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Abstract 

Researchers at the University of Maryland Medical Center in Baltimore have 

developed a cardiac risk stratification protocol in the hopes of reducing the time-from-

arrival-to-first-operation for geriatric orthopedic patients. They collected observational 

data for two years prior to and following the October 2014 implementation of the new 

screening protocol. Therefore, advanced analytical techniques are required to isolate the 

treatment effect of the new screening protocol. Propensity score matching (PSM) is used 

to handle the observational data in order to reduce the bias attributable to the confounding 

covariates. In addition to PSM, various regression techniques are used to help the 

researchers determine if their treatment has been successful in reducing the number of 

cardiac complications experienced by the elderly patients during and post-surgery. 

Recommendations are then made to the hospital’s researchers. 
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ANALYSIS OF A MEDICAL CENTER’S CARDIAC RISK SCREENING 
PROTOCOL USING PROPENSITY SCORE MATCHING 

 
I.  Introduction 

General Issue 

The healthcare world is highly influenced by the continual advancement of 

science, technology, and medicine. With millions of patients’ health and billions of 

dollars at stake, there is a constant demand for better technology as well as increased 

medical research. As developers and researchers strive to meet this demand, the medical 

world has become more sophisticated and effective at helping patients. This means life 

expectancies are increasing and more patients are being saved. Throughout the world, 

death rates from infectious and cardiovascular diseases have fallen significantly. People 

are living longer than they were twenty years ago (“Life Expectancy”, 2015). While 

technology and research play a large role, some of this success can be attributed to the 

increased utilization of Operations Research techniques in the healthcare field.  

Many medical studies are heavily reliant on observational data analysis. 

Consequently, medical researchers are turning to Operations Research analysts for 

assistance with producing reliable results. Due to the issues resulting from reliance on 

observational data, basic statistical techniques must be discarded in favor of more 

advanced methods. These results can be found in articles in the medical field in journals 

like Operations Research for Health Care, which features new Operations Research-

based medical publications four times a year. This thesis is another application of 

Operations Research in the healthcare field, with a goal of improving the efficiency and 
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effectiveness of a hospital’s patient-care and surgery process using observational data 

analysis. 

Problem Statement 

 One primary way that medical researchers improve patient care is by collecting 

patient treatment data and analyzing it to develop more effective patient treatment 

prioritizations. This thesis examines efforts at the University of Maryland Medical Center 

in Baltimore to streamline its orthopedic surgery screening process for elderly (geriatric) 

patients. Due to their age, these patients require increased attention as they are more 

prone to developing serious complications during and after surgery. The most severe 

complications are cardiac events, which can often prove fatal. Thus, the hospital 

developed a cardiac screener to better schedule surgical procedures with the patients at 

the greatest risk operated on soonest. This screener, which the hospital calls a ‘pre-

operative cardiac risk stratification protocol’, is designed to assess the severity and 

surgical urgency faced by its geriatric patients. The hospital’s screening protocol utilizes 

patient data to assign geriatric surgical priority based on risk of cardiac events. The 

screener also serves to replace standard pre-operative testing procedures by gaining 

relevant patient history and risk factors. Consequently, it reduces the time normally 

devoted to pre-operative processes that often delay patients getting into surgery. 

 The subject matter expert (SME) for this problem is Dr. Bryce Haac, MD. Dr. 

Haac is a surgical resident and researcher at the Maryland Medical Center. Dr. Haac and 

her associates seek to improve their hospital’s ability to care for its geriatric patients. In 

this effort, her team is studying geriatric patients who require non-emergent orthopedic 
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surgeries. As is common in the medical field, the hospital did not design an experiment 

with randomization and pre-planning. The researchers simply compiled geriatric 

orthopedic surgery patient data during the designated study time period. The study’s data 

collection began on October 1, 2012 and lasted until October 31, 2016. The screening 

protocol took effect October 1, 2014. Since all the data in their study are observational in 

nature, analysis techniques that account for the lack of a deliberate experimental design 

are required to extract useful insights from the collected data. 

Research Objectives 

In this thesis, propensity score matching, significance testing, and regression 

techniques are used to determine if the new pre-operative cardiac risk stratification 

protocol improved (shortened) the time from arrival to operation for geriatric orthopedic 

patients. Additionally, Dr. Haac’s data are analyzed for indications that the new screening 

protocol reduced the number of patients experiencing intra- or post-operative cardiac 

complications, regardless of whether the protocol reduced the time needed to get into 

surgery. The protocol was employed in an attempt to optimize how the hospital orders 

and schedules its surgeries for these specific patients in order to increase efficiency and 

help save more lives. However, it is unclear whether the protocol has been effective so 

far due the large amount of complicated and highly correlated patient variables and 

factors, as well as many potentially confounding pieces of data. Thus, there is a need for 

deep, Operations Research analysis and modeling (via propensity score matching, 

significance testing, and regression techniques) to confidently ascertain the efficacy of 

the new screening protocol on the two outcomes of interest.  
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II. Literature Review 

Chapter Overview 

This chapter provides relevant background on the tools used during this thesis. 

Additionally, the literature review serves to express the importance of the problems that 

this thesis aims to solve. First, the general aspects of the observational data problem at 

hand are covered. Next, an overview of valuable and necessary data cleaning steps is 

supplied. Third, the primary tool for solving this problem, propensity score matching 

(PSM), is detailed. Fourth, a summary of similar works using PSM is given. Lastly, the 

techniques used for producing insights from the data are discussed. These techniques 

include Student’s t-test, feature selection, and regression modeling, primarily via the 

negative binomial.  

Description  

 Dr. Haac’s team is interested in questions of cause and effect. The researchers’ 

principal goal is to test the directly attributable impact of their October 2014 risk 

stratification protocol. Before beginning the steps of cause and effect analysis, it is 

important to better understand the meaning of causal relationships, especially in 

observational data. In a report overviewing causal inference, Pearl (2009:97) states that 

most studies in health, social, and behavioral sciences are motivated by questions that are 

not associational, but causal in nature. He adds that questions about the effects of a drug 

in a population, for example, are causal since they require an understanding of the data-

generating process (Pearl, 2009:97). This means they can be neither answered solely from 

the data nor from the distributions to which the data belong (Pearl, 2009:97). Dr. Haac’s 
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team is faced with a causal question as well, as they want to determine the effectiveness 

of a treatment (the screening protocol implementation) from data that is purely 

observational. Consequently, the methods and tools used in this thesis must be tailored 

towards causal problems, while accounting for the fact that the available data did not 

originate from a randomized, designed experiment. 

 While discussing the nature of causal inference, Rubin (1990:472-480) states that 

observational data must be structured in a specific format to distinguish cause and effect 

relationships. He adds that the standard approach for handling an observational dataset is 

to use one variable to represent the observed outcome and a separate indicator variable to 

show treatment assignment (Rubin 1990:476). He states that these variables are necessary 

despite the fact that a treatment assignment variable will be correlated with the observed 

outcome variable if the null hypothesis does not hold true (Rubin 1990:476). With this in 

mind, it is important during one’s data preparation phase to ensure that this treatment 

variable is clearly created and defined so that proper analysis can be performed. 

Thus, the problem addressed in this thesis must be framed as one of determining 

causal inference. But first, to address the cause and effect question posed by Dr. Haac’s 

team, a plan is required to mold the dataset into a proper format that can be analyzed. 

Before any advanced analytic methods can be performed, observational data must be 

thoroughly sorted, transformed, and reduced. This guarantees that the final dataset is as 

simplified, understandable, and usable as possible. The set of steps involved in 

organizing an observational dataset is typically referred to as the data cleaning process. 

Numerous data cleaning steps can be performed on an observational dataset. A review of 

current academic literature as well as input from the appropriate subject matter experts 
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provide the best avenues for determining which of these steps are required before 

performing analysis on any observational dataset. 

Kuhn and Johnson (2013:27-48) details proper data cleaning steps that are 

pertinent to the issues faced in many observational datasets. In their book on predictive 

modeling, the authors devote a chapter to outlining key data cleaning rules and 

procedures. They begin by stating that data cleaning must be performed thoroughly and 

carefully, as these steps can make or break a model’s predictive or explanatory ability 

(Kuhn and Johnson, 2013:27). This concurs with other research and intuition, as any 

observational data analytic methods will be both meaningless and powerless if the data is 

not first molded into a clean and usable format. 

The authors cover many different steps for data cleaning. First, they discuss the 

issue of dealing with missing values, which often plaque observational datasets. For this 

common problem, Kuhn and Johnson (2013:41) provides a simple solution; often, the 

percentage of missing data is substantial enough to eliminate the variable (predictor) in 

question from the dataset. Intuitively, this makes sense, as not much can be gleaned from 

a vector that is significantly empty. Consequently, any columns that are found to 

significantly blank, say greater than 20%, can be removed. This constitutes a significant 

first step in reducing the variables down to only those that contain sufficient information 

for analysis. 

Sometimes, however, the percentage of missing data in a column is not sufficient 

enough to warrant complete deletion. In these frequent cases, Kuhn and Johnson 

(2013:42) suggests imputation. Imputation is the process of filling in missing values in a 

dataset by relying on the meaning and information in the surrounding covariates. Often, if 
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the amount of missing values in a column is small, say less than 5%, it is permissible to 

use a simple form of imputation called mean imputation (Zhang, 2015:6). Mean 

imputation involves using the mean of the column in question (sans the empty values) to 

fill in the missing data entries. This process is simple and unlikely to interfere with future 

modeling assumptions, provided that the amount of values that were mean imputed is 

small (Zhang, 2015:6). However, if the amount of missing values in a column is large 

(but not large enough to permit complete removal), then Kuhn and Johnson (2013:42) 

suggests using a linear model to predict the missing values. This approach involves 

generating a linear regression model that uses the surrounding covariates to estimate the 

values that are empty. They also discuss a more complex method, K-nearest neighbor 

imputation, which involves using a nearest neighbor model to fill in missing values with 

other values that are ‘closest’ to them, according to a set of pre-defined distance 

parameters (Kuhn and Johnson 2013:42-43). The process of imputation, regardless of the 

method applied, can help increase the meaningfulness and predictive power of a dataset. 

Especially in messy, observational datasets, which are prone to featuring missing values, 

imputation is a necessary data cleaning tool.  

Next, Kuhn and Johnson (2013:27) detail specific steps like “feature engineering” 

and “feature extraction”, which involve the transformation and combination of variables 

in order to make them more meaningful. They define performing feature engineering as 

the creation of combinations or ratios of variables to make better predictors (Kuhn and 

Johnson, 2013:27). These are the cases where the combination or ratio of two vectors of 

data is more informative than analyzing just the two columns independently (Kuhn and 

Johnson, 2013:27). This step is quite relevant, as there are often many messy columns in 
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observational datasets that can be combined or transformed into better predictors for 

subsequent analysis. 

The authors then proceed to discuss another common issue in observational data, 

which is called “zero variance predictors” (Kuhn and Johnson, 2103:44). They define this 

as columns where the data take on a single value for each row (observation) (Kuhn and 

Johnson, 2103:44). Hence, these columns (predictors) have zero variance and as a result, 

offer nothing of value to any modeling technique. Another related and even more 

common issue in observational data is what the authors term “near-zero variance 

predictors” (Kuhn and Johnson, 2103:44). These predictors are columns of data which are 

comprised of mostly one singular value as well as the smattering of a few other values 

throughout (Kuhn and Johnson, 2013:44). Consequently, these columns have near-zero 

variance and likely contribute little to any statistical model. Thus, the authors find that it 

is advantageous to remove such variables from one’s dataset (Kuhn and Johnson, 

2013:45). The authors supply straightforward criteria for eliminating such columns, 

which can be utilized in cleaning most observational datasets (Kuhn and Johnson, 

2013:44-45). They state that if the percentage of unique values over the entire column is 

below a low threshold, say 10%, and if the ratio of the frequencies of the most common 

value to the second most common value is large enough, say above 5, then the column in 

question can be excluded from the dataset (Kuhn and Johnson, 2013:45). This process 

can be conducted one-by-one, until all the variables in the dataset have been examined 

and removed if they meet the exclusion criteria. Once such zero and near-zero variance 

predictors are removed, one’s dataset will be even closer to having only meaningful and 

clean columns of variables to analyze. 
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The next data preprocessing step that Kuhn and Johnson (2013:47-48) discuss is 

the addition of predictors through the creation of dummy variables. The authors state that, 

when faced with the presence of categorical predictors, it is best to resolve them by 

decomposing them into sets of more specific variables (Kuhn and Johnson, 2013:47). 

Specifically, this process involves turning the categorical predictors into columns of 

dummy variables with binary (0/1) indications for each category. Hence, in this manner, a 

five-category predictor would be decomposed into five binary dummy columns, where 

each column denotes one of the categories. Kuhn and Johnson (2013:48) then add that the 

final column (the fifth one in example above) can be removed in certain models, such as 

linear regression. This is because the values in the last decomposed column can be 

inferred from all the other column values. However, the authors state that some models, 

such as tree-based models, are insensitive to the full set of dummy columns, and therefore 

the addition of all the decomposed columns can increase their interpretability (Kuhn and 

Johnson, 2013:48). In either case, the detection and transformation of categorical 

predictors into the necessary dummy columns is an important step in improving the 

clarity and meaningfulness of one’s dataset. 

Another common data issue that Kuhn and Johnson (2013:33-34) cover is the 

presence of outliers. Generally speaking, the authors consider an outlier to be an 

observation that is exceptionally far from the majority of the data (Kuhn and Johnson, 

2013:33). The authors suggest dealing with outliers carefully, as it is often difficult to 

determine whether the source of an outlier was a data entry error or perhaps just a 

legitimate value in the data’s distribution. Resolving outliers depends on what their 

source is believed to be. If it is likely that an outlier resulted from a data entry error, it is 
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permissible to delete that row as such an outlier is likely to hinder later analysis. 

However, if it is unclear on where an outlier originated from, more significant methods 

are required to resolve the issue. Kuhn and Johnson (2013:34) suggest the process of 

selectively choosing analytic models later on based on their resistance or sensitivity to 

outliers. This approach guarantees that one accounts for the presence of outliers and 

chooses an appropriate modeling technique when performing analysis. In whole, 

regardless of the method used, resolving outliers is a necessary step in data cleaning and 

is imperative for successful analysis. By investigating outliers, the analyst can ensure the 

dataset is even more clean and informative. 

The next step the authors suggest is correlation analysis on the all the variables 

(Kuhn and Johnson, 2103:45-47). In observational data, there are often many correlated 

and potentially redundant predictors. Consequently, not all these predictors are essential 

for analysis. Therefore, this step involves locating and removing these unnecessary 

predictors, which then allows for a less messy dataset. With regards to a redundant 

predictor, Kuhn and Johnson (2013:43-44) find that eliminating it should not impact the 

performance of the model and could lead to a more parsimonious and interpretable 

model. To conduct this step, software is typically required to input the dataset and 

calculate the correlation matrix for the covariates. It is then often beneficial to color-code 

the correlation matrix according to a high cut-off threshold, say ± 0.9, so as to identify 

the variables that are extremely correlated with one another. This step is followed by 

using an algorithm like the one supplied by Kuhn and Johnson (2013:47), which suggests 

arbitrarily removing a member of each pair of variables with an absolute correlation 

above the chosen threshold until no more highly correlated pairs exist. This approach 



 

11 

safely and properly removes the strongly correlated predictors in one’s observational 

dataset. Once these unnecessary predictors that meet the cut-off criteria are deleted, the 

dataset will another step closer to being fully clean and ready for analysis. 

