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Abstract

As the demand for increasingly complex and autonomous systems grows, designers

may consider computational and artificial intelligence methods for more advanced, re-

active control. While the performance gained by such increasingly intelligent systems

may be superior to traditional control techniques, the lack of transparency in the

systems and opportunity for emergent behavior limits their application in the field.

New verification and validation methods must be developed to ensure the output of

such controllers do not put the system or any people interacting with it in danger.

This challenge was highlighted by the former Air Force Chief Scientist in his 2010

Technology Horizons Report, stating “It is possible to develop systems having high

levels of autonomy, but it is the lack of suitable [verification and validation] (V&V)

methods that prevents all but relatively low levels of autonomy from being certified

for use.”

Exhaustive test of complex and autonomous systems is intractable and cost pro-

hibitive; however, design analysis techniques such as formal methods and design

methodologies such as Run Time Assurance (RTA) could provide supplementary cer-

tification evidence early in system design. Incorporating formal methods analysis

throughout the system design process provides a means to identify faults as they

are introduced to drastically reduce the overall system development cost. RTA is a

proposed methodology to allow unproven autonomous controllers to perform within a

predetermined envelope of acceptable behavior, allowing the burden of testing to be

spread across the entire system lifecycle. The performance of the system is monitored

by a decision module that includes a set of acceptable conditions and behaviors. If

the system operates outside of pre-determined conditions or any of the acceptable
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behavior ranges are violated, the decision module switches control from the unproven

autonomous controller to an appropriate recovery controller that may be fully proven

using conventional design time verification methods, coupled with formal methods or

other alternative verification techniques. Supplementing traditional verification tools

with enhanced alternative tools such as formal methods or online verification methods

as RTA will enable verification of more complex nonlinear problems that the United

States Air Force (USAF) is facing.

In this research, a nonlinear model was chosen because it stresses the formal

methods analysis tools to expose areas where they could be enhanced. A 6U Cube-

Sat Attitude Control Subsystem (ACS) is used as a challenge problem to evaluate

the application of non-traditional verification methodologies such as formal methods

and run time assurance architectures in conjunction with more traditional verification

techniques. Thirteen hypothetical requirements are presented and formally defined.

Strengths and weaknesses of the verification techniques are exposed in order to recom-

mend capability expansions for further development. In analyzing the application of

different formal methods tools, a new approach to verification was created to provide

evidence of requirement satisfaction that leverages the capabilities of formal methods

in conjunction with traditional verification techniques such as simulation cases, space

filling experimental design simulation, and mathematical feasibility analysis.
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∆ū Term used to Account for Differenced Between Torque
generated by Magnetic Torque Coils and the RWA . . . . . . . . . . . . . . . . 154

xx



L4×4 Evolution of the Wheel Speeds as a Function of the
Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxi



List of Abbreviations

Abbreviation Page

V&V Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RTA Run Time Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

USAF United States Air Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACS Attitude Control Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

AFRL Air Force Research Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

V&V Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

VVCAS Verification and Validation of Complex and
Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

RTA Run Time Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ASD/R&E Assistant Secretary of Defense/Research and
Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DoD Department of Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TEVV Test and Evaluation, Verification and Validation . . . . . . . . . . . . . . . . 3

FMA Formal Methods Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

PID proportional, integral, derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ACS Attitude Control Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

FA Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SIM Simulation Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SFEDS Space Filling Experimental Design Simulation . . . . . . . . . . . . . . . . . . 4

SpeAR Specification and Analysis of Requirements . . . . . . . . . . . . . . . . . . . . 5

AGREE Assume Guarantee Reasoning Environment . . . . . . . . . . . . . . . . . . . . 5

AADL Architecture Analysis & Design Language . . . . . . . . . . . . . . . . . . . . . 5

SLDV Simulink Design Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

xxii



FSM Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

SME Subject Matter Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

DAU Defense Acquisition University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

FA Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

LTL Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CTL Computational Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

TCTL Timed Computational Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SAT Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SMT Satisfiability Modulo Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ARSENAL Automatic Requirements Specification Extraction
from Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

SMEs Subject Matter Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

SMT Satisfiability Modulo Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

SLDV Simulink Design Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

MCO Mars Climate Orbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CerTA FCS Certification of Flight Critical Systems . . . . . . . . . . . . . . . . . . . . . . . 36

CPI Challenge Problem Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

RTVV Run Time Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . 36

CPD Challenge Problem Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

SBIR Small Business Innovative Research . . . . . . . . . . . . . . . . . . . . . . . . . 37

LH Latin Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

OLH Orthogonal Latin Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

NOLH Nearly Orthogonal Latin Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . 43

CSRA Center for Space Research and Assurance . . . . . . . . . . . . . . . . . . . . . 45

ADCS Attitude Determination and Control System . . . . . . . . . . . . . . . . . . 45

xxiii



EDU Engineering Development Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ADS Attitude Determination System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

RWA Reaction Wheel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

MTC Magnetic Torque Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

EPS Electrical Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CDH Command Data and Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

MOI Mass Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

FA Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

DAU Defense Acquisition University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IGRF International Geomagnetic Reference Field . . . . . . . . . . . . . . . . . . 151

xxiv



EVALUATION OF VERIFICATION APPROACHES APPLIED TO NONLINEAR

SYSTEM CONTROL

I. Introduction

1.1 Motivation

On September 16, 2014, Major General Thomas Masiello, commander of the Air

Force Research Laboratory (AFRL), announced autonomy as one of AFRL’s three

“Game Changing Technologies.”[67] The introduction of unmanned systems in mod-

ern warfare has significantly improved warfighter capabilities by providing greater

access and intelligence in hazardous environments. Autonomous control systems that

sense their environment, compensate for system failures, and respond in spite of un-

certainty by rapidly deciding and acting on their own are highly desired across many

disciplines and organizations. The definition of autonomy is heavily debated;[73] how-

ever, most agree that a spectrum exists between automation and increasingly higher

levels of autonomy and machine “self consciousness.”

Increasingly automatic and autonomous control systems promise better perfor-

mance in dynamic environments; however, traditional exhaustive verification and

validation (V&V) techniques are insufficient and cost prohibitive to evaluate the soft-

ware underlying these complex systems with extremely large or infinite state spaces.

The cost to develop and test new complex systems for the Air Force is on an expo-

nential curve that inspired Norman Augustine, former Chairman of Lockheed Martin

Corporation, to famously predict that “in the year 2054, the entire defense budget will

purchase just one aircraft.”[15] New approaches to V&V must be developed to deal
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with new highly complex systems. The former Air Force Chief Scientist highlighted

the need for alternative verification and validation methods in his 2010 Technology

Horizons Report, stating “It is possible to develop systems having high levels of au-

tonomy, but it is the lack of suitable V&V methods that prevents all but relatively

low levels of autonomy from being certified for use.”[39]

While certification of autonomous systems encompasses both hardware and soft-

ware V&V, the software that defines the autonomous decision making capability

arguably presents the largest challenge. Software certification is challenging even

without the incorporation of autonomy. The Systems Engineering “V” with descrip-

tions of when software faults are introduced, found, and the relative cost to fix the

fault is shown in Figure 1.

Figure 1. Introduction, Identification, and Cost to Correct Software Faults [47][10][32]

Feiler [47] estimates that 70% of software cost is rework and certification.[47]

In addition, 70% of software faults are introduced early in the development cycle,

but only 3.5% of those faults are found early; over 80% of faults are found after

unit test when the estimated nominal cost for fault removal is 20-1000 times higher
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than at early design stages.[10] Investing in V&V earlier in the design enables earlier

error detection when the costs associated with a design change are much lower than

later in the design process. In a 2014 report [32], the Verification and Validation of

Complex and Autonomous Systems (VVCAS) Team, which the author of this thesis is

a member of, at AFRL’s Aerospace Systems Directorate described the need to expand

the current V&V paradigm and the benefits that may be realized from expansion.

In traditional systems engineering practices, V&V is conducted after the sys-

tem design is complete via modeling, simulation, and test. As software complexity

increases, depending on traditional V&V practices alone becomes intractable and

infeasible. A combination of run time assurance (RTA) design principles, correct-by-

construction code synthesis, and formal methods-based analytical proofs could sup-

plement and reduce reliance on traditional simulation and flight test evidence. The

VVCAS team envisions a systems engineering practice that supplements traditional

modeling, simulation, test, and evaluation techniques with analytical V&V evidence

generated throughout the system engineering process and run time monitoring and

bounding of system performance. Following publication of the 2014 report [32], this

vision was also adopted by the Assistant Secretary of Defense/Research and Engi-

neering (ASD/R&E) endorsing the Department of Defense (DoD) Autonomy Test

and Evaluation, Verification and Validation (TEVV) Investment Strategy.[11]

1.2 Problem Statement

The objective of this research is to evaluate formal methods analysis (FMA) ap-

proaches and RTA in the context of solving the exhaustive testing problem. RTA

architectures and FMA are not widely used and are still areas of active research. Ap-

plying a compositional RTA architecture backed by FMA during the requirements,

architecture, and modeling design phases could provide reusable verification evidence
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that a controller implementation meets a set of requirements. A formally verified

RTA architecture provides a foundation for the insertion of a nondeterministic or

intelligent controller that employs artificial intelligence and learning. The online veri-

fication provided by an RTA controller at runtime is predicated on offline verification

of its verified backup controller and decision module subcomponents. The backup

controller subcomponent is verified to provide a safe alternative control solution if

an intelligent controller fails, while the decision module subcomponent is verified to

switch to the backup controller if the unverified intelligent controller approaches a

boundary that would violate one of the system’s safety properties. To generate a ver-

ified backup controller, formal methods analysis techniques are applied to a non-linear

proportional, integral, derivative (PID) control system to supplement traditional sim-

ulation techniques. This research will provide insight into the capabilities and gaps of

RTA architectures and formal methods V&V techniques when applied to the control

design of a nonlinear system. A 6U CubeSat Attitude Control Subsystem (ACS) is

selected as the nonlinear control challenge problem.

1.3 Research Focus

The primary objective of this research is evaluate the combination of traditional

simulation analysis with non-traditional verification techniques to generate verifica-

tion evidence that a nonlinear controller will meet performance requirements and

never exceed safety constraints. The combination of traditional verification methods,

including feasibility analysis (FA) to see if a requirement is possible, a simulation case

(SIM) and space filling experimental design simulation (SFEDS), and non-traditional

verification methods, including RTA and FMA, conducted in this research has not

previously been applied to a nonlinear control system design to the best of the author’s

knowledge. The strengths and limitations of each of these analysis techniques will
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be evaluated and recommendations will be made based on the results for appropriate

use of each technique in control systems analysis. In addition, recommendations will

be made for generating appropriate requirements to enable the use of the variety of

techniques explored in this research.

1.4 Methodology

A combination of RTA, FMA, SIM, and SFEDS are applied to a nonlinear control

system in the following steps:

1. The requirements and derived requirements resulting from design decisions

(such as the type of actuator) are generated for the control system, and spe-

cific safety requirements are identified. These requirements are formalized by

assigning precise mathematical and logical definitions.

2. FMA is performed during requirements, architecture, and modeling phases of

the nonlinear PID controller design to prove that the PID controller implemen-

tation will not violate safety requirements. The Specification and Analysis of

Requirements (SpeAR) framework is used to apply model checking and lim-

ited theorem proving analysies to the controller requirements to show that the

derived requirements of the system implementation satisfy the safety require-

ments of the system. The Assume Guarantee Reasoning Environment (AGREE)

annex is used to complete assume-guarantee contract analysis on the architec-

ture of the controller written in the Architecture Analysis & Design Language

(AADL) to show that the architecture implementation satisfies safety require-

ments. Simulink Design Verifier (SLDV) is used to apply FMA to the Simulink

model of the controller to prove that the modeled implementation of the con-

troller satisfies the safety requirements.
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3. SIM is applied to the nonlinear PID control system to show satisfaction of the

performance requirements.

4. SIM is expanded through the selection of 257 test points and application of

SFEDS to analyze under what conditions the performance requirements are

held by the nonlinear PID control system over a set of initial and final system

states.

5. The PID controller is inserted as the verified controller in a RTA controller im-

plementation. The RTA controller monitors the output of a “black box,” “gray

box,” or “white box” unverified controller with a decision module component

that switches to the formally verified PID controller output if any performance

boundaries are expected to be violated within the next timestep. FMA is ap-

plied to the verified controller and decision module outputs of the RTA con-

troller in requirements, architecture, and model phases using SpeAR, AGREE,

and SLDV to prove safety requirements are not violated. FMA is then applied

to the composition of the RTA controller as a system with three subcomponents

in the requirements and architecture with SpeAR and AGREE to show that the

combination of the three subcomponents will never violate the controller safety

requirements.

These steps are visualized in Figure 2, where the requirements, implementation,

and verification portions of the research are organized in vertical column-like orien-

tations identified by three brackets at the top of the figure. The different verification

portions of the research are further identified as “traditional” versus “non-traditional”

using brackets on the right side of Figure 2. The numbers in circles indicate portions

of the diagram identified earlier in this section. For instance, step 5 includes the

development of the decision module, composition of the RTA, and FMA of the RTA
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Figure 2. Development and Analysis Flow Diagram
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and its three subcomponents. The two boxes with dotted outlines are left for future

work, although a placeholder for an intelligent unverified controller is included in all

the models in step 5.

A summary of the models developed as a part of this research and the types of

analysis conducted on them is shown in Figure 3.

Figure 3. Thesis Research Models and Analysis Techniques

As seen in Figure 3, three models are used in the analysis: a model of the actuator

and plant properties only, an RTA controller with an abstract unverified controller

component, and an RTA controller with a velocity ramp substituted for the unverified

controller. Also seen in Figure 3, five types of analysis techniques are conducted.

Arrows from the models to the analysis type are used to clarify what portions of the

model are analyzed with the technique, where arrows from the RTA controller model

boxes indicate that the RTA controller and all of its subcomponents are analyzed

using that technique. Traditional models and analyses are contained in solid boxes

while nontraditional models and analyses are contained in dotted line boxes.

A 6U CubeSat ACS is selected as the nonlinear controller challenge problem to

evaluate the non-traditional V&V tools and techniques applied in this research. The

complex control algorithms and equations of motion that describe the 6U CubeSat
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ACS challenge the limits of the non-traditional verification tools and provide a robust

example on which to evaluate the feasibility of the approach and identify gaps in tool

technique capabilities, as well as appropriateness of the tools for nonlinear control

system analysis.

1.5 Assumptions and Limitations

The RTA, FMA, SIM, and SFEDS tools and techniques applied to the analysis of

the nonlinear controller do not provide complete coverage of the design. A nonlinear

control design was selected because it is expected to be on the edge of the analysis

capabilities of the FMA and RTA tools and techniques used in this research. This

research is limited to a theoretical and simulated spacecraft attitude control system.

There are additional limitations in the physical modeling of the system that will be

described in Section 4.4.3.

1.6 Scope and Contribution

The scope of this research is verification of the early design stages of a theoretical

RTA controller design. The RTA controller’s verified controller and decision module

subcomponents and the composition of the RTA are analyzed with FMA to prove

that safety requirements of the system are never violated. In addition, a nonlinear

PID controller is developed and its performance is analyzed with SIM and SFEDS to

understand under what conditions performance requirements may be violated.

The contributions of this work are:

1. The first application and evaluation of SpeAR, AGREE, and SLDV to provide

traceable verification evidence for a nonlinear system control in the require-

ments, architecture and modeling design phases;
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2. An exploration of how to formally describe different classes of requirements

typically associated with control systems design;

3. Recommendations for the appropriate use of RTA, FMA, SIM, and SFEDS in

control system analysis;

4. Recommendations for requirements specification best practices to enable FMA,

SIM, and SFEDS;

5. Recommendations for improvements in FMA tools that would allow more anal-

ysis coverage of control system design space; and

6. Development of a systematic methodology to combine RTA, FMA, SIM, and

SFEDS in a modular design that enables reuse of verification evidence from

component requirements, architectures and models in the development of new

and modified systems.

1.7 Preview

Chapter I provided the motivation, problem statement, research focus, method-

ology, assumptions and limitations, and scope of the research. Chapter II provides

background information on cyber-physical systems theory that could be used to de-

scribe most modern control systems, requirements specification best practices, FMA

techniques and tools, examples of spacecraft failures that could have been prevented

had formal methods been applied, a description and history of RTA, and background

on SFEDS. Chapter III describes AFIT’s CubeSat Testbed and ACS components, as

well as mathematical descriptions of the underlying spacecraft attitude dynamics for

the challenge problem. Chapter IV introduces and explores how to formally describes

the requirements set used in the verification of the nonlinear control design, presents

the architecture and model of the PID and RTA controller designs, and describes the
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set up of the FMA, SIM, and SFEDS used to determine requirement satisfaction.

Chapter V presents the results from the FMA, SIM, and SFEDS. Chapter VI pro-

vides conclusions from the research, discusses possible extensions and future work,

discusses gaps in toolset capabilities, and makes recommendations for improvements

to the analysis toolsets.
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II. Specification and Verification Techniques

Chapter II provides background on specification and analysis techniques that are

used in this research. First, an introduction to cyber-physical systems theory is pre-

sented with concepts such as component composition that are used to design models

of the nonlinear control system and its environment, finite state machines that are

used as part of the FMA, determinism and nondetermism that are used to design

the SFEDS analysis, and requirements categories that are used to describe each of

the requirements introduced in the next chapter. In addition, characteristics of good

requirements are presented that are used to develop and describe the requirements

in the next chapter. Requirements verification is defined and several methods are

presented to show requirement satisfaction, including all of the methods that are im-

plemented in this research. The foundational principles behind formal methods such

as propositional logic, formal languages and FMA analysis capabilities and limita-

tions are described. The FMA analysis tools SpeAR, AGREE, and SLDV used in

this research are introduced. The importance of FMA as a non-traditional analysis

technique is described by providing examples of catastrophic spacecraft failures that

occurred because of design faults that can now be caught automatically with formal

methods. The history and application of RTA is described, which is used later in

this research to develop a control architecture that can facilitate an intelligent con-

troller within a construct that is proven to never violate safety properties. SFEDS

is described, which is applied to the design to verify many of the requirements that

cannot be proven using formal methods.
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2.1 Cyber-Physical Systems

The spacecraft attitude control design used as a challenge problem for verification

and validation techniques is an example of a cyber-physical system. The field of cyber-

physical systems research emerged in the early 2000s when processing capabilities,

wireless communication, and sensors had matured enough technologically and became

more affordable for widespread use. Rajeev Alur states that a cyber-physical system

“consists of a collection of computing devices communicating with one another and

interacting with the physical world via sensors and actuators in a feedback loop.”[14]

This description fits most modern control systems.

Cyber-physical systems have five key features: Reactive computation, concur-

rency, feedback control, real time computation, and safety critical applications.[14]

Reactive computation describes a cyber-physical system’s interaction with the out-

side world in terms of inputs and outputs. These systems compute an output based

on an input signal using a specific function. Concurrency describes the ability of

these systems to conduct multiple threads of computation in the form of compo-

nents or processes simultaneously, in contrast to sequential systems which execute

a sequence of instructions one at a time. Concurrent systems may be synchronous

where all computations progress in fixed frames coordinated by the system’s clock,

or asynchronous where computations may be executed at independent time intervals.

Feedback control refers to the discipline of control systems engineering. While tradi-

tional control theory focuses on designs for continuous-time systems, cyber-physical

systems consist of discrete software executing concurrent computations that interact-

ing with a continuously evolving physical environment. In this way, cyber-physical

systems can also be described as hybrid systems because they contain a mix of dis-

crete and continuous dynamics. Real time computation refers to the study of timing

delays, time-depended coordination protocols, and resource-allocation strategies to
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meet requirements and ensure predictability. Safety-critical applications are those

where performance and development cost may be prioritized lower than the safety of

the system. Cyber-physical systems theory is relevant to this research because the

nonlinear control system in this design features reactive computation, concurrency,

and feedback control, and could be considered a safety critical application in terms of

safety of the hardware components from damage. This research does not investigate

any real time computation concerns.

2.1.1 Synchronous Cyber-Physical Systems Models

Synchronous cyber-physical system models are comprised of discrete components

that conduct computations in a sequence of frames. In each frame, components read

their input(s), compute output(s) based on the input(s) and update the components

internal state(s). The synchrony hypothesis is the assumption that the system is

ready to processes new inputs when external inputs change and these external inputs

do not change during a computational frame, is based on an assumption that all

the computations and communications required to determine variable values occurs

instantaneously.[14] This assumption simplifies designs and allows designers better

predictability. Synchronous models are comprised of functional and reactive com-

ponents. Functional components compute an output when supplied by inputs and

reactive components interact with other components and maintain and internal state.

The system model used in this research is assumed to be a synchronous cyber-physical

system, and a unit delay between the environment and controller subsystems segments

model computation into discrete frames. In this research, the functional component

is the controller, which contains the control software, and the reactive component is

the environment, which contains the actuators and plant.
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Table 1. Variable and Expression Types[14]

Type Description
nat natural number
int integer

real real number
bool boolean value in set of 0,1

enumerated finite number of symbolic constants in a set x1,x2, ... ,xn

Table 2. Logical Operators[14]

Symbol Name Evaluation Description
¬ negation ¬e is 1 when e is 0 “not”
∧ conjunction e1 ∧ e2 is 1 when e1 and e2 are both 1 “and”
∨ disjunction e1 ∨ e2 is 1 when at least e1 or e2 are 1 “or”
→ implication e1 → e2 is 1 when e1 is 0 or e2 is 1 “implies”

2.1.2 Components

Alur describes components are in terms of variables, valuations, expressions, in-

puts, outputs, and states, which are all an integral part of this research. Variables and

expressions are assigned types, described in Table 1. A valuation is an assignment of a

value to a variable consistent with the variable type. Expressions e may be numerical

when assigned a type of nat, int, or real and are constructed with constants; primi-

tive operations, such as addition and multiplication; comparison operators, such as ≤;

and appropriately-typed variables. Expressions may also be Boolean and constructed

with logical operators in addition to the components of numerical expressions. These

logical operators are summarized in Table 2. All of the requirements analyzed in this

research are formalized as Boolean expressions. In general, a cyber-physical compo-

nent C = (I, O, S, Init, React) is comprised of sets of typed input variables I, typed

output variables O, typed state variables S, initial states Init, and a reaction descrip-

tion React, where QI is the set of all possible inputs to C (I ∈ QI), QO is the set of

all possible outputs from C (O ∈ QO), and QS is the set of all possible states of C
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(S ∈ QS). In finite-state components, each set of variables is finite. If a component

C only has input variables I and output variables O, but no state variables S, such

as an if-else statement that combines the inputs to define the output, it is considered

a combinational component. Some components may only conduct computations in a

frame when triggered by one of the inputs, rather than in every frame. These com-

ponents are called event-triggered and consist of a subset J of the input variables I

that act as triggers.[14]

In this research, the system is broken down into components C as described in

Section 4.3.1. Much of the analysis in this research is focused on analysis the typed

inputs I and outputs O, such as whether the outputs of the controller components will

violate safety constraints. The typed state variables S in this research correspond to

four states that describe the orientation of the spacecraft, three states that describe

the angular velocity of the spacecraft and four states that describe the angular velocity

of the four reaction wheel actuators, as described in Section 3.2.5. Where appropriate,

assumptions are used to constrain the set of all possible inputs QI and the set of

all possible states QS to ranges of physically possible to focus FMA and eliminate

spurious results. The FMA is used to determine whether the set of all possible

outputs QO contain values that violate safety constraints. While there are not event-

triggered components in this research, future extensions of this research may include

event-triggered components that are only used when faults occur or in other specific

conditions.

