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Abstract

Given the ubiquitous nature of both offensive and defensive missile systems, the

catastrophe-causing potential they represent, and the limited resources available to

countries for missile defense, optimizing the defensive response to a missile attack

is a necessary endeavor. For a single salvo of offensive missiles launched at a set

of targets, a missile defense system protecting those targets must decide how many

interceptors to fire at each incoming missile. Since such missile engagements often

involve the firing of more than one attack salvo, we develop a Markov decision process

(MDP) model to examine the optimal fire control policy for the defender. Due to the

computational intractability of using exact methods for all but the smallest problem

instances, we utilize an approximate dynamic programming (ADP) approach to ex-

plore the efficacy of applying approximate methods to the problem. We obtain policy

insights by analyzing subsets of the state space that reflect a range of possible de-

fender interceptor inventories. Testing of four scenarios demonstrates that the ADP

policy provides high-quality decisions for a majority of the state space, achieving a

7.74% mean optimality gap in the baseline scenario. Moreover, computational effort

for the ADP algorithm requires only a few minutes versus 12 hours for the exact

dynamic programming algorithm, providing a method to address more complex and

realistically-sized instances.
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DETERMINATION OF FIRE CONTROL POLICIES VIA

APPROXIMATE DYNAMIC PROGRAMMING

I. Introduction

Currently, over 30 countries have inventories of theater ballistic missiles [1] while

an additional 50 employ multiple launch rocket systems [2]. Both of these weapon

systems are capable of causing large amounts of damage and of inflicting a high

number casualities on their targets. The proliferation of these weapon systems has

increased their destructive potential to a worldwide scale while continued research and

development on them has led to the creation of even more capable systems that can

be used by their developers to threaten neighboring countries or demand concessions

in exchange for halting their production. Even U.S. officials concede that, because of

the country’s recent focus on counter-terrorism, other world powers have closed the

gap on guided munitions technology, and the U.S. is now facing the uncertainty of

being able to win a “guided munitions salvo competition” [3].

The threat from these weapons has led to the development and spread of missile

defense systems. One of the best known of these systems is Israel’s Iron Dome. De-

veloped by Israel and funded mostly by the U.S., the Iron Dome boasts a 90% success

rate of destroying incoming rockets headed towards civilian populations, intercepting

over 500 rockets during Operation Protective Edge alone according to Israeli officials

[4]. The U.S.-developed Patriot system has been in service for over 30 years, seeing

use in both Gulf Wars among other conflicts [5], while the system itself has been

acquired by 12 other countries [6]. Israel has exported its Iron Dome technology to

Canada [7] and continues to work closely with India to develop cutting-edge surface-
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to-air missiles (SAM) [8]. Still more countries, like Turkey, are seeking to acquire

long-range missile defense systems [9], and the U.S. continues to push ahead with

missile defense for Europe and Africa [10].

The security these defense systems may provide comes at a significant financial

cost. Initial acquisition costs can be billions of dollars depending on the size and

scope of the order. For example, the cost to equip Qatar with the Patriot missile

defense system in late 2014 was $2.4 billion [11]. Once the system is in place, it must

be modernized periodically to counter the evolution of missile threat systems. South

Korea paid $770 million for a recent upgrade to its missile defense sytem [12]. Finally,

the cost of the interceptor missiles themselves is a large part of the ongoing price of

missile defense. The U.S. recently awarded a $1.5 billion contract to Lockheed Martin

for an order of its latest interceptors [13] while Saudi Arabia has purchased 600 of

the same missiles for $5.4 billion [14].

Given the ubiquitous nature of both offensive and defensive missile systems, the

catastrophe-causing potential they represent, and the limited resources available to

countries for missile defense, optimizing the defensive response to a missile attack is a

valuable endeavor. For a single salvo of offensive missiles launched at a set of targets,

a missile defense system protecting those targets must decide how many interceptors

to fire at each incoming missile. This decision is the well studied static weapon-

target assignment problem. However, missile engagements between an attacker and

defender typically extend over many waves of missile launches by the offense. That

is, the offense does not launch all of its missiles at once. Instead, it launches subsets

of its inventory at selected targets in discrete time periods. Hence, the defense cannot

fire all its interceptors at once; it must hold some number of its inventory back in

consideration of subsequent attack waves. This component of time is a distinguishing

characteristic of the dynamic weapon-target assignment problem.

2



Previous work by Han et al. [15] provides a framework for the analysis of Inte-

grated Air Defense System (IADS) location placement and subsequent fire control

decisions. This paper provides two formulations that address optimization within a

multiple-salvo missile engagement setting. Initially, a Markov decision process (MDP)

model is developed from the defender standpoint. MDP models are formulated to de-

scribe sequential decision-making under uncertainty problems using only the current

state of information [16] and are ideally suited to the dynamic weapon-target assign-

ment problem (DWTAP). While the MDP model is inherently a construct for a single

decision maker (in this case, the defender), we incorporate a “smart” attacker into

the formulation to better inform the resulting optimal policy.

Next, we take an approximate dynamic programming (ADP) approach to deal

with the curses of dimensionality, forced on us by larger problem instances. ADP

provides many useful strategies and algorithms for solving stochastic optimization

problems that are similar to the DWTAP. We apply an approximate policy interation

(API) algorithm utlizing least squares temporal differences (LSTD) to solve several

DWTAP test instances and then analyze these results as compared to the optimal

firing policy.

1.1 Problem Statement

Using the approaches outlined above, we seek a solution to the following problem.

Problem Statement: Given a set of cities C, each with a value vi ∈ R+, i ∈ C, a

set of SAM batteries with corresponding city-covering capabilities, a fixed number of

interceptor missiles at each battery, and a fixed number of attacker missiles, we seek

the best interceptor allocation policy for a defender.

3



The remainder of this thesis is organized as follows. Chapter II reviews relevant

research on the weapon-target assignment problem which informs the methodologies

presented in Chapter III. Chapter III develops the models for the MDP and ADP

approaches. Chapter IV provides analytic results of test instances for both formula-

tions. Chapter V concludes the research presented in this thesis and offers suggestions

for further study.
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II. Literature Review

Overview

The weapon-target assignment problem (WTAP) is a classical operations research

problem of great importance to defense-related operations research applications [17].

Simply stated, the WTAP seeks an optimal assignment of some number of weapons

to some numbers of targets to maximize the total damage inflicted on the targets [18].

Research focus on the WTAP has only increased through the years as threat systems

and platforms proliferate in type and number, to the extent that a weapon-target

assignment system that can efficiently solve WTAPs is now a key component of bat-

tlefield planning [19].

Cheong [20] lists six factors that are common to any WTAP. They are attacker

characteristics, defender characteristics, target characteristics, intelligence available

on the opposing force, scenario, and measures of effectiveness of the allocation strat-

egy. Attacker and defender characteristics are composed of the same parameters,

albeit for opposing sides. Each side could have only one weapon or missile type or a

variety of them. All weapons could perform exactly the same or have higher intercept

probabilities depending on the target to which it is assigned. Strategies are specified

for both attacker and defender. For instance, missiles could be launched in one large

attack or in salvoes that provide the attacker the opportunities to assess success or

failure prior to the next launch.

Target characteristics are customizable as well. The chosen target type, such as a

point or area target, can simplify or complicate a WTAP considerably. Target value is

an important consideration given its role in determining optimality. By manipulating

the defense associated with a target entities such as hardened targets are modeled.

The information that each side has about the other can range from omniscience
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to complete ignorance. Depending on the intelligence-derived situational awareness

each side has regarding the other, many different combinations of WTAP models are

generated. Scenario specifics such as operating in a land- or naval-based environment

or modeling unmanned aerial vehicles or ICBMs add to the diversity of the WTAP

application. Measures of effectiveness to allow comparison of alternate strategies are

chosen based on the problem’s parameters, mathematical tractability, or arbitrarily.

Two significant surveys of WTAP literature are Matlin [21] and Eckler and Burr [22].

Matlin reviews the literature based on a set of five submodel characteristics. Each

characteristic – the weapon system, the target complex, the engagement, the damage

model, and the algorithm – is partitioned alphabetically based on the complexity of

the assumptions within that particular characteristic. Matlin primarily focuses on

asset-based, offensive allocation models, both with single and multiple missile types,

but also includes models that consider the defender’s allocation of interceptors. Eck-

ler and Burr provide an extensive and thorough look at even wider range of models.

Besides allocation models, the authors examine many more technical aspects and

variations of the target-based WTAP model.

Work on the WTAP is traced back to the 1950s and 1960s. Manne [23] devel-

oped a linear programming approximation, while Bradford [24] and Day [25] studied

WTAP modeling issues including its decomposition into subproblems with subsequent

reconstitution. In 1975, Croucher [26] applied game theory to a small antiballistic

missile defense scenario in which the attacker targets 3 defensive assets using a bal-

listic missile which contains 28 multiple reentry vehicles. The defense is allotted 16

weapons for assignment, and each of its assets is assigned a different value. After

first establishing the existence of pure strategies, the instance is solved by finding the

min-max and max-min solutions.

Exact algorithms for some WTAP formulations are proposed in the literature.
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The most well known is found in den Broeder et al. [27], which presents the minimum

marginal return (MMR) algorithm to solve the case of identical weapons. However,

the general WTAP is NP-complete, as proven via a reduction from the exact cover

problem by Lloyd and Witsenhausen [28].

The two fundamental classes of the WTAP are the static and dynamic WTAPs.

According to Xin [29], in a static WTAP, all parameters for the problem are known,

and all weapons are assigned to the targets in a single stage. Comparatively, in

a dynamic WTAP, multiple stages require weapon-target assignments with each of

these stages subsequently evaluated to make future assignment decisions to obtain

the best global assignment.

2.1 Static WTAP

Zeng et al. [30] solves the static WTAP using discrete particle swarm optimization.

The approach leverages advantages from both genetic algorithms and particle swarm

optimization to effect a solution. The authors utilize a mutation strategy, much like

those implemented in genetic algorithms, to prevent the procedure from becoming

trapped in a local optimum. They also discretize the particle swarm optimization

model to apply it towards the WTAP. For a 60-weapon, 60-target test instance the

proposed algorithm converges in the same amount of time to a better solution than

either a standard genetic algorithim or a genetic algorithm with a greedy eugenic.

