FALSE

(^ this term is part of a significant higher degree term
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Table 39: Model ANOVA values (SST and SSE values) - Hexakis Icosahedron 

 

Table 40: Hexakis Icosahedron Significant Terms estimated using standard error 

 

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 18 1.04E+19 5.80E+17 995.8111 <.0001

Error 14 8.15E+15 5.82E+14

C. Total 32 1.04E+19

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 18 1.10E+19 6.13E+17 487.3817 <.0001

Error 14 1.76E+16 1.26E+15

C. Total 32 1.10E+19

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 18 0.000360331 2.00184E-05 948.0419 <.0001

Error 14 2.96E-07 2.11E-08

C. Total 32 0.000360627

Max Frame Stress Model ANOVA

Max Skin Stress Model ANOVA

Final W/B Model ANOVA

Max Frame Stress Max Skin Stress Final W/B Combined

A A A A

B B B B

C C C C

D D D D

E E E E

AB AB AB AB

AC AC AC

AD AD AD AD

AE AE AE

BD BD BD BD

BE BE BE

CD CD CD CD

DE DE DE

ACD ACD ACD

ADE ADE

BDE BDE

CDE CDE

Hexakis Icosahedron Significant Effects 
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Interaction plots can be created to visually observe the main effect and interaction 

effects, using the ANOVA data. A cube interaction plot and main effects with 2nd degree 

interactions chart for the max frame stress are shown in Figure 70 and Figure 71. The 

interaction plots for the other two outputs are shown in Appendix B. 

 

Figure 70: Cube Interaction Plot for the Max Frame Stress - Hexakis Icosahedron 
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Figure 71: Main effects and 2nd degree interactions effects for Max Frame Stress - Hexakis 

Icosahedron 

The data from the cube plot was reduced in the same fashion as in the icosahedron 

model, and which was used to produce the main effects with 2nd degree interactions plot 

in Figure 71. The effects were analyzed in the same fashion as the icosahedron and the 

dominating terms were extracted. The terms that are considerably dominate for the max 

frame stress are the frames material properties, 
𝐸𝑏

𝜌𝑏
, the frames geometry, 

𝑡𝑏

𝑟𝑏
, the 

combination of the frames geometry and the frames material properties, 
𝑡𝑏

𝑟𝑏

𝐸𝑏

𝜌𝑏

, and the 

skins material properties, 
𝐸𝑠

𝜌𝑠
. These effects and interactions are highlighted by the red 

boxes in Figure 71. The same observations were made for the max skin stress, and the 
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terms that are dominate are the frames geometry, 
𝑡𝑏

𝑟𝑏
, the skins material properties, 

𝐸𝑠

𝜌𝑠
, the 

frames material properties, 
𝐸𝑏

𝜌𝑏
, the combination of frame geometry and the frames 

material properties, 
𝐸𝑏

𝜌𝑏

𝑡𝑏

𝑟𝑏
, the combination of skin material properties and frame 

geometry, 
𝐸𝑠

𝜌𝑠

𝑡𝑏

𝑟𝑏
 and the combination of altitude and frame geometry, ℎ

𝑡𝑏

𝑟𝑏
. The final 

weight-to-buoyancy, had the combination of frame geometry and the frames material 

properties, 
𝐸𝑏

𝜌𝑏

𝑡𝑏

𝑟𝑏
, the frames geometry, 

𝑡𝑏

𝑟𝑏
, the skin percentage 

𝑊

𝐵 𝑠
 , and the frames 

material properties, 
𝐸𝑏

𝜌𝑏
, terms to be considerably dominate. 

Curvature Assessment 

In order to continue to the regression fitting, the curvature of the responses needs 

to be investigated. Curvature of a response is determined if the center point data is 

significantly difference from the mean of the response. Table 41 shows the mean of the 

response and the center point data in the first two rows. A percent difference between 

these rows was taken, and the results are show in the 3rd row of the table. It is shown that 

the error, for the frame stress, skin stress, and final W/B are approximately 6%, 5.5%, 

and .06% respectively. Since the percent difference is fairly small and comparatively 

equal to the % RSME of the mean response, indicates that the center point has no more 

error than any other point in the data set. From this, it will be concluded that curvature 

does not exist for the three observed outputs, and the existing DOE data can be used to 

perform the regression fits. 
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Table 41: Hexakis Icosahedron Curvature Analysis 

 

 

Regression Fits and Fit Assessment 

The reduced hexakis model containing only significant terms can be used to 

create a linear regression fit of the outputs. The least squares regression general equation 

for the icosahedron model is shown in Figure 72, where the 𝛽 terms for each output 

parameter are defined in Table 42. The  𝛽 terms are computed using the response data, y, 

and the corresponding inputs, X, provided by the DOE data, using equation (63) where 

only the 17 significant effects determined previously are considered. With the model now 

defined from the DOE data the fit of the model to the real data can be tested by 

evaluating the model at the DOE data points and comparing the results. The plots of the 

regression fits of the three outputs are shown in Figure 73 with 95% confidence intervals. 

Table 43 shows the fit statistics of all the outputs.  