2.1.3 Importance of Initialization

Initial states and how components react to inputs and each state must be specified

in cyber-physical systems theory.[14] The initial value of a variable should be assigned

when the variable is declared. Some programming languages and styles allow multiple
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initial values to be specified using a choose function which randomly assigns a chosen

value from the argument set. These argument sets could include a set or a range

of values. Initialization is an important concept used in the FMA portion of this

research.

2.1.4 Composition of Components

Three main operations are used to compose components of cyber-physical systems

to create larger, more capable components: instantiation, parallel composition, and

output hiding.[14] In instantiation, multiple instances of the same component may

be used with different input and output variable names.[14] In this research, a single

model of a reaction wheel is created and multiple instances with unique input and

output names are used to create an array model.

Parallel composition combines two or more individual components or instances of

components into a single component that captures the synchronous interaction of each

individual component running concurrently.[14] In this research, parallel composition

is used in the abstraction of sensor components. The sensor and actuator components

can be composed in parallel because the output of the actuator is the same as the

input to the sensor. If the communication is synchronous, as it is in this research,

the actuator model reads its input, produces an output and updates its internal

state to record the current value in the same round that the sensor model reads its

input from the actuator, computes its output, and updates its internal state. Parallel

composition features the following properties: it is commutative, associative, and

finite or deterministic when comprised of finite or deterministic components, and the

number of states is a product of the number of states of each component.

Output hiding combines two or more individual components so that only one input

and output are shown to the outside world and the remaining inputs and outputs
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that are not showing are local variables.[14] Output hiding allows for the hierarchical

composition of components rather than a single monolithic design that places all

components at the same level. In this research, output hiding is used at the system

level to examine inputs and outputs of the RTA controller and the environment, while

hiding the inputs and outputs of the internal components of the RTA controller and

the environment.

2.1.5 State-Space Explosion Problem

One of the consequences of composing states is that the number of states grows

exponentially with the number of components. For instance, if you were to compose n

instances of a delay component C1 with n1 states in a chain that outputs the input of

the chain from n frames earlier it would have nn1 states. The exponential relationship

between states and the number of components is sometimes referred to as the state-

space explosion problem which has limited the scalability of analysis tools. In this

research, composition is used to mitigate state-space explosion by conducting analysis

at the component level, and using the results of that analysis to constrain analysis

for other components. For example, in this research, a rate-limited PID controller

is used as the verified controller component of an RTA controller and is analyzed

in isolation to ensure that it meets safety constraints placed on the output. The

proof results of the rate-limited PID controller analysis are used as assumptions on

the verified controller input to the RTA controllers decision to constrain the range

of values used in the FMA analysis. This assumption allows proof to be generated

that the decision module component output will not violate safety constraints and

prevents identification of a spurious counterexample showing that the decision module

violates the safety constraints based on an infeasible input from the rate-limited PID

controller.
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2.1.6 Finite State Machines

Model-based design often uses finite state machines (FSM) to describe the be-

havior of the system.[14] Each state variable is a mode of the state machine, and

are drawn as circles in state machine diagrams. Arrows are used to show transitions

between the modes, with a single sourceless arrow used to describe the initial mode.

Extended state machines use additional state variables to augment the modes of the

machine. Mode-switches are used to specify the reactions of the extended state ma-

chine and are depicted as an edge between two modes with a guard condition and

expression to update the variables. Finite and extended state machines are essen-

tial concepts in cyber-physical systems as well as the FMA techniques used in this

research.

2.1.7 Determinism and Nondeterminism

An algorithm is said to be deterministic if it produces a unique and repeatable

result given the same set of inputs. In cyber-physical systems, a component is de-

terministic if “for a given sequence of inputs, the component has a unique execution

producing a unique sequence of outputs. Such deterministic behavior is ensured if

the component has a single initial state, and in every state, for a given input, there

is exactly one possible reaction.”[14] In contrast, nondeterministic algorithms and

components may produce different output sequences given the same input sequence.

Nondeterministic models are useful for modeling an environment which cannot be

completely captured by the model. The notion of non-deterministic algorithms were

first introduced in computer science by Robert Floyd in a 1967 when he demonstrated

the use of a non-deterministic algorithm to solve the problem of placing 8 queens on

a chessboard so that no two were in the same row, same column or diagonal from one

another. Two things that set nondeterministic algorithms apart from deterministic
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algorithms are their use of some sort of chose function and their branching rather than

sequential computational strategy. In the algorithms presented by Floyd, the end of

each branch is labeled as a success or failure. Floyd differentiates non-deterministic

algorithms from probabilistic, random, and Monte Carlo algorithms, by describing

the non-deterministic algorithms as representations of systematic search procedures

that are governed by some final goal.[48] The controller and dynamics models used

in this research are deterministic.

2.2 Requirements Specification

Wiegers [99] states that quality requirements should be correct, feasible, necessary,

prioritized, unambiguous, verifiable, complete, consistent, modifiable and traceable.

In this research, formalizing and analyzing requirements helps to ensure that require-

ments are unambiguous, consistent, and verifiable, and a naming convention described

in Section 4.1.3 is used to ensure the requirements are traceable. Ensuring that the

requirements are correct, feasible, necessary, prioritized, complete, and modifiable is

done with the help of a subject matter expert (SME), and is not the focus of this

research.

2.2.1 Requirement Categories

Alur [14] categorizes requirements as safety or liveness. Safety requirements could

be thought of as stating “nothing bad ever happens” while liveness requirement could

be thought of as stating “something good eventually happens.”[14] Safety require-

ments classify states of the system as safe or unsafe and assert that unsafe states

should not be reachable. A safety requirement is often an invariant of the sys-

tem, which is defined as property of the system which is satisfied in every reachable

state.[14] Transition systems may be used to describe how a state variables update in
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each frame. Alur defines transitions systems T = (S, Init, T rans) as having a finite

set of typed state variables S within a set of all possible states QS (S ∈ QS), an

initial set of states Init, and a transition description Trans. Reachable states may

then be defined as all possible states that can be achieved given an initial state and

transition description.[14] A property ϕ is a Boolean-valued expression e over the

state variables of the transition system T . If no reachable state of T violates ϕ, then

ϕ is considered an invariant property. If at least one reachable state of T satisfies

ϕ then it is called a reachable property, or a liveness requirement.[14] Liveness and

invariant requirements are specified using temporal logic.[14]

In this research, the majority of the requirements listed in Section 4.1.1 fall into

the categories of liveness or invariants, with the exception of a few requirements

that deal with specific control systems characteristics such as settling time, percent

overshoot, and rise time. In addition, the system used in this research could be

considered a transition system T with 11 states S describing the position and angular

velocity of the spacecraft and the angular velocity of the reaction wheels, a range of

possible values for each state QS, an initial set for each state Init, and a transition

description Trans provided by the model of the controller and system dynamics.

2.2.2 Requirements Verification

The Defense Acquisition University (DAU) states verification “confirms that a

system element meets design-to or build-to specifications. Throughout the systems

life cycle, design solutions at all levels of the physical architecture are verified through

a cost-effective combination of analysis, examination, demonstration, and testing, all

of which can be aided by modeling and simulation.”[94] In other words, verification

confirms that a system implementation satisfied requirements. As discussed in this

definition of verification, there are many ways to show requirement satisfaction. In
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this research, the following verification methods are used to show requirement satis-

faction:

1. Feasibility Analysis (FA): Show that it is mathematically possible for the system

as designed to satisfy a particular requirement.

2. FMA: Use a formal methods analysis technique such as model checking to for-

mally prove that the requirement will never be violated.

3. SIM: Show that the requirements are met in a representative simulation case.

4. SFEDS: Determine whether the requirements are satisfied in multiple simula-

tions across a set of test points and identify regions where the requirement is

or is not satisfied.

2.3 Formal Methods

The NASA Langley Formal Method Group defines formal methods as “mathe-

matically rigorous techniques and tools for the specification, design and verification

of software and hardware systems.”[25] This field of study relies on the foundational

belief that mathematically rigorous statements (i.e., well-formed mathematical logic)

used to form specifications of a system can be verified through an exhaustive process

to determine the correctness of a system. FMA is used in this research to prove

that the controller cannot violate safety constraint requirements. In this section,

propositional logic, theories, and processes that provide the foundation for FMA are

described and the capabilities and limitations of formal methods tools are discussed.

2.3.1 Propositional Logic

Propositional logic forms the basis for formal methods analysis. A proposition

is a declarative statement that makes a claim which can be proven true or false.
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The proposition should be atomic or indecomposable. These atomic propositions, or

”atoms” typically represented symbolically as p, q, or r, can be composed to convey

a more complex concept. Natural deduction allows the inference of a conclusion from

propositions with a set of proof rules. Applying proof rules to formulas, represented

with ϕ and often referred to as ”premises” or ”propositions,” one may obtain more

formulas until a ”conclusion,” represented by ψ, can be proven.

2.3.2 Temporal Logic

Temporal logic is a methodology to represent and reason about systems in time by

discretizing time into time steps.[90] Linear temporal logic (LTL), models sequences

of events in a linear progression along a single path; “all” and “exists” operators have

no meaning in LTL.[16] Computational tree logic (CTL) models time in a branch-

ing tree-like structure, where the branches represent different decisions that may be

made; “there exists a path” and “along all paths” may be defined in CTL.[31] Timed

Computational Tree Logic (TCTL) is a CTL extension that includes continuous time

propositions, and is the “mathematical foundation of timed-automata finite state ma-

chines.” [31][16] Requirements specified in formal methods tools such as SpeAR or

AGREE are translated into temporal logic as a part of the analysis process.

2.3.3 Formal Methods Theories and Processes

A formally designed system can be checked by an algorithmic process (typically

with model checkers or theorem provers). Model checking was introduced Clarke and

Emerson [33] and Queille and Sifakis [75] in early 1980s as an automatic verifica-

tion technique for concurrent systems with finite states. Model checking is capable

of evaluating if a model satisfies a requirement expressed in temporal logic.[53] The

technique utilizes graph theory to build finite models to exhaustively examine and
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verify the correctness of decision mode logic and discrete state machines.[34] Model

checking tools utilize various techniques to be able to reason on these systems such as

binary decision diagrams (BDDs) [13], k-induction [42], and property directed reach-

ability [46]. Model checking produces either a proof or a counter example. A proof

is produced if no violation of a formal specification was discovered in the exploration

of the FSM. A counterexample is a trace through the FSM that illustrates how the

formalized specification could be violated. Model checkers describe the techniques to

examine the FSM, not how the individual case is determined to be upheld or is valid.

Feasibility at specific state machine locations is leveraged off of the use of satisfia-

bilty (SAT) solvers or Satisfiability Modulo Theory (SMT) solvers that add modulo

theory to SAT capabilities. These tools perform the specific node analysis to provide

the model checker results that can be utilized in many of the techniques mentioned

previously. Some examples of solvers include Yices1[44], Yices2, CVC4[19], Z3[41],

MathSAT[24], and SMTInterpol[28].

2.3.4 Formal Methods Analysis Capabilities and Limitations

Formal methods analysis techniques are capable of generating comprehensive proof

that some types of requirements will never be violated. While formal methods tech-

niques are best suited for high level mode logic, they can be adapted to prove prop-

erties of control systems such as a requirement that a calculation will never exceed a

particular value. These proof capabilities are severely limited for nonlinear systems;

however, formal methods are highly capable of analyzing non-functional requirements,

as will be discussed in this section.
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2.3.4.1 Nonlinear Systems Analysis

Linear functions are proportional to the input variables of the function, such as

f(x) = mx+ b where m and b are constants and x is the variable. In other words, if

a function only contains addition and multiplication by a constant value, it is linear;

however, if a function contains two variables multiplied together, creating a polyno-

mial with an order of two or higher, it is nonlinear. The controller and dynamics

equations used in this research are nonlinear, meaning that they are products of mul-

tiple variables. These nonlinear equations are not well suited for analysis in SpeAR,

AGREE, or Simulink Design Verifier because none of these tools currently support

nonlinear math; however, SpeAR and AGREE allow users to select which SMT solver

to use for the formal methods analysis, and Z3 is an option that provides some support

for nonlinear math, so it is possible to expand SpeAR and AGREE capabilities to

leverage more of Z3’s capabilities in the future. While many of the requirements can

be expressed in the tools, very limited analysis can be completed because nonlinear

control equations and equations of motion define whether or not the requirements are

met; however future versions of SpeAR, AGREE, and Simulink Design Verifier may

be able to analyze some low order nonlinear systems.

2.3.4.2 Non-Functional Requirement Analysis

While functional requirements describe the behavior of a system or subsystem,

non-functional requirements describe properties such as cost, power, and weight that

can often be described mathematically. Analysis was conducted on a sample atti-

tude control subsystem that contained a reaction wheel array, listed as RWA, and

a magnetic torque actuator, described as MT. In SpeAR, the high level subsystem

requirements are listed as “Properties,” while derived requirements that describe the

components selected to meet subsystem requirements are listed as “Requirements.”
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In this example, the cost, mass, and power of the RWA and MT are shown to meet

the total subsystem requirements. The analysis shows that all properties are proven

valid, as shown in Figure 4. The requirements and properties written in SpeAR are

shown in Figure 5.

Figure 4. Non-functional Requirement Analysis Results in SpeAR

Figure 5. Non-functional Requirements Analysis Example in SpeAR
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2.4 Formal Methods Tools

This section provides a description of the three formal methods tools used in

this research to analyze the requirements, architecture, and model of the nonlinear

controller. A description of how the tools can be used together in an incremental

design process is presented.

2.4.1 Requirements Analysis with SpeAR

There are currently two competing approaches to generating formal requirements:

parsing natural language requirements documents and manually constructing formal

requirements using patterns and templates. The first approach, language parsing,

is the subject of research programs such as Automatic Requirements Specification

Extraction from Natural Language (ARSENAL), which uses semantic parsing and

refinement techniques to generate a formal model in LTL.[50] The advantage of the

parsing approach is that it does not require SMEs to learn a formal specification

language, and existing requirements documents can be automatically parsed rather

than regenerated by hand in a specification language. The disadvantage of parsing is

that it requires that the natural language requirements document have all the con-

tent necessary to construct a formal model in LTL. The second approach, manual

construction of formal requirements specifications, is the subject of a the research

tool underdevelopment by Rockwell Collins and AFRL called SpeAR, which allows

subject matter experts (SMEs) to write system requirements in peer-reviewed spec-

ification templates [45] that facilitate formal analysis. Manually constructing formal

requirements using patterns and templates may require a SME to learn these patterns,

however, this method has two major advantages. First, expressing requirements in a

formalized notation gives them a precise, mathematical meaning, and requires SMEs

to unambiguously state what the true meaning of each requirement is so that the
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intent of the requirement is not lost. Second, using a tool such as SpeAR to write for-

malized requirements, allows translation of the requirements into multiple temporal

logic languages that can be input into a variety of model checking or theorem proving

engines.

By comparing system requirements to high level system properties in a model

checker, requirements and derived requirements added throughout the design of the

system can be analyzed for completeness and consistency. The properties and re-

quirements documented in SpeAR are translated into a Lustre [56] model and sent to

JKind,[49] a k-induction model checker.[42] JKind uses Satisfiability Modulo Theory

(SMT) solvers, such as Z3,[41] to inductively prove that a given model meets its for-

mal specification. In the instance of SpeAR, the model is defined by the formalized

system requirements and the specification defined by its properties. JKind will either

report that the systems properties are satisfied by the given requirements, or it will

provide a sequence of inputs, referred to as a counterexample, that demonstrates how

a property can be violated. This counterexample can be used by domain experts to

refine either the requirements or the properties until a proof is obtained.

All of the requirements in SpeAR are Boolean expressions that can be evaluated

as true or false. An example requirement written in SpeAR is shown in Figure 6.

//R01 The commanded change of angular velocity from the
control algorithm shall not exceed the maximum allowable
angular acceleration of the reaction wheel.
r 01a ctrl = global :: always psi dot comm 1 <= MAX PSI DOT RW
and psi dot comm 1 >= -MAX PSI DOT RW; //[rad p s 2]

Figure 6. SpeAR Example

The first requirement of the reaction wheel attitude control system is that the ac-

celeration command from the controller should not exceed the maximum allowable

acceleration of the reaction wheel. As will be discussed in Section 4.1.1, requirement
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R01 is a safety property set by the physical limitations of the motor, control system,

and power supply, and is designed to prevent damage to the reaction wheel assem-

bly. The requirement is broken out for each individual reaction wheel, and the first

wheel sub requirement is documented as r 01a ctrl, which is a naming convention

where r indicates that it is a requirement versus an assumption, 01 is the number

of the requirement, a is the first sub requirement, and ctrl denotes that it is a

controller subsystem requirement. The requirement is interpreted formally as: un-

der any conditions (globally) the commanded change of angular velocity (represented

here as psi dot comm 1) is always less than or equal to the maximum allowable

angular acceleration of the system (MAX PSI DOT RW) and greater than or equal to

the negative of the maximum allowable angular acceleration. Both the negative and

positive limits are included because they represent the maximum velocity in different

directions.

One of the strengths of SpeAR is the ability to express and analyze non-functional

requirements that describe non-functional properties. For instance, satellites usually

have strict requirements on maximum weight, cost, and power consumption. If the

satellite includes multiple subsystems with multiple components, designers can specify

requirements for each subsystem and its components and verify that the sum each of

the individual subsystems and their components do not violate the overall spacecraft

requirements, e.g. the total cost of the individual subsystems is less than the allowable

cost for the subsystem. While this capability may seem trivial, it is valuable on a

larger scale for complex systems that may have thousands of individual components

distributed among dozens of subsystems. The compositional nature of SpeAR allows

designers to pull component-level verification results up to complete subsystem-level

verification, and subsystem-level verification up to complete system-level verification.

Another valuable analysis feature of note in SpeAR is the ability to define units used
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throughout the system and analyze compliance. SpeAR is a new tool that is remains

under development. Outside of this research, SpeAR has only been used to analyze

requirements of an academic coupled tanks system example.[54]

2.4.2 Architecture Analysis with AGREE

The properties and requirements expressed in SpeAR are then used to develop

the system architecture in the Architecture Analysis & Design Language (AADL).

AADL was standardized by SAE in 2004 as an architecture modeling framework to

allow analysis of system designs prior to detailed development.[82] AADL allows for

the inclusion of annexes for additional functionality. The Assume Guarantee Rea-

soning Environment (AGREE) AADL annex[97] was developed by Rockwell Collins

and University of Minnesota as part of the DARPA High Assurance Cyber Military

Systems (HACMS) program to use assume-guarantee contracts to evaluate the behav-

ior of the subsystem components with the greater system. Properties in SpeAR are

documented as guarantees of the system in AGREE, and requirements developed in

SpeAR are used to build the system behavior. Like SpeAR, AGREE utilizes JKIND

and Z3 to conduct model checking and theorem proving to assure that the guarantees

hold. Again, like SpeAR, Z3 outputs proofs or counterexamples that your architec-

ture fulfills the guarantees with the given assumptions. Just as they are in SpeAR,

all of the assumptions and guarantees in AGREE are Boolean expressions that can

be evaluated as true or false. The example requirement in Figure 6 is expressed in

AGREE as shown in Figure 7. In the AGREE annex, the statement in quotation

marks is what is output as proven or falsified in the analysis, but is not actually

analyzed. It is proven if the statement listed below the quoted section is proven to be

true by the model checker. If the guarantee is falsified, a counterexample is produced

showing how the system architecture violated the guarantee.
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-- R01 The commanded change of angular velocity from the
control algorithm shall not exceed the maximum allowable
angular acceleration of the reaction wheel.
guarantee "r 01a ctrl: RW1 commanded angular acceleration
shall not exceed maximum allowable angular acceleration" :
(psi dot comm 1 <= MAX PSI DOT RW) and (psi dot comm 1 >=
-MAX PSI DOT RW);

Figure 7. AGREE Example

2.4.3 Component Verification with SLDV

Simulink Design Verifier (SLDV) uses formal methods to detect design errors and

requirement violations in a Simulink model. SLDV can also detect integer overflow,

dead logic, array access violations, division by zero with static analysis.[91] The pri-

mary function of interest for this research is SLDV’s ability to detect requirement

violations in the model with formal methods. The assumptions and guarantees devel-

oped during the architecture phase are used to manually write the SLDV verification

functions. The model is analyzed using SLDV to prove that the requirements (doc-

umented as guarantees in AGREE, and as properties and requirements in SpeAR)

hold true throughout the modeling phase. First, the assumptions and requirements

must be stated formally. This step was completed in the requirements design phase

of this research. Just as it was in the requirements and architecture phase, all the

requirements in SLDV are Boolean expressions that can be evaluated as true or false.

The same requirement example from Figure 6 and Figure 7 is carried through into

Figure 8, which shows the requirement specified as a property in SLDV.

%R01 The commanded change of angular velocity from the
control algorithm shall not exceed the maximum allowable
angular acceleration of the reaction wheel.
r 01a ctrl = (psi dot comm 1 <= MAX PSI DOT RW) &&
(psi dot comm 1 >= -MAX PSI DOT RW);

Figure 8. Simulink Design Verifier Example
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2.5 Historic Spacecraft Software Failure Cases Addressable by Formal

Methods

This section describes historical examples of spacecraft failures attributed to dif-

ferent types of software errors that are identifiable by formal methods analysis.[68]

Errors such as divide by zero, overflow, mixed precision, out-of-bounds array access,

unreachable code, requirement conflictions, and unit inconsistency can be caught us-

ing a variety of formal methods tools and techniques.[55]

Figure 9. Mission Specialists Grapple Intelsat During STS-49 [7]

One historical example of a mixed precision spacecraft software failure occurred

on STS-49. During this Space Shuttle mission to rendezvous with and repair the In-

telsat satellite, pictured in Figure 9, the Lambert Targeting Routine used to calculate

rendezvous firings contained a mixed precision error that prevented the routine from

converging and nearly caused the mission to be aborted.[8] While the state vector

variables were double precision, the limits used to bound the calculation were single

precision. The mission was recovered by a workaround that allowed state vector infor-

mation to be relayed from the ground. McAllister stated at the 2014 NASA Formal
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Methods Symposium that later analysis showed formal methods would have found

this error prior to flight.[68]

Figure 10. Ariane 5 Launch [2]

Figure 11. Ariane 5 Explosion [1]

Ariane 5 also had a catastrophic failure that could have been prevented with

the use of formal methods design analysis. The Ariane 5 is a European heavy lift

launch vehicle, pictured in Figure 10, that reused portions of Ariane 4 code on its

first flight, Ariane 501. The software contained a bad 64 to 16 bit conversion which

caused the vehicle trajectory to veer off course and prompted self-destruction of the
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system, pictured in Figure 11.[43] Lacan et al presented research at the 1998 Data

Systems in Aerospace Conference showing how static formal-methods based analysis

tools were successfully applied to formally verify portions of code for Ariane 502 and

the following Ariane flights [63].

