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Abstract 

 

 This research addresses the lack of quantitative integrity approaches for vision 

navigation, relying on the use of image or image rendering techniques. The ability to 

provide quantifiable integrity is a critical aspect for utilization of vision systems as a 

viable means of precision navigation. This research describes the development of two 

unique approaches for determining uncertainty and integrity for a vision based, precision, 

relative navigation system, and is based on the concept of using a single camera vision 

system, such as an electro-optical (EO) or infrared imaging (IR) sensor, to monitor for 

unacceptably large and potentially unsafe relative navigation errors.  

The first approach formulates the integrity solution by means of discrete detection 

methods, for which the systems monitors for conditions when the platform is outside of a 

defined operational area, thus preventing hazardously misleading information (HMI). The 

second approach utilizes a generalized Bayesian inference approach, in which a full pdf 

determination of the estimated navigation state is realized.  

These integrity approaches are demonstrated, in the context of an aerial refueling 

application, to provide extremely high levels (10
-6

) of navigation integrity.  Additionally, 

various sensitivities analyzes show the robustness of these integrity approaches to various 

vision sensor effects and sensor trade-offs.  
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INTEGRITY DETERMINATION FOR IMAGE RENDERING 

VISION NAVIGATION 

 

1 Introduction 

  Recently, there has been an increased recognition of Global Navigation Satellite 

System (GNSS) limitations in terms of robustness, availability, and interference. As a 

result of this recognition there has been renewed interest in developing non-GNSS based 

navigation systems to augment system capability. This has become particularly important 

with the trend toward autonomous systems, where required navigation performance 

(RNP) metrics, such as accuracy, integrity, continuity, and availability become 

operational drivers.  Because of this trend, there is renewed interest in gaining 

navigational diversity utilizing imaging or vision aided navigation approaches.  

 Prior to the wide proliferation of Global Positioning System (GPS)-based 

navigation systems, much of the aviation navigation research revolved around developing 

methods for augmenting, and more importantly, bounding the error growth from Inertial 

Navigation Systems (INS). Radar systems were a major focus of this research. Systems 

such as TERCOM (terrain contour matching) [1] and SITAN (Sandia inertial terrain-

aided navigation) [1][2] utilized radar measurements and their correlation to terrain 

databases to remove long term drift associated with INS.  Recently, due to recognition of 

the vulnerabilities of GPS, there has been renewed interest in this line of research to 

develop non-GPS augmentation systems to aid INS.  
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 Vision systems are now being heavily researched to provide navigation updates to 

aviation systems. Like the radar systems, vision systems can use 3-D terrain databases 

and imaging systems to provide periodic position updates [3].  Later research took the 

integration of vision sensors with INS systems further, where not only did the vision 

systems aid the estimation of the inertial errors, stochastic projections using the INS were 

used to aid in the image feature tracking process [4][5]. This approach is a very similar 

approach to more recent research focusing on multi-function uses of imaging and vision 

systems, such as SLAM (Simultaneous Localization and Mapping) [6][7][8][9], in which 

generation of the database and navigation are performed concurrently. 

In addition to the use of vision systems in traditional aviation navigation, for applications 

such as formation flying, aerial refueling, rendezvous and docking systems, and even 

precision landing, there has been a significant body of research in the area of precise 

relative navigation [10][11][12][13].  In [10], Weaver presented a vision-based relative 

navigation solution for aerial refueling with the use of an a priori 3-D tanker model. His 

research helped provide motivation for this proposed vision navigation research, having 

shown the viability for the image rendering navigation approach. 

 For precision relative navigation applications such as formation flying, aerial 

refueling, rendezvous and docking systems, and even precision landing, there has been a 

significant body of research for the use of vision navigation systems [10][11][12][14].  In 

[10], Weaver presented a vision-based relative navigation solution for aerial refueling 

with the use of an a priori 3-D tanker model. A similar approach was demonstrated in 

[15]; results from these flight test showed that image rendering relative navigation is a 
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viable precision navigation technique for close formation flight, specifically aerial 

refueling. Flight test results from [15] demonstrated 95% relative navigation accuracies 

on the order of 35cm within the operational envelope. 

 As the body of vision-aided navigation research continues to grow, which to date 

has demonstrated the potential accuracy performance for these systems, consideration of 

other required navigation performance (RNP) metrics is required. Particularly, when 

considering safety-critical navigation applications, ensuring that systems are providing 

safe information and maintaining a high level of integrity is paramount, but is largely 

neglected in current vision navigation research. 

1.1 Navigation Integrity for Flight Systems 

The concept of integrity, particularly for navigation systems, refers to the level of 

trust that can be placed in a navigation system in terms of detecting gross errors and 

divergences [16]. The Radio Technical Commission for Aeronautics (RTCA), federal 

advisory commission for the Federal Aviation Administration (FAA) defines navigation 

integrity as the following [17]: 

 “The ability of a system to provide timely warnings to users when the system 

should not be used for navigation.”  

Integrity, as it relates to navigation systems, is a major consideration in the 

development and deployment of new systems, particularly for flight systems applications. 

Integrity for navigation systems equates to safety, and flight safety is often a major driver 

of system performance.  
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Many navigation applications have adopted the utilization of protection levels (PL), 

which are real-time navigation system outputs that bound the navigation system errors 

(NSE) to the required probability of integrity risk.  In this approach to ensuring integrity, 

the NSE  is bounded by the real-time PL, and as the long as the PL is below the alert limit 

(AL), which are determined by system designers and safety considerations, the system 

can continue its operation. Loss of integrity is defined by the case when the NSE > AL 

without an alert or, in other words, when NSE > AL and PL ≤ AL, when PL's are utilized. 

The integrity risk requirement is defined as the probability that the navigation error 

is larger than the alert limit without timely warning. Typical ranges of integrity risk 

requirements for precision navigation, depending on the system applications, can vary 

anywhere from 1x10
-4

 to 1x10
-9

, depending on the application and the associated safety 

criticality. There are several factors that can lead to navigation system integrity events in 

which the navigation error exceeds an alert limit without warning. These events include 

hardware failures, software failures, environmental anomalies, and algorithm failures.          

 One of the richest sources of information for how integrity can be handled for 

precision relative navigation systems can be found with the Local Area Augmentation 

System (LAAS) [18], a GPS based civil landing system. The LAAS system focused on 

providing integrity under fault-free and single ground reference receiver failure 

conditions. The computation of real-time protection levels for the LAAS system utilizes 

error bounding estimates of the signal-in-space and projects those onto the position 

domain for horizontal and vertical navigation frames [16][19]. A summary of the 

associated integrity requirements for the LAAS precision navigation systems are show in 
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Table 1-1. This table illustrates how integrity requirements can have significant safety 

implications for the navigation system.  

Table 1-1: Integrity Requirements for the LAAS Precision Navigation Systems [16] 

System Coordinate Frame Integrity Requirement Alert Limit 

LAAS 
Lateral 1x10

-9
 in any 30 sec. 17m 

Vertical 1x10
-9

 in any 15 sec. 10m 

 

Additionally, the LAAS system employs several other quality monitors to detect potential 

signal anomalies and failures in the satellite vehicle (SV). One example is receiver 

autonomous integrity monitoring (RAIM). RAIM utilizes redundancy in satellite 

measurements to detect possible single satellite failures and compensate for the largest 

possible undetected biases in the computation of the protection levels. 

An illustration of LAAS's approach to integrity and the PL concept is illustrated in 

Figure 1. In this case the vertical navigation system error (NSE) is shown relative to the 

reported Vertical Protection Level (VPL) and the Vertical Alert Limit (VAL). The 

protection levels are real-time outputs from the navigation system that bound the 

navigation error to a defined probability and serves as the timely warning mechanism. 

Under conditions when the VPL exceeds the VAL (i.e., VPL > VAL), the system is 

considered unsafe for that operation / application, and such a case usually results in the 

ceasing of operations. The ceasing of operations is a result of unacceptably high 

probability of misleading information (MI). However, even under this condition, this is 

not considered an integrity event, since the system properly alerted the user or aircraft 

system. Under this scenario the only condition that is considered an integrity event is 
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when vertical NSE > VAL, but VPL < VAL. Thus the system doesn’t properly bound the 

true error and fails to report an unsafe condition. 