A genetic algorithm approach by Lee et al. [19] to the static WTAP incorporates a

novel method of gene recombination. The authors express the weapon-target assign-

ment as a chromosome where the position of the gene represents the weapon assigned

and the value of the gene represents the target. Based upon the value of the target

and the probability of the assigned weapon killing the target, the authors label a gene

as “good” if it has the highest such combination of value and kill probability. The al-

7



gorithm keeps common “good” genes between two parents and uses them to produce

the next generation of solutions. The authors also propose a “greedy eugenic” which

effectively intensifies the local search for the best solution. The algorithm solves a

120-weapon, 80-target instance with good results.

Madni and Andrecut [18] present simulated annealing and threshold accepting

approaches to the static WTAP. The authors test them against the MMR algorithm

to determine the solution quality. Both of the proposed heuristics solve static WTAP

instances of up to 200 weapons and 200 targets close to optimality in a matter of

seconds.

Wacholder [31] considers a neural network-based approach to solve the static

WTAP. The formulation in this research considers a nonlinear combinatorial optimiza-

tion problem that restricts each weapon platform to assigning only one interceptor per

target. In the neural network representation, Wacholder defines weapon assignment

variables as the output signals of the neurons and defines the objective function (i.e.,

the total expected value of missed targets) and constraints by energy functions. The

developed algorithm produces useful solutions for real-time implementation in com-

bat situations while the structure of the formulation also allows peacetime analysis

of various parameter settings to design an optimal defensive posture.

Ahuja et al. [17] exploit the special structure of the static WTAP to formulate

linear programming, mixed integer programming, network flow, and combinatorial

lower-bounding schemes for proposed algorithms. The authors formulate the stan-

dard nonlinear WTAP as an integer programming problem with a convex objective

function value. They view this formulation as a generalized network flow problem with

convex costs which they approximate by a piecewise-linear convex function so that the

modified problem solution gives a lower bound to the general problem. To obtain the

linear programming-based lower-bounding scheme, Ahuja et al. relax the integrality

8



constraints of the weapon assignment variables. To obtain the mixed integer-based

lower-bounding scheme, the authors maintain the integrality of the weapon assign-

ment variables while transforming the piecewise-linear convex functions to linear cost

functions.

The authors develop a minimum cost flow-based lower-bounding scheme by in-

terpreting the WTAP objective function as maximizing the expected damage to the

targets as opposed to minimizing the survival value of the targets. Using that inter-

pretation, they develop an upper bound by formulating the WTAP as a maximum

cost flow problem. Subtracting the upper bound from the total value of the targets

provides the lower bound.

The authors develop a maximum marginal return-based lower-bounding scheme

by underestimating the survival of a target when hit by a weapon. Instead of allowing

any weapon to hit the target, the authors assume that the best weapon hits the target.

This assumption limits the WTAP to only one weapon type, the best, making any

solution to this formulation a lower-bound on the case including weapon types of

inferior capability.

The authors propose several algorithms for solving the WTAP. They develop and

implement a branch-and-bound algorithm using three of the four lower-bounding

schemes outlined above. They exclude the linear-programming scheme due to its

inability to generate tight bounds. For smaller instances, a breadth-first strategy

produces the best results while for larger instances, the depth-first strategy produces

the best. The proposed branch-and-bound algorithm is the first exact algorithm able

to solve up to an 80-weapon, 160-target instance of the WTAP in moderately good

time.

Ahuja et al. also propose a very large-scale neighborhood (VLSN) search al-

gorithm. Prior to implementing the VLSN algorithm, they employ a construction

9



heuristic that solves a sequence of minimum cost flow formulations of the WTAP and

provides a good starting feasible solution. The proposed WTAP VLSN employs cyclic

and path multiexchanges to create neighbors. The multiexchanges allow weapons

to be reassigned from target to target. The algorithm finds mostly two-exchanges,

though searches for up to five-exchanges. For an 80-weapon WTAP instance, this

cyclic exchange search equates to a neighborhood size of about 3 billion solutions.

The authors develop an implicit enumeration algorithm by leveraging the idea of

improvement graphs to accommodate the extreme neighborhood size.

Of the three lower-bounding schemes tested, the mixed integer programming

scheme yields the tightest bounds but produces the longest running times. The min-

imum cost flow-based method gives very tight lower bounds when the number of

weapons is less than the number of targets, whereas the maximum marginal return-

based lower-bounding scheme is computationally efficient but produces not as tight

bounds.

The authors employ their branch-and-bound algorithm with each of the lower-

bounding schemes. For certain instances and schemes, the authors obtain no solu-

tions within 48 hours running time using the minimum cost flow-based and max-

imum marginal return-based lower bounds. However, the branch-and-bound algo-

rithm, when using the mixed integer programming lower-bounding scheme, produces

consistent results in a timely fashion.

While meant to find starting solutions for the VLSN, the construction heuristic

performs extremely well and obtains optimal solutions for over half the test cases.

For instances where the heuristic could not reach optimality, the VLSN either finds

the optimal solution or comes within less than 0.01%. The heuristic and VLSN solves

within 3 seconds test instances of up to 200 weapons and 400 targets, the largest

instance found in the literature.
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2.2 Dynamic WTAP

According to Murphey [32], the dynamic WTAP is formulated in one of two man-

ners. The first model assumes that all targets are known from the start, while the

second assumes that only a subset are known while others may be revealed stochas-

tically. The first formulation is also known as a shoot-look-shoot model and is the

more widely studied. The second formulation allows for additional targets to become

known as time progresses, making the decision problem one of how many weapons

to assign to the known targets and how many to reserve for future targets that may

present themselves. This formulation is a stochastic demand problem and is intro-

duced and studied in Murphey [33]. Ahner and Parson [34] exploit the structure of

the stochastic demand problem to optimally solve a two-stage formulation.

Hosein and Athans [35] present the general dynamic WTAP formulation. Due to

the complexity of the problem, the authors limit the number of stages to two, while

assuming that weapon-target kill probabilities depend only the asset at which the

target is aimed. They develop an upper bound for the optimal value as well as a

heuristic solution method.

As is the case for the static WTAP, heuristic methods are the most common

approach to solving the dynamic WTAP given its computational complexity. Xin

et al. [36] use three rules based on the potential damage of an incoming missile

and potential benefit of a particular interceptor assignment to develop a heuristic

that solves the asset-based, dynamic WTAP. Both Wu [37] and Khosla [38] employ a

genetic algorithm (GA) approach to the dynamic WTAP. Wu’s modified GA approach

allows for the dynamic allocation of weapons to new targets without restarting the

algorithm, thus giving the algorithm more time to find higher quality weapon-target

pairings. Khosla combines a GA with a simulated annealing heuristic to optimize the

weapon-target assignment when faced with resource and timing constraints.
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Lötter and van Vuuren [39] examine four classes of the WTAP to provide support

to the Threat Evaluation and Weapon Assigment Decision Support System (TEWA

DSS). In particular, the authors focus on the optimization of the Weapon Assign-

ment subsystem which is responsible for providing the fire control officer (FCO) with

high-quality assignments of surface-based weapons to airborne threats. The exam-

ined classes, listed in increasing levels of complexity, are the single-objective, static

WTAP; the multi-objective, static WTAP; the single-objective, dynamic WTAP; and

the multi-objective, dynamic WTAP. Assuming models for all WTAP classes are in-

corporated into the TEWA DSS, the authors propose that the FCO utilize a decision

tree in the predeployment stage to configure the Weapon Assignment subsystem.

The authors solve a realistic missile defense scenario using the first three classes

presented. The multi-objective, dynamic class is not modeled. For the static models,

they implement two different genetic algorithms. For the single-objective, dynamic

model, the authors solve with a simulated annealing heuristic. The approach for all

three formulations provides high quality, quickly attained solutions for the FCO to

choose from.

Defended assets are typically of more than a single type or purpose. Hosein

et al. [40] intersperses command, control, and communication (C3) nodes among

the typical defended assets in their model. The authors study this structure for

both dynamic and static WTAPs. Destruction of the C3 system renders the subset

of interceptors under its management useless and increases the vulnerability of the

defended assets. Attacking the C3 nodes is not without risk for the offense as attempts

at these sites leave fewer missile available for targeting the remaining assets. To

demonstrate how the complexity of the WTAP with C3 can grow, the authors impose

kill probability and asset value constraints. They then relax the constraints and

increase the problem instance size. The authors show that model formulation as a
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dynamic versus static WTAP significantly increases the effectiveness of the defense.

Soland [41] uses stochastic dynamic programing to solve an asset-based, dynamic

WTAP. The model formulation is limited to one asset as well as weapon-target kill

probabilities that are the same within each stage. The author provides numerical

results as well as some extensions regarding the number of interceptors remaining for

the defense.

Most dynamic WTAP formulations assume that the defender accurately predicts

the asset that an offensive missile is targeting. Leboucher et al. [42] relax this assump-

tion so that a defender can only tell the particular region that is being targeted; the

region may have one or more assets needing defense. The authors propose a combined

evolutionary game theory and discrete particle swarm optimization approach to solve

the problem, and they provide computional results using numerical simulation.

Karasakal [43] develops an integer linear programming model that also addresses

the defensive effectiveness of a naval task group. The formulation assumes a shoot-

look-shoot policy and considers both point defenses as well as area defenses. Point

defenses intercept only missiles fired directly at the ship they are onboard whereas an

area defense fires at all targets within its range. From the standard nonlinear integer

programming model, Karaskal creates two linear integer programming models using

a logarithmic linearization process. The first model does not guarantee an optimal

assignment solution; it minimizes the total deviation from a desired probability of

not having any attacking missiles leak through the defense. The second model also

does not seek the best weapon-target assignment. Instead, it minimizes the maximum

deviation from the desired probability.

The author randomly generates 36 test instances ranging from 3 to 81 anti-ship

missiles and surface-to-air missiles to test both proposed models. The first model pro-

duces the better results in 22 out of 36 instances whereas the second model performed
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better in six cases. Karaskal performs ten runs each for five of the previous instances

with each model taking less than a second on average to provide an approximate

weapon-target solution.

Bertsekas et al. [44] model a dynamic WTAP that is considerably more complex

than the static WTAP. Instead of making one assignment of weapons to targets,

the defense must decide how many weapons to employ against the current attack

and how many to keep in reserve for subsequent attacks. Since Bellman’s “curse

of dimensionality” denies the possibility of an exact solution for problems of even

moderate size, the authors apply a class of reinforcement learning methods called

neuro-dynamic programming to deal with the dimensionality of the dynamic WTAP.