Figure 12. An Artist’s Concept Portrays a NASA Mars Exploration Rover on the
Surface of Mars [3]

In 2004, the Mars Exploration Rover, Spirit, pictured in Figure 12, was unexpect-

edly shut down for 10 days after a parameter in the software permitted unlimited

consumption of system memory as flash memory was exhausted. Denny cites this

error as one that could have been caught had formal methods been applied. [43]

Perhaps one of the most famous spacecraft software failures occurred on the Mars

Climate Orbiter (MCO) program, pictured in Figure 13, in which a conflict between

English and metric units in the software resulted in loss of the system. According to

the Mishap Investigation Board Phase I Report [9]:

“The [Mars Climate Orbiter Mishap Investigation Board] has determined
that the root cause for the loss of the MCO spacecraft was the failure to use
metric units in the coding of a ground software file,“Small Forces,” used
in trajectory models. Specifically, thruster performance data in English
units instead of metric units was used in the software application code.”

The requirements for the system specified that the data should be provided in metric
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Figure 13. Artists Rendering of the Mars Climate Orbiter [4]

units. Many modern formal methods tools, such as the Specification and Analysis of

Requirements (SpeAR) tool, provide unit checking capabilities to aid in identification

of errors such as this.

The Mars Polar Lander mission provides an example of conflicting requirements.

One requirement specified that alternative communication methods should be tested

if no commands were received after 24 hours, while another requirement instructed

the system to go into a “sleep mode after 24 hours to conserve battery, making

the alternate communication requirement unreachable. [61] Formal methods tools

can implement model checking to check for inconsistent requirements by evaluating

realizability of a model given the constraining requirements.

The examples listed in this section are just a few of the many examples of software

failure in spacecraft. Application of formal methods could have been used to identify

many of the historical software errors that have appeared in recent decades.[52]
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2.6 Run Time Assurance

RTA is a verification methodology that provides online verification of an “un-

verified controller” design predicated on offline verification of “verified controller”

and “decision module” components, as well as a proposed control architecture, as

described in Section 2.6.2. RTA allows unverified controllers, such as an intelligent

controller, to perform within a predetermined envelope of acceptable behavior. In-

spired by software sandboxing techniques and the simplex architecture, the initial

RTA concept was developed through a series of AFRL Certification of Flight Critical

Systems (CerTA FCS) programs. The objective of the first CerTA FCS program

with prime contractor Northrop Grumman was to identify certification challenges

for unmanned systems. The program concluded with a determination that some

of the certification challenges would require run time verification methods, among

other recommendations.[77] Building on the foundation of the CerTA FCS program,

the CerTA FCS Challenge Problem Integration (CPI) with the Boeing Corporation

as contractor focused on the verification challenge associated with adaptive control

strategies. While the program successfully demonstrated time-delay stability for a

specific L1 adaptive control approach, the technique could not be generalized, and

did not ensure prevention of control surface rate limit failures or aircraft structural

mode excitation caused by the actuators.[74][31] The CerTA FCS CPI effort with

Lockheed Martin, Barron Associates, and Rockwell Collins as contractors developed

an idea they called Run Time Verification and Validation (RTVV) as a cost saving so-

lution to implement advanced systems that are not certifiable by current methods due

to learning, nondeterminism, high criticality, or high complexity.[83] In the follow on

CerTA FCS Challenge Problem Demonstration (CPD) program, Barron Associates

introduced the conceptual ”Run Time Assurance” framework used in this research in

2011. The program developed a simulated RTA autoland system with a predefined
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safety boundary, violation predication, and switching to a reversionary controller

(called the “verified controller” in this research, and referred to as the “safety con-

troller” in the Simplex Architecture). Barron Associates has continued the research

on RTA through a series of Small Business Innovative Research (SBIR) grants man-

aged by AFRL. A thorough survey of RTA methodologies was completed by in April

2013 to provide an understanding of the state of the art in RTA development across

a range of contributing technologies.[30]

In contrast to offline verification, RTA provides online constraining of system

performance. RTA controllers feature three distinct characteristics: [30][11]

1. A run time or real-time monitoring and prediction scheme designed to detect

failures not previously identified (software failure) or anticipated (bad environ-

mental design assumptions) before they are about to occur;

2. A failsafe recovery or steering mechanism guaranteed to recover the system in

the event the monitor detects an eminent failure;

3. A structured argument (or assurance case), supported by evidence, justifying

that a system is acceptably safe not only through offline tests, but also through

reliance on real-time monitoring, prediction, and failsafe recovery.[30][11]

The performance of the unverified control system is monitored by a decision mod-

ule that includes a set of acceptable conditions and behaviors. If the system is forced

to operate outside of pre-determined conditions due to an unexpected environmental

change or any of the acceptable behavior ranges are violated, the decision module

switches control from the unverified controller to an appropriate verified backup con-

troller, which could be thought of as the controller’s “Plan B.” The system may have

one or more verified backup controllers capable of tasks such as gracefully transi-

tioning control from the unverified controller function to another verified controller
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function, maintaining a safe system state (i.e. avoiding an obstacle, or performing a

holding pattern), or performing the same tasks expected of advanced controller with

less efficiency. The designed system of verified backup controllers and decision mod-

ules can be analyzed using formal methods to ensure that none of the pre-determined

safety conditions are violated.

2.6.1 Sandboxing and the Simplex Architecture

RTA control architectures are based on concepts from software sandboxing and the

Simplex Architecture. Sandboxing is a technique of isolating sections of code to limit

the sections ability to cause critical system errors and is often used in software and

web-based security testing to isolate untested and untrusted code from active critical

resources.[76] Sandboxing is similar to RTA which isolates the unverified controller

from the rest of the control system. The Simplex Architecture [81] provides protection

to the plant by isolating the complex controller with the addition of a decision module

and safety controller, as depicted in Figure 14. Whenever the complex controller

threatens the safety of the plant, the decision module activates, switching control to

a proven safety controller. The “complex controller” in the Simplex Architecture is

analogous to the RTA “unverified controller” and the “safety controller” corresponds

to the “verified controller.”

Figure 14. The Simplex Architecture

The Simplex Architecture has been successfully applied to systems such as a fleet

of remote-controlled cars [38], a pacemaker [17], a set of advanced aircraft maneuvers
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[80], and an autonomous waypoint tracking system [18]. While sandboxing techniques

and Simplex Architectures are sometimes used only in testing environments, the RTA

architecture is envisioned to be deployed with the operational system to ensure safe

behavior of the system in its environment.

2.6.2 RTA Control Architecture

In the proposed RTA architecture pictured in Figure 15, the system state is sent

to each of the subcomponents: the unverified controller, the verified controller, and

the decision module. The verified and unverified controller each provide actuator

commands to the decision module. The decision module monitors the unverified

controller, and if a safety property is violated, control is switched to the verified

controller. The verified controller has been shown to meet safety properties through

some offline verification method such as formal methods analysis, simulation, and

flight test. The RTA control architecture is not limited to one verified safety or

recovery controller. An RTA controller implementation might be devised such that

it has multiple recovery controllers and switches to the appropriate one based on the

state of the system.

Figure 15. The Run Time Assurance Architecture
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2.6.3 Auto GCAS as an Example RTA with Complex Switching Logic

The decision module is not limited to switching only when a specific safety prop-

erty is violated either; the decision to switch could be made on a much more complex

set of criteria. For example, the F-16 Automatic Ground Collision Avoidance System

(Auto GCAS), developed by AFRL and Lockheed Martin,[89] could be considered

an RTA control system if one examines its core functionality. Auto GCAS depends

on the pilot to be the primary controller of the aircraft. In the RTA control archi-

tecture analogy, the pilot could be thought of as the “unverified controller” because

he or she is subject to situations such as gravity-induced loss of consciousness, target

fixation, task saturation, or loss of situational awareness that may compromise his

or her ability to control the aircraft. Continuing with the RTA control architecture

analogy, the prescripted automatic recovery maneuver Auto GCAS uses to avoid ter-

rain would be considered the “verified controller.” This automatic maneuver rolls the

aircraft to wings level and pulls up to 5 g’s (5 times the force of gravity) to avoid

colliding with the terrain. The Auto GCAS algorithm serves as the “decision module”

in the RTA control architecture analogy with the responsibility to monitor the path

of the aircraft, switch control to an automatic recovery controller when a collision

is imminent, and switch control back to the pilot when the aircraft has cleared the

terrain. The Auto GCAS “decision module,” uses a complex algorithm that compares

a projection of the automatic recovery maneuver to a two dimensional projection of

the terrain with buffers ahead of the aircraft to determine if a ground collision is

imminent. When the projection of the recovery maneuver intersects the projection of

the terrain with safety buffers as show in Figure 16, the Auto GCAS “decision mod-

ule” switches control from the pilot (unverified controller) to the automatic recovery

maneuver (verified controller). Once the terrain is cleared, the Auto GCAS “decision

module” switches control from the automatic recovery maneuver back to the pilot.

40



Figure 16. The Auto GCAS Automatic Maneuver and Terrain Projection Comparison

This example simplifies the Auto GCAS functionality, but illustrates an alternative

implementation of an RTA control architecture than the case study presented in this

thesis.

2.7 Space Filling Experimental Design Simulations (SFEDS)

Conducting batch simulations that cover a wide swath of the design space ex-

pands the analysis of a single simulation case to enable more comprehensive analysis.

However, conducting simulations of every possible input may be extremely compu-

tationally expensive and infeasible. While the simulated equations of motion and

controller used in this research are deterministic (given the same set of inputs, they

will produce the same result every time), the possible initial and final spacecraft orien-

tations that the system could encounter are non-deterministic, situational-dependent

values. The initial orientation could be the result of a previous command, random

perturbations on the satellite, or a number of other variables. The final orientation

could be a vector corresponding to aspects of the mission, such as an orientation

that places a sensor in a specific direction or the solar panels in a position to absorb

maximum sunlight, that are subject to change and reprioritization. In addition, the

nonlinear nature of the system makes it difficult to predict which initial and final

pointing angles of the satellite could lead to violations of the requirements. Using

SFEDS allows for a section of the design space to be explored in a manageable set of
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100s to 10,000s of simulations.

SFEDS is similar to Monte Carlo simulation. According to the Palisade Corpora-

tion, “Monte Carlo simulation performs risk analysis by building models of possible

results by substituting a range of values for any factor that has inherent uncertainty”

and using latin hypercube (LH) sampling rather than a random sampling can pro-

duce a more accurate set of results from the entire range of possible values.[36] The

uncertain factors in the SFEDS conducted in this research are the initial and final

orientation of the spacecraft, and the risk of interest is that the requirements of the

control system are violated. Wolfram Research Inc. defines Monte Carlo methods

as “any method which solves a problem by generating suitable random numbers and

observing that fraction of the number obeying some property or properties.”[95] In

this research, the suitable “random” numbers generated correspond to descriptions of

the initial and final orientation of the satellite and the properties of interest are the

requirements of the controller. In this context SFEDS may be used to evaluate what

fraction of possible initial and final pointing angle conditions result in a violation of

the requirements during a maneuver with a nonlinear PID controller. What separates

the SFEDS in this research from Monte Carlo simulation is that the system studied

in this research is deterministic and system variables are not being modified during

the simulation. SFEDS are better suited for identifying unknown response surfaces

where complex forms and localized effects are possible.[70]

An SFEDS may be conducted to determine if there is a relationship between

the explanatory variables, also known as independent variables, and the response

variables, also known as dependent variables. The number of explanatory variables in

the simulation is referred to as the number of factors and the relationship between the

explanatory and response variables is referred to as a response surface.[20] There are a

variety of methods used to generate a matrix of explanatory variables for an SFEDS;
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however, LH designs, first proposed in 1979,[69] have become the predominant design

choice for computer simulation experiments.[26] When all of the input variables of an

LH have zero correlation, it is referred to as an orthogonal LH (OLH).[59] Hernandez

defines a nearly OLH (NOLH) as an LH in which no two variables have a correlation

of more than 0.05.[58] One of the advantages of the NOLH experiment designs is

that they enable identification of non-linear relationships between the explanatory, or

independent variables, and response, or dependent variables.[23] For this research the

space-filling design of NOLH was selected to provide an exploration of the response

surface.

The response surface generated by the SFEDS may be characterized by a variety of

methods, including graphically or statistically using software such as JMP Statistical

Discovery Software from SAS. JMP can be used to generate a statistical model of

the response curve with a coefficient of determination R2 value that indicates how

well the statistical data fits the model generated. An R2 value of 1 indicates that the

model fits the data perfectly while an R2 value of 0 indicates that data doesnt fit the

model at all.

2.8 Summary

Chapter II began by providing background on cyber-physical systems theory as

it relates to modern control theory, before describing characteristics of good require-

ments, requirement types, and requirement verification. The foundational theories

and techniques behind FMA were presented and the tools used to conduct FMA of

the requirements, architecture, and model of the nonlinear control system were de-

scribed. Additional analysis techniques including SFEDS were introduced. The topics

of Chapter II provide context and background information on the analysis techniques

used in this research.
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III. CubeSats and Spacecraft Attitude Dynamics and
Control

Chapter III provies background in CubeSats, reference frames, and spacecraft

attitude dynamics and control.

3.1 6U CubeSat Application

The AFIT 6U CubeSat ACS is used as a challenge problem for non-traditional

verification techniques including formal methods, run time assurance, and reachability

analysis. This section provides background on CubeSats, the AFIT 6U CubeSat,

reaction wheel dynamics, magnetic torque coil actuation, the equations of motion for

the system, and a set of hypothetical requirements for a spacecraft attitude control

subsystem.

3.1.1 CubeSats

CubeSats are small satellites built in units, or “U,” which are nominally 10 x 10

x 10 cm3, or 1 liter, in volume and have a mass of 1.3 kilograms (3 pounds) or less.

CubeSats initially began as a set of amateur radio experiments in the 1970s - 1980s,

matured as university experiments in the 1990s - 2000s, and began being utilized

for technology experiments and to carry out real missions in the 2010s.[78] More

recently, CubeSats have been considered for increasingly complex missions including

interplanetary and lunar missions such as NASA’s Lunar Flashlight mission, which

seeks to determine presence or absence of exposed water ice on our Moon’s south

pole.[35] Complex missions can have precise pointing requirements, depending on

the requirements of the satellite payload. While attitude control actuators exist for

small 1-3U CubeSat designs, larger actuators and accompanying control algorithms

are needed to provide greater control authority over larger 6-27U CubeSat designs.
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3.1.2 CubeSats for DoD Missions

CubeSats are generally much less expensive to design, test, transport and launch

than larger traditional satellites and therefore present a potential time and cost effec-

tive approach to meet DoD project needs.[96] However, the limited size and weight

of smaller CubeSats provide relatively little space for mission-specific payloads and

the advanced subsystems required to support them. To meet the increasing needs

associated with anticipated DoD missions, AFIT’s Center for Space Research and

Assurance (CSRA) is currently developing 6, 12, and 27U CubeSats which promise a

larger payload to bus ratio than the traditional 1U and 3U versions.[87]

3.1.3 AFIT 6U CubeSat Testbed

AFIT’s 6U CubeSat Attitude Determination and Control System (ADCS) Testbed

is part of a engineering development unit (EDU) for classroom use only that is in-

crementally built by students in a master’s level course called ASYS 632 Satellite

Design and Test.[12] The approximate mass of the CubeSat bus and chassis with-

out cross braces has a mass of approximately 4 kg, and a volume of approximately

2000 cm3, leaving approximately 8 kg of mass and 5000 cm3 of volume for additional

subsystems and payload. The complete Attitude Determination System (ADS) of

the EDU may contain up to six sun sensors, one or two Earth sensors, one or two

star sensors, two magnetometers, and an IMU. The complete ACS may contain a

reaction wheel array (RWA) and three magnetic torque coils (MTC). The complete

ACS software is envisioned to have multiple control modes including a sun-soak mode

that orients the solar cells for maximum power generation, an alignment mode that

orients the spacecraft body vector with an inertial vector, and an alignment mode

that orients a spacecraft body vector with a nadir vector. The attitude control al-

gorithm is assumed to be a PID controller. The 2015 ADCS Testbed, as pictured in
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Figure 17, includes the following components and subsystems: ADCS board, motor

control board, RWA, electrical power system(EPS) board, battery pack, command

data and handling (CDH) board with WiFly capability, and a laser pointer.

Figure 17. AFIT 6U ADCS Testbed[92]

3.1.4 AFIT Four Wheel Reaction Wheel Array

The AFIT RWA implemented on the ADCS test bed includes four wheels in a

pyramid configuration that provides redundancy if a failure were to occur in one of

the wheels. The AFIT CubeSat four wheel RWA is shown in Figure 18.

Figure 18. AFIT’s CubeSat Four Wheel Pyramid Reaction Wheel Assembly[40]
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The RWA is not flight qualified because it cannot survive expected launch vehicle

vibration loads; however, its low friction and redundancy make it an excellent system

for the laboratory. A CAD Model of just the RWA and its frame without the elec-

tronics stack is shown in Figure 19. The numbering scheme and coordinate system

that describe orientation of the individual reaction wheels with respect to the RWA

assembly is shown in Figure 20.

Figure 19. CAD Model of AFIT Four Wheel RWA

Figure 20. Four Wheel Pyramid Reaction Wheel Array Coordinate System[92]

The angle between the reaction wheel angular momentum vector and the x-axis,

represented as α, for wheels 1, 2, 3, and 4 is 315, 45, 135, and 225 degrees, respectively.

The angle between the reaction wheel angular momentum vector and the z-axis,

represented as β, is 45 degrees.
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3.2 Spacecraft Attitude Dynamics and Control

The purpose of an ACS is to control the orientation of the spacecraft relative to

other objects. Examples include the need to point an onboard sensor or communica-

tion antenna at a specific place on the Earth, or to orient the spacecraft solar panels

orthogonal to the vector from the satellite to the sun for maximum power generation.

In this section, the kinematics and kinetics of spacecraft attitude are discussed, ex-

ample control actuators are described, a PID control algorithm is presented, and the

equations of motion for spacecraft attitude control are derived.

3.2.1 Kinematics

Kinematics provide a mathematical description of the relationship between space-

craft orientation and angular velocity. A variety of spacecraft orientation representa-

tions and a select set of spacecraft attitude kinematic equations are presented in this

section.

3.2.1.1 Rotation Matrices

A rotation matrix, also known as a Direction Cosine Matrix, is one way to convert

vectors from one coordinate frame to another. In spacecraft attitude dynamics, a

vector in the spacecraft body frame ~vb may be found from a vector in the spacecraft

inertial frame ~vi, as using a rotation matrix Rbi as

~vb = Rbi~vi. (1)

The entries of the rotation matrix are dot products of the vertices.[86] It can

be shown that the inverse of a rotation matrix is equivalent to the transpose of the

rotation matrix (R−1 = RT ).[86] Thus rotation matrices are orthonormal, meaning
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that each column has a magnitude of 1 (||̂i1|| = ||̂i2|| = ||̂i3|| = 1) and all the columns

are mutually independent (̂i1 · î2 = î1 · î3 = î2 · î3 = 0). The rotation matrix can be

written as a concatenation of 3×1 column matrices corresponding to one frame’s unit

vectors and another frame’s components.[84] The rotation matrix notation, equation,

matrix of components, and a concatenation of 3×1 column matrices may be expressed

as

Rbi = b̂ · îT =


b̂1 · î1 b̂1 · î2 b̂1 · î3

b̂2 · î1 b̂2 · î2 b̂2 · î3

b̂3 · î1 b̂3 · î2 b̂3 · î3

 =

[[̂
i1

]
b

[̂
i2

]
b

[̂
i3

]
b

]
. (2)

Because a general rotation has three degrees of freedom and a rotation matrix

contains 9 components, there are 6 constraints corresponding to its orthonormal prop-

erties (||̂i1|| = ||̂i2|| = ||̂i3|| = 1 and î1 · î2 = î1 · î3 = î2 · î3 = 0).[84]

3.2.1.2 Euler Angles

Rotation matrices form the bases of Euler angles, which describe 3 successive sim-

ple rotations about individual axes. Leonhard Euler first suggested using a sequence

of rotations to convert an orientation in an orbital frame to an inertial frame in the

18th century. It can be shown that three independent parameters are the minimum

required to fully describe any rotation.[84] The order in which the rotation matrices

are multiplied is key, and the first rotation must be on the right most side of the

triple product. An example of a 3-2-1 sequence is shown here as
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R3−2−1 = R1(θ3)R2(θ2)R3(θ1)

=


1 0 0

0 cos(θ3) sin(θ3)

0 −sin(θ3 cos(θ3)




cos(θ2) 0 −sin(θ2)

0 1 0

sin(θ2) 0 cos(θ2)




cos(θ1) sin(θ1) 0

−sin(θ1) cos(θ1) 0

0 0 1

 .
(3)

There are several disadvantages to using Euler angle representations. First, Euler

angle representations are subject to singularities when the second angle is equal to

0, 90, 180, 270, or 360 degrees (0, π/2, π, 3π/2, or 2π radians) depending on the se-

quence. These singularities are of particular concern for spacecraft, which experience

large angle motion and may be tumbling and frequently entering attitudes where the

singularities are present. Second, trigonometric functions have a high computation

cost which could tax space-hardened processors that are several generations behind

modern processors, although spacecraft processing power is improving and the com-

putational cost of trigonometric functions is becoming less important.[84]

3.2.1.3 Euler Axis Rotation

Euler axis rotations, also known as eigenaxis rotations, represent rotations as a

single rotation about a fixed Euler axis (â), and a principal Euler angle of rotation

(Φ). For pure rotations where the Euler axis passes through the origin,[84] the motion

can be described by a rotation matrix that satisfies

Rbiâ = â. (4)

The Euler axis is the eigenvector of the rotation matrix associated with an eigen-

value of 1. The Euler axis and principle Euler angle representation contains four
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parameters but only three are independent with a constraint that the product of

transpose of the Euler axis with the Euler axis must equal 1 (âT â = 1). The Euler

axis and principle Euler angle [84] may be computed from

Φ = cos−1
[1

2
(trace(R)− 1)

]
. (5)

â× =
1

2sin(Φ)
(RT −R) (6)

where â× is a skew-symmetric matrix comprised of components of â. The Euler axis

and Euler angle representation is still subject to a singularity when the sine of the

principle Euler angle is equal to 0 or 2π (sin(Φ) = 0 or 2π).[84]

3.2.1.4 Quaternions

A quaternion, also known as a Euler parameter set, is a four-parameter array (q̄)

with a unit norm constraint and is comprised of vector component ~q123 and a scalar

component q4. The quaternions may be calculated from the Euler axis and principle

Euler angle using

~q123 = âsin
(Φ

2

)
(7)

and

q4 = cos
(Φ

2

)
. (8)

A rotation matrix can be generated from

R = (q2
4 − (~q123)T~q123)U 3×3 + 2~q123(~q123)T − 2q4(~q123)× (9)

where U 3×3 is a 3×3 identity matrix, and (~q123)× is a skew-symmetric matrix with
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components of ~q123. The quaternion can be generated from a rotation matrix with

q4 = ±0.5
√

1 + trace(R) (10)

and

~q123 =
1

4q4


R23 −R32

R31 −R13

R12 −R21

 . (11)

3.2.1.5 Quaternion Kinematics

The time rate of change of a quaternion ˙̄q is a function of the current quaternion

and the spacecraft angular velocity vector ~ω, and may be calculated from

˙̄q =



q̇1

q̇2

q̇3

q̇4


=

1

2
Q4×3~ω =

1

2



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3




ω1

ω2

ω3

 (12)

One of the primary advantages of quaternions is that quaternion differential or kine-

matic equations do not contain any singularities.