 

Figure 1: Depiction of Navigation Integrity Concepts (LAAS MASPS, D0-245B [18]) 

 

The computation of the protection level varies depending on the application and the 

specific implementation; however, an assumption often made is that the navigation errors 

can be modeled as a Gaussian process. Under this assumption, the computation of the 

protection level under nominal, no-fault conditions can be performed quite easily. Since 

the assumption is nominal, fault-free conditions, the only remaining considerations are 

process noise and measurement noise, which are handled using standard statistical 

analysis for Gaussian distributions. To illustrate this consider the probability density 

function (pdf) of a standard Gaussian distribution f(x),  
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    (1.1) 

where σ is the standard deviation and μ is the mean. Like any pdf, to determine the 

probability that a sample drawn from this distribution falls within a given range, one must 

only integrate across that range. This is further illustrated in Figure 2, showing the 

probability that a sample of x falls within a region defined by the various increments of 

the standard deviation. Under the Gaussian assumption, this computation is easily 

handled using the Gaussian error function (erf) [20],      

        
 

  
    

 
  

 

 

 (1.2) 

 

 

Figure 2: Standard Gaussian Probability Density Function [21] 

When evaluated at        , erf(x) gives the probability a sample from the Gaussian 

distribution with a standard deviation of σ is between lies within [μ - x, μ+ x]. 
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Since most applications of navigation systems rely on Gaussian assumptions, a 

natural by-product is that the estimation process lends itself well to using a Kalman filter. 

An inherent output of the Kalman filter estimation process is the computation of a 

covariance matrix (P), defined as [22] 

                  (1.3) 

where E[·] is the expected value operator and diagonal terms are the squares of the 

standard deviation (σ
2
). Therefore, to provide a bound on the estimate to a defined 

probability, one must apply the appropriate scale factor of the standard deviation. 

Consider Figure 2 and that we want to provide an uncertainty bound on the state estimate 

μ, such that the probability that estimation error is larger than the bound is less than 

approximately 31.7%, which will be referred to as PPL. The uncertainty bound or 

protection level (PL) is computed as     

                           (1.4) 

where erfinv(·) is the inverse of the error function defined by Equation 1.2. 

 Using the above approach provides a simple approach for bounding an instance of 

the estimation error; however, this bound is just for that particular instance or sample 

draw. To ensure the integrity requirement is met, one must consider possibly many 

instances or samples across the associated time-frame of the defined integrity risk 

requirement. For instance, consider an integrity requirement defined across a period of 30 

seconds, such as the LAAS horizontal requirement. To determine the risk of an error 

exceeding a protection level as computed above over that entire 30 seconds, the number 
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of independent samples, or estimations, that occur across that time-period must be 

considered. Considering this, the entire probability of an integrity event, still assuming 

nominal and no-fault conditions, becomes 

                        
  (1.5) 

Where PPL is the probability that the error exceeds the protection level for any given 

independent sample or state estimate, and N is the number of independent samples across 

the entire time span defined by the integrity requirement. Using LAAS as an example, the 

integrity requirement is defined across a 30 second time period. If we assume the time 

correlation of the errors is 10 seconds, the number of independent samples would be N = 

3. For extremely small probabilities, this can be approximated as 

                       (1.6) 

The above methodology to provide integrity is a common approach utilized for 

navigation applications. This is most likely due to the simplicity in the approach and the 

fact that it’s a natural extension of the Kalman filter, which is widely used for navigation 

purposes. However, the challenge arises for providing integrity for real-time systems 

when estimation techniques do not lend themselves well to the Kalman filter construct, a 

fact we find ourselves in very often with vision applications, a highly non-linear and non-

Gaussian process. 

1.2 Vision Navigation 

Current vision systems are building on the continual advances in imaging sensors 

such as electro-optical, infrared and a wide variety of other spectral imaging systems to 



 

 

10 

reach a new level of confidence and reliability. In addition to improvements in the 

imaging sensors, there is also much work in the area of image processing. A number of 

techniques and approaches are being developed for processing the data from these 

sensors for everything from mapping, localization, and other navigation-related 

applications to medical imaging. Regardless of the specific application, many of these 

image-analysis approaches share common processing steps to achieve their desired goal. 

These steps are illustrated in Figure 3 and consist of transformation, correspondence, and 

state estimation.    

 

Figure 3: Generic Image Analysis Processing Steps 

The first step, Image Transformation describes the process of transforming the raw 

sensor data to features that have desirable characteristics for one’s application. As with 

most electronics sensors, the raw data from these image sensors often must be 

transformed to a domain where tractable analytic techniques can be applied to them, 

whether this data takes the form of light intensity edges from a camera or distance 

measurements from a laser scanning system. Many techniques exist for this 

transformation process, techniques such as Scale-Invariant Feature Tracker (SIFT) [23], 

Speeded Up Robust Features (SURF) [24], edge detection [25][26], corner 

detection[27][28], eigenspace windowing [29], Hough transformations [30], 3-D shape 

representations [31] or a host of any other approaches that can be found in the literature, 

each with different inherent advantages and limitations. The second step, Image 

Image 
Transformation

Image 
Correspondence

State EstimationSensor  
Data
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Correspondence, refers to the concept of indentifying and/or tracking specific features 

found in the data in the transformed domain. Examples of this include searching for and 

identifying an object within a scene, tracking a SIFT feature between frames or matching 

images and/or features for stereo vision applications. This research will focus on applying 

the correspondence to an image rendering approach, where real sensor images and 

rendered or synthesized images are compared.  In this case correspondence is used as a 

metric of how well the real-image and rendered image relate to each other. Additional 

details will be provided in subsequent chapters further discussing this approach. Lastly, 

the State Estimation step describes the process of using this correspondence data to 

determine state information of the sensor, the world around it, or some relation between 

the two. This could include extracting navigation information via localization, motion 

observation, or determining location and pose information for an object of interest. 

1.3 Motivation 

 Much of the vision-aided navigation research to date has focused more on system 

and algorithmic robustness, rather than quantitative and verifiable integrity, particularly 

for feature based processing. Along that line, in [5], Veth introduces the concept of 

regional bounding for feature correspondence between time sequenced image frames, and 

he includes some feature unique criteria that can provide some protection from feature 

correspondence errors. Although these approaches do yield some robustness for the 

algorithms, no quantitative integrity characterization was developed. One exception is 

work by Larson [14], who introduces a truly quantitative integrity monitor for failures in 

the mapping of features to pixels, particularly in the presence of a bias. Larson’s 
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approach predicts the largest possible position error in the presence of one such bias due 

to feature mismatch using a GPS RAIM [32] type approach.  

 The current state of research addressing integrity for vision navigation, utilizing a 

image rendering or template matching approach, is even less mature. In fact, no instance 

of integrity specific work for image rendering vision navigation was identified. This is 

not surprising; given that most of the research in vision navigation has focused on 

feasibility studies and/or mission critical type applications where integrity isn’t 

necessarily a driver.  

In order to take advantage of the advances in image sensors and vision navigation 

techniques, particularly for safety critical operations such as close-formation flight, 

terrain following, or landing systems, rigorous techniques for providing integrity must be 

developed. For all the work going on in the area of vision navigation, there is an apparent 

gap in work being done in the area of integrity. However, this is not that unusual, given 

that most technology advancements in the area of navigation focus on accuracy, 

availability, and susceptibility to denial. Normally, robustness and safety aspects aren’t 

addressed until systems are more mature. This is particularly true for vision systems, 

which historically have been used primarily for mission applications that do not have any 

safety implications, such as intelligence gathering. However, when the system has safety 

critical implications, as is the case with an unmanned aircraft navigating in close 

proximity to human operators, such as Automated Aerial Refueling (AAR) [10] or near 

airport terminal areas, there are very stringent safety requirements, thus requiring much 

more encompassing considerations of even the smallest integrity aspects of the system.  
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This research will address the lack of quantitative integrity approaches for vision 

navigation, specifically relying on the use of image rendering techniques. Given that 

system integrity includes many aspects, this research will focus strictly on algorithmic 

aspects under the nominal and no-fault (hardware) condition. Given that specific aspect 

of integrity, the thrust of the analysis will target the image correspondence process and 

the resulting relationship with state estimation.   

