
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-24-2016

Autoencoded Reduced Clusters for Anomaly
Detection Enrichment (ARCADE) In
Hyperspectral Imagery
Brenden A. McLean

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Other Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
McLean, Brenden A., "Autoencoded Reduced Clusters for Anomaly Detection Enrichment (ARCADE) In Hyperspectral Imagery"
(2016). Theses and Dissertations. 487.
https://scholar.afit.edu/etd/487

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/487?utm_source=scholar.afit.edu%2Fetd%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AUTOENCODED REDUCED CLUSTERS FOR ANOMALY DETECTION 
ENRICHMENT (ARCADE) IN HYPERSPECTRAL IMAGERY 

 
 

THESIS 
 
 

Brenden A. McLean, Captain, USAF 
 

AFIT-ENS-MS-16-M-119 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 



 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States.



 

AFIT-ENS-MS-16-M-119 
 

 

AUTOENCODED REDUCED CLUSTERS FOR ANOMALY DETECTION 
ENRICHMENT (ARCADE) IN HYPERSPECTRAL IMAGERY 

 
 

THESIS 

 
Presented to the Faculty 

Department of Operational Sciences 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Operations Research 

 

 

Brenden A. McLean, BS 

Captain, USAF 

 

March 2016 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT-ENS-MS-16-M-119 

 

AUTOENCODED REDUCED CLUSTERS FOR ANOMALY DETECTION 
ENRICHMENT (ARCADE) IN HYPERSPECTRAL IMAGERY 

 
 

 
 

Brenden A McLean, BS 

Captain, USAF 

 

Committee Membership: 

 

Dr. Kenneth. W. Bauer, Jr. 
Chair 

 

Dr. Trevor. J. Bihl 
Reader 

 

 
 

 
 
 
 
 
 



iv 

 
AFIT-ENS-MS-16-M-119 
 

Abstract 
Anomaly detection in hyper-spectral imagery is a relatively recent and important research 

area. The shear amount of data available in a many hyper-spectral images makes the 

utilization of multivariate statistical methods and artificial neural networks ideal for this 

analysis.  Using HYDICE sensor hyper-spectral images, we examine a variety of pre-

processing techniques within a framework that allows for changing parameter settings 

and varying the methodological order of operations in order to enhance detection of 

anomalies within image data.  By examining a variety of different options, we are able to 

gain significant insight into what makes anomaly detection viable for these images, as 

well as what impact parameter and methodology changes can have on the total 

classification effectiveness, false positive fraction and true positive fraction regarding 

classification. 
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AUTOENCODED REDUCED CLUSTERS FOR ANOMALY DETECTION 
ENRICHMENT (ARCADE) IN HYPERSPECTRAL IMAGERY 

 
I.  Introduction 

General Issue 

How does one determine when outliers or anomalies exist within data?  Once 

outliers and anomalies are found, what confidence does one have that it actually 

represents an anomaly and what confidence does one have that it represents an anomaly 

of interest?  In simple problems, we can often attain insight into whether a data point is 

anomalous by a plotted observation of the data or through relatively simple sets of 

calculations.  However, when data reaches complexity beyond the capacity of the human 

mind, as is the case with hyperspectral imagery (HSI), this process becomes substantially 

more difficult.   

For this particular problem set, we examine HSI data, which represent images 

taken utilizing a substantially broader region of the electromagnetic spectrum than 

normal photographs.  Studies have examined these types of images since at least the 

1970s, examining images to identify minerals [1].  The military began considering 

multispectral imagery in the 1980s for topography and terrain analysis [2].  This 

proceeded into the recognition that with high quality images the possibility arose for 

remote sensing and target acquisition [3], [4].  This eventually led to the applications of 

anomaly detection regarding the HSI images.  Currently the field is pushing toward ever 

greater utility in finding these anomalies and the issue of finding the true, real world, 

anomalies within the HSI images remains. 
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Problem Statement 

Specifically, our problem rests with whether military targets can be acquired 

utilizing HSI to determine threats within a particular area (the image).  Upon determining 

the anomalies within a particular area, we desire to have a high degree of certainty that 

the anomaly detected is an anomaly warranting action.  We wanted to develop a new 

algorithm that would decrease the false positive identification of an anomaly within an 

image. 

Research Objectives/Questions/Hypotheses 

While the specific problem of anomaly detection in HSI has been assessed 

previously [5]–[7],  our objective is to design and test a new anomaly detection procedure 

that utilizes a combination of different algorithms and Artificial Neural Networks 

(ANNs) to improve upon the preprocessing of other anomaly detectors.  Upon designing 

a functional algorithm, this would be the first time in this research stream that ANNs 

have been employed for anomaly detection.   

Our research was specifically tested with HSI from the Hyperspectral Digital 

Imagery Collection Equipment (HYDICE) sensor [8].  We utilized blocked adaptive 

computationally efficient outlier nominators (BACON) [9], principal component analysis 

(PCA), k-means clustering, autoencoded ANNs, and reconstructive error calculations to 

zero in on the anomalies with the data, but in doing so, it became necessary to explore the 

appropriate parameters and settings of those algorithms.  Our primary hypothesis that 

through a combination of a variety of dimensionality assessment and reduction 

techniques as well as a combination of data evaluation techniques, one can determine the 
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true anomalies in highly dimensional, enormous data arrays with a high degree of 

certainty, such that actionable determinations can be executed.  

Investigative Questions 

Our primary focus was to determine if this set of methods could be combined to 

more accurately detect and confirm the existence of critical anomalies within the 

aforementioned images.  Specifically, we desired to confirm whether the algorithmic 

combination of these methods with defined parameters could be applied broadly to sets of 

images for anomaly detection with confidence.  By examining a range of parameters, we 

hoped to get insight into the optimal settings of these parameters for the identification of 

anomalous data.   

Methodology 

By designing an experiment and combining a variety of both anomaly detection 

techniques and dimensionality reduction techniques, we hope to best determine outliers 

within HSI images that coincide with known anomalous objects within those images.  In 

order to do this, we first reshape the image cube to fit on a single plane, and then we pre-

process the image utilizing existing outlier detectors.  This provides us with a set of pre-

identified potential outliers based on specified criteria and parameters for the pre-

processing algorithm.  Essentially the goal of the initial procedure is to separate the 

specified images into two meta-classes, one which we know to contain background 

information and another which would primarily contain the potential anomalies.  First, 

we complete PCA to re-dimensionalize, orthogonalize, and center the data using the 

meaningful scores as determined using Maximum Distance Secant Line (MDSL) [10].  
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This allows us to use a clustering algorithm to find like classes within the background 

class of image.   Once the background class is clustered we autoencode each cluster 

employing ANNs.  We are able to choose the best ANN by its performance as assessed in 

MATLAB.  Thereby, we filter the anomalous class through each cluster’s optimal ANN, 

obtain reconstructive errors for each observation, and assess each point’s validity as an 

anomaly by assessing whether the point should belong to one of the clusters associated 

with the background class.   

Assumptions/Limitations/Implications 

Based on the literature, we assume the validity of each methodology for its 

specified purpose, when it is implemented in a vacuum free of other methods.  We 

assume that the current truth data is accurate; therefore, a valid basis for comparison.   

The primary limitation is computational time and efficiency.  While we are testing 

ways in which to enhance this limitation, a hyperspectral image still represents a vast 

amount of data, and in order to process the entire methodology, it does represent a 

cumbersome process in terms of time. 

Effectiveness of the method means an enhanced method for identifying potential 

outliers and assessing the validity of being concerned about those specified outliers.  It 

further means that we can improve or validate pre-processing by other algorithms.  

Lastly, it indicates the viability of utilizing ANNs as an instrument for anomaly detection.  