3.2.2 Kinetics

Kinetics describe the relationship between torque, angular velocity, and angular

acceleration. The angular momentum of the spacecraft ~hsc is given by

~hsc = I~ω (13)

where I is the mass moment of inertia (MOI) matrix of the spacecraft. The MOI

matrix contains scalar moments of inertia on the diagonal, and products of inertial
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on the off diagonal. When the body frame axes are aligned with the principal axes,

the MOI matrix of the body of the spacecraft can be diagonalized, so that the MOI of

the spacecraft can be entirely described by scalar moments of inertia on the diagonal,

in the form

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 . (14)

Spacecraft experience two types of torque: internal and external. Internal torque

usually comes from actuators such as reaction wheels, momentum bias wheels, and

control moment gyros, while external torque could be applied from orbital perturba-

tions, aerodynamic drag or control actuators such as thrusters, magnetic torque rods,

magnetic torque coils, or solar or aerodynamic torque actuators. In the absence of

external torques, the total angular momentum ~Htot of the spacecraft is a sum of the

angular momentums of the spacecraft ~hsc and any internal torque actuators ~hinternal,

given by

~Htot = ~hsc + ~hinternal. (15)

When external torques are present, the relationship between the external moments

~M and the time rate of change of angular momentum ~̇H must be computed in an

inertial frame,[57] as described in the Euler’s equation by

~M = ~̇H =
d(i)

dt
( ~H). (16)

The transport theorem [85] may be used to write Euler’s equation in a body-fixed

frame, as

~M = ~̇H = ~̇hsc + ~ω×~hsc + ~̇hrwa + ~ω×~hrwa = I~ω + ~ω×I~ω + ~̇hrwa + ~ω×~hrwa (17)
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where ~ω× is the skew-symmetric matrix of spacecraft angular rates.

3.2.3 Reaction Wheel Actuation

Reaction wheels are common actuators used for precision spacecraft attitude con-

trol that work by exchanging momentum with the spacecraft. By contrast, actuators

such as thrusters or magnetic torque devices interact with the environment to apply

an external torque to the spacecraft, which changes the spacecraft total angular mo-

mentum ~Htot. In the absence of external torques, the total angular momentum of the

spacecraft remains constant, and the total angular momentum of the RWA is equal

and opposite to the angular momentum that it exchanges with the spacecraft. One

disadvantage of RWAs is their vulnerability to a phenomenon known as saturation,

which occurs once the maximum angular velocity rates one or more reaction wheels

are reached and the RWA is no longer able to control the spacecraft attitude in certain

directions. RWAs are one of the most precise attitude actuators with accuracy of up

to 0.001 degree [64] in some cases, and are less complex than actuators such as control

moment gyros, but they are one of the heavier actuator options available.[96][22][51]

3.2.3.1 Individual Reaction Wheel Dynamics

The individual reaction wheel’s angular momentum ~hrw is

~hrw = D~ψi (18)

where D is the wheel’s mass moment of inertia, ~ψi is the rate of spin about the axis

of the spin of reaction wheel i.
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3.2.3.2 3-Wheel Reaction Wheel Array Dynamics

When the RWA has three wheels, each identical and aligned with the body axes

of the spacecraft, the angular momentum of the RWA ~hrwa can be written as

~hrwa = ~hrw1 + ~hrw2 + ~hrw3 = D


ψ1

ψ2

ψ3

 . (19)

3.2.3.3 4-Wheel Pyramid Reaction Wheel Array Dynamics

In the case of a 4-wheel pyramid RWA, like that simulated in this research, a 4×3

torque mapping matrix is needed to transform the torque vector of each wheel to the

body frame. The angular momentum of the RWA ~hrwa is given by:

~hrwa = S ~ψ (20)

where ~ψ is an array containing the angular velocity of each of the reaction wheels,

and S is a matrix that orients the angular momentum contribution of each reaction

wheels with the body axes of the spacecraft. The S matrix is defined as:

S = D


cos(α1) sin(β) cos(α2) sin(β) cos(α3) sin(β) cos(α4) sin(β)

sin(α1) sin(β) sin(α2) sin(β) sin(α3) sin(β) sin(α4) sin(β)

cos(β) cos(β) cos(β) cos(β)

 (21)

where α is the angle between a particular reaction wheel’s angular momentum vector

and the spacecraft’s x-axis and β is the angle between the reaction wheel angular

momentum vector and the z-axis.
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3.2.3.4 Momentum Exchange

As discussed earlier, RWAs are momentum exchange actuators that work by ex-

changing momentum with the spacecraft while not changing the total angular mo-

mentum of the spacecraft. The total angular momentum of the spacecraft with RWA

actuation is given by

~Htot = ~hsc + ~hrwa. (22)

3.2.4 PID Spacecraft Attitude Control

The first step in the control process is determining the difference between the

present and desired orientation. This difference is represented by quaternion error q̄e

and is computed from

q̄e =



q4c −q3c q2c q1c

q3c q4c −q1c q2c

−q2c q1c q4c q3c

−q1c −q2c −q3c q4c


q̄p (23)

where qic terms are the commanded quaternions, and ~qp is the present quaternion

array. The controller used in this work is a PID controller introduced by Wie [98] in

which the calculated change in angular momentum of the RWA ~̇hrwa is from

~̇hrwa = KP I~qe123 + KDI~ω + KI11∆t(qe1 + qe2 + qe3)− ~ω×(I~ω + ~hrwa) (24)

where KP , KI , and KD are the proportional, integral, and derivative gains of the

controller, ~qe123 is a vector part of the error quaternion, I is the spacecraft 3×3

matrix mass moment of inertia, ~ω is the spacecraft angular velocity vector, ∆t is

the time step of the simulation, ~ω× is a skew-symmetric matrix with off-diagonal

components comprised of the angular velocity vector elements, and ~hrwa is the RWA
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angular momentum. The gains of this controller are calculated from

KP = I

(
ω2
n +

2ζωn
T

)
, (25)

KI = I

(
ω2
n

T

)
, (26)

KD = I

(
2ζωn +

1

T

)
, (27)

and

T =
10

ζωn
. (28)

The resulting reaction wheel commanded angular acceleration ~̇ψcom is calculated

from

~̇ψcom = S+~̇hrwa (29)

where S+ is the pseudoinverse of the S matrix that orients the angular momentum

contribution of each reaction wheels with the body axes of the spacecraft. Rate

limits are placed on each of the wheels that limit the maximum acceleration angu-

lar acceleration and angular velocity of the wheels that can be produced from the

commanded acceleration given the current angular velocity of the reaction wheels.

Integrator windup from the PID controller is abstracted out of this research and

could be explored in future work.

3.2.5 Equations of Motion

In this section, the state derivative equations of motion for a system with RWA

are presented.
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The state vector x̄ is defined here as

x̄ =

[
q̄ ~ω ~ψ

]T
=

[
q1, q2, q3, q4, ω1, ω2, ω3, ψ1, ψ2, ψ3, ψ4

]T
(30)

where the qi terms are the elements of the quaternion describing the orientation, the

ω terms are the spacecraft angular velocity about each principal axis, and the ψ terms

are the angular velocity of each of the reaction wheels. The time rate of change of

the state can then be expressed as: [88][60]

˙̄x =


04×4 0.5Q4×3 04×4

03×4 −I−1ω×I −I−1ω×S

04×4 04×3 04×4

 x̄−


04×4

I−1

04×3

S ~̇ψ +


04×4

I−1

04×3

 ~M +


04×4

03×4

U 4×4

 ~̇ψ (31)

where ~M is a vector of external torques acting on the spacecraft body axes, U 4×4 is

a 4×4 identity matrix, 0n×m is a n×m matrix of zeros, and Q4×3 is

Q4×3 =



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


. (32)
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IV. Methodology

Chapter IV begins by describing the verification strategy to show requirement

satisfaction for the PID and RTA controller designs. Next, a set of hypothetical re-

quirements are presented and then formally described for the 6U CubeSat attitude

control subsystem. The strategy used to provide traceability of the requirements

is described. Next, development and application of FMA techniques to the derived

requirements, architecture, and model are described. Finally, techniques from tra-

ditional verification techniques, such as mathematical feasibility analysis (FA), SIM,

and SFEDS, are presented. Between FMA, SIM, SFEDS, and FA requirement satis-

faction may be shown for all requirements except those dealing with reachability.

4.1 Verification Strategy

In this section, a hypothetical set of CubeSat ACS requirements are presented,

and the verification and traceability strategies used to show requirement satisfaction

in each design phase are introduced.

4.1.1 Requirements Set

Hypothetical requirements are presented here for the 6U CubeSat highlighting

the limitation of the actuators, the pointing accuracy of the control system, slewing

range and rate, drift, settling time, rise time, and percent overshoot. The Defense Ac-

quisition University (DAU) defines derived requirements as requirements that “arise

from constraints, consideration of issues implied but not explicitly stated in the re-

quirements baseline, factors introduced by the selected architecture, cyber security

requirements and the design. Derived requirements are definitized through require-

ments analysis as part of the overall systems engineering process (SEP) and are part
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of the allocated baseline.”[93] The first two requirements in the set presented here

are derived requirements that arise once a RWA is selected to actuate the satellite.

Requirements R01 and R02 constrain the output of the control algorithm to prevent

damage to the reaction wheel motors:

• R01 The commanded time rate of change of angular velocity shall not exceed

the maximum allowable angular acceleration of the reaction wheel.

• R02 The commanded angular velocity shall not exceed the maximum allowable

angular velocity of the reaction wheel.

The remaining requirements describe the expected performance of the attitude

control subsystem in the context of its ability to control the 6U CubeSat attitude:

• R03 The pointing accuracy shall be at least 1 degree as a threshold and 0.08

degrees as an objective.

• R04 The pointing range about the z axis shall be 0 to 360 degrees.

• R05 The pointing range about the y axis shall be 0 to 360 degrees.

• R06 The pointing range about the x axis shall be 0 to 360 degrees.

• R07 The maximum slew rate shall be > 3 deg/sec as a threshold and > 7 deg/sec

as an objective.

• R08 After settling, the drift rate shall be < 3 deg/min as a threshold and < 1

deg/min as an objective.

• R09 After settling, the total drift shall be ≤ 0.5 degrees as a threshold and ≤

0.1 degrees as an objective.
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• R10 The 5% settling time shall be ≤ 5 minutes as a threshold and ≤ 2 minutes

as an objective.

• R11 The 2% settling time shall be ≤ 7 minutes as a threshold and ≤ 3 minutes

as an objective.

• R12 The rise time shall be ≤ 5 minutes as a threshold and ≤ 2 minutes as an

objective.

• R13 The percent overshoot shall be ≤ 50% as a threshold and ≤ 25% as an

objective.

4.1.2 Requirement Analysis Stragety

Not all analysis techniques are appropriate for different types of requirements.

For example, FMA is currently limited to analysis of linear systems with very little

capability to analyze nonlinear systems. For this reason, FMA is best suited to

showing satisfaction of the first two requirements, which are derived requirements that

describe the rate limiting of the control actuators. Application of SFEDS provides

insight, though not proof, into the satisfaction of the remaining requirements. The

techniques applied to each of the requirements are summarized in Table 3.

The * on the SFEDS for requirements R04, R05, and R06 SFEDS indicates that

these requirements are not analyzed in the main SFEDS. A seperate SFEDS for

requirements R04, R05, and R06 analysis consists of batch simulations from an initial

state of 0 degrees about each axis to final states from 0 to 360 degrees about the x,

y, and z-axes, one at a time for a total of 1080 simulations.
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Table 3. Strategy for Requirements Analysis

Req’t FA FMA SIM SFEDS
R01 × × ×
R02 × × ×
R03 × ×
R04 ×*
R05 ×*
R06 ×*
R07 × × ×
R08 × ×
R09 × ×
R10 × ×
R11 × ×
R12 × ×
R13 × ×

4.1.3 Traceability of Requirements and Assumptions

Requirements traceability from the requirements, through the architecture, and

into the modeling phase is achieved by a strict naming convention developed for this

research. This naming convention was first introduced in Section 2.4.1. Each assump-

tion and requirement is first assigned an a for assumption or an r for requirement.

Next, the assumption or requirement is numbered with two digits, although with

more than 99 assumptions or requirements, this number could be modified to include

three or more digits. Next, if the requirement applies to more than one component, it

is broken down for each component and assigned a unique letter to follow the require-

ment number (a, b, c, etc). Finally, a four letter description of the component that

the requirement applies to is appended to the end, such as ctrl for controller. The

initial letters, numbers, and descriptions of each requirement or assumption are sepa-

rated by an underscore. For example, the first wheel sub requirement is documented

as r 01a ctrl, where r indicates that it is a requirement versus an assumption, 01

is the number of the requirement, a is the first sub requirement (it applies to wheel
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1), and ctrl denotes that it is a controller component requirement.

4.2 Requirements Development and Formalization

In this section, a formal representation of each of the 13 hypothetical ACS require-

ments is discussed and values assigned to the formal requirements are presented.

4.2.1 Formal Representation of the Requirements

In order to analyze a requirement with a formal method, such as model check-

ing, the requirement must be expressed a precise mathematical syntax, such as that

provided by a temporal logic based language. The formal methods tools used in this

research implement a scope and predicate pairing. The scope provides a temporal

or conditional description of when the requirement should hold true. The predicate

defines the condition of interest that should hold true within the defined scope.

For the following requirement definitions, it is assumed that only one maneuver

is conducted, and the total scope of all of the requirements is the total time of the

simulation. If however, it would be desired to analyze these requirements over multiple

maneuvers in succession, the scope of all the requirements would be the time of a single

maneuver which would restart when each new maneuver is commanded. The scope,

and analysis of the requirements within that scope, would reset as soon as the next

commanded orientation was received.

4.2.1.1 R01 and R02: Reaction Wheel Angular Acceleration and

Velocity Limitation

Requirements R01 and R02 are examples of invariant properties because they are

satisfied by showing that no reachable states of the system violate the requirement.

For requirements R01 and R02, the scope is “always,” because there is never a situa-
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tion in which the reaction wheels should exceed the maximum acceleration or velocity.

The predicate for R01 is that the acceleration commanded by the controller should

never exceed the maximum acceleration for each reaction wheel (|ψ̇com| ≤ ψ̇max), and

the predicate for R02 is that the velocity resulting from the acceleration commanded

by the controller should never exceed the maximum velocity for each reaction wheel

(|ψpre + ψ̇com∆t| ≤ ψmax).

4.2.1.2 R03: Pointing Accuracy

A pointing accuracy requirement is another example of an invariant property be-

cause it is satisfied by showing that within the scope, no reachable states of the

system violate the requirement. The scope of the pointing error requirement is after

the system has settled (t ≥ Ts). When the system has settled can be determined in a

variety of ways including the time after the 5% or 2% settling time requirement has

been met. For this research, settled is defined by a spacecraft angular acceleration

and angular velocity range, where the angular acceleration must be less than approx-

imately 0.01 degrees per second squared or 2.9089×10−6 radians per second squared

(||~̇ω|| ≤ 2.9089×10−6) and the spacecraft angular velocity must be less than 1 degree

per minute or approximately 2.9089×10−4 radians per second (||~ω|| ≤ 2.9089×10−4).

The first step in mathematically stating a pointing accuracy predicate is defining the

pointing error.

The pointing error is derived from the definition of the quaternion which contains

a 3x1 vector component ~q123 and a scalar component q4 which is calculated from

q(4) = cos
(Φ

2

)
(33)

where Φ is the Euler angle. Eqn. 33 can be rearranged to calculate the Euler angle

Φ from the quaternion with

64



Φ = 2acos(q4), (34)

which is desirable if the model uses quaternions to update the orientation state,

like the model used in this research. The pointing error ep may be calculated by

subtracting the final Euler angle Φf from the current Euler angle Φ, written here as

ep = Φ− Φf . (35)

The predicate for pointing accuracy states that the pointing error ep must not exceed

the pointing requirement er (ep ≤ er).

4.2.1.3 R04-R06: Reachability

Requirements R04, R05, and R06 essentially deal with reachability. For a linear

system, all states could be said to be reachable if the system is completely controllable.

This can be determined by calculating the rank of the controllability matrix. If the

rank of the controllability matrix Mc, defined as

Mc = [B,AB, ..., An-1B]n×(nl−l2+1), (36)

is n for a system with l inputs, then the system is completely controllable. For

nonlinear systems, determining controllability is a non-trivial task. However, tools

such as Flow* [27] have emerged in the last few years to aid in calculation of reachable

states for nonlinear systems. In this research, insight is gained into whether the

system is completely controllable by determining if the pointing error at the end of the

simulated maneuver ep(tf ) is less than a pointing error requirement er (ep(tf ) ≤ er).

In simulation, the scope of this maneuver is the final time (t =tf ). In a simulation

with no noise, like those conducted in this research, the final pointing error at the
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end of the simulation should be zero.

4.2.1.4 R07: Maximum Slew Rate

A maximum slew rate requirement is an example of a liveness property because it

is met if at least one reachable state satisfies the requirement. In simulation, the slew

rate requirement is satisfied if it is eventually reached. The slew rate is the magnitude

of the spacecraft’s instantaneous angular velocity during a slewing maneuver. The

scope of the slew rate would be from the start of the maneuver until the spacecraft

is settled (t ≤Ts). To formally prove that a slew rate requirement is met, it must

be proven that at some point during a slewing maneuver from one position at rest

to another position at rest the angular velocity of the spacecraft will exceed the

minimum slew rate stated in the requirement. A formal verification method such as

model checking is not a good verification method for a slew rate requirement because

there are many maneuvers in which it would be desirable for the angular velocity of

the spacecraft not to exceed the slew rate. For instance if the spacecraft is required

to change the pointing angle by one degree, reaching the slew rate specified by the

requirement during the maneuver would overshoot the desired angle and take longer

to settle.

The true concern being expressed in a maximum slew rate requirement is whether

the actuator selected is appropriately sized to be responsive to reorientation com-

mands. Therefore, the best ways to show satisfaction of a slew rate requirement are

to show it is mathematically possible to achieve the desired slew rate, or to demon-

strate a case in which the spacecraft angular velocity appropriately exceeds the slew

rate requirement, or to analyze the maximum slew rate for a range of initial and final

conditions in a SFEDS. For a RWA attitude actuator, it can be shown that a desired

slew rate is possible by analyzing the maximum angular momentum the RWA can
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generate. RWAs actuate the satellite through momentum exchange, where the change

in angular momentum of the RWA is equal and opposite to the change in angular

momentum of the spacecraft. The maximum angular momentum that the reaction

wheels can generate would occur when the reaction wheels start at their maximum

velocity in one direction and accelerate to their maximum velocity in the opposite

direction.

Given a selected RWA design, the RWA and spacecraft angular momentum equa-

tions can be set equal to one another rearranged to solve for maximum achievable

spacecraft angular velocity ~ωmax from rest using

~ωmax = I -1S ~ψmax. (37)

Satisfaction of the slew rate requirement is shown by comparing the maximum

achievable spacecraft angular velocity to the required slew rate ωr to show that the

maximum velocity from rest eventually meets or exceeds that required (||~ωmax|| ≥ ωr).

4.2.1.5 R08 and R09: Drift Rate and Total Drift

Requirements R08 and R09 are additional examples of invariant properties because

they are satisfied by showing that within scope, no reachable states of the system

violate the requirement. Drift rate is a measure of how quickly a system deviates from

the commanded orientation once the commanded orientation has been achieved and

total drift is the amount the spacecraft orientation has deviated from the commanded

orientation. Like the pointing accuracy requirement, the scope of drift rate and total

drift requirements is the time after the spacecraft has settled (t ≥ Ts). The drift

rate is the angular velocity after the spacecraft has settled, and the total drift is the

pointing error after the spacecraft has settled.

Drift rate and total drift are concerns in cyber-physical systems where measure-
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ment errors in physical sensors and true continuous dynamics make constantly main-

taining an exact desired position impossible with a discrete control algorithm. At-

tempting to maintain the position exactly may result in a series of very abrupt ma-

neuvers that create high frequency noise as the satellite constantly attempts to jerk

right back to the correct position. Rather than maintaining an exact orientation, a

deadband is defined so that no action will take place within a certain range of the cor-

rect position. Small drift rates and amounts of drift should not impact the mission as

long as they remain within the drift rate ωdr and total drift etdr requirements; there-

fore, the predicate for the drift rate requirement states that the spacecraft angular

velocity should not exceed the drift rate (||~ω|| ≤ ωdr) and the predicate for total drift

states that the spacecraft pointing error should not exceed the total drift requirement

(ep ≤ etdr).

4.2.1.6 R10 and R011: 5% and 2% Settling Time

Traditionally, 5% and 2% settling time are used to describe when the response

of a second order system to a step input reaches and stays within 5% or 2% of the

steady state value, and may be estimated by a function of the systems damping ratio

ζ and natural frequency ωn from

Ts2% =
ln(0.02

√
1− ζ2)

ζωn
(38)

and

Ts5% =
ln(0.05

√
1− ζ2)

ζωn
. (39)

Since the system under analysis is not a linear, second order system, the traditional

estimation equations Eq.(38) and Eq.(39) do not apply. The system must be simulated

in order to determine the settling time. In this research, the settling time definitions
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are generalized to when the orientation of the spacecraft reaches and stays within 5%

or 2% of the desired final orientation. The 2% error e2% and 5% error e5% ranges are

based on the initial pointing error angle between the initial and final positions ep(t0).

e2% = (0.02)2acos
(

2ep(t0)
180

π

)
(40)

e5% = (0.05)2acos
(

2ep(t0)
180

π

)
(41)

As the settling time is a temporal property, it does not have a temporal scope like

other requirements described. The predicate is that the 5% or 2% settling time does

not exceed the required settling time, respectively (Ts2% ≤ Ts2%r and Ts5% ≤ Ts5%r).

4.2.1.7 R12: Rise Time

Like settling time, rise time is typically used to describe the time of the first peak

Tp of the step response of a linear, second order system. The rise time requirement

Trt is a way to specify the responsiveness of the system. This definition is generalized

here to first peak of the pointing error of the spacecraft, which eventually reaches a

steady state value of 0 with some deadband when the maneuver is complete. The first

peak is determined algorithmically by finding the first inflection point in the pointing

error data. The rise time also doesn’t have a temporal scope, like the settling time

requirements. The predicate for the rise time states that the time of the first pointing

error peak does not exceed the required rise time (Tp ≤ Trt).