The neuro-dynamic programming framework for the dynamic WTAP employs sub-

optimal solution methods to approximate the optimal function via neural networks

and simulation. The authors develop four approximate policy iteration methods that

generate a sequence of policies that allow for the approximate evaluation of the op-

timal functions. The approximate policy iteration methods require the potential

solutions to undergo a follow-on screening process to effectively select the best one.

The authors instantiate 23 test cases using three asset types, one missile type, and

one interceptor type, with the number of interceptors and missiles ranging from 40

to 60. Results show that none of the methods dominate the others with tradeoffs

existing among the various policy iterations. Tuning of particular aspects of each is

likely to lead to more efficient solution processes.
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III. Methodology

Joint Publication 3-01 (JP3-01) [45] recognizes two main enemy threats to an

integrated air defense system: air threats (i.e., fighters and bombers) and ballistic

missile (BM) threats. Of the two, BMs are considered more difficult to counter by

offensive targeting since, in general, they have smaller logistical footprints and are

more easily maneuvered and concealed. Since an enemy’s BM assets are unlikely to be

completely destroyed prior to launch, it is essential to devise a defensive strategy to

counter their use. JP3-01 assumes an IADS’s ability to identify and target incoming

BMs to include impact points, and it outlines planning considerations for countering

a BM salvo against a set of defended assets. These considerations – placement of

SAM sites, return salvo size, interceptor inventories, and firing doctrine – attempt to

enable the best possible response to an attack salvo. Since it is reasonable to assume

that an attacker has a limited supply of BMs and a limited number of launchers, it is

also reasonable to assume that an enemy would choose to stage an attack over several

salvos to enable efficient use of limited assets via iterative battle damage assessment

of the defended assets and to allow for reloading and/or repositioning of launchers.

Thus, we view an enemy BM campaign as a series of “look-shoot” engagements.

In our formulation, the defender has a set of cities, each having a value, it wishes

to protect from incoming missiles using a predetermined configuration of SAM sites

with preallocated supplies of interceptors that cannot be replenished. SAM sites are

assumed to be collocated with a city (though not every city may have one) and to

have a predefined protection radius of cities each SAM site could defend. Cities, but

not SAM sites, are assumed to be destroyed if at least one attacking missile targeting

the city is not successfully intercepted. Implied herein is an attacker strategy that

is counter-value focused rather than counter-force focused. The attacker has some

finite number of missiles available for carrying out attacks which may be launched in
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Decision
epoch t

Status/inventory of
each city/SAM site St

Attacker
input M̂t

Change in city status

Ât+1(xt) occurs

Defender
response xt

Attacker
input M̂t+1

Time period t+ 1

Decision
epoch t+ 1

Status/inventory of
each city/SAM site St+1

Figure 1. Diagram outlining the timing of events for the “look-shoot” MDP model.

multiple salvos. The attacker can observe the status of each city prior to launching

an attack. Once an attack is launched, the defense can identify which city has been

targeted by each missile. The defense must then decide how many interceptors to

allocate from among its SAM sites to each incoming missile and how many to keep in

reserve for repelling subsequent BM attacks. We wish to maximize the expected value

of the cities that remain after all attack salvos have been launched. Equivalently, we

wish to minimize the expected total cost of destroyed cities over all decision epochs.

Figure 1 shows a timing diagram of the model.

3.1 MDP Model

The Markov Decision Process (MDP) model is formulated in the following manner.

1. Let T = {1, 2, ..., T}, T ≤ ∞ be the set of decision epochs.

2. The state space consists of three components: the status of each city, the in-

ventory of each SAM site, and the attack “vector”.

(a) The city status component is defined as
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At = (Ati)i∈A ≡ (At1, At2, ..., At|A|),

where A = {1, 2, ..., |A|} is the set of all cities, and Ati ∈ {0, 1}. Ati is the

status of city i ∈ A at decision epoch t with one indicating the city is alive

and zero indicating the city is destroyed.

(b) The SAM inventory status is defined as

Rt = (Rti)i∈A ≡ (Rt1, Rt2, ..., Rt|A|),

where Rti ∈ {0, 1, ..., ri} and ri = initial inventory of interceptors at SAM

site i ∈ A. Rti is the number of interceptors at SAM site i ∈ A at decision

epoch t.

(c) Let M̂t = {1, 2, ..., |M̂t|} be the set of all fired attacker missiles at decision

epoch t. M̂t is the collection of observed incoming BMs that must be

targeted by the defense at time t. The attack “vector” is defined as

M̂t = (M̂ti)i∈A ≡ (M̂t1,M̂t2, ...,M̂t|A|),

where M̂ti ⊆ M̂t is the set of missiles fired at city i at decision epoch t,

and the tuple M̂t forms a disjoint set partition of M̂t. The information

provided by M̂t is available to the defender at time t. However, the arrival

of new information, M̂t+1, is random and could be conditioned on At+1.

Let PM̂t(m) = P(M̂t = m|At) denote the probability distribution of the

attacker BM salvo M̂t. This distribution is conditioned on At meaning that

the battle damage assessment capabilities of an attacker will determine the

likelihood that a particular attack vector arrives to the system.

Using these components, we define St = (At, Rt, M̂t) ∈ S as the state of the

system at decision epoch t, where S is the set of all possible states.

3. At each epoch t, the defender must decide how many interceptors to assign to
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each missile targeting a city. The defender must make this choice from among

the SAM sites that have the given city within their respective protection radii.

From the a priori placement of SAM sites relative to the cities, we can deduce

a coverage matrix for the entire defended area. From this coverage matrix,

we can determine which SAM sites can intercept each incoming missile. Let

xtij ∈ N0 be the number of interceptors fired by SAM site i ∈ A against missile

j ∈ M̂A
ti at decision epoch t, where M̂A

ti is defined as the set of missiles that

can be intercepted by SAM site i at decision epoch t. Let xt = (xtij)i∈A,j∈M̂A
ti

denote our decision vector. We define the set of all feasible defender actions

(i.e., assignment of interceptors to missiles) as

XSt = {xt :
∑

j∈M̂A
ti

xtij ≤ Rti, ∀ i ∈ A},

where the constraint
∑

j∈M̂A
ti

xtij ≤ Rti ensures that each SAM site i ∈ A cannot

fire more interceptors than it has in inventory.

4. We define transition functions and transition probability functions to charac-

terize how the system evolves from one state to another as a result of deci-

sions and information [46]. The state transition function is defined as St+1 =

SM(St, xt,Wt+1), where Wt+1 = (Ât+1, M̂t+1). Wt+1 represents all the informa-

tion (i.e., city status and attacker BM salvo) that becomes known at decision

epoch t+ 1. We define the city status transition function as

At+1,i =


0 if Ati = 0,

Ât+1,i(xt) otherwise,

∀i ∈ A,

where Ât+1,i(xt) is a random variable representing the status of city i after

salvo M̂t and the interceptor allocation decision xt. This information depends
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on xt since the number of interceptors fired at the inbound BMs affects a city’s

probability of survival. We define the inventory status transition function as

Rt+1,i = Rti −
∑

j∈M̂A
ti

xtij, ∀ i ∈ A,

and note that the city status transition function is stochastic whereas the in-

ventory status transition function is deterministic.

The probability of transitioning from state St to St+1 is conditioned on both

the state of the system and the action chosen by the defender at decision epoch

t. We assume the defender has one interceptor type, the attacker has one missile

type, and that any missile that is unintercepted results in the certain destruction

of the targeted city. We define q ∈ (0, 1) to be the probability an attacking

missile survives being targeted by a single interceptor. Then ρtj =
∏
i∈A

qxtij is

the probability that missile j ∈ M̂t survives being targeted by all interceptors

fired against it at decision epoch t. We define

ψti =


∏

j∈M̂ti

(1− ρtj) if M̂ti 6= ∅,

1 if M̂ti = ∅,

as the probability that city i ∈ A survives to decision epoch t+1. Thus Ât+1,i(xt)

follows a Bernoulli probability distribution with parameter ψti. Then

pt(St+1|St, xt) =



PM̂t+1(m)
∏
i∈A

ψ
At+1,i

ti (1− ψti)Ati−At+1,i if Ati ≥ At+1,i and

Rt+1,i = Rti −
∑

j∈M̂A
ti

xtij ,

and M̂t+1 = m,

0 otherwise,

is the transition probability function from state St to St+1.
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5. At each decision epoch t, the defender incurs an expected cost as a result of its

decision. We define this cost as Ĉ(St, xt, Ât+1,i) =
∑
i∈A

vi(At − Ât+1,i), where vi

is the value of city i ∈ A. We rewrite the cost function in terms of only the

current state and decision by taking its expected value

C(St, xt) = E
{∑
i∈A

vi(At − Ât+1,i)|St, xt
}

.

To determine the optimal policy, we must find a solution to the Bellman equa-

tions

Jt(St) = min
xt∈XSt

(C(St, xt) + γE{Jt+1(St+1)|St, xt}). (1)

These equations are alternately referred to as optimality equations or value

functions. The parameter γ ∈ (0, 1) is a discount factor that represents our

expectation of BM campaign length, or the expected number of decision epochs

T . We note the following relationship

E[T ] =
1

1− γ . (2)

The number of attack salvos for a BM campaign is controlled by the attacker and

not dependent on the defender’s actions. Incorporating an uncertain horizon

allows us to model the randomness of how long a missile engagement may last.

6. Using the reward function, we define the decision function as

Xπ
t (St) = argmin

xt∈XSt

(C(St, xt) + γE{Jt+1(St+1)|St, xt}),

where π represents a policy, or specified defender actions for each state.

We wish to determine the policy π∗ that minimizes the expected total dis-

counted cost of destroyed cities over all epochs. Thus our objective is
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min
π∈Π

Eπ
{

T∑
t=0

γtC(St, X
π
t (St))

}
.

The notation Eπ denotes that the expectation depends on the defender’s chosen

policy.

3.2 ADP Model

The MDP model formulation provides an elegant framework for the interceptor

allocation problem. However, the application of exact dynamic programming algo-

rithms to the problem is limited to very small instances. This limitation exists because

our problem suffers from the curses of dimensionality. For example, consider the di-

mensionality of the state space S, where St = (At, Rt, M̂t) ∈ S is an arbitrary state.