This has the potential to greatly enhance anomaly detection as whole throughout a variety 

of fields and applications.   
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Overview 

In Section II, we conduct a literature review of the various methodologies and 

techniques we employ, as well as other techniques associated with the field that have 

impacted anomaly detection, HSI, and multivariate statistical analysis.  Section III 

provides a more in-depth view of our specific methodology, showing how the algorithms 

combine to form our solution space.  We cover our analysis and results in Section IV 

describing the solution space and its implications.  Finally, in Section V, we provide our 

conclusions based on the results of our research and analysis.  In this final section, we 

also try to postulate on potential future research, such as the comparison of other 

additional pre-processes, improvements in computational efficiency, expansion to other 

images or data sets, and confidence enhancements.  
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II. Literature Review 

Chapter Overview 

Initially, as we began to examine our problem set our focus was on feature 

selection.  Over time this shifted to hone in more specifically on anomaly detection, 

utilizing some of the ideas associated with feature selection.  For the literature review, we 

examine anomaly detection, hyperspectral imagery (HIS), feature selection, multivariate 

techniques, principal component analysis (PCA), factor analysis, discriminant analysis, 

multiple outlier detection, clustering and artificial neural networks (ANNs).   

Relevant Research 

Over the years, it seems that just about every area where data exists has been 

explored.  Bauer, Alsing, and Greene examined University of Wisconson breast cancer 

Data, US Congressional voting records, and diabetes diagnosis [11], East, Bauer, and 

Lanning surveyed pilot mental workload [12], college admissions officers have sought 

“to determine which variables are most important in judging the potential success of 

student” [13], dietary intake as it relates to urine samples and brain function of rats [14], 

and many other areas have been explored. 

Related to imagery specifically, there has also been an abundance of work.  In 

1973, texture was identified as “one of the important characteristics used in identifying 

objects or regions of interest in an image” [15].  Within the realm of the electromagnetic 

spectrum (Figure 1), HSI images provide a ripe opportunity for multivariate analysis, 

where there are spectral values (features) for each spatial location or pixel [16]. 
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Figure 1: The Electromagnetic Spectrum [17] 

Given that magnitude of possible applications and some of the difficulties 

associated research has abounded.  Smetek worked at “hyperspectral target detection by 

developing autonomous anomaly detection and signature matching methodologies that 

reduce false alarms relative to existing benchmark detectors” [18].  Essentially, he 

“adapts multivariate outlier detection algorithms for use with hyperspectral datasets 

containing tens of thousands of non-homogeneous, high-dimensional spectral signatures” 

[18].  Johnson “[employed] independent component analysis (ICA) to unmix HSI images.  

Via new techniques to fully automate feature extraction, feature selection, and target 

pixel identification” [19].  This was extended “for global anomaly detection on a variety 

of HSI, utilizing fusion of spatial and spectral information, factor analysis, clustering, and 

screening” [16]. 
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Feature Selection 

For decades, feature selection has been a critical component of synthesizing, 

interacting with, and analyzing vast amounts of data.  Truly, “variable and feature 

selection have become the focus of much research in areas of application for which 

datasets with tens or hundreds of thousands of variables are available” [20].  In fact, “the 

remarkable development of computing power and other technology has allowed scientists 

to collect data of unprecedented size and complexity” [21].  Moreover, while it is 

certainly applied to datasets with tens or hundreds of thousands or even millions of 

variables, feature selection has been applied to datasets of much lower dimensionality as 

well [16].  “Feature selection may be employed to improve a classification model . . . by 

eliminating non-informative features . . . [and it] may also be used to gain further insight 

into the rationale underlying class divisions within a particular domain” [14].  

Simultaneously, in feature selection the desire is to minimize the computational time to 

the greatest degree possible, recognizing that in some cases reduced time is the preferred 

objective as long as adequate accuracy is maintained [12].  Feature selection enhances the 

probability of ascertaining insight into varying situations, while minimizing the Type I 

and Type II errors associated with the predicted results of those situations.  It is important 

to remember that as selecting the appropriate features will enhance the predictive nature 

of the models examined, but it is crucial to ensure that we are making selections based on 

the appropriate response.  We have to determine the right question or questions; what is 

the crucial result or response and why.  And we certainly do not want the “right answer 

for the wrong question” [22].  
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Anomaly Detection 

This leads us to field of anomaly detection.  “Anomaly detection refers to the 

problem of finding patterns in data that do not conform to expected behavior . . . often 

referred to as anomalies, outliers, discordant observations, exceptions, aberrations, 

surprises, peculiarities, or contaminants” [23].  The “goal is to discover the true outliers 

and avoid mistakenly marking normal points as abnormal.  In other words, a good 

anomaly detector must have a high detection rate and low false alarm rate” [24].  And 

even a low false alarm rate does not necessarily provide all the information of importance 

regarding the anomaly detected, leading to anomaly classification.  Which is 

“implemented in a three-stage process, first by anomaly detection to find potential 

targets, followed by target discrimination to cluster the detected anomalies into separate 

target classes, and concluded by a classifier to achieve target classification” [5].  

Classifying anomalies holds importance, because it is not just important to find the 

anomalies, “it is often more important to make sure that those anomalies that are reported 

to the user are in fact interesting” [25].  Notably, “experiments show that anomaly 

classification performs very differently from anomaly detection” [5].  Consistent with 

[26], [27], Chandola et al. reminds us that “anomaly detection is related to, but distinct 

from noise removal and noise accommodation . . . [where] noise can be defined as a 

phenomenon in data that is not of interest to the analyst, but acts as a hinderance to data 

analsyis” [23] . 

Dimensionality 

Numerous methodologies have been applied to increase the quality of feature 

selection.  Importantly, feature selection is not limited to one field, but has been a chief 
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concern in numerous industries, fields, and problem sets [11], [13], [16].  In applying 

feature selection methodologies, one recognizes that often times the use of all available 

data to establish the model can “[result] in poor classification accuracy due to the 

distracting effect of numerous redundant and/or unnecessary variables” [12].  

Additionally, we know that, from using ANNs, “as the number of features grows, the 

number of training vectors required grows exponentially”, obviously having potentially 

deleterious effects on computational time [11].  Screening to reduce these redundancies 

adds robustness and prediction accuracy to our solution space.  However, one of the great 

things about feature selection is that it helps provide a framework to determine which 

variables should stay in the model.  There are even cases where “noise reduction and 

consequently better class separation may be obtained by adding variables that are 

presumably redundant”, and this seems to be especially true, when utilizing methods 

more commonly associated with ranking instead of prediction [20]. 

In the case of HSI, an understanding of dimensionality is truly critical because 

there are specific hyperspectral bands that tend to absorb the incident energy associated 

with natural materials [16].  By identifying these atmospheric absorption bands, one 

reduces the dimensionality of an image, by removing those bands in which the sensor 

detects random noise [18]. 

Screening Methods and Saliency Measures 

Since a primary component to the validity of feature selection within a scenario is 

this ability to maintain the features which discriminate between classes, screening 

methodologies are a crucial component in the success of feature selection.  Various 

methods have been proposed utilizing saliency measures.  While “a number of feature 
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saliency measures can be used to evaluate and rank the relative importance of candidate 

features . . . a saliency measure alone does not indicate how many of the candidate 

features should be used,” once again returning to the importance of asking the right 

question [28].  The Belue-Bauer screening method utilizes “a confidence interval 

constructed around [the average saliency of injected noise allowing] for the identification 

of features that contribute little to classification” [29].  Demonstrably, the utilization of 

“an appropriate hypothesis test to account for naturally paired observations of feature 

saliency measures and the use of a Bonferroni-type test statistic to reflect a conservative 

degree of statistical confidence for joint hypothesis testing. . . indicates that the truly 

noisy features can be consistently identified” [28].  Still other methods “measure the 

relative size of the weight vector emanating from each feature” [30].  Additional evidence 

indicates that while various screening methods “typically require between 10 and 30 

training runs” the use of signal-to-noise (SNR) saliency measures may only require one 

training run potentially resulting in a significant reduction of computational processing 

time [11].  Other saliency measures have “[evaluated] each feature with respect to 

relative changes in either the neural network’s output or the neural network’s probability 

of error” [30]. 