While Kuhn and Johnson (2013:27-48) cover more generalized issues that are 

prevalent in observational datasets, each observational dataset is unique and presents its 

own share of specific challenges for the analyst. Often, one must rely on the insights of 

the relevant SME. As the individual who collected the data or oversaw the data 

collection, the SME will usually have the best guidance on how to handle the many 

unique types of observational data issues that an analyst may face (Loukides, 2012). This 

means the SME can advise the analyst on a myriad of issues to include: subjective 

decision-making, such as which variables can be outright deleted and which variables 

will be the most important for subsequent analysis. Furthermore, the SME can alleviate 

vagueness or the lack of descriptions in the observational data by defining variables and 

explaining the scale or units of certain columns. Overall, without reliance on the SME for 

direction, one can often become stuck and unsure of how to handle certain issues. This 

can then lead to false assumptions and critical mistakes such as inadvertently removing 

the most predictive variables or transforming variables inappropriately (Loukides, 2012). 

Thus, to eliminate such mistakes, one should utilize the SME as an authority frequently 

when conducting the data cleaning process on observational datasets. 

Now that the review of the primary data cleaning tools is complete, the next step 

involves reviewing the most suitable techniques for handling messy, observational data 

and answering causal inference questions. Before beginning this step, it is crucial to note 

that unfortunately, despite performing data cleaning, this problem cannot just be simply 
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solved via a means comparison and significance testing. That is, when dealing with an 

observational dataset, one cannot adequately assess the effect of a treatment by simply 

comparing the means of the pre- and post-treatment groups. Due to the presence of many 

other potentially confounding and correlated variables, the user cannot just isolate the 

outcome of interest and compare the pre- and post-treatment means via a significance 

test. Since there are many other variables in play, one cannot trust the results of a 

significance test to be meaningful as there could likely be confounding interference due 

to the presence of the covariates, leading to inaccurate and biased results. Thus, questions 

of this nature require some understanding and accounting for the manner in which the 

data were collected (Pearl, 2009:97). In observational studies, researchers have no control 

over the treatment assignment (D’Agostino, 1998:2265). The treated and non-treated 

(control) groups may have noticeable differences in their observed covariates, and these 

differences can lead to a biased estimate of the treatment effect (D’Agostino, 1998:2265). 

This bias, which is inherent to most observational datasets, is called treatment selection 

bias and poses the primary dilemma that many researchers face when analyzing data that 

did not arise from designed experiments (Thavaneswaran, 2008:4). Thus, all these 

covariates in the data must be taken into account. Hence, one must rely on more complex 

methods and techniques to solve this problem. 

 Fortunately, this problem is well-studied in healthcare applications as well as in 

many other fields. This is because it is often either unethical or impossible to randomly 

assign patients to control and treatment groups in medical studies. Therefore, 

methodologies were developed to account for the treatment selection bias present in 

observational data. Over the past few decades, there have been several techniques created 



 

13 

for dealing with observational datasets. One of these main techniques is propensity score 

matching (PSM). PSM is designed to allow the analyst to test the effect of a treatment 

variable by comparing the pre- and post-treatment sets of data while reducing 

confounding variable bias in analyses of observational data (“Evaluating Observational 

Data”, 2016). In an article detailing multiple uses of PSM in medical research, Austin 

(2008:2037) states that propensity score methods are frequently being relied on to reduce 

the impact of treatment selection bias when using observational data to estimate treatment 

effects. Therefore, PSM is usually the first technique employed to address problems of 

this nature. 

 Rosenbaum and Rubin (1983:41-42), the original source of PSM, discusses the 

mathematics behind propensity scores. The authors detail how using PSM can allow the 

analyst to properly assess how a treatment is performing even when there are many other 

variables in play. Propensity score techniques are based on the underlying premise that in 

an observational data problem, all observations fall into either the pre-treatment group or 

the post-treatment group, but not both, which leads to a missing data problem 

(Rosenbaum and Rubin, 1983:41). Holland (1986:947) refers to this dilemma, wherein it 

is impossible to simultaneously observe both the effects of treatment and control on an 

individual unit, as the Fundamental Problem of Causal Inference. Propensity scores 

remedy this issue by trying to fill in the missing values (Rosenbaum and Rubin, 1983:41). 

That is, propensity scores work to estimate what would have occurred had the pre-

treatment observations been treated, and the post-treatment values left untreated 

(Rosenbaum and Rubin, 1983:41). PSM provides an avenue to take a purely 

observational dataset and transform it into a quasi-randomized experiment (D’Agostino, 
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1998:2267). From there, standard analytic methods can be applied to one’s newly 

transformed dataset as it will now resemble data that had been collected in a designed 

experiment from the onset. 

Rosenbaum and Rubin (1983:41) introduce propensity score methods as a 

technique for searching for causal effects while accounting for all the variables in the 

data. The authors define a propensity score as the conditional probability of assignment to 

a particular treatment given a vector of observed covariates (Rosenbaum and Rubin, 

1983:41). They further define a propensity score as a specific type of balancing score that 

can be used to group treated and untreated observations. These grouped observations can 

then be used to make reliable direct comparisons between the treated and untreated 

groups (Rosenbaum and Rubin, 1983:42). The mathematical notation for the propensity 

score is: 

𝑒𝑒(𝑥𝑥) = 𝑃𝑃(𝑧𝑧 = 1|𝑥𝑥), 

where this formulation indicates that a propensity score, 𝑒𝑒(𝑥𝑥), is the probability of 

exposure to treatment (with 𝑧𝑧 = 1 for treated values and 𝑧𝑧 = 0 for untreated values) 

given the presence of the covariates (Rosenbaum and Rubin, 1983:42). Next, they 

suggest methods for estimating the propensity scores. In a randomized, designed 

experiment, 𝑒𝑒(𝑥𝑥) is easily obtainable. In other words, 𝑒𝑒(𝑥𝑥) is a known function, such as 

0.5 when the treatment is randomly applied to half the observations (Thavaneswaran, 

2008:2). But in a nonrandomized, observational experiment, one must use a tool (such as 

a logistic regression (logit) model or discriminant scores) to estimate 𝑒𝑒(𝑥𝑥) (Rosenbaum 

and Rubin, 1983:42,47).  
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Rosenbaum and Rubin conclude by describing three propensity score techniques 

that can be explicitly used to account for confounding covariates in observational data. 

These techniques are matched sampling (or PSM), subclassification (also called 

stratification), and covariance adjustment (Rosenbaum and Rubin, 1983:48). These three 

techniques each have their own strengths and specific applications, and thus it is 

important to consider all three when preparing to analyze observational data (Rosenbaum 

and Rubin, 1983:48-54). PSM is the most widely used technique of the three as it is the 

most applicable to the majority of observational datasets. 

The methodology of PSM is based on one primary assumption. This underlying 

concept is referred to as the Strong Ignorability of Treatment Assignment (Imai and van 

Dyk, 2004:855).  This crucial concept assumes that when conducting PSM, there are no 

unobserved differences between the control and treatment groups, conditional on all the 

observed covariates (Stuart, 2010:5). In other words, to satisfy this PSM assumption, all 

variables that are known to be related to the treatment variable and/or the outcome(s) of 

interest must be included in the model. Consequently, it is suggested that analysts be 

“liberal” when adding variables to a PSM model since it can be very detrimental to a 

PSM model’s ability to reduce treatment selection bias if an important confounder is left 

out (Stuart, 2010:5). In total, this assumption helps guarantee the efficacy of PSM 

methods. By ensuring that all relevant variables are included in the model, one can 

maximize the power of PSM in balancing out the differences between the control and 

treated groups in observational data. 

In simplest terms, PSM begins by calculating and assigning a propensity score to 

each observation in the dataset. The propensity score for each observation is usually 
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estimated by researchers using a logit or probit regression model with exposure to the 

treatment as the dependent variable (Austin, 2008:2037). This ‘treatment dependent 

variable’ is indicated by a binary vector as suggested by Rubin (1990:476), where 0 

denotes a pre-treatment observation and 1 denotes a post-treatment observation. Next, 

PSM takes each post-treatment observation and its associated propensity score, and, in 

accordance with the type of matching method and its parameters, matches it with a pre-

treatment observation. Typically, PSM matches the treatment observation to the non-

treatment one via nearest neighbor matching (Ho et al, 2017:6). This means that 

observations in one group are matched with those in the other that bear the nearest 

propensity score in terms of Euclidian distance or some other predetermined distance 

function (Ho et al, 2017:7).  

However, there are other matching methods available for PSM that make use of 

varying criteria to match observations in the treated and untreated groups. The other main 

PSM methods are exact matching, subclassification, full matching, optimal matching, 

genetic matching, and coarsened exact matching (Randolph et al, 2014:3). Exact 

matching is the method of matching where pairs of control and treated observations are 

matched only if their values are identical for every covariate (Randolph et al, 2014:3). 

This method is often not functional for large datasets as the probability of having pre- and 

post-treatment observations with the exact same value for every covariate is near zero.  

Subclassification is the explicit process of splitting the dataset up into multiple 

subclasses (usually five or six), where the distribution of the covariate data is similar in 

each one (Ho et al, 2011:10). Then, typically, the standard nearest neighbor matching 

proceeds inside each subclass to produce a better balance between the control and groups. 
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Full matching is a specific type of subclassification where the subclasses are formed in an 

optimal way (Randolph et al, 2014:3). The full matching method’s goal is to minimize a 

weighted average of the estimated distance measures between the matched pre- and post-

treatment observations in each subclass. 

The next method, optimal matching, minimizes the average absolute distance 

across all the matched pairs (Randolph et al, 2014:3). Genetic matching is more complex 

than the rest of the methods in that it uses a “computationally intensive genetic search 

algorithm” in order to create matches between the pre- and post-treatment sets (Randolph 

et al, 2014:3). The final primary PSM method, coarsened exact matching, is mostly 

intended for datasets with multi-level treatments, as opposed to the standard 0-1 binary 

treatment found in most observational datasets. This method creates balance in the groups 

by matching on one covariate while maintaining the balance of the other covariates 

(Randolph et al, 2014:3). Each of these matching methods could result in similar, but 

disparate results from the other matching methods. Therefore, it is important to apply all 

the available methods to one’s observational dataset when conducting PSM to determine 

the best matching methodology (Randolph et al, 2014:3). 

Once the matching method is specified, PSM then repeats the process of matching 

pre- and post-treatment values, typically without replacement, until all observations are 

matched up. If the size of the pre- and post-treatment groups are unequal, the two groups 

are said to be imbalanced. In an imbalanced dataset, some values cannot be matched one-

to-one with values in the other group. If this occurs during the matching process, one can 

employ weights as a way of matching up all the observations (Ho et al, 2017:7). In PSM, 

this technique is found to be most effective for imbalanced datasets for one-to-two up to 
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one-to-five matching (Randolph et al, 2014:3). This weighted matching technique results 

in more balanced control and treated sets, which allows for more reliable analysis. Other 

matching methods, like genetic matching, discard some of the pre-treatment observations 

in order to more efficiently match the two groups and achieve the best balance between 

them (Ho et al, 2017:7).  

A matching method is deemed successful if it greatly improves the balance 

between the pre- and post-treatment groups. After applying any of the various PSM 

methods, this balance is typically measured by determining the reduction in the mean 

differences between all the pre- and post-treatment covariates (Randolph et al, 2014:3). 

In other words, the success of a particular matching method is gauged by comparing the 

pre- and post-matching balances. The balances are assessed by calculating how the mean 

differences of the pre- and post-treatment covariates changed before and after the certain 

matching method is applied. This assessment is referred to as the percent balance 

improvement and is calculated according to: 

100 �
|𝑎𝑎| − |𝑏𝑏|

|𝑎𝑎| �, 

where 𝑎𝑎 is the pre-matching balance and 𝑏𝑏 is the post-matching balance (Ho et al, 

2011:13). Once the matching is concluded via the most appropriate method and 

parameter settings, the dataset accounts for the inherent treatment selection bias resulting 

from the use of observational data. The post-PSM dataset now features matched pairs (or 

sets) of pre- and post-treatment observations thereby permitting the analyst to operate 

under the assumption that these dataset values were randomly assigned to each group. 
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This key assumption then allows for analysis of the treatment’s effect as if it was 

collected in a randomized, controlled test.  

In a controlled test, the only difference between the pre- and post-treatment 

groups of data is treatment assignment. Thus, any differences between the two groups can 

be attributed to the effect of the treatment. Hence, post-PSM, it is possible to look at the 

isolated treatment effect separate from the effects of the other covariates and the inherent 

treatment selection bias. When examining the isolated treatment effect, the Fundamental 

Problem of Causal Inference described in Holland (1986:947) must be kept in mind. 

Since it is impossible, even after applying PSM, to ever determine the effect of a 

treatment on a single unit, the treatment effect must be looked at more broadly. Hence, 

researchers using PSM assess treatments by looking at the mean effect across all the 

observations as well as just across the treated values. The mean effect on all the units in 

the dataset is called the average treatment effect (ATE) and is calculated according to the 

following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝑛𝑛
∑ 𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0) | 𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1 . 

Here 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0) represents a quantity that can never be known for any specific 

observation due to the Fundamental Problem of Causal Inference (Ho et al, 2007:204). 

But over the span of the dataset, the ATE can be an informative metric in aiding 

researchers to assess the value of a treatment. The ATE can be interpreted as the effect of 

the treatment on all the observations had all observations experienced the treatment. In 

most cases, the ATE is the primary measurement desired by researchers. However, in 

addition to examining the ATE, researchers also use the average treatment effect on the 
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treated (ATT) (Ho et al, 2007:204). This value is obtained similarly to the ATE, but is 

limited only to the treatment population: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑇𝑇𝑖𝑖𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0) | 𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1 . 

Here, the only distinguishing difference between the ATE and the ATT is that the ATT 

represents the effect of the treatment on only those who underwent the treatment. This 

metric is also useful to researchers, especially in cases where they are only interested in 

determining the specific effect of the treatment on those that received the treatment 

and/or those who would receive the treatment (Ho et al, 2007:204).  

To explain the difference between using the two metrics, Ho et al (2007:204) uses 

the example of a study involving a medical drug treatment, where the researchers were 

only interested in determining the effect of the drug on those who would or do receive the 

drug, and hence, they only focused on the ATT. In total, these two averages comprise the 

primary two metrics that analysts use to study treatment effects in observational data. 

Both the ATE and ATT are worth calculating and interpreting in order to provide the best 

measure of assessing one’s treatment variable.  