The tuples At, Rt and M̂t represent the status of each city, the status of each SAM

battery’s inventory, and the attack vector at decision epoch t, respectively. Since city

status is binary there are 2|A| possibilities for At. Since SAM batteries are collocated

at cities, there are
∏
i∈A

(ri + 1) possibilities for Rt. Let M be the maximum number

of attacker missiles that can be fired across all cities at any epoch t. That is, the

attacker may fire up to and including M missiles total at each decision epoch. Then

there are
(|A|+M

M

)
possibilities for M̂t. Hence there are 2|A| · ∏

i∈A
(ri + 1) ·

(|A|+M
M

)
pos-

sibilities for St. This means that given a problem instance of 10 cities and 5 SAM

batteries with 10 interceptors each and an attacker firing up to 10 missiles, we would

have 3 × 1013 possible states. Because classical dynamic programming algorithms

such as policy iteration and value iteration that solve the Bellman equations exactly

rely on enumeration of the state space, all but the smallest problem instances are

computationally intractable.

Approximate dynamic programming (ADP), or computational stochastic opti-

mization, provides an alternative set of solution strategies that can be applied to

problems that suffer from one or more curses of dimensionality. A first key strategy
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of ADP is that of stepping forward in time, in contrast with recursively solving the

Bellman equations, a standard technique. By stepping forward, we can no longer

solve the Bellman equations, which eliminates the need for enumeration of the state

space. Instead of applying backward induction, we simulate the stochastic process

forward, generating samples of possible outcomes and approximating how we make

decisions.

Although stepping forward allows us to handle large state spaces, there remain

other challenges to contend with such as approximating the expectation. A second

key idea of ADP – the construct of a post-decision state variable – allows us to avoid

this step. Van Roy et al. [47] are the first to use this term, while Powell and Van

Roy [48] define the post-decision state variable as the state at time t immediately

after making a decision xt but prior to the arrival of any new information Ŵt+1. The

general state transition function St+1 = SM(St, xt,Wt+1) can be broken into two steps

Sxt = SM,x(St, xt),

and

St+1 = SM,W (Sxt ,Wt+1),

where Sxt is the post-decision state variable. For our problem, the post-decision state

is given by Sxt = (Axt , R
x
t ), where Axt = (Axti)i∈A and Rx

t = (Rx
ti)i∈A. Let

Axti = ψti

and

Rx
ti = Rti −

∑
j∈M̂Ati

xtij.

We proceed by rewriting the Bellman equations using the post-decision state vari-

able convention. Let Jxt (Sxt ) be the value of being in post-decision state Sxt . Then we
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can define the relationship between Jt(St) and Jxt (Sxt ) with the following equations

Jxt−1(Sxt−1) = E{Jt(St)|Sxt−1}, (3)

Jt(St) = min
xt∈XSt

(C(St, xt) + γJxt (Sxt )), (4)

Jxt (Sxt ) = E{Jt+1(St+1)|Sxt }

By substituting Equation (4) into Equation (3), we obtain the Bellman equations

around the post-decision state variable

Jxt−1(Sxt−1) = E
{

min
xt∈XSt

(C(St, xt) + γJxt (Sxt ))
∣∣∣Sxt−1

}
.

The important distinction between this post-decision state form and the standard

form of the Bellman equations from Equation (1) is the swapping of the expectation

and minimum operators. The swap provides computational advantages in that it lets

us avoid approximating the expectation explicitly within the optimization problem,

and it allows us to control the structure of our value function approximations.

Value Function Approximation.

We estimate our value function using regression methods. In linear regression,

the problem is one of estimating a vector to fit a model that will predict a variable

using a set of observations. For our model, we wish to estimate the parameter θ using

observations that are created from a set of basis functions φf (S), f ∈ F . The set

F of basis functions allows us to reduce the dimensionality of the state variable to a

selected number of features |F|. For example, a basis function f ∈ F for our problem

might be the interceptor inventory at a SAM site. Using the post-decision state, we

can write our value function approximation in a form similar to a standard linear
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regression model

J̄xt (Sxt ) =
∑
f∈F

θfφf (S
x
t ). (5)

Our Bellman equations are then expressed as follows

J̄xt−1(Sxt−1) = E

{
min
xt∈XSt

(C(St, xt) + γ
∑
f∈F

θfφf (S
x
t ))
∣∣∣Sxt−1

}
.

We refer to the portion of the Bellman equations inside the expectation operator as

the inner minimization problem, or IMP.

IMP.

Consider the IMP of our formulation

Xπ
t (St|θ) = min

xt∈XSt

(C(St, xt) + γ
∑
f∈F

θfφf (S
x
t )). (6)

If we assume θf = 0, ∀f ∈ F , then our IMP is simply the minimization of the one

period cost function

min
xt∈XSt

(C(St, xt)),

where C(St, xt) = E
{∑
i∈A

vi(At − Ât+1,i)

}
. Consider a problem instance of one city

and one SAM battery where two attacker missiles have been fired at the city. Then

C(St, xt) = E{v(At − Ât+1)} = vAt − vψ(xt). Since vAt is a constant, we reduce the

IMP to

min
xt∈XSt

(−v(1− qxt1)(1− qxt2)).

Influencing our pending choice of solution methodology and its corresponding efficacy,

we note the following theorem.
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Theorem 1 The integer relaxation of the IMP is not a convex optimization problem.

Proof. By contradiction, assume that the IMP is a convex optimization problem.

Then min
xt∈XSt

(−v(1 − qxt1)(1 − qxt2)) is convex on XSt = {xt : xt1 + xt2 ≤ Rt} and so

the Hessian H(xt1, xt2) of −v(1− qxt1)(1− qxt2) is positive definite on XSt .

Consider the Hessian when Rt = 10. This instance yields

H(xt1, xt2) =

2.59029× 0.2xt1(1− 0.2xt2) −2.59029× 0.2xt1+xt2

−2.59029× 0.2xt1+xt2 2.59029× 0.2xt2(1− 0.2xt1)

.

Now, consider that a feasible solution in XSt : xt1 = 0, xt2 = 1, results in

H(0, 1) =

 2.07223 −0.518058

−0.518058 0

.

Since (2.07223)(0)− (−.518058)2 < 0, by Lemma 3.3.11 of Bazaara et al. [49], H(0, 1)

is not positive definite. �

Due to Theorem 1, both the IMP and its integer relaxation are nonconvex and

hence lack an exact solution method other than exhaustive enumeration of XSt . There-

fore, we invoke MATLAB’s genetic algorithm solver to provide an additional solution

method for the IMP during our analysis.

Algorithmic Strategy.

Approximate policy iteration (API) is an algorithmic strategy that seeks to ap-

proximate the value of a fixed policy within an inner loop and then use that value

to update the policy. To employ this strategy, we need a method of approximating a

policy. Since the value of our policy depends on a value function approximation based

on a linear model (see Equation (5)), we can incorporate a temporal difference (TD)

learning algorithm into the API framework. TD algorithms represent an important

class of ADP solution techniques and have evolved to include a number of variations.
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Least squares temporal differences (LSTD) collects batches of temporal differences

and then uses least squares regression to find the best fit. Thus, we can use LSTD to

evaluate the approximate value of a policy which we then use to improve the policy

iteratively. Algorithm 1 shows API-LSTD adapted to our problem.

The algorithm consists of K policy evaluation loops and N policy improvement

loops. After initializing a θ vector as the representation of a base policy, the policy

evaluation loop begins by generating a random post-decision state. Once the value

φ(Sxt−1,k) is recorded, we simulate forward to the next pre-decision state and select the

best decision as per Equation (6). We record the associated expect cost C(St,k, xt) and

basis function evaluations of the post-decision state, φ(Sxt,k). We obtain K temporal

difference sample realizations where the kth temporal difference given the parameter

vector θn is (C(St,k, xt) + γφ(Sxt,k)
T θn)− φ(Sxt,k−1)T θn.

The policy improvement loop of the algorithm begins once K temporal difference

sample realizations have been collected. We compactly denote basis function matrices

and cost vectors as follows. Let

Φt−1 ,


φ(Sxt−1,1)>

...

φ(Sxt−1,K)>

 , Φt ,


φ(Sxt,1)>

...

φ(Sxt,K)>

 , C(St) ,


C(St,1)

...

C(St,K)

 ,

where matrices Φt−1 and Φt are rows of basis function evaluations of the sampled post-

decision states, and C(St) is the cost vector. We perform a least squares regression

of Φt−1 and Φt against C(St) to ensure the sum of the K temporal differences equals

zero and calculate θ̂ as per Equation (7). We update our estimate of θ according to

Equation (8) where αn = a
a+n−1

, a ∈ (0,∞) denotes our smoothing function. The

smoothing function controls the rate of convergence of the algorithm. Higher values

of the parameter a slow the rate at which αn drops to zero. Smoothing θ completes

26



one policy improvement step.

Algorithm 1 LSTD algorithm for infinite horizon problems using basis functions
[46]

Initialization:
Initialize θ0.
Set n = 1.
Set the initial policy:

Xπ
t (St|θn−1) = argmin

xt∈XSt

(C(St, xt) + γφ(SM,x(St, xt))
T θn−1)

Do for n = 1, ..., N :
Do for k = 1, ..., K:

Generate random post-decision state Sxt−1,k.
Record φ(Sxt−1,k)
Sample Wt.
Compute the next pre-decision state St,k.
Compute the action xt = Xπ

t (St,k|θn−1).
Compute post-decision state Sxt,k = SM,x(St,k, xt).
Record C(St,k, xt).
Record φ(Sxt,k).

Update θn and the policy:

θ̂ = [(Φt−1 − γΦt)
T (Φt−1 − γΦt)]

−1(Φt−1 − γΦt)
TCt (7)

θn = αnθ̂ + (1− αn)θn−1 (8)

Return Xπ
t (St|θN) and θN .
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IV. Computational Tests

In this chapter, we propose a baseline missile defense scenario from which we

create four unique test scenarios. We solve each scenario exactly utilizing classical

dynamic programming methods and approximately by employing the ADP solution

methodology described in the previous chapter. Moreover, for each scenario, we

conduct computational experiments to identify the best performance settings for the

ADP algorithm. Further, we compare the optimal and ADP missile defense policies

for selected subsets of the state space to enhance our understanding of the proposed

methodology.

4.1 Scenario

We present a BM defense scenario consisting of three cities defended by two SAM

sites. The SAMs are located at the first and third cities and are positioned in such a

way as to overlap the second, or “middle” city. That is, the first SAM can defend the

first and second cities while the second SAM can defend the second and third cities.