 

Frame Stress Skin Stress Final_W_B

Mean of Response 2.142E+09 1.552E+09 1.011

Center Point Response 2.271E+09 1.466E+09 1.010

% Center Point Error 6.014 5.559 0.059

% RSME of Mean Response 1.126 2.284 0.014

Hexakis Icosahedron Curvature Study
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𝑦ℎ𝑒𝑥𝑎𝑘𝑖𝑠 = 𝛽0 + βA (
𝐸𝑏

𝜌𝑏
) + 𝛽𝐵 (

𝐸𝑠

𝜌𝑠
) + 𝛽𝐶(ℎ) + 𝛽𝐷 (

𝑡𝑏

𝑟𝑏
 ) + 𝛽𝐸 (

𝑊

𝐵 𝑠
)

+ (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝐸𝑠

𝜌𝑠
− 1.36𝐸6) 𝛽𝐴𝐵) + (

𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((ℎ − 7500)𝛽𝐴𝐶)

+  (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑡𝑏

𝑟𝑏
 − 0.015) 𝛽𝐴𝐷) + (

𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑊

𝐵 𝑠
− 0.15) 𝛽𝐴𝐸)

+   (
𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑡𝑏

𝑟𝑏
 − 0.015) 𝛽𝐵𝐷) + (

𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑊

𝐵 𝑠
− 0.15) 𝛽𝐵𝐸)

+ (ℎ − 7500) ((
𝑡𝑏

𝑟𝑏
 − 0.015) 𝛽𝐶𝐷) + (ℎ − 7500) ((

𝑊

𝐵 𝑠
 − 0.15) 𝛽𝐶𝐸)

+ (
𝑡𝑏

𝑟𝑏
 − 0.015) ((

𝑊

𝐵 𝑠
 − 0.15) 𝛽𝐷𝐸)

+ (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((ℎ − 7500) ((

𝑡𝑏

𝑟𝑏
 − 0.015) 𝛽𝐴𝐶𝐷))

+ (
𝐸𝑏

𝜌𝑏
− 1.82𝐸6) ((

𝑡𝑏

𝑟𝑏
− 0.015) ((

𝑊

𝐵 𝑠
 − 0.15) 𝛽𝐴𝐷𝐸))

+ (
𝐸𝑠

𝜌𝑠
− 1.36𝐸6) ((

𝑡𝑏

𝑟𝑏
− 0.015) ((

𝑊

𝐵 𝑠
 − 0.15) 𝛽𝐵𝐷𝐸))

+ (ℎ − 7500) ((
𝑡𝑏

𝑟𝑏
− 0.015) ((

𝑊

𝐵 𝑠
 − 0.15) 𝛽𝐶𝐷𝐸)) 

Figure 72: Least squares regression general equation for the hexakis icosahedron model 
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Table 42: Least Squares Regression Estimates – Hexakis Icosahedron Model Outputs 

 

Coefficient Max Frame Stress Max Skin Stress Final W/B

β0 39160339.28 750720084.4 1.017266396

βA 7.230111913 -3.491425483 -5.28168E-11

βB -1.018146071 6.798222539 -6.90319E-12

βC 1167.563002 8650.858433 1.57543E-08

βD 40440505573 43460560692 0.165287073

βE 2078411065 -1376006389 0.010687032

βAB 4.39718E-09 -1.6255E-08 7.39172E-20

βAC -1.86527E-05 -6.2422E-06 -1.30437E-16

βAD 79.95339467 -146.8689993 -9.77339E-10

βAE 11.70785755 2.624509503 -1.85585E-11

βBD -69.09747663 285.0661523 -3.4643E-10

βBE -9.595080905 -6.155697045 -6.40227E-11

βCD -249160.0907 1228102.275 2.11643E-06

βCE -3202.709333 -16854.98667 -1.22808E-08

βDE -3919497395 1.0917E+11 0.132397787

βACD -0.002678809 -0.00067391 -2.05674E-14

βADE -44.60878088 1093.212742 -1.40389E-09

βBDE -160.3756416 -1367.247656 -8.9037E-10

βCDE 937196.8 -4696493.867 4.83691E-06

Least Squares Regression Estimates -Hexakis Icosahedron
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Figure 73: Least Squares Regression Fit for the Hexakis Icosahedron Model Outputs 

The graphs in Figure 73 are plotted with the actual design response data point on 

the vertical axis versus the estimated value generated using the regression equation in 

Figure 72, with the respective response set of 𝛽 estimators in Table 42. How well the 

regression model fits the actual data can be observed by observing the fits root mean 

square error (RSME), and the R-square or R-square Adj, shown in Table 43. The RSME 

for max frame stress, max skin stress, and final W/B compared to the mean of the 

response was [1.13%, 2.28%, and 0.014%] respectively. This indicates that the regression 

fit has an average of [1.13%, 2.28%, and 0.014%] error when approximating the actual 

respective responses of the FEM. For this research, the same justification given for the 
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icosahedron model applies to the hexakis analysis and the regression fits are determined 

to be “good”. 

Table 43: Summary of Regression Fit Information – Hexakis Icosahedron Model 

 

Hexakis Icosahedron Response Surfaces 

It is now possible to produce surface plots with the regression models of the 

design space associated with the hexakis icosahedron model revolving around the DOE 

test points for the three outputs. The median surface plots for max frame and skin stress 

along with final W/B are shown in Figure 74, Figure 75, and Figure 76. Like the 

icosahedron response surfaces, the stress contours are plotted with respect to c-ratio and 

skin percentage to show the shape of the response surface that remains constant when the 

remaining factors are altered. When the material properties are varied the response 

surface shifts up and down the vertical axis along the red arrows while maintaining its 

shape. The red arrows indicate the range of travel of the response surface when the factor 

levels of the non-plotted factors, frame and skin specific modulus, are moved from low to 

high.  