In practice, to conduct PSM and analyze the results, one must rely on a statistical 

software program. There are many capable programs, but the most appropriate one for 

problems of this nature is R (R Core Team, 2017). As a large scale, free, and open-source 

programming language, R enables the creation of user-built ‘packages’. These are 

bundles of code designed to help other users solve specific problems. Fortunately, there 

are already a packages in existence that allow one to perform PSM in R. 
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One of the most notable and utilized PSM packages is MatchIt, which was created 

by Ho, Imai, King, and Stuart (2007:2-7). This package is comprehensive and user 

friendly. It allows one to tailor a large set of PSM parameters to fit the specific nature of 

one’s observational data problem. In their package documentation, the authors list the 

parameters that can be altered when using MatchIt, like formula, method, and distance, 

among others (Ho et al, 2007:6). These parameters will vary some of the aforementioned 

considerations involved in PSM, such as the independent and dependent variables of 

interest, the type of matching mechanism used, and the distance function used to match 

data points (Ho et al, 2007:3).  

To gain a better understanding of how to practically apply PSM to real 

observational data problems, previous research efforts where PSM was applied to 

observational data problems, including those where MatchIt was used, is reviewed. 

Relevant Research 

PSM and other related methods have been used prevalently in medical research 

due to the frequent observational data issues faced in healthcare and pharmaceutical 

studies. Perkins et al (2000:93) used PSM in a pharmacoepidemiologic research study on 

the effect of two pharmaceutical drugs. To conduct their research, they relied on 

propensity scores to gauge the effect of two drugs, Ibuprofen and Sulindac, from an 

observational dataset (Perkins et al, 2000:93). Specifically, they employed a logistic 

regression model to calculate the propensity scores to combat possible confounding 

effects from imbalanced covariates (Perkins et al, 2000:93). In their case, the propensity 

scores equated to the probabilities of each patient being prescribed the treatment, 
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Sulindac. Next, to determine the drug’s effect, they used the subclassification technique 

to stratify the data according to sample quintiles of the propensity score distribution in 

order to produce an average treatment effect (Perkins et al, 2000:93). In the end, the 

authors found PSM to be a successful technique, as they were able to balance out the few 

dozen covariates in their data and isolate the treatment effect, which was found to be 

statistically insignificant (Perkins et al, 2000:93). They concluded that propensity score 

analysis provided a simple but effective way of controlling the effects of covariates in 

order to obtain a less biased estimate of the treatment effect (Perkins et al, 2000:93).  

Despite being frequently applied in medical studies, PSM use is not limited to 

healthcare research. Ho et al (2007:199-236) applied PSM (via the MatchIt R package 

they created) to a political science problem, where the goal was to estimate the effect of 

electoral advantage of incumbency for Democrats in the United States House of 

Representatives (Ho et al, 2007:202). The authors relied on PSM because they were 

dealing with causal effects, ‘missing’ data, and an observational dataset. They addressed 

this issue by first understanding that their problem revolved around determining the effect 

of the Democratic Party nominating an incumbent or not. This is because the Party can 

only do one or the other. Thus, Ho et al (2007:230) employed PSM via one-to-one, 

nearest neighbor matching to solve their problem in order to produce a reliable estimate 

of the ‘treatment’ in question. Ultimately, they found that PSM improved the balance of 

the covariates substantially and that it was a successful tool for the causal and 

observational data issues they faced (Ho et al, 2007:231). 

 Randolph et al (2014:1-6) presents another case of using PSM via MatchIt in the 

field of education. Specifically, they were interested in assessing the effect of designating 



 

23 

certain schools as high performing ‘Schools to Watch’. The outcomes of interest were the 

students’ reading and mathematics achievement scores (Randolph et al, 2014:1). Like Ho 

et al, these authors utilized the nearest neighbor method, with one-to-one matching 

(Randolph et al, 2014:3). They examined all possible matching methods and 

combinations in MatchIt until they found the lowest mean differences between the 

control and treatment groups (Randolph et al, 2014:3). They advise that other analysts do 

so as well in order to find the most suitable set of parameters for their specific problem.  

After running PSM with their optimal set of parameters, they showed that they 

were able to greatly fix their imbalanced dataset and produce two groups of quasi-

randomized data, which could then be analyzed informatively. The authors further 

demonstrated the efficacy and importance of PSM. In their follow-up analysis, they found 

that without PSM, there was a significant difference in the mathematics performance of 

treated (‘Schools to Watch’) and untreated schools. However, after they employed PSM 

via MatchIt, the difference was no longer significant (Randolph et al, 2014:5). This 

highlights the need for PSM when analyzing observational data, as one can draw false 

conclusions about the effect of a treatment if the data is not properly transformed and 

balanced through PSM beforehand. Without PSM, the data are subject to treatment 

selection bias. 

The researchers’ conclusions from the aforementioned studies demonstrate the 

value of PSM. Their work makes it clear that once the data cleaning steps are complete, 

PSM an appropriate technique to use to adequately prepare observational data for 

analysis. Now, the final part of preparing for analysis is to review which analytic tools 

are necessary to infer causal relationships from a newly clean and propensity score-
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matched dataset. Thus, it is paramount that the analysis techniques used post-PSM are 

capable of properly determining a treatment effect. That is, the techniques must be able to 

ascertain whether or not changes in pre- and post-treatment outcomes are statistically 

significant enough to warrant a conclusion on the positive or negative efficacy of the 

treatment.  

Once the original messy, observational dataset is cleaned and the data are 

matched via PSM into a quasi-randomized dataset, statistical regression analysis is 

performed as most models require the assumption of randomized, experimental data. This 

underlines the importance of first thoroughly cleaning and then applying PSM to 

observational datasets. One of these tools is the calculation and assessment of mean 

differences via significance testing. Earlier, this tool was mentioned as inadequate for 

observational data, but now that the data has been matched, it is a sufficient method of 

analyzing a treatment’s effect by the comparing pre- and post-treatment groups. As 

Randolph et al (2014:5) showed, significance testing of a PSM-matched dataset is a 

suitable way of computing a treatment effect and gaining insights about the original, 

unmatched observational dataset. Typically, the specific type of t-test that should be 

applied is a two-sample t-test using non-pooled variances (Kim, 2015:540). Since the pre- 

and post-treatment sets resulting from PSM can be treated as independent groups and can 

often vary in size, it is best to utilize this type of t-test (Kim, 2015:540). With the 

assumption that the two groups are now randomized, this t-test shows whether or not 

there is a significant difference in the means of the two groups, for a specific dependent 

variable outcome, according to a predetermined α-level of significance. If there is a 

significant difference in the pre- and post-treatment outcome means, the analyst can be 
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statistically confident that there was a positive (or negative) effect directly attributable to 

the treatment variable.  

To conduct this t-test, an analyst first computes the means of the two groups’ 

values for the outcome of interest. The analyst also calculates the standard deviations of 

each group and records the sizes (n) of each group. These values are then imported into 

the appropriate t-test calculator or statistical software. The results will show, according to 

the significance level chosen (typically 𝛼𝛼 = 0.05), whether or not the groups have a 

significantly different means, and hence, the presence of an effectual treatment (Kim, 

2015:541). This process is used to compare the change due to the treatment’s 

implementation in any other outcome variable that one wishes to analyze. In the end, the 

t-test is a simple, but powerful way of analyzing randomized or quasi-randomized 

datasets to search for significant treatment effects. But while this tool is informative, it 

does not provide the analyst with much more than a comparison between two groups. 

Consequently, if one wants to gain more insights into a dataset, e.g. what variables, if 

any, best predict or explain cause and effect in the dataset, other, more complex tools 

need to be utilized. 

As stated, significance testing does not afford one the ability to conduct predictive 

modeling or determine which variables, if any, explain the outcome. To gain these 

insights, one can use regression-based methods. The simplest form of regression is linear 

regression. This basic type assumes a linear relationship between the predictor(s) and the 

outcome, or response, variable. Observational data, particularly medical data of this 

nature, can feature linear relationships among the data, but it can also feature more 

complex, nonlinear relationships (Higgins, 2002:247). Thus, other more complex 
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regression methods should also be explored. For datasets of an observational nature, 

where variables are often nonnegative and follow a Poisson process, the most appropriate 

regression tools are negative binomial and Poisson models (Cameron and Trivedi, 

1999:1-2). These regression techniques allow for the modeling of count or arrival data as 

well as data that is purely positive (Cameron and Trivedi, 1999:1-2). If an observational 

dataset has primarily count data or nonnegative variables, it precludes applying any 

standard linear regression modeling technique. Thus, the negative binomial and the 

Poisson, which is a special case of the negative binomial, are appropriate models for 

observational datasets that fit these characteristics (Cameron and Trivedi, 1999:1-2). 

The negative binomial model, while intended for count data, also works well for 

continuous data (Cameron and Trivedi, 1999:10). This is important since observational 

datasets are just as likely to feature nonnegative continuous variables as count data. In 

practice, the negative binomial regression takes the data and produces a model that 

predicts the counts of the desired outcome based off all the predictors chosen in the 

model (Cameron and Trivedi, 1999:7). Additionally, in some cases, a more particular 

model is better when the modeling circumstances allow.  

The Poisson model is a specific instance of the negative binomial. The Poisson 

model carries the critical assumption that the means and variances of the data’s variables 

are equivalent (Cameron and Trivedi, 1999:2). This is a highly useful characteristic and 

allows for a simple and interpretable model. Thus, the Poisson model is preferred 

whenever possible. However, there are occurrences, especially in observational data, 

where the Poisson model’s assumptions are violated.  
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In the case where the variance of the data exceeds the mean, the Poisson model 

fails. This common situation is called overdispersion (Cameron and Trivedi, 1999:6). 

When this occurs, the negative binomial model is preferred because it features an extra 

parameter that allows the variance to remain independent of the mean. While more 

complex than the Poisson regression model, the negative binomial is less restrictive and 

most appropriate for cases when the Poisson’s assumptions do not hold true (Cameron 

and Trivedi, 1999:6). In these cases, one can trust the negative binomial to yield the most 

reliable regression results. 

In order to fully understand the Poisson and negative binomial regressions, it is 

important next to discuss the nature of the outputs given by these models. Whereas a 

simple linear regression model reports coefficients that can be linearly summed to predict 

the response variable, the Poisson and negative binomial rely on a log-link internally, 

which means their output coefficients are not in linear terms (Popovic, 2016). 

Consequently, these coefficients must be transformed in order to derive meaning and 

make predictions about an outcome variable. Typically, this conversion occurs by 

exponentiating the Poisson or negative binomial coefficients into a metric called odds 

ratios (Szumilas, 2010:227). Generally, an odds ratio is defined as a measure of 

association between a predictor and an outcome variable. More specifically, in the case of 

transforming Poisson or negative binomial regression coefficients, an odds ratio is given 

by 𝑒𝑒β, where β is the coefficient in question (Szumilas, 2010:227). Once all the 

coefficients have been transformed into odds ratios, the odds ratios are used to generate 

predictions on the response variable. Together, the odds ratios (raised to the power of the 

predictor value), and the intercept, can be multiplied together to give the predictive 
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equation for the outcome variable. Because the odds ratios are multiplicative, their 

general effects can be divided into three possible levels. If an odds ratio is less than 1, the 

predictor is associated with lower odds of the outcome occurring. If an odds ratio equals 

1, the predictor has no effect on the outcome. And if an odds ratio is greater than 1, the 

predictor is associated with higher odds of the outcome occurring (Szumilas, 2010:227). 

In total, odds ratios provide an effective and understandable way of interpreting and 

applying the coefficients of Poisson and negative binomial models. 

The next step is to discuss how to build proper models. Once the most suitable 

regression model for the dataset is chosen, the next task in the analysis is to select which 

variables, or features, to include in the model. The first priority of this process is that a 

more parsimonious model is always desired. Thus, the model chosen should include the 

minimal set of features required to explain as much variation in the response variable as 

possible (Guyon and Elisseeff, 2003:1158). 

The process of narrowing down the list of features in the dataset to best set of 

predictors is referred to as feature selection. To conduct feature selection, there are a few 

tactics available. The most straightforward types of feature selection techniques are 

stepwise regression and best subsets regression (Zhang, 2016:2). These regression 

methods are designed to help select the best, or most significant, variables in the model. 

Stepwise regression works by either selecting the most significant variables in order of 

decreasing value, eliminating the least significant variables in order of increasing value, 

or a combination of both, depending on the method (Zhang, 2016:2-4). Specifically, these 

three methods are called forward selection, backward selection, and ‘both’ selection, 

respectively. Once stepwise regression is concluded, only the variables that are most 
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important and significant to the model will remain. Best subsets regression operates 

slightly differently by choosing the best set of predictors for each possible model size 

according to specified criteria in the model (Zhang, 2016:4). Once the best subsets model 

is complete, the user has a list of the optimal set of predictors that are significant in the 

model that may or may not match the results of stepwise regression. Thus, it is important 

to use both methods, with comparisons made between them based on the values of their 

R2. A model with higher R2 is preferred, as a larger R2 means more variance in the 

response is explained by the model’s predictors.  

Once this process is complete, the analyst has a better understanding of which 

predictors matter, which ones can be ignored, and can then proceed to the process of 

generating informative regression models that are able to reliably answer causal effect 

inquiries. The next chapter describes how these techniques are applied to the data 

generated by Dr. Haac’s research effort in order to determine if the data supports the 

conclusion that there is a statistically significant causal effect on either time-from-arrival-

to-first-operation or the number of cardiac events experienced by geriatric patients due to 

the implementation of the October 2014 risk screening protocol. 
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III.  Methodology 

Chapter Overview 

This chapter describes the techniques that were applied to Dr. Haac’s research 

data to statistically infer a significant causal relationship between the implementation of 

the October 2014 screening protocol and either the time-from-arrival-to-first-operation 

for geriatric patients, the number of cardiac events experienced by geriatric patients, or 

both. The analysis began with data cleaning. After that, PSM was performed to create a 

matched dataset. Then, the actual analysis began with significance testing of the factors 

present in the matched dataset. Next, features were selected based on techniques 

discussed in Chapter II. Once the best set of predictors were identified, predictive models 

were generated via the negative binomial regression model.  

Data Cleaning 

 As is usual in medical observational research studies, the original dataset provided 

by Dr. Haac’s research team required substantial effort to put the data in a format that 

could be analyzed via the statistical methods discussed in Chapter II. 

Dr. Haac supplied the dataset in the form of a Microsoft Excel spreadsheet with 

multiple sheets of data. The first sheet and primary set of data, titled “Demographics”, is 

sorted by the study’s 745 patients’ unique identification numbers (ID #’s). For each 

patient, ninety columns of data are recorded. The first few columns contain simple 

demographic, or background, data like patient sex, race, and age. The data then 

progresses into patient medical factors and measurements. These values include hospital 

admittance date, discharge date, injury severity scores, systolic blood pressure, diastolic 
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blood pressure, body temperature, blood alcohol content, as well as a few dozen other 

very specific measurements of patient motor, verbal, cognitive, and verbal skills. For 

each patient entry, there are also multiple columns of categorical, ‘string’ data that 

describe the patient’s category of injury, full injury description, date of injury, and injury 

scene. Finally, rounding out the “Demographics” dataset is a group of columns of 

numerical data measuring the level of certain drugs/narcotics, like marijuana or opiates, 

in the patients’ bodies. 

The second and third sheets are titled, “Injuries AIS ’90” and “Injuries AIS ’05”, 

respectively. These two sheets each contain around two thousand rows, where the 

patients’ injuries are broken up individually into separate rows of data. Each of the 

injuries references the same unique patient ID # used on the “Demographics” sheet. 