City values are 1, 10, and 5 units, respectively. Each SAM site has a preallocation of

10 interceptors and a firing limit of four interceptors per salvo. We set q = 0.1 and

consider an attacker that can fire up to three missiles per salvo across all cities.

From this baseline scenario, we developed four test scenarios by varying two of the

problem features. The first feature we varied was the expected duration of the conflict,

in terms of the number of expected attack salvos, as indicated by γ. We chose two

γ-values, 0.5 and 0.8, to explore the impact the expected number of salvos would have

on the policies. The second feature we varied was the battlefield damage assessment

(BDA) capabilities of the attacker. BDA settings are either zero, indicating the

attacker has no BDA capabilities, or one, indicating the attacker can identify the
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Table 1. Scenarios

Problem Features
Expected Conflict

Duration
Attacker

BDA
I Long(γ = 0.8) Not Performed (BDA=0)
II Long(γ = 0.8) Performed (BDA=1)
III Short(γ = 0.5) Not Performed (BDA=0)
IV Short(γ = 0.5) Performed (BDA=1)

status of each city prior to launching a missile salvo. For both BDA settings, we

utilize a multinomial probability distribution to characterize the attack salvo. We

assume the attacker fires 1, 2, or 3 missiles in a salvo with equal probability; given

this outcome, when no BDA capability is present (i.e., BDA=0), the probability an

attacker fires at a city is the proportion of the city’s value to the total value of all cities.

When BDA capability is present (i.e., BDA=1), the probability an attacker fires at a

city is the proportion of the city’s value to the total value of the remaining cities. As

an example, if City 1 and City 2 are alive (and City 3 is dead) then when BDA=0,

the multinomial probability distribution is parameterized by the tuple (1/16, 10/16,

5/16). When BDA=1, the multinomial probability distribution is parameterized by

the tuple (1/11, 10/11, 0). Table 1 shows the problem feature settings for each test

Scenario.

4.2 Experimental Design

For each of the four test scenarios, we wish to determine the best parameter

settings for Algorithm 1. We focus on parameters N,K, φ(S), and a. Table 2 shows

the 3-level, 4-factor experimental design while Table 3 shows the set of features for

each design level of the φ(S) factor. The levels for each factor were chosen based on

initial experimental runs of the model.

For each test scenario, we ran a full factorial experiment for 30 random number
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Table 2. Experimental Design

N K φ(S) a
5 50 1 0.01
10 100 2 0.5
15 150 3 1.0

Table 3. Basis Function Features

φ(S) φ0(S) φ1(S) φ2(S) φ3(S) φ4(S) φ5(S)
1 1 At Rx

t

2 1 At Rx
t Axt

3 1 Rx
t Axt (Rx

t )
2 (Axt )

2 Rx
tA

x
t

seeds for a total of 2430 runs per scenario. For each run, we recorded the mean of the

optimality gap for the states containing the full complement of cities and interceptors.

For each scenario, we chose the settings that yielded the lowest mean value out of

all runs. Table 4 shows the lowest mean optimality gap of the experimental runs for

each scenario. The best performing algorithmic settings for each scenario are shown

in Table 6.

4.3 Analysis

Due the size of the state space, |S| = 16094, we examined subsets of S to gain

insight into the performance of the ADP algorithm. Each of these subsets can be

thought of as a vignette that represents a different starting point for the defender.

Because the most interesting problem features involve the overlapping SAM coverage

of the cities, we only consider vignettes in which all cities are alive. Instead of varying

the city status, we consider a small subset of possible interceptor inventories for both

SAM sites (located at City1 and City 3). We consider the following five interceptor

inventory levels for Rt: (10,0,10), (8,0,2), (5,0,5), (2,0,8) and (2,0,2). Thus, there are

five vignettes. Each vignette represents a decision epoch of interest–a collection of

system states at which all cities are alive (as indicated by At =(1,1,1)), a number of
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Table 4. Experimental Results for Scenario II

Run N K φ(S) a Scenario I Scenario II Scenario III Scenario IV
1 15 50 0.01 1 14.86% 15.58% 52.52% 52.76%
2 5 150 0.01 1 14.86% 15.56% 52.52% 52.77%
3 10 150 1 1 18.78% 16.66% 52.52% 52.76%
4 15 50 0.5 1 17.27% 15.96% 52.52% 52.76%
5 15 100 0.5 2 19.05% 15.56% 56.31% 56.68%
6 10 100 0.5 2 19.05% 15.56% 56.31% 56.68%
7 5 150 0.5 3 15.29% 31.15% 35.07% 152.76%
8 15 150 1 2 19.04% 15.56% 52.76% 52.97%
9 5 100 0.5 3 18.96% 32.16% 35.70% 142.76%
10 15 150 0.5 1 18.89% 16.78% 52.52% 52.76%
11 15 150 1 1 18.89% 16.66% 52.52% 52.76%
12 15 100 0.01 2 19.00% 15.56% 53.74% 52.76%
13 15 100 1 3 19.97% 52.04% 35.81% 190.44%
14 5 100 0.5 2 19.00% 15.56% 56.31% 53.01%
15 10 150 0.01 3 19.53% 23.61% 38.02% 59.18%
16 5 50 0.5 1 14.86% 15.58% 52.52% 52.76%
17 10 50 0.01 3 15.47% 18.52% 47.19% 43.49%
18 10 150 1 3 18.06% 56.30% 33.69% 175.52%
19 15 150 0.5 3 16.23% 45.20% 33.34% 155.69%
20 10 150 0.01 1 14.86% 15.56% 52.52% 52.76%
21 5 150 0.01 3 19.47% 23.83% 37.96% 59.15%
22 15 150 0.01 2 14.97% 15.56% 52.68% 52.97%
23 10 100 0.01 3 19.34% 21.75% 34.97% 51.97%
24 5 150 0.5 1 18.78% 16.66% 52.52% 52.76%
25 15 50 1 2 19.05% 15.44% 56.31% 56.76%
26 5 50 0.5 2 15.00% 15.63% 52.52% 52.76%
27 5 100 0.01 3 19.35% 21.75% 34.97% 51.63%
28 5 100 0.01 1 14.86% 15.58% 52.52% 52.76%
29 10 100 1 2 18.88% 15.63% 56.31% 52.97%
30 15 50 1 1 18.79% 16.57% 52.53% 52.77%
31 15 100 0.5 1 19.05% 16.66% 52.52% 52.76%
32 15 150 0.5 2 19.04% 15.56% 52.76% 53.14%
33 10 50 1 1 17.27% 15.96% 52.52% 52.76%
34 10 150 0.5 2 19.04% 15.63% 52.71% 56.68%
35 15 50 0.01 2 14.86% 16.03% 52.68% 56.68%
36 15 50 0.5 3 20.02% 33.72% 40.35% 129.90%
37 5 150 1 3 16.94% 42.98% 35.19% 159.57%
38 5 50 1 3 16.05% 36.91% 35.31% 137.41%
39 10 100 1 3 19.79% 51.98% 34.95% 163.32%
40 15 100 0.01 3 19.34% 21.77% 34.99% 51.97%
41 10 50 0.01 1 14.86% 15.58% 52.52% 52.76%
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Table 5. Experimental Results (Cont.) for Scenario II

Run N K φ(S) a Scenario I Scenario II Scenario III Scenario IV
42 5 50 1 1 14.93% 15.56% 52.52% 52.76%
43 10 150 0.01 2 14.97% 15.56% 52.68% 52.97%
44 10 150 0.5 1 18.89% 16.66% 52.52% 52.76%
45 5 100 1 1 19.06% 16.59% 52.52% 52.76%
46 10 100 0.5 1 19.05% 16.66% 52.52% 52.76%
47 5 50 0.01 3 15.46% 18.51% 47.22% 43.40%
48 10 50 0.5 2 17.69% 16.65% 52.76% 52.97%
49 10 100 0.01 1 14.86% 15.58% 52.52% 52.76%
50 15 50 0.01 3 15.58% 18.55% 47.18% 43.51%
51 5 100 1 2 18.78% 15.44% 56.31% 52.76%
52 10 100 1 1 19.05% 15.96% 52.52% 52.76%
53 5 150 0.01 2 14.97% 15.56% 52.76% 52.97%
54 15 150 0.01 3 19.54% 23.62% 38.02% 59.18%
55 5 150 1 1 18.78% 16.59% 52.52% 52.76%
56 15 100 0.01 1 14.86% 15.58% 52.52% 52.76%
57 15 150 0.01 1 14.86% 15.56% 52.52% 52.76%
58 5 150 1 2 17.43% 15.44% 52.76% 56.72%
59 10 50 1 3 21.71% 47.74% 36.91% 150.42%
60 10 150 0.5 3 15.99% 40.72% 35.72% 155.37%
61 5 50 0.01 2 14.86% 16.03% 52.68% 56.68%
62 15 100 1 2 19.05% 15.56% 56.31% 56.72%
63 5 50 0.5 3 18.47% 31.17% 39.76% 123.00%
64 15 100 1 1 19.05% 16.66% 52.52% 52.76%
65 10 50 0.5 3 20.51% 33.14% 38.28% 128.25%
66 10 100 0.01 2 19.00% 15.56% 53.74% 52.76%
67 10 150 1 2 18.94% 15.59% 52.76% 52.97%
68 5 150 0.5 2 18.94% 15.44% 52.70% 56.68%
69 10 100 0.5 3 19.65% 45.44% 34.89% 153.50%
70 15 150 1 3 18.80% 59.14% 32.72% 187.76%
71 5 50 1 2 17.69% 15.44% 52.76% 52.76%
72 5 50 0.01 1 14.86% 15.58% 52.52% 52.76%
73 10 50 1 2 19.00% 15.64% 52.76% 53.01%
74 5 100 0.01 2 19.00% 15.56% 53.74% 52.76%
75 15 50 0.5 2 19.05% 15.66% 52.76% 52.97%
76 10 50 0.5 1 14.86% 15.96% 52.52% 52.76%
77 15 100 0.5 3 21.33% 48.32% 36.76% 157.10%
78 5 100 0.5 1 18.89% 16.57% 52.52% 52.76%
79 15 50 1 3 22.03% 50.62% 35.36% 152.38%
80 5 100 1 3 19.69% 44.99% 34.64% 161.73%
81 10 50 0.01 2 14.86% 16.03% 52.68% 56.68%
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Table 6. Best Algorithm Settings

N K φ(S) a
I 10 50 1 0.01
II 15 50 2 1.0
III 15 150 3 1.0
IV 5 50 3 0.01

interceptors remain in inventory (as indicated by Rt = (10, 0, 10), for example), and

all possible attack vectors (as indicated by M̂t) are represented. We closely examine

the differences between the optimal and ADP policies for test scenario II as it has the

most representative problem settings and compare its policies across the remaining

scenarios.