4.2.1.8 R13: Percent Overshoot

In traditional control systems analysis, the percent overshoot is linked to the peak

time Tp, and describes the height of the first peak as a percentage of the steady-
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state response. For a step response from 0 to a steady-state value of 1, the percent

overshoot %OS can be estimated as a function of the system’s damping ratio ζ from

%OS = e(ζπ/
√

1−ζ2) × 100%. (42)

This estimate is not appropriate for the attitude control system in this research

because the system being evaluated in this research is not a second order, linear,

or performing a step response. Because the percent overshoot requirement %OSr is

primarily concerned with how far the spacecraft passes the steady state value once it

has been reached the first time, the pointing error of the system is used to analyze

this requirement. For the purposes of this research, the overshoot is defined as the

magnitude of the first peak in pointing error. The time Tp and magnitude of the

first peak ep(Tp) are determined algorithmically at the inflection point of the first

peak. Because the pointing error is at its maximum at the start of the maneuver, the

starting error ep(t0) is used to normalize the percent overshoot in

%OS = ep(Tp)/ep(t0)× 100%. (43)

Figure 21. Overshoot and Initial Error ep(t0) for an Example Slewing Maneuver
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The overshoot and initial error ep(t0) for an example slewing maneuver may be

seen in Figure 21. Like the settling time and rise time requirements, percent overshoot

does not have a specific scope. The predicate of the requirement is that the percent

overshoot must be less than the percent overshoot requirement (%OS ≤ %OSr).

4.2.1.9 Requirements Formalization Summary

As stated earlier, it is assumed that the larger scope of all of the requirements

is from the time that a maneuver is commanded to the time that a new maneuver

is commanded. Within the maneuver scope, each requirement may have a smaller

scope. The applicable scope and predicate of each requirement that were formalized

in this section are summarized in Table 4.

Table 4. Requirement Scope and Predicate Summary

Req’t Scope Predicate

R01 always |ψ̇com| ≤ ψ̇max
R02 always ψpre + ψ̇com∆t| ≤ ψmax
R03 t ≥ Ts ep ≤ er
R04* t = tf ep ≤ er
R05* t = tf ep ≤ er
R06* t = tf ep ≤ er
R07 t ≤ Ts eventually ||~ωmax|| ≥ ωr
R08 t ≥ Ts ||~ω|| ≤ ωdr
R09 t ≥ Ts ep ≤ etdr
R10 - Ts2% ≤ Ts2%r

R11 - Ts5% ≤ Ts5%r

R12 - Tωmax ≤ Trt
R13 - %OS ≤ %OSr

The * on requirements R04-R06 indicate that the scope and predicate given are

only valid for simulation cases, and may not be used to demonstrate proof that these

requirements are met.
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4.2.2 Values Assigned to the Formal Requirements

The values of the requirements used to evaluate the ACS in this research are shown

in Table 5.

Table 5. Formalized Requirement Values

Requirement Variable Description Value Units

R01 ψ̇max Maximum reaction wheel angular acceleration 181.3 rad/s2

R02 ψmax Maximum reaction wheel angular velocity 576.0 rad/s
R03 ert Pointing accuracy threshold 1 deg
R03 ero Pointing accuracy objective 0.1 deg
R07 ωrt Slew rate threshold 3 deg/s
R07 ωro Slew rate objective 7 deg/s
R08 ωdrt Drift rate threshold 3 deg/min
R08 ωdr0 Drift rate objective 1 deg/min
R09 etdrt Total drift threshold 0.5 deg
R09 etdro Total drift objective 0.1 deg
R10 Ts5%rt 5 percent settling time threshold 5 min
R10 Ts5%ro 5 percent settling time objective 2 min
R11 Ts2%rt 2 percent settling time threshold 7 min
R11 Ts2%ro 2 percent settling time objective 3 min
R12 Trtt Rise time threshold 5 min
R12 Trto Rise time objective 2 min
R13 %OSrt Percent overshoot threshold 50 %
R13 %OSro Percent overshoot objective 25 %

4.3 Architecture Development and Formal Verification

In this section, the compositional structure of the ACS architecture and the dy-

namics of the spacecraft controller are presented. Descriptions of the PID and RTA

control architectures as well as the design of the RTA controller’s decision module are

provided. Finally, the safety properties of the PID and RTA controllers, the approach

used to verify that the safety properties are satisfied by the PID and RTA controller

implementations, and assumptions used in the FMA verification are provided.
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4.3.1 Compositional Architectecture

Breaking up a system by components to the lowest compositional level enables

formal methods analysis at the lowest functional levels of the design to be com-

posed into subsystem and system level certification arguments. As was introduced

in Sections 2.1.4 and 2.3, a compositional architecture is critical for efficient FMA.

In addition, a compositional structure promotes modularity and reuse of verification

results by allowing components such as an actuator or sensor to be changed and anal-

ysis to be completed on directly impacted portions of the system only up through the

subsystem to the system level rather than completing all of the analysis for the entire

system again.

Figure 22. 6U CubeSat Singal Flow for Model with RWA Control Actuator

For this research, the satellite is broken up compositionally into a controller, which

contains the controller software, and the environment, which includes all the hardware

that the controller interacts with. The environment is further functionally decom-

posed into the RWA and structure models. The sensors have been abstracted and it

is assumed that the controller receives perfect truth data, which could be modified in

future work. The reaction wheel is broken down one more level to individual reaction
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wheel models. The flow of signals between the components is depicted in Figure 22.

The simulated environment outputs the current system state including the orientation

of the spacecraft in a quaternion vector, the rotation rates of each of the major axes

of the spacecraft, and the rotation rates of each of the individual reaction wheels. At

each step in the simulation of the system, a unit delay is placed between the output of

the environment and the controller. The controller receives the state information from

the previous time step and uses it to calculate a commanded angular acceleration. In

the basic model, a PID controller calculates a commanded angular acceleration for

each of the reaction wheels in order to approach and eventually achieve the desired

spacecraft orientation. The alternative RTA controller architecture is described in

the Section 4.3.2. The angular acceleration commands are received and implemented

by each of the individual reaction wheels. The reaction wheels then contribute angu-

lar momentum to the RWA, which exchanges its total angular momentum with the

spacecraft structure. The simulated structure model then updates the state of the

spacecraft and the environment model outputs the system state.

4.3.2 Run Time Assurance Architecture

In the RTA control architecture, the controller block of the previous section is

replaced by an RTA controller that is decomposed into the unverified controller,

verified controller, and decision module, as described in Section 2.6.3. The unverified

controller provides the primary control commands of the RTA control architecture and

could contain any control design, including controllers that use artificial intelligence

and machine learning. The verified controller provides the backup control commands

and contains a rate-limited version of the PID controller described in Section 3.2.4,

which may be proven using formal methods not to violate the two safety properties

governing reaction wheel angular velocity and acceleration, as is shown in Section 5.1.
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The decision module contains the logic which determines which control signal, verified

or unverified, is sent to the actuator. The system state is received by the unverified

controller, verified controller, and decision module. The decision module also receives

a commanded reaction wheel acceleration vector from each of the controllers. The

signal flow in the RTA controller is summarized in Figure 23.

Figure 23. Signal Flow in the RTA Controller

4.3.3 Decision Module Design

The key component of the RTA controller is the decision module, which can be

thought of as a switching mechanism. The decision module receives the current state

of the system and the reaction wheel angular acceleration commands from each of the

two controllers. Aside from allowing the use of an intelligent or learning controller,

an RTA controller could be used to safely generate proof that an unproven control

system will not violate specific constraints over the course of hundreds, thousands,

or more hours of performance. After a period of time in service, a sufficient amount

of evidence may be generated that an unverified controller will not violate the safety

properties, and the decision module and verified controller backup could potentially

be removed.

In this research, desired safety properties are used to constrain the operating re-
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gion of the unverified controller and inform the decision to switch to a verified backup

controller. The safety properties are arranged in if-else logic, which provides several

advantages. During the design process, a designer may want to check to see if the

unverified controller violates other properties of interest, such as performance proper-

ties, beyond those used to constrain the operating envelope of the unverified controller

for safety reasons. An if-else decision tree enables the addition of a new constraint

to the unverified controller without compromising the other system constraints. In

addition, breaking properties into like groups in if-else statements allows reviewers to

quickly inspect, debug and isolate problems in the code.

Figure 24. Signal Flow in Decision Module when the Safety Properties of the System
are not Violated by the Unverified Controller

In this implementation, the decision module first checks to see if the unverified

controller has violated any of the safety properties in the past. The rationale for

checking previous instances of violations first is that if the unverified controller has

previously violated a safety property, it cannot be trusted until a reset, redesign, or

other change is implemented. Mode logic to incorporate unverified controller resets is
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Figure 25. Signal Flow in Decision Module when the Safety Properties of the System
are Violated by the Unverified Controller

left for future work. Second, the decision module then checks to see if the unverified

controller violates the maximum commanded acceleration property for any of the four

wheels in the array. Third, the decision module checks that the commanded angular

acceleration will not result in a predicted angular velocity that exceeds the maximum

velocity property for any of the four wheels. As depicted in Figure 24, if no violation of

the safety properties has occurred, and the commanded angular acceleration to each

reaction wheel from the unverified controller does not exceed the maximum allowable

limit, and the angular velocity of each wheel resulting from the commanded angular

acceleration does not exceed the maximum allowable angular velocity of the reaction

wheel array, then the decision module allows the output from the unverified controller

to pass through to the actuators. If however, a violation has previously occurred, or

the output command of the unverified controller exceeds angular acceleration limits,

or the commanded acceleration will result in an angular velocity limit violation in any
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of the wheels, then the decision module sends the output of the verified controller to

the actuators, as depicted in Figure 25.

4.3.4 Safety Properties Used in Formal Methods Analysis

In this research, formal methods are used to prove that the controller will not vio-

late two safety properties: the maximum angular velocity and the maximum angular

acceleration of the reaction wheels, as presented in Figure 26, where the subscript i

corresponds to the individual reaction wheels. These two safety properties are de-

rived requirements identified after an RWA is selected as the control actuator and are

designed to protect the motors of the reaction wheel assembly from damage. These

derived requirements, used as safety properties in the analysis are requirements R01

and R02 in Section 4.1.1. In this work, these two safety properties are used to for-

mally analyze the requirements, architecture, and model of the RTA controller. When

applied to each of the 4 reaction wheels, a total of 8 safety properties are evaluated

in the output of the RTA controller and its components.

Figure 26. Desired Safety Properties of the Controller

It is possible that timing delays and drift from the unit delays used in the ar-

chitecture to sample the system state could result in violation of the second safety

property in a continuous physical system. In this research the plant and controller

are both simulated with the same discrete timestep. Future work could investigate

the impact of the sampling delays on violation of the second property, and possibly

use more conservative switching logic in the decision module.
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4.3.5 Formal Methods Verification Approach for RTA Controller Re-

quirements and Architecture

As explained in Section 2.6.3, the unverified controller, which is treated as a “black

box” in this research cannot be proven to hold the desired safety properties in all cases

using formal methods. The verified controller, however, should be proven using formal

methods or an alternative verification method, such as extensive simulation, flight

test, or a long period of operational service. In this instance of the RTA controller,

the verified controller is analyzed using formal methods to prove that it never violates

the two safety properties. Similarly, the decision module is analyzed using formal

methods to prove that the constraints on the unverified controller are sufficient to

guarantee that decision module output never violates the controller safety properties.

The safety properties are analyzed against a model developed from the formalized

requirements in SpeAR, and against an architecture implementation developed in

AADL by AGREE. In SpeAR and AGREE, the proof evidence from each of the

RTA controller subcomponents is combined compositionally to produce proof evidence

that the RTA controller subsystem will not violate the safety properties. Figure 27

summarizes which outputs of the RTA controller and its subcomponents are formally

verified in this approach with a green check mark.

Figure 27. Expected Formal Verification Analysis Results for the RTA Controller and
Subcomponents

Limitations in SLDV prevent analysis at the RTA subsystem level, however SLDV
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may be used to prove that the safety properties are held by the model of the verified

controller and decision module.

4.3.6 Assumptions

The nature of model checking requires assumptions to be made which constrain

its searchable space. Without constraints, the model checker may assign any value of

the appropriate data type to the signals entering the component of interest, without

regard to whether meaning of these numbers is physically possible. For example, the

model checker may assign an altitude of 30,000 feet and then instantaneously assign

an altitude of 100,000 feet in the next time step, without an assumption constraining

the maximum climb rate of the aerospace model. In addition to constraining the

search space to physically possible solutions and reducing computational demands,

formal assumptions provide precise documentation of design assumptions that may

be evaluated by SMEs. Assumptions should be used with caution, as they can over

constrain the search space and ignore critical areas where the system under analysis

could enter. In this work, three assumptions are made about the decision module

input in order to constrain the model checker. First, it is assumed that the previous

reaction wheel speeds entering the decision module do not exceed the maximum

reaction wheel speeds. Mode logic to deal with the eventuality that the reaction

wheels are spinning faster than allowable at system initialization is left for future work.

Second and third, it is assumed that the verified controller output does not violate the

two safety properties governing maximum velocity or acceleration. The mathematical

expression of these assumptions is presented in Figure 28. This assumption is valid

because the rate-limited PID controller is formally proven to meet these properties as

a part of this analysis. In general, assuming that inputs to the decision module meet

properties should only occur if proof of that claim exists, otherwise the assumption
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would unnecessarily constrain the model checker.

Figure 28. Assumptions used by the Decision Module to Constrain the Formal Methods
Analysis Space

4.4 Model Development and Verification

The verified architecture provides the framework for a Simulink model and simu-

lation of the control system; however the modeling stage is the first time that the non-

linear equations that govern the controller and state equations are used. In Simulink,

like in SpeAR and AGREE, the model was broken down from the system level into

sublevels of the Controller and Environment. The file structure in Simulink was de-

signed to mimic the architectural breakdown. Simulink model reference blocks were

used to reference each of the subsystems and compose the entire system. Three files

are included in each of the subsystem folders: the Simulink model of the subsystem,

a model of the properties of the subsystem, and a verification model that references

the subsystem and properties models with model reference blocks in order to conduct

the formal analysis. The file structure is shown in Figure 29. The benefit of using

model reference and this file structure is the ability to quickly to substitute an alter-

native implementation for a subsystem to compare performance both in simulation

and verification analysis.

In Figure 29, a MATLAB m-file of constants of the simulation, a controller model,

an environment model, and a simulation model are present at the system level. De-
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Figure 29. Basic Simulink Model File Structure

pending on the size of the model, it may be desirable to place the controller and

environment in their own subsystem folders. Within each component folder is a com-

ponent model that describes the behavior of that component, a properties model that

contains the assumptions and requirements to be proven about that component, and

a verification model that references the component model and properties model to

conduct formal methods analysis of whether the component implementation meets

the requirements. The remainder of this section will explore the verification and

design of the models.

4.4.1 Component Verification with Simulink Design Verifier (SLDV)

Each requirement must be assigned a verification proof objective in SLDV. This

was done by writing the all the requirements like that shown in Figure 8 in a user-

defined function block, labeled the properties model, for each component that is to

be analyzed. The inputs of this properties model are the inputs and outputs of the

component of interest and the outputs of the properties model are the assumptions

on the inputs of the component being analyzed and a proof objective associated with
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each of the requirements. SLDV has special assumption and proof objective blocks

that may be placed on the output of the verification block for the analysis. The

outputs of the properties model may also be plotted so that the designer has a quick

time history of any property violations. A verification model combines the model of

the component, labeled a functional model, with the properties model for analysis.

An example of a verification model is presented in Figure 30.

Figure 30. PID Controller Verification Model

In Figure 30 the inputs to the verification model are on the far left side. These

inputs are the elements of the state vector for the system. Each of these inputs

feed into the functional model block, which is a Simulink model reference block that

references the model of the PID controller, and the properties model block, which is

a Simulink model reference block back to the user defined function that contains all

of the assumptions and requirements that are to be proven for the component in the

analysis. The outputs of the functional model block are also fed into the properties

model. At each of the outputs of the properties model is either a SLDV assumption
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block or proof objective block, represented as a gray circle with an “A” or “P” at the

center, respectively. Proof objective blocks that are dark gray are enabled, while proof

objective blocks that are light gray with a diagonal line through them are disabled.

Depending on the number of properties (requirements) that are to be proven about

the model, and the size and complexity of the model, it may be desirable to only prove

a few properties at a time. In Matlab 2015a and earlier versions, a bug is present

that could prevent all the properties being proven at once without error. In addition,

proving less properties could result in a faster analysis time. Finally, in Figure 30

all the outputs are plotted in a scope block. Formal methods verification in SLDV is

completed on a discretized model and controller with a fixed timestep.

4.4.2 System Level Simulation

At the system level, a simulation model uses model reference blocks to connect to

the controller and environment and simulate their interaction. The simulation model

is shown in Figure 31. Starting on the left side of Figure 31, the state of the system

Figure 31. Simulation Model of the 6U CubeSat Attitude Control Performance
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is fed into unit delay blocks to prevent a cyclic relationship between the environment

and component that results in unexpected behaviors and errors. The delay could be

placed anywhere between the controller and environment, but is placed just prior to

the controller in this model to represent the delay associated with sensing the system

state. The output of each of the unit delay blocks is a previous state component.

The previous state is then input into the controller which calculates and outputs a

commanded angular acceleration for each of the four reaction wheel actuators. The

commanded angular accelerations along with the previous state are then input into

the environment which updates and outputs the state of the system.

4.4.3 Model Assumptions and Limitations

Where possible, properties of the AFIT 6U CubeSat Bus and ACS, such as mo-

ments of inertias and wheel speeds are used. It is assumed that no external torques,

such as gravity gradient or aero torques, are acting on the CubeSat. It is also assumed

that the CubeSat rotational motion can be described by rigid body dynamics. In ad-

dition, the numerical simulation is discretized and conducted at fixed time step. The

3×3 moment of inertia matrix of the 6U CubeSat is taken from the AFIT SolidWorks

model. The moment of inertia about the reaction wheel’s spin axis was measured

using the Model XR250 Measurement Instrument[66] and the motor properties were

taken from the Maxon motor specification sheet.[72] Characterization of the hardware

may be found in Chapter VII.

4.4.4 PID Controller Model

The PID controller model accepts the system state and calculates and outputs a

commanded angular acceleration for each of the reaction wheels and is implemented

as a user-defined function block, with the code presented in Figure 32. The code
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Figure 32. PID Controller MATLAB Code

first calculates the reaction wheel array angular momentum, then calculates the error

between the current and desired quaternion. Using this information, a required change

of angular momentum is calculated and then used to calculate a commanded angular

acceleration for each of the reaction wheels. A rate limiting scheme based on R01

and R02 is included below the code shown in Figure 32. This rate limiting code is

shown in Figure 33.
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Figure 33. Controller Rate Limiting MATLAB Code

The rate limiting code functions by comparing the commanded acceleration to the

max acceleration and limiting the command to the max if the commanded acceleration

exceeds the maximum. It also checks to see whether the commanded acceleration will

result in a reaction wheel angular velocity in excess of the maximum velocity, and if

the maximum velocity will be exceeded, the commanded acceleration for that wheel

is set to 0.

4.4.5 Environment Model

The environment is separated into the reaction wheel array actuator and the

spacecraft structure. The Simulink model of the environment is shown in Figure 34.

As stated previously, the input to the environment is the previous state and the

reaction wheel angular acceleration commands from the controller. The previous
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Figure 34. Environment Simulink Model

state and commanded wheel accelerations are input into the reaction wheel array

component, which then updates and outputs the updated reaction wheel angular

velocities, as well as the angular momentum and change in angular momentum of the

RWA that acts on the spacecraft. The structure model receives the previous spacecraft

orientation and angular velocity as well as the updated RWA angular momentum and

change of angular momentum and updates and outputs the spacecraft orientation

and angular velocity.

4.4.6 Reaction Wheel Array Model

As discussed in Chapter II, the function of the RWA is to impart a change of

angular mometum on the spacecraft which must be met with an equal and opposite

change in angular momentum from the spacecraft to conserve the total angular mo-

mentum of the system in the absence of external torques. The functionality of the

RWA is broken down into instances of a reaction wheel component. The Simulink
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model of the RWA is shown in Figure 35. The RWA contains model reference blocks

Figure 35. RWA Simulink Model

that import four instances of a single reaction wheel component model. Following

composition practices from cyber-physical systems presented in Section 2.1.4, each

reaction wheel instance has unique input and output names. The code for a reac-

tion wheel component model is shown in Figure 36. Each reaction wheel instance

receives its previous angular velocity and the commanded angular acceleration from

the controller, and updates and outputs its angular velocity, angular momentum, and

change in angular momentum about the access of spin of the reaction wheel. The

change in reaction wheel angular momentum about the axis of spin is calculated as a

product of the wheel’s mass moment of inertia D and their angular acceleration. The

updated angular velocity is a sum of the previous angular velocity with the product
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Figure 36. Reaction Wheel Model Code

of the angular acceleration and the constant timestep of the simulation. The updated

reaction wheel angular momentum is a product of the reaction wheel’s mass moment

of inertia D with the updated angular velocity of the wheel.

Figure 37. RWA Model Code

The RWA is modeled with a user defined function block that receives the updated

angular velocities, angular momentums, and changes in angular momentum from

each of the reaction wheels. The code contained within the RWA block is shown in

Figure 37. With its inputs and the constant S matrix that orients each reaction wheel

with the spacecraft body frame and the mass moment of inertia D of each individual

wheel, the RWA block outputs the angular velocity of each wheel as well as the total

angular momentum and change of angular momentum of the RWA.
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4.4.7 Spacecraft Structure Model

The code contained within the structure block is shown in Figure 38, and based

on the state equations presented in Chapter III but calculates each state component

individually.

Figure 38. Spacecraft Structure Block Code
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The spacecraft structure component model accepts the previous spacecraft ori-

entation, previous spacecraft angular velocity, and internal angular momentum and

change in angular momentum of the RWA and computes and outputs the updated

spacecraft orientation and spacecraft angular velocity. The previous reaction wheel

angular velocities and accelerations are backed out of the internal angular momentum

and change of angular momentum contributed by the RWA.

