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AFIT-ENV-16-M-159 
Abstract 

 
 
 
There is much yet to learn regarding how additive manufacturing process 

parameters affect the mechanical properties of additive manufactured parts.  The ability 

to predict the expected mechanical properties of an additive manufactured part with a 

high degree of confidence will encourage the use of these materials in more high-

performance applications.  The purpose of this research was to determine how varying 

Fused Filament Fabrication (FFF) process parameters affect the mechanical properties of 

PA6 nylon dog-bone specimens produced on the Mark One 3D Printer.  A design of 

experiment (DOE) was conducted using the factors of layer height and raster angle 

orientation.  The mechanical properties measured in the experiment were tensile 

modulus, yield stress, percent strain at yield, ultimate tensile strength and percent strain at 

break.  An analysis of variance (ANOVA) was performed to identify which factors were 

statistically significant in influencing mechanical properties.  Results of the ANOVA 

showed that layer height was significant in influencing tensile modulus, ultimate tensile 

strength and percent strain at break; raster angle orientation was significant in influencing 

tensile modulus, yield stress, percent strain at yield, and percent strain at break.  Both 

tensile modulus and ultimate tensile strength increased with decreasing layer height.  The 

optimal condition that maximizes stiffness and strength is a layer height of 0.1 mm and a 

(±45) raster angle orientation.
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ADDITIVE MANUFACTURING PROCESS PARAMETER EFFECTS ON THE 

MECHANICAL PROPERTIES OF FUSED FILAMENT FABRICATION NYLON 

 
 
 

I.  Introduction 

Topic Overview 

Humans are gifted with the ability to create.  Before the Industrial Revolution, 

nearly all manufactured goods were made by hand.  A craftsman could create an object to 

fit their own unique requirements or could custom make a product to satisfy their client’s 

unique wishes.  Craftsmen used a combination of technical skill and creative artistry to 

create hand-crafted objects that took hours to complete.   

The Industrial Revolution moved manufacturing from the craftsman’s workshop 

to the factory.  Factories produced goods using assembly lines made up of many workers.  

Each worker along the line was responsible for a single task in making a finished product.  

This method of dividing individual steps to produce a finished product among assembly 

line workers is known as mass production.  With mass production, goods could be made 

both in large quantities and inexpensively.  However, mass production was usually at the 

expense of one-of-a-kind goods customized to a user’s unique needs.   

In traditional manufacturing, craftsman machine or cast materials to achieve the 

desired shape.  Machining is a form of “subtractive” manufacturing.  A block of material 

is formed into the desired shape by cutting or grinding away unwanted material.  Material 
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that is removed is discarded as waste.  Traditional manufacturing also includes 

standardized assembly line processes that makes one-time changes to the object being 

made more difficult. 

An alternative manufacturing method that allows one-of-a-kind objects to be 

made more efficiently compared to traditional manufacturing methods is called additive 

manufacturing.  This process uses a machine to add materials selectively together to 

create an object, which is modeled from a three-dimensional computer-aided design 

(CAD) drawing.  Unlike traditional manufacturing, additive manufacturing allows for the 

creation of new shapes with complex geometries (Lipson and Kurman, 2013).  Shapes 

can be easily customized by editing or drawing a new CAD drawing.  Additive 

manufacturing is also synonymously referred to as “3D printing,” and a machine used in 

the additive manufacturing process is called a 3D printer.  Before the 3D printer can 

make the object, the CAD software must first convert the digital model to a 

stereolithography (STL) file format (Grimm, 2004).  In additive manufacturing, STL is 

the industry standard file format for three-dimensional model data, which is used by 

additive manufacturing machines (ASTM Standard F2792, 2012).     

Two classes of additive manufacturing technology are selective deposition 

printers and selective binding printers (Lipson and Kurman, 2013).  Selective deposition 

printers selectively deposit raw materials into layers.  The machine extrudes material 

through a nozzle and deposits it on a build plate or previous build layer.  The material is 

sequentially applied in layers until the desired object is formed.  In selective binding 

printers, heat or light solidifies a powder or light sensitive photopolymer.  After a layer 
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has been cured by heat or light, the machine adds another layer of powder or 

photopolymer.  Next, the machine selectively cures the portion of the layer that will 

become a solid object.  This process is repeated until a complete object is formed.  Post 

processing removes excess powder or photopolymer liquid from the object. 

A common subset of selective deposition printing is fused deposition modeling 

(FDM).  In FDM, a thermoplastic filament is pushed through a computer-controlled 

extrusion head and deposited on a build plate as a series of layers to form a three-

dimensional object.  FDM is a trademark of Stratasys, a 3D printing company, which 

invented the process (Barnatt, 2013).  Other terms used to describe FDM include plastic 

jet printing (PJP), fused filament modeling (FFM), and fused filament fabrication (FFF).  

FFF was conceived by the RepRap project to avoid legal constraints with using FDM.  

The RepRap project is an open source additive manufacturing consortium that shares 

freely available 3D printer designs.  The term used in this thesis will be FFF. 

In FFF, the extrusion nozzle moves in a plane, parallel with the build surface or 

build plate.  The literature refers to this plane as the x-y plane (Ahn, Montero, Odell, 

Roundy, and Wright, 2002).  The heated extrusion head melts the thermoplastic filament 

before it passes through the extrusion nozzle.  Next, the 3D printer deposits the viscous 

thermoplastic onto the build surface as a series of rows.  These rows are called rasters or 

roads.  After the 3D printer deposits a layer of material on the build plate, the build plate 

lowers, and the machine deposits another layer of thermoplastic.  This process repeats 

itself until the desired shape is complete (Gibson, Rosen, and Stucker, 2010).  Figure 1 

shows a schematic of the FFF process. 



 

4 

 
Figure 1.  Schematic of the FFF Process (drawn by author), (Ziemian, Sharma, and 

Ziemian, 2012) 
 
 
 
FFF machines may also include an additional extrusion nozzle for support 

material.  The machine will deposit support material underneath objects that have 

overhangs or bridges.  After the machine finishes printing the object, mechanical or 

chemical methods are used to remove the support material (Ahn, Montero, Odell, 

Roundy, and Wright, 2002). 

A strength of additive manufacturing (AM) or 3D printing, is the ability to 

produce unique objects from imagination to reality quickly.  An application of quickly 

creating unique objects is rapid prototyping.  Rapid prototyping is the process of creating 

prototypes through additive manufacturing.  Before an object, part, or tool can be 

manufactured for functional use it must be tested to ensure that the object will work for 

its intended purpose.  Prototypes are created to test the object before full-scale 
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manufacturing.  Creating prototypes with traditional manufacturing methods requires 

many hours of skilled labor.  With additive manufacturing, prototypes can be designed 

and tested within hours.   

Military Applications for Additive Manufacturing 

Additive manufacturing could revolutionize the military supply chain.  A 3D 

printer can print needed components or tools in austere areas that are either far removed 

from supply lines or on the frontlines of the battlefield.  Designs can be made anywhere 

in the world and sent electronically to a strategically placed 3D printing center on the 

battlefield. 

In an austere fiscal environment, the military will continue to maintain legacy 

systems for lifespans longer than expected.  Maintaining a supply inventory of spare parts 

for multiple weapon systems is a challenge for the United States military (Brown, Davis, 

Dobson, and Mallicoat, 2014).  As legacy weapon systems continue to age, repair parts 

needed to maintain the systems become increasingly difficult to obtain.  Additive 

manufacturing can create replacement parts for legacy systems that may not have the 

availability of repair parts compared to newer systems.  Instead of going through a 

lengthy acquisition process to acquire a critical replacement part that has since gone out 

of production, additive manufacturing can print parts on-demand (Brown, Davis, Dobson, 

and Mallicoat, 2014).  On-demand production could eliminate the need for maintaining 

costly supply warehouses.   
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The Navy has introduced 3D printers on some ships in a program called “Print the 

Fleet” (Tadjdeh, 2014).  The program seeks to introduce sailors to additive manufacturing 

and investigate the applicability of additive manufacturing for the Navy.  The Navy is 

currently using additive manufacturing for tooling, modeling, and prototyping.  Jim 

Lambeth, Vice Admiral and Phil Cullom, Deputy Chief of Naval Operations for fleet 

readiness and logistics believe “that 3D printing and advance manufacturing are 

breakthrough technologies for our maintenance and logistics functions in the future” 

(Tadjdeh, 2014).  Cullom emphasized some of the advantages of additive manufacturing 

for the Navy are rapid repairs, print tools, reduction in inventory spares, and the 

immediate availability of parts. 

The Rapid Equipping Force is an Army organization which quickly provides 

deployed Army units with advanced government and commercially available solutions 

that meet urgent requirements.  The Rapid Equipping Force has deployed the 

Expeditionary Lab Mobile, or ELM for short (Parsons, 2013).  The outside of the ELM 

resembles a metal shipping container.  Inside, the ELM contains 3D printers, computers, 

and milling machines.  Two engineers are needed to operate one ELM.  The engineers 

use the ELM 3D printers and milling machines to create parts from plastic, steel, or 

aluminum.  Satellite communications allow the ELM engineers to communicate with 

colleagues anywhere in the world.  Westley Brin, a member of the Army’s Rapid 

Engineering Force, states “the technology has allowed troops to modify systems with 

proprietary designs to better fit their needs or make them more efficient in the field” 

(Parsons, 2013).  One result of the ELM was the modification of a flashlight used by 
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soldiers in Afghanistan that would accidently turn on, which could give away the patrol’s 

position at night.  ELM additive manufactured a part, which prevented the flashlight from 

turning on by accident.  Using the traditional defense acquisition process to field a new 

flashlight would have taken months, if not years.  Additive manufacturing allows a 

solution to be tested and fielded quickly on the battlefield (Parsons, 2013). 

Limitations of Current FFF Materials 

Thermoplastics are the most widely used feedstock material in the FFF processes.  