Test Scenario II Vignettes.

Vignette 1-Full Interceptor Inventories-(Rt = (10, 0, 10)).

Table 7 shows policy results for both the exact and ADP algorithms for each pos-

sible attack vector when the defender has ten interceptors available at each SAM.

Overall, when the system is in a state with At = (1, 1, 1) and Rt = (10, 0, 10), imple-

mentation of the optimal policy results in the expected loss of 4.32. Implementation

of the ADP policy results in the expected loss 4.99, for an optimality gap of 15.44%.

The overall absolute gap of 0.67 from a total city value of 16 at risk is reasonable.

The ADP policy is noticeably more conservative in assigning multiple interceptors

to missiles particularly from the second SAM which reflects a fundamental difference

between the policies. The optimal policy for this vignette is to fire one interceptor per

missile fired at City 1 and fire two interceptors per missile fired at City 2 or City 3.

The optimal policy also assigns interceptors primarily from the first SAM to counter

missiles fired at City 2 unless more than two missiles are inbound. The ADP policy is

to fire one interceptor per missile fired at City 1 and City 3 and fire two interceptors
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per missile targeting City 2. Thus, the approximate algorithm appears to undervalue

City 3 as compared to the exact algorithm.

We note that the ADP policy agrees with the optimal policy for five out of 19

states, M̂t = (0, 1, 0), (0, 2, 0), (0, 3, 0), (1, 0, 0), (1, 1, 0), resulting in optimality gaps of

13.68%, 12.64%, 10.44%, 13.37%, and 11.86%, respectively. The ADP policy chooses

very poorly for three out of 19 states, M̂t = (1, 0, 1), (1, 0, 2), (2, 0, 1), resulting in

optimality gaps of 97.41%, 77.16%, and 95.59%, respectively. These three states

correspond to attack vectors that fire at least one missile at City 1 and City 3 but

no missiles at City 2. The combined likelihood of these attack vectors is only 0.02,

whereas the combined likelihood for the attack vectors associated with the states that

are in agreement is 0.47.

One non-intuitive decision resulting from the exact policy occurs when the attack

vector is M̂t = (0, 0, 3). The optimal policy chooses to counter the first two missiles

with one interceptor each while firing two interceptors at the third missile. Based on

decisions for other states, we would expect a decision at this state of defending City

3 with two interceptors per missile.
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Table 7. Policy Comparison for Test Scenario II, Rt = (10, 0, 10), At = (1, 1, 1)

P(M̂t) M̂t Optimal Policy Xπ∗
t ADP Policy Xπ

t

Attack
Probability

Attack
Vector

SAM 1
Response

SAM 2
Response

SAM 1
Response

SAM 2
Response

J∗ J̄∗
Optimality

Gap
0.1042 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 3.86 4.53 17.41%
0.0326 0 0 2 0 0 0 2 2 0 0 0 0 1 1 0 4.32 5.04 16.69%
0.0102 0 0 3 0 0 0 1 1 2 0 0 0 1 1 1 5.01 5.51 9.96%
0.2083 0 1 0 2 0 0 0 0 0 2 0 0 0 0 0 3.88 4.41 13.68%
0.1302 0 1 1 2 0 0 0 2 0 2 0 0 0 1 0 4.32 4.96 14.98%
0.0610 0 1 2 2 0 0 0 2 2 2 0 0 0 1 1 4.81 5.49 14.15%
0.1302 0 2 0 2 2 0 0 0 0 2 2 0 0 0 0 4.34 4.89 12.64%
0.1221 0 2 1 2 2 0 0 0 2 2 2 0 0 0 1 4.82 5.46 13.27%
0.0814 0 3 0 0 2 2 2 0 0 0 2 2 2 0 0 4.86 5.36 10.44%
0.0208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3.72 4.22 13.37%
0.0130 1 0 1 1 0 0 2 0 0 1 0 0 0 0 0 4.13 8.16 97.41%
0.0061 1 0 2 1 0 0 2 2 0 1 0 0 0 0 0 4.61 8.16 77.16%
0.0260 1 1 0 1 2 0 0 0 0 1 2 0 0 0 0 4.16 4.65 11.86%
0.0244 1 1 1 1 2 0 0 2 0 1 2 0 0 1 0 4.62 5.22 12.98%
0.0244 1 2 0 1 1 2 1 0 0 0 2 2 0 0 0 4.65 5.54 19.17%
0.0013 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3.98 4.72 18.55%
0.0012 2 0 1 1 1 0 2 0 0 0 0 0 0 0 0 4.41 8.63 95.59%
0.0024 2 1 0 1 1 2 0 0 0 0 0 2 0 0 0 4.44 5.11 14.97%
0.0001 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 4.24 4.72 11.20%

E[J∗] E[J̄∗] E[Gap]
4.32 4.99 15.44%
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Vignette 2-Half Full Interceptor Inventories-(Rt = (5, 0, 5)).

Table 8 shows policy results for both the exact and ADP algorithms for each pos-

sible attack vector when the defender has five interceptors available at each SAM site.

Overall, when the system is in a state with At = (1, 1, 1) and Rt = (5, 0, 5), imple-

mentation of the optimal policy results in the expected loss of 7.13. Implementation

of the ADP policy results in the expected loss 7.78, for an optimality gap of 9.11%.

The overall absolute gap of 0.65 from a total city value of 16 at risk is slightly less

than the first vignette.

With the reduced inventories, the optimal policy switches to firing one interceptor

per missile fired at City 1 and City 3 and firing two interceptors per missile fired at

City 2 while still preferring to assign interceptors from the first SAM. This policy is the

same one closely followed by the ADP policy for the first vignette, i.e., Rt = (10, 0, 10).

In fact, the ADP policy for the second vignette, i.e., Rt = (5, 0, 5) is identical to

the ADP policy from the first. This change in the optimal policy accounts for a

higher number of the identical decisions between the two policies. In this vignette,

the ADP policy agrees with the optimal policy for 13 out of 19 states, but still

performs the worst for the same three attack vectors as in the previous vignette,

(1,0,1),(1,0,2),(2,0,1).

The optimal policy exhibits counterintuitive behavior for the state containing

attack vector M̂t = (0, 3, 0). Instead of firing two interceptors at each missile, it fires

two at the first and second missiles, but only one at the third. Conversely, the ADP

policy fires two interceptors at each missile, a more intuitive decision. Also observed

in this vignette, both the optimal and ADP policies do not defend City 1 against all

attack vectors. Out of the 10 attack vectors that target City 1, the optimal policy

fires protective interceptors against all except two–M̂t = (2, 1, 0), (3, 0, 0)–while the

ADP policy fires interceptors against only five.
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Table 8. Policy Comparison for Test Scenario II, Rt = (5, 0, 5), At = (1, 1, 1)

P(M̂t) M̂t Optimal Policy Xπ∗
t ADP Policy Xπ

t

Attack
Probability

Attack
Vector

SAM 1
Response

SAM 2
Response

SAM 1
Response

SAM 2
Response

J∗ J̄∗
Optimality

Gap
0.1042 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 6.38 6.88 7.97%
0.0326 0 0 2 0 0 0 1 1 0 0 0 0 1 1 0 7.04 7.53 6.96%
0.0102 0 0 3 0 0 0 1 1 1 0 0 0 1 1 1 7.71 8.16 5.75%
0.2083 0 1 0 2 0 0 0 0 0 2 0 0 0 0 0 6.41 6.98 8.88%
0.1302 0 1 1 2 0 0 0 1 0 2 0 0 0 1 0 7.09 7.66 8.06%
0.0610 0 1 2 2 0 0 0 1 1 2 0 0 0 1 1 7.77 8.36 7.57%
0.1302 0 2 0 2 2 0 0 0 0 2 2 0 0 0 0 7.21 7.86 9.04%
0.1221 0 2 1 2 2 0 0 0 1 2 2 0 0 0 1 7.96 8.62 8.32%
0.0814 0 3 0 0 2 2 1 0 0 0 2 2 2 0 0 8.18 8.87 8.45%
0.0208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6.10 6.62 8.57%
0.0130 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 6.78 9.92 46.44%
0.0061 1 0 2 1 0 0 1 1 0 1 0 0 0 0 0 7.44 9.92 33.36%
0.0260 1 1 0 1 2 0 0 0 0 1 2 0 0 0 0 6.84 7.48 9.39%
0.0244 1 1 1 1 2 0 0 1 0 1 2 0 0 1 0 7.54 8.23 9.05%
0.0244 1 2 0 1 1 2 1 0 0 0 2 2 0 0 0 7.74 8.53 10.30%
0.0013 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 6.50 6.95 6.87%
0.0012 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 7.19 10.25 42.69%
0.0024 2 1 0 0 0 2 0 0 0 0 0 2 0 0 0 7.23 7.68 6.20%
0.0001 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.56 6.95 5.96%

E[J∗] E[J̄∗] E[Gap]
7.13 7.78 9.11%
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Vignette 3-SAM 1 Inventory High, SAM 2 Inventory Low-(Rt =

(8, 0, 2)).

Table 9 shows policy results for both the exact and ADP algorithms for each

possible attack vector when the defender has eight interceptors available at the first

SAM but only two available at the second. Overall, when the system is in a state

with At = (1, 1, 1) and Rt = (8, 0, 2), implementation of the optimal policy results in

the expected loss of 7.49. Implementation of the ADP policy results in the expected

loss 7.99, for an optimality gap of 6.63%. The overall absolute gap of 0.50 from a

total city value of 16 at risk is the lowest among all vignettes.

With a few exceptions, the optimal policy is the same as it was for the second

vignette, one interceptor to one missile for City 1 and City 3, two interceptors to one

missile for City 2. The ADP policy is identical to that of the first two vignettes with

an exception for the state with attack vector M̂t = (0, 0, 3). In this case, City 3 is

being attacked by more missiles than SAM 2 has interceptors, and the ADP policy

correctly chooses to save its interceptors for a possible future engagement.