Techniques 

ANNs have long been a technique tied to feature selection, recognizing, as 

previously indicated that, “the relevance of a given input feature in a neural network is 

important in classification and prediction problems.  “ANNs are desirable because they 

provide a well-structured framework to discover non-linear relationships within data sets 

that are considered ‘noisy’ or complex” [31].  In fact quite often, one is faced with a large 
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number of candidate features which may or may not be useful for the problem at hand” 

[28].  Figure 2 shows the framework of the neural network. 

 
Figure 2: Neural Network Structure (Copied from Belue & Bauer, 1995)  

Essentially, ANNs “are networks or systems formed out of many highly 

interconnected nonlinear memoryless computing elements or subsystems . . . [that] can be 

represented mathematically as a weighted, directed graph” [32].  “There is also an 

appealing quality to [their] ‘brain-like’structure” [29].  In fact it has been recognized that: 

Computational properties of use to biological organisms or to the construction of 

computers can emerge as collective properties of systems having a large number 
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of simple equivalent components (or neurons). . . . The collective properties of 

this model produce a content addressable memory which correctly yields an entire 

memory from any subpart of sufficient size [33]. 

“Intuitively an analyst would like to include only those features that make a significant 

contribution to the network”, and given the networks structure as features are extracted 

and noise is removed and reduced the addressable memory can actually yield greater 

predictability [29].  Three processes take place to maximize the predictability of the 

ANN, first the network is trained with some sample of data, then it is internally validated 

with another, typically smaller sample, before it is finally tested for classification 

accuracy on the remainder of the data [11].  With autoencoding in particular, the goal is 

for the ANN to learn “the underlying feature structure of the data” that makes the data 

distinctive, then that ANN can be used for determining the classification of other data 

[34].  Figure 3 shows how the input layer and output layer are the same size, with the 

goal of finding the weights between nodes that yield the minimum reconstructive error 

between the input and the output. 

  
Figure 3: Autoencoder Structure [35] 

 Similar to ANNs, discriminant analysis trains on one set of data to be predictive 

for another sample of data.  “Discriminant analysis is a statistical technique for 
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classifying individuals or objects into mutually exclusive and exhaustive groups on the 

basis of a set of independent variables” [13].  By having multiple methods available, it 

enhances the robustness of the analysis.  Notably, classification accuracy is not the only 

concern, “we will also be particularly concerned with determining the dimensions on 

which the groups differ . . . [allowing for] both prediction and explanation” [13]. 

 “Principal component analysis is a standard tool in modern data analysis . . . 

[where] it provides a roadmap for how to reduce a complex data set to a lower dimension 

to reveal the sometimes hidden, simplified structures that often underlie it” [36].  “PCA 

generates a set of orthogonal vectors, any subset of which can be used to project into a 

subspace and where each vector accounts for some portion of the variance found in the 

data” [16].  This allows for ranking of features or components within the data based on 

the eigenvalues associated with each portion of the variance, allowing the user “to reduce 

the dimensionality of the feature space . . . by selecting only the . . . principal components 

with the largest eigenvalues” [11]. 

Notably, different methodologies are not necessarily exclusive of one another.  In 

fact, while many use factor analysis to reduce data dimensionality [13], “factor analysis 

[may also act] as a fusion device for [various] feature selection procedures” [12].  

Crucially, the problem must be identified, when “we wish to extract features which 

represent the difference between one pattern class and another.  These features do not 

necessarily coincide with the important features to represent the pattern classes” [37].  

“Selecting subsets of features that are useful to build a good predictor . . . contrasts with 

the problem of finding or ranking all potentially relevant variables” [20].  By coupling 

factor analysis or principal component analysis (PCA) with feature selection techniques, 
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[37] demonstrated that the possibility exists to “extract features that are important for 

classification while maintaining features with good discriminatory power”[11].   

Multiple Outlier Detection 

A key difficulty when examining large datasets remains identifying multiple 

outliers simultaneously or in larger batches.  Especially important is “establishing a 

metric that is not itself contaminated by inhomogeneities by which to measure how 

extraordinary a data point is” [9].  “Despite considerable research . . . algorithms 

implemented for the detection of outliers are sparse.  Moreover, the few algorithms 

available are so time-consuming that using them may be discouraging” [38].  

Specifically, “all multiple outlier detection methods have suffered in the past from a 

computational cost that escalated rapidly with the sample size” [9].  BACON, the blocked 

adaptive computationally efficient nominators algorithm, has demonstrated success in 

reducing the computational expense while achieving quality results [9], [38], [39].  

Utilizing BACON for the multivariate data respresenting a hyperspectral image, an 

“initial subset [is] selected based on Mahalanobis distances”, computing Mahalanobis 

distance with 

, ,			 , … , ,    (1) 

“where ̅ and  are the mean and covariance matrix of the n observations” (Figure 4) [9].   

Figure 4 shows us that there are definitely observations with high Mahalanobis distance, 

when we sort those observations, we attain a clearer picture of that distribution. 
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Figure 4: Plot of the Mahalanobis Distances (ARES1D) (from BACON algorithm) 

Therefore, “the initial basic subset is given by the  observations with the 

smallest Mahalanobis distances for the whole sample” [38].  “This start is not robust, but 

it is affine equivariant . . . [and] subsequent iterations tend to make up for the non-

robustness of the start as long as the fraction of outliers is relatively small”; however, a 

subsequent option allows for the determination of the initial subset utilizing “distances 

from the medians,” which provides a robust start, but without affine equivariance [9].  

Which methodology to use largely depends on the problem at hand, extending from [40], 

[41], Caulk et al. [42]  notes that “certain outlier detection methods, such as [multivariate 

trimming] are known to be unreliable due to their use of the Mahalanobis distance in 

determining the initial mean vector and covariance matrix estimate”.  To complete 

BACON, a new basic subset is determined iteratively using a chi square distribution, and 



17 

the algorithm continues “until the size of the basic subset no longer changes, [whereby 

we] nominate the observations excluded by the final basic subset as outliers” [9]. 

The Reed-Xiaoli (RX) algorithm is another algorithm that has the potential to 

partition data, it “was developed from the generalized likelihood ratio (GLR) test . . . 

based on the suggestion that most optical image clutter can be modeled as a Gaussian 

random process with possibly a rapidly fluctuating space-varying mean and a more 

slowly varying covariance” [43].  As shown by [44], [45], RX “is considered as a 

benchmark” detector for comparison due to its simplicity” [46]. 

Clustering 

 “Clustering is usually considered to be the problem of partitioning a single set of 

unlabeled points . . . [where] one of the most common iterative, [non-hierarchical] 

algorithms is the K-means algorithm, broadly used for its simplicity of implementation 

and convergence speed” [40].  “The k-means process was originally devised in an attempt 

to find a feasible method of computing such an optimal partition” [47], where it 

“produces relatively high quality clusters considering the low level of computation 

required” [40].  K-means  

“requires that the number of clusters used to classify the dataset will be pre-

determined.  It is based on determining arbitrary centers for the desired clusters, 

associating the samples with the clusters by using a pre-determined distance 

measurement, iteratively changing the center of the clusters and then re-

associating the samples” [48]. 

Figure 5 shows an example derived in MATLAB, where one sees the clustering of 

various points around the centroid of those points. 
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Figure 5: Example of K-means around the Centroid [49] 

Summary 

While the applications are essentially boundless, we have defined sets of tools and 

processes which can be implemented and refined to optimize the solution space or 

predictive nature of a models despite what to the human mind may seem like 

insurmountable amounts of data.  As we define the problem we wish to examine, the 

potential exists to gain far more insight into the space associated with problem using a 

combination of feature selection, feature extraction, and ranking. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is provide a description of the methodology (Figure 6) 

we utilized to develop our analysis and garner our results.  As previously noted in Section 

I, we employed a variety of techniques to both appropriately reduce the dimensionality of 

the data and assess the data for application, decision-making, and executable action.  