1.4 Research Contributions 

The goal of this research is to provide integrity service in a compatible format with 

existing systems, either in the form of a real-time computed protection level bounds on 

the relative state estimate, or that of an integrity monitor indicating when the relative 

state estimation error exceeds the alert limit. The basic definitional form of integrity risk 

that is adopted by this research is described as follows:  

The probability the relative navigation position error exceeds the ALERT LIMIT 

without warning, shall not exceed the INTEGRITY REQUIREMENT. 

Like existing navigation systems, such as GNSS, both the alert limit and integrity 

requirements are application specific and defined uniquely for that application. To give 

the research a specific set of real world conditions to evaluate the proposed approaches, 

the research focuses on the aerial refueling environment, where the operational goal is to 

maintain a relative position state within the refueling envelope while having a low 

probability of an undetected safety boundary violation. Although aerial refueling is used 

as the operation example, the developed integrity approaches should be applicable to any 
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image based navigation challenge, such as formation flying, landing operations, and even 

generalized indoor or terrestrial navigation. 

 The first contribution demonstrates the feasibility of a discrete vision-aided 

integrity monitor. The developed monitor has a 10
-3

 to 10
-5

 level of integrity monitoring 

performance during close formation flight operations. The integrity monitor approach 

generalizes the concept of integrity in terms of operating and alerting regions. Systems 

that utilize navigation systems generally have objective operating regions that require a 

certain navigation performance, whether this be around a glide-slope, a formation flight 

position, or even a flight path clearance. Navigation integrity becomes critical because 

large divergences from these operating regions, without an alert, can become safety risks. 

The AL is the instantiation of this concept, in which the AL is the threshold or measure of 

how much undetected divergence from the operating region can be tolerated without 

inducing unacceptably large safety risks. This level of independent monitoring could 

provide tremendous relief to a GPS based precision relative navigation system from a 

system safety and certification perspective.  Additionally, the robustness of the integrity 

monitor demonstrated against several degrading imaging effects, including lens 

distortions, and  reductions in pixel resolutions 

The second contribution is a methodology for determining integrity for a vision 

systems based on a Bayesian inference approach.  Using Bayesian inference for image-

based navigation integrity, a configurable integrity risk level, on the order of 10
-1

 to 10
-6

 

integrity risk is achieved. Additionally, the research investigates the algorithmic trade-

space between safety (i.e., integrity risk) and operational alerts (continuity risk). Various 



 

 

15 

factors explored within this trade-space include integrity risk threshold, number of 

measurements, and informative versus non-informative prior information. 

This chapter described the underlying motivation for this research and explored 

some of the historical approaches taken for navigation integrity. Chapter 2 describes the 

previous research related to vision navigation and explore some of the gaps these 

approaches have in terms of providing a quantifiable and rigorous integrity assurances.  

Chapter 3 provides a detailed description of a new discrete integrity monitor for vision 

navigation systems, including derivation of the underlying approach and various 

simulated analyses.  Chapter 4 includes the second innovation of this research, that of the 

Bayesian inference approach, and includes a detailed derivation and simulation results. 

Finally, Chapter 5 provides some additional considerations, based on the research 

completed, including some future research aspects, and concludes with a summary of the 

results.  
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2 Background and Previous Research 

In order to further understand the motivation of this research a more in-depth 

coverage of the previous related research is presented. This Chapter focuses on three 

main topics: (1) Image Correspondence, (2) Feature-Based Integrity Monitoring for 

Vision Navigation, and (3) pdf Estimation. Section 2.1 describes many of the most 

common image correspondence techniques, including both feature and image-rendering 

approaches. Section 2.2 is a more thorough discussion of Larson’s integrity monitoring 

work. Finally, Section 2.3 introduces the concept of pdf estimation, a concept that will 

play a important role in the proposed research.    

2.1 Image Correspondence 

The ability to identify and/or track features within an image or series of images 

reliably and accurately, referred to as the image correspondence process, is one of the 

most critical steps in vision navigation. The image correspondence features can have a 

wide range of forms depending on the application and choice of image transformation. 

The imaging correspondence process consists of two main categories or approaches, 

that of feature-based correspondence and image rendering correspondence. The 

distinction between these approaches is really driven by the fact that only image 

rendering or template matching approaches rely on generating synthesized images using 

a priori models. Feature-based correspondence usually deals with a set of somewhat 

arbitrary image descriptors defined at the pixel level, and are ideally based on image 

properties that are invariant to scale, orientation, and other image conditions. The feature-

based correspondence process is most often handled on a feature-by-feature basis. This is 
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quite different than the approach taken for image rendering techniques, where the process 

relies on matching sets of pixels or features that represent whole objects or sections of 

objects. As the name indicates, the image rendering techniques utilize a priori models to 

be searched and/or tracked within a given image. Therefore, both the image and the 

model must be transformed into the domain where the correspondence search is to be 

performed.  

2.1.1 Feature Based Correspondence Applications 

This section is a brief review of some of the feature based vision navigation 

applications, touching upon some of the correspondence approaches used. Since this 

research is focused on the image rendering, a detailed exploration of these feature based 

techniques is not covered. Rather, a look at the overall approach while highlighting some 

of the noted challenges associated with the feature based techniques is provided.  

2.1.1.1 SIFT Feature Tracking and Inertial Fusion  

One of the more common approaches taken in the area of vision navigation is the 

fusion of vision and inertial sensors. Veth [5] developed an approach for integrating the 

concept of image-based feature detection and tracking into the classical Extended 

Kalman Filter (EKF) form. This approach enabled a deeper integration of the two sensors 

than had been achieved before. 

Veth [5] used SIFT to construct a collection of features for a given image, then used 

the propagated state estimate from the Kalman Filter to predict the feature locations in the 

next image, a key contribution brought on by his work. The predicted features were then 



 

 

18 

matched with the actual features once the next image became available at each epoch. 

Once this matching occurred, the errors between the predicted and actual feature 

locations could be used in the correction of the navigation state and predicted feature 

location estimates. Figure 4 illustrates this concept.  

 

Figure 4: Image-Aided Inertial Navigation [5] 

 

 As depicted in Figure 4, the correspondence search for the feature matching can 

be constrained using the covariance information of the a priori Kalman filter estimate. To 

handle the matching of the features, Veth used the Mahalanobis distance between the 

predicted and measured features at any given time (ti), weighting the distances with the 

feature vector covariance:   

 
            

           
                       

           
         

(2.1) 

where   
  is the feature descriptor vector and       is the covariance of the feature vector. 

The feature descriptor vector is composed of the pixel location (z), scale value (σ), 

rotation (θ), and the feature descriptor (zd). Veth noted that the SIFT routine does not 
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provide any covariance information on the feature vector components for Pσσ,Pθθ, or 

Pzdzd. Hence, the scale and rotation covariance elements were given no weight (i.e., 

Pσσ,Pθθ → ∞I), whereas the feature descriptor component was given unity uncertainty 

(i.e., Pzdzd → I). However, there was valid uncertainty information available for the 

location of these features provided by the pose estimation from the Kalman filter, as 

described above. This pose estimate is used to select the subset of features that fall within 

a statistical uncertainty bound (e.g., 2σ). Hence a successful match is declared when the 

distance between the predicted and measured feature descriptor is below a pre-defined 

threshold. A uniqueness filter is used to ensure that only features that are sufficiently 

distinct in feature space are used in the state estimation process. 

A similar approach is applied to handle the additional correspondence between 

stereo-image feature pairs [5]. Constraints are applied to restrict the search space between 

stereo-image pairs to be near the epipolar line. The Mahalanobis distance, Equation 2.1 

described above is again used to match image features.  

Although Veth [5] applied a rigorous approach for integrating the feature tracking 

and correspondence matching, including use of covariance information for feature 

isolation, there is no account for the possibility of matching to an incorrect feature and 

the subsequent navigation uncertainty of this condition in the state estimation covariance. 

To account for the uncertainty in the feature matching and resulting uncertainty in the 

state estimate reflected in the state covariance would need to be made. Specifically, an 

explicit relationship would need to be made describing how the uniqueness filter criteria, 

which Veth applies to ensure only sufficiently distinct features are used, influences the 
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Mahalanobis distance for feature matching, Equation 2.1. Additionally, a probabilistic  

formulation for determining when feature pairs are declared based on the Mahalanobis 

distance and the resulting navigation state uncertainty would be required. Without the 

accounting for these uncertainty considerations in this processing, no rigorous and 

quantifiable level of integrity can be claimed.   