The optimal policy again exhibits counterintuitive behavior for the state contain-

ing attack vector M̂t = (0, 3, 0) choosing for this vignette to fire one interceptor each

at the first two missiles but fire two interceptors at the second missile. As before,

the ADP policy still fires two interceptors per missile. The optimal policy also acts

counterintuitively for the attack vector M̂t = (1, 2, 0). For this state, the policy fires

one interceptor at the first missile, one interceptor at the second missile, and two in-

terceptors at the third. In the second vignette, with an inventory of five interceptors

at SAM 2, the exact policy fires an additional interceptor at the second missile from

SAM 2. With only two interceptors available at SAM 2 in this vignette, the optimal

policy does not add the second interceptor.

Also, for the attack vector M̂t = (2, 1, 0), owing to an inventory of eight intercep-
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tors instead of five at SAM 1, the optimal policy chooses to defend City 1 instead

of letting it be destroyed. However, the eight interceptors are not enough for the

optimal policy to choose to defend City 1 when the attack vector is M̂t = (3, 0, 0).

This change in the optimal policy from the last vignette results in a policy-to-policy

match of 12 out of 19 states with the ADP still making the worst decisions for the

same three attack vectors previously identified.
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Table 9. Policy Comparison for Test Scenario II, Rt = (8, 0, 2), At = (1, 1, 1)

P(M̂t) M̂t Optimal Policy Xπ∗
t ADP Policy Xπ

t

Attack
Probability

Attack
Vector

SAM 1
Response

SAM 2
Response

SAM 1
Response

SAM 2
Response

J∗ J̄∗
Optimality

Gap
0.1042 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 6.92 7.23 4.56%
0.0326 0 0 2 0 0 0 1 1 0 0 0 0 1 1 0 8.01 8.25 3.02%
0.0102 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 9.23 9.54 3.35%
0.2083 0 1 0 2 0 0 0 0 0 2 0 0 0 0 0 6.63 7.07 6.73%
0.1302 0 1 1 2 0 0 0 1 0 2 0 0 0 1 0 7.53 7.87 4.59%
0.0610 0 1 2 2 0 0 0 1 1 2 0 0 0 1 1 8.60 8.87 3.15%
0.1302 0 2 0 2 2 0 0 0 0 2 2 0 0 0 0 7.35 7.89 7.45%
0.1221 0 2 1 2 2 0 0 0 1 2 2 0 0 0 1 8.24 8.70 5.59%
0.0814 0 3 0 1 1 2 0 0 0 0 2 2 2 0 0 8.41 9.36 11.34%
0.0208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6.34 6.76 6.53%
0.0130 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 7.26 9.81 35.18%
0.0061 1 0 2 1 0 0 1 1 0 1 0 0 0 0 0 8.35 9.81 17.56%
0.0260 1 1 0 1 2 0 0 0 0 1 2 0 0 0 0 7.02 7.50 6.78%
0.0244 1 1 1 1 2 0 0 1 0 1 2 0 0 1 0 7.91 8.31 5.01%
0.0244 1 2 0 1 1 2 0 0 0 0 2 2 0 0 0 7.96 8.59 7.97%
0.0013 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 6.72 7.18 6.96%
0.0012 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 7.62 10.28 34.90%
0.0024 2 1 0 1 1 2 0 0 0 0 0 2 0 0 0 7.44 7.82 5.11%
0.0001 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.86 7.18 4.72%

E[J∗] E[J̄∗] E[Gap]
7.49 7.99 6.63%
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Vignette 4-SAM 1 Inventory Low, SAM 2 Inventory High-(Rt =

(2, 0, 8)).

Table 10 shows policy results for both the exact and ADP algorithms for each

possible attack vector when the defender has two interceptors available at the first

SAM site and eight available at the second. Overall, when the system is in a state

with At = (1, 1, 1) and Rt = (2, 0, 8), implementation of the optimal policy results in

the expected loss of 7.12. Implementation of the ADP policy results in the expected

loss 7.89, for an optimality gap of 10.89%. The overall absolute gap of 0.77 from a

total city value of 16 at risk is the highest gap so far but still of good quality.

The optimal policy is still of the same form as the last two vignettes; however,

it now assigns more interceptors from the second SAM in defense of City 2. In

other words, the number of interceptors being fired at each missile is roughly the

same; however, the split of interceptors fired from the SAMs is flipped. The optimal

policy for this vignette remains counterintuitive for the attack vector M̂t = (0, 3, 0)

in a similar manner as the first three vignettes. Additionally, the optimal policy no

longer defends City 1 for attack vectors M̂t = (2, 0, 1), (2, 1, 0), and (3, 0, 0), allowing

City 1 to be destroyed. An example of this policy is observed for attack vector

M̂t = (2, 1, 0). The optimal policy chooses to have the first SAM fire both of its

remaining interceptors at the missile inbound to City 2 leaving City 1 undefended

and letting the SAM 2 conserve its inventory to protect the more valuable City 2

from future attack salvos.

The ADP policy observed in this vignette differs for the first time from the previous

vignettes. Although it has the same general interceptor-to-missile policy, instead of

utilizing SAM 2 to provide additional defense for City 2, it conserves that SAM’s

inventory at the expense of depleting SAM 1. For example, for the state with attack

vector M̂t = (0, 1, 0), instead of firing one interceptor from each SAM as the optimal
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policy does, the approximate policy fires two interceptors from SAM 1 and none from

SAM 2, leaving City 1 defenseless against future attacks. Similarly, for attack vector

M̂t = (1, 1, 0), the ADP policy fires two interceptors from SAM 1 at the missile

inbound to City 2 while firing none from SAM 2, thus choosing to conserve SAM 2

interceptors for future use over protecting City 1 during from the current attack.

As seen previously, the ADP policy chooses poorly for the three identified states,

but for this vignette it also performs poorly for an additional attack vector of M̂t =

(1, 2, 0). The ADP policy fires two interceptors from both SAM sites at only the first

inbound missile to City 2 ensuring that both City 1 and City 2 are destroyed. The

optimal and ADP policies match exactly for six out of 19 states.

42



Table 10. Policy Comparison for Test Scenario II, Rt = (2, 0, 8), At = (1, 1, 1)

P(M̂t) M̂t Optimal Policy Xπ∗
t ADP Policy Xπ

t

Attack
Probability

Attack
Vector

SAM 1
Response

SAM 2
Response

SAM 1
Response

SAM 2
Response

J∗ J̄∗
Optimality

Gap
0.1042 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 6.36 6.96 9.45%
0.0326 0 0 2 0 0 0 1 1 0 0 0 0 1 1 0 6.98 7.59 8.78%
0.0102 0 0 3 0 0 0 1 1 1 0 0 0 1 1 1 7.58 8.18 7.93%
0.2083 0 1 0 1 0 0 1 0 0 2 0 0 0 0 0 6.40 7.01 9.47%
0.1302 0 1 1 1 0 0 1 1 0 2 0 0 0 1 0 7.08 7.65 7.95%
0.0610 0 1 2 1 0 0 1 1 1 2 0 0 0 1 1 7.75 8.32 7.40%
0.1302 0 2 0 0 1 0 2 1 0 0 2 0 2 0 0 7.21 7.80 8.29%
0.1221 0 2 1 0 1 0 2 1 1 0 2 0 2 0 1 7.96 8.49 6.68%
0.0814 0 3 0 0 0 1 1 2 1 0 0 2 2 2 0 8.18 8.86 8.34%
0.0208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6.10 6.68 9.67%
0.0130 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 6.76 10.03 48.30%
0.0061 1 0 2 1 0 0 1 1 0 1 0 0 0 0 0 7.40 10.03 35.53%
0.0260 1 1 0 1 0 0 2 0 0 0 2 0 0 0 0 6.84 7.67 12.20%
0.0244 1 1 1 1 0 0 2 1 0 0 2 0 0 1 0 7.54 8.30 10.01%
0.0244 1 2 0 1 0 0 2 2 0 0 2 0 2 0 0 7.74 13.36 72.66%
0.0013 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 6.52 6.97 6.93%
0.0012 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 7.18 10.31 43.48%
0.0024 2 1 0 0 0 2 0 0 0 0 0 2 0 0 0 7.22 7.67 6.29%
0.0001 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.54 6.97 6.62%

E[J∗] E[J̄∗] E[Gap]
7.12 7.89 10.89%
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Vignette5-Low Interceptor Inventories-(Rt = (2, 0, 2)).

Table 11 shows policy results for both the exact and ADP algorithms for each

possible attack vector when the defender has only two interceptors available at each

SAM. Overall, when the system is in a state with At = (1, 1, 1) and Rt = (2, 0, 2),

implementation of the optimal policy results in the expected loss of 10.16. Implemen-

tation of the ADP policy results in the expected loss 10.94, for an optimality gap of

7.62%. The overall absolute gap of 0.78 from a total city value of 16 at risk is the

largest gap among the vignettes.

In this vignette, the optimal policy switches to a one-to-one interceptor-to-missile

policy for all cities. Moreover, the optimal policy switches back to having the first

SAM provide most of the defense for City 2. The optimal policy also makes decisions

in this vignette similar to the decisions of the ADP policy of Vignette 4, wherein City

1 is targeted along with City 2 and City 3. The optimal policy only defends City 1

if it is the only city attacked and even then only if it is attacked with one missile. In

all other cases, City 1 is left undefended in order to provide defensive cover for City 2

either immediately or for subsequent attacks. The ADP policy remains the same as

observed in earlier vignettes as much as inventories allow. That is, the ADP policy

leaves City 1 unprotected so that it can fire two interceptors per incoming missile to

City 2.