 

Frame Stress Skin Stress Final_W_B

RSquare 0.999 0.998 0.999

RSquare Adj 0.998 0.996 0.998

Root Mean Square Error 2.413E+07 3.546E+07 0.000

Mean of Response 2.142E+09 1.552E+09 1.011

% RSME of Mean Response 1.126 2.284 0.014

Observations (or Sum Wgts) 33 33 33

Summary of Regression Fit - Hexakis Icosahedron Model



 

191 

 

 

Figure 74: Hexakis Icosahedron Max Frame Stress Response Surface 

 

Figure 75: Hexakis Icosahedron Max Skin Stress Response Surface 
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Figure 76: Hexakis Icosahedron Final W/B Response Surface 

At this point in the analysis it is now possible to develop the feasible design space 

for the hexakis icosahedron vehicle with respect to material failure. This process is 

performed in the same fashion as the icosahedron where the frame and skin maximum 

stresses are divided by their materials yield strength, producing the safety factor for the 

frame and skin. As long as the stress in the frame and skin respectively is lower than the 

respective materials yield value, then a safety factor greater than one will be produced. 

All designs with both the frame and skin safety factors equal to or above one will be 

considered feasible in terms of material failure. The above manipulation of the stress 

surfaces was performed for both the frame and skin and the safety factor surfaces are 

shown in Figure 77 and Figure 78 with the slicing grid pattern indicating where a SF of 

one lies. The next step in the analysis process will focus in on Figure 77 and Figure 78 to 

determine if and where the feasible design space lies for the hexakis icosahedron model. 
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Figure 77: Hexakis Icosahedron Frame SF Response Surface 

 

Figure 78: Hexakis Icosahedron Skin SF Response Surface 
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Hexakis Icosahedron VLTAV Structural Feasibility Assessment and Response 

Discussion 

Hexakis Icosahedron Material Safety Factor Assessment 

At this point in the analysis it is now possible to develop the feasible design space 

for the hexakis icosahedron vehicle with respect to material failure. This process is 

performed by taking the data from the stress response surfaces and converting it to 

indicate whether or not the structure has failed material wise. This is done by dividing the 

stress values for the frame and skin at each point by its materials yield strength value. 

This produces the factor known as the safety factor. As long as the stress in the frame and 

skin respectively is lower than the respective materials yield value then a safety factor 

greater than unity will be produced. All designs with both the frame and skin safety 

factors equal to or above one will be considered feasible in terms of material failure. The 

above manipulation of the stress surfaces was performed for both the frame and skin and 

the safety factor surfaces are shown in Figure 77 and Figure 78 with the slicing grid 

pattern indicating where a SF of one lies. The next step in the analysis process will focus 

in on Figure 77 and Figure 78 to determine if and where the feasible design space lies for 

the hexakis icosahedron model. 

The max frame and stress surfaces in Figure 74 and Figure 75 were converted to 

safety factor surfaces by dividing their values by the materials respective yield strength 

across the design points. The surfaces were observed by looking at their 2D contour with 

respect to c-ratio and 
𝑊

𝐵 𝑠
 at two levels. The levels were high material properties for both 

the skin and frame and low material properties for both the skin and frame. This will be 
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able to show the range of the potential design space by looking at the low and high ends 

of the responses. Beginning with the high level, where the material properties are as 

aggressive as possible for the structure, the feasible design space for the hexakis 

icosahedron fills the entire range of c-ratio and 
𝑊

𝐵 𝑠
that was tested. The optimal solution 

lies in the bottom left corner of Figure 79 with a frame SF of 1.9 and skin SF of 2.3 and 

the “weakest” solution lies in the top right corner with a frame SF of 1.2 and skin SF of 

1.54. The same procedure was performed with the material properties set to the low level 

where the hexakis structure has reached its limitations. The design space with the low 

material settings fills approximately half of the window with the full range of 
𝑊

𝐵 𝑠
and with 

the c-ratio being limited by the frame SF. If it was desired to maximize 
𝑊

𝐵 𝑠
, then the c-

ratio is forced to a maximum value of 0.012. If the desire was to maximize the c-ratio, it 

would only be able to go as high as 0.016 with a 
𝑊

𝐵 𝑠
of 0.1 before the frame SF limit of 

one is reached. The region of feasible designs for the hexakis structure fills a significant 

portion of the entire design space that was created by the DOE. For comparison to the 

icosahedron model, the hexakis icosahedron stress and displacement contours for the 

icosahedron model identified in Table 30 is shown below, in Figure 81, Figure 82, and 

Figure 83. 
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Figure 79: Hexakis Icosahedron Contour Plot of Frame and Skin Safety Factor with high 

level material properties. 

 

Figure 80: Hexakis Icosahedron Contour Plot of Frame and Skin Safety Factor low level 

material properties. 
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Figure 81: Hexakis Icosahedron Optimal Design Point Skin Stress Contour with SF 

 

 

Figure 82: Hexakis Icosahedron Optimal Design Point Frame Stress Contour with SF 
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Figure 83: Hexakis Icosahedron Optimal Design Point Displacement Contour with Final 

W/B 

The max stress in the frame of the hexakis icosahedron, shown in Figure 82, is 

located symmetrically at all of the vertices where six beams meet, but it is noted the 

remaining vertices have similar stress values at their vertices. This occurs because the 

frame is modeled as 2D line elements. This produces corners in the frame that would in 

reality not exist because the frame vertices would be filleted or curved in nature and not 

form a sharp corner. Therefore, it is expected that if 3D elements were used to create a 

fully 3 dimensional icosahedron frame and skin model the max stress would occur at the 

vertices, but the magnitude of the stress concentration would be less than what the current 

model predicts. Therefore, even though no accommodation was made, the max stress 

values in the frame would be consider to be an over estimate compared to a 3D model.  
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The maximum stress in the skin, shown in Figure 81, occurs symmetrically along 

the top of the short beams. The maximum displacement in the model, shown in Figure 83, 

occurs in the membrane symmetrically at the center of all the triangular faces. 