Additionally, the same admit and discharge dates are referenced. Next, the sheets contain 

specific injury text descriptions. Also, for each injury, further columns of numerical data 

are recorded, with names such as “AIS”, “ICD9”, “ISS BR”, and “AIS PREDOT”. These 

columns contain specific scores and information that detail the severity and nature of the 

patient injuries. 

The next sheet, “OR Procedures”, contains all the data referencing each of the 795 

patients’ specific operating room procedures. During the time period of this dataset, there 

were 1,833 individual surgical procedures. As with the previous two sheets, each 

procedure references the patient by his or her unique ID #. Each procedure is tabulated by 

row, with each row featuring many pieces of descriptive data. The data includes columns 

that record the type of surgery, the minutes each patient had to wait to get into the 

operating room (the main outcome of interest for Dr. Haac’s team), the patient 
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disposition (the plan for continuing healthcare after discharge from the medical center), 

the surgery start and end times, and a textual, ‘string’ description of each surgery. This 

sheet also contains some more columns of data like “ICD9”, “CPT”, and “SERVICEID” 

that contain bits and pieces of medical terminology that list further information about 

each surgery that occurred in the study. 

The fifth sheet, titled “Co-morbidities”, tabulates a list of all the non-surgical 

medical risk factors possessed by each patient. The sheet contains close to 2,500 entries, 

and for each entry, the specific patient is again referenced by his or her unique ID #. 

These co-morbidities are extenuating medical problems held by some of the patients. 

They include issues like heart attacks, depression, hypertension, tobacco use, and 

hypothyroidism. On this sheet, each of these specific types of co-morbidities is 

designated by its own unique ID #. The purpose of this sheet is clear; it is intended to 

record any underlying medical factors for each patient, as these issues can play a serious 

role in predicting outcomes such as the patient’s required number of surgeries, likelihood 

of complications, length of stay (LOS) in the hospital, and time-from-arrival-to-first-

operation. 

The sixth and final sheet is titled “Complications”. This sheet records any 

complications that arose during and/or after the patients’ procedures and surgeries. Like 

earlier sheets, each complication is broken up into an individual row with the unique 

patient ID # referenced. In each row, a description of the medical complication is given 

as well as a unique complication ID #. The age of the patient is referenced again, as well 

as the admit and discharge dates. As with the “Co-morbidities” sheet, this data sheet 

exists to record the complications that result from the patients’ surgical operations. These 
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complications can correlate strongly with outcomes like time-from-arrival-to-first-

operation or LOS. This sheet also contains the relevant data that record the number of 

cardiac events experienced by the patients throughout the study, which is the other 

outcome of interest in the researchers’ study. 

Significant data cleaning steps were necessary to transform these six sheets of 

observational medical data into a clean and informative dataset. Beginning with the 

“Demographics” sheet, it was imperative to reduce the ninety columns of variables down 

to a smaller set of solely useful and understandable variables. Using the steps and criteria 

provided by Kuhn and Johnson (2013:27-48) as well as advice from the SME, Dr. Haac, 

it was a straightforward process to transform, combine, and eliminate some variables in 

this sheet, until the final set was as meaningful and clean as possible. Furthermore, since 

the specific goal of this analysis was to assess the effect of a treatment on certain 

outcomes, the data cleaning process became even more straightforward than initially 

expected as many irrelevant variables that were unrelated to answering the researchers’ 

questions could be removed immediately. 

Starting with the “Demographics” sheet, the first step suggested in Kuhn and 

Johnson (2013:41), eliminating variables that are over 20% empty, was conducted simply 

by using Excel to ascertain which columns were ‘full’ enough to satisfy this requirement. 

Using this criterion, it was possible to remove thirty-eight variables, all of which featured 

more than 20% missing values. These removed variables were primarily comprised of 

various patient medical measurements and skills data that the hospital did not record for 

every patient in the study. It was assumed that these few dozen variables did not provide 

much useful information given their lack of completeness in the dataset. Therefore, their 
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removal should not have damaged future analysis. Next, another eighteen variables were 

then eliminated by following the guidance in Kuhn and Johnson (2013:44-45) regarding 

zero and near-zero variance predictors. 

The dataset was then further cleaned by taking into account the scope of this 

problem. Intuitively, this meant that certain variables could be removed simply due to the 

fact that they offer no relevance to the questions this analysis aims to solve. Thus, 

variables on the “Demographics” sheet that contained only textual information regarding 

the category, location, code, and description of the specific patient injuries were simply 

deleted from the spreadsheet. This step reduced the variable count by another six 

variables. 

The next step in cleaning this dataset involved appealing to the SME, Dr. Haac, 

for guidance on how best to simplify the remaining data as well as how to handle certain 

unfamiliar medical variables. Dr. Haac (2017) stated that the injury severity score 

variables, the “ISS 90” and “ISS 05” columns could be combined, with any overlap 

resolved by giving precedence to the “ISS 05” scores. The same was true for the similar 

“TRISS 90” and “TRISS 05” columns. These combinations allowed for the reduction of 

two more columns from the dataset. However, it was suggested a binary indicator 

variable be generated in order to express which injury severity score was used (05 or 90). 

Thus, another variable was added to the dataset to denote this. 

The next step involved transforming some of the categorical, patient background 

data on the “Demographics” sheet into a more suitable format for analysis. Specifically, 

this step meant turning the categorical sex and race variables into dummy (binary) 

variables via the manner discussed in Kuhn and Johnson (2013:47-48). For the sex 
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variable, the column was turned into a binary column where a 1 indicates a male patient 

and a 0 indicates a female patient. For the race variable, more columns of dummy 

variables were added to the dataset where each race was indicated with a 1 if the patient 

belongs to that race or 0 if he or she does not. Since the patients in this study are 

predominantly of European or African descent, these separate dummy variables were 

generated first. Patients that were listed as being of Asian descent, two or more races, 

“other”, or “unknown”, were combined into one “Other” column due to the low number 

of patients in those categories present in the data. Thus, the dataset was expanded by two 

columns in order to provide clear dummy variables that indicate the race of each patient. 

A further search of the dataset and some verification in Excel revealed that the 

variables “U-Amp”, “U-Coc”, and “U-PCP” (levels of amphetamines, cocaine, and PCP, 

respectively, in the patients’ bloodstreams) are all identical columns, making two of these 

columns redundant and unnecessary for modeling purposes. Consequently, two of them 

were removed. Furthermore, the dataset featured both an admittance date variable as well 

as a length of stay variable. Therefore, discharge date column was unnecessary, as it 

could be inferred from the other two, and consequently was removed.  

The next cleaning process involved filling in the relatively small amount of 

missing values still present in the remaining data. As seen in Zhang (2015:6), mean 

imputation was an appropriate process for filling in the few empty values in the dataset. 

Specifically, the mean values of the columns (disregarding the empty cells) were inserted 

into each missing entry until all the variables had complete columns. In total, this filled 

sixty missing entries across five variables’ columns. This process ensured that the dataset 



 

36 

was fully complete, thereby guaranteeing that no columns were excluded in the later 

analysis due to missing data.  

With the original “Demographics” spreadsheet finalized, the next step was to 

combine all the spreadsheets into one comprehensive dataset. After discussion with Dr. 

Haac (2017), the sheets entitled “Injuries AIS ’90” and “Injuries AIS ’05” were 

completely deleted as they were deemed to be medically irrelevant to the analysis. 

However, the next three sheets were all significant to the researchers’ questions and had 

to be handled appropriately in order to transfer meaningful data over to the 

“Demographics” sheet.  

By relying on the SME’s guidance and the tools outlined in the previous chapter, 

the “OR Procedures” sheet was handled similarly to the “Demographics” sheet. In this 

manner, the sheet was reduced to just three informative columns: patient ID #, total time 

in the operating room, and time-from-arrival-to-first-operation. However, these three 

columns spanned 1,843 rows instead of the expected 745 rows (for 745 patients). This is 

because many patients in Dr. Haac’s team’s study underwent more than one operation. 

While this would normally heavily complicate the process of adding data to the 

“Demographics” sheet, Dr. Haac (2017) stated that her team is solely interested in the 

first operation underwent by each patient. Thus, any data on subsequent operations for 

each patient was removed. Some sorting and maneuvering in Excel allowed for a 

straightforward reduction of this sheet down to only the first-operation data for each 

patient. This condensed sheet seemed to confirm that each patient reflected in the 

“Demographics” sheet did undergo at least one surgical operation and consequently every 

patient in the cleaned dataset had a corresponding time-from-arrival-to-first-operation 
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value. With this reduction complete, the “OR Procedures” sheet was merged with the 

“Demographics” sheet, which expanded it by three columns. 

The next sheet, “Co-morbidities”, presented its own share of challenges. As 

previously described, this sheet featured three columns: the patient ID #, the specific co-

morbidity each patient has, and the ID # that is unique to each co-morbidity on the sheet. 

A quick glance showed that this sheet, like the last, spans more than the 745 rows of 

“Demographics”. Just as many patients underwent multiple surgeries, many patients 

entered the hospital with multiple co-morbidities. These co-morbidity data capture the 

risk factors and medical issues associated with each patient. Therefore, all of the data on 

this sheet were relevant to PSM and the subsequent statistical modeling in this analysis. 

Hence, binary dummy indicator variables were created for the sixty-one co-morbidities 

listed on the sheet. Visual Basic for Applications (VBA) was used to perform these steps 

in Microsoft Excel. With this process complete, the “Demographics” sheet now featured 

sixty-one more (binary dummy variable) columns. 

The final sheet in the dataset provided by Dr. Haac was entitled “Complications”. 

This sheet contained data on all the complications experienced by the 745 patients both 

during and after surgery. The age and admittance date columns were redundant with 

those in the “Demographics” sheet and were deleted. Next, using Dr. Haac’s guidance 

(2017), the date of complication (calendar date) as well as the day of complication 

(integer value for day after arrival) columns were removed. This is because Dr. Haac’s 

research team was only concerned with whether or not the patients experienced any 

complications, and were not interested in the timing of the complications. However, the 
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rest of the data on the “Complications” sheet were deemed valuable to Dr. Haac’s team’s 

questions.  

The remaining variables on the “Complications” sheet were the patient ID #, the 

complication name, the complication’s specific ID #, and the category to which the 

complication belongs. As requested by Dr. Haac (2017), only the cardiac events were 

considered in the analysis. Consequently, the rest of the non-cardiac data was removed. 

This step revealed that only a few dozen patients actually experienced at least one of the 

eight complications that fall under the cardiac category. Two more columns were then 

added to the clean dataset in order to capture the relevant data in the original 

“Complications” sheet. Specifically, a binary dummy column was created that shows a 1 

for every patient that experienced at least one of the eight cardiac complications and a 0 

for every patient who did not. Another column was generated that counts the number of 

cardiac events experienced by each patient. Once complete, these variables were merged 

with the rest of the data in the “Demographics” sheet. 

The next step for cleaning the “Demographics” sheet was to insert a binary 

indicator variable to denote treatment assignment. In this case, this meant the inclusion of 

a column where a 0 denotes a pre-treatment patient and 1 denotes a post-treatment 

patient. As the treatment took effect October 1, 2014, but likely took some time to fully 

function, a buffer range was created. All of the observations during October 2014 were 

removed to create a clear divide between the pre-treatment group of observations and the 

post-treatment group. This step reduced the number of patients by eighteen (745 rows to 

727 rows). With this step complete, it was simple in Excel to generate a treatment column 

where pre-October 2014 patients were assigned a 0, and the post-October 2014 patients 
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were assigned a 1. This step, in total, added the highly necessary and important treatment 

variable to the dataset. 

With all the data combined into a single dataset, the process of outlier 

investigation began. To keep all the original meaning in Dr. Haac’s dataset, only values 

that could be assumed to be entry errors were removed. Furthermore, the focus of the 

outlier investigation was solely on the primary outcome of interest, time-from-arrival-to-

first-operation. In this column, a purely visual inspection yielded the presence of four 

clear outliers. First, it was immediately apparent that, in fact, one patient in the dataset 

did not undergo any surgical procedures. Patient #518 was the only patient of the 727 

remaining in the dataset who did require any surgery. Thus, since this patient registered a 

0 for time-from-arrival-to-first-operation, her record in the dataset was a threat to later 

analysis and was removed. Next, it could be seen that there were three clear outliers on 

the high side of time-from-arrival-to-first-operation. These patients, #679, #467, and 

#102, all required extremely large amounts of time (18,832, 18,291, and 13,324 minutes, 

respectively) to get into their first surgery. These values roughly equate to ten to fourteen 

days required to go from arrival to surgery, which were time levels that were significantly 

higher than the rest of the patients. Since these values were so disparate from the 

remaining majority of the data, it could be assumed that these values were data entry 

errors, and consequently were removed. Thus, with patient #518’s removal, as well as the 

deletion of the three huge time-from-arrival-to-first-operation patients, the outlier 

investigation reduced the dataset by four rows. The dataset now featured complete 

information for 723 patients. 
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The final step in cleaning the combined dataset was to compute the correlation 

matrix to see which variables, if any, were strongly correlated, and thus removable. Using 

R to generate the correlation matrix showed a handful of strongly correlated variable 

pairs. In order to reduce the collinearity of the dataset, a member of each of these pairs 

was removed arbitrarily according to a threshold of ±0.9 in the manner described in Kuhn 

and Johnson (2013:47). This removed four variables, which brought the dataset to a final 

size of eighty-eight variables. 

Preliminary Analysis 

The next task involved importing the Excel data into R for further analysis. 

Appendix A.3 contains the R code used to upload the Excel data in its exact form into an 

R data frame. Storing the dataset in a singular data frame allowed for straightforward 

analysis and modeling. 

Before diving into advanced analytic methods like PSM and regression modeling, 

it usually advisable to first become familiarized with the dataset at hand. Elementary 

methods such as data visualization and summary/descriptive statistics are a simple but 

effective way of capturing the essence of the data before conducting deeper analysis. This 

first visualization and descriptive statistics steps should involve focusing on the primary 

outcome in Dr. Haac’s study. As stated, this is the dependent variable, time-from-arrival-

to-first-operation, which serves as a metric of capturing the efficacy of the researchers’ 

screening protocol. This variable is measured in minutes and records exactly how long it 

took each patient after arriving at the medical center to enter his or her first surgical 

procedure. While advanced analytic techniques were required to confidently determine a 
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significant change in this outcome variable after the screener’s implementation, it was 

still worth using elementary statistics and visualization to gauge a potential treatment 

effect. Consequently, simple descriptive statistics were applied to the data.  

Due to the cleaning steps and data reduction, there were now only 723 patients’ 

data recorded in the finalized dataset. Of these 723 patients, 338 of them were pre-

treatment (control) observations, which meant 385 of them were post-treatment 

observations. This split was nearly even, which gave this dataset a decent balance (46.7% 

control vs. 53.3% treated). Next, the means of the two groups were compared to assess 

the effect of treatment across the two groups. Hence, the means were calculated in R (as 

well as the standard deviations) to provide initial insights into the treatment’s effect. 

Table 1 gives the results of this elementary means comparison. Note that, the primary 

outcome, time-from-arrival-to-first-operation, is referred to as “Min_to_1st_OR”, as it is 

titled in the main R data frame. 