While all of these techniques have been used previously, they have never been used with 

the specific coordination suggested here.  Our goal was to develop an actionable way to 

assess the data representing HSI images with a heightened degree of accuracy in the 

determination of anomalous data. 

 
Figure 6: Flow Chart of Methodology 
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Test Subjects 

In order to test and develop our methodology, we utilized a set of test images 

maintained by the Air Force Institute of Technology’s (AFIT’s) Sensor Fusion 

Laboratory derived from the HYDICE sensor.  This provided us the opportunity to test 

our methodology against truth data already available for the images tested.  Our testing 

was initially conducted against the image ARES1F, prior to expanding to ARES1D and 

ARES2D. 

Summary 

As stated previously, we utilized various methods in combination and 

coordination to assess and analyze potential anomalies within HSI images.  We will 

discuss the method in association with the numbered steps indicated in the upper left 

hand corners of the Flow Chart of Methodology (Figure 6). 

Step 1 – Multivariate Data 

We select the image for testing.  In this case, HYDICE sensor images as discussed 

above beginning with image ARES1F prior to assessing both ARES1D and ARES2D. 

Pre-Processing 

Step 2 – Remove Absorption Bands 

As discussed in Section II, we acknowledge that HSI images contain absorption 

bands that generate noise within the images; therefore, we reduced dimensionality using 

the pre-determined absorption bands.  This reduces the dimensionality of the image from 

210 dimensions (Hyperspectral Bands) to 145 [50].   
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Step 3 – Reshape Data 

Then, we converted image cubes into a two-dimensional image (Figure 7), which 

yields a two dimensional matrix as exemplified in the left-most image of Figure 8 [46].   

 
Figure 7: Conversion of Image Cube to a 2-dimensional matrix 

Step 4 – BACON algorithm 

Upon re-shaping, we ran the resulting matrix through the BACON algorithm to 

pre-identify potential outliers.  Our initial parameter settings utilized an alpha value of 

0.05 for the Chi-Squared test with 40 degrees of freedom.  We will discuss additional 

testing parameters further in Section IV.  This provided a subset of potential outliers by 

splitting the original data set into two classes as discussed in Section I (Figure 8).  

Additionally, it yielded a covariance matrix and mean vector for the data that was not 

pre-identified.  
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Figure 8: Diagram of BACON Outlier Determination & PCA Reduction 

 

Step 5 – PCA  

We then took the PCA of the covariance matrix for the data identified by the 

BACON algorithm as clean data.  This allowed the original data, centered to the mean 

vector associated with BACON, to be projected by the PCA results to give scores for 

analysis.   

Step 6 – Dimensionality Reduction 

At this point, we implemented Maximum Distance Secant Line (MDSL) (Figure 9) to 

reduce dimensionality based on the eigenvalues resulting from the PCA [10]. Between 

BACON and the reduced dimensionality derived from PCA (Figure 8), we had a 

workable dataset with which to progress.  This was influential because it focused purely 

on those hyperspectral bands, which with assessment show the greatest importance.  And, 

this had substantial effects on computational efficiency going forward.  Especially as we 
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began the process of autoencoding, computationally it was enormously critical to have 

the lowest dimensionality possible. 

 
Figure 9: MDSL for ARES1F, with BACON based on medians 

 

Step 7 – Partition Data Classes 

At this point, we separated the data into the two classes identified by BACON, 

with the first class encompassing background data and the second class encompassing 

potentially anomalous data. 

Post-Processing 

Step 8a (Cluster Non-Outliers) and 8b 

With the dimensionality reduced data, the background class went through a k-

means clustering algorithm.  In order to eventually analyze the establishment of an 

optimal cluster quantity, we processed the data for a variety of cluster numbers, 2 to 11.  

Desiring to ensure and observe separation with the clusters, we plotted different cluster 
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combinations by their principal components.  Figure 10 shows the 2-dimension 

component comparisons for ARES1D, when it is broken into 3 clusters.  As one 

observes, there is clear separation of clusters across various principal components.  

However, as shown in green, it is difficult in 2-dimensions to see the extent of the 

separation for the outlier class.  Some separation obviously exists, but the 2-dimension 

graph does not provide a complete picture, as they consistently display overlap with the 

clusters. 

 

 
Figure 10: 2-Dimension Principal Component Comparisons by Cluster with 

Outliers 

 
Recognizing no significant separation from the clustered data when compared to 

the BACON-determined anomalous data class, we then plotted the principal components 

across three dimensions (Figure 11).  When plotted in this fashion, there is noticeable 

between the various clusters of the background class, and further separation between 

those clusters and the anomalous class. 
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Figure 11: 3-Dimension Principal Component Comparisons by Cluster with 

Outliers 

 
Step 9 – Random Sample Clusters 

At this point, we utilized random number generation to select one-tenth of the 

data to represent a cluster.  This ended up giving us multiple advantages going forward.  

Our initial reasoning was that it allowed us to reduce computational time and increase 

computational efficiency in training the ANNs.  But simultaneously, it provided us with a 

training data set and validation data set for when the data was utilized by the ANNs.  

Additionally, it allowed for another comparison between the various clusters, without 

running the entire cluster through another cluster’s net.   

Step 10 – Autoencode ANNs for Each Cluster 

At this point, we were able to autoencode ANNs to determine the best net for mirroring a 

specific cluster.  As previously hinted, we applied the ANN to a training set of the data 

using the randomly generated sample set, then we validated the ANN performance with 

another randomly generated validation set of equal size.  For training the ANN, we used 
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10 hidden nodes and we trained the ANN as many as 20 times.  Referencing the diagram 

from the flow chart (Figure 6), the autoencoder attempts to generate weights which will 

reconfigure the input layer, 	...		 , to the output layer, 	...		 , , where n is the number of 

dimensions remaining after the dimensionality reduction, Step 6 (Figure 12). 

 
Figure 12: Autoencoder Structure (Reproduced from Figure 3) [35] 

Step 11 – Determine the Best Net 

In this step, we determine the best network to use, by choosing the ANN which 

produces the lowest mean squared error value for the associated cluster. 

Step 12 – Run Potential Outliers through the Best Nets 

Knowing the best ANNs for each cluster, we ran the data that was class pre-

identified by BACON as having potential outliers through each cluster’s optimal net.   

Performance Assessment 

Step 13 – Determine Reconstructive Error for Cluster and Potential Outliers 

Next we calculated the reconstructive errors for each observation in regards to 

ANN performance within each cluster. 

 Step 14 – Develop Receiver Operating Characteristic (ROC) Curves 

With the truth data and the maximum reconstructive errors for each cluster, we 

generated a ROC curve of the background data versus the anomalies.  After completing 
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this for various images, we were able to determine a threshold which we were 

comfortable and classify the observations within the originally designated anomalous 

class as true anomalies or as background. 
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IV.  Analysis and Results 

Chapter Overview 

We specifically examined three hyperspectral imagery (HSI) images in an effort 

to validate the algorithmic and methodological results as compared to the known 

anomalies within the specified images.  Since the Autoencoded Reduced Clustering for 

Anomaly Dectection Enrichment (ARCADE) parameters are modifiable, we could 

examine the each of the images using our base methodology independently.  In 

conducting the analysis, we developed receiver operating characteristic (ROC) curves to 

measure our method’s anomaly prediction accuracy.  Furthermore, we examine various 

parameter settings throughout the process to gain insight into how those parameters affect 

the overall methodology.   

In addition to comparing the results between the images themselves, we also 

compared the results of the methodological variations for each image.  This provided 

some insight into inelasticity of various parameters and the robustness of the ARCADE 

method.  While our base methodology (Figure 6) was described in Section III, this 

section will examine excursions made from the basic process (Table 1). 