The most common thermoplastic feedstock material includes acrylonitrile butadiene 

styrene (ABS), polycarbonate (PC), polylactide (PLA) and polyamide (PA).  The 

mechanical properties of thermoplastics limit their use in more high-performance 

applications such as aerospace, automotive industry, and infrastructure replacement parts.  

Thermoplastics are low in strength compared to metals.  The maximum tensile strength 

for polymers is about 100 MPa (15,000 psi), whereas some metal alloys have tensile 

strengths of 4,100 MPa (600,000 psi) (Callister and Rethwisch, 2012).  Because of the 

strength limitations of FFF, a need exists to improve the strength of FFF made 

thermoplastic parts.  

Incorporating carbon fibers into the plastic creates a composite material called 

carbon fiber reinforced plastic.  The method increases the strength of FFF materials 

(Love, Kunc, Elliot, and Blue, 2014).  A composite is made up of two or more materials 

which exhibits a better combination of material properties then the materials which make 

up the composite (Daniel and Ishai, 2003).  Table 1 shows the tensile yield strength of 
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ABS plastic, nylon-12, carbon fiber reinforced polymer and carbon fiber.  Table 1 does 

not consider materials made by additive manufacturing.  Even though carbon fibers have 

a high tensile strength, they are weak in shear and exhibit brittle behavior.  Combining 

carbon fibers with a plastic allows for a more durable material. 

 

Table 1.  Tensile Yield Strength for Various Materials (MatWeb, LLC, 2015), (Daniel 
and Ishai, 2003), (Callister and Rethwisch, 2012) 

 
 
 
 

New materials require thorough analysis to gain greater understanding of the 

material’s behavior and mechanical properties.  With this understanding, engineers can 

predict how the material will perform under certain environments and life-cycle loads.  

The ability to know the expected material properties of a part produced through FFF with 

a high degree of confidence, will encourage the use of these materials in more high-

performance applications. 

 

Additive Manufacturing Process Parameters 

  Additive manufacturing gives new ways to influence and change the processing 

and structure of materials to create materials with desired properties.  The processes used 

Material
Tensile Strength, 

Yield (Mpa)
Tensile Strength, 

Yield (psi)
ABS 42.5 - 44.8 6,160 - 6,500
Nylon-12 9.50 - 170 1,380 - 24,600
Carbon/Epoxy 
(AS4/3501-6)

2,280 330,000

Carbon Fiber 
(AS4)

3,700 535,000
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during the manufacturing phase of materials play a role in influencing the properties of 

materials.  The most important property for high-performance applications is material 

strength.  There is much yet to learn regarding how additive manufacturing process 

parameters affect the mechanical properties of additive manufactured parts (Lanzotti, 

Grasso, Stainano, and Martorelli, 2015).    

Research Purpose  

The purpose of this research is to determine how varying FFF process parameters 

affect the mechanical properties of PA6 nylon and carbon fiber reinforced PA6 nylon 

composite specimens produced by the Mark One 3D Printer.  This research is a stepping-

stone for further research to develop AM composite technology and encourage the use of 

FFF parts in high-performance applications.  The long term goal is the ability to produce 

aerospace parts through AM that meet the same service specifications as traditionally 

manufactured aerospace parts.  This research will attempt to answer the following 

questions: 

 • What are the range and confidence intervals for material properties of FFF parts 
made with varying process parameters? 

• Can certain FFF process factors be used to optimize the mechanical properties of 
FFF parts? 

• How do nylon parts produced by FFF compare with compression molded nylon 
parts? 

• What are the mechanical properties of carbon fiber reinforced thermoplastic 
composites made by FFF? 
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Document Overview 

 This study is organized into five chapters.  Following this introduction, Chapter II 

will further explain several technical concepts in this report: stress, stress, polymers, 

plastics, carbon fibers, composites and carbon-fiber reinforced polymer composites.  

Chapter II also contains a literature review of relevant articles related to AM and FFF, as 

well as a survey of mechanical characterization studies on materials made through FFF.  

Chapter II will also include a review of research that investigates the incorporation of 

carbon fibers into FFF plastic materials. 

Chapter III explains the methodology used in this research.  A Design of 

Experiment (DOE) was conducted using the Taguchi method to determine how changing 

FFF process parameters affect the mechanical properties of PA6 nylon and determine 

what process parameters are significant in influencing mechanical properties.  Sample 

carbon-fiber reinforced polymer composites were made using the Mark One.  The 

samples were tensile tested to record the tensile strength and Young’s modulus.   

Chapter IV will present the results of the DOE.  Mechanical properties for PA6 

nylon and carbon-fiber reinforced composites produced by the Mark One with varied 

process parameters will be compared.  Results from an analysis of variance (ANOVA) is 

explained to show which FFF process parameters are significant in affecting the 

mechanical properties of FFF produced specimens. 

Chapter V summarizes the research results and discusses the implications for the 

material science community.  Chapter V will also present recommendations for future 
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research and discuss lessons learned during the course of this research, which will help 

future materials scientists and engineers. 
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II.  Literature Review 

Chapter Overview 

This chapter will review research on significant process parameters affecting FFF 

material properties.  A summary of significant process parameters for polymer materials 

was reviewed.  As FFF techniques become more sophisticated researchers are beginning 

to experiment with short-fiber carbon reinforcement.  However, at the time of this 

writing, only one study was found on material properties of continuous carbon fiber 

reinforced polymer composites made through FFF (Namiki, Ueda, Todoroki, Hirano, and 

Matsuzaki, 2014). 

Material science and engineering can be broken down into two sub-disciplines: 

materials science and materials engineering.  Material scientists work to understand how 

the structure of a material affects the physical properties of the material; while a materials 

engineer designs the material structure to achieve desired material properties.  Materials 

science and materials engineering can be described by four components: processing, 

structure, properties and performance.  

The structure of a material relates to how the internal material components are 

arranged.  The smallest structural level is the atomic level, which encompasses the 

organization of atoms or molecules relative to one another.  The next larger structural 

level is the microscopic level.  The microscopic level is everything that can be seen by a 

microscopic.  The structure that can be observed by the naked eye is called the 

macroscopic level (Callister and Rethwisch, 2012).  
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The properties of solid materials can be grouped into six different categories: 

mechanical, electrical, thermal, magnetic, optical, and deteriorative.  Each property 

includes stimuli that create a certain response.  The focus for this research is the 

mechanical properties of FFF made materials.  Mechanical properties describe how a 

material behaves under an applied load.  Examples of mechanical properties include 

elastic modulus, yield strength, and ultimate strength. 

Stress-Strain Behavior of Thermoplastics 

The way a material responds to the forces exerted on it are of interest to 

engineers.  Understanding how a material behaves under different kinds of forces helps 

engineers design materials that are strong.  When a material is stretched or pulled, forces 

are being exerted on it.  Forces are also exerted when a material is compressed.  An 

example of compressive forces acting on a material would be if a hand were used to 

compress a ball of clay into a thin sheet of clay.  The hand exerts compressive forces on 

the ball of clay.  The amount of force which acts over a given area is called stress.  Stress 

is equal to the force applied on an object divided by the area over which the force acts, 

which is defined by the following equation: 

𝜎 = 𝐹
𝐴
 (1) 

 
Where 

F = applied force (lb-force) 
 
A = area over which the force is applied (in2) 
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Stress may deform or change the shape of the area that the force was acting on.  

Because of this, engineers use engineering stress to provide consistency when comparing 

stress measurements.  Engineering stress is calculated by using the original area for 

which the force is acting.   

The amount a material stretches or compresses due to a given stress is called 

strain.   Engineering strain, ε, is defined as: 

𝜀 = (𝛥 𝐿)/𝐿 = (𝐿 − 𝐿0)/𝐿0 (2) 
 

Where 
 

L – L0 = Change in length 
 

L0 = Original length 
 

 How much a material strains depends on the magnitude of stress that is applied.  

For most materials that are stressed at low levels, stress and strain are proportional to 

each other through the relationship: 

𝜎 = 𝐸𝐸 (3) 
  

This is known as Hooke’s law, and the constant of proportionality E (GPa or psi) is the 

modulus of elasticity, or Young’s modulus (Callister and Rethwisch, 2012).  Modulus is 

also related to the stiffness of a material.  Stiffness increases with increasing Young’s 

modulus.  Stiffness is the ability of a material to withstand deflection from an applied 

stress (Callister and Rethwisch, 2012).  When stress and strain are plotted on a graph, 

Young’s modulus is the slope of the linear portion of the stress-strain curve.  Figure 2 

illustrates the linear portion of a stress-strain curve.  A steep linear portion of the stress-

strain curve indicates a stiff material. 
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Figure 2. Stress-Strain Curve Illustrating the Elastic and Plastic 

Regions (drawn by author)  
    
 
 
 Thermoplastics are viscoelastic materials.  This means thermoplastics respond to 

stress in two ways: elastic deformation and viscous flow.  Elastic deformation stores 

mechanical energy as recoverable material deformation.  Elastic deformation can be 

compared to pulling a spring; when the pulling force on the spring is released the spring 

returns to its original length.  Viscous flow is the realignment of molecules due to the 

applied load and results in permanent deformation.  This can be compared with a spring 

that is stretched so much that it does not return to its original length when the stretching 

force is stopped.  During viscous flow mechanical energy is converted to frictional heat 

by molecules realigning themselves within the material (Rubin, 1990). 

 Studying the stress-strain curve for a material helps to better understand the 

mechanical behavior of the material.  For most materials under low strains the curve is a 
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straight line.  The linear portion of the stress-strain curve is the elastic region.  In the 

elastic region stress is proportional to strain and only elastic deformation occurs.  Some 

materials may exhibit non-linear elastic behavior.  As shown in Figure 2, when the stress 

and strain increase to a certain point, the shape of the curve becomes nonlinear.  The 

point on the curve that transitions between linear and non-linear behavior is the yield 

point or proportional limit (SPI, 1991).  The corresponding stress at the yield point is 

called the yield stress or yield strength (Callister and Rethwisch, 2012). 