Table 1.  Mean Time-from-Arrival-to-First-Operation 

  n Mean (minutes) 

Treatment No 338 1727.2 

 Yes 385 1591.6 

Overall  723 1655.0 

 

Based on Table 1, there is an apparent difference in the two means and therefore, 

a potential treatment effect. While it remains to be seen if the treatment had a statistically 

significant effect on “Min_to_1st_OR”, there is certainly a noticeable difference in the 

pre- and post-treatment sample means. On average, those patients who received the 

treatment required almost 136 minutes less time to get into surgery than their untreated 
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counterparts. Table 2 compares the standard deviations. Table 2’s results show that the 

outcome variable, “Min_to_1st_OR”, is characterized by large variation, with standard 

deviations that are almost as large as the means. This implies that the time-from-arrival-

to-first-operation for the patients in Dr. Haac’s study significantly varied from patient to 

patient. Due to this large spread amongst the outcome variable, appropriate steps were 

taken in order to account for the large standard deviations in the two groups. 

Table 2.  Standard Deviation for Mean Time-from-Arrival-to-First-Operation 

  n Standard Deviation 

(minutes) 

Treatment No 338 1456.8 

 Yes 385 1251.8 

Overall  723 1352.2 

 

To further elucidate the outcome variable, “Min_to_1st_OR”, as well as the 

treatment effect, data visualization was performed. R, via the package ggplot2 (Wickham, 

2009), provides simple but elegant avenues of displaying and assessing one’s data. Figure 

1 provides a snapshot of the variable “Min_to_1st_OR”’s underlying distribution. The 

three large outliers that were removed earlier were re-added to the dataset in order to 

provide a visual depiction of their separation from the mainstream outcome data. The R 

code used to generate the preliminary data analysis graphics can be referenced in 

Appendix A.5. 
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       Figure 1.  Histogram of Patient Counts for Time-from-Arrival-to-First-Operation 

 

Figure 1 indicates that “Min_to_1st_OR” does not follow the Gaussian, or 

normal, distribution. The data do not fall under a bell curve and are clearly skewed right. 

Additionally, the histogram confirms that there were a few major outliers in the outcome 

data, specifically the three observations that fall above 12,500 minutes. Despite the heavy 

majority of the data falling within the 0 - 5,500-minute range, there were a few patients 

who required over 12,500 minutes (eight and a half days) before they were admitted into 

surgery. These values were extremely large comparatively, and were likely due to entry 

errors. Thus, their removal was warranted. Removing these three points now afforded a 

more in-depth look at the outcome variable’s distribution, which can be seen in Figure 2. 
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Figure 2.  Histogram of Patient Counts for Time-from-Arrival-to-First-Operation                                                                                  
(Outliers Removed) 

 

The outlier removal reveals a clearer picture of the outcome data’s distribution. 

Clearly, the vast majority of patients in Dr. Haac’s study underwent surgery within 

roughly three thousand minutes (fifty hours). Because this data is so skewed, it is worth 

attempting a data transformation in order to make the distribution appear more normal. 

The most common transformation that can be applied is a logarithmic base 10 (log) 

transformation. Figure 3 depicts a standard log transformation of the outcome variable, 

“Min_to_1st_OR”. 
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                 Figure 3.  Log Transformation of Time-from-Arrival-to-First-Operation 

 

While it is not perfectly normal, this log transformation was effective at removing 

most of the skew from the previous histograms. In later analysis, such a transformation 

could be considered in order to improve the effectiveness of particular models or to 

satisfy modeling assumptions. The next step was to visualize the differences in the 

outcome according to the control and treatment split. This was done simply by adding a 

few more parameters to the ggplot2 histogram code in R. Figure 4 is an overlaid 

histogram that is color-coded to show the differences between the control and treatment 

groups. 
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Figure 4.  Histogram of Pre- & Post-Treatment Times-from-Arrival-to-First-Operation 

 

Figure 4 provides visual insights into the treatment’s effect on the primary 

outcome, “Min_to_1st_OR”. This overlaid histogram shows that, despite the differences 

in the groups’ means calculated earlier, there is a large amount of overlap and no easily 

discernable difference between the control and treatment groups. That is not to say that 

more advanced analytic techniques would not detect a significant difference, but from 

this plot, the treatment effect difference is undetectable. However, different plotting 

techniques provide a different view of the two groups’ differences. Another visualization 

that compares distributions is a density plot, which is shown in Figure 5. 
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 Figure 5.  Density Plot of Pre- & Post-Treatment Times-from-Arrival-to-First-Operation 

 

Figure 5 shows more distinguishable differences in the two groups’ data than the 

histogram in Figure 4 did. From this plot, at around the 3,000-minute mark, noticeably 

fewer people from the treatment group start requiring large amounts of time to get into 

surgery. Patients who received the protocol treatment, on average, were admitted into 

surgery prior to three thousand minutes (fifty hours) 88.8% of the time, whereas the 

control patients went into surgery in under fifty hours only 85.5% of the time. In other 

words, this plot suggests that the researchers’ treatment may have had an influence on 

reducing the number of patients who required longer than fifty hours, or around two days, 

to receive their first operation. This could potentially mean that the treatment was in part 

effective at lowering the “Min_to_1st_OR” outcome and producing a positive result in 

the study. 
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Another way to visualize the main outcome variable, “Min_to_1st_OR”, is to 

graph it over the entirety of the study. As the study lasted from October 1, 2012 to 

October 31, 2016 (with the buffer month of October 2014 removed), there were exactly 

four years of outcome data. Plotting the outcome over time can show any positive or 

negative trend in the results. Adding a best fit (or trend) line to the plot depicts if the 

outcome variable decreased over the span of the study. Figure 6 is a scatterplot (with the 

three large outliers re-included to show their effect) that depicts the outcome over time. 

 

               Figure 6.  Scatterplot of Date vs. Time-from-Arrival-to-First-Operation 

 

From Figure 6, it is apparent that there is no easily detectable change in 

“Min_to_1st_OR”. Upon very close examination, though, there does appear to be a very 

slight decrease in the best fit line over time (slope = -0.066). However, the high p-value 
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of 0.647 means that “ADMIT_DATE” is not a significant predictor of “Min_to_1st_OR”. 

Figure 7 shows the results of the scatterplot sans the three outliers included in Figure 6. 

 

Figure 7.  Scatterplot of Date vs. Time-from-Arrival-to-First-Operation  

(Outliers Removed) 

 

Figure 7 seems to indicate that the outlier removal did indeed result in a more 

noticeable negative slope. The influence of “ADMIT_DATE” is still insignificant (p-

value = 0.458), but the slope is slightly more negative (slope = -0.086). This slope can be 

interpreted as an indication that for every day that passes over the four-year study, the 

patients required five seconds fewer on average to go from arrival to their first surgery. 

This is a minute change, and close to zero. Therefore, more advanced methods will be 

required to statistically prove whether or not the current dataset supports the hypothesis 

that the screening protocol treatment had any effect on the primary outcome, time-from-

arrival-to-first-operation. 
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Propensity Score Matching 

PSM is the next step. All the available matching methods were applied to the 

dataset in order to search for the optimal parameters and method that best balanced the 

data to remove any inherent treatment selection biases. The simplest form of PSM is 

nearest neighbor, 1-to-1 matching. Thus, it was the first PSM model run and served as the 

benchmark upon which to judge other PSM methods. All PSM models were generated 

using the MatchIt package (Ho et al, 2017,1-8) in R. 

Before running the initial PSM model, it was necessary to decide which variables 

should be included. Despite inclusion into the final dataset that was imported into R, 

there were a few variables that could be ignored for PSM purposes. These variables were 

patient ID, admittance date, length of stay, total time in surgery, days spent in the trauma 

unit (TRU), and days spent in the intensive care unit (ICU). As the first set of PSM 

models were designed with the intent of isolating the treatment effect on 

“Min_to_1st_OR”, it was unnecessary and inappropriate to include other response 

variables that were irrelevant with regards to time-from-arrival-to-first-operation or that 

occurred after the outcome was recorded by the researchers. For example, patient ID is 

not needed for PSM as it is just a unique identifier, and neither is total time in surgery, as 

that can be considered a dependent variable that was measured after time-from-arrival-to-

first-operation. Therefore, these two (and other similar variables) were not considered 

predictors that needed to be balanced in a model that is focused on “Min_to_1st_OR”.  

Once these variables were removed, the initial model was run. For an initial, 

simplistic look at the nearest neighbor method, all the co-morbidity binary variables were 

ignored for the time being. Tables 3, 4, 5, and 6 provide a glimpse (via the first six 
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variables in the model) of the results provided by the initial nearest neighbor method with 

1-to-1 matching. Appendix A.8 contains all the code used to generate the PSM models. 

Table 3.  Nearest Neighbor (1-to-1) Matching (Partial Model) Sample Sizes 

 Control Treated 

All 338 385 

Matched 338 338 

Unmatched 0 47 

Discarded 0 0 

 

Table 4.  Nearest Neighbor (1-to-1) Matching (Partial Model) Balance for All Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.772 0.260 0.347 0.512 

Sex 0.351 0.296 0.457 0.055 

White 0.816 0.879 0.327 -0.063 

Black 0.130 0.053 0.225 0.077 

Other 0.055 0.068 0.252 -0.014 

Age 77.875 77.299 8.889 0.577 

ISS_90.05 7.797 8.518 2.760 -0.720 

 

Table 5.  Nearest Neighbor (1-to-1) Matching (Partial Model) Balance for Matched Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.799 0.260 0.347 0.540 

Sex 0.385 0.296 0.457 0.089 

White 0.802 0.879 0.327 -0.077 

Black 0.148 0.053 0.225 0.095 

Other 0.050 0.068 0.252 -0.018 

Age 78.420 77.299 8.889 1.121 

ISS_90.05 7.698 8.518 2.760 -0.820 
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Table 6.  Nearest Neighbor (1-to-1) Matching (Partial Model) Balance Improvement 

 Mean Difference Improvement (%) 
Distance -5.383 

Sex -61.992 

White -21.880 

Black -23.571 

Other -31.474 

Age -94.499 

ISS_90.05 -13.768 

 

Table 3 confirms that 1-to-1 matching occurred as the newly matched dataset 

featured 338 treated and 338 control observations, which means forty-seven treated 

patients were discarded. Table 4 tabulates the means of the variables for the entire dataset 

separated into the treated and control groups prior to matching. Table 5 shows these same 

variables’ means and differences, but for the post-matching dataset.  If the matching was 

successful, the means would be much closer, leading to reduced mean differences. Table 

6 sums up this comparison by providing the percentage change in the mean differences 

between the groups for all the variables included in the model. It can clearly be seen that 

this initial PSM model is ineffective at improving the balance between the pre- and post-

treatment groups in the dataset. For all the variables shown, including the propensity 

scores (listed as “Distance”), this PSM model actually created worse balance. It appears 

that the standard PSM method, nearest neighbor with 1-to-1 matching, is not suitable for 

this data. To confirm this result, all the co-morbidities were then added to see if any 

positive change occurred. 

 The next iteration of PSM operated the same as the previous model, just with the 

addition of the co-morbidity binary variables. Twelve co-morbidities were completely 
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imbalanced. These twelve co-morbidities did not appear in either the pre-treatment or 

post-treatment sets. This meant matching would be impossible across these co-morbidity 

covariates. PSM will not operate effectively if it is forced to match only 1’s with only 0’s. 

Thus, these twelve co-morbidities were excluded from subsequent PSM models, which 

meant forty-nine co-morbidities were added to the next rendition of PSM. Tables 7, 8, 

and 9 below provide a look at the results of adding the forty-nine co-morbidity variables 

to the original propensity score model. 

Table 7.  Nearest Neighbor (1-to-1) Matching (Full Model) Balance for All Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.803 0.225 0.321 0.578 

Sex 0.351 0.296 0.457 0.055 

White 0.816 0.879 0.327 -0.063 

Black 0.130 0.053 0.225 0.077 

Other 0.055 0.068 0.252 -0.014 

Age 77.875 77.299 8.889 0.577 

ISS_90.05 7.797 8.518 2.760 -0.720 

 

Table 8.  Nearest Neighbor (1-to-1) Matching (Full Model) Balance for Matched Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.843 0.225 0.321 0.619 

Sex 0.373 0.296 0.457 0.077 

White 0.799 0.879 0.327 -0.080 

Black 0.148 0.053 0.225 0.095 

Other 0.053 0.068 0.252 -0.015 

Age 78.080 77.299 8.889 0.781 

ISS_90.05 7.663 8.518 2.760 -0.855 
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Table 9.  Nearest Neighbor (1-to-1) Matching (Full Model) Balance Improvement 

 Mean Difference Improvement (%) 

Distance -7.020 

Sex -40.393 

White -26.568 

Black -23.571 

Other -9.562 

Age -35.482 

ISS_90.05 -18.697 

 

Tables 7-9 show that this model did not perform well either after the addition of all the 

co-morbidity variables. Table 9 shows that the balance was degraded across most of the 

variables, including “Distance”, after the matching occurred. Together, the results of the 

partial and full nearest neighbor models, with 1-to-1 matching, show that this method is 

not effective on this dataset. 

At this point, the only parameter adjustment that could potentially yield positive 

results was to turn off 1-to-1 matching. Increasing the matching ratio to 2-to-1 failed to 

improve the balance and was just as ineffective as the 1-to-1 models. It is clear that the 

approach of nearest neighbor matching was unsuccessful on this dataset. Thus, other 

methods were attempted to try to improve the balance between the pre- and post-

treatment groups. 

The other methods available in MatchIt (Ho et al, 2017:1-8) include exact 

matching, subclassification, full matching, optimal matching, genetic matching, and 

coarsened exact matching. The exact, subclassification, full, optimal, and coarsened exact 

matching models all failed to run successfully or produce any informative matching 
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results. As expected, exact matching was impossible for a dataset of this magnitude since 

there were no perfectly exact records between the two groups. The subclassification and 

optimal matching models failed to run as they likely could not resolve the large number 

of binary covariates in the dataset. However, full matching did execute, and was able to 

match the 338 control observations to the 385 treated observations, but the balance across 

the covariates was not improved over that of the nearest neighbor method. Lastly, 

coarsened exact matching ran properly, but was only able to match one control 

observation to one treated observation. Thus, it was also unsuccessful at producing 

informative matching results. 