4.4.8 RTA Model

When the RTA controller is used, the simulation model references the RTA con-

troller rather than the PID controller but otherwise remains unchanged. The environ-

ment component of the model remains completely the same. The controller compo-

nent references the RTA controller and the PID controller is referenced by the verified

controller component of the RTA controller design. The model of the RTA Controller

is shown in Figure 39. As seen in Figure 39, the RTA Controller model features three

main components: an unverified controller, a verified controller, and a decision mod-

ule. The unverified controller component could be any high performance controller

than cannot be verified, and is intended to be an intelligent controller; however, for

the purposes of demonstration, the unverified controller component in Figure 39 is

a model reference block that references a ramp function, which will violate require-

ment R02 that limits the maximum reaction wheel angular velocities. The verified

controller is a model reference block that calls the rate-limited PID controller. The

unverified and verified controller components both receive the previous state of the

system and output a commanded angular acceleration to each of the four reaction

wheels. The competing outputs of both the unverified and verified controllers are

inputs to the monitor and decision module component which along with the previous

state of the system is used to determine which controller output will be sent to the

92



Figure 39. Run Time Assurance Controller Model

RWA. The decision module code is shown in Figure 40. As seen in Figure 40, a per-

sistent local variable is introduced called “Violation.” This local variable is used to

provide a history of whether or not the unverified controller has previously violated

the two safety properties of interest. If a previous violation has occurred, the output

of the unverified controller is deemed to be untrustworthy, and the output of the ver-

ified controller will automatically be selected as the output from the decision module,

and larger RTA controller subsystem. If a violation has not occurred previously, the

decision module component checks whether the commanded angular velocity outputs

of the unverified controller component will violate the maximum angular velocity and

maximum angular acceleration of the reaction wheels.
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Figure 40. Decision Module Code
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4.5 Feasability Analysis

As was discussed in Section 4.2.1, liveness requirements, such as a requirement that

specifies a maximum slew rate for a maneuver, are satisfied in part by showing that

it is mathematically feasible to achieve the desired requirement. Since the intent of a

slew rate requirement is to provide guidance to proper sizing of an ACS actuator, FA

may be sufficient to show satisfaction of the requirement. In order to show satisfaction

of the slew rate requirement in this research, the maximum possible spacecraft angular

velocity about each axis as a result of RWA actuation from initial spacecraft and

reaction wheel velocities of zero was studied. The constants used to do the calculations

in this section are summarized in Table 6.

Table 6. Constants Used in Feasability Analysis

Variable Description Value Units

D Reaction wheel mass moment of inertia in the axis of spin 4.12×10−5 kg-m2

ψmax Maximum reaction wheel angular velocity 576.0 rad/s

ψmax Maximum reaction wheel angular velocity 5500 rpm

Ixx Spacecraft mass moment of inertia in the x-axis 0.021875 kg-m2

Iyy Spacecraft mass moment of inertia in the y-axis 0.0443657 kg-m2

Izz Spacecraft mass moment of inertia in the z-axis 0.0559267 kg-m2

First, the maximum angular velocity about the spacecraft z-axis ~ωmaxz is achieved

when all 4 wheels are spinning at their maximum velocity, since all four wheels con-

tribute equally to the spacecraft z-axis, and may be calculated with
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~ωmaxz = −IS



ψmax

ψmax

ψmax

ψmax


. (44)

The maximum velocity about the x-axis ~ωmaxx is achieved by the use of only wheels

1 and 2 or 3 and 4, due to the orientation of the wheels in the spacecraft. If wheels 1

and 2 are accelerated to their maximum velocity from rest, a total spacecraft angular

velocity may be calculated from

~ωmaxx = −IS



ψmax

ψmax

0

0


. (45)

The maximum velocity about the y-axis ~ωmaxy is achieved by the use of only wheels

1 and 4 or 2 and 3. If wheels 1 and 4 are accelerated to their maximum velocity from

rest, a total spacecraft angular velocity may be calculated from

~ωmaxy = −IS



ψmax

0

0

ψmax


. (46)

The results of this analysis are presented in Section 5.2.
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4.6 Hypothesis Testing in Simulation

In this research, requirement satisfaction determination in simulation is based

on hypothesis testing concepts. Hypothesis testing is a formal way of determining

whether or not a system meets a specification or requirement. Traditionally, hy-

pothesis testing is used in statistics to estimate a population parameter, such as a

population mean, based on a population sample and a preconceived notion, or hy-

pothesis, of the value of that parameter.[71] Each hypothesis tested consists of a null

hypothesis H0, which is traditionally the assumed status quo, and an alternative hy-

pothesis H1), which traditionally bears the burden of proof. One way to select the

null hypothesis, is to assign it the requirement, specification, or property you are

trying to prove, and to place all other cases in the alternative hypothesis. In the

case of evaluating inequalities, the null hypothesis should always contain the equiv-

alence term (=,≤,≥).[71] The null and alternative hypothesis for each requirement

are summarized in Table 7.

Table 7. Null and Alternative Hypotheses used to Evaluate the Requirements

Req’t H0 H1 Assumption

R01 |ψ̇com| ≤ ψ̇max |ψ̇com| > ψ̇max H0 is true

R02 ψpre + ψ̇com∆t| ≤ ψmax ψpre + ψ̇com∆t| > ψmax H0 is true
R03 ep ≤ er ep > er H0 is true
R07 eventually ||~ωmax|| ≥ ωr never ||~ωmax|| ≥ ωr H1 is true
R08 ||~ω|| ≤ ωdr ||~ω|| > ωdr H0 is true
R09 ep ≤ etdr ep > etdr H0 is true
R10 Ts2% ≤ Ts2%r Ts2% > Ts2%r H1 is true
R11 Ts5% ≤ Ts5%r Ts5% > Ts5%r H1 is true
R12 Tωmax ≤ Trt Tωmax > Trt H1 is true
R13 %OS ≤ %OSr %OS > %OSr H1 is true

The requirements of the 6U CubeSat attitude control system are evaluated using

hypothesis testing within each requirement’s scope as stated previously. Require-

ments R01, R02, R03, R08, and R09 are requirements regarding variables that are
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recalculated at every timestep and are considered violated if those variables exceed

a specified value in any timestep. In the Cyber-Physical systems community, these

requirements are considered invariants of the system, as described in Section 2.2.1.

The approach used to hypothesis test these requirements is to assume that the null

hypothesis is true and if at any point during the simulation the alternative hypothesis

becomes true, then the requirement is falsified. For example it is assumed that the

reaction wheel angular accelerations are always less than or equal to the maximum

values, and if any one of the reaction wheels exceed the maximum acceleration at any

point in the simulation, the requirement is falsified. This check is done inside the

simulation loop, with a tracking variable that is permanently flagged as false for the

current timestep and all future timesteps if the requirement is violated. This check is

done with the following generalized psuedocode: if RXX is true and RXX is

within scope and variable x > RXX value, then RXX is false.

For requirement R07, the slew rate is also recalculated at every timestep and the

requirement is considered to be true if at any point in the simulation, the angular

velocity of the spacecraft is greater than or equal to the slew rate requirement. In the

cyber-physical systems community, requirement R07 is considered a liveness property,

as described in Section 2.2.1. The approach used to hypothesis test this requirement

is to assume that the null hypothesis is false, and if at any point during the simulation,

the null hypothesis becomes true, the requirement is satisfied. This requirement check

is also done inside the simulation loop, but with a variable that is permanently flagged

as true for the current timestep and all future timesteps if the requirement is satisfied

even once. This check is done with the following generalized pseudocode: if RXX

is false and variable x ≥ RXX value, then RXX is true.

Requirements R10, R11, R12, and R13 all deal with a control systems response

characteristic that is defined as a single value, and do not fall into a category of an
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Figure 41. Generalized Example of 2 and 5 Percent Settling Time Determination

invariant or liveness property. The 2% and 5% settling time (R10 and R11) may

be visualized in Figure 41, which represents the final few seconds of the maneuver.

Figure 41 depicts the pointing error at the end of the maneuver with dotted hori-

zontal lines representing a range of within 5% of the desired orientation, and dashed

horizontal lines representing a range within 2% of the desired orientation. A dotted

vertical line represents the 5% settling time, and the dashed vertical line represents

the 2% settling time. When the pointing error enters and does not leave the 5% or

2% range for the remainder of the maneuver it is 5 or 2% settled. The 2% and 5%

settling time (R10 and R11) of the simulation is set within the loop by identifying the

first timestep when the orientation of the satellite is and remains less than or equal

to 2% or 5% of the desired orientation. This assignment is done with two checks

described by the following generalized pseudocode:

if X percent settled is false and percent of final is ≤

X percent, then RXX is true and time X percent settled =

current time. if RXX is true and percent of final is >

X percent, then RXX is false.

Anytime the system is within the desired range of the final orientation, these checks set

the X percent settled flag to true and the time X percent settled to the
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current time of the simulation, but will continue to check if the system ever leaves the

desired range, and if so, will set the X percent settled flag to false. Requirement

satisfaction is determined outside the loop with the following generalized pseudocode:

if X percent settled is true and time X percent settled ≤

time required, then RXX is true.

The rise time and percent overshoot (R12 and R13) are also calculated in the

loop with associated requirements checked inside the loop. The rise time Tr and

percent overshoot %OS for an example slew maneuver are depicted in Figure 42.

Figure 42 shows the overshoot of the pointing error ep(Tr) as a horizontal dotted

Figure 42. Example of Rise Time and Percent Overshoot Determination

line and the rise time Tr as a vertical dotted line. The percent overshoot is cal-

culated as a ratio of the overshoot ep(Tr) and the initial pointing error ep(t0). In

simulation, the rise time and percent overshoot are identified by locating the first

peak in the pointing error graph, and assigning the rise time as the simulation time

where that peak occurs and percent overshoot as the pointing error as a percent

of the original pointing error. Prior to the simulation, the rise time is initialized
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as -1 seconds, and the requirement outside the loop is checked with the following

pseudocode: if rise time > 0 and rise time ≤ required rise time,

then RXX is true. The percent overshoot is perhaps the simplest check of them

all with the following pseudocode: if percent overshoot ≤

required percent overshoot, then RXX is true.

4.7 Simulation Analysis

In this section the set up for a SIM is described for a PID and RTA controller.

For the SIM of the PID and RTA controllers, a slewing maneuver was simulated from

an orientation of [0,0,0] to [90, 45, -45] degrees, as shown in Figure 43.

Figure 43. Initial and Final Orientation of the 6U CubeSat for the Simulated Slewing
Maneuver

4.7.1 Simulation Assumptions and Limitations

Several assumptions that limit the fidelity of the analysis and simulation are as

follows:

1. A simplifying assumption is made that the sensors provide perfect truth data

and the sensors themselves are abstracted out of the simulation.

2. It is assumed that the reaction wheel speeds input into the controller will not

exceed the maximum angular velocity, and that only the controller can cause

this condition to occur. In other words, the angular velocity of the reaction
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wheels is assumed to not exceed the maximum allowable before the controller

can react.

3. It is assumed that the system does not experience any external torques such as

gravity gradients or aerodynamic drag.

4. It is assumed that the system does not experience faults.

5. It is assumed that the CubeSat motion can be completely described using rigid

body dynamics.

6. The simulation was conducted with a fixed time step. Initially the simulation

was run at 10 Hz; however error propagation during the ramp phase of the

simulation was exceptionally high at approximately 30%. In the simulation

of the RTA Controller, the rate was increased to 1000 Hz, which reduced the

calculation error to 0.3% over the 200 second simulation. In the SFEDS, each

simulation was run at 500 Hz and the orientation quaternion was renormalized

at every timestep.

Properties of the reaction wheel array and 6U CubeSat testbed were measured or

estimated where possible; however some properties were assigned based on compar-

ative performance for similar systems. The 6U CubeSat testbed 3×3 inertia matrix

was taken from the AFIT SolidWorks model estimate. The individual reaction wheel

and motor 3×3 inertia matrix was measured about the spin axis using the Model

XR250 Measurement Instrument. The maximum reaction wheel speed used was the

maximum speed observed in the laboratory as measured by a laser tachometer.

4.7.2 Simulation Constants

Several constants are used in the simulations. Simulation properties are summa-

rized in Table 8, properties of the CubeSat are summarized in Table 9, properties of
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the RWA are summarized in Table 10, initial and final conditions for the SIM are

summarized in Table 11 and Table 12, and values used to create the gains of the PID

controller are summarized in Table 13.

Table 8. Simulation Properties for PID Control Simulation

Variable Description Value Units
∆t Time step of the simulation 0.001 s
t0 Initial time of the simulation 0 s
tf Final time of the simulation 100 s

n Number of simulation timesteps
tf
∆t

-

Table 9. CubeSat Properties

Variable Description Value Units
Ixx Spacecraft mass moment of inertia in the x-axis 0.021875 kg-m2

Iyy Spacecraft mass moment of inertia in the y-axis 0.0443657 kg-m2

Izz Spacecraft mass moment of inertia in the z-axis 0.0559267 kg-m2

I Spacecraft mass moment of inertia matrix (diagonal matrix) kg-m2

Table 10. Reaction Wheel Array Properties

Variable Description Value Units
D Reaction wheel mass moment of inertia in the axis of spin 4.12E−5 kg-m2

ψmax Maximum reaction wheel angular velocity 576.0 rad/s
ψmax Maximum reaction wheel angular velocity 5500 rpm
τmax Maximum motor torque 0.0559267 kg-m2

ψ̇max Maximum reaction wheel angular acceleration 181.3 rad/s2

α1 Reaction wheel 1 angle from x-axis 315 deg
α2 Reaction wheel 2 angle from x-axis 45 deg
α3 Reaction wheel 3 angle from x-axis 135 deg
α4 Reaction wheel 4 angle from x-axis 225 deg
β Reaction wheels angle from z-axis 45 deg
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Table 11. Initial Conditions

Variable Description Value Units
Θ10 Initial rotation about the spacecraft x-axis 0 deg
Θ20 Initial rotation about the spacecraft y-axis 0 deg
Θ30 Initial rotation about the spacecraft z-axis 0 deg
q10 Initial quaternion element 1 0 -
q20 Initial quaternion element 2 0 -
q30 Initial quaternion element 3 0 -
q40 Initial quaternion element 4 1 -
Φ0 Initial principal Euler Angle 0 -
a10 Initial Euler Axis element 1 0 -
a20 Initial Euler Axis element 2 0 -
a30 Initial Euler Axis element 3 1 -

ψ̇0 Initial reaction wheel angular acceleration (all wheels) 0 rad/s2

ψ0 Initial reaction wheel angular velocity (all wheels) 0 rad/s
ω0 Initial spacecraft angular velocity 0 rad/s
m0 Initial external torque (all axes) 0 N-m

Table 12. Final Conditions

Variable Description Value Units
Θ1f Final rotation about the 1st spacecraft axis 90 deg
Θ2f Final rotation about the 2nd spacecraft axis 45 deg
Θ3f Final rotation about the 3rd spacecraft axis -45 deg
q1f Final quaternion element 1 0.5 -
q2f Final quaternion element 2 0.5 -
q3f Final quaternion element 3 0 -
q4f Final quaternion element 4 0.7071 -
Φ0 Final principal Euler Angle 1.5708 rad
a10 Final Euler Axis element 1 0.7071 -
a20 Final Euler Axis element 2 0.7071 -
a30 Final Euler Axis element 3 0 -

Table 13. PID Control Values

Variable Description Value Units
ωn Natural frequency 1 Hz
ζ Damping ratio 5 -
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4.8 Space Filling Experimental Design Simulation Analysis

To complete the SFEDS of the PID controller, test points may be generated using

a nearly orthogonal hypercube design to vary the initial and final orientation of the

spacecraft for a slewing maneuver simulation. The initial and final pointing angle

of the satellite are described by a set of 3 rotations about the x, y, and z-axis,

which are then converted to quaternions to avoid encountering singularities during

the simulation. The initial and final rotation about the x, y, and z-axes could be any

value between 0 and 360 degrees. The x, y, and z components of the initial and final

pointing angles are the six factors, or independent variables of the design. In order

to test every possible combination of initial and final spacecraft orientations, 3606

simulations would need to be completed, which at 11 seconds a simulation, would take

over 69 million years of computing time. Fortunately much more efficient simulation

techniques have been developed to simulate a representative sample of all possible

test points. For this research, a NOLH design is used to feed inputs to the SFEDS.

257 design points were generated for the 6 factors using the spreadsheet developed by

Professor Susan M. Sanchez,[79], which employs the algorithm described by Cioppas

2002 Doctoral Dissertation.[29] The 257 design points, one for each unique input and

output in the NOLH design, are read by a MATLAB m-file that simulates 257 runs.

4.9 Reachability Analysis

As introduced in Section 4.2.1.3, requirements R04, R05, and R06 all deal with the

concept of reachability. Each of these requirements state that the spacecraft should be

capable of pointing in any direction from 0 to 360 degrees about a particular axis: x-

axis for R04, y-axis for R05, and z-axis for R06. While reachability could be formally

proven for a linear system by proving that the system is completely controllable using

a controllability matrix, analysis of a nonlinear system’s reachability is not trivial. In
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this research a MATLAB batch simulation is used to provide some insight into the

reachable space of the ACS, by simulating slews from 0 degrees to each whole number

degree from 1 to 360 for each axis individually. This results in 360 test points per

axis for a total of 1080 test points overall. If the pointing error at the end of the

100 second simulated test case is less than 0.001 degrees, then the final angle in the

simulation is considered to be reachable.

Figure 44. Reachability Simulation Test Points Representation

To visualize where these test points are located, two graphs were created as shown

in Figure 44. Figure 44 (a) shows the test points as a product of their Euler axis

with their Euler angle, so that they cover the x, y, and z-axes with values from -π

to π. Figure 44 (b) shows the test points in degrees along the x, y, and z-axes, with

points at every degree from 1 to 360. The results of this analysis are presented in

Section 5.5. The use of alternative reachability analysis techniques such as a Flow*

[27] simulation of reachable system states, or that presented by Lewis [65] or Bradley

et al. [21] are left for future work.
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4.10 Summary

Chapter IV described the requirements to be verified and the architecture and

models developed for the research before describing how the FMA, SIM, SFEDS, and

FA are conducted. The results of these analyses will be presented in Chapter V.
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V. Results

In Chapter V, results from the analysis techniques described in the Chapter IV

are presented. Results from FMA and SIM of the PID and RTA controller designs,

FA of the slew rate requirement, SFEDS of the PID controller design, and batch

simulation for the reachability of the ACS are presented as verification evidence that

the requirements are satisfied by the controller implementation.

5.1 Formal Methods Analysis Results

Results of the FMA of the RTA controller are shown in this section. The PID

controller is used as the verified controller component in the RTA controller design,

so FMA is conducted on it as part of the compositional verification of the RTA con-

troller. The RTA controller design was successfully implemented in SpeAR, AADL,

and Simulink. Using SpeAR’s reason tool, AGREE, and SLDV, the implementation

of the controller in each of these tools was analyzed against the eight safety prop-

erties presented in Section 4.3.4. In SpeAR and AGREE, the unverified controller,

verified controller, and decision module were all analyzed separately before they were

combined compositionally into the RTA controller and analyzed at the controller sub-

system level. All eight of the properties were proven valid for the verified controller,

decision module, and larger RTA controller subsystem; however, the properties could

not be proven for the unverified controller. In SLDV, analysis could only be com-

pleted on the verified controller and decision module, but could not be completed at

the RTA controller subsystem level, due to limitations in SLDV analysis capabilities.
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5.1.1 SpeAR Requirements Analysis Results

Using the methods described in Sections 2.4.1 and 4.3.2, the requirements of the

system were analyzed to determine if they property constrain the design to prevent

violation of system safety properties. The results of the SpeAR analysis presented

in Figure 45 show that all eight safety properties presented in Section 4.3.4 are valid

at the RTA controller level and for all of the RTA controller components except

the unverified controller component. In Figure 45, the results of the RTA controller

Figure 45. Results of SpeAR Analysis on RTA Controller Design
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level analysis are listed at the top, the results of the unverified controller analysis

are listed second, the results of the verified controller analysis are listed third, and

the results of the decision module analysis are listed last. The green checkmarks and

“Valid” result indicate where the safety properties are held, while the red exclamation

point and “Invalid” indicate which safety properties are not held. These results

are as expected. In other words, based on the assumptions on the input to each

of the subsystems, and the derived requirements of the subsystems, it was proven

that no case existed in which the output of the verified controller, decision module,

or RTA controller as a whole would violate the safety properties of the system in

abstracted requirements and architecture levels of the system description. SpeAR

is being developed by members of the same organization responsible for developing

AGREE and uses the same underlying solvers as AGREE, JKind and Z3. SpeAR

and AGREE are both designed to enable compositional verification, a capability that

allows SpeAR and AGREE to pull information from the subcomponent level analysis

up to the subsystem level analysis. For this research, it means that SpeAR and

AGREE can pull information from the verified controller, unverified controller, and

decision module up to complete analysis of the RTA controller as a whole. If desired,

it could pull information from the controller and environment levels up to complete

a system level verification as well. In SpeAR, compositional verification of the RTA

controller took less than a second to complete. This short analysis timeframe makes

SpeAR analysis a valuable tool that can be run quickly to provide feedback during

requirements development each time that an assumption, requirement, or derived

requirement is added, deleted, or changed.
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5.1.2 AGREE Architecture Analysis Results

Using the methods described in Sections 2.4.2 and 4.3.2, an architecture imple-

mentation of the ACS in AADL was analyzed using AGREE to determine if the

implementation violates the safety properties presented in Section 4.3.4. The results

of the AGREE analysis for the RTA controller are shown in Figure 46. While the

SpeAR analysis took less than 1 second to complete, AGREE analysis took approx-

imately 16 seconds, which also makes it a useful tool to quickly provide feedback

to designers when architecture information is added, deleted or modified during ar-

chitecture development. The results in Figure 46 are expanded at the RTA level to

reveal the velocity and acceleration properties for each wheel. The decision module

(DM sub) and verified controller (VER sub) properties are all also proven; however

the properties are invalid for the unverified controller (UNV sub), as indicated by

the red box with containing the exclamation mark. In order to completely prove the

RTA controller, one simply needs to remove the safety property guarantees from the

unverified controller; however the safety properties are included in the SpeAR and

AGREE analysis shown results here for demonstration purposes.

Figure 46. Results of AGREE Analysis on RTA Controller Design
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5.1.3 SLDV Model Analysis Results

Using the methods described in Sections 2.4.3 and 4.3.2, the Simulink model of

the ACS could be analyzed using SLDV at the component level but the size of the

model prevented RTA level analysis from being completed. Theoretically, analysis

at the RTA level should be possible using model reference; however the Simulink

model contains a much more detailed implementation of the system than the SpeAR

and AADL model, resulting in a more computationally complex analysis task. For

example, SLDV analysis of the decision module was able to prove all 8 of the safety

properties as valid; however it took SLDV 23 seconds to complete the analysis for

the decision module, while it took SpeAR less than 1 second and AGREE about

16 seconds to prove all the properties of the RTA controller, including the RTA

controller’s decision module and verified controller subcomponents. SLDV results of

the rate-limited PID controller analysis were similar. When trying to prove RTA

controller level analysis, the results were undecided due to nonlinearities. This is

likely the result of a bug in SLDV which is expected to be fixed in future releases

and may enable RTA controller level analysis in the near future. The result of the

SLDV analysis for the decision module from the analysis report, which includes the

23 second analysis time, is shown in Figure 47. The result of the SLDV analysis for

the PID controller in the SLDV log window, which displays during and after analysis,

is shown in Figure 48.

Figure 47. Results of Simulink Design Verifier Analysis on the Decision Module

112



Figure 48. Results of Simulink Design Verifier Analysis on the PID Controller used as
the Verified Controller

5.2 Feasibility Analysis Results

Using the methods prescribed in Section 4.5, analysis was conducted to determine

if it is feasible for the RWA selected to produce the desired minimum slew rate

specified by requirement R07 in Section 4.1.1. First, a maximum spacecraft angular

velocity about the z-axis of the spacecraft ~ωmaxz was found to be 68.7 degrees per

second or 1.20 radians per second, with no angular velocity about the spacecraft x

and y-axes, since the orientation of the wheels cancels out contributions to those axes.