The optimal and ADP policies match for 6 out of 19 states, but the ADP policy

still decides badly at three out of four of the previously mentioned attack vectors

M̂t = (1, 0, 1), (1, 0, 2), (2, 0, 1). The difference in state value is not as extreme as

observed in other vignettes since with so few interceptors remaining at each SAM,

the cities that are initially protected by the optimal policy will likely be destroyed in

one or two more attack salvos.
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Table 11. Policy Comparison for Test Scenario II, Rt = (2, 0, 2), At = (1, 1, 1)

P(M̂t) M̂t Optimal Policy Xπ∗
t ADP Policy Xπ

t

Attack
Probability

Attack
Vector

SAM 1
Response

SAM 2
Response

SAM 1
Response

SAM 2
Response

J∗ J̄∗
Optimality

Gap
0.1042 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 9.07 9.40 3.59%
0.0326 0 0 2 0 0 0 1 1 0 0 0 0 1 1 0 10.20 10.42 2.12%
0.0102 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 10.86 11.31 4.11%
0.2083 0 1 0 1 0 0 0 0 0 2 0 0 0 0 0 9.21 9.83 6.71%
0.1302 0 1 1 1 0 0 0 1 0 2 0 0 0 1 0 10.19 10.64 4.47%
0.0610 0 1 2 1 0 0 0 1 1 2 0 0 0 1 1 11.32 11.94 5.43%
0.1302 0 2 0 1 1 0 0 0 0 0 2 0 2 0 0 10.27 11.65 13.47%
0.1221 0 2 1 1 1 0 0 0 1 0 2 0 1 0 1 11.22 12.04 7.28%
0.0814 0 3 0 0 1 1 1 0 0 0 0 2 1 1 0 11.29 12.10 7.25%
0.0208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 8.82 9.22 4.52%
0.0130 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 9.75 11.62 19.11%
0.0061 1 0 2 0 0 0 1 1 0 1 0 0 0 0 0 10.83 11.62 7.25%
0.0260 1 1 0 0 1 0 0 0 0 0 2 0 0 0 0 9.89 10.42 5.44%
0.0244 1 1 1 0 1 0 0 1 0 0 2 0 0 1 0 10.82 11.21 3.64%
0.0244 1 2 0 0 1 1 0 0 0 0 2 0 2 0 0 10.89 14.60 34.12%
0.0013 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.85 9.40 6.28%
0.0012 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 9.75 11.87 21.76%
0.0024 2 1 0 0 0 1 0 0 0 0 0 2 0 0 0 9.89 10.42 5.44%
0.0001 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.85 9.40 6.28%

E[J∗] E[J̄∗] E[Gap]
10.16 10.94 7.62%
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Analysis Across Scenarios–Vignettes.

Scenario II vs Scenario I.

In Scenario I the expected conflict duration is still long, but BDA is not performed.

For three of the five vignettes, Rt = (10, 0, 10), (8, 0, 2), (2, 0, 2), the optimal policy

for Scenario I is either identical or nearly identical as for Scenario II. In fact, only

one state in the Rt = (8, 0, 2) and Rt = (2, 0, 2) vignettes is different. In both cases,

the optimal policy for Scenario I chooses to not defend City 1 whereas it does defend

City 1 in Scenario II. For the remaining two vignettes, the optimal policy for Scenario

I is slightly more conservative in applying additional interceptors to missiles, as well

as being less protective of City 1 as compared to Scenario II.

As compared to Scenario II, in Scenario I the ADP policy fires more interceptors

for each vignette with most of those interceptors being used to defend City 1. In

Scenario II, the ADP policy did not defend City 1 for a total of 29 states; however, in

Scenario I, the ADP policy defends City 1 for 22 of those 29 states. The ADP policy

shows the same invariance across vignettes that it showed for Scenario II as well as the

same poor performance for the previously noted attack vectors. Overall, the optimal

and ADP policies match for the same number of states, albeit for different states in

the vignettes.

Scenario II vs Scenario IV.

In Scenario IV the expected conflict duration is short while BDA is still per-

formed. As we would expect given the shorter expected horizon, both the optimal

and ADP policies more freely fire interceptors in Scenario IV compared to Scenario

II. At times, the optimal policy fires up to three interceptors per missile when de-

fending City 2. Table 12 shows the total number of additional interceptors fired in

each vignette of Scenario IV for each policy compared to Scenario II. As in Scenario
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II, the optimal policy adjusts for the interceptor inventories while the ADP does not.

For example, the optimal policy fires more total missiles across all states for vignette

Rt = (10, 0, 10), but the roles switch for the remaining vignettes with the ADP policy

outfiring the optimal by 25 interceptors for vignette Rt = (2, 0, 2).

Table 12. Number of additional interceptors fired

Policy
Vignette Optimal ADP

Rt = (10, 0, 10) 24 37
Rt = (5, 0, 5) 15 37
Rt = (8, 0, 2) 5 30
Rt = (2, 0, 8) 18 27
Rt = (2, 0, 2) 2 17

Again, the ADP policy performs poorly for the usual three states; however, since

the expected horizon is much shorter Scenario IV the ADP’s poor performance results

in a much larger optimality gap between the exact and approximate values for those

states. For example, when the attack vector is M̂t = (1, 0, 2), the ADP policy fires four

interceptors at the first inbound missile to City 3 and none at the rest of the missiles,

leaving City 1 and City 3 to be destroyed. This action results in an immediate cost

of six units. In contrast, the optimal policy covers down on all three inbound missiles

with two interceptors each. This decision means that the optimal policy receives a

small expected cost for this salvo.

For Scenario II, the decisions chosen by each policy result in a similar disparity

between the one-period costs. Thus, after one salvo, the difference in cost between

the two policies is relatively large for both scenarios. However, for Scenario IV there

is a much lower probability of cities being destroyed under the optimal policy for the

remaining salvos compared to Scenario II, given that there are two expected salvos

in Scenario IV compared to five in Scenario II. Hence, the cost difference between

the optimal and ADP policies for Scenario IV is unlikely to be reduced. When the
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horizon is longer, as it is for Scenario II, it is likely that even following the optimal

policy will eventually result in the loss of cities. Even though these losses come later

in the conflict, losing them still results in closing the gap between the two policies for

Scenario II as compared to Scenario IV.

Scenario II vs Scenario III.

In Scenario III, the expected conflict is short and BDA is not performed. Com-

paring Scenario II to Scenario III, we see great similarity to the comparison between

Scenarios II and IV. This similarity is due to the optimal policies for Scenarios III

and IV being virtually identical. In fact, both optimal policies fire the same num-

ber of interceptors in each vignette, and the decisions themselves are identical with

the exception of a lone state in vignette Rt = (2, 0, 8). The ADP policies between

Scenarios III and IV differ, but the results are similar.

Across all the scenarios, we observe that the ADP policies are relatively invariant.

That is, the decisions made by the ADP policy do not seem to be influenced by the

different interceptor inventories in each vignette. This behavior stands in contrast to

the behavior of the optimal policies. It is this conflicting behavior that accounts for

the variance in the number of states that match across the two policies for a given

vignette.

We also note that the setting for γ has a much greater influence on the policies

than the setting for BDA. As discussed earlier, the optimal policies of Scenarios I and

II vary only slightly in the number of interceptors fired. This change results from

the different policy decisions made at 12 states across the five vignettes. Between

Scenarios III and IV, the optimal policies are identical with the exception of one

state. However, when γ is varied as it is between Scenarios I and III or II and IV, we

observe 53 and 44 different decisions, respectively. The ADP policies also exhibits a
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larger influence of γ, although there are significantly more decisions that differ among

the sets of approximate policies.

Analysis Across Scenarios–Full State Space.

Table 13 shows the mean optimality gaps for the optimal and ADP policies in

each scenario for the state spaces of each vignette and the entire state space, using

the ADP algorithm settings from Table 6

Table 13. Mean Optimality Gaps

Vignette 1 Vignette 2 Vignette 3 Vignette 4 Vignette 5 All States
I 14.86% 11.67% 8.71% 11.85% 8.89% 10.96%
II 15.44% 9.11% 6.63% 10.89% 7.62% 7.74%
III 32.72% 20.13% 20.42% 31.20% 17.88% 22.10%
IV 43.40% 29.48% 33.00% 36.47% 21.52% 15.51%

Over all scenarios, the mean optimality gap is lower when taken over the entire

state space. This reflects the good performance of the ADP algorithm for states with

smaller inventories and fewer surviving cities.

Figures 2 through 5 show the number of states in the entire state space that cor-

respond to the absolute value of the difference between the optimal and approximate

values of each state for each scenario. We note that the approximate value for a

majority of states for each scenario falls within 0.5 units of the optimal value.

BDA=0

γ = 0.8

|J∗ − J̄∗| No. of States

0 1324
0.5 8615
1.0 4527
1.5 346
2.0 142
> 2.0 1139

Figure 2. Absolute Value of Difference Scenario I
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BDA=1

γ = 0.8

|J∗ − J̄∗| No. of States

0 1813
0.5 9899
1.0 2671
1.5 527
2.0 239
> 2.0 944

Figure 3. Absolute Value of Difference Scenario II

BDA=0

γ = 0.5

|J∗ − J̄∗| No. of States

0 938
0.5 11251
1.0 1908
1.5 924
2.0 246
> 2.0 826

Figure 4. Absolute Value of Difference Scenario III

BDA=1

γ = 0.5

|J∗ − J̄∗| No. of States

0 1160
0.5 10277
1.0 2652
1.5 872
2.0 383
> 2.0 749

Figure 5. Absolute Value of Difference Scenario IV
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V. Conclusions

As the proliferation of offensive and defensive missile systems continues across the

world, the optimization of a defensive response to a missile attack remains a valuable

endeavor for the U.S. and its allies. Given the likelihood that a BM engagement

would involve more than one missile salvo by an attacker, this thesis presented both

exact and approximate methods for solving the DWTAP.

Across four test scenarios, when compared to the optimal policy, the ADP policy

achieved anywhere from an 8% to 22% expected optimality gap. In addition, for

the vast majority of states in all scenarios, the state values for the ADP policy fell

within 0.5 units of the state values for the exact policy. Analysis also showed that

the γ-parameter influenced the fire control policies of both methods more than the

attacker’s BDA capabilities, and that the ADP policy is invariant unlike the optimal

policy, as the interceptor inventories change, resulting in decision agreement between

the two policies from 4 to 15 out of 19 states in vignettes within the same scenario.

Future research could explore the performance of a reasonable baseline fire control

policy compared with the API-LSTD policy developed in this thesis as well as other

ADP algorithms from the literature. Additionally, one could expand the problem

beyond the computational tractability of exact methods to larger test scenarios with

more cities, greater inventories, and bigger attack salvos to test the scalability of the

applied approximate algorithms.

Another improvement to the model would be the development of a “smarter” at-

tacker. In addition to a BDA capability, an attacker could be enabled with knowledge

of the defender’s interceptor inventories. Varying the quality of both these intelligence

capabilities over a wider range of settings could provide insight as well. Ultimately,

a learning policy for the attacker, one that responds to the defender’s policy, would

provide the most realistic matchup.
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Many of the assumptions in this thesis could also be eliminated through the in-

clusion of multiple missile and interceptor types, introduction of a SAM reload capa-

bility, and/or the addition of the partial destruction of cities. More significant model

changes could include incorporating subsequent targeting of missed missiles within

the same epoch, i.e., a shoot-look-shoot policy, the development of a more complete

IADS structure, and the targeting of IADS nodes by the attacker.
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