As stated, the fact that a few of the methods were ineffective is not an alarming 

issue. The dataset features many binary covariates, which are likely to impede the ability 

of some of the matching methods. Genetic matching did execute successfully and appears 

to be capable of matching this medical data at least somewhat effectively. The first run of 

genetic matching was conducted without the co-morbidity variables to test its efficacy on 

just the background variables. Tables 10, 11, 12, and 13 capture the results of the partial 

model. It is key to note that genetic matching also requires the R package Matching to 

run (Sekhon, 2011) 

Table 10.  Genetic Matching (Partial Model) Sample Sizes 

 Control Treated 

All 338 385 

Matched 100 385 

Unmatched 238 0 

Discarded 0 0 
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Table 11.  Genetic Matching (Partial Model) Balance for All Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.772 0.260 0.347 0.512 

Sex 0.351 0.278 0.450 0.073 

White 0.816 0.816 0.390 0.000 

Black 0.130 0.130 0.338 0.000 

Other 0.055 0.055 0.228 0.000 

Age 77.875 77.790 8.601 0.086 

ISS_90.05 7.797 7.751 2.736 0.047 

 

Table 12.  Genetic Matching (Partial Model) Balance for Matched Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.772 0.759 0.115 0.013 

Sex 0.351 0.278 0.450 0.073 

White 0.816 0.816 0.390 0.000 

Black 0.130 0.130 0.338 0.000 

Other 0.055 0.055 0.228 0.000 

Age 77.875 77.790 8.601 0.086 

ISS_90.05 7.797 7.751 2.736 0.047 

 

Table 13.  Genetic Matching (Partial Model) Balance Improvement 

 Mean Difference Improvement (%) 
Distance 97.416 

Sex -32.735 

White 100.000 

Black 100.000 

Other 100.000 

Age 85.132 

ISS_90.05 93.510 

 

Tables 10-13 above show that while the genetic matching algorithm discarded 238 

control units, the balance improved between the groups. Across the majority of the 

covariates, including “Distance”, the mean differences are much smaller, which 
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demonstrates that the genetic matching method was effective on this dataset. Some of the 

variables, including “White”, “Black”, and “Other”, were even matched 100% effectively 

by the genetic model as seen by the equivalent means in Table 10.  This means that the 

genetic matching process was able to create perfect balance between the groups across 

these select variables. 

Tables 14, 15, 16, and 17 below capture the results of the full genetic PSM model 

with the forty-nine co-morbidity variables included. 

Table 14.  Genetic Matching (Full Model) Sample Sizes 

 Control Treated 

All 338 385 

Matched 87 385 

Unmatched 251 0 

Discarded 0 0 

 

Table 15.  Genetic Matching (Full Model) Balance for All Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.803 0.225 0.321 0.578 

Sex 0.351 0.296 0.457 0.055 

White 0.816 0.879 0.327 -0.063 

Black 0.130 0.053 0.225 0.077 

Other 0.055 0.068 0.252 -0.014 

Age 77.875 77.299 8.889 0.577 

ISS_90.05 7.797 8.518 2.760 -0.720 
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Table 16.  Genetic Matching (Full Model) Balance for Matched Data 

 Mean Treated Mean Control SD Control Mean Difference 
Distance 0.803 0.765 0.169 0.038 

Sex 0.351 0.281 0.452 0.070 

White 0.816 0.839 0.370 -0.023 

Black 0.130 0.127 0.335 0.003 

Other 0.055 0.034 0.182 0.021 

Age 77.875 77.148 9.225 0.727 

ISS_90.05 7.797 8.307 2.568 -0.509 

 

Table 17.  Genetic Matching (Full Model) Balance Improvement 

 Mean Difference Improvement (%) 
Distance 93.489 

Sex -27.994 

White 62.961 

Black 96.610 

Other -53.899 

Age -26.151 

ISS_90.05 29.327 

 

Based on the Tables 14-17, the full genetic model discarded even more control units than 

before (251) to best match up all the covariates. Despite the addition of all the covariates, 

this model had moderate success reducing the mean differences between the variables in 

the pre- and post-treatment groups. The mean differences are noticeably smaller across 

the majority of the covariates included in the model, although some did worsen. Most 

importantly, the balance between the “Distance” means was significantly improved, 

which demonstrates that the model ran as intended. In whole, across the entire dataset, 

the genetic matching outperformed the other methods. This indicates that the genetic 

matching algorithm was appropriate for this dataset as it was capable of handling the 

multiple types of variables in the data while producing positive results.  
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Although the results of the genetic matching model are visible in the tables, it is 

often best to assess the effectiveness of PSM through visualization. The propensity score 

jitter plot in Figure 8 provides a visual depiction of the matching performed by the 

genetic model. 

 

        Figure 8.  Distribution of Genetic Matching (Full Model) Propensity Scores 

 

The jitter plot in Figure 8 gives a visual representation of the matching that occurred in 

the genetic PSM model. This plot confirms the moderate success detected in the tables 

above as the matched treatment units are mostly similar to the matched control units, 

according to their propensity scores. This plot also confirms that many control 

observations were discarded by the genetic algorithm. However, the plot shows that the 

genetic matching was effective at matching the available units. In other words, the 

genetic model worked well since it discarded and did not match on the large cluster of 

control units that are centered on the propensity score = 0 mark. As there are no treatment 

units with a near-zero propensity score, this decision by the genetic model to discard 
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these control units ensured meaningful results. This depiction of the cluster of control 

units towards the zero propensity score mark might possibly explain the lack of success 

in the other matching methods like 1-to-1 nearest neighbor matching. Due to the 

requirement of having to match up equivalent amounts of units, these extremely low 

propensity scores in the control group had to be matched to dissimilar treatment units, 

which likely prevented positive results.  

In addition to the jitter plot, there are other forms of visualization that can display 

the results of PSM. The set of histograms of the propensity scores in Figure 9 further 

depict the genetic matching results. 

 

Figure 9.  Genetic Matching (Full Model) Propensity Score Histograms 

 

These histograms in Figure 9 portray the changes in balance between the treated and 

control groups that occurred due to matching. From the raw histograms, it is apparent that 

two groups were originally noticeably imbalanced due to their dissimilar distributions.  
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However, post-matching, the balance appears to have significantly improved due to the 

similar shapes depicted in the matched histograms. These plots confirm the results seen in 

the genetic matching output tables. While the results are not perfect and the balance did 

not improve across all the covariates, the genetic matching method certainly 

outperformed the other matching techniques. Consequently, the genetic model’s 

matching results were used for subsequent analysis, including treatment assessment. 

Significance Testing 

The first step used in analyzing the isolated treatment effect was examining the 

Student’s. This process involved taking the genetic-matched data and selecting the 

outcomes of interest for significance testing. The first and primary outcome analyzed was 

the time-from-arrival-to-first-operation for the geriatric orthopedic patients who entered 

the hospital. Due to the success of the genetic matching and the elimination of the 

treatment selection bias, this outcome was isolated and analyzed by comparing the means 

of the pre- and post-treatment groups. Note these two means were reported in Table 1, 

but due to the genetic matching discarding a group of control units, the control mean has 

changed. Table 18 provides the post-matched summary of means. 

Table 18.  Mean Time-from-Arrival-to-First-Operation (Post-Matching) 

n Mean (minutes) 

Treatment No 87 1907.3 

Yes 385 1591.6 

Overall 472 1649.8 
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Table 18 shows that the mean difference in the two groups widened noticeably due to the 

genetic matching. A t-test confirms whether or not this difference is significantly large 

enough to show if the treatment was effective at reducing time-from-arrival-to-first-

operation. The results of the significance are shown below in Table 19. 

Table 19.  Post-Matching Summary of t-test 

Alternative hypothesis: true difference in means is not equal to 0 

t = 1.733 df = 111.24 p-value = 0.086

95% confidence interval: (-45.232, 676.710) 

Sample estimates: mean of control: 1907.332 mean of treated: 1591.593 

Table 19 provides all the necessary information to form an initial analysis on the 

treatment’s effect on the primary outcome, “Min_to_1st_OR”. According to the standard 

level of significance (α = 0.05), this mean difference, though large, is not below the alpha 

threshold. It is close, however, as 0.086 falls nearly within the range of significance. The 

important takeaway from this t-test is not that the treatment was insignificant, but rather 

that more methodology was needed to fully make a conclusion about the treatment’s 

efficacy on “Min_to_1st_OR”. With a mean difference this large, it was very possible 

that regression techniques could provide convincing evidence that the treatment was in 

fact significant in explaining the decrease in time-from-arrival-to-first-operation over the 

course of Dr. Haac’s team’s study.  

The next task involved analyzing the secondary outcome of interest in the medical 

researchers’ study. Dr. Haac and her team are also interested in their screening protocol’s 

effect on the number of patients who experienced cardiac events intra- and post-
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operation. Table 20 provides a look at the cardiac event-specific data after the genetic 

matching was completed. 

Table 20.  Pre- and Post-Matching Summary of Cardiac Events 

 Pre-matching Post-matching 

Control 15 (4.4%) 1 (1.1%) 

Treated 10 (2.6%) 10 (2.6%) 

Total 25 11 

 

Table 20 shows that unfortunately, the genetic matching discarded fourteen of the fifteen 

control patients who experienced a cardiac event. Therefore, not much can be gleaned 

from the post-matching results. It can be seen that pre-matching, there was a higher 

percentage of patients who experienced cardiac events (4.4% > 2.6%), but the matched 

results have failed to show much more than that. Consequently, no serious statistical 

analyses can be conducted on this outcome due to a lack of data. Table 20 provides 

simple inferences about the decrease in patients experiencing cardiac events, but that is 

the limit of insights possible. The next analytic steps focused solely on the primary 

outcome, time-from-arrival-to-first-operation. 

Feature Selection 

 Feature selection was performed next. Using all the variables in the dataset and 

the process outlined in Zhang (2016:2-5), the most basic method, stepwise regression, 

was applied first, using a blend of forward and backward stepwise regression. Table 21 

shows the list of variables that were selected as the most important in explaining 

“Min_to_1st_OR” as well as their corresponding significance levels. 
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Table 21.  Initial Stepwise Regression Results 

Variable Estimate Std. Error t p-value 
(Intercept) 5793.501 2380.878 2.433 0.015 

Age 15.642 6.823 2.292 0.022 

I.T_05 -1095.774 457.816 -2.393 0.017 

Treatment -233.705 158.476 -1.475 0.141 

Adm_Sys_BP -2.917 1.986 -1.469 0.143 

Adm_SaO2 -38.907 22.985 -1.696 0.091 

Lower_Ext_Sev 107.580 57.134 1.883 0.060 

CM_None -687.212 348.973 -1.969 0.050 

CM_6 1098.072 639.661 1.717 0.087 

CM_16 -423.982 186.280 -2.276 0.023 

CM_18 1144.577 651.795 1.756 0.080 

CM_22 -207.104 136.197 -1.521 0.129 

CM_28 294.140 207.960 1.414 0.158 

CM_69 318.099 161.558 1.969 0.050 

 

Table 21 shows that stepwise regression selected thirteen out of the seventy-nine possible 

variables. According to the criteria of stepwise feature selection, these thirteen variables 

are deemed the most valuable in predicting the primary response. Note that the treatment 

variable was chosen as one of these top thirteen variables. This is by no means a 

conclusive evaluation of the treatment’s effect, but it does suggest that the treatment had 

at least a small influence on the “Min_to_1st_OR” outcome variable. However, of the 

thirteen variables selected, only five (as well as the intercept) had p-values below the 

standard α = 0.05 cut-off. This means that only five variables, “Age”, “I.T_05”, 

“CM_None”, “CM_16”, and “CM_69”, were technically significant predictors according 

to the methodology of stepwise regression. Specifically, these variables correspond to 

patient age, the binary variable indicating which injury score scale (05 or 90) the patients 

received, the absence of any co-morbidities, tobacco use, and coronary artery disease, 
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respectively. The treatment assignment variable, with a p-value of 0.141, hence, was not 

a significant predictor. However, it was important to recognize that the most significant 

variable, “I.T_05” (p-value = 0.017), was strongly correlated with “Treatment”. Earlier 

correlation analysis calculated a value of 0.691 between the two variables. While this 

value was not high enough to warrant removal of “I.T_05”, it was likely affecting the 

significance of “Treatment” reported by the stepwise regression. Given that there is a 

large amount of equivalent overlap between the two binary variables due to “I.T_05” 

taking effect at the start of 2014, it was deemed vital to remove “I.T_05” in order to more 

thoroughly isolate and assess the effect of the treatment variable. 

 This second iteration of stepwise regression was run with the “I.T_05” indicator 

variable removed. The results from this updated model are captured in Table 22. 

 Table 22.  Stepwise Regression Results (“I.T_05” Removed) 

Variable Estimate Std. Error t p-value 
(Intercept) 4534.475 2362.523 1.919 0.056 

Sex 195.139 129.010 1.513 0.131 

Age 17.518 6.989 2.506 0.013 

Treatment -352.139 152.393 -2.311 0.021 

Adm_Sys_BP -3.083 1.991 -1.548 0.122 

Adm_SaO2 -37.855 23.073 -1.641 0.102 

Lower_Ext_Sev 110.73 57.438 1.928 0.055 

CM_None -637.135 349.790 -1.821 0.069 

CM_6 1194.642 644.439 1.854 0.064 

CM_16 -475.070 188.960 -2.514 0.012 

CM_18 1420.390 645.018 2.202 0.028 

CM_22 -230.265 136.649 -1.685 0.093 

CM_28 367.918 206.715 1.780 0.076 

CM_69 284.682 162.188 1.755 0.080 
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First, Table 22 shows that again, thirteen variables were selected as the most important in 

explaining “Min_to_1st_OR”. In addition, this table shows that “Sex” replaced “I.T_05” 

in the list of thirteen most valuable variables according to the stepwise regression model. 

Next, Table 22 shows that the removal of “I.T_05” did in fact make “Treatment” 

significant (p-value = 0.021). This intuitively makes sense as “I.T_05” was acting as a 

redundant predictor and therefore was masking the predictive power of “Treatment”. 

Further, this updated stepwise model only shows four variables, “Age”, “Treatment”, 

“CM_16”, and “CM_18” as statistically significant, according to α = 0.05 (where 

“CM_18” corresponds to Alzheimer’s Disease/Dementia). To verify whether stepwise 

regression selected the best variables for subsequent modeling and analysis, best subsets 

was then used to compare selection results.    

 In the first best subsets regression model generated, the “I.T_05” variable was re-

included in order to provide a thorough comparison between the two feature selection 

methods. The results are provided in Table 23. 

Table 23.  Best Subsets Results 

1 var. 2 var. 3 var. 4 var. 5 var. 6 var. 7 var. 8 var. 9 var. 
I.T_05 I.T_05 I.T_05 I.T_05 I.T_05 I.T_05 I.T_05 I.T_05 I.T_05 

 Age Age Age Age Age Age Age Age 

  Low_Ext Low_Ext Low_Ext Low_Ext Low_Ext Low_Ext Low_Ext 

   CM_69 CM_69 CM_69 CM_69 CM_69 CM_69 

    Sys_BP Sys_BP Sys_BP Sys_BP Sys_BP 

     CM_16 CM_16 CM_16 CM_16 

      CM_None CM_None CM_None 

       CM_18 CM_18 

        SaO2 
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From the feature selection output in Table 23, the best subsets regression determined the 

nine most important variables in the model. The first column reports that the most 

important variable in predicting “Min_to_1st_OR” is the “I.T_05” binary indication 

variable, which concurs with the results of the first stepwise model generated. If only one 

predictor could be used in a model explaining “Min_to_1st_OR”, best subsets reports that 

“I.T_05” is the best one to use. Following along the table, best subsets shows in order of 

decreasing value the next eight most important variables. By examining the final column, 

best subsets reports nine of the thirteen variables that were selected by the first stepwise 

regression model. This means that both techniques overlap and do agree on which 

variables warrant consideration in future modeling. 

Note the set of nine best variables in Table 23 does not include “Treatment”. To 

confirm the results of the second stepwise model regarding the statistical significance of 

the treatment variable, “I.T_05” was removed again and an updated model was 

generated. Table 24 lists the results of the next best subsets regression model. 