Additionally, the W/B final response that was observed, had a minimum increase from 

the original design W/B of one to 1.006, and a maximum increase of 1.02 looking at the 

entire data set from the DOE. This response agrees with the results obtained by 

Rodriguez, in that the skin and frame deflection results in a small reduction the internal 

volume which in turn increased the final W/B ratio of the design. The reduction in the 

internal volume however for the hexakis structure is approximately three times less than 

what was observed in the icosahedron case study across the DOE analysis points. Since 

the design W/B was equal to one for the sizing equation, all the feasible designs for the 

hexakis icosahedron would technically be negatively buoyant because of the volume loss 

due to the frame and skin deflection. However, if a specific feasible design were desired 

to be investigated further, an additional  FEA would have to be performed on the design 

with a design W/B equal to one minus the expected volume loss to obtain a neutrally 

buoyant vehicle or possibly slightly positively buoyant. For example, if the worst case 

scenario of final W/B observed of 1.02 for the hexakis structure were chosen to analyze 

further, the design W/B should be one minus 0.02 which would be equal to 0.98 design 

W/B so that the final W/B would be approximately one for neutral buoyancy. 

 

Hexakis Icosahedron Geometric Instability Assessment 

Since, there were feasible designs with the low level of material properties, the 

buckling analysis was performed at the design point of the top right corner of Figure 80. 
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This point has a SF less than one for both the frame and skin, but provides the most 

conservative buckling analysis. If the frame does not buckle at this design point, then it is 

assumed that none of the designs within the DOE range tested will buckle. Figure 84 

shows the first buckling mode of the hexakis icosahedron frame with uniform pressure 

applied to the frame though the use of reference points as illustrated in the beginning of 

the chapter. The critical buckling pressure for this mode was 169,992 Pa, which is 1.67 

times greater than the applied pressure of 101,325 Pa. Therefore, there is no reason to 

believe that global buckling would occur in the structure for any of the designs in the 

DOE range. This design point was tested with a c-ratio of 0.025. This is above the local 

buckling threshold of 0.02 that was established in chapter IV. Therefore, there is 

confidence that local buckling at this point would not occur before global buckling. But, 

let it be noted that other designs in this design space that are deemed feasible do have a c-

ratio of less than 0.02 which exceeds the minimum value estimated for local buckling in 

chapter IV . This does not mean that local buckling is guaranteed to occur because the 

approximation is based on a hollow cylinder with a simple support where the beams in 

the hexakis icosahedron have a differing BC. Nonetheless it is important to note that, it is 

a possibility and that if this design were to be pursued then considering adding internal 

pressure to the beams or providing extra support by means of ring stiffeners would be 

advised just as in the case of the icosahedron. 
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Figure 84: Hexakis Icosahedron Critical Buckling Pressure at the most Sub-Optimal Point 

Hexakis Icosahedron Vehicle Sizing 

Using the same manufacturing constraint of 0.2mm skin and beam thickness 

established with the icosahedron analysis, the hexakis icosahedron vehicle sizing will be 

analyzed. This analysis will show what the smallest structure radius possible is that 

satisfies 0.2mm thickness constraint within the design space ranges shown for the high 

and low level contours in Figure 79 and Figure 80. The sizing for when the material is at 

the high level, is shown in Figure 85. In this figure, the dimensions for the beam 

thickness, radius, and skin thickness are shown. With the limit of 0.2mm skin and beam 

thickness, the sizing was optimized to create the smallest radius vehicle. It is shown that 

the skin thickness reaches this limit first and will determine the minimum radius of the 

vehicle design point. Since the skin thickness has no ties to the frame in terms of mass, 
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the only parameters that drive the skin thickness are the materials density, 𝜌𝑠 the design 

altitude, 𝜌𝑎  ,and the skin percent 
𝑊

𝐵 𝑠
. The resulting minimum structure radius values for 

the hexakis icosahedron with high material level are 2.5m and 5.25m for 0.2 and 0.1 

𝑊

𝐵 𝑠
respectively, and is shown in the rightmost plot on Figure 85. The left and middle plots 

represent the beams radius and thickness respectively. The dark blue line and black 

represent lines of constant 
𝑡𝑏

𝑟𝑏
 at 0.005 and 0.025 values respectively, which were the low 

and high levels used for DOE. The orange and light blue lines are lines of constant 

𝑊

𝐵 𝑠
with values of 0.1 and 0.2 respectively. By connecting these lines, the bounding box 

for the feasible designs are created. 