Table 1: Image & Parameter Excursions (Base Methodology) 
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We initially examined the basic methodology (Figure 6), considering various 

parameter changes, while recognizing the possibility of using different pre-processing 

techniques.  Table 1 shows the parameter changes that were explored in examining our 

basic methodology.  Following a description of the results associated with the base 

methodology and the parameter excursions associated with the base methodology, we 

will describe five variations that were made regarding our pre-processing techniques.  

These variations and excursions provide substantial information to inform the quality of 

our results and conclusions.  In our initial excursions from our base methodology, we 

examined the number of degrees of freedom associated with the BACON algorithm and 

we examined the number of ANNs.  For degrees of freedom, we ranged from 20 to 40, 

and for ANNs, we ranged from 3 to 20 to determine if additional processing would 

impact the results.   

Results of Base Methodology 

 
Figure 13: Flow Chart of Methodology (Reproduced from Figure 6) 
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Step 1 to 3 – Image Processing 

 After importing the images, we removed the absorption bands, and re-

dimensionalized the data into two dimensions as previously described. 

Step 4 – BACON algorithm 

 As discussed in Sections II and III, BACON finds a pre-identified selection of 

potential outlier points, which we define as our anomalous class, while considering all 

other points as our background class.  Figure 14 shows a visualization of the image on the 

left and a class separated visual of the image on the right.   

 
Figure 14: True Image versus BACON Anomalies (Run 1) 

By visually examining this pictorial comparison, it provided a level of 

confirmation that BACON was indeed picking up at least a majority of the truly 

anomalous data, promoting continuation of our method.  Simultaneously, we were able to 

compare the difference with changes to the degrees of freedom, where we see that as 

degrees of freedom decreases the size of the anomalous class increases significantly 

(Figure 15). 
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Figure 15: Anomalous Class Comparison (Run 1, Run 2 & Run 3) 

Similarly, an equivalent representation of ARES1D (Figure 16) and ARES2D (Figure 

17), yielded similarly positive confirmations.  Furthermore, a direct comparison of the 

class sizes provided insight into the degree of separation between the classes (Table 2), 

similar to that of Figure 15.  As one observes, increasing the degrees of freedom pulls 

substantially more pixels into the background class, but independent of degrees of 

freedom, pre-processing the data using BACON allows for quality separation of the data 

into the two meta-classes.  The concern becomes whether the reduced degrees of freedom 

over-classifies the data into the anomalous class. 

Table 2: Class sizes varying BACON’s degrees of freedom 
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Figure 16: True Image versus BACON Anomalies (Run 4) 

 
Figure 17: True Image versus BACON Anomalies (Run 5) 

 It is important to note that the lines through class separation images are most 

likely sensor artifacts, which if removed may enhance classification.  This would be a 

great opportunity for future study.  Either related to the detection of the sensor artifacts 

themselves or using some method to separate the anomalous class, similar to how we will 

utilize k-means clustering further into our methodology.  

Step 5 – PCA 

 As shown in Figure 9, PCA reduces the dimensionality of ARES1F to 12 

dimensions.  Similarly, ARES1D’s (Run 4) dimensionality reduces to 10 dimensions and 
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ARES2D’s (Run 5) dimensionality reduces to nine dimensions (Figure 18).  Thus, for 

these images, the worst case is a dimensionality reduction by a factor of 12. 

 

 
Figure 18: MDSL (Runs 4 & 5) [10]  

 

Step 8a – Cluster Non-Outliers 

The data representing the background class was separated into clusters utilizing a k-

means algorithm in MATLAB as referenced in Section II.  We separated the data in 

anywhere from 2 to 11 clusters, allowing for optimality comparisons.  Upon clustering 

the clean data (background class), one observes that in general the clusters tend to have 

relatively uniform size with a few assumptions (Table 3), which further supports our 

visual assessment of the components from Figure 10 and Figure 11.  Additionally, we can 

observe differing levels of separation by implementing color-mapping (Figure 19).  It is 

important to note that each color-map has utilized the dark blue to represent the 

anomalous class. 
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Table 3: Cluster Sizes (Run 1) 

 

 
Figure 19: Color-Mapping of Clusters (Run 1) 

Step 10 and 11 – Autoencode and Select Best ANN 

Given the various clusters, we autoencoded ANNs on the clusters using a 10 

percent random sample of the data, then ran another random sample of equal size through 

the various ANNs, whereby we were able to determine the best ANN for each cluster by 

taking the ANN that produced the lowest mean squared error with the second sample 

(Table 4).  As we can see, the best ANN does not necessarily occur within the first three 

(Run 1), but some reasonable performance occurred in the first three ANNs, so if 

computational efficiency was a major concern, it could be worthwhile for future research 

to attempt to optimize the number of ANNs for a full array of images. 
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Table 4: Reconstructive Error's for 2 Samples (Run 6) 

 

Step 12 and 13 – Assess outliers in light of reconstructive error 

After running the clusters through ANNs in order to autoencode each cluster, we 

were able to run the pre-identified background class through the ANN associated with 

each cluster; thereby yielding a reconstructive error for each BACON-identified outlier in 

regards to each cluster.  As the histograms seem demonstrate and confirm (Figure 20), a 

reasonable proportion of the data within the anomalous class actually belongs to the 

background class, but it is difficult to distinguish the extent of the anomalous class that 

belongs to the background class.  Additionally, it is difficult to visually distinguish the 

differences between the two histograms, so Figure 21 compares the classes more directly. 

 
Figure 20: Histograms of Reconstructive Error (Run 6) 

Based on this insight, we determined the maximum reconstructive error of the 

background class, then we projected all the observations in the anomalous class that had a 

greater reconstructive into another histogram (Figure 21) to attain greater insight into 

how the anomalous class was interacting with the background class in our post-

processing procedures. 
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Figure 21: Anomalous Class Exceeding Background Maximum (Run 6) 

This separation was further represented when we placed the all the observations 

on a scatter plot (Figure 22).  We see that overall the background class fits well within the 

area encompassed by the anomalous class, further indicating that at some threshold we 

can predict or classify the anomalous class as true outliers. 

 
Figure 22: Reconstructive Error Scatter Plot (Run 6) 
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Step 14 – ROC Curves 

 ROC curves of the respective reconstructive errors show an improved FPF 

statistics at a greater range of thresholds.  Importantly for ARES1F at least running more 

ANNs 20 versus 3 for Runs 6 and 1 respectively (Figure 23), the method provides greater 

improvement across the thresholds with greater consistency.  

 

Figure 23: ROC Curves (Runs 6 & 1) 

This provided the initial indication that ARCADE could have potential, in that while it 

does not seem like a major jump looking at the figure, a nearly three percent increase in 

predictive capacity is statistically significant. 

 Furthermore, we compared the results of the BACON algorithm with the various 

degrees of freedom.  As we see with only three ANNs, the lower the predictive capacity 

of the pre-processor the more impact the post-processor has on improving prediction 

(Figure 24). 
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Figure 24: Degree of Freedom (df) Comparison (Runs 1, 2 & 3) 

When comparing the results between images, we see that with 20 degrees of freedom too 

much data is included in the anomalous class for BACON to be effective independent of 

the image.  This is further confirmed with 20 ANNs (Figure 25).  In all of these cases, 

ARCADE shows the potential for improvement upon BACON’s pre-processing, but the 

final result is definitely affected by the initial class sizes.  Figure 26 shows the results for 

ARES2D, where once again the degrees of freedom make as significant difference in the 

pre-processing quality. 

 
Figure 25: Degree of Freedom (df) Comparison (Runs 6 &7) 
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Figure 26: Degree of Freedom (df) Comparison (Runs 5 & 9) 

Variation Summary 

 With the parameter excursions and results, it enabled the idea of varying the pre-

processing techniques themselves to attain further information regarding the effectiveness 

of the post-processor.  As we progressed through the variations, it enabled even more 

ideas regarding implementation of pre-processing, which yielded some very interesting 

results.  While some parameter changes were made through the following variations, the 

primary goal was to compare different methodologies.  Further research regarding 

parameters and even more pre-processing methods is definitely a possibility.  The five 

variations we explored included variations of BACON and RX algorithms (Table 5). 