 A study of stress-strain curves for thermoplastics has shown that there is no linear 

elastic region, but rather a deviation from linearity that increases from the origin.  The 

deviation is small below 0.5% strain, and most published figures of the elastic modulus, 

E, are the slope of a line tangent to the low-strain portion of the stress-strain curve (SPI, 

1991).  For this research the elastic modulus is defined as the secant modulus at 0.5% 

strain. 

 Thermoplastics have no definite proportional limit, which makes it difficult to 

accurately define the yield point exactly (SPI, 1991).  A convention has been established 

where a straight line is drawn parallel to the linear or near linear portion of the stress-

strain curve at some specified strain offset.  This strain offset is usually set as 0.2%.  The 

stress corresponding to the intersection of this line and the stress-strain curve is defined 

as the yield stress (Callister and Rethwisch, 2012).  For this research a 0.2% strain offset 

was used to measure the yield stress.  The 0.2% strain offset line is shown in Figure 3.   

 The stress-strain behavior for thermoplastics is influenced by the rate of 

deformation, the temperature, and the environment.  The rate at which a material is 
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deformed is called the strain rate.  With increasing strain rate thermoplastics behave more 

rigid and have higher elastic moduli.  With decreasing strain rate thermoplastics behave 

more ductile (Callister and Rethwisch, 2012).  Temperature also greatly affects the 

mechanical properties of thermoplastics.  With increasing temperatures, thermoplastics 

show a decrease in elastic modulus, reduction in tensile strength and greater ductility.  

Under cold temperatures near freezing thermoplastics may show brittle characteristics.  A 

brittle material allows for little deformation before breaking. 

 

 
Figure 3.  Stress-Strain Curve for Annealed Polycrystalline Copper Illustrating the 0.2% 

Strain Offset Method for Determining the Yield Stress (Roylance, 2001) 
 

Process Effects on Materials 

Two other areas of interest to materials scientists and materials engineers is 

process and performance.  Nearly all modern materials are processed in some way.  The 
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method of processing influences the structure of the material, which in turns affects the 

material’s properties.  A material’s performance is a function of its material properties.  

Finding new ways to process materials can lead to new ways to design materials with 

desired properties.  Additive manufacturing gives us new ways to process materials to 

selectively design the materials structure to achieve desired properties.  Improved 

properties can lead to high performance materials. 

The additive manufacturing process has many process parameters that can be used 

to influence the material structure.  A process parameter is a variable in a process that can 

be altered or changed in order to influence the outcome of the process.  For the FFF 

process that outcome is the material itself.  Figure 4 visually depicts several additive 

manufacturing process parameters.  The properties of the FFF material will determine the 

type of applications the material can be used for.  Below is a list of process parameters 

specific to FFF: 

• Layer height 

• Raster fill  

• Print orientation 

• Temperature of the extrusion head 

• Environmental factors: temperature, humidity, etc. 

• FFF Material selection 

• Gap spacing between rasters 

• Part spacing 
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Figure 4.  Graphical Representation of Several Additive Manufacturing Process 

Parameters (drawn by author), (Forster, 2015) 
  
 
 
FFF technology allows both the choice of material and its specific location to be 

chosen in a three dimensional space.  An object made by FFF can be made up of more 

than one type of material.  A composite material is made up of two or more materials and 

exhibits a combination of properties from its constituent materials.  Creating composites 

through FFF can be a way to improve the material properties of FFF parts.  Research on 

carbon fiber reinforced thermoplastics made by FFF is discussed later in this chapter. 

Optimizing process parameters is a method to improve the mechanical properties 

of FFF materials.  An understanding of the relationship between process parameters and a 

desired process output is necessary before optimizing the system.  The systematic method 

to determine the relationship between factors affecting a process and the output of that 

process is called design of experiments.  Design of experiments is a way to understand 

which process parameters are significant in influencing a desired property of the material 
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and how varying the parameter changes the desired property.  Many researchers have 

used design of experiments to get a greater understanding on how FFF process 

parameters influence material properties. 

Air gap is a process parameter found to be significant in influencing mechanical 

properties of FFF materials.  Air gap is the amount of space between deposited rasters or 

roads.  A zero air gap means the roads are touching.  A negative air gap means the roads 

overlap each other.  A positive air gap means a space exists between roads.  Ahn and 

others (2002) found that decreasing air gap results in greater ABS tensile strength.  Air 

gap has also been found to be significant in influencing the compressive strength of 

porous FFF structures (Ang, Leong, and Chua, 2006).  A decrease in air gap also 

increases the build time for a part by increasing the number of roads required to be 

deposited to complete a layer. 

Researchers have also found raster angle orientation to influence the strength of a 

part.  Raster angle is defined as the angle between the raster and the axis of the test 

specimen.  A raster angle of 0° means the roads are aligned with the axis of the test 

specimen.  Loads are applied along the axis of the test specimen.  Greater tensile strength 

was found in ABS when the raster angle was aligned with the tensile load (Durgun and 

Ertan, 2014).  This was also observed by both Ahn and others (2002) and Martínez and 

others (2012).   

Unlike the previous studies that looked at raster angle orientation being the same 

for each layer Tymrak, Kreiger and Pearce (2014) looked at alternating raster angles 

between layers.  The raster angle parameter had two levels: (0/90) and (±45).  The 
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researchers also looked at layer height using three levels: 0.4mm, 0.3mm, and 0.2mm; 

and material type with two levels: ABS, and PLA.  The average tensile strength, strain at 

tensile strength and elastic modulus for RepRap printed specimens is shown in Table 2.  

The 0.2 mm layer height had higher tensile strength on average for both ABS and PLA 

specimens.  This possibly shows that tensile strength increases with decreasing layer 

height.  There was not a large difference in tensile strength or elastic modulus between 

the raster angle orientations (0/90) and (±45).  Unfortunately, the study did not 

investigate to see if layer height or alternating raster angle orientation were statistically 

significant in influencing the mechanical properties of the printed specimens. 

 

Table 2.  Average Tensile Strength, Strain at Tensile Strength and Elastic Modulus for 
RepRap Printed Specimens (Tymrak, Kreiger, and Pearce, 2014) 

 
 
 
 
Print orientation is also a significant factor in determining part strength.  Print 

orientation refers to how an object being printed is oriented with regards to the build 

Specimens 
Tested

Specimens 
considered

Average tensile 
strength (Mpa)

Average strain at tensile 
strength (mm/mm)

Average elastic 
modulus (Mpa)

ABS
0.4 mm Layer height 30 24 28.2 0.0197 1875
0.3 mm Layer height 40 39 27.6 0.0231 1736
0.2 mm Layer height 40 35 29.7 0.0201 1839
0/90 orientation 60 52 27.7 0.0192 1867
±45 orientation 50 46 29.5 0.0233 1739
Total 110 98 28.5 0.0212 1807
PLA
0.4 mm Layer height 30 17 54.9 0.0194 3286
0.3 mm Layer height 40 31 48.5 0.0171 3340
0.2 mm Layer height 20 18 60.4 0.0196 3480
0/90 orientation 50 27 54.9 0.0188 3336
±45 orientation 40 39 52.3 0.0181 3384
Total 90 66 56.6 0.0193 3368
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space.  Explained further, the plane that is parallel with the build surface is usually 

referred to as the x-y plane, while the z-axis is perpendicular to the x-y plane.  FFF layers 

are oriented in the x-y plane.  Parts built in the z-axis exhibit lower tensile strength versus 

parts built in the x-y plane.  The reason is that the bond between layers are weak and 

defects are usually present between the layers.  A part will exhibit weakness for forces 

orthogonal to the build layers (Bertoldi, Yardimci, Pistor, Guceri, and Sala, 1998).  

Hoekstra and others (2001) found that an increase in the number of roads aligned with the 

tensile force resulted in higher tensile strength.  Parts printed with an x-y plane 

orientation had the greatest number of roads aligned with the tensile force (Hoekstra, 

Kraft, and Newcomer, 2001). 

A review of the literature reveals that FFF materials are highly anisotropic (Ahn, 

Montero, Odell, Roundy, and Wright, 2002), (Ziemian, Sharma, and Ziemian, 2012).  An 

anisotropic material means that the properties of the material are directionally dependent, 

as opposed to isotopic, which means the material has the same properties in all directions.  

This is the result of materials being deposited by rows and layers.  

Mechanical Properties of FFF Plastics Reinforced with Short Carbon Fiber 

Only within the last few years has there been research investigating the material 

properties of FFF fabricated parts with short carbon fiber reinforcement.  Ning, Cong, 

Qiu and Wang (2015) investigated how adding short carbon fibers to ABS plastic can 

improve the mechanical properties of FFF parts.  ASTM D638-10 and ASTM D790-10 

standards were followed for tensile test and flexural test, respectively.  Carbon fiber 
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powders were blended with ABS thermoplastic pellets.  A plastic extruder was used to 

blend the short carbon fibers and ABS pellets together to create carbon fiber filled 

filaments.  Parameters included: carbon fiber content, carbon fiber length and porosity of 

fabricated parts.  The results of the study showed that adding carbon fiber reinforcement 

into plastic materials can increase ultimate tensile strength and Young’s modulus, but 

may decrease toughness, yield strength and ductility.  The largest average ultimate tensile 

strength (42 MPa) occurred with five percent carbon fiber (by weight) content.  The 

lowest average tensile strength (34 MPa) occurred when the carbon fiber content was 10 

weight percent.  The largest mean Young’s modulus (2.5 GPa) occurred at 7.5 weight 

percent carbon fiber content, while the smallest mean value (1.9 GPa) occurred in a pure 

plastic specimen. 

A similar study by Love, Kunc, Elliot and Blue (2014) investigated the material 

properties of short carbon fiber reinforced ABS polymers.  The researchers measured the 

tensile yield strength and stiffness from samples made from several different desktop 3D 

printer platforms.  ASTM D638-03: Standard Test Method for Tensile Properties of 

Plastics was the test method used.  Five sets of ASTM D638 Type V specimens 

populated on the corners and the center of the build platform were made at a time.  