In a similar manner, the same analysis was performed for the low material level 

reflecting Figure 86. The big difference here is that the for each 
𝑊

𝐵 𝑠
level as the c-ratio 

increased from 0.005, the value was eventually clipped before making it to the high level 

of that factor. This is because the design space, as pointed out in Figure 80 is not fully 

open. The designs become limited by the frame SF, and therefore so will the dimensions 

that will produce a feasibly manufacturable vehicle.  
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Figure 85: Feasible Hexakis Icosahedron Structure Dimensions for High Material Level 
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Figure 86: Feasible Hexakis Icosahedron Structure Dimensions for Low Material Level 

Manufacturable Design with W/B < 1 and low material properties 

Since the hexakis icosahedron had such a large feasible design space it was 

desired to perform a separate analysis at two design points to produce designs with W/B 

less than one using the low (conservative) material properties. It was desired to produce 

two designs, one with payload or float capacity maximized, and the other with the radius 

of the vehicle minimized. Both designs total W/B were decreased until the SF constraint 

was reached for either the frame or skin. The results of the two feasible vehicles that 

could potentially be built in the near future are shown in Figure 87. The design focusing 

on maximizing payload would have a vehicle radius of 7 m and could carry a payload of 

260 kg or float to 2140 m. This vehicle was able to attain a final W/B of 0.8 limited by 
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the frames SF before the skin. The design focusing on minimized radius had a vehicle 

radius of 3.1 m and could carry a payload of 9 kg or float to 860 m. The second design’s 

final W/B was 0.91.  

 

Figure 87: Manufacturable Hexakis designs with W/B < 1 and low material properties. 

Chapter VI Summary 

This chapter’s objective was to analyze the hexakis icosahedron VLTAV design 

with the methodology developed in chapter III. This design did have a fair amount of 

similarities to the icosahedron designs development. The only difference was the 

structures geometry. The icosahedron was made up of 12 vertices, 20 faces, and 30 edges, 

where the hexakis icosahedron was made up of 62 vertices, 120 faces, and 180 edges. 

The finite element modeling technique and general vehicle sizing equations were 

identical. This case study performed the same structural design space construction and 

analysis as the icosahedron design. Through evaluation of the design space, it was 
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observed that there exists a substantial amount of feasible design space utilizing present 

day materials and manufacturing limitations with the limits of altitude, c-ratio, and skin 

W/B selected. A vehicle sizing analysis was performed limiting the skin thickness to 

0.2mm and the smallest diameter hexakis icosahedron vehicle that was structurally 

feasible was approximately five meters in diameter when the material properties were at 

the high level. A secondary analysis was performed limiting the material properties to the 

low level. Two designs were developed, where one targeted maximizing payload and the 

other minimizing vehicle radius. The large payload design could carry an estimated 260 

kg or float to 2140 m with a vehicle radius of 7 m. The minimum radius design, achieved 

a radius of 3 m and could either carry a payload of 9 kg or float to 800 m. 
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VII. Summary and Conclusions 

This research lays a foundation for a methodology to provide a broad scope early-

stage investigation into the structural design space of a vehicle that is highly dependent 

on its structure. To determine if feasible designs may exist within user defined limitations 

or constraints. The methodology was applied to the previously studied Metlen 

icosahedron VLTAV and a similar frame and skin design, hexakis icosahedron, proposed 

by the author. The design space exploration process developed allowed both case studies 

to be investigated where all of their design parameters were allowed to vary so that the 

impact of each variable could be observed and quantified. Looking back, Metlen and 

Rodriguez would have benefitted greatly by analyzing the icosahedron design originally 

with the methodology proposed because it would have shown what input parameters 

could have possibly produced a viable vehicle. 

The research began with an investigation into the brief history and previous 

technical work that has been performed with respect to VLTAV. It was shown that, to 

date, there have only been three documented VLTAV designs investigated: a thin-shelled 

sphere, sandwich sphere, and frame-skin polyhedron. The designs were either or both 

limited by current material properties or manufacturing limitations. This gave rise for the 

desire to develop a structural analysis design space exploration technique that could be 

applied to early-stage VLTAV designs with modern material and manufacturing 

constraints so that structural design feasibility could be observed early on in the design 

process. Being able to know where the functional design space of a vehicle lies before an 

in-depth, potentially costly, investigation occurs is ideal because then the design that is 

being pursued is already known to be feasible from an initial analysis point of view. This 
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research established the structural design space exploration methodology in chapter III. 

This technique utilized, a combination of finite elements, dimensional analysis, design of 

experiments, and response surface methodology to map the structural design space within 

material and manufacturing limitations could be observed for feasibility.  

Chapter IV then performed experimental tests to investigate the validity of the 

technique developed and utilized to model the geometric frames. This was accomplished 

by devising an experiment to provide a similar loading scenario to the vacuum loading of 

uniform pressure without with skin. The loading was a single axis compression test to be 

performed on an additive manufactured 3D model. Constructing an experimental uniform 

compression test would have been ideal, but the ability to instrument and provide the 

loading scenario was deemed unnecessary and costly to validate the finite element model. 

The experiment devised, utilized a stereolithographic 3D printed and an MTS loading 

system to provide the compression, instrumentation, and data recording detailed. An 

additional modal analysis was performed to not only confirm the material properties of 

the printed test specimen, but to serve as an additional point of model validation along 

with the compression test. The experimental results produced great confidence that the 

technique devised to model these geometric frames was not only valid but accurate with 

respect to the frame. The combination of the frame and skin was not able to be 

experimented on and therefore is a point of error in the frame-skin finite element model. 

However, Rodriguez did show that a single triangular membrane segment, subject to a 

pressure loading, almost exactly predicted deflection theory for a membrane. Therefore, 

the skin deformation finite element results and modeling technique were determined to be 

satisfactory for an initial design space investigation. With a validated and robust finite 
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element modeling technique for a polyhedron framed structure, the research continued 

with the application of the proposed methodology on the Metlen icosahedron design and 

hexakis icosahedron design case studies in chapters V and VI.  