The maximum angular velocity about the spacecraft x-axis ~ωmaxx was found to be

62.2 degrees per second or 1.08 radians per second, with 34.4 degrees per second or

0.60 radians per second generated about the z-axis due to the contribution of the

wheels’ angular momentum to the z-axis in addition to the x-axis. The maximum

velocity about the spacecraft y-axis ~ωmaxy was found to be 30.6 degrees per second

or 0.53 radians per second, with 34.4 degrees per second or 0.60 radians per second

generated about the z-axis. The results of the feasibility analysis are summarized
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in Table 14. The maximum possible velocity about each spacecraft axis when the

Table 14. Maximum Possible Spacecraft Angular Velocity About Each Axis

Variable Axis Value Units
~ωmaxx x 62.2 deg/s
~ωmaxy y 30.6 deg/s
~ωmaxz z 68.7 deg/s

spacecraft and reaction wheels start at rest and the reaction wheels are accelerated

to their maximum velocity, as described in Section 4.5, far exceed the threshold and

objective slew rates of 3 and 7 degrees per second, respectively. Based on these results,

not only is it feasible for the spacecraft to reach the desired slew rate, the RWA is

likely over designed, and the requirement may be met by a lower mass RWA design.

5.3 Simulation Analysis Results

In this section, results are presented for the SIM of the PID controller only. Then

SIM results for the RTA controller are presented for a case where the unverified

controller is a velocity ramp function, which is guaranteed to violate the safety prop-

erties for the purpose of simulating the transition from the unverified to the verified

controller within the RTA controller architecture.

5.3.1 Simulation of PID Controller

Using the methods, assumptions, and constants from Sections 4.6, 4.7.1, and 4.7.2,

a simulation was conducted to show the system requirements are met by the PID

controller design. A summary of the results of the requirement analysis is shown in

Table 15.
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Table 15. Results of the Requirements Analysis on the PID Control Design for a Single
Simulation Case

Req’t Description Threshold Objective

R01 |ψ̇com| ≤ ψ̇max satisfied satisfied

R02 ψpre + ψ̇com∆t| ≤ ψmax satisfied satisfied
R03 ep ≤ er satisfied satisfied
R07 eventually ||~ωmax|| ≥ ωr satisfied satisfied
R08 ||~ω|| ≤ ωdr satisfied satisfied
R09 ep ≤ etdr satisfied satisfied
R10 Ts2% ≤ Ts2%r satisfied satisfied
R11 Ts5% ≤ Ts5%r satisfied satisfied
R12 Tωmax ≤ Trt satisfied satisfied
R13 %OS ≤ %OSr satisfied satisfied

Figure 49. Performance Requirements for PID Controller Simulation
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Figure 50. Control Systems Analysis Requirements for Simutaion with Reaction Wheel

Array Actuation Only

To visualize the requirements, several plots were created as shown in Figure 49

and Figure 50. As seen in Figure 49 (a) and (b), the wheel angular acceleration and

wheel angular velocity plots for all 4 of the wheels are well within the maximum limits,

showing satisfaction of R01 and R02, respectively. The pointing error in Figure 49 (c),

drift rate in Figure 49 (e), and total drift in Figure 49 (f) are all within the threshold
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and objective requirements, showing satisfaction of requirements R03, R08, and R09

respectively. The slew rate in Figure 49 (d) exceeds the threshold and requirement,

showing satisfaction of requirement R07.

As seen in Figure 50 (a), the 2 and 5 percent settled times are far less than the

required settled time objectives. In Figure 50 (b) it may be seen that the rise time

satisfies the rise time threshold and objective requirements, depicted as vertical lines

on the plots. In fact, the rise time of 13.1 seconds is far less than the 120 second

objective. As seen in Figure 50 (c) the percent overshoot requirement is also well

below the objective and threshold for the requirement. A summary of the settling

times, rise time, and percent overshoot is displayed in Table 16.

Table 16. Control Systems Analysis Requirements Summary

Req’t Variable Value units

R10 Ts2% 18.8 s

R11 Ts5% 20.6 s

R12 Tωmax 13.1 s

R13 %OS 13.2 %

5.3.2 Simulation of Run Time Assured Controller

For the purposes of demonstrating the switching action of the RTA controller,

a second simulation was conducted using the setup described in Sections 4.6, 4.7.1,

and 4.7.2 for the model described in Section 4.4.8. A ramp function with a constant

acceleration command to each of the reaction wheels was used in the place of the

unverified controller because it was sure to violate system safety properties. The

results of the slewing maneuever simulation are shown in Figure 51.

The spacecraft orientation is expressed as a quaternion and eventually completes
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Figure 51. RTA Simulation with a Constant RWA Acceleration Ramp as Unverified
Controller

the desired maneuver as seen in Figure 51 (a). As seen in Figure 51 (d), the unveri-

fied controller (ramp function) maintains control by issuing the constant acceleration

command until 31 seconds into the simulation when the reaction wheel velocity shown

in Figure 51 (c) reaches the maximum allowable. The spacecraft reaches a maximum

angular velocity of about 1.2 radians per second about the z-axis under the control

of the ramp function as seen in Figure 51 (b). When the reaction wheels reach their

maximum velocity, the decision module switches command to the verified controller

(rate-limited PID controller) for the remainder of the slewing maneuver. As seen in

Figure 51 (d), the rate-limited PID controller reaches the maximum negative reaction

wheel acceleration possible immediately after the switch in an attempt to dramati-

cally decrease wheel speeds. After a few seconds, the acceleration commands leave
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the maximum acceleration as the PID controller begins to settle out and eventually

reach the desired spacecraft orientation.

5.4 Space Filling Experimental Design Simulation of the PID Controller

In this section, results are presented for the SFEDS of the PID controller. Using

the SFEDS setup described in Section 4.8, 257 test points in a nearly orthogonal

hypercube design were used to vary the initial and final orientation of the spacecraft

for a slewing maneuver SFEDS. The total number of violations for each requirement

when 257 test points were simulated with the rate-limited PID control design are

summarized in Table 17.

Table 17. Number of Requirement Violations for PID Control With Rate Limiting

Req’t Description Violations

R01 |ψ̇com| ≤ ψ̇max 0

R02 ψpre + ψ̇com∆t| ≤ ψmax 0
R03t ep ≤ ert 0
R03o ep ≤ ero 0
R07t eventually ||~ωmax|| ≥ ωrt 2
R07o eventually ||~ωmax|| ≥ ωro 6
R08t ||~ω|| ≤ ωdrt 0
R08o ||~ω|| ≤ ωdro 0
R09t ep ≤ etdrt 0
R09o ep ≤ etdro 0
R10t Ts2% ≤ Ts2%rt 0
R10o Ts2% ≤ Ts2%ro 0
R11t Ts5% ≤ Ts5%rt 0
R11o Ts5% ≤ Ts5%ro 0
R12t Tωmax ≤ Trtt 0
R12o Tωmax ≤ Trto 0
R13t %OS ≤ %OSrt 257
R13o %OS ≤ %OSro 257

As seen in Table 17, only requirements R07 and R13 were violated. These viola-

tions will be explored in more detail in the next two subsections.
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5.4.1 Slew Rate Requirement Violations

All violations of R07, which specifies a minimum value for the maximum slewing

rate achieved in the maneuver, occur below 25 degrees of net angle, defined as the

pointing error ep(t0) between the initial and final orientation. These violations likely

occur because the spacecraft angular velocity does not need to be very large for a

slewing maneuver across a small angle versus a large angle. For small angles, achieving

the desired slew rate during the maneuver would likely result in very large overshoots

of the desired orientation. The pointing error and slew rate of the cases where R07

were violated are plotted in Figure 52.

Figure 52. Pointing Error and Slew Rate for Test Cases Violating R07

From Figure 52 (a), it can be seen that the violating cases all reach their desired

final orientation in approximately 60 seconds or less without excessive slew rates,

which are shown in Figure 52 (b). The initial and final orientations are exactly

the same for one of the test points, so no slew rate is required at all. The slew

rate violations encountered in the SFEDS likely do not violate the intent of the
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requirement, which is that the system responds quickly to orientation commands.

For this reason, SFEDS is probably not the best way to determine whether a slew

rate requirement has been violated; however, SFEDS analysis does give designers

a good idea of how fast the spacecraft is slewing across a range of inputs. In this

case, 255 of 257 requirements featured a maximum slew rate in excess of 3 degrees

per second and 251 of 257 requirements featured a maximum slew rate in excess 7

degrees per second during the maneuver.

5.4.2 Percent Overshoot Requirement Violations

The percent overshoot requirement is a particularly problematic requirement be-

cause it is essentially a moving target that changes based on the maneuver com-

manded. Based on the original definition of percent overshoot that was calculated

as a ratio of the first inflection point and the initial error ep(t0), all cases violated

the percent overshoot requirement. A plot of the percent overshoot versus net an-

gle, or initial error is shown in Figure 53. Many violations likely occur because the

Figure 53. Percent Overshoot Versus Net Slew Angle
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percent overshoot is calculated as a ratio of the net angle, defined as the pointing

error ep(t0) between the initial and final orientation. When the net angle is small,

even a small overshoot angle is a much larger percentage of that net maneuver. This

may be observed in Test Point 41, shown in Figure 54. In many cases an inflection

Figure 54. Pointing Error from Test Case 41 with a Large Percent Overshoot for a
Small Angle Maneuver

Figure 55. Pointing Error from Test Case 163 with Initial Divergence from the Desired
Angle

point was identified in the simulation with in the first few time steps of the simula-

tion. In some cases, this was an extremely small increase in the pointing error after

the initial time step before the error decreased. In other cases, the percent error
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increased significantly before approaching the desired orientation, as observed in test

point 163 shown in Figure 55. Test cases such as 163 prompted a re-evaluation of

the definition of the percent overshoot. Two new definitions were generated: Max

Overshoot and Max Deviation. Max Overshoot is the maximum pointing error en-

countered after the pointing error has crossed the zero line. Max Deviation is the

maximum pointing error encountered over the course of the simulated test point.

These two characteristics are labeled in Figure 56. In the first alternative percent

Figure 56. Max Deviation, Max Overshoot, and Initial Error ep(t0) Definitions

overshoot definition, the percent overshoot is a ratio of the max overshoot and the

initial error ep(t0). This alternative percent overshoot is plotted against the net angle

in Figure 57. In the second alternative percent overshoot definition, the percent over-

shoot is a ratio of the max overshoot and the max deviation. The second alternative

percent overshoot is plotted against the net angle for each test point in Figure 58.

The number of violations of requirement R13 based on the two alternative definitions

of percent overshoot are summarized in Table 18. While percent overshoot may be

used as a performance requirement for control systems, the sensitivity of requirement

satisfaction to the magnitude of the maneuver makes this requirement particularly
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vulnerable to violations. Instead of using a percent overshoot, a max deviation or

raw max overshoot value may be a more appropriate requirement.

Figure 57. First Alternative Percent Overshoot versus Initial Error

Figure 58. Second Alternative Percent Overshoot versus Initial Error
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Table 18. Requirement Violations for Alternative Percent Overshoot Definitions

Requirement Violations

R13t (alternative 1) 76

R13o (alternative 1) 126

R13t (alternative 2) 63

R13o (alternative 2) 102

5.4.3 Using JMP to Identify a Statistical Response Model of Percent

Overshoot

JMP was used to identify if any models could be generated based on the raw

data used to determine requirement violations. No statistical models of any meaning

could be developed. In other words, all models had an R2 value near 0, indicating

that there was a very poor correlation between the model and the data. This lack

of a statistical model for the response of the requirements may be a product of the

nonlinear nature of the simulated controller and satellite dynamics. Variations of the

requirements were analyzed as a result of this data. The only variation of data used

to generate requirements that resulted in a relatively high R2 value was a difference

between the raw values of the max overshoot and max deviation as a function of the

net angle, which was found to have a statistical model with an R2 value of 0.712,

which is relatively strong correlation when the maximum possible R2 value is 1. The

statistical model generated by JMP for this data is shown in Eq.(47).
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180

π

(
0.0346737090350608 + 0.920855002187844(ep(t0))+

(
(ep(t0)− 0.627294612945526)(ep(t0)− 0.627294612945526)

)
(−0.00899644953544666)

)
.

(47)

The difference in max deviation and max overshoot for each of the test points is

plotted against the net angle as black dots, and the statistical model for the data is

plotted as a blue line in Figure. 59.

Figure 59. Max Deviation - Max Overshoot versus Initial Error and Model

5.4.4 Impact of Rate Limits on Requirement R01 and R02 Violations

A second SFEDS was conducted using the same 257 test points to determine the

impact of the rate limits on the PID controller by observing how often R01 and R02
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would be violated in the absence of rate limiting. The results of this simulation found

that the PID controller without rate limiting violated the maximum acceleration

requirement R01 in 63 cases, all within the first few seconds of the simulation. No

violations of R02 occurred in the 257 simulated cases. When rate limits are placed

on the PID controller, as derived requirements of R01 and R02, then R01 and R02

are not violated. The violations for each of the remaining requirements are the same

as the violation results for the PID control with rate limiting. In other words, rate

limiting only prevents violations of requirement R01.

5.4.5 Impact of Error Propagation on Requirement Violations

A major challenge encountered in the SFEDS analysis was balancing error prop-

agation with simulation runtime for a discretized simulation. In order to run the dis-

cretized simulation at a reasonable rate for 257 test points, a timestep of 0.005 seconds

was used. However, even with this small timestep, error propagation throughout the

simulation led to a number of requirements violations that were not observed when a

correction was added to the orientation calculation in the simulation code. Require-

ments R03 and R09 were particularly impacted as these requirements deal directly

with the error between the observed and desired pointing angle of the spacecraft.

Without any corrections, R03 and R09 objectives were violated in the same 64 test

cases and the threshold values of R03 and R09 were violated in 5 and 12 test cases

respectively. In addition, the objective and threshold of the rise time requirement,

R12, was violated in 3 cases. The requirement violations due to the propagation of

calculation errors in the simulation are summarized in Table 19. To remedy this error,

the quaternion vector was renormalized at each time step. Because the magnitude of

the quaternion should always be 1, each of the quaternion components was divided

by the magnitude of the quaternion at each time step to correct for orientation er-

127



Table 19. Requirement Violations Due to Error Propagation

Req’t Description Violations
R03t ep ≤ ert 5
R03o ep ≤ ero 64
R09t ep ≤ etdrt 12
R09o ep ≤ etdro 63
R12t Tωmax ≤ Trtt 3
R12o Tωmax ≤ Trto 3

rors. This does not prevent errors from building up in the spacecraft velocity over the

course of the simulation, so it is possible a small error persisted in the final SFEDS.

5.4.6 Space Filling Experimental Design Simulation Summary

The results of the SFEDS showed that requirement violations were only encoun-

tered in requirement R07, which is met if a minimum value of the maximum slew rate

is observed in the maneuver, and R13, which deals with percent overshoot. Explana-

tions were provided for these violations and alternative percent overshoot definitions

were explored. It was found that in many cases, a small inflection point in pointing

error ep occurred immediately after simulation initialization or the pointing error ini-

tially diverged from the desired orientation as seen in Figure 55. A statistical model

could not be generated for any of the requirements violations when compared with

the net slewing angle; however a statistical model could be generated to relate the

different between the max deviation of the pointing error from the desired angle and

the max overshoot. Rate limiting of the PID controller was found to prevent violation

of requirement R01, which limits the maximum acceleration of the reaction wheels,

in 63 cases. A mitigation technique for calculation errors was presented. It was noted

that the SFEDS was not appropriate for determining satisfaction of a slew rate re-

quirement and that a requirement on overshoot limitations may better be expressed

as a max deviation or max overshoot value in degrees or radians.
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5.5 Reachability Analysis Results

A description of the reachability simulation setup is provided in Section 4.9. As

was described, an angle is considered to be reachable if the pointing error at the end

of the 100 second simulated test case is less than 0.001 degrees. All 1080 test points

were determined to be reachable. Plots of the pointing error over time for each axis

may be seen in Figure 60.

Figure 60. Reachability Pointing Error

Figure 60 (a) is a simulation of all the points on the x-axis, Figure 60 (b) is a

simulation of all points on the y-axis, and Figure 60 (c) is a simulation of all points

on the z-axis. Because the controller maneuvers across the shortest distance between

two angles, the maximum error is 180 degrees. An unexpected insight gained from

this set of test points is the difference in overshoot by axis. The x-axis simulated

pointing error overshoots the desired angle by a maximum of 27.9 degrees, the y-axis

simulated pointing error overshoots the desired angle by a maximum of approximately

9.9 degrees, and the z-axis simulated pointing error overshoots the desired angle by

a maximum of 5.1 degrees. It makes sense that the z-axis would have the lowest

overshoot because all four reaction wheels may have the same maximum contribution

to the z-axis, giving the system the most control authority about the z-axis. The

129



difference between the x and y occurs because the spacecraft moment of inertia about

the y-axis is more than twice the moment of inertia about the spacecraft x-axis.

5.6 Summary

In Chapter V, results from FMA, SIM, SFEDS, reachability SFEDS, and FA show

satisfaction of all of the requirements of the PID controller with the exception of the

percent overshoot requirement. It is recommended that a max overshoot value be

used, rather than a percent overshoot requirement that is highly sensitive to the initial

error. FMA and SIM results of the RTA controller were also presented showing that

the two safety requirements that limit the maximum angular velocity and acceleration

of the wheels are always satisfied by the RTA implementation.
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VI. Conclusions and Recommendations

6.1 Research Summary

The scope of this research was to generate verification evidence that a controller

implementation satisfied a set of requirements during the early design stages of a

theoretical RTA controller design. The RTA controller’s unverified controller compo-

nent in this research was an abstracted “black box” controller that could represent

any complex, learning, or intelligent controller design; however this controller could

also be a “gray box” or “white box” controller that provides more knowledge of the

unverified controller behavior. The RTA controller’s verified controller was a rate-

limited PID controller. A decision module was added that monitored the behavior

of the unverified and switched to the verified controller to prevent safety property

violations. The RTA controller’s verified controller and decision module subcompo-

nents and the composition of the RTA controller were analyzed with FMA to prove

that safety requirements of the system are never violated. This result means that no

matter what control design is inserted in the unverified controller block, as long as

the inputs to the RTA controller are within a certain range, the output of the RTA

controller is guaranteed to not violate safety properties. Properties of the spacecraft

and RWA were analyzed using FA. The rate-limited nonlinear PID controller per-

formance was analyzed with SIM and SFEDS to understand under what conditions

performance requirements were satisfied or violated. Finally, a constant acceleration,

velocity ramp function was inserted into the unverified controller and SIM analysis

was performed to demonstrate the performance of the system when safety properties

were threatened and the decision module switched control to the verified controller.

The approach presented in this research lays the groundwork for formally verified

spacecraft attitude RTA control designs. Initial results on the application to a 6U
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CubeSat ACS with RWA actuation indicate that the use of an RTA architecture is a

viable way to assure that unverified control algorithms do not violate a predefined set

of properties. However, much more work is required to build a controller design that

is robust to faults and environmental conditions and interface that controller with

the spacecraft hardware. In addition, the decision module presented in this work

only monitored and switched on safety property violations, but does not consider

performance properties.

This work produced the first application and evaluation of SpeAR, AGREE, and

SLDV to provide traceable verification evidence for nonlinear system control in the

requirements, architecture and modeling design phases. In order to provide verifica-

tion evidence from the analysis methods used in this research, a new methodology

was developed to formally describe different classes of controls requirements. In addi-

tion a new methodology was developed to combine the use of RTA, FA, FMA, SIM,

and SFEDS to provide appropriate verification evidence for a spacecraft ACS design.

Traceability of the requirements analysis in each design phase from requirements to

architecture to models was accomplished with a consistent naming convention.

6.2 Conclusions

In this section, conclusions are presented about the selection of appropriate veri-

fication techniques, coverage of the design space by those techniques, the advantages

and disadvantages of FMA, and the impact of simulation errors in this analysis.

6.2.1 Selection of Appropriate Verification Techniques

Appropriate combinations of verification techniques were identified based on the

intent, scope, and complexity of each requirement as well as the coverage provided

by the verification technique, which will be discussed in Section 6.2.2. Verification
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of first two requirements in this research could be isolated to the controller software,

and requirement satisfaction could be formally proven. This formal proof was possible

because the rate limiting of the PID controller and the switching conditions of the

RTA controllers decision module were implemented with linear equations. For these

first two requirements, FMA was computationally inexpensive and provided complete

coverage of the design space. However, additional insight could be gained on whether

these requirements would be violated without rate limiting for the PID controller

using SIM and SFEDS. Verification evidence for the remaining requirements, with the

exception of those dealing with reachability, could also be generated using SIM and

SFEDS, which allow visualization of requirement satisfaction, and identification of

trends requirement violation conditions. A focused batch simulation for reachability

analysis can provide some insight into reachability requirement satisfaction; however,

coverage by such a technique is extremely limited. Finally, appropriate verification

technique selection for liveness requirements, such as a achievement of a specific slew

rate, is intent driven. Since the slew rate requirement intent is to provide guidance

to proper sizing of control actuators, FA was conducted in this research to show that

the actuator selected was capable of satisfying the requirement.

6.2.2 Verification Technique Design Space Coverage

The 6U ACS used in this research is designed to slew from one pointing orientation

to another pointing orientation. Perhaps the most intuitive way to visualize the

initial and final orientations is through an Euler Angle representation, presented in

Section 3.2.1.2, where the orientation is represented as three successive rotations

about a individual axes. The possible space of initial and final positions can then

be visualized as a cube with axes labeled θ1, θ2, and θ3, that each range from 0 to

360 degrees. The SIM analysis conducted in this research, which featured a single
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simulation case, can then be visualized as Figure 61, where the initial position is

represented by a ◦, the final position is represented by an ×, and a line is drawn

showing the shortest distance between the two points.

Figure 61. Experimental Space Coverage by the Single Simulation Case in this Research

Extending coverage from a single simulation case using a space filling experimental

design, like that used in the SFEDS in this research, results in coverage represented

by Figure 62.
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Figure 62. Experimental Space Coverage by the Space Filling Experimental Design

Simulation in this Research

The version of the SFEDS used to do an initial reachability analysis along each

axis resulted in design space coverage represented by Figure 63.
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Figure 63. Experimental Space Coverage by the Reachability Simulation in this Re-

search

The power of FMA becomes evident in the visualization of coverage of the entire

design space as seen in Figure 64.
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Figure 64. Experimental Space Coverage by the Formal Methods Analysis in this

Research

While FMA provides complete coverage of the design space, current limitations

in formal methods tools, only allowed it to be used to verify 2 of the 13 requirements.