Specimen sets were made in both in-plane and vertical (z-axis) direction.  The desktop 

platforms utilized acrylonitrile butadiene styrene (ABS).  The carbon fiber reinforced 

ABS samples were prepared by combining ABS pellets (GPS35-ABS-NT from M 

Holland Co, Il) with Chopped Hexcel AS4 CFs (epoxy sizing, 3.2 mm long) in a 

Brabender high-shear mixer at a temperature of 220°C at 60 rpm until the torque 
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remained constant.  The combined material was then extruded through a cylindrical die 

(1.75 mm diameter) at 220°C using a batch extrusion unit, composed of a steel barrel and 

a cylindrical rod.  A cylindrical die is used in manufacturing to shape material into long 

strands of wire or filament.  Five sets of the ABS and carbon fiber test specimens were 

manufactured on the Solidoodle S3, a type of 3D printer.   

The results of the study by Love and others showed that the strength and stiffness 

of AM parts can be increased with the introduction of carbon fibers into the polymer 

matrix.  ABS with 13% carbon fiber had an approximately 200% increase in strength and 

an approximately 400% increase in modulus of elasticity for in-plane samples compared 

to samples made without carbon fiber.  Specimens that were made along the Z-axis 

showed a decrease in tensile strength.  The author speculates that the decrease was 

because the ABS filament did not conform to the underlying substrate as it was 

deposited, reducing the contact area between layers. 

Tekinalp and others (2014) investigated how changing the percent weight of short 

carbon fibers in ABS filaments affected material strength.  The researchers created short 

carbon fiber reinforced ABS filaments similar to Ning and others (2014) and Love and 

others (2014) ABS filaments with mixtures of 10, 20, 30, and 40 weight percent carbon 

fiber were used.  Five ASTM D638 standard type-V dog-bone samples of each carbon 

fiber weight percentage were tensile tested.  Results showed that tensile strength 

increased to 52.9 kN m/kg), which is higher than Aluminum 6061-0 (45.9 kN m/kg).  

Tensile strengths increased linearly with increasing carbon fiber content. 
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Mechanical Properties of FFF Plastics Reinforced with Continuous Carbon Fiber 

Only one article could be found that investigated the material properties of FFF 

fabricated parts with continuous carbon fiber reinforcement.  Namiki, Ueda, Todoroki, 

Hirano and Matsuzaki (2014) measured the tensile strength and tensile modulus for poly-

lactic acid (PLA) specimens reinforced with continuous carbon fibers.  The carbon fiber 

reinforcement was a PAN based carbon fiber (T800S-10E, Toray).  The researchers 

referred to these specimens as continuous carbon fiber reinforced thermoplastic 

(CFRTP).  The researchers themselves modified a commercially available FFF printer to 

create the specimens.  Figure 5 shows a schematic of the printer used by Namiki and 

others (2014).  During the FFF process, melted PLA was impregnated with the carbon 

fiber inside the extrusion head and both the PLA and fiber were deposited on the print 

bed together.  The carbon fiber was aligned in the longitudinal direction of the dog bone 

specimens.  The carbon fiber fraction was 1.0%, which was determined by the supplied 

amount of carbon fiber and PLA.  Figure 6 shows a picture of the tensile specimen that 

was used for the experiment with dimensions.   

 



 

26 

 
Figure 5.  Schematic of Printer Head Used by Namiki and Others (2014) 

 
 

 

 
Figure 6.  Carbon Fiber Reinforced Thermoplastic Specimen Dimensions (Namiki, Ueda, 

Todoroki, Hirano, and Matsuzaki, 2014) 
 
 
 
Namiki and others (2014) conducted tensile tests of both PLA specimens 

reinforced with continuous carbon fiber.  The average tensile strength of the carbon fiber 

reinforced PLA was 90.0 MPA while the tensile strength of the PLA without carbon fiber 

was 57.1 MPA.  The researchers used the rule of mixture to predict both Young’s 
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Modulus and tensile strength.  The observed averages for Young’s modulus and tensile 

strength were approximately 10% and 20% lower respectively than estimated 

measurements using the rule of mixture equation. 

Mark One Printer 

In 2014, MarkForged Inc. introduced the first commercially available 3D printer 

to create continuous carbon fiber reinforced polymer composites (Black, 2014).  

MarkForged Inc. is a company started by Greg Mark in early 2013 that makes 3D printers 

(Black, 2014).  Mark explains the company’s goal was to manufacture “end-use parts,” 

but make them “a lot more efficiently” and “use the mechanics of a 3-D printer to 

automate carbon fiber composite layup” (Black, 2014).  

During the time of this research, the matrix material for the Mark One 3D printer 

was a proprietary blend PA6 co-polymer nylon with three types of fiber reinforcement: 

Kevlar, carbon fiber, and fiberglass (T. Nutile, personal communication, February 8, 

2016).  The Mark One has two extrusion nozzles; one for the nylon filament, and the 

second for the continuous fiber towpreg.  A carbon fiber towpreg is a bundle of carbon 

fibers coated with a thermoplastic resin to create a filament.  When the carbon fiber 

towpreg passes through the heated extrusion nozzle the thermoplastic resin melts and the 

towpreg is deposited on a nylon layer.  This is different compared to the modified 

machine used by Namiki and others (2014) which impregnated the nylon with a carbon 

fiber towpreg inside the extrusion head, as discussed earlier.  
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The Mark One’s slicing software is called Eiger.  The Eiger software allows 

several printing factors to be modified by the end user.  The printing factors that can be 

modified are layer height, nylon fill pattern, nylon fill density, number of nylon layers, 

and fiber fill pattern.  These factors are discussed below.  First, the layer height for nylon 

can be adjusted between 0.1 mm and 0.2 mm in 0.01 mm increments.  If a part is built 

with fiber, the layer height defaults to a value specific to the type of fiber used.  The 

default layer height for fiber are as follows; carbon fiber, 0.125 mm; Kevlar, 0.1 mm and, 

fiberglass, 0.1 mm. 

Second, three types of fill patterns can be selected for the nylon layers: hexagonal, 

triangular, and rectangular.  Figure 7 depicts the three nylon fill patterns available.  The  

 
 

 
Figure 7.  A Depiction of the Rectangular, Triangular, and Hexagonal Nylon Fill Patterns 

 
 
 

fill pattern is the manner the nylon roads are deposited on each layer.  The hexagonal and 

triangular fill patterns are laid down as geometric patterns that mimic their name.  The 

rectangular fill pattern lays down nylon roads using a (±45) placement in relation to the 

print bed.  To create a sample that has a (0/90) placement, the specimen can be orientated 
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to a 45-degree angle from either the x or y-axis of the print bed.  In conjunction with the 

fill patterns, the fill density for each fill pattern can also be adjusted up to 100 percent.  

Each fill pattern may have minimum and maximum fill densities.  The rectangular fill 

pattern allows for a 100 percent fill density.  A 100 percent fill density creates a near 

completely solid plastic part.   

Third, the number of layers around each part can also be specified.  These 

parameters are called wall layers, and roof and floor layers.  Wall layers are beads of 

nylon road that surrounds the perimeter of the part geometry for each layer of the part.  

The number of wall layers can be specified between one and four.  Roof and floor layers 

are solid plastic layers at the top and bottom of the part.  The number of roof and floor 

layers can be adjusted between one and ten.   

Finally, the fiber fill pattern can be specified by layer.  Figure 8 shows the three  

fiber fill patterns available.  The angle of orientation for the isotropic fill can also be 
 
specified, which is shown as a 45-degree angle in Figure 8.  Of note, carbon fiber is 

limited to the concentric circle fill pattern, while Kevlar and fiberglass do not have this 

limitation. 
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Figure 8.  Screen Captures from Eiger Illustrating the Different Fiber Fill Patterns 
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III.  Methodology 

Chapter Overview 

A Design of Experiment (DOE) was conducted using the Taguchi method to 

determine how process parameters affect the mechanical properties of PA6 nylon and 

carbon fiber reinforced PA6 nylon composite specimens produced on the Mark One.  The 

Mark One was chosen because it is the only commercially available printer on the market 

that creates continuous carbon fiber polymer composites by FFF and for its ease of use.  

A DOE is a systematic method of conducting controlled tests to evaluate how varying 

different factors affect a response of interest.  Test specimens were made using the Mark 

One, which is manufactured by MarkForged Inc.  Test specimens were tested in 

accordance with ASTM D638, Standard Test Method for Tensile Properties of Plastics, 

and ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix 

Composite Materials.   

The Taguchi Method 

For any system that has an output, there are factors that influence the 

characteristics of the output.  For example, the yield from a farmer’s field may be 

dependent on the amount of rain for the season, the number of sunny days, daily 

temperature, soil type, plant spacing and date of planting to name a few.  It would be 

beneficial for the farmer to know how each of the variables influence crop yield and if 

any of the variables interact with each other. 
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A technique the famer can use to understand how each of the factors influence 

crop yield is through design of experiments (DOE).  A type of DOE is the Taguchi 

method.  The steps in the Taguchi method are listed (Perry Johnson, Inc., 1987): 

1. Identify the quality characteristic 
2. Identify the factors that will be tested along with each of their levels 
3. Create an orthogonal array for the factors and levels selected 
4. Conduct the experiment (Run trials and record the observations) 
5. Perform an analysis of variance (ANOVA) 
6. Identify the significant factors 
7. Determine the optimal condition 

Quality Characteristics 

A quality characteristic is something that can be measured that is of interest to the 

experimenter.  In the previous example with the farmer, the quality characteristic would 

be crop yield.  In this research paper the quality characteristics are the following 

mechanical properties: tensile modulus, yield stress, percent strain at yield, ultimate 

tensile strength and percent strain at break.  These are the properties that engineers are 

most interested in knowing when designing parts for functional applications. 