Chapter V developed five unique invariant input parameters that first were 

determined to produce a scale-invariant model, and then used to construct and perform a 

structural response DOE on the design. The DOE showed that the dominating significant 

terms that effected the structural design space of the icosahedron design were, c-ratio and 

frame and skin specific moduli. The constructed safety factor response surfaces did shoe 

that for the set of constraints chosen, there existed no structurally feasible design space 

for the icosahedron design. If the design space could be extended past the region tested 

with the DOE, it was shown that a feasible design could be produced within material and 

manufacturing limitations. Additionally, the final W/B response observed showed a max 

W/B gain from the internal volume loss was 0.06 and the minimum was 0.01 which 

equates to 6% and 1% of the initial starting volume. 

The same analysis was performed on the hexakis icosahedron case study in 

chapter VI. It showed the same set of finite element system input parameters as the 

icosahedron, and therefore the design had the same set of invariants and the result of 

scale-invariance. Utilizing the same DOE test matrix as the icosahedron, it was found that 

the same design parameters had the most significant effect on the structural response 

design space. The major difference between both case studies occurred when the feasible 

design space was investigated for the hexakis design. The feasible design space for the 

hexakis design, was almost the entire design space, only limited when the frame material 

properties were at their low level. This is a major difference compared to the icosahedron 
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design. The hexakis icosahedron yielded a SF of 1.98 and 2.23 respectively. The hexakis 

design was able to achieve a frame and skin SF that exceed the icosahedrons best case 

design by approximately 100% for both the frame and skin. Again, when the final W/B 

was observed, for the hexakis design, the max W/B gain from internal volume loss was 

0.02 and the minimum was 0.006 which equates to 2% and 0.6% of the initial starting 

volume. This is a reduction of 300% comparing it to the icosahedron final W/B gains. 

Major Contributions 

The major findings determined by the author are given below: 

 Structural Design Space Exploration Methodology 

The developed methodology was able to produce structural design spaces for the 

two frame-skin case studies so that conclusions could be drawn on whether 

structurally feasible designs exist within the constraints set. The methodology 

allowed for early stage investigation of structures that rely heavily on their 

structural response with respect to design constraints. The methodology can be 

extended to other VLTAV design or conceptual designs where the structures 

response determines its feasibility as long as the design can be phrased as a set of 

input parameters. The analysis will be able to show how the constraints limit a 

conceptual design with respect to its structural response and where, if a feasible 

region or points exist, a good starting functional design point or region lies to 

begin to perform next level analyses. 

 Finite Element Polyhedron Frame Modeling 

The experimental tests performed on the 3D printed icosahedron, compared with 

an equivalent finite element model showed very good agreement (Figure 25). This 
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agreement allows for confidence in the finite element solutions for the more 

complex vacuum loading scenario, because the geometry of the model does not 

change, only the loading profile. Therefore, it is assumed that since there was 

good agreement in the simplified experimental loading case, that the results 

obtained from the vacuum loadings are valid. These results were in turn extended 

to the hexakis icosahedron model because the frame development and creation 

was similar to the icosahedron. 

 Dimensional Analysis and DOE 

Performing a dimensional analysis on the system parameters before a DOE is 

constructed for a system where very little is known and many factors are initially 

present, allows for a potential to significantly reduce the system parameters. The 

dimensional analysis analyzed the system input parameters in terms of its 

dimensions or units. Then it created relational quantities or invariants out of the 

parameters, where the reduction in terms is at least equal to the number of 

dimensions defining the system parameters. The DA significantly reduced the 

number of experiments necessary to perform a DOE and characterize a system. 

 

 

 Dimensional Analysis and Scale Invariance 

The frame-skin VLTAV structures as developed in this research constrained by 

W/B in their sizing were determined to be scale invariant with the invariant 

parameters computed by the dimensional analysis. Scale invariance with respect 

to a design, that is structurally oriented, is significant because it allows for the 
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finite element analysis of the structure to be performed at a single design point. 

The analysis results can be extended to other designs as long as the only 

difference between designs is scale. This proved to be particularly useful when 

applying the skin thickness manufacturing constraint of 0.2mm, because the 

structural response results for a smaller or larger scale design remains constant as 

long as only the dimensions of the design are scaled. This allows any design to be 

scaled to meet any dimension or manufacturing constraint as along as the 

invariant quantities defining the system are at the level desired by the researcher 

or manufacturer. 

 Significant Design Parameters for a Frame-Skin VLTAV Design 

The two case studies analyzed were both composed of a frame and skin structure, 

specifically with a polyhedron shaped frame. For both designs, beam 

thickness/beam radius ratio or c-ratio and frame and skin material properties were 

determined to have the most significant effect on the structural response of the 

vehicle. Before the analysis of the icosahedron took place, it was expected that the 

material properties would have a significant effect since they were the limiting 

factor for the designs investigated by both Metlen and Rodriguez. Rodriguez’s 

research had indicated that lowering the c-ratio of the beam does increase its 

moment of inertia, and therefore its critical buckling load and stiffness. However, 

Rodriguez did not investigate the effect of changing the c-ratio (
𝑡𝑏

𝑟𝑏 

) with respect 

to the structures structural response. This research showed that the c-ratio for 

nearly all of the responses observed for both the case studies had the most 

significant effect on the response of the system. It is noted that the c-ratio cannot 
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be infinitely reduced so that the system performance infinitely increase, because 

there is a local buckling limit of a thin walled cylindrical rod where the walls of 

the cylinder will buckle far earlier than the entire cylinder itself. This is shown in  

in the beam profile study in chapter IV.  