2.1.1.2 Simultaneous Localization and Mapping (SLAM) 

Another application that is gaining much attention in the navigation community 

deals with feature tracking and correspondence is SLAM. The concept of SLAM is to not 

rely on predefined maps or infrastructure, but to build the reference while simultaneously 

utilizing this generated information to correct for navigation errors [6].  

One of the key aspects in SLAM is the ability to associate real-time imaging data 

with data stored in the generated map. This process is of critical importance in SLAM 

algorithms, since false associations can cause errors in both the mapping and localization, 

thus leading to divergences. In [6][33] a feature set is generated using SIFT and the 

correspondence is performed using a nearest neighbor search. In the nearest neighbor 

search process, image features are compared to the n-dimensional database utilizing a 

variety of different search methods such as k-d tree searches [34] and Best-Bin-First [35] 

to find the best set of feature vectors. Although some ad-hoc screening techniques are 

usually applied to ensure that correct matching is achieved, such as simple ratio tests 

between the nearest and the second nearest match, there is nothing that accounts for 

mismatches from a sound statistical perspective that can be captured in state estimation 
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process.  This lack of accounting for correspondence uncertainty again leads to the 

inability to quantitatively characterize any type of integrity performance. 

2.1.1.3 RANSAC 

The use of RANdom Sample Consensus (RANSAC) has been successfully utilized 

on image processing and correspondence problems to reject outliers [36][37][38][39], in 

a sense, providing a certain level of protection against data outliers. The concept of 

RANSAC is to utilize small random sets of feature data to find an initial set of model 

parameters consistent with the data. Then the algorithm compares this model to the entire 

data set looking for a definable level of consistency. If this threshold is achieved, the 

algorithm then utilizes all of the consistent data points to provide an updated state 

estimate, while rejecting inconsistent data as outliers. The RANSAC approach relies on 

three parameters that must be specified by the user: (1) the error tolerance, which dictates 

whether a data point is compatible with the model, (2) the number of random subset to 

evaluate, and (3) a threshold that determines the minimum number of compatible data 

points used to imply the model has been found [36]. 

Many feature based architectures utilize RANSAC to screen data outliers; however 

it generally does not provide explicit integrity information. The exception is under very 

simplistic conditions, where the model is a simple function of the data, it is theoretically 

possible to utilize the error tolerance parameter to establish analytical bounds [36].  

However, this is rarely the case and no explicit relationship is possible, requiring 

tolerances be established through experimentation, thus losing any quantifiable integrity 

relationship.  
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2.1.2 Template Matching and Image Rendering Correspondence  

This section is a review of some of the various approaches used for image 

correspondence utilizing image rendering or template matching. Image rendering 

correspondence is a different paradigm from that of feature based approaches, where the 

correspondence occurs at the object level, either in 2-D or 3-D, versus individual features. 

There is a breadth of information, largely from the machine vision community, regarding 

image rendering correspondence utilizing a number of different techniques, as described 

in this section. Similarly to the feature based approaches, many of the correspondence 

approaches rely on distance metrics with somewhat arbitrary thresholds used for 

matching criteria.  

The template matching or image rendering image correspondence approach is based 

upon using either 2-D or 3-D object models or templates to perform object detection or 

pose state estimates of that object relative to the imaging sensor. In the case of image 

rendering, the relative state (position and/or orientation) is determined by perturbing the 

relative position state and generating rendered or pseudo-images based on a model of the 

known object and sensor models until a maximum correspondence is achieved. This 

process is described in Figure 5. Likewise with template matching, 2-D projections or 

pseudo-images of the object are generated at different poses using known sensor model 

parameters or captured using the actual sensor and stored in a database. Then object 

detection and or relative state estimation is performed by finding the best matching 

database image. This process often relies on some sort of image transformation process, 

such as edge detection, to convert the image to a more environmentally invariant form 
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prior to the correspondence process. The navigation estimation process is simply 

determining the state estimate based on the results of the image correspondence. In the 

simplest case, the relative navigation state estimate is the rendered pose that yields the 

best correspondence with the actual sensor image.  

 

Figure 5: Image Rendering Vision Navigation Processing Overview 

As indicated, there are several varieties of image correspondence techniques, each 

with their unique formation of a conformity or similarity metric. The subsequent section 

focuses on some of the most commonly used correspondence approaches, particularly for 

image processing. 

2.1.2.1 Sum Squared Difference 

Weaver [10] evaluated a sample of techniques for 2-D image correspondence using 

object rendering image matching. The first technique considered was the Sum-Squared 

Difference (SSD), in which the normalized grayscale sensor image (I) and the rendered 

normalized grayscale image using the model (N) were directly compared at the pixel 

level, across all n pixels, using 
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 (2.2) 

The general concept is by perturbing the model by its 6-DOF axes and comparing it 

to the image, a minimization of Equation 2.2 occurs at the best estimated pose of the 

object. To improve performance by eliminating aliasing effects, Weaver filtered the 

images through a Gaussian blur (mean = 0, σ = 1 pixel) to smooth the edges of the object 

prior to performing the SSD.  The results of this approach, evaluated in a simulated 

environment based on a KC-135 aircraft can be seen in Figure 6 and Figure 7.  

 

Figure 6: Sum-Squared Difference Example of Independent 6-DOF Perturbations [10] 

 

In Figure 6, SSD image correspondence between a sensor image and a series of 

rendered images is shown. The rendered images are generated by using the a priori 

model and perturbing the relative states, position and attitude one state at a time, for 

observability purposes. The concept demonstrates that a minimization is achieved near 

the nominal or true state. However, as can be seen in Figure 7, the global minimum 

becomes much less observable when two axes are perturbed simultaneously, in this case 



 

 

25 

the vertical position and pitch. This problem of observability is guaranteed to only 

become worse when more degrees-of-freedom are considered. Based on this fact, this 

research will focus solely on relative position state estimation aspects, assuming that 

attitude information can be accurately determined through other approaches (such as 

inertial navigation systems).    

 

Figure 7: Sum-Squared Difference with Simultaneous Vertical and Pitch Perturbations [10] 

2.1.2.2 Magnitude of Gradient 

Weaver [10] also evaluated the Magnitude of Gradient technique, in which the 

image and the model were preprocessed through a Prewitt Filter [40] to determine 

changes in image intensities between adjacent pixels. The purpose of this approach is to 

highlight the object edges or corners where large gradients are likely to occur. An 

example of this approach within a simulated environment is shown in Figure 8 andFigure 

9.  



 

 

26 

 

Figure 8: Magnitude of Gradient Example of Independent 6-DOF Perturbations [10] 

Like the Sum Squared Difference approach, this technique has merit. In fact, the 

minimization curves in Figure 8 show a steeper slope about the minimization, a highly 

desirable attribute when considering aspects of accuracy and uniqueness. However, this 

approach also shows similar susceptibility to observability problems when multiple 

degrees-of-freedom are considered, as seen in Figure 9, an issue that might be 

unavoidable under any vision based concept. 

Based on the results documented by Weaver, it is clear that he successfully 

demonstrated the feasibility of performing pose estimation using these image rendering, 

2-D image processing techniques.  

Weaver’s [10] work  utilizing image rendering did not include any relationship 

between the various minimization techniques to that of accuracy or more importantly for 

this research, that of integrity. However, we will see in Chapter 2.4 of this dissertation, 

that his approach has laid the ground work for utilizing these approaches to develop a 

rigorous integrity concept for image rendering vision navigation. 
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Figure 9: Magnitude of Gradient with Simultaneous Vertical and Pitch Perturbations [10] 

2.1.2.3 Minkowski Distance 

The Minkowski Distance [41][42] approach, also known as the Lp distance, defined 

by Equation 2.3, is a set of functions that provides a specific metric for distance between 

two points  or set of points (xi,yi), such as an image with N pixels. 

                  
 

 

   

 

   

 (2.3) 

There are a few commonly used versions of the Minkowski Distance. The Manhattan or 

City-Block distance refers to the L1 case, when p = 1, expressed as:   

                 

 

   

 (2.4) 

The case when p = 2 or L2 is simply the Euclidean Distance between two points. 
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 (2.5) 

Lastly, the case when p = ∞ is called the Chebyshev Distance, and is simply the max 

distance between the set of two points,  

            
     

        (2.6) 

The Minkowski Distance is a very simplistic matching routine and usually used in 

conjunction with another metric, such as the Hausdorff Distance (described in Section 

2.1.2.6). Like many of the discussed image correspondence approaches, on its own the 

Minkowski Distance has no metric to describe the proximity of the match or to account 

for any uncertainty. 