Conducting a SIM gives a designer initial insight into the performance of the system

with relatively little computational burden and allows for visualization of require-

ments satisfaction for all 13 requirements. Conducting an SFEDS gives even more

insight and confidence in the design and helps to identify problem areas in the exper-

imental space where requirement violations are more likely to occur; however SFEDS

can be computationally expensive. To conduct an initial reachability analysis to gain

insight into requirements satisfaction, a simulation can be conducted in a targeted

way such as that presented in this research; however even this leaves considerable

open experimental design space.
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6.2.3 Formal Methods Analysis Tools

The power of formal methods lies in its ability to prove that for a range of in-

put conditions, the output of a component will never violate safety properties or

requirements within some number of steps. However, proof is limited to invariant

requirements that require something always holds, or bounded liveness requirements

that require something occur within a fixed timeframe. Controls performance require-

ments such as settling time, rise time, and percent overshoot which do not have a

temporal or conditional scope cannot be verified in the SpeAR, AGREE, or SLDV.

The most useful capabilities of SpeAR and AGREE are their compositional ver-

ification and their ability to do abstract analysis. SpeAR and AGREE can analyze

property or requirement satisfaction at the lowest levels of the system and compose

those results at increasingly higher levels up to the system level, which is an extremely

powerful approach to dealing with the state-space explosion problem. In addition,

analysis can be done on abstract variables. As long as the type of the variable is

provided, an expression or value does not have to be assigned to it in order for it to

be analyzed formally. This allowed analysis of the control systems outputs by only

specifying the rate limiting strategy for the PID controller, without specifying the

underlying PID control equations and equations of motion.

The power of using Simulink and SLDV is the ability to express and simulate

nonlinear equations and use model reference to compose a simulation. However, values

or expressions have to be assigned to each variable in SLDV and formal verification

can only be completed at the component level because compositional verification is

not currently supported. However, the rapid development cycle and improvements in

SLDV make this a possible addition in a future release.
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6.2.4 Simulation Errors

Like many cyber-physical systems in which the controller is discretized, the simu-

lations in this researched were subject to calculation errors. When simulations were

run at 10 Hz, some calculations were 30% off at the end of a 200 second simulation.

At 1000 Hz, these errors were reduced to 0.3% over a 200 second simulation. In order

to reduce errors in the SFEDS which was run at 500 Hz, the quaternion vector was

renormalized at each time step. This does not prevent errors from building up in the

spacecraft velocity over the course of the simulation, so it is possible a small error

persisted in the final SFEDS.

6.3 Recommendations

In this section, recommendations are made for ACS requirement specification and

future development of the formal methods tools used in this research.

6.3.1 Requirement Specification

All of the formalized requirements initially described in Section 4.2.1 worked well

for analysis in this research with the exception of percent overshoot. Because percent

overshoot is a ratio of the initial error, and a small inflection point often occurred right

after the maneuver initialed or the orientation moved away from the desired position

before it moved toward it in some cases, the definition provided in Section 4.2.1 did

not work well for the analysis. Two alternative definitions were defined in Section 5.4.

However, the biggest recommendation was that the overshoot requirement be a raw

overshoot requirement such as 30 or 40 degrees rather than a percentage of the initial

pointing error.
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6.3.2 Formal Methods Toolset Development Recommendations

The formal methods tools evaluated in this research are becoming more capable

and useable, but still have several gaps. The tools used to analyze the requirements,

architecture and model of the 6U CubeSat reaction wheel array attitude control sub-

system are sufficient to express system behavior and requirements that can be defined

with simple math and inequalities; however, a large gap still remains in their non-

linear system analysis capabilities making them suitable for some applications, but

not sufficient for complete analysis of the complex and nonlinear spacecraft attitude

control example presented in this thesis.

Throughout this research, several gaps were identified in the SpeAR, AGREE, and

SLDV tools that could greatly improve their usability and applicability to complex

systems such as the 6U CubeSat ACS. While most recommendations are specific to

individual tools, all of the tools could improve with nonlinear math support. The

largest barrier for the 6U CubeSat requirements analysis is the lack of support for

nonlinear math in SpeAR, AGREE, and SLDV, making exhaustive proof of the 6U

CubeSat requirements infeasible without first linearizing the system.

SpeAR and AGREE could both be improved with support for matrix multiplica-

tion and a built-in notion of time. In the case of the 6U CubeSat, the PID controller

and equations of motions for the satellite are most succinctly expressed and easiest to

debug in matrix form. Without matrix support, these equations become very long,

and it is more difficult to identify errors. As many of the requirements for this system

and other control systems deal with system performance over time, adding a notion

of time to SpeAR and AGREE would also be exceptionally useful. One workaround

for this gap is to include time as an additional state that increments by the time step

defined by the system rate. A built-in notion of time would simplify the expression

of time-dependent properties.
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SpeAR could also be improved with changes to the interface and unit expression

capabilities. The current version of SpeAR allows the user to define the interface of

the subsystem with named and typed inputs and outputs. However, while it currently

allows inputs to be expressed separately, outputs are defined as a unique type that

contains all the outputs of the system. Future versions of SpeAR will allow the user

to express each output of a system separately. One of the promising features of

SpeAR is its ability to perform unit checking on basic units. However, when more

complex units were utilized in this example, SpeAR was not able to perform correct

unit checking. This issue will also be addressed in the next version of SpeAR.

Though SLDV was the most mature of any of the formal methods tools, there

were still several challenges that needed to be worked through during development.

Initially analysis of any of the properties in SLDV produced errors, so an updated,

2015a version was used. This allowed some properties to be proven, some to be vio-

lated, and some that produced an “undecided due to nonlinearities” error. It didnt

make sense for there to be such a variety of analysis results because all four reaction

wheel commands are bounded using the exact same equations in the controller design.

After this perplexing development, software developers at MathWorks were contacted

who recommended only trying to prove one property at a time. By implementing this

workaround, the four properties regarding reaction wheel acceleration where proven

with no changes to the model, however the velocity properties were violated. This

time though, counterexamples (an example of how a property can be violated) were

presented for the wheel that showed the property could be violated if the angular

velocity of the wheels exceeded the maximum allowable angular velocity before the

control system had an opportunity to initiate control. To remedy this, an assumption

was added that the previous value of the angular velocity was not greater than the

maximum allowable angular velocity. This assumption constrains the formal analysis
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tools to only search spaces in which the angular velocity doesnt start larger than the

maximum before the control initiates. The inability to analyze all the properties at

once was identified as a bug and the controller, properties, and verification models

generated to do this analysis were sent to MathWorks. MathWorks identified what

was causing the unintended behavior, provided workarounds in the model configura-

tion, and will fix it in a future release.[62] Another major limitation of SLDV is its

inability to conduct compositional verification of a system based on its components.

For example, in this research, analysis of the RTA controller in SLDV yielded ”unde-

cided due to nonlinearies” errors. It is possible that this capability will be added in

future releases.

6.4 Recommendations for Future Work

This section presents and discusses several gaps and opportunities for expansion

of the research presented in this thesis.

6.4.1 Robustness and Resiliency Analysis

The models used in this research are deterministic; however, the initial system

state and variations in the environment, aging of components, and other factors make

the behavior of this controller design on an actual system non deterministic, and

could be modeled in future work to study the robustness of the system and analysis

techniques.

6.4.2 Hypothesis Testing Formal Methods Analysis Approach

Future research could apply the hypothesis testing approach presented in this

research to the FMA approach. Analyzing both the null and alternative hypothe-

sis would give extra confidence in the FMA verification evidence, by showing that
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the FMA was not providing spurious results. Future research could investigate ap-

propriate methodologies and evaluate the strengths and weaknesses of the combined

hypothesis testing and FMA approach.

6.4.3 Hierarchical Requirement Development

All of the requirements presented in this research were presented in a flat, one

level structure. However, research could be done to develop hierarchical requirements

assigned to levels of the system or controller design where high level controller perfor-

mance may be the highest level and derived requirements could be assigned at lower

levels. Developing a methodology to hierarchically structure formal requirements and

determining how that might impact how FMA is conducted could be an area of future

study.

6.4.4 Formal Methods Analysis of Autocoded Software

This research could be expanded by linearizing the 6U CubeSat model, compar-

ing the linear model performance to the nonlinear model, and conducting the formal

methods analyses described in this paper. In addition, the abrupt saturation limits of

the reaction wheels will need to be addressed in the formal methods analysis. Next,

C code from the Simulink model could be analyzed using Mathworks Polyspace Bug

Finder and Polyspace Code Prover.[6] The C code could be implemented on the AFIT

6U CubeSat Testbed attitude control subsystem and tests could be conducted to char-

acterize the actual performance of the system. These test results could be combined

with the simulation and formal methods analysis results to create an assurance case.
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6.4.5 Alternative Reachability Analysis Techniques

In this research, some insight was gained into the system reachability through

batch simulations; however, the use of alternative reachability analysis techniques

such as a Flow* [27] simulation of reachable system states, or that presented by Lewis

[65] or Bradley et al. [21] were left for future work. At the time of the publication of

this thesis, the author is currently developing a hybrid system reachability simulation

and anticipates publishing the results at a later date.

6.4.6 Additional Run Time Assurance Work

This work could be expanded in the future with the addition of mode logic, the use

of two or more actuators, the use of three or more controllers within the RTA controller

architecture, and the introduction of an intelligent controller. Mode logic could be

added to deal with faults or situations outside of the systems current operating range.

For example, the current design is limited by an assumption that the reaction wheels

are not spinning above the maximum rate before the controller can react; however,

this situation is possible if a fault occurs. Incorporating mode logic to react to this

situation will allow the removal of this assumption.

Using two or more actuators will also make the control system more resilient. For

example, the current control system design is intended to slew a satellite from rest

in one position to rest in another position; however CubeSats can experience large

angular velocities after being ejected from a CubeSat launcher and attempting to

slow the spacecraft angular velocity with only a reaction wheel array actuator can

cause the reaction wheels to saturate, a condition that occurs when a reaction wheel

reaches a velocity limit that prevents it from exerting additional influence on the

spacecraft attitude. Incorporating mode logic and an external torque actuator such

as a magnetic torque coil, which interacts with the Earths magnetic field to control
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the spacecraft attitude, could make the spacecraft more resilient. Information on

magnetic torque coils and initial development of an architecture and simulation with

a dual-actuated ACS is presented in Appendix II in Chapter VIII.

The RTA controller design presented in this paper only features two controllers:

verified and unverified. Future iterations could include three or more controllers,

where the decision module functions more like a negotiator that prioritizes control

tasks based on the current spacecraft state as well as the output of the control tasks

it is monitoring. A third controller within the RTA control architecture could be used

to transition from one controller to another, or provide functionality to deal with a

specific fault. Finally, the unverified controller block could play host to an artificially

intelligent or learning controller that provides a more optimal control approach.

6.4.7 Floating Point Math Error Estimation

One of the gaps in the FMA process presented in this paper is quantifying the

robustness of the analysis to calculation errors. Future work could also be conducted

in making guarantees about the robustness of the system to errors in the floating

point math used to estimate the equations of motion. Using a tool such as ASTREE

[37], to quantify the worst case floating point error for each calculation, the designer

could use the model checker to explore the tolerance of the guarantees to that error.

6.4.8 Reducing Abstraction

Effects such as integrator windup, timing delays, and sampling delays and their

impact on the analysis results are abstracted out of this research but could be explored

in future work. In this work, the sensors were abstracted and perfect truth data was

used. Sensors and the impact of noise could be modeled and analyzed in future work

to understand its impact on the verification evidence.
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6.4.9 Simulation Error Reduction

In this research, the discrete simulations were conducted using a fixed-step Euler

approximation solver for the change in system state at each timestep. Future work

could investigate the processing time versus simulation error for different discrete fixed

step solvers such as a second-order Heun method, a third-order Bogacki-Shampine

method, or a fourth-order Runge-Kutta (RK4) method.[5]

6.5 Formal Methods Analysis Availability

The SpeAR, AADL/AGREE, and Simulink/SLDV files used to conduct the FMA

in this research have been publically released with case number 88ABW-2015-6168

and are available on GitHub at https://github.com/AFRL-VVCAS/6UCubeSat.

SpeAR and AADL/AGREE are open source products, and Simulink and SLDV are

available through MathWorks.
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VII. Appendix I: Hardware Characterization

To verify models used to simulate the ACS, several measurements were taken and

behavior was compared to expectations. First, the mass moment of inertia (MOI)

of the wheel and Maxon motor[72] (the rotating components of the reaction wheel

array) was measured about the spin axis of the reaction wheel using the Model XR250

Measurement Instrument.[66] To reduce error, the average of four measurements was

used, and the electrical cabling was tucked as seen Figure 65.

Figure 65. MOI Test Setup for Single Reaction Wheel and Motor

The measured MOI was an order of magnitude larger than the MOI predicted

in a CAD model of the reaction wheel. Second, the MOI of the ADCS testbed was

measured about the z-axis using the XR250. A tare was taken with a hollow plastic

box on top (to be used to hold the spherical air bearing interface at the base of the

testbed). Two reduce error, three measurements were taken, and the testbed was

centered on the instrument and adjusted until it was measured level across the top

with two perpendicular measurements. The test setup is shown in Figure 66.
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Figure 66. MOI Test Setup for Testbed Z-axis

The measured MOI of the ADCS testbed was 0.475 kg-m2. Third, a modified

version of the attitude control C code developed by Tibbs [92] was set to command

a large acceleration until a large velocity was attained, and the steady state angular

velocity of the reaction wheels was measured using a laser tachometer. The electronics

board used to command the reaction wheels only facilitates three commands, so

only three wheels were spinning. There was no variation in the measurement so one

measurement was recorded for each wheel. The measured angular velocities of the

reaction wheels are shown in Table 20.
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Table 20. Measured Reaction Wheel Rotation Rates

Wheel rad/s rpm

1 549.5 5247

2 576.2 5500

3 534.1 5100

Fourth, the testbed was placed on the air bearing at rest in an off state and then

turned on. Once the reaction wheels had reached their steady state speed, the period

of rotation of the testbed about the z-axis was measured. The rotation rate and

period of the testbed about the z-axis was compared to a predicted rotation rate

and period calculated from the measured wheel and motor MOI, the measured z-axis

testbed MOI, and the rotation rate of the wheels. The comparison is summarized in

Table 20.

Table 21. Measured and Predicted ADCS Testbed Angular Velocity and Period

Source Velocity Period

Predicted 0.10 rad/s 62 s

Observed 0.22 rad/s 29 s

% Difference 112 % 53%

The predicted period was twice the length of the observed period and after exam-

ining several environmental factors such as air drag, imperfections in the air bearing,

and wobble in the test bed which should all decrease speed, not increase it as seen, it

was determined that a measurement error was to blame. The least reliable measure-

ment was that of the reaction wheel MOI as the instrument used is intended for much

larger objects up to 250 lbs, although the MOI measurement is technically larger than
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the MOI measurement error of 2.92639e-07 kg-m2 . Smaller MOI measuring devices

exist for more precise measurements. Based on observed period, measured wheel

speeds, and measured MOI of the testbed, a new predicted reaction wheel of 8.8e-05

kg-m2 was calculated. The different reaction wheel MOI values are summarized in

Table 22.

Table 22. Reaction Wheel MOI Measurement and Predictions

Source Value

Measured MOI 4.12×10−5kg-m2

CAD-Predicted MOI 5.85×10−6kg-m2

Experiment-Predicted MOI 8.80×10−5kg-m2

The measured MOI was used in the simulations for this research. The source

of the error in the CAD-predicted MOI was determined to be the selection of the

incorrect material for the reaction wheel model, which has since been corrected.

150



VIII. Appendix II: Magnetic Torque Coils

Appendix II includes information on magnetic torque coil actuation and simulation

as an avenue for future work in RTA, in which multiple verified controllers may be

used to deal with different spacecraft modes or ACS actuator faults.

8.1 Magnetic Torque Coil Simulation Assumptions

It is assumed that no external torques beyond that applied by the ACS actuators,

such as gravity gradient or aero torques, are acting on the CubeSat. The magnetic

field of the Earth is modeled using the 11th generation of the International Geo-

magnetic Reference Field (IGRF). For the purposes of simulating magnetic torque,

the spacecraft is assumed to be in a circular, equatorial orbit at an altitude of 400

kilometers on January 1, 2000.

8.2 AFIT Magnetic Torque Coils

The AFIT magnetic torque coils are comprised of 30 gage copper wire wrapped

in 400 turns around a plastic frame and mount with an area of 0.0036 m2, and are

provided 500 mA, resulting in a maximum magnetic dipole moment of 0.72 A-m2.[40]

This coil design is pictured in Figure 67.

Figure 67. AFIT’s Magnetic Torque Coil[40]
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In the AFIT 6U CubeSat ADCS Testbed, there are 3 magnetic torque coils, each

aligned with the body frame axes of the spacecraft. While the magnetic torque coils

may be placed anywhere in the chassis as long as they are in an orthogonal orientation

for 3-axis control, they are designed to be mounted inside the faces of the chassis as

demonstrated in Figure 68.

Figure 68. Three Magnetic Torque Coils Installed in a Plastic Chassis [12]

8.3 Magnetic Torque Coil Actuation

Magnetic torque coil arrays generate torque perpendicular to the Earth’s magnetic

field by applying electric current through a coiled wire. Unlike reaction wheel arrays,

which generate an internal torque that does not change the total angular momen-

tum of the spacecraft, magnetic torque coils produce an external torque which can

increase or reduce the spacecraft’s total angular momentum and are commonly used

to desaturate momentum exchange devices. The external torque is also very useful

for detumbling the spacecraft and placing it in a stable attitude relative to Earth’s

magnetic field. While magnetic torque coils have several advantages, their ability to

provide attitude control is limited by the spacecraft’s orientation and orbital position
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relative to the direction of Earth’s magnetic field. Magnetic torque coils produce less

precise than many other actuators with a typical precision no better than 1 degree,

and can interfere with onboard magnetometers; however, magnetic torque rods do not

require any fuel.[96][22][51] The magnetic dipole moment ~µ generated by a magnetic

torque coil with an air core is

µ = nIA (48)

where n is the number of turns in the wire, I is the current passing through the wire

and A is the cross sectional area of the space enclosed by the coil.[96]

The magnetic torque ~τ produced by a single torque coil is calculated from

~τ = ~µ× ~B (49)

where ~B is the magnetic field vector of the Earth in the spacecraft body frame.[96]

Arranging 3 magnetic torque coils orthogonal to one another in the spacecraft enables

2-axis attitude control. The torque vector (~τ) generated by aligning identical magnetic

torque coils with each of the body frame axes of the spacecraft is found from

~τ = − ~B×P t~µ (50)

where ~B× is a skew-symmetric matrix of components of ~B and P t is a 3×3 identity

matrix corresponding to the alignment of the magnetic torque coils with the body

frame axes of the spacecraft.

8.4 Magnetic Torque Coil Desaturation of the Reaction Wheel Array

Due to the redundancy of a 4-wheel RWA, a unique control solution does not exist

and a simple cross product law cannot be used to determine the magnetic torque
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required to desaturate the reaction wheels. A method to desaturate a redundant

reaction wheel array using a feedback term ū∗ presented by Hogan and Schaub [60]

is shown here as

ū∗ = −kD~ψ (51)

where k is a constant gain, D is the reaction wheel moment of inertia about the axis of

spin, and ~ψ is the vector of reaction wheel angular velocities. The resulting magnetic

dipole moment µ̄∗ generated by a magnetic torque coil is calculated from

µ̄∗ = −( ~B×Pt)
+

[
1

D
S

]
ū∗ (52)

where the superscript + represents the pseudoinverse of the matrix. The resulting

torque ~τ ∗ produced by the magnetic torque coil’s interaction with Earth’s magnetic

field may be calculated from

~τ ∗ = − ~B×Ptµ̄
∗. (53)

While the torque generated by the torque coils would ideally be equal and opposite

the torque generated by the reaction wheels (~τ ∗ + ~hrwa = 0), this rarely happens, so

Hogan and Schaub recommend the addition of another term ∆ū to account for the

difference, as

∆ū =
[ 1

D
S
]+

(~τ ∗ −

[
1

D
S

]
ū∗). (54)

When added to the current reaction wheel angular momentum ~hrwa and the feedback

term ū∗, the new commanded change in reaction wheel angular momentum becomes

~hrwac = ~hrwa + ū∗ + ∆ū =
[ 1

D
S
]×

(~τ ∗ −
[ 1

D
S
]
ū∗). (55)
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8.5 Equations of Motion with Torque Coil and Reaction Wheel Arrays

In this section, the state derivative equations of motion for a system with RWA

and magnetic torque control are presented.

The state vector x̄ is defined here as:

x̄ =

[
q̄ ~ω ~ψ

]T
=

[
q1, q2, q3, q4, ω1, ω2, ω3, ψ1, ψ2, ψ3, ψ4

]T
(56)

where the q terms are the elements of the quaternion describing the orientation, the ω

terms are the spacecraft angular velocity about each principal axis, and the ψ terms

are the angular velocity of each of the reaction wheels. The time rate of change of

the state can then be expressed as: [88][60]

˙̄x =


04×4 0.5Q4×3 04×4

03×4 −I−1ω×I −I−1ω×S

04×4 04×3 L4×4

 x̄−


04×4

I−1

04×3

S ~̇ψ +


04×4

I−1

04×3

 ~M +


04×4

03×4

U 4×4

 ~̇ψ (57)

where ~M is a vector of external torques acting on the spacecraft body axes, U 4×4 is

a 4×4 identity matrix, Q4×3 is

Q4×3 =



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


(58)

and L4×4 is the evolution of the wheel speeds as a function of the magnetic field,

calculated from
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L4×4 = −k ∗

(
U 4×4 +

[ 1

D
S
]+(

B×P t(B
×P t)

+ −U 3×3

)[ 1

D
S
])
. (59)

8.6 Compositionaal Architecture with Magnetic Torque Coils

In Section 4.3.1, the compositional architecture of the system was described. In

the model with magnetic torque coils, the coils are also broken down individually

in the architecture. The flow of signals between the components for the model that

includes magnetic torque coils is depicted in Figure 69. When the magnetic torque

coils are included, a commanded magnetic dipole moment is sent to each coil. The

resulting torque generated by the magnetic torque coil array is added to the total

spacecraft structure angular momentum in the structure.

Figure 69. 6U CubeSat Singal Flow for Model with Reaction Wheel Array and Mag-
netic Torque Coil Actuation
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8.7 Simulation of PID Control with Reaction Wheel and Magnetic Torque

Coil Actuation

Using the methods, assumptions, and constants from Sections 4.6, 4.7.1, and 4.7.2,

a simulation was conducted to show the system requirements are met by the PID con-

troller design that uses magnetic torque coils to dump momentum from the reaction

wheels. Just as seen in the reaction wheel only case, all of the testable requirements

are met in this simulation. A summary of the settling times, rise time, and percent

overshoot is displayed in Table 23.

Table 23. Control Systems Analysis Requirements Summary for Simulation with Mag-

netic Torque Coils and Reaction Wheel Array

Req’t Variable Value units

R10 Ts2% 11.4 s

R11 Ts5% 12.7 s

R12 Tωmax 7.8 s

R13 %OS 13.16 %

Just as seen in Section 5.3.1, plots were created as shown in Figure 70 and Fig-

ure 71, to show satisfaction of these requirements.
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Figure 70. Performance Requirements for Simulation with Magnetic Torque Coils and

Reaction Wheel Array
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Figure 71. Control Systems Analysis Requirements for Simulation with Magnetic

Torque Coils and Reaction Wheel Array
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