 Structural Feasibility of a Frame-Skin VLTAV Design Constrained by Modern 

Materials and Manufacturing Limitations 

Structural feasibility was observed for both the icosahedron and hexakis 

icosahedron designs with modern materials selected and manufacturing 

limitations. With the constraints developed in the research, it was observed that 

the icosahedron did not have any feasible design points. The hexakis icosahedron 

had a significant region of the constructed design space that was feasible. For the 

icosahedron, if the c-ratio or skin W/B were to be reduced below the limits used 

for the analysis, it is estimated that a feasible design could be developed. This is 

shown in Figure 61. Without the design space exploration of the icosahedron, it 

would have been quite a challenging endeavor for a designer to locate a design 

that could be feasible utilizing modern technology. For the hexakis icosahedron, 

the observed feasible design space was large and allows for a variety of parameter 

inputs to produce a feasible vehicle. For instance, if we select the low level of 

material properties as indicated in Figure 80, feasible designs exist for any skin 

W/B, but the design becomes limited by the c-ratio and frame SF where the max 

c-ranges from 0.016 and 0.012 as skin W/B varies from 0.1 to 0.2. The hexakis 

design was additionally analyzed for manufacturability as shown in Figure 85 and 

Figure 86 with the manufacturing limitation of skin thickness of 0.2mm produced 
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a minimum radius hexakis icosahedron structure of 2.5 m and a maximum radius 

structure of 5.75 m. A secondary analysis was performed limiting the material 

properties to the low level. Two designs were developed, where one targeted 

maximizing payload and the other minimizing vehicle radius. The large payload 

design could carry an estimated 260 kg or float to 2140 m with a vehicle radius of 

7 m. The minimum radius design, achieved a radius of 3 m and could either carry 

a payload of 9 kg or float to 800 m. 
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A. Appendix A  

 

 

Figure 88: Half Normal Plot and Pareto Chart of the Effects with respect to Max Skin 

Stress (pseudo standard error term). 
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Figure 89: Half Normal Plot and Pareto Chart of the Effects with respect to Final W/B 

(pseudo standard error term). 
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Table 44: ANOVA Results for Max Skin Stress - Icosahedron 

 

Table 45: ANOVA Results for Final W/B - Icosahedron 

 

Y Source DF Sum of Squares F Ratio Prob > F Significant

Skin Stress Frame Specific Modulus (A) 1 2.43E+18 58.3195 <.0001 TRUE

Skin Stress Skin Specific Modulus (B) 1 7.66E+18 184.0502 <.0001 TRUE

Skin Stress Altitude [C] 1 3.13E+17 7.5333 0.0129 TRUE

Skin Stress C-ratio (D) 1 4.66E+19 1119.2326 <.0001 TRUE

Skin Stress %skin [E] 1 1.68E+18 40.4893 <.0001 TRUE

Skin Stress Frame Specific Modulus*C-ratio (AD) 1 2.16E+17 5.1856 0.0345 TRUE

Skin Stress Frame Specific Modulus*%skin (AE) 1 1.33E+17 3.1901 0.0901 FALSE ^

Skin Stress Skin Specific Modulus*C-ratio (BD) 1 9.35E+17 22.4667 0.0001 TRUE

Skin Stress Skin Specific Modulus*%skin (BE) 1 3.29E+17 7.9036 0.0111 TRUE

Skin Stress Altitude*C-ratio (CD) 1 3.01E+17 7.2456 0.0144 TRUE

Skin Stress C-ratio*%skin (DE) 1 1.73E+18 41.5906 <.0001 TRUE

Skin Stress Frame Specific Modulus*C-ratio*%skin (ADE) 1 3.86E+17 9.2839 0.0066 TRUE

Skin Stress Skin Specific Modulus*C-ratio*%skin (BDE) 1 7.66E+17 18.4079 0.0004 TRUE

(^ a higher order term containing this term is significant)

Y Source DF Sum of Squares F Ratio Prob > F Significant

Final_W_B Frame Specific Modulus (A) 1 0.001041962 74.887 <.0001 TRUE

Final_W_B Skin Specific Modulus (B) 1 0.00018221 13.0956 0.0018 TRUE

Final_W_B Altitude [C] 1 0.00179617 129.0927 <.0001 TRUE

Final_W_B C-ratio (D) 1 0.003397042 244.1493 <.0001 TRUE

Final_W_B %skin [E] 1 0.000136547 9.8138 0.0055 TRUE

Final_W_B Frame Specific Modulus*C-ratio (AD) 1 0.000196253 14.1049 0.0013 TRUE

Final_W_B Frame Specific Modulus*%skin (AE) 1 4.27E-06 0.3068 0.5861 FALSE

Final_W_B Skin Specific Modulus*C-ratio (BD) 1 0.000188398 13.5403 0.0016 TRUE

Final_W_B Skin Specific Modulus*%skin (BE) 1 8.42E-07 0.0605 0.8083 FALSE

Final_W_B Altitude*C-ratio (CD) 1 4.04537E-05 2.9075 0.1045 FALSE

Final_W_B C-ratio*%skin (DE) 1 5.73181E-05 4.1195 0.0566 TRUE

Final_W_B Frame Specific Modulus*C-ratio*%skin (ADE) 1 2.34E-06 0.1681 0.6864 FALSE

Final_W_B Skin Specific Modulus*C-ratio*%skin (BDE) 1 7.38E-09 0.0005 0.9819 FALSE

(^ a higher order term containing this term is significant)
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Figure 90: Cube Interaction Plot for Max Skin Stress – Icosahedron 

 