2.1.2.4 Eigenspace Matching 

As mentioned earlier, the process of image rendering image matching is sometimes 

approached in different domains, with the image being processed through some type of 

transformation. In [29] [43][44], the approach is based on transforming the images to 

eigenspace and comparing it to a set of training images for object detection and pose 

estimation.  

In [29][43], a series of training images are used to generate a database based on the 

object desired for identification and pose estimation. The training images consist of 

varying the object over a range of poses and taking snapshot images. Each of these 

images are then scanned in raster order to form a large matrix array Z, where each column 
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is a training image. The mean of all the training images, c, is then subtracted from each of 

the images, 

                       (2.7) 

The training image sample covariance matrix is then computed as 

         (2.8) 

This covariance matrix provides the series of eigenvalues λi and eigenvectors ei, where 

          (2.9) 

The input image is then processed in the same manner to generate the eigenvalues and 

eigenvectors. The pose estimate is calculated by finding the best fit in eigenspace, using a 

distance minimization processes such as SSD, L1-norm, or Mahalanobis distance, etc. 

Both approaches use some form of interpolation for estimating the pose between training 

images.   

2.1.2.5 Hough Transformation  

Another technique of image matching that involves the transformation of the 

imaging to a different domain, is that of localization using Hough transformations 

[44][45]. The Hough transformation was originally applied for line detection and 

improving edge-detection algorithms in the presence of noise and segment breaks [45]. 

However, it has since been expanded to a robust technique for detecting other shapes in 

an image, such circles and ellipses. 
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The basic concept of the Hough Transformation is to transform data points from the 

normal (x-y) Cartesian plane to the (ρ,θ) plane of the Hough domain. This transformation 

is governed by the following relationship,  

               (2.10) 

A simple example of this transformation is illustrated in Figure 10. As expected by 

Equation 2.10, each point in the x-y plane is subsequently represented as a sinusoidal-like 

line in the Hough plane, where a line can be identified as the intersection of the curves in 

the Hough plane. Under normal conditions, where noise is present and can affect this 

process, the identification of geometric patterns, such as lines, is performed by an 

accumulation of points, with local peaks representing the best estimate of these patterns.  

 

Figure 10: Hough Transformation Example [45] 

An example of image correspondence using this approach is presented in [45], in which a 

mobile robot is being localized by transforming range measurements to the Hough 

domain and comparing to a predetermined map, also being represented in the Hough 

domain. The correspondence problem is solved by restricting the search area to a 

threshold (δ), otherwise expressed as 
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                     (2.11) 

where (θM,ρM) represent the reference points based on the map and (θS,ρS) are the data 

points based on the sensor range measurements. The difference between the map and 

sensor data points provides information on the motion of the mobile robot. Due to the 

properties of the Hough transformation, the translational and rotation estimation 

processes can be decoupled, which is a convenient property. An example of this process 

is illustrated in Figure 11 for a mobile robot facing a corner. The solid line (a,b) on the 

left figure represents the map model and the dotted line (a’,b’) represents the data from 

the sensor, all in Cartesian space. The same data is shown in the right figure represented 

in the Hough domain where the local maxima, representing line segments, are shown.  

Here the map model is represented as circles and the sensor data is represented as crosses.  

Orientation and position estimates are illustrated by the deltas between the model and 

sensors, represented as such. 

 

Figure 11: 2-D Hough Localization Example [45] 

The approach of transforming image data to the Hough domain begins to mimic the 

feature based tracking and correspondence approaches described in Section 2.1.1. Where 

motion estimation and localization problems are solved using discrete point 



 

 

32 

representations of simple geometric shapes. In addition, this approach appears to use 

similar non-rigorous similarity metrics as part of the correspondence solution, the    

threshold being an example of this. There is little mention of the derivation and the 

characteristics this sort of threshold approach has on the statistical uncertainty in the state 

estimation process, a common issue encountered as part of image correspondence 

applications. 

2.1.2.6 Hausdorff Distance 

The Hausdorff Distance approach for image matching [41][46][47][48][49] relies 

on comparing two entire image sets, potentially of different sizes. To compute the 

Hausdorff Distance (HD), consider two data sets, X and Y, that represent two images  

                                 (2.12) 

where  

                                (2.12) 

d(x,y) is any variety of distance measure (e.g. Minkowski distance). 

The standard Hausdorff distance scheme calculates the measure or degree of 

similarity between two images, where one image might be an object template. For the 

case when detection is used, it effectively is the max-min distance of all the edge points 

between the template and the image. However, this approach does have some major 

drawbacks. First, since it requires computing a distance metric between every two points 

in the image pair, its execution comes at a high computational cost. Secondly, it is 
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susceptible to a single outlier in even only one of the image pairs. This can become 

problematic given that most image matching must deal with occlusion and noise. To 

address these issues, several variants of HD have been developed.  This includes Partial 

Hausdorff Distance (PHD), Hausdorff fraction, and several other variants. 

The Partial Hausdorff Distance was introduced in [50], 

           
  
                 (2.14) 

where only the K best points in A that match points in B are considered and the distance 

of points in B to A are no longer considered. The Hausdorff fraction is performed by 

determining the number of points in A that are within a defined distance (δ), to B: 

           (2.15) 

So suppose there are    points in A for which (2.15) is true, hence the ratio of    to the 

total number of points in A is considered the Hausdorff fraction, or  

          
   

   
 (2.16) 

One of the major drawbacks with the classical Hausdorff distance and other similar 

distance metrics approaches is that they usually rely on some sort of threshold to 

determine a match, thus leading to a sharp distinction between matched and unmatched 

objects. Additionally, there are no probabilistic attributes associated with them, thus 

preventing the use of prior knowledge and extracting uncertainty information from the 

process. Again, this lack of uncertainty in this aspect of the correspondence process fails 

to provide any information for determining navigation integrity. 
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2.1.2.7 Statistical Approaches 

All the previously described techniques for image correspondence have relied on 

various forms of distance functions to determine matches, none of which have 

incorporated any sort of statistical probabilities that could be used for integrity 

determination. The following section describes work that begins to lay the foundation for 

integrity by incorporating statistical estimation techniques into the image correspondence 

process.  

Wells [51] applies Maximum Likelihood (ML) and Maximum A-Posteriori (MAP) 

estimation concepts to object detection and pose estimation problem. In order to set the 

stage for these statistical approaches, some background on the ML and MAP techniques 

is warranted.  

The general solution for the ML approach is given by  

         
 
        (2.17) 

where        is the probability density function (pdf) of the observed data (d), given a 

fixed, but unknown parameter (x). Since the pdf,       , is viewed as a function of the 

unknown parameter, it is referred to as a likelihood function. Hence the ML solution is 

simply the estimate of x that maximizes the likelihood function. One of the key attributes 

of the maximum likelihood approach is the fact that the unknown parameter, x, is not a 

random variable, but rather an unknown parameter that influences the underlying pdf of 

the observed data. 

 The MAP approach on the other hand is based on the condition when the 
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unknown parameter (x) to be estimated is random. Hence the solution incorporates 

additional uncertainty associated with the prior probability of x itself. This is mechanized 

by utilizing Bayes law part of the maximization 

  

          
 
         

           

    
 (2.18) 

where now knowledge of the prior probabilities      and      are required due to the 

randomness of x. The name comes from the reference to        , referred to as the a 

posteriori pdf. This technique is often referred to as Bayesian inference, meaning we are 

gaining information on the probability distribution of the state (x), using a series of 

observations (d) and prior knowledge of the state itself. It should also be noted, that much 

like the ML approach, with MAP the likelihood function plays a central role in the 

process. 

To understand Wells use of these concepts for the object identification and pose 

challenge [51], consider the following condition described by a set of images (Y) and 

model (M) features:   

 

               

               

(2.19) 

Wells defines the variable, Γ, that maps the correspondence between these image 

and model features. Further, a probabilistic model is developed for these 

correspondences, which we will see, will act as the prior probability in the estimation 
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process. All image correspondences are assigned one of two levels of uniform 

probability, associated with either image points that map to model features or background 

clutter in the image  

        
                                                    

    
 

                                  
  (2.20) 

Wells makes the assumption that all image correspondences are independent and 

combines them using  the joint probability mass function, 

            

 

   

 (2.21) 

The prior probability for the pose (β) is developed assuming a normal density function,  

                (2.22) 

where        is defined as 

             
 
      

 
 
     

 
 
    

      (2.23) 

Here z represents the dimensionality of the pose vector and    is the covariance matrix 

of the pose prior. Wells notes that if little is known about the pose prior then it can be 

disregarded and a ML approach can be utilized, something that will be discussed later in 

this section. 