Table 5: Variation from Base Methodology 
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Methodology Variation 1 

 Our first change in methodology was to implement the BACON classification 

after performing PCA.  Essentially, the variation instituted the BACON algorithm against 

the scores rather than the raw data to determine classes.  In this variation, the execution of 

the dimensionality reduction still occurred after BACON was implemented.  This is 

impactful because it means that BACON is applied to the data centered and projected 

onto an orthogonal space.  Table 6 shows the excursions made within this variation.  This 

yielded a reduced dimensionalities of 15 dimensions (Figure 28), with MDSL [10].  

Interestingly, this variation produced slightly higher dimensionality for ARES1F (Figure 

28which is likewise for ARES2D, but the dimensionality is slightly reduced for ARES1D 

(Figure 28). 

 
Figure 27: Diagram Showing Variation 1 (Refer to Figure 6 or Figure 13) 

Table 6: Image & Parameter Excursions (Using Scores Matrix) 
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Figure 28: MDSL (Runs 6, 2 & 3) 

Clustering was definitely affected by the variation, with cluster sizes shifting from 

one cluster to another, despite maintaining the same class sizes for ARES1F (Table 7).  

This truly demonstrates the impact of having centralized data and its effects on BACON. 

Table 7: Cluster Sizes (Run 6) 
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The ANN post-processing improved post-processing classification accuracy 

slightly with the use of 20 ANNs by 0.0024 percent despite the fact that no change 

occurred in the pre-processing classification for ARES1F (Figure 29), and this was 

further confirmed and enhanced with the use of only three ANNs at 0.0055 percent 

improvement. 

 
Figure 29: ROC Curves (Runs 4 & 1) 

Methodology Variation 2 

  In this variation, we once again assess the data utilized PCA followed by 

BACON, but in this particular variation, we performed our dimensionality reduction prior 

to the execution of the BACON algorithm.  Therefore once again, BACON was run on 

the PCA scores, but in this case, it was intended to only run BACON against the 

dimensions identified through MDSL [10].   

 
Figure 30: Diagram Showing Variation 2 (Refer to Figure 6 or Figure 13) 
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However, upon attempting this variation with the parameters associated with 

BACON for the previous runs, we were not able to execute the subsequent clustering 

because the class size of the anomalous class was too small or in some cases non-existent.  

Thus, we substantially adjusted three of the parameters.  Notably, some adjustments led 

to all data observations being sent to the anomalous class, while leaving the background 

class empty.  First, we made adjustments to the alpha values associated with the Chi-

Squared test utilized in BACON.  Previous runs had applied an alpha of 0.05, this was 

modified to span between 0.1 and 0.5.  Second, we adjusted the degrees of freedom.  

Other experimentation had degrees of freedom ranging from 20 to 40; with this variation, 

we ranged degrees of freedom from four to ten.  Third, the dimensionality given using 

MDSL did not provide enough dimensionality to successfully execute BACON.  Initially, 

we contemplated applying either a Horn’s Curve or Kaiser’s Criterion using the 

correlation matrix of the data to determine dimensionality (Figure 31), but unfortunately 

both of these methods reduced the dimensionality of the data even more than MDSL; 

therefore, BACON was not left with enough data to clearly extricate one class from the 

other.   

 
Figure 31: Horn's Curve (ARES1F) 
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Learning this, we experimented with an added dimensionality ranging from an 

additional 20 to an additional 50 dimensions.  Again it is critical to note that in some 

cases, these parameter varieties did not include all of the known anomalies and in others 

they sent so much of the image data into the anomalous class that it did not have a 

positive effect.  Based on these findings, we tried a variety of parameter combinations to 

see what the differences would be as the parameters shifted.  Generally speaking, we saw 

some improved performance using our post-processing methodology, but we did not see 

across the board quality results with any specific set of parameter settings across the 

various images.  

For ARES1F, we compared four different parameter settings (Table 8), but while our 

method showed demonstrable improvement over the BACON class identification 

accuracy, BACON’s predictive capacity for this image given the reduced dimensionality 

was extremely poor.  Therefore even with our improved performance, the performance 

regarding this image was poor.   One sees that BACON never achieves a classification 

rate much better than the flip of a coin (Figure 32).  The best result of our method comes 

when the parameter settings are at their middle points, but the second best performance 

comes when the parameter settings were at their lowest points, leaving a lot to be 

discovered. 
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Table 8: Image & Parameter Excursions (BACON with Reduced Dimensionality)  

 
 
 

 

 

Figure 32: ROC Curves (Runs 1, 2, 3 & 4) 

Using ARES1D, we re-attempted the runs for each parameter setting to see if it 

yielded any important findings (Figure 33).  Interestingly, while BACON performed 
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Figure 33: ROC Curves (Runs 5, 6, 7, & 8) 

Methodology Variation 3 

 Our third methodological variation was a significant shift in completely changing 

our pre-processor to utilize RX rather than BACON (Figure 34).  This approach also 
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Figure 34: Diagram Showing Variation 3 (Refer to Figure 6 or Figure 13) 

Table 9: Image Excursions (RX) 

 

Fascinatingly, RX substantially shrinks the size of the anomalous class as 

compared to the BACON derived methods previously examined, leaving only 2,264 

observations in the anomalous class for ARES1F, showing the impact of varying pre-

processors.  The truth mapping (Figure 35) regarding the RX identified anomalous class 

produced a far lower level of inclusivity for ARES1F background class as compared to 

the BACON methods (Figure 36), where not all of the known anomalous pixels were 

included by the anomalous class using the RX algorithm.  Pre-processing utilizing RX 

incorporated 783 of the ARES1F images into the background class, which means that 

only 77.8 percent of the truly anomalous pixels were incorporated in the anomalous class 

for testing.   
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Figure 35: Truth Image versus RX Anomalies (Run 1) 

 
Figure 36: Truth Image Comparison 

To further testing, we still desired to determine the effects of our post-processing 

despite the lack of all anomalous pixels being incorporated.   Besides the corresponding 

change in cluster size (Table 10), there also exists a major change in the variance of the 

cluster sizes when compared to the BACON methods described earlier (Table 11).  
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Table 10: Cluster Size (ARES1F) 

 

We see that while there were slight changes in the variances and standard 

deviations between the Base Method and Variation 1, as much as a seven percent 

increase in standard deviation, RX promotes a significant increase in the variance and 

standard deviation independent of the number of clusters.  It never falls below a 16 

percent increase in standard deviation, while reaching as high as a 56 percent increase 

(Table 11). 

Table 11: Variance & Standard Deviation Comparisons (ARES1F) 

 

After running the ANNs on the background class clusters, we see minimal 

improvement in the FPF along the ROC curve when it comes to ARES1F, still showing a 

substantially lower prediction accuracy over the course of the curve than the BACON 

derived methods (Figure 37).  Subsequently, RX showed improvement over BACON 

when it came to ARES1D and ARES2D, while our post-processing demonstrated a 

continued improvement in FPF for ARES1D, with no statistically significant 

improvement demonstrated for ARES2D (Figure 37).  It is important to note that we did 
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not change any of the parameter settings built into the RX algorithm.  But the use of RX 

led us to variation 4, which was to assess the peak point given the actual data from RX. 

 

 
Figure 37: ROC Curves (Runs 1, 2 & 3) 

Methodology Variation 4  
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percent was called anomalous.  We compared this with thresholds of 0.311 and 0.05 

(Table 12).  Of note, all experimentation presented henceforth utilized 20 ANNs. 

Table 12: RX Image & Threshold Excursions 

 

This allowed us to pursue our post-processing as we had through the other variations.  