Table 24.  Best Subsets Results (“I.T_05” Removed) 

1 var. 2 var. 3 var. 4 var. 5 var. 6 var. 7 var. 8 var. 9 var. 
Age Age Age Age Age Age Age Age Age 

 Low_Ext CM_18 Treatment Treatment Treatment Treatment Treatment Sex 

  CM_28 CM_18 AdmDBP Low_Ext AdmDBP AdmDBP Treatment 

   CM_28 CM_18 CM_16 Low_Ext Low_Ext AdmDBP 

    CM_28 CM_18 CM_16 CM_None Low_Ext 

     CM_28 CM_18 CM_16 CM_6 

      CM_28 CM_18 CM_16 

       CM_28 CM_18 

        CM_28 
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Table 24 shows that this updated best subsets model ran quite differently than the first 

model. Here, it can be seen that depending on the model size, some variables were 

selected, excluded, and then re-selected across the nine different model sizes. Overall, ten 

different variables were chosen at least once across the nine models, with “Age” being 

the clearly most significant variable according to this best subsets methodology. Next, as 

expected, the removal of “I.T_05” enabled the inclusion of “Treatment” into the best 

subsets models of four to nine variables. Most importantly, Table 24 shows that this best 

subsets model agrees mostly with the second stepwise model with regards to the variables 

selected across the varying model sizes. The second stepwise model reported that only 

four variables, “Age”, “Treatment”, “CM_16”, and “CM_18”, were statistically 

significant at the α = 0.05 level. This result is supported by the best subsets output above, 

where the six-variable model includes these four variables. In order to merge the results 

of these two methods, it made sense then to select the six variables mentioned that 

contain the four significant ones from the stepwise model. Thus, the combined results of 

the two feature selection methods showed that, given “I.T_05”’s exclusion, there were six 

top variables, including the treatment assignment, that best explain the main outcome, 

“Min_to_1st_OR”. While this number of variables was small compared to the original 

dataset size, it did allow for a parsimonious model that was easily interpretable. 

Overall, the feature selection process was successful and the next steps of analysis 

can reliably use these best selected predictors. Thus, for the rest of the modeling steps, 

the predictors in the matched dataset were narrowed down to the six significant ones 

(“Age”, “Treatment”, “Lower_Ext_Sev” (severity of injuries to patient’s lower half), 

“CM_16”, “CM_18”, and “CM_28” (congestive heart failure)) from feature selection. 
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Regression 

The nature of this data leads one to believe that the negative binomial or the 

Poisson regression models were the most appropriate. While the negative binomial can 

operate on a wider range of data, the Poisson is built on the critical assumption that the 

mean and the variance of the data are equivalent. Table 25 below captures the results of 

the primary outcome variable’s post-matching mean and variance comparison.  

Table 25.  Post-Matching Summary of Time-from-Arrival-to-First-Operation 

 Mean Variance 

Control 1907.3 2,332,593 

Treated 1591.6 1,566,881 

Total 1649.8 1,754,988 

 

Table 25 shows that the mean and variance of “Min_to_1st_OR” are markedly different 

and not even close to being equivalent. Thus, the Poisson model’s primary assumption is 

violated. This means that, although the Poisson model is preferred, it could not work 

effectively on these data; the negative binomial regression was utilized instead. By taking 

the four best variables reported by the two feature selection methods, the negative 

binomial efficiently provides a reliable analysis on the treatment and other predictors. 

The results of the negative binomial model on the variables chosen are shown in Table 26 

below. 
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Table 26.  Negative Binomial Model Summary (6 Variables) 

Variable Estimate Std. Error Z p-value 
(Intercept) 6.648 0.303 21.934 0.000 

Age 0.009 0.004 2.465 0.014 

Treatment -0.174 0.085 -2.048 0.041 

Lower_Ext_Sev 0.066 0.032 2.061 0.039 

CM_16 -0.249 0.103 -2.417 0.016 

CM_18 0.603 0.359 1.678 0.093 

CM_28 0.229 0.110 2.073 0.038 

 

Table 26’s output shows the level of significance for each of the four variables in the 

negative binomial model. Of these six, the negative binomial reports that “Age”, 

“Treatment”, “Lower_Ext_Sev”, “CM_16”, and “CM_28” are significant according to α 

= 0.05. “CM_18” is not considered significant with an associated p-value of 0.093.  

To achieve the best negative binomial model possible, “CM_18” was dropped and 

the model was re-run with only the five significant variables. The results of this reduced 

negative binomial model are tabulated in Table 27. 

Table 27.  Negative Binomial Model Summary (5 Variables) 

Variable Estimate Std. Error Z p-value 
(Intercept) 6.605 0.304 21.756 0.000 

Age 0.010 0.004 2.621 0.009 

Treatment -0.179 0.085 -2.103 0.035 

Lower_Ext_Sev 0.069 0.032 2.160 0.031 

CM_16 -0.247 0.103 -2.391 0.017 

CM_28 0.218 0.111 1.971 0.049 

 

Table 27 shows that all the variables included in the model were now reported as 

significant. The next step is to interpret the results after model diagnostics are confirmed. 
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  The most appropriate way to judge a model’s assumptions and fit is by calculating 

the residuals and generating a normal quantile quantile (Q-Q) plot. The results of this 

process are shown in Figure 10. 

 

Figure 10.  Negative Binomial Normal Q-Q Plot (5 Variables) 

 

Figure 10 demonstrates that the negative binomial model’s assumptions for the data were 

mostly correct. The residuals for the most part fall nicely along the Q-Q line shown as 

desired. The results of this plot imply that the negative binomial with five variables is 

appropriate for the dataset and could be relied on for making conclusions about the 

variables.  

 The values to be interpreted are the coefficients reported by the five-variable 

negative binomial model. The negative binomial coefficients are exponentiated into the 

form of odds ratios. These odds ratios are used to determine the multiplicative effect of 

one-unit increases in the predictors on the response variable. The results of transforming 

the negative binomial coefficients from Table 27 into odds ratios as well as 95% 

confidence intervals for the odds ratios are listed in Table 28. 
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Table 28.  Negative Binomial Odds Ratios Summary 

Variable Odds Ratio 95% CI 

(Intercept) 738.735 (401.018, 1360.308) 

Age 1.010 (1.002, 1.018) 

Treatment 0.836 (0.705, 0.986) 

Lower_Ext_Sev 1.071 (1.005, 1.140) 

CM_16 0.781 (0.640, 0.962) 

CM_28 1.244 (1.006, 1.556) 

 

Table 28 provides critical information on assessing the five significant variables reported 

by the feature selection and negative binomial steps. First, the odds ratio for the intercept 

is 738.735, which means that the predictive equation for the outcome includes the 

constant multiplier value of 738.735 minutes. Next, the close-to-1 odds ratio for “Age” 

(1.010) initially appears to show that age of the patient has near-zero effect on the 

outcome. However, this odds ratio, when raised to the power of a patient’s age, for 

example, eighty, can have a large effect on the outcome variable (1.01080 = 2.217).  

Finally, it can be seen that both “Treatment” and “CM_16” have odds ratios less 

than 1, which means that these variables are associated with lower odds of the outcome 

occurring. These binary variables’ odds ratios indicate that when they are each set to 1, 

the predicted “Min_to_1st_OR” value is decreased. This means that when the treatment 

is applied to patients, on average, they require less time to go from arrival to their first 

surgery (and similarly for possessing “CM_16”). Conversely, “Lower_Ext_Sev” and 

“CM_28” are associated with higher odds of the outcome. To provide clarity on the 

effects of the intercept and variables, the following example predicts “Min_to_1st_OR” 

for a hypothetical patient who is seventy-two years old, received the treatment, has an 
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lower extremity injury level 2, has “CM_28” (congestive heart failure), but does not 

possess “CM_16” (tobacco use): 

𝑀𝑀𝑀𝑀𝑀𝑀_𝑡𝑡𝑡𝑡_1𝑠𝑠𝑠𝑠_𝑂𝑂𝑂𝑂 = 738.735 ∗ 1.01072 ∗ 0.8361 ∗ 1.0712 ∗ 0.7810 ∗ 1.2441 =  1803 𝑚𝑚𝑚𝑚𝑚𝑚. 

This example serves to depict how the odds ratios work to predict the primary outcome 

variable. Specifically, when the treatment is applied to patients, they will, on average, 

require 1 – 0.836 = 16.4% less time to get into surgery compared to patients with the 

same age, lower extremity injury level, and status on suffering from tobacco use and 

congestive heart failure who did not receive the treatment. Overall, this odds ratio for 

“Treatment” and the example above support the hypothesis that the treatment variable is 

significant in predicting time-from-arrival-to-first-operation, and that the effect is as 

desired by the researchers. According to the results above, treatment assignment appears 

to lead to patients getting into surgery faster, which means the primary goal of the study 

appears to have been accomplished. 

 The confidence intervals portion of Table 28 shows the ranges that the odds ratios 

fall within, according to a 95% confidence level. While the intervals above do not report 

a significance level for each variable, they do offer a look at how assured the negative 

binomial is that the variables’ coefficients fall within a specific window. From Table 28, 

it can be seen that the intercept has a large confidence interval, which means that the true 

intercept likely falls within the wide window of 401.018 to 1360.308 minutes. This large 

spread is due to the variance present in the outcome variable (reference Table 25). 

However, the intervals for the five significant predictors are all smaller, and most 

importantly, do not include the value of 1. Table 28 shows that one can be 95% confident 

that the true odds ratios for the five variables are not equal to 1, and therefore have an 
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effect on time-from-arrival-to-first-operation. Overall, these intervals support the findings 

above and provide more evidence that these five variables, including treatment, are 

significant predictors. 
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IV.  Conclusions and Recommendations 

 With the necessary analytic steps complete, insights to Dr. Haac’s team on the 

effect of their risk stratification protocol treatment can be offered. Beginning with the 

primary outcome, all the analysis results can be pooled together in order to form one solid 

conclusion about the treatment’s effect on time-from-arrival-to-first-operation. Overall, 

the treatment’s effect on the main outcome was shown to be significant. The mean 

difference between the pre- and post-treatments groups was large pre-matching, and was 

even larger post-matching. While the t-test used was unable to report that the treatment 

was completely significant according to the standard α-level of 0.05, the p-value was 

quite small, thereby suggesting a significant mean difference. Moreover, the feature 

selection process picked the treatment variable as an important and highly significant 

predictor. The negative binomial model then supported this result by showing its effect 

on “Min_to_1st_OR” to be significant again. Finally, the converted negative binomial 

output, in the form of odds ratios, showed via a less than 1 odds ratio and a confidence 

interval that did not include 1, that the treatment variable had a significant effect on the 

main outcome variable. In total, these results point to the conclusion that there is certainly 

a noticeable decrease in time-from-arrival-to-first-operation for the patients in the study 

after the treatment took effect, that the change in means is directly attributable to the 

treatment’s implementation, and that the treatment assignment on average gets the 

geriatric patients into surgery faster. 

 The secondary outcome is the number of cardiac events experienced. 

Unfortunately, due to the small percentage of patients (around 3%) who experienced a 

cardiac event intra- or post-operation, there was not enough data for the majority of the 
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analysis. The genetic matching, while successful at improving the balance between the 

sets and reducing the treatment selection bias within, did eliminate many control patients 

who had experienced a cardiac event. While there was a noticeable drop in the percentage 

of patients prior to matching, there is just not enough data to be able to form a concrete 

conclusion about the treatment’s effect on cardiac events experienced. The pre-matching 

dataset does suggest that there was an effect as seen by the visible decrease in patients 

experiencing cardiac events, but there just needs to be more data collected in order to 

ensure this decrease is significant. Thus, nothing can be stated significantly about the 

number cardiac events experienced by the geriatric patients in the study. 

 Overall, the small indication that the treatment decreased the number of cardiac 

events as well as the major lack of data implies that the addition of more evidence could 

show this effect to be definitively significant. That is, if the study were extended another 

year or two in order to collect more data, it is certainly possible that the analytic methods 

applied could find the treatment effect on cardiac events to be significant. However, 

despite the successful matching process and the suggestive results in the analysis, there is 

just not enough clear data to be able to state that the treatment lowered the number of 

patients who experienced cardiac events.  

Due to the overwhelming conclusion that the treatment decreased time-from-

arrival-to-operation as well as the evidence that significantly more data is required to 

demonstrate an effect on cardiac events, two concrete recommendations can be made to 

Dr. Haac’s team. Provided there is deliberate accounting for the strong effect of “I.T_05”, 

the treatment variable can be shown to be highly significant in predicting time-from-

arrival-to-first-operation according to a large swath of techniques conducted in Chapter 
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III. Overall, this means that the researchers risk stratification protocol was an effective 

implementation that statistically lowered the wait times for orthopedic geriatrics patients 

requiring non-emergent surgeries. Thus, it is recommended that the protocol remain in 

place as it is definitively increasing the hospital’s efficiency as well as improving patient 

care. 

The second recommendation that can be made is that the study be extended 

further in order to collect more data. Given the low percentage of patients who enter the 

medical center with cardiac risks, the study needs to multiply in size in order to provide 

the requisite data in order to confidently ascertain the treatment’s effect on cardiac events 

in the same manner performed for time-from-arrival-to-first-operation. Overall, due to the 

high variation in the “Min_to_1st_OR” variable as well as the tiny percentage of patients 

experiencing cardiac events, the dataset needs to be expanded in order for more concrete 

insights to be extracted. It can be stated that the small amount of data at hand suggests 

that the treatment effect was at least partially responsible for the declines in the cardiac 

events outcome, but it is not a sure conclusion.  

The final takeaway from this analysis is that there are a few other variables that 

were significant in explaining the primary outcome. In addition to treatment assignment, 

“Age” and “CM_16” explain the decrease in the primary outcome. Consequently, it is 

suggested that the researchers explore further why this is the case. Specifically this means 

studying why patient age and the tobacco use risk factor have such a significant impact 

on time-from-arrival-to-first-operation. Moreover, perhaps the results of the modeling 

analysis can provide insightful information to the researchers about their treatment in 

such a way that they can devise a more effective treatment process for an additional 
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study. Either collecting more data in the current study and/or building a new one are both 

recommendable ways for potentially achieving and statistically demonstrating a larger 

treatment effect on the outcomes of interest. 
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V.  Future Work 

If allotted more time to study and analyze the current dataset, there are few more 

methods and tools that could be applied. First, the various matching methods could be 

more significantly explored. It is possible that adjusting certain parameters in some of the 

ineffective methods could actually lead to successful results. While the genetic matching 

method was effective on Dr. Haac’s dataset, there was certainly room for improvement as 

far as achieving optimal balance across the entirety of the dataset. Consequently, the bulk 

of future work would be invested in varying all the parameters in all the PSM methods to 

the maximum extent possible until every combination had been tried. This exhaustive 

process might uncover a better matching model for this dataset, which could provide 

better analyses of the treatment effect on the two outcomes of interest. 

Another focus in future work would involve exploring other regression/treatment 

assessment techniques. Negative binomial regression is by no means the only available 

tool for assessing a treatment in observational data. Consequently, additional techniques 

would be researched and applied in order to determine if any other variables were 

significant or if there were differing results regarding the treatment effect. 