 The last building block is the probability models for the image features, 

conditioned upon the correspondences (Γ) and the object pose (  . Again, Wells takes the 
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approach of developing two distinct models for image features that map to background 

clutter and another for features that map to the model, as shown in Equations 2.24-2.26. 

For the background features another uniform distribution is used, where W is dependent 

upon the image pixel size, 

            
 

     
          (2.24) 

For image features that map to the model, similar to the priors, a normal distribution is 

utilized,  

                                       (2.25) 

where 

              
 
       

 
 
        

 

 
     

     (2.26) 

Once again, independence is assumed and yielding the following expression for the joint 

probability, 

                      

 

 (2.27) 

With this, all the pieces have been defined to complete the MAP estimation 

approach.  Using Bayesian inference, the probability density function for the 

correspondences (Γ) and the object pose (   conditioned upon the realized image features 

can be expressed as 
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 (2.28) 

Where the MAP estimator is defined as the correspondences (Γ) and the object pose (   

that maximizes this a posteriori probability distribution, expressed as 

            
 

          (2.29) 

Further, the solution to Equation 2.29 can be narrowed to just the pose estimate (   by 

integrating across the range of correspondences to obtain the marginal pdf,   

                   

 

 (2.30) 

Wells demonstrated these techniques in a laboratory environment for a single object 

detection and pose estimation problem. However, no clear conclusions are made as to the 

resulting performance or effectiveness [51].   

Following from Wells’ work, in [50][52][53] Olson uses a similar approach from 

the aspect of solving for self-localization, where the images are transformed into binary 

format or edge maps such that each pixel or feature is then either a 0 or 1. This yields two 

feature sets, the model features, M = {µ1,…,µm} and a set of image features, I={υ1,…,υn}. 

Although not explicitly required, it is assumed that exactly one instance of the model 

appears in the image. The model position within the image is described by the random 

variable t.  

Oslon [50][52][53] similarly formulated the likelihood function for t as the product 

of the distance probabilities, D1,…,Dm,  
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 (2.31) 

where the distances (D) are defined as the measure between each model pixel to the 

closest image pixel assuming the model position t, and         is the probability density 

function. Equation 2.31, is then put into logarithmic form to maintain model position 

ordering and improve computational efficiency:  

                  

 

   

 (2.32) 

A probability density function (pdf) of the form in Equation 2.33 is used for 

        as the matching criterion; however, Olson mentioned that any pdf can be used.  

            
      
   

    
         
         

 (2.33) 

This approach yields that for a particular model position (t), if the model feature 

lies within   of an image feature, it will result in a uniform distribution or constant 

probability. Otherwise a smaller, but still constant probability is assigned. The precise 

values of these constants are unimportant as long as     , with      and      

being generally used. The fact that this approach results in a two-valued pdf based on if 

the distance metric (  ) is within a threshold ( ), means that it essentially becomes 

equivalent to the Hausdorff approach of Equation 2.13 [50].  

Olson [50][52][53] continued by considering a normal distribution for this 

approach, thus replacing Equation 2.33 with the following pdf 
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      (2.34) 

where    is the standard deviation of the feature uncertainty. The constant term k1 is 

added to provide a lower bound on the natural log form, thus preventing            from 

approaching an arbitrary small number when outliers are encountered. Thus    and    are 

determined by the frequency of the existence of outliers. Olson made note of the fact that 

Equation 2.34 is not a true pdf since it does not integrate to unity. However, he also made 

the statement that this is unavoidable if we are to account for outliers when the distance 

Di becomes large and doesn’t affect the accuracy of these results in a significant way. 

The use of the normal distribution allows for varying levels of uncertainty in the 

image features or its position. Another important aspect of the Olson’s work is that he 

chose to base his maximum likelihood matching on summing about the model features 

versus the image features. Olson claimed this could avoid matching on noise or 

background features that are irrelevant to the object being tracked [52].   

Another benefit to this probabilistic approach is the ability to take advantage of 

prior probabilities [50][52]. In this case, Equation 2.32 can be expanded to the following, 

where ln p(t) is the prior probability of the model position: 

                         

 

   

 (2.35) 

The position of the model, t, that maximizes this expression or has the maximum 

likelihood, is chosen.  Olson utilized a search strategy that divided the pose space into 



 

 

41 

rectilinear cells, and then recursively searched and pruned these cells to locate the 

maximum likelihood peak. In order to improve upon the resolution of this approach, 

Olson presented an approach for achieving sub-pixel localization [54]. 

As expected, one of the major advantages to Olson’s approach is the ability to 

estimate the probability of failure. This is estimated by considering the ratio of the sum of 

the area around the peak which maximized Equation 2.35 and the sum of the remaining 

pose space.  

This process was evaluated in a simulated environment with a series of over 

100,000 trials [52]. The results, shown in Figure 12, demonstrate that the statistical 

predictions on the localization errors match extremely well with the predicted 

performance,  

 

Figure 12: Simulation Results for Maximum Likelihood Localization [50] 

In general, Well’s and Olson’s approach demonstrates the successful incorporation 

of statistical techniques, such as ML and MAP, to the challenge of object detection and 

relative pose estimation using a model based image correspondence techniques. 
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However, their research was focused exclusively on object detection and state estimation, 

not integrity. For the purposes of this research, limiting the scope to simply the best 

estimate will not suffice. As will be discussed in Chapter 2.4, this research proposes 

extending the approach of Wells and Olson, and use Bayesian inference to perform full 

pdf inference of the state. 

2.2 Image Navigation Integrity Monitoring for Feature Correspondence  

Larson [14] acknowledged this gap in research in the integrity aspects of feature-

based vision navigation by looking to the concept of GPS RAIM [32] and extending it to 

vision systems. Specifically, Larson looks at the impact of a failure to correctly map a 

feature to the correct image pixel and how a failure of this kind can affect the navigation 

state in the position domain. This appears to be the first set of research to address the 

integrity aspects of vision navigation, specifically related to failure in the feature 

correspondence process. 

 To further illustrate this type of failure and its relationship to integrity, consider 

Figure 13. This figure show the probability that the magnitude of test statics (referred to 

as the parity vector) exceeds the detection threshold under both fault-free and biased 

conditions, notated as H0 and H1 respectively. The real area of concern in this scenario is 

a case where an undetected bias exists, but the magnitude of the parity vector is still 

determined to be below the threshold. The probability of this condition is represented as 

the red shaded area. The other aspect of this problem is a condition where no bias exist, 

fault-free, however the magnitude of the parity vector is above the threshold, a condition 

that would lead to a false-alarm. The probability of this condition is represented as the 
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blue shaded area. Both scenarios are of critical importance, setting the balance between 

integrity and continuity of the system. 

Similar to the GPS RAIM approach, Larson developed an approach that based on 

the specific geometry of the system, would determine the largest possible horizontal error 

given the existence of a single bias in one of the pixel location measurements. Larson 

used the term “slope” to describe the linear approximation of the relationship between the 

bias value and the resulting horizontal error. 

 

Figure 13: Fault Detection Overview under Fault-Free and Biased Conditions [14] 

 

Figure 14 is an example of this approach based on simulated data. The plot on the left 

represents the image plane with four features being indentified and tracked. Figure 14 

shows the resulting relationships between the parity vector test statistic and the resulting 

horizontal error. 
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Figure 14: Example of "Slope" Method for Feature Based Integrity Monitoring [14] 

The results Larson showed indicated that the extension of the GPS RAIM concepts 

can be made to that of feature based pixel correspondence errors. However, the specific 

definition of a faulted-condition, that being a feature pixel error, is only one aspect of the 

image analysis processing and doesn’t address the issue of image or feature 

correspondence and the resulting pose uncertainty. 