Figure 91: Cube Interaction Plot for Final W/B – Icosahedron 
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Figure 92: Main effects and 2nd degree interactions effects for Max Skin Stress – 

Icosahedron 

 

Figure 93: Main effects and 2nd degree interactions effects for Final W/B – Icosahedron 
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B. Appendix B 

 

 

Figure 94: Half Normal Plot and Pareto Chart of the Effects with respect to Max Skin 

Stress (Hexakis). 
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Figure 95: Half Normal Plot and Pareto Chart of the Effects with respect to Final W/B 

(Hexakis). 
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Table 46: ANOVA Results for Max Skin Stress - Hexakis 

 

Table 47: ANOVA Results for Final W/B - Hexakis 

 

Y Source DF Sum of Squares F Ratio Prob > F Significant

Skin Stress Frame Specific Mod [A] 1 1.09E+18 864.2644 <.0001 TRUE

Skin Stress Skin Specific Mod [B] 1 2.49E+18 1981.2668 <.0001 TRUE

Skin Stress Altitude [C] 1 1.35E+17 107.1376 <.0001 TRUE

Skin Stress C-ratio [D] 1 6.04E+18 4807.1878 <.0001 TRUE

Skin Stress %skin [E] 1 1.51E+17 120.4707 <.0001 TRUE

Skin Stress Frame Specific Mod*Skin Specific Mod [AB] 1 3.97E+16 31.5381 <.0001 TRUE

Skin Stress Frame Specific Mod*Altitude [AC] 1 1.95E+14 0.1553 0.6994 FALSE

Skin Stress Frame Specific Mod*C-ratio [AD] 1 1.92E+17 152.8596 <.0001 TRUE

Skin Stress Frame Specific Mod*%skin [AE] 1 1.53E+15 1.2203 0.2879 FALSE ^

Skin Stress Skin Specific Mod*C-ratio [BD] 1 4.38E+17 348.3607 <.0001 TRUE

Skin Stress Skin Specific Mod*%skin [BE] 1 5.11E+15 4.061 0.0635 FALSE ^

Skin Stress Altitude*C-ratio [CD] 1 2.71E+17 215.9199 <.0001 TRUE

Skin Stress Altitude*%skin [CE] 1 1.28E+15 1.0168 0.3304 FALSE ^

Skin Stress C-ratio*%skin [DE] 1 9.53E+16 75.8306 <.0001 TRUE

Skin Stress Frame Specific Mod*Altitude*C-ratio [ACD] 1 2.28E+14 0.181 0.677 FALSE

Skin Stress Frame Specific Mod*C-ratio*%skin [ADE] 1 2.66E+16 21.173 0.0004 TRUE

Skin Stress Skin Specific Mod*C-ratio*%skin [BDE] 1 2.52E+16 20.0342 0.0005 TRUE

Skin Stress Altitude*C-ratio*%skin [CDE] 1 9.93E+15 7.8944 0.0139 TRUE

(^ this term is part of a significant higher degree term

Y Source DF Sum of Squares F Ratio Prob > F Significant

W_B_Final Frame Specific Mod [A] 1 0.000248673 11776.7639 <.0001 TRUE

W_B_Final Skin Specific Mod [B] 1 2.57E-06 121.6444 <.0001 TRUE

W_B_Final Altitude [C] 1 4.47E-07 21.1573 0.0004 TRUE

W_B_Final C-ratio [D] 1 0.000087422 4140.1756 <.0001 TRUE

W_B_Final %skin [E] 1 9.14E-06 432.7083 <.0001 TRUE

W_B_Final Frame Specific Mod*Skin Specific Mod [AB] 1 8.20E-07 38.8324 <.0001 TRUE

W_B_Final Frame Specific Mod*Altitude [AC] 1 8.53E-08 4.0383 0.0642 FALSE ^

W_B_Final Frame Specific Mod*C-ratio [AD] 1 8.51E-06 403.0543 <.0001 TRUE

W_B_Final Frame Specific Mod*%skin [AE] 1 7.67E-08 3.6333 0.0774 FALSE

W_B_Final Skin Specific Mod*C-ratio [BD] 1 6.47E-07 30.6344 <.0001 TRUE

W_B_Final Skin Specific Mod*%skin [BE] 1 5.52E-07 26.1569 0.0002 TRUE

W_B_Final Altitude*C-ratio [CD] 1 8.06E-07 38.1831 <.0001 TRUE

W_B_Final Altitude*%skin [CE] 1 6.79E-10 0.0321 0.8603 FALSE

W_B_Final C-ratio*%skin [DE] 1 1.40E-07 6.6411 0.0219 TRUE

W_B_Final Frame Specific Mod*Altitude*C-ratio [ACD] 1 2.12E-07 10.0405 0.0068 TRUE

W_B_Final Frame Specific Mod*C-ratio*%skin [ADE] 1 4.39E-08 2.0791 0.1713 FALSE

W_B_Final Skin Specific Mod*C-ratio*%skin [BDE] 1 1.07E-08 0.5059 0.4886 FALSE

W_B_Final Altitude*C-ratio*%skin [CDE] 1 1.05E-08 0.4986 0.4917 FALSE

(^ this term is part of a significant higher degree term
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Figure 96: Cube Interaction Plot for Max Skin Stress – Hexakis 

 

Figure 97: Cube Interaction Plot for Final W/B – Hexakis 
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Figure 98: Main effects and 2nd degree interactions effects for Max Skin Stress – Hexakis 

 

Figure 99: Main effects and 2nd degree interactions effects for Final W/B – Hexakis 
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