Experimental Factors 

 The factors chosen for this experiment were layer height and raster angle 

orientation.  Most of the process parameters on the Mark One are fixed, which limited the 

number of factors to choose from for the experiment.  Table 3 shows the factors with 

levels for each of the six treatments.  Printing orientation was not selected because a 

review of the literature showed that the strength of parts with a print orientation along the 
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z-axis showed less strength than parts printed in the x-y plane.  Because only two factors 

were selected for testing it was easy to conduct a full factorial design.  In a full factorial 

design every combination of factors and levels is tested.  A specific combination of 

factors and levels is called a treatment.  This experiment had six different treatments.  

Three runs were performed for each treatment for a total of 18 specimens. 

 

Table 3.  Raster Angle Orientation and Layer Height for Each Treatment 

 

 

In order to simplify the experiment, the following parameters were fixed for this 

experiment: 

• The nylon fill density was set to 100 percent 
• The number of “Roof”, “Floor”, and “Wall” layers were set to one 
• The rectangular fill pattern was used 

Specimen Printing 

 A STL file of the tensile test specimen was created in SolidWorks.  SolidWorks is 

a computer aided design (CAD) software program.  Figure 9 shows the CAD dimensions 

for the nylon tensile specimens according to ASMT D638, Type 1, with a thickness of 4 

mm.  Next, the STL file was imported into the Eiger software.  The Eiger software is the 

Treatment Raster Angle 
Orientation(°)

Layer height (mm)

1 0/90 0.1
2 0/90 0.15
3 0/90 0.2
4 ±45 0.1
5 ±45 0.15
6 ±45 0.2
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slicing software specific to the Mark One 3D printer.  Eiger was used to specify the 

printing process parameters for each of the different treatments.  After the process  

 
Figure 9.  Drawing of Nylon Dog-Bone Tensile Specimen with Dimensions 
 
 
 

parameters were selected based on the specific treatment, Eiger makes an electronic file 

that is transferred to the Mark One by a USB drive.  The electronic file provides the 

information necessary for the Mark One to create the print.  In order to reduce the effects 

of error on the statistical results, the printing order for each treatment specimen was 

randomized.  The print bed was leveled prior to printing.  After printing each specimen, 

the specimen was placed in a plastic bag labeled with the specimen’s treatment number 

and printing order number.  All specimens were stored in a desiccant box until testing.  

Anhydrous calcium sulfate was the chemical desiccant provided for the desiccant box 

storing the specimens and inside the nylon filament storage box for the Mark One.   



 

35 

Tensile Testing 

Tensile testing was conducted on a MTS model 204.52 load cell with a 5.5 kip 

capacity using a MTS 632.13B-20 clip gage extensometer with a 0.5 inch gage length.  

Grip pressure was set to 1000 pounds.  The temperature of the room was measured at 

72.3 degrees Fahrenheit with a relative humidity of 45 percent.  Prior to testing the 

average width and thickness of the gage section of the specimen was recorded by taking 

the average of three measurements.  The average width and thickness of each specimen 

was later used to calculate the engineering stress and engineering strain.  Tensile testing 

was performed on the specimens in order to measure the engineering strain and 

engineering stress.  The specimens were tested under stress control until failure.  Stress 

control means that the rate of increasing stress applied to each specimen was the same.  

The desired load rate applied to each specimen was based on the cross sectional area of 

the gage section for each specimen.  Equation 4 shows how the desired load rate for each 

specimen was calculated.   

𝐿𝑟𝑟𝑟𝑟 = 11,000 𝑝𝑝𝑝 × 𝐴𝑔𝑔𝑔𝑔
300 𝑠𝑠𝑠

      (4) 
 
Where 

 Lrate = desired load rate for each specimen (lb-f/sec) 

Agage = area of gage section (in2) 

 Equation 4 equals a load rate that will result in a tensile stress of 11,000 psi 

within 300 seconds from starting the tensile test.  A load rate large enough for the 

specimen to reach failure within five minutes was desired.  This is why 300 seconds is in 

the denominator for equation 4.  By using equation 4, the load rate was adjusted for each 
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specimen based on the average cross-sectional area of the specimen’s gage section.  The 

measured mean gage dimension, testing load rate, mass, and density for each tensile 

specimen is listed in Table 9 of Appendix A. 

An extensometer was used to record the elongation of the gage section due to the 

applied load.  The tensile testing machine recorded time, commanded load, actual load, 

frame displacement, and extensometer displacement.  The actual load was divided by the 

average area of the gauge specimen to calculate the engineering stress.  From this data 

engineering stress and engineering strain was measured to create a stress-strain curve for 

each specimen.  Appendix D contains the stress-strain curves for each nylon tensile 

specimen. 

 The change in gage length is recorded by the extensometer.  The original gage 

length used in the experiment is the extensometer length, which was 0.5 in.  Strain was 

calculated by dividing the extensometer reading by 0.5 in.  The strain was then multiplied 

by 100 to get the percent strain.  The engineering stress was plotted versus engineering 

strain to create a stress-strain curve.  Figure 10 is an example of a stress-strain curve for 

treatment 1.  From this stress-strain curve the following information was determined: 

tensile modulus, yield stress, percent strain at yield, and ultimate tensile strength.  Table 

10 in Appendix B lists the recorded mechanical properties for each tensile specimen. 
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Tensile Elastic Modulus Measurement. 
 
 

 For this research, the elastic modulus was calculated as the secant modulus at 

0.5% strain.  The secant modulus is the slope of a line from the point corresponding to 

0.5% strain to the origin.  This line is shown on Figure 10 as 0.5% secant modulus. 

 
Yield-Stress Measurement. 
 
 

 For this research, a 0.2% strain offset was used to measure the yield stress.  A line 

was drawn parallel to the 0.5% secant modulus at a 0.2% strain offset.  The intersection 

of this line with the stress-strain curve was recorded as the yield stress.  The 0.2% strain 

offset line is shown in Figure 10.  Here, the yield stress is recorded as 13.976 MPa. 
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Figure 10.  Stress-Strain Curve FFF PA6 Nylon, Treatment 1; Printing Order, 17; Test 

Order, 1; Gage Area, 0.0830 in2; Load Rate, 3.044 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45% 

 
 

Tensile Strength Measurement. 

Tensile strength is the greatest stress a material can withstand before failure.  

Failure can be either breaking or substantial plastic deformation, which results in 

necking.  Tensile strength was measured as the greatest stress achieved before substantial 

necking of the tensile specimen.  Figure 10 shows substantial necking at the vertical line 

at the end of the stress-strain curve.  
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Percent Strain at Break Measurement. 

The percent strain at break was estimated by using the crosshead displacement 

data recorded by the MTS machine and calculated using Equation 5 below. 

𝜀𝑏𝑏𝑏𝑏𝑏 =  𝐿𝑚𝑚𝑚−𝐿𝑔𝑔𝑔𝑔
𝐿𝑔𝑔𝑔𝑔

   (5) 

Where 

εbreak = strain at break 

Lmax = greatest crosshead displacement before 
specimen break 
 

Lgage = length of gage section (2.25 in) 

Specimen Density 

After tensile testing, the density of each specimen was determined.  The density 

was determined by dividing the specimen’s mass by its density.  The mass of each 

specimen was measured using a digital scale.  The volume of each specimen was 

measured using the Archimedes' principle, which states that the volume of an object is 

equal to the volume of water displaced by the submerged object.  This was done by first 

placing enough water in a graduated cylinder to allow the specimen to be completely 

submerged.  Next, the volume of water in the graduated cylinder was measured.  Next, 

the specimen was submerged in the graduated cylinder and the new volume reading from 

the graduated cylinder was recorded.  The difference between the volume reading with 

the submerged specimen and without the submerged specimen was recorded as the 
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volume of the specimen.  The mass and density for each specimen is listed in Table 9 of 

Appendix A. 

After testing, photos were taken of the broken nylon tensile specimens.  

Photographs of the tensile specimens organized by treatment can be found in 

Appendix C. 

Statistical Analysis 

Following the material tests, the collected data was analyzed.  The mean, range, 

and variance of each response due to each factor level was calculated.  An analysis of 

variance (ANOVA) was performed to determine which process parameters are significant 

in affecting the material properties of the FFF nylon test specimens.  Results will be 

compared to the mechanical properties of compression molded nylon-12 and traditional 

manufactured carbon-fiber reinforced polymer composites.  A discussion of the results is 

provided in Chapter IV. 

An ANOVA was performed to see if either layer height, raster angle orientation, 

or an interaction of the two factors significantly influenced the responses measured.  The 

statistical software program used to perform the ANOVA was JMP® (John’s Macintosh 

Program) Pro, version 11.2.0, by SAS Institute Inc. (Shipp and Lafler, 2012).  An 

ANOVA was performed twice for each response; once with only the two factors; and 

again with the two factors and interaction.  The factors were layer height and raster angle 

orientation.  The Shapiro-Wilk test was performed for each response to check to see if the 
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residual of the responses were normally distributed.  This was to test the ANOVA 

assumption that the responses are normally distributed. 

Additionally, a statistical analysis was performed to determine if layer height 

affects material density.   This was done by using JMP to determine the Pearson 

correlation coefficient for density by layer height and performing a one-way ANOVA on 

density by layer height. 

Composite Specimens 

Composite specimens were printed with carbon fiber and then tested in 

accordance with ASTM D3039, Standard Test Method for Tensile Properties of Polymer 

Matrix Composite Materials.  The dimensions of the CAD model for the composite 

specimen were: length, 254 mm (10 in); width, 12.7mm (0.5 in); and thickness, 2.5 mm 

(0.098 in).   

   Tensile testing was conducted on a MTS model 204.52 load cell with a 5.5 kip 

capacity using a MTS 632.13B-20 clip gage extensometer with a 0.5 inch gage length.  

Grip pressure was set to 2000 pounds.  Figure 11 shows one of the composite specimens 

during testing.  Prior to testing the average width and thickness of the gage section of the 

specimen was recorded by taking the average of three measurements.  The average width 

and thickness of each specimen was later used to calculate the engineering stress and 

engineering strain.  Tensile testing was performed on the specimens in order to measure 

the engineering strain and engineering stress.  Testing was conducted by strain control 
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with a strain rate of 0.0208 mm/sec.  The temperature of the room was measured at 71.6 

degrees Fahrenheit with a relative humidity of 41 percent.   