2.3 Probability Density Function Estimation 

Given that the goal of this research is to develop an integrity methodology for 

vision relative navigation. This research revolves around the need for rigorous pdf 

estimation. Therefore, it is appropriate to discuss some existing techniques for pdf 

estimation. The basic concept of pdf estimation is based upon estimating the governing 

probability distribution based on a set of realized samples from that distribution. A pdf 

estimator can be broken into two classical categories — parametric and non-parametric. 

The defining distinction is that parametric approaches rely on a predefined structural 

form for the pdf, such as Gaussian or Poisson, turning the challenge into solving for the 



 

 

45 

associated parameters that define those distributions. In contrast, non-parametric 

approaches make no presumption on the functional form and allows the data to drive the 

result. 

Given that there is no current basis to assume structural form of the pdf for vision 

navigation application, this research focuses on non-parametric estimation techniques. If 

execution of the proposed research yields results that trend towards more classically 

known probability distributions, this choice can be revisited and parametric estimation 

techniques could be explored, but this is not expected. The remaining sections are a brief 

overview of some of the most commonly used non-parametric pdf estimation techniques, 

along with an analysis of the advantages and disadvantages of such approaches. 

2.3.1.1 Histogram Method 

The oldest and most commonly used approach for pdf estimation is the histogram 

method. The histogram method is based on the simple approach of binning observation 

data, Xi, into either uniformly or varying bin widths and normalizing to ensure unity area. 

These approaches are defined mathematically for uniform bin widths by  

       
 

  
                             (2.36) 

where h is the bin width and n is the number of observations [55]. For varying bin widths, 

this takes the form of 

       
 

 
 
                           

  
  (2.37) 
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where hx is now the varying bin width containing x. 

 The histogram method is a straight forward approach for pdf estimation, and very 

practical for early presentation and exploration efforts. However, the histogram method 

does have some drawbacks. For example, the histogram can be sensitive to the selection 

of the origin that defines the binning. As a result of this effect, masking of multi-modal 

distributions can occur. Additionally, by its nature the histogram has discontinuities 

between bins, thus causing issues when pdf derivatives and other higher order 

mathematical processing is required.  Figure 15 is an example implementation of the 

histogram methodology, showing both the true pdf, from which 1000 samples are drawn, 

and the resulting estimated pdf utilizing 100 bins.  

 

Figure 15: Histogram pdf Estimation Example 
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 The results demonstrate that indeed the estimate pdf mimics the trend of the 

underlying distribution, although some of the fundamental issues associated with the 

histogram method are also present, such as discontinuities between bins. 

2.3.1.2 Kernel Method 

Another approach to pdf estimation is the kernel method, which relies on a 

predefined kernel function that acts as a weighting function in the construction of the pdf 

[55]. The Kernel method is really a class of techniques taking on the following functional 

form   

       
 

  
   

    
 

 

 

   

 (2.38) 

where xi are the n independent samples drawn from the distribution, h is the window 

width, also known as the smoothing parameter, and K(x) is a kernel or weighting function 

satisfying the following condition 

        

 

  

   (2.39) 

One common implementation referred to as the naïve method, uses the weighting 

function defined as 

       
   
 
    
        
         

 (2.40) 

The normal distribution is also often used, and due to its smoothness it yields very nice 

differentiability properties. 
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Figure 16: Kernel pdf Estimation Example 

Figure 16 is an example implementation of the kernel methodology using two 

different kernels, a naïve and normal kernel.  Additionally, the figure illustrates the 

smoothing effect that the window parameter, h, has on the resulting estimation using a 

normal kernel. 

2.3.1.3 Nearest Neighbor Method 

The nearest neighbor or K-nearest neighbor (KNN) method is based on an adaptive 

smoothing about the “local” density of the data [55]. A simple derivation of this approach 

can be developed by considering the characteristics of a given a sample size of n for a 

specific pdf f(x). Over an interval of [x - r, x + r], one would expect approximately 

2·r·n·f(x) samples to fall within that interval, for all r > 0. Now consider the distance, 

dn(x), between t and all the samples sorted in ascending order,    

                       (2.41) 
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By definition (k – 1) observations would fall within the interval of [t – dk(x), t + dk(x)], 

and using the above approximation yields  

                    (2.42) 

and solving for       

       
     

       
 (2.43) 

 

 

Figure 17: KNN pdf Estimation Example 

Figure 17 is an example implementation of the KNN methodology and shows the 

smoothing effect that k has on the resulting estimation. 
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2.4 Summary 

 This chapter explored some of the existing research related to vision navigation in 

order to highlight the current state-of-the-art in this area. It can be observed that the trade-

space for image processing is vast, and although many approaches to image and vision 

navigation have been explored, with the exception of Larson's work, the research findings 

show the lack of emphasis on rigorous and quantifiable robustness, in terms of integrity. 

A critical gap that this research is intended, in small part, to address.  

 Additionally, some background  information related to pdf estimation was 

provided.  Being that this is an estimation problem being explored in this research, it 

should come as no surprise that  that these techniques are an important aspect in much of 

the work presented in this dissertation.  

 The following chapters captures the core innovations for this research and is 

broken out into the two main techniques previously mentioned, the development of a 

discrete integrity monitor, followed by the determination of protection level confidence 

bounds. 
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3 Vision-Aided Integrity Monitor 

The concept of integrity, particularly for navigation systems, usually assumes 

unsafe hazards can occur with unacceptably high probability any time an undetected 

navigation error exceeds some alert limit. Under some applications, such as formation 

flight or aerial refueling, there are uniquely defined areas that are considered unsafe. In 

these cases, these unsafe conditions or relative position areas are not direction 

independent, but rather in the direction of the other aircraft. This fact leads to an 

interesting conceptual question of whether integrity can be provided by narrowly limiting 

the probability the relative state is not in an unsafe condition (as opposed to the error 

exceeding a specified bound).  Consider Figure 24, which demonstrates the nominal 

aerial refueling envelope and contrasts that with an area considered unsafe, being the area 

beyond the Airframe Safety Boundary. Taking advantage of the fact that the refueling 

operation can be broken up into two distinct conditions, (1) the relative navigation system 

estimates the refueling aircraft to be in the refueling envelope and that is in fact the case; 

or (2) the relative navigation state indicates the refueling aircraft to be in the refueling 

envelope when in actuality the refueling aircraft has breached the safety boundary. From 

an integrity perspective, the only condition of concern is (2), the case where the 

navigation system provides hazardously misleading information (HMI). This proposed 

research will answers the following question: Can the concept of integrity be defined in 

terms of these distinct conditions, by developing a discrete detection scheme to determine 

which condition holds true? 
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To illustrate this concept, consider Figure 18 which shows a pdf of the image 

correspondence between the real image and the rendered image, using the navigation 

estimate, for both safe and unsafe conditions. A notional detection rule, based upon the 

image correspondence is also illustrated. The shaded areas represent the probability of 

False Alarm and the probability of Mis-Detection (PMD), two key performance metrics 

associated with a detection scheme such as this. The integrity risk associated with such an 

approach is equivalent to PMD, which is the probability that the detection scheme 

indicates a safe condition, but in fact the true relative state is in violation of the safety 

boundary. 

 

Figure 18: Detection Rule Concept for Undeclared Safety Boundary Violation 

 

The research includes an exhaustive simulation to develop the associated pdf’s for 

each condition. This can be achieved by computing the image correspondence from a 
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proper sampling of all of the possible relative state conditions within the scope of this 

aerial refueling scenario. Subsequently, pdf estimation techniques, as described in 

Section 2.3, will be applied to develop the associated pdf for each condition. Once this is 

achieved, classical detection schemes can then be applied to determine a detection rule 

based on the image correspondence.   

Several detection schemes are considered for this research, to include Bayesian, 

Minimax, and Neyman-Pearson [56]. The research in this area is not only include the 

derivation of the associate detection scheme, but also evaluate predicted performance 

metrics using methods such as Receiver Operating Curves (ROC). These metrics are key 

to showing feasibility of this approach to provide an associated relative position integrity 

using image rendering image techniques. The following sections are descriptions of some 

of the proposed detection schemes to be explored.   