Assessing the HSI images using this methodology truly forces the user to reflect on and 

determine their goal for analysis.  Similarly to its seeming lack of significant effect on the 

RX classification, ARCADE does not seem to show substantial improvement when 

considering various thresholds on the RX outputs.   Importantly, lower thresholds 

demonstrated less improvement in post-processing.  However, by examining various 

thresholds within RX, we see a definite shift between TPF and FPF for each of the 

images.  RX-distance represents the class separation threshold when we use the LRX 

values themselves.  RX-algorithm represents the classification based on RX’s nominal 

settings.  For ARES1F, we can see how a higher threshold gives us a better TPF at its 

peak, but a trade-off definitely occurs (Figure 38).  The RX classification generally does 

very well in limiting FPF for this image, but we see that depending on threshold, it is 

capable of producing a high TPF rate, which in some cases may be more beneficial. 
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Figure 38: ROC Curves (Runs 1, 2 & 3) 

This holds true for ARES1D (Figure 39) and ARES2D (Figure 40), but ARES1D shows a 

pronounced positive return on investment (ROI) using the middle threshold, whereas with 

ARES1F we saw a more distinct trade-off.  The trade-off accelerates at a threshold of 

0.05, and we see a slightly reduced overall performance, but the FPF is reduced 

significantly. 
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Figure 39: ROC Curves (Runs 4, 5 & 6) 

While ARES 2D does not yield a substantial positive ROI using a lower threshold, a high 

threshold conversely produces a substantial negative ROI (Figure 40).  We see that at the 

0.05 threshold a small tradeoff occurs, whereas at the 0.1311 threshold a tradeoff occurs 

in the opposite direction, but the 0.311 threshold significantly decreases classification 

performance. 
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Figure 40: ROC Curves (Runs 7, 8 & 9) 

Methodology Variation 5 

 Our fifth variation in methodology changes the pre-processing requirements of 

BACON to use a more optimal Mahalanobis distance value, similar to how Variation 4 

was conducted, but utilizing BACON instead of RX (Figure 41).   

 
Figure 41: Diagram showing Variation 5 (Refer to Figure 6 or Figure 13) 
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The whole concept behind this was whether the parameters of the pre-processors 

actually provided a near-optimal solution space.  It helped to approach the idea from a 

perspective of simplification.  We determined the peak point by finding the Mahalanobis 

distance as calculated within the BACON algorithm, plotting a ROC curve and finding 

the point along the ROC curve nearest to perfection.  This was initially conducted on 

ARES1D (Figure 42), which yielded a threshold of 0.1632 at an alpha of 0.05, which we 

then transitioned to 0.32 and finally to 0.05 for the threshold.  Table 13 gives a 

comprehensive breakdown of the excursions taken. 

Table 13: Image & Parameter Excursions (Mahalanobis Distance) 

 
 

 
Figure 42: ROC Curve to Establish Initial Threshold (Run 1) 
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Applying this 0.1632 threshold to ARES1F demonstrated an significant 

improvement over the BACON’s classification utilizing the same parameters, displaying 

and increase of 3.6 percent in the AUC (Figure 43).  Unfortunately, this was not 

replicated wholesale with ARES2D, as the FPF increases slightly at its peak following 

post-processing.  However, the change is minimal (Figure 43). 

 
Figure 43: ROC Curve (Runs 2 & 3) 

Experimenting with a larger threshold indicated that alpha increased the post-

processor showed improved classification, as compared to the standard BACON 

classification, but it further demonstrated the importance in correctly setting the threshold 
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far outperforms the threshold with post-processing for every image (Figure 44).  As we 

increased the alpha value to 0.25 (Figure 45), and subsequently to 0.5 (Figure 46), the 

post-processor appropriately identified a higher proportion of the false positive to reduce 

the FPF, but this was due in part to the fact that BACON increased the size of the 

background class, generating more false positives.  In conjunction with the previous 

research displayed, this provided some hope in the post-processing method regarding its 

ability to correctly identify false positives classified the pre-processor of preference. 
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Figure 44: ROC Curves (Runs 4, 5 & 6) 
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Figure 45: ROC Curves (Runs 7, 8 & 9) 
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Figure 46: ROC Curves (Runs 10, 11 & 12) 
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Conversely, reducing the threshold to 0.05 with an alpha value of 0.25 had the effect of 

substantially under-identifying the anomalous observations in two of the three images 

(Figure 47), indicating the need for further experimentation with between the thresholds 

of 0.1632 and 0.05 and amongst the various potential alpha values.   This reduced 

threshold did show some promise for future research as it substantially reduced the FPF 

for ARES2D, while substantially increasing the AUC (Figure 47). 

 

 

 
Figure 47: ROC Curve (Runs 13, 14 & 15) 
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ARES1D utilizing a 40 percent sample from the clusters.  While there was very minor 

improvement, neither example showed an improvement that would justify the substantial 

increase in computational time.  However, this was at a threshold that had limited success 

as a whole, so it would be justifiable to conduct more testing to see if this change holds 

any promise.  Finally, we maintained the 0.05 threshold, but changed the alpha value 

back to 0.05, showing that once again the lower alpha value enhances the performance 

quality across the board (Figure 48). 

 

 

 
Figure 48: ROC Curves (Runs 16, 17, 18 & 19) 
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Investigative Questions 

We examined six different variations of our method (Figure 13).  In these 

variations, we compared two different pre-processors, two orders of processing and two 

outputs from each of the pre-processors.  In addition to the comparisons between the pre-

processors, we compared various parameter settings associated with those processors.  

Furthermore in post-processing, we compared a variety of thresholds by which to 

comparatively assess HYDICE images.  This provided us with extensive scope into the 

overall methodology to optimally determine parameter settings and methodology by 

which to approach the analysis of HYDICE HSI images for classification and anomaly 

detection.   

All of this experimentation allowed us to explore the effectiveness of pre-

processing techniques, as well as the robustness of our post-processing method in 

enhancing data classification post pre-processing.  It is important to note, as verified by 

experimentation, that our post-processing method really applies to reducing the FPF 

produced by a pre-processor.  The ANNs as we have applied them are unable to take data 

that was pre-classified as background data and re-classify it as anomalous.  This 

emphasizes the importance of ensuring a quality problem definition.  If the most 

important thing is minimizing false positives, it may be reasonable for some of the true 

anomalies to be classified as background data, as long as it is not to the extent that it 

impinges upon the true classification of the background data.  However, if the most 

important thing is to find the anomalies, the true positives, then it is critical that any pre-

processing technique utilized pushes all of the true anomalies to the anomalous class, 
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while ensuring that the anomalous class is not so large as to make it nearly 

indistinguishable from the background class. 

Summary 

We tested a variety of pre-processing methods with our post-processing 

methodology, allowing for and making some parameter variations along the way.  The 

different pre-processing methods changed how the post-processor interacted with the data 

sets, but this helped to gain insight into the overall validity of the post-processor as 

applied to data pre-processed using a variety of techniques.  It implied future research 

and validity in applying this post-processing method to other pre-processors to further 

reduce Type I error associated with the classification of anomalies within data.  

Hopefully, in future research, we can enhance the number of true positives; thereby, 

reducing false negatives as well.  But we seemingly have had the most success thus far in 

reducing the false positives associated with the Type I error.  As we progress in this 

research, there is ample promise for the enhancement of this process, recognizing that in 

these images in particular, given the state of the world today, false positives are by far the 

most negative outcome.  Therefore, by enhancing our thresholds, parameters and 

performance, we can amply improve performance in line with our desired outcome. 
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V.  Conclusions and Recommendations 

Chapter Overview 

In assessing our base methodology, we observed some improved classification 

accuracy with ARCADE, but this discovery also led us to examine other pre-possessing 

possibilities.  Originally, we executed BACON on the raw data.  Our first and second 

excursions were to assess ARCADE’s variance executing BACON on the principal 

component scores, with full and reduced dimensionality.  This was followed by the use of 

the RX algorithm and finally evaluations based on the Mahalanobis distances.  This use 

of a variety of pre-processing techniques allowed us to experiment with ARCADE 

Simultaneously, we experimented with parameter adjustments within the pre-processors 

themselves.   