 

 
Figure 11.  Composite Specimen During Testing 
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IV.  Analysis and Results 

Chapter Overview 

This chapter will present the Design of Experiment (DOE) results for the PA6 

nylon tensile specimens.  The statistical analysis of the measured responses for each 

factor and level will be presented.  A discussion will follow on how each factor 

influences the selected quality characteristics.  Next, this chapter will present results from 

the continuous carbon fiber composite (CCFC) testing to include a stress-strain curve and 

scanning electron microscope (SEM) photographs of the CCFC failure surface. 

Statistical Analysis Results 

 Table 4 shows the mean of each mechanical characteristic measured by the level 

of each factor.  The upper and lower 95% confidence intervals of the mean are shown 

below the means.  This table can give insight into how each factor and the individual 

levels within the factors influence the mechanical properties.  
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Table 4.  Mean and Confidence Intervals of Measured Mechanical Properties by Factor 
and Level 

 
  
 
 

The statistical analysis software JMP was used to perform an analysis of variance 

(ANOVA) and Fit Analysis for each response by the factors layer height and angle 

orientation.  An ANOVA was also performed to test for possible factor interactions.  

Table 5 shows the ANOVA results for each factor and response along with the 

interaction. 

Table 5 includes the R squared and F-test values from the ANOVA.  The R 

squared values can range from 0 to 1.  The higher the R squared value the better the 

factors explain the variability in the data.  A higher R squared value also means that 

differences between factors is less due to randomness.  An overall alpha value of 

𝛼 = 0.05 was used for the overall F-test.  F-test values less than 0.05 indicate that at least 

one of the factors is statistically significant in influencing the variability of the response.  



 

45 

This means that at least one of the factors influence the mechanical properties.  The 

overall F-test was less than 0.05 for each response, which means that at least one of the 

two factors can explain the variability in the data.  The F-test values for each factor are 

shown to the right of the overall F-test values in Table 5.  The F-test on the factors 

determines if the difference in the mean responses are the same or statistically different.  

Because there were two factors being tested the critical p-value was 0.05 divided by 2, or 

0.025.  F-test values less than 0.025 indicate that the factor is statistically significant in 

influencing the desired response.  Values less than the critical p-value are highlighted 

green in Table 5 to indicate statistical significance.  The critical p-value for the 

interaction F-test was 0.05 divided by 3, or 0.0167.  Only the interaction of layer height 

and raster angle orientation on yield stress was found to be statistically significant. 

 
 

Table 5.  R Squared and p Values from ANOVA Results for Each Factor with and 
without Interaction 

 

 

Response R Squared F-test F-test, Layer 
height

F-test, Raster Angle 
Orieintation

F-test, interaction

Tensile Modulus 0.6142 0.0033 0.0059 0.0181

Yield Stress 0.4874 0.0217 0.0759 0.0186

Percent Strain at yield 0.6788 0.0009 0.0861 0.0002

Ultimate Tensile Strength 0.6480 0.0018 0.0007 0.8106

Percent Strain at Break 0.6392 0.0021 0.0162 0.0025

Tensile Modulus 0.7522 0.0024 0.0027 0.0093 0.0702

Yield Stress 0.7765 0.0013 0.0147 0.0029 0.0069

Percent Strain at yield 0.7951 0.0008 0.0482 0.0001 0.0673

Ultimate Tensile Strength 0.7858 0.0010 0.0002 0.7769 0.0508

Percent Strain at Break 0.6994 0.0069 0.0175 0.0052 0.3344W
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 Table 6 provides a summary of the statistical significance of each factor and 

interaction influencing a certain response based on the ANOVA results. 

 

Table 6.  Statistical Significance of Factors for each Response 

 

 

 A discussion of how each factor influences each response measured follows.  

Layer height was only significant in influencing tensile modulus and ultimate tensile 

strength.  Figure 12 below shows that the mean yield stress increased with decreasing 

layer height.  Both tensile modulus and ultimate tensile strength increased with 

decreasing layer height as seen in Figure 13.  Both tensile modulus and tensile strength 

are greatly influenced by a material’s density.  As a material’s density increases so does 

stiffness (modulus) and strength.  It could be that the layer height was influencing the 

density of each specimen. 

 

Response Layer height Raster angle 
orientation

Interaction of raster 
angle and layer height

Tensile Modulus (GPa) Yes Yes No
Yield Stress (MPa) No Yes Yes
Percent Strain at Yield No Yes No
Ultimate Tensile Strength Yes No No
Percent Strain at Break Yes Yes No

Statistically Significance
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Figure 12.  LS Means Plot of Yield Stress versus Layer Height 

 
 
 

 
Figure 13.  LS Means Plot of Tensile Modulus versus Layer Height 

 
 
 
 The raster angle orientation was significant in influencing tensile modulus, yield 

stress, percent strain at yield, and percent strain at break.  Figure 14 shows that stiffness 

was greatest in the ±45 angle orientation versus the 0/90 orientation.  Even though the 

±45 angle orientation is not directly aligned along the tensile direction, it still has more 

layers resisting in the tensile direction compared to the 0/90 orientation, which has only 

half of its layers resisting the force.  As discussed in the literature review, layers with 

raster angles orthogonal to the tensile force do not contribute greatly to stiffness or 
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strength.  Only half of the layers in the 0/90 orientation are aligned with the tensile 

direction.  This may possibly explain why the 0/90 orientation is less stiff then the ±45 

angle orientation.   

 The only response that the raster angle orientation was not significant in 

influencing was the ultimate tensile strength.  Table 4 shows the mean tensile strength of 

angle orientation ±45 and 0/90 was 1.1857 GPa and 1.1096 GPa respectively.  

 
 

 
Figure 14.  LS Means Plot of Tensile Modulus versus Angle Orientation 

 
 
 
Table 7 compares the average results from the DOE with injection grade nylon-

12, and nylon-12 made from selective laser sintering (SLS).  The values for the injection 

grade nylon and SLS were taken from MatWeb.com, a website that provides material 

data provided by manufactures.  Nylon-12 measurements made by Griehl and Ruestem 

(1970) are also listed in Table 7.  Griehl and Ruestem measured tensile strength at 63 



 

49 

MPa.  This is nearly double the average tensile strength measured in the DOE.  The 

Tensile modulus measured by Griehl and Ruestem at 1.172 GPa is more comparable to 

DOE results, which were 1.148 GPa.  For injection-molded nylon-12, tensile strength at 

yield ranged from 35 MPa to 42 MPa.  It is important to note that tensile strength at yield 

can vary widely depending on what percent strain is considered “yield”.  Thermoplastics 

do not exhibit a clearly defined yield point on stress-strain curves and yield strength is 

taken to be the stress at a specified percent strain.  The Arkema Group Injection Grade 

nylon-12 use 8% and 10% strain to determine yield stress.  From the experimental data 

for each specimen, the stress at 10% strain was around 36 MPa.  The injection grade 

nylon has greater strength and higher elastic modulus compared to experimental values 

measured from the DOE of the nylon tensile specimens discussed earlier. 
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Table 7.  Comparisons of Mechanical Properties for Several Different Nylon-12 with 
Experimental Results (MatWeb, LLC, 2015), (Griehl and Ruestem, 1970) 

 

Effect of Layer Height on Density of FFF Nylon 

Pearson correlation coefficients were calculated in JMP to show what correlation 

layer height has on the density of FFF nylon.  The correlation coefficient is the measure 

of the linear relationship between two variables x and y and can be in the range from -1 to 

1 (McClave, Benson, and Sincich, 2014).  A correlation coefficient of -1 or 1 indicates a 

perfect linear relationship, while a coefficient of 0 indicates little or no relationship.  

Table 8 below shows that the correlation coefficient for density and layer height 

is -0.7450.  This means that from the experimental data for a 0.01 mm decrease in layer 

height the density will increase by 0.00745 g/cm3. 

 
 

Tensile Strength, 
Yield (MPa)

Ultimate Tensile 
Strength (MPa)

Strain at 
Break (%)

Strain at 
Yield (%)

Tensile 
Modulus 

(GPa)

Arkema Group Rilsan® AMN D         
Nylon-12, Rigid, Injection Grade (Dry) 42.00 not listed >=50 8.0 1.45

Arkema Group Rilsan® AMN                
Nylon-12, Rigid, Injection Grade 
(Conditioned)

39  not listed >=50 10.0 1.17

Polyram PlusTek PD104 Nylon-12, 
Injection Molding 35 not listed 300 not listed 0.70

ALM PA 650 Nylon-12 Selective Laser 
Sintering (SLS) Prototyping Polymer not listed 48.0 24 not listed 1.70

Nylon-12 measured by Griehl and 
Ruestem (1970) not listed 63 not listed not listed 1.172

Average measurements from all DOE data 12.32** 36.5*** 71 1.28** 1.148*

Average tensile strength at 10% strain 
from DOE data 31.2 n/a n/a 10 n/a

* Tensile Modulus recorded at .5% strain
**Yield stress defined using the .2% strain offset method
*** Ultimate tensile strength defined as the highest stress recorded before substantial necking of specimen
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Table 8.  Pairwise Correlations Table for Ultimate Tensile Strength, Tensile Modulus, 
Layer Height, and Density 

 
 
 
 

A one-way ANOVA was performed on density by layer height in JMP.  The one-

way ANOVA table to include mean density and mean density confidence intervals for 

each layer can be found in Table 11 of Appendix E.  Figure 15 shows a scatter plot of 

density by layer height from the one-way ANOVA table.  The green diamonds in Figure 

15 represent the 95% confidence interval of the mean density for each layer height group.  

The mean density for layer heights 0.1 mm and 0.15 mm are nearly equal at 1.11 g/cm3 

and 1.10 g/cm3 respectively, but the mean density decreases to 1.085 g/cm3 for layer 

height 0.2 mm.  Looking at the scatter-plot of density by layer height, it appears that with 

decreasing layer height, density approaches an upper bound where the density remains 

nearly constant.  Additional experiments are needed with additional layer heights to 

better understand the relationship between density and layer height. 