Finally, time-permitting, the crux of this analysis, PSM, might be discarded in 

favor of an alternative treatment selection bias reduction method if available. While PSM 

was clearly the most appropriate technique for this dataset and the questions asked, there 

are likely other methods that could have resolved the issues within and reported differing 

conclusions about the treatment assignment’s effect on the outcome variables. 

Overall, these few ideas comprise the steps that would be taken if more time was 

provided for future work. While the results and conclusions reached in this thesis are 
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solid and reliable, it never hurts to conduct deeper, additional analysis. Consequently, 

these are the main steps that would be taken in order to further support the findings of 

this thesis. 
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V.  Appendix 

A.1  Overview 

All of the R code used to import the data, conduct data summaries and visualizations, 
perform PSM, conduct analysis, and form conclusions is included in this Appendix for 
the sake of reproducibility. Note that the Excel steps used to perform the majority of the 
data cleaning are not included. 

A.2  Required Packages 

# These packages must be installed & loaded in order to run the R code 
 
library(xlsx) 
library(rJava) 
library(xlsxjars) 
library(ggplot2) 
library(magrittr) 
library(dplyr) 
library(MatchIt) 
library(Matching) 
library(MASS) 
library(leaps) 

A.3  Importing Dataset from Excel 

# Full dataset (3 outliers included) 
my_DATA <- read.xlsx("thesis_data_16.xlsx", 1) 
 
# Partial dataset (outliers removed) 
my_DATA2 <- my_DATA[c(1:12,14:485,487:555,557:726),] 

A.4  Data Familiarization 

#Primary outcome 

#means 
attach(my_DATA2) 
mean(Min_to_1st_OR) 
mean(Min_to_1st_OR[1:338]) 
mean(Min_to_1st_OR[339:723]) 
 
#standard deviation 
sd(Min_to_1st_OR) 
sd(Min_to_1st_OR[1:338]) 
sd(Min_to_1st_OR[339:723]) 
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A.5  Outcome Visualization 

#Figure 1 
ggplot(my_DATA, aes(x = Min_to_1st_OR)) + 
   geom_histogram(binwidth = 200, alpha = .5, position = "identity") 
 
#Figure 2 
ggplot(my_DATA2, aes(x = Min_to_1st_OR)) + 
   geom_histogram(binwidth = 200, alpha = .5, position = "identity") 
 
#Figure 3 
ggplot(my_DATA, aes(x = log(Min_to_1st_OR))) + 
   geom_histogram(binwidth = 0.2, alpha = 0.5, position = "identity") 
 
#Figure 4 
ggplot(my_DATA2, aes(x = Min_to_1st_OR, fill = Treatment)) + 
   geom_histogram(binwidth = 200, alpha = .5, position = "identity") 
 
#Figure 5 
my_DATA2 %>% 
  mutate( 
    Description = ifelse(Treatment == "0", "Control", 
                         "Treatment")) %>% 
  ggplot(aes(Min_to_1st_OR, fill = Description)) + 
  geom_density(alpha = 0.4) 
 
#Figure 6 
attach(my_DATA) 
dates <- c("Aug '13", "Dec '14", "May '16") 
plot(ADMIT_DATE, Min_to_1st_OR, xaxt = 'n') 
fit <- lm(Min_to_1st_OR ~ ADMIT_DATE) 
abline(fit, col = "red") 
axis(1,at=c(41500,42000,42500),labels=dates[1:3]) 
summary(fit) 
 
#Figure 7 
attach(my_DATA2) 
plot(ADMIT_DATE, Min_to_1st_OR, xaxt = 'n') 
fit2 <- lm(Min_to_1st_OR ~ ADMIT_DATE) 
abline(fit2, col = "red") 
axis(1, at=c(41500, 42000, 42500),labels = dates[1:3]) 
summary(fit2)  

A.6  PSM 

# Nearest neighbor, 1-to-1 (partial) 
Match_Out1 <- matchit(Treatment ~ Sex + White + Black + Other + Age + 
                        ISS_90.05 + TRISS_90.05 + I.T_05 + Adm_Sys_BP + 
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                        ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + AdmTemp  
                        + Upper.Ext.sev + Lower_Ext_sev + U.Op,  
                        data = my_DATA2, method = "nearest", 
                        ratio = 1) 
 
summary(Match_Out1) 
 
# Nearest neighbor, 1-to-1 (full) 
Match_Out2 <- matchit(Treatment ~ Sex + White + Black + Other + Age + 
                          ISS_90.05 + TRISS_90.05 + I.T_05 + Adm_Sys_BP  
                          + ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 +  
                          + AdmTemp + Upper.Ext.sev +                       

                          Lower_Ext_sev + U.Op +  
                          CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
                          CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18  
                          + CM_19 + CM_20 + CM_22 + CM_24 + CM_26 +  
                          CM_27 + CM_28 + CM_29 + CM_30 + CM_31 +  
                          CM_32 + CM_34 + CM_35 + CM_36 + CM_39 +  
                          CM_41 + CM_43 + CM_49 + CM_54 + CM_55 +  
                          CM_56 + CM_58 + CM_59 + CM_60 + CM_61 + 
                          CM_63 + CM_65 + CM_69 + CM_74 + CM_76 + CM_78  
                          + CM_85 + CM_88 + CM_95 + CM_103 + CM_114 +  
                          CM_115, data = my_DATA2, method =  
                          "nearest", ratio = 1) 
 
#ratio can be set to 2 or higher as desired 
 
#method can be adjusted to exact, subclass, optimal, full, and cem to 
#test the additional PSM matching methods 
#note: additional packages will be required for some methods including 
#optmatch and cem 
 
 
# Genetic matching (partial) 
Match_Out3 <- matchit(Treatment ~ Sex + White + Black + Other + Age + 
                         ISS_90.05 + TRISS_90.05 + I.T_05 + Adm_Sys_BP  
                         + ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 +  

                   AdmTemp + 
                         Upper.Ext.sev + Lower_Ext_sev + U.Op, 
                         data = my_DATA2, method = "genetic",  
                         pop.size = 1000) 
summary(Match_Out3) 
 
# Genetic Matching (full model) 
Match_Out4 <- matchit(Treatment ~ Sex + White + Black + Other + Age + 
                         ISS_90.05 + TRISS_90.05 + I.T_05 + Adm_Sys_BP  
                         + ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + 
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                   AdmTemp + 
                         Upper.Ext.sev + Lower_Ext_sev + U.Op +  
                         CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
                         CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18  
                         + CM_19 + CM_20 + CM_22 + CM_24 + CM_26 +  
                         CM_27 + CM_28 + CM_29 + CM_30 + CM_31 + CM_32  
                         + CM_34 +  CM_35 + CM_36 + CM_39 + CM_41 + 
                         CM_43 + CM_49 + CM_54 + CM_55 + CM_56 + 
                         CM_58 + CM_59 + CM_60 + CM_61 + 
                         CM_63 + CM_65 + CM_69 + CM_74 + CM_76 +  
                         CM_78 + CM_85 + CM_88 + CM_95 +  
                         CM_103 + CM_114 + CM_115, 
                         data = my_DATA2, method = "genetic",  
                         pop.size = 1000) 
 
#note: the pop.size command ensures that the run-time is limited, as  
#otherwise it takes a lengthy amount of time due to the high number of  
#variables 
 
summary(Match_Out4) 

A.7  PSM Visualization 

#Figure 8 
plot(Match_Out4, type = "jitter", interactive = F) 
 
#Figure 9 
plot(Match_Out4, type = "hist") 

A.8  PSM Output / Results 

#retrieves matched (reduced) dataset from genetic PSM 
M_gen_out <- match.data(Match_Out4)[1:ncol(my_DATA2)] 
#note: 1:ncol removes the additional two columns that get appended to 
#the dataset after matching (distance, weights) 
 
mean(M_gen_out$Min_to_1st_OR[1:87]) 
mean(M_gen_out$Min_to_1st_OR[88:472]) 
mean(M_gen_out$Min_to_1st_OR) 

A.9  Significance Test 

t.test(M_gen_out$Min_to_1st_OR[M_gen_out$Treatment == 0], 
       M_gen_out$Min_to_1st_OR[M_gen_out$Treatment == 1],  

 paired = FALSE) 
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A.10  Secondary outcome analysis 

sum(my_DATA2$CARDIAC[1:388]) 
sum(my_DATA2$CARDIAC[389:723]) 
 
sum(M_gen_out$CARDIAC[1:87]) 
sum(M_gen_out$CARDIAC[88:472]) 

A.11  Feature Selection 

# Stepwise regression process 
fullmod <- lm(Min_to_1st_OR ~ Sex + White + Black + Other + Age + 
                ISS_90.05 + TRISS_90.05 + I.T_05 + Treatment +  

                Adm_Sys_BP + 
                ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + AdmTemp + 
                Upper.Ext.sev + Lower_Ext_sev + U.Op +  
                CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
                CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18 +  
                CM_19 + CM_20 + CM_22 + CM_23 + CM_24 + CM_26 +  
                CM_27 + CM_28 + CM_29 + CM_30 + CM_31 + CM_32 + CM_34 +  
                CM_35 + CM_36 + CM_37 + CM_38+  CM_39 + CM_41 + CM_43 +  
                CM_47 + CM_49 + CM_50 + CM_54 + CM_55 + CM_56 +  
                CM_57 + CM_58 + CM_59 + CM_60 + CM_61 + CM_62 + 
                CM_63 + CM_64 + CM_65 + CM_69 + CM_74 + CM_76 +  
                CM_78 + CM_85 + CM_88 + CM_95 + CM_96 + CM_98 +  
                CM_100 + CM_103 + CM_109 + CM_114 +  
                CM_115, data = M_gen_out) 
 
step <- stepAIC(fullmod, trace = F) 
step$anova 
summary(step) 
 
# I.T_05 removed 
fullmod_2 <- lm(Min_to_1st_OR ~ Sex + White + Black + Other + Age + 
                ISS_90.05 + TRISS_90.05 + I.T_05 + Treatment +  

          Adm_Sys_BP + 
                ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + AdmTemp + 
                Upper.Ext.sev + Lower_Ext_sev + U.Op +  
                CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
                CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18 +  
                CM_19 + CM_20 + CM_22 + CM_23 + CM_24 + CM_26 +  
                CM_27 + CM_28 + CM_29 + CM_30 + CM_31 + CM_32 + CM_34 +  
                CM_35 + CM_36 + CM_37 + CM_38+  CM_39 + CM_41 + CM_43 +  
                CM_47 + CM_49 + CM_50 + CM_54 + CM_55 + CM_56 +  
                CM_57 + CM_58 + CM_59 + CM_60 + CM_61 + CM_62 + 
                CM_63 + CM_64 + CM_65 + CM_69 + CM_74 + CM_76 +  
                CM_78 + CM_85 + CM_88 + CM_95 + CM_96 + CM_98 +  
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                CM_100 + CM_103 + CM_109 + CM_114 +  
                CM_115, data = M_gen_out) 
#note: the default setting is "both" 
 
step_2 <- stepAIC(fullmod_2, trace = F) 
step_2$anova 
summary(step_2) 
 
# Best subsets 
sub <- regsubsets(Min_to_1st_OR ~ Sex + White + Black + Other + Age + 
             ISS_90.05 + TRISS_90.05 + I.T_05 + Treatment + Adm_Sys_BP 
             + ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + AdmTemp + 
             Upper.Ext.sev + Lower_Ext_sev + U.Op +  
             CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
             CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18 +  
             CM_19 + CM_20 + CM_22 + CM_23 + CM_24 + CM_26 +  
             CM_27 + CM_28 + CM_29 + CM_30 + CM_31 + CM_32 + CM_34 +  
             CM_35 + CM_36 + CM_37 + CM_38+  CM_39 + CM_41 + CM_43 +  
             CM_47 + CM_49 + CM_50 + CM_54 + CM_55 + CM_56 +  
             CM_57 + CM_58 + CM_59 + CM_60 + CM_61 + CM_62 + 
             CM_63 + CM_64 + CM_65 + CM_69 + CM_74 + CM_76 +  
             CM_78 + CM_85 + CM_88 + CM_95 + CM_96 + CM_98 +  
             CM_100 + CM_103 + CM_109 + CM_114 +  
             CM_115, data = M_gen_out, really.big=T) 
#note: really.big must be turned on to enable a satisfactory  

#finish time 
 
summary(sub) 
 
sub2 <- regsubsets(Min_to_1st_OR ~ Sex + White + Black + Other + Age + 
             ISS_90.05 + TRISS_90.05 + Treatment + Adm_Sys_BP + 
             ADM_D_BP + ADM_HR + ADM_RR + ADM_SaO2 + AdmTemp + 
             Upper.Ext.sev + Lower_Ext_sev + U.Op +  
             CM_NONE + CM_6 + CM_7 + CM_8 + CM_9 + CM_10 +  
             CM_12 + CM_13 + CM_14 + CM_16 + CM_17 + CM_18 +  
             CM_19 + CM_20 + CM_22 + CM_23 + CM_24 + CM_26 +  
             CM_27 + CM_28 + CM_29 + CM_30 + CM_31 + CM_32 + CM_34 +  
             CM_35 + CM_36 + CM_37 + CM_38+  CM_39 + CM_41 + CM_43 +  
             CM_47 + CM_49 + CM_50 + CM_54 + CM_55 + CM_56 +  
             CM_57 + CM_58 + CM_59 + CM_60 + CM_61 + CM_62 + 
             CM_63 + CM_64 + CM_65 + CM_69 + CM_74 + CM_76 +  
             CM_78 + CM_85 + CM_88 + CM_95 + CM_96 + CM_98 +  
             CM_100 + CM_103 + CM_109 + CM_114 +  
             CM_115, data = M_gen_out, really.big = T) 
 
summary(sub2) 
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A.11  Regression 

# mean vs variance check 
mean(M_gen_out$Min_to_1st_OR[1:87]) 
mean(M_gen_out$Min_to_1st_OR[88:472]) 
var(M_gen_out$Min_to_1st_OR) 
 
var(M_gen_out$Min_to_1st_OR[1:87]) 
var(M_gen_out$Min_to_1st_OR[88:472]) 
var(M_gen_out$Min_to_1st_OR) 
 
# Negative binomial on six variables chosen 
mod_final <- glm.nb(round(Min_to_1st_OR) ~ Age + 
                      Treatment + Lower_Ext_sev + CM_16 +  
                      CM_18 + CM_28, data = m11_2_out2) 
summary(mod_final) 
 
# negative binomial on five significant variables  
mod_final2 <- glm.nb(round(Min_to_1st_OR) ~ Age + 
                      Treatment + Lower_Ext_sev + CM_16 +  
                      CM_28, data = m11_2_out2) 
summary(mod_final2) 
#Note: round() must be applied in order for glm.nb to function. 
 
#Q-Q plot, Figure 10 
Resid <- rstandard(mod_final2) 
qqnorm(Resid) 
qqline(Resid) 

A12.  Odds Ratios 

#exporting odds ratios and 95 % C.I.'s 
capture.output(exp(cbind(OR = coef(mod_final2), 
                         confint(mod_final2))),file="odds.txt", 

                   append=TRUE) 

 
#note: this exports a .txt file with the odds ratios and conf ints 
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