In this chapter, we first provide a more in-depth examination of how the BACON 

and RX algorithms interacted with the data, assessing their true ability in performing 

anomaly detection.  We assessed the algorithmic classification, as well as the values 

which produced the partitioning of classes for the various algorithms.  This allows us to 

further examine the variations associated with both algorithms and both algorithms 

outputs.   Assessments across multiple pre-processing algorithms and parameters, 

allowed us to determine robustness of a variety of features within the pre-processors 

themselves and ARCADE.   

By examining algorithmic components separately and together it provides great 

insights into the future potential and the options for future research.  While we initially 

set out with a focus on post-processing through ARCADE, this research gave us great 
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insight into the use of the various pre-processors, impacts of those pre-processors, 

clustering and random number generation.   

Conclusions of the Research 

Interestingly, in using a variety of pre-processing techniques, we were able to 

compare the robustness of those various algorithms.  Figure 49 shows the class separation 

using three primary pre-processing methodologies.  While the threshold or parameters 

could be changed for each of them, we see that they all pick up a majority of the true 

anomalies, but in some, the amount of noise is certainly much higher.  In fact RX did not 

pick up all of the truly anomalous data and it included substantial noise, whereas the 

Mahalanobis distance pre-processing seemed to primarily pick up that noise associated 

with sensor artifacts, which in truth is anomalous – just not the anomalous data important 

for action. 

 
Figure 49: Class Mapping Pre-Processing Comparison (ARES1F) 

As demonstrated in Section IV, we also see that parameter shifts have the potential to 

make fairly significant changes in the quality of classification (Figure 50).  BACON, 

utilizing 40 degrees of freedom on the right, includes all of the true anomalies in the 
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anomalous class, but the noise is not overbearing, as the degrees of freedom are reduced 

to 30 in the middle, and then with 20 degrees of freedom on the right, where it almost 

consumes the entire image.  When too much of the true background data is over-classfied 

into the anomalous class, it becomes nearly impossible for additional processing to 

remove enough data from the anomalous class to produce a quality result. 

       

 
Figure 50: Class Mapping BACON Dimensionality (ARES1F) 

However, we must recall that, in the instance of ARCADE, post-processing is 

only able to improve upon the false positive classification associated with the classes.  It 

does not impact those observations that were inadvertently consumed by the background 

class.  Therefore, if true anomalies are included in the background class it produces two 

negatives.  First, it reduces the ability of the algorithm to find all of the true anomalies.  

Second, anomalous data included in the background class has the potential to alter the 

clusters associated with k-means, and thereby it could alter the effectiveness of the ANNs 

in encoding those clusters, which potentially could cause more of the true anomalies 

associated with the anomalous class to move into the background class.  This may be 
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intuitive, but it re-affirms the over-arching importance in not under-partitioning the 

anomalous class.   

Simultaneously, the thresholding robustness made a significant difference as well.  

Figure 51 shows how as the threshold decreases, more and more of the data remains in 

the background class.  As we saw in Section IV, a threshold of 0.32 allows for too much 

background within the anomalous class, while a threshold of 0.05 significantly over-

limits the anomalous class (Figure 51).  Like the shifting parameters in Figure 50 this can 

have negative effects on the overall classification capability associated with ARCADE. 

 
Figure 51: Class Mapping Comparison (ARES1D) 

How the clustering interacted with the data is definitely an issue that can and 

should be explored more with future research.  While overall the number of clusters had 

relatively similar predictability, there were definitely instances where a specific number 

of clusters definitely under-performed or over-performed. 

Overall the utilization of ANNs was both a novelty and a positive.  The literature 

review revealed that this was a novel idea, and while dependent on the settings, it 
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definitely showed promise in reducing false positives.  When examining other research, 

we note that other pre-processing algorithms have been shown to hold promise when 

compared to both RX and BACON, so additional study in the application of ARCADE in 

conjunction with these other algorithms would definitely be worthwhile [16]. 

Significance of Research 

The major additive effects of this research include the noticeable classification 

capacity of Mahalanobis distance.  With the appropriate thresholding, Mahalanobis 

distance is one of the easiest methods for classification, providing high computational 

efficiency, while providing a high level of predictability.  Using Mahalanobis distance 

has been a component of numerous classification techniques [9], but our research 

indicates that, at least with the use of HSI images collected with the HYDICE sensor, it 

provides a high classification accuracy in and of itself.   

Of additional importance, our research shows how the clusters achieve a high 

degree of effectiveness with only a relatively small proportion of the associated 

observations.  When we compared the classification ability utilizing only a 10 percent 

sample of each cluster to that of a 40 percent sample, the overall algorithmic performance 

was only slightly affected, and not always with an improved result.  While computational 

efficiency was not the overall goal of this research, this is notable in that the ARCADE 

ran fairly quickly despite having literally dozens of moving parts, which could in reality 

be scaled down, by slightly tightening the number of clusters or reducing the number of 

ANNs run upon each cluster.  While current evidence suggests that three ANNs do not 

provide enough robustness in performance, 20 ANNs seems to be more than necessary.  
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Of similar importance to the computational efficiency, the 10 percent sample directly 

demonstrates the continuity of the clusters, confirming the general quality of k-means 

clustering. 

Subsequently, this research provided a potentially viable methodology for post-

processing using ARCADE.  At minimum, it establishes a starting point into future 

research utilizing ANNs in post-processing classification.  This combination of 

techniques had not been attempted before, but we observed a high level of fidelity when 

comparing the potential to other known methods.  As ANNs expand in their use and 

application, the potential definitely exists to further enhance pattern classification and 

anomaly detection. 

Lastly, this research firmly asserts that all of these methodologies have potential 

in decision-making based upon the goals associated with the analysis.  While in a perfect 

world, one would classify data and immediately find all of the true positives without 

acquiring any false negative observations; this is not typically the case.  However, if we 

could use these techniques in accordance with our goals, there are many ways which it 

could be immediately applicable.  In some cases, a few false positives are not very 

problematic, but it can have dire consequences not to find all of the anomalies.  In other 

cases, false positives are absolutely egregious, but if even half of the anomalies could be 

resolved, it would create a significant benefit.   
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Recommendations for Action 

It would benefit numerous problem sets, especially within the realm of HSI, to 

utilize methodological capacities in conjunction with desired intent to either eliminate all 

false negatives or enhance the classification of true positives. 

Recommendations for Future Research 

We would recommend a number of future research options to include: 
  

1) ANN Testing 
- Testing for the optimal number or range of middle nodes used by the 

ANNs 
- Testing for the optimal number or range of hidden layers in ANNs 

2) Signature matching of the anomalous class following completion of ARCADE 
3) Testing additional pre-processing methodologies  
4) Testing across variations and excursions with Horn’s Curve 
5) Further parameter testing for the pre-processing methodologies already tested 
6) Optimize sample size 
7) Optimize the number of clusters 
8) Test various clustering techniques 
9) Run replications 

Summary 

The development of ARCADE provided a first-in-its-class classification 

technique utilizing ANNs as a post-processor for data sets that have already been 

classified utilizing an already proven pre-processing technique.  ARCADE strings 

together a variety of mathematical techniques to filter out false positives garnered during 

the original classification.  While there is still testing to be done, ARCADE shows 

promise in this capacity.  By developing and testing ARCADE, it provided additional 

insight into the robustness of the various classification methods used as a pre-processors, 

it gave tremendous insight into the validity and quality of Mahalanobis distance as 

classification tool, it demonstrated the robustness of k-means clustering and small sample 
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sizes based on the associated clusters, and it showed promise in the reduction of false 

positives.  With certainty there is still work to be done, but the information attained will 

advance future research possibilities with the possibility of finding ever better anomaly 

detection techniques and procedures.  Furthermore, this research affirms the necessity in 

setting quality goals for anomaly detection.  If we can ascertain the intent of our anomaly 

detection, we correctly frame problems to have immediate, actionable insights into 

varying problem sets. 
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