 

52 

 
 

 
Figure 15.  Scatter Plot of Density by Layer Height with 95% Mean Confidence Intervals  
 

Effect of Density on Mechanical Properties of FFF Nylon 

A one-way ANOVA was performed for a cohort density variable and for each of 

the mechanical properties measured to determine if density influences the mechanical 

properties of FFF nylon specimens made by the Mark One.  The cohort variable for 

density was defined with two levels: “low density” and “high density.”  Low density was 

defined as being less than 1.095 (g/cm3) and high density was defined as being greater 

than 1.095 (g/cm3).  The density value between “low” and “high” density was determined 

by visually evaluating the scatter plots of the mechanical properties and density to see if 

the data formed groups.  Figure 16 shows the scatter plot of tensile modulus by density  
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Figure 16.  Scatter-Plot of Tensile Modulus by Density for FFF Nylon 

 
 
 

for the FFF nylon specimens.  It is visually apparent from Figure 16 that the data forms a 

“low density” group and a “high density” group.  The density number between these two 

groups is 1.095 (g/cm3).  A one-way ANOVA was performed for the cohort density 

variable and for each of the mechanical properties measured.  The ANOVA tables can be 

found in Table 12 through Table 16 of Appendix F.  The differences between the means 

for low density and high density groups were statistically significant for tensile modulus, 

percent strain at yield, ultimate tensile strength, and percent strain at break.  The mean 

yield stress between the low density and high density groups was found not to be 

statistically different.   

 Table 8 shows the Pearson correlation coefficients for ultimate tensile strength, 

tensile modulus, layer height, and density.  Layer height shows a greater correlation for 
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both tensile modulus and ultimate tensile strength compared to density.  This may mean, 

there are other contributing factors that influence tensile modulus and ultimate tensile 

strength then density alone. 

Results from Continuous Carbon Fiber Composite (CCFC) Testing 

 Several continuous carbon fiber composites (CCFC) were printed using the same 

layup pattern in attempt to determine the mechanical properties of the CCFCs.  The 

Mark One defaults to a pre-set layer height when printing with fiber.  The layer height 

when using carbon fiber is 0.125mm.  Figure 17 shows the layup pattern used for this 

test; light gray layers are nylon and black layers are carbon fiber. 

 
 

 
Figure 17.  Layup Sequence for the Continuous Carbon Fiber Reinforced Composite

 
  

Figure 18 shows a drawing from Eiger.  Eiger is the slicing software provided 

with the Mark One 3D printer.  The drawing shows how the carbon fiber was applied to 
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each layer.  At this time, the only fill pattern available for carbon fiber is “concentric” 

fill.  The concentric fill creates concentric rings bordering the outer perimeter of the part.  

Any part of the carbon fiber layer that does not receive carbon fiber is backfilled with 

nylon.  Figure 19 shows a close-up view of the continuous carbon fiber nylon composite 

still on the print-bed after printing. The nylon support rim borders the perimeter of the 

nylon composite.  The dimensions of the CAD model for the composite specimen were: 

length, 254 mm (10 in); width, 12.7mm (0.5 in); and thickness, 2.5 mm (0.098 in). 

 
 

 
Figure 18.  Eiger Screen Shot Showing the Fill Pattern for the Continuous Carbon Fiber 

Composite 
 
 
 

 
Figure 19.  A Close-Up View of the Continuous Carbon Fiber Composite Still on the 

Print-Bed after Printing   
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Problems arose during the testing of the composite specimens.  Many of the 

specimens either broke in the grips or there was slippage in the grips during tensile 

testing, consequently voiding the results of the test.  There was only one good test 

specimen that did not break in the grips during testing.  Figure 20 shows this specimen 

after testing.  Figure 21 shows the stress-strain curve for this test.  The ultimate tensile 

strength was 121.1 MPa and the tensile modulus was 9.9 GPa. 

 
 

 
Figure 20.  Continuous Carbon Fiber Composite Specimen After Testing 

 
 
 

 
Figure 21.  Stress-Strain Curve for the Continuous Carbon Fiber Composite Made on the 

Mark One 3D printer, Specimen Dimensions: Width, 0.5267 in; Thickness, 0.1567 in; 
Gage Length, 6 in; Room Temp (71.6F), Relative Humidity (41%) 
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Scanning Electron Microscope (SEM) Photographs 

 SEM photographs were taken of the failure surface from one of the CCFC tensile 

specimens.  Figure 22 shows the fracture surface of a carbon fiber reinforced nylon 

composite.  The approximate thickness of the fracture is 2.331 mm.  The layup sequence 

for the specimen in Figure 22 is shown in Figure 17. 

 
 

 
Figure 22.  Fracture Surface of a Continuous Carbon Fiber Reinforced Nylon Composite 

 
 
 
Figure 23 shows an alternative view of the fracture surface.  In this image, discontinuities 

are visible between each nylon layer but not between rasters.  This shows that the 
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coalescence of the nylon is not complete between layers but is nearly homogeneous 

between rasters.   Additional SEM photographs of the fracture surface are in Appendix G. 

 
 

 
Figure 23.  Fracture Surface of a Continuous Carbon Fiber Reinforced Nylon Composite 

Showing Differentiation Between Layers 
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V.  Discussion and Conclusion 

Chapter Overview 

This chapter will first include a discussion on how the results of this research 

answered each of the research questions established in Chapter I.  Next, possible future 

research will be discussed.  In conclusion, the implications of this research for 

engineering and material science will be discussed. 

Research Questions Answered 

The purpose of this research was to determine how varying Fused Filament 

Fabrication (FFF) process parameters affect the mechanical properties of PA6 nylon dog-

bone specimens produced on the Mark One 3D Printer.  A design of experiment (DOE) 

was conducted using the factors of layer height and raster angle orientation.  The 

mechanical properties measured in the experiment were tensile modulus, yield stress, 

percent strain at yield, ultimate tensile strength and percent strain at break.  An analysis 

of variance (ANOVA) was performed to identify which factors were statistically 

significant in influencing mechanical properties.  Results of the ANOVA showed that 

layer height was significant in influencing tensile modulus, ultimate tensile strength and 

percent strain at break; raster angle orientation was significant in influencing tensile 

modulus, yield stress, percent strain at yield, and percent strain at break.   
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Research Question 1. 

• What are the mean and confidence intervals for material properties of FFF 
parts made with varying process parameters? 

 The mean and 95% confidence intervals for the measured material properties 

were calculated for each level of layer height and raster angle orientation.  This 

information was included in Table 4. 

Research Question 2. 

• Can certain FFF process factors be used to optimize the mechanical 
properties of FFF parts? 

The results of the ANOVA show that both layer height and raster angle 

orientation influence the mechanical properties of FFF part.  By reviewing the results 

discussed in Chapter IV, the optimal treatment for each mechanical property measured 

can be determined.  The optimal condition that maximizes tensile modulus and ultimate 

tensile strength is a layer height of 0.1 mm and a (±45) raster angle orientation.   The 

optimal condition that maximizes percent strain at break is a layer height of 0.1 mm and a 

(±45) raster angle orientation.  The optimal condition that maximizes yield stress is a 

layer height of 0.1 mm and a (0/90) raster angle orientation.  The optimal condition that 

maximizes percent strain at yield is a layer height of 0.2 mm and (0/90) raster angle 

orientation. 

Research Question 3. 

• How do nylon parts produced by FFF compare with compression molded 
nylon parts? 
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 As discussed in Chapter IV, the DOE experimental values of the FFF were 

compared with compression molded nylon parts.  The experimental data from the FFF 

nylon DOE showed lower ultimate tensile strength and tensile modulus then 

compression-molded nylon.  The FFF nylon material property that was comparable to 

compression molded nylon was percent elongation at break. 

Research Question 4. 

• What are the mechanical properties of carbon fiber reinforced 
thermoplastic composites made by FFF? 

As discussed in Chapter IV, this question was not answered due to lack of time and 

problems encountered during testing.  One composite specimen was tested and the 

ultimate tensile strength was 121.1 MPa and the tensile modulus was 9.9 GPa. 

 Research Implications 

  This research shed light on how FFF process parameters affect the mechanical 

properties of FFF materials.  The research shows that the mechanical properties of FFF 

parts can be influenced by changing the process parameters of layer height and raster 

angle orientation.  In the future it is likely that engineers will be able use additive 

manufacturing to create materials that meet certain performance requirements by 

specifying a unique treatment of additive manufacturing process parameters. 

Measuring the density of additively manufactured parts could be a non-destructive 

method of quality assurance.  The results from the density investigation revealed that 

different levels of density showed differences in the mean mechanical properties.  The 
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FFF nylon specimens with a “high” level of density showed greater ultimate tensile 

strength and tensile modulus compared to the FFF nylon specimens with a “low” level of 

density.   

Future Research 

A possible future experiment is to see how different nylon and fiber layup 

sequences influence mechanical properties.  Two possible layup sequences that could be 

tested are shown in Figure 24.  Each sequence has the same number of nylon and carbon 

fiber layers, with 10 carbon fiber layers, and 12 nylon layers.  Each layup is also 

symmetric about the center of the layup to prevent moment forces from influencing 

testing results.  For layup A, each carbon layer is sandwiched between two layers of 

nylon.  For layup B, the layers alternate between two nylon layers and two carbon fiber 

layers.   
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Figure 24.  Two Possible Layup Sequences for a Future DOE Experiment 
 
 
 

 A future investigation can lead to better understanding of the relationship between 

carbon fiber volume fraction and tensile modulus of continuous carbon fiber composites 

(CCFC) made through additive manufacturing.  The tensile modulus of a single carbon 

fiber towpreg on a printed nylon layer can be determined through tensile testing.  A 

duplicate CCFC specimen can then be printed to determine the volume fraction of a 

single carbon towpreg.   From this information, a relationship can be made between fiber 

volume fraction and tensile modulus.  This relationship model can be used to predict the 

tensile modulus of a given carbon fiber fraction.  An experiment can then be performed to 

test the validity of the fiber volume fraction-tensile modulus relationship model.   
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Appendix A:  Mean Gage Dimensions, Testing Load Rate, Mass, and Density for 
Each Tensile Specimen 

 
 
 

Table 9.  Mean Gage Dimensions, Testing Load Rate, Mass, and Density for Each PA6 
Nylon Tensile Specimen 

 
 

  

Data  
Point

Printing 
Sequence

Testing 
Order Treatment

Angle 
Orientation

Layer 
Height (mm)

Mean Gage 
Width (in)

Mean Gage 
Thickness (in)

Gage Area 
(in2)

Load Rate   
(lb-force/sec) Mass (g)

Density 
(g/cm3)

1 10 16 1 0/90 0.1 0.5248 0.1577 0.0828 3.035 11.42 1.12
2 12 15 1 0/90 0.1 0.5285 0.1573 0.0831 3.048 11.33 1.11
3 17 1 1 0/90 0.1 0.5245 0.1583 0.0830 3.044 11.37 1.11
4 3 8 2 0/90 0.15 0.5263 0.1593 0.0838 3.074 11.20 1.10
5 6 18 2 0/90 0.15 0.5267 0.1567 0.0825 3.026 11.18 1.10
6 13 7 2 0/90 0.15 0.5308 0.1613 0.0856 3.139 11.39 1.12
7 4 12 3 0/90 0.2 0.5267 0.1553 0.0818 2.999 10.84 1.08
8 11 17 3 0/90 0.2 0.5247 0.1570 0.0824 3.021 10.81 1.08
9 16 13 3 0/90 0.2 0.5248 0.1567 0.0822 3.015 10.86 1.09

10 1 4 4 ±45 0.1 0.5310 0.1566 0.0832 3.049 11.04 1.10
11 8 9 4 ±45 0.1 0.5255 0.1565 0.0822 3.015 11.30 1.11
12 14 14 4 ±45 0.1 0.5297 0.1578 0.0836 3.065 11.30 1.11
13 5 5 5 ±45 0.15 0.5298 0.1570 0.0832 3.050 11.29 1.11
14 7 2 5 ±45 0.15 0.5336 0.1583 0.0845 3.098 11.08 1.11
15 9 11 5 ±45 0.15 0.5300 0.1623 0.0860 3.154 11.34 1.11
16 2 10 6 ±45 0.2 0.5332 0.1572 0.0838 3.073 10.98 1.10
17 15 3 6 ±45 0.2 0.5315 0.1593 0.0847 3.104 10.89 1.09
18 18 6 6 ±45 0.2 0.5253 0.1515 0.0796 2.918 10.74 1.07
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Appendix B:  Recorded Mechanical Properties for Each Tensile Specimen 
 
 
 

Table 10.  Recorded Mechanical Properties for Each PA6 Nylon Tensile Specimen 

 

Data  
Point

Printing 
Sequence

Testing 
Order Treatment

Angle 
Orientation

Layer 
Height 
(mm)

Tensile 
Modulus 

(GPa)

Strain at 
Break (%)

Yield 
Stress 
(MPa)

Strain at 
Yield (%)

Ultimate Tensile 
Strength (MPa)

1 10 16 1 0/90 0.1 1.1368 128.8 13.654 1.4 38.105
2 12 15 1 0/90 0.1 1.1951 29.28 12.959 1.28 39.156
3 17 1 1 0/90 0.1 1.2569 19.88 13.976 1.31 37.213
4 3 8 2 0/90 0.15 1.1495 96.15 12.068 1.25 35.06
5 6 18 2 0/90 0.15 1.1127 53.68 12.124 1.29 36.383
6 13 7 2 0/90 0.15 1.1267 14.53 12.301 1.29 36.035
7 4 12 3 0/90 0.2 1.0369 0.5 12.164 1.37 35.293
8 11 17 3 0/90 0.2 1.0086 22.08 12.276 1.42 35.019
9 16 13 3 0/90 0.2 0.9629 0.66 12.608 1.51 35.478
10 1 4 4 ±45 0.1 1.2526 217.07 11.813 1.14 36.708
11 8 9 4 ±45 0.1 1.1314 127.95 11.856 1.25 37.501
12 14 14 4 ±45 0.1 1.1667 177.59 12.206 1.25 37.727
13 5 5 5 ±45 0.15 1.252 109.16 12.91 1.23 37.795
14 7 2 5 ±45 0.15 1.2675 86.42 12.138 1.16 37.778
15 9 11 5 ±45 0.15 1.1925 109.09 12.271 1.23 36.333
16 2 10 6 ±45 0.2 1.1918 115.63 11.722 1.19 34.652
17 15 3 6 ±45 0.2 1.0513 14.25 10.725 1.22 34.126
18 18 6 6 ±45 0.2 1.1653 61.92 12.005 1.23 36.055
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Appendix C: Specimen Photographs 
 
 
 

 
Figure 25.  Treatment 1 Test Specimens after Testing 
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Figure 26.  Treatment 2 Test Specimens after Testing 
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Figure 27.  Treatment 3 Test Specimens after Testing
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Figure 28.  Treatment 4 Test Specimens after Testing 
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Figure 29.  Treatment 5 Test Specimens after Testing 
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Figure 30.  Treatment 6 Test Specimens after Testing 
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Appendix D:  Stress-Strain Curves 
 
 
 

 
Figure 31.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 1; Printing Order, 10; Test 

Order, 16; Gage Area, 0.0828 in2; Load Rate, 3.035 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 32.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 1; Printing Order, 12; Test 

Order, 15; Gage Area, 0.0831 in2; Load Rate, 3.048 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 33.  Stress-Strain Curve FFF PA6 Nylon, Treatment 1; Printing Order, 17; Test 

Order, 1; Gage Area, 0.0830 in2; Load Rate, 3.044 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45% 
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Figure 34.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 2; Printing Order, 3; Test 

Order, 8; Gage Area, 0.0838 in2; Load Rate, 3.074 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45% 
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Figure 35.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 2; Printing Order, 6; Test 

Order, 18; Gage Area, 0.0825 in2; Load Rate, 3.026 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%

0

5

10

15

20

25

30

35

40

45

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000

St
re

ss
 (M

Pa
) 

% Strain 

Stress vs. Strain

0.5% Secant Modulus

0.2% Offset



 

77 

 
Figure 36.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 2; Printing Order, 13; Test 

Order, 7; Gage Area, 0.0856 in2; Load Rate, 3.139 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 37.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 3; Printing Order, 4; Test 

Order, 12; Gage Area, 0.0818 in2; Load Rate, 2.999 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 38.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 3; Printing Order, 11; Test 

Order, 17; Gage Area, 0.0824 in2; Load Rate, 3.021 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 39.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 3; Printing Order, 16; Test 

Order, 13; Gage Area, 0.0822 in2; Load Rate, 3.015 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 40.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 4; Printing Order, 1; Test 

Order, 4; Gage Area, 0.0832 in2; Load Rate, 3.049 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 41.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 4; Printing Order, 8; Test 

Order, 9; Gage Area, 0.0822 in2; Load Rate, 3.015 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 42.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 4; Printing Order, 14; Test 

Order, 14; Gage Area, 0.0836 in2; Load Rate, 3.065 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 43.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 5; Printing Order, 5; Test 

Order, 5; Gage Area, 0.0832 in2; Load Rate, 3.050 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%

0

5

10

15

20

25

30

35

40

45

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000

St
re

ss
 (M

Pa
) 

% Strain 

Stress vs. Strain

0.5% Secant Modulus

0.2% Offset



 

85 

 
Figure 44.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 5; Printing Order, 7; Test 

Order, 2; Gage Area, 0.0845 in2; Load Rate, 3.098 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 45.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 5; Printing Order, 9; Test 

Order, 11; Gage Area, 0.0860 in2; Load Rate, 3.154 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 46.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 6; Printing Order, 2; Test 

Order, 10; Gage Area, 0.0838 in2; Load Rate, 3.073 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 47.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 6; Printing Order, 15; Test 

Order, 3; Gage Area, 0.0847 in2; Load Rate, 3.104 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Figure 48.  Stress-Strain Curve for FFF PA6 Nylon, Treatment 6; Printing Order, 18; Test 

Order, 6; Gage Area, 0.0796 in2; Load Rate, 2.918 lb-force/sec; Testing Room 
Temperature, 72.3 Degrees Fahrenheit; Testing Room Relative Humidity, 45%
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Appendix E:  One-Way ANOVA Table for Density by Layer Height 
 
 
 

Table 11.  One-Way ANOVA Table for Density by Layer Height 
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Appendix F:  One-Way ANOVA Tables for Mechanical Properties by Density 
 
 
 

Table 12.  One-Way ANOVA Table of Tensile Modulus by Density 
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Table 13.  One-Way ANOVA table of Yield Stress by Density 
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Table 14.  One-Way ANOVA Table of Percent Strain at Yield by Density 
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Table 15.  One-Way ANOVA Table of Ultimate Tensile Strength by Density 
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Table 16.  One-Way ANOVA Table of Percent Strain at Break by Density 
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Appendix G:  Scanning Electron Microscope Photographs 
 
 
 

 
Figure 49.  Fracture Surface of Continuous Carbon Fiber Nylon Composite Focusing on 

Edge of Specimen 
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Figure 50.  Fracture Surface of Continuous Carbon Fiber Nylon Composite Focusing on 

Side Edge of Specimen  
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Figure 51.  Close-Up View of Fracture Surface of Continuous Carbon Fiber Nylon 

Composite 
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Figure 52.  Fracture Surface of Continuous Carbon Fiber Nylon Composite Focusing on 

Carbon Fibers Between Nylon Layers 
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Figure 53.  Close-Up View of Individual Carbon Fibers Between Nylon Layers 
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Figure 54.  Dimensions of Individual Carbon Fibers from Scanning Electron Microscope
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