3.2.1 Bayesian Detection 

To understand the Bayesian detection scheme let H0 represents the safe condition 

and H1 the undetected safety boundary violation. Ci,j are the associated cost parameters, 

which are essentially scalar weights for the cost of guessing Hi when Hj is true. Consider 

the expression for risk (R), associated with these cost parameters, defined as [56][57]  

                                  

  

  (3.1) 

which can be further expressed mathematically as 
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       (3.2) 

It should be noted that           is the only term affected by the decision rule. Let Γ be 

defined as the entire state space of   . Further, let Γ0 be the set of relative states,   , that 

leads to a selection of the H0 condition, and likewise a set  Γ1 that leads to a selection of 

the H1 condition, such that the entire state space Γ is categorized as Γ1 or  Γ0. The risk 

expression can then be expanded to  

 

              

  

                

  

   

             

  

                

  

    

(3.3) 

Since the union of Γ0 and Γ1 is equivalent to the entire state space, and using the property 

that the integral of any pdf across the state space equals to 1, results in the following 

equality for any pdf 

       

  

     

  

 (3.4) 

Equation 3.4 can be rewritten as 
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(3.5) 

Grouping terms and defining all integral terms as       then yields 

                       

  

    (3.6) 

To minimize R averaged over all   , we need only to minimize I(    for each   . However, 

the only choice is whether or not each    is in Γ0. Therefore, we can define a set rule such 

that for a given     Γ0 if and only if I(    < 0. This yields a specific set definition for Γ0 

that minimizes the overall risk, R, defined by 

                                                (3.7) 

This expression for the definition of the H0 condition can now be simplified into the 

inequality expression 

                                      (3.8) 

Finally, solving this expression in terms of the standard Bayesian Likelihood Ratio Test 

(LRT), Λ(x), is described in Equation 3.9 [56][57] 

       
     

     
  
  
 
  

 
       
       

 
  
  
    (3.9) 
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where p0(x) and p1(x) are the probability density functions for the corresponding H0 and 

H1 hypothesis. In this case H0 represents the safe condition and H1 the undetected safety 

boundary violation. Ci,j are the associated cost parameters, which are essentially scalar 

weights for the cost of guessing Hi when Hj is true. The prior probabilities (P0, P1) 

represent the a priori probabilities, if known, associated with each condition. The testing 

parameter in this case, x, is chosen to be the image correspondence value between the 

model and the actual image.  

3.2.2 Minimax Detection 

A minimax detection rule follows the same basic scheme as Bayes, the difference 

being that it is based on no knowledge of the prior probability (P0) for the H0 condition. 

The minimax rule minimizes, over all decision rules    , the maximum of the conditional 

risks,       and      , Equation 3.10 [56][57]. In effect, this minimizes the Risk (R) 

assuming the worst case P0. 

                      (3.10) 

This expression can be further understood by expressing the risk as a function of P0 

                             (3.11) 

Equation 3.11 is simply an affine function of P0. Consider for each prior P0 letting     be 

a Bayes decision rule for that prior, and defining  

                 (3.12) 
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Then the minimax rule is simply the Bayes rule for the prior P0 that maximizes      . 

This concept is illustrated in Figure 19, where    is the minimax decision rule. 

 

Figure 19: Minimax Detection Rule Illustration 

3.2.3 Neyman-Pearson Detection 

Another detection approach often used is the Neyman-Pearson (NP) hypothesis test 

[56][57]. The NP approach is based upon a constrained optimization problem, 

specifically designed to develop a decision rule,    , that optimizes the detection rate 

(PD) while constrained by a maximum rate of false alarm ( ): 

                 
 

                        (3.13) 

It is also worth noting and easily observed in Equation 3.13, that the NP approach does 

not rely upon a cost structure that the Bayes and minimax utilize.  

The NP decision rule can be developed both analytically and graphically. One 

solution method for the analytic method uses a Lagrange multiplier to solve the 

0 1
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constrained optimization problem. However, instead of applying the Lagranian 

optimization constraint directly to Equation 3.13, which is a maximization problem, the 

expression is transformed into a minimization problem.  This is achieved using the 

known relationship between detection and Missed-Detection (PMD), PD = 1-PMD. Using 

this and applying the Lagrangian ( ), Equation 3.13 becomes  

                 
 
                     (3.14) 

 

Figure 20: Graphical Neyman-Pearson Detection Rule Example 

 

As indicated in the preceding sections, this research is based on defining a vision-

aided integrity monitor in terms of detecting when the system navigation state (x) is 

within a defined operating region, defined as 
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                          , 
(3.15) 

where XOR defines the set of states within the operating region, versus being within the 

alert region state space (XAR), which will defined as 

 

 

                        
(3.16) 

 There are four distinct conditions the integrity monitor can result in, rejection 

(PR), missed-detection (PMD), detection (PD), and false-alarm PFA). Figure 21 illustrates 

these four conditions based on the navigation estimate and the actual state of the system 

or truth. The performance of this type of binary (H0/H1) detection scheme can be 

characterized using just two of these metrics, detection and false-alarm rates, which will 

be the two primary performance metrics for this research. PD is the primary metric 

measuring navigation integrity, describing the probability that the monitor successfully 

detects the condition when ARXx .  

 

Figure 21: Integrity monitor detection trade space 

 Bayesian, Minimax, and Neyman-Pearson (NP ) are a few of the detection 

schemes available to solve this type of binary detection problem[56]. These detection 

schemes rely on the knowledge of the underlying statistics of the H0 and H1 condition, 

often characterized in terms of the probability density functions (pdf). The main 

PR PMD

PFA PD

ORXx ARXx
Truth

Hypothesis

ORXxH :0

ARXxH :1
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difference between these approaches is the resulting detection rule value (δ). Once δ has 

been established, the resulting theoretical performance of the detector are computed by 

integrating the underlying pdf's of the H0 and H1 conditions, (PH0) and (PH1) respectively.  

The probability of detection (PD) is computed as  

 

 

       

 

 

      
(3.17) 

The integrity performance of the monitor can also be described in terms of integrity risk 

or probability of missed detection (PMD), which is computed as  

 

 

             

 

  

      
(3.18) 

 

Similarly, the probability of false-alarm (PFA) is computed as 

 

 

             
 

 

 
(3.19) 

 

This is represented graphically in Figure 22. 

 The pdf's represent the statistical distributions of image correspondence value for 

the respective H0/H1 condition. The general detection rule premise is such that for a 

given sensor image, the underlying pdf for the "best" image correspondence with the 

rendered reference set is sufficiently distinct when the sensor image is in an H0 condition 

versus H1. 
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Figure 22: Graphical illustration of detection performance 

 The characteristics of the H0/H1 pdf's that dictate the monitor performance are 

dependent on many factors, including the fidelity and accuracy of the world model, the 

general observability of the image rendering process,  and the image correspondence 

approach for the specific application. For this research two image correspondence 

techniques were utilized to evaluate the overall integrity monitor approach. 

 The first image correspondence technique evaluated is a simple binary silhouette 

(SIL). In this approach, both the sensor image IS(x) and reference image set IR(x ) are 

converted to a silhouette using pre-defined thresholds to first convert the RGB images to 

grayscale then subsequently to a binary image. The image correspondence function 

computes the percentage of overlap between the silhouettes using the following ratio 

expression: 

                 
               

               
 (3.20) 
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where IS_SIL and IR_SIL represent the set of silhouette pixels from the sensor and rendered 

images respectively. The resulting image correspondence is based on the ratio of the 

cardinality of these sets. The navigation state estimate (x) that yields the maximum image 

correspondence value from the set of rendered reference images or template database is 

considered the most likely for that particular image sensor (IS), 

            
 
                            (3.21) 

 

 The second image correspondence utilizes edge features for the image 

correspondence process, which was previously demonstrated to provide a means for 

navigation estimation[10] [15]. Under this approach, magnitude of gradient (GRD) 

processing is used, in which the sensor image and the rendered reference images are 

preprocessed through a Prewitt filter [40] to determine changes in image intensities 

between adjacent pixels.  This process computes the components of the gradient, Gx and 

Gy.  The gradient magnitude is computed by RSS of the x-y components and normalized, 

resulting in an edge detection. A Gaussian blur filter [58][59], is then applied to the 

output of the edge detection. The normalized Gaussian blur filter array, h(x,y), is 

constructed as described by 

               
  
    
      

 

    
(3.22) 

 

where xpix and ypix are the corresponding pixel coordinates, and σ is the associated 

standard deviation of the Gaussian distribution [60]. The application of the Gaussian 

blurring compensates for the spatial discrepancies between the discrete reference set or 
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template database and the sensor image. Finally, the resulting feature images, including 

both the reference image (IR_GRD) and the sensor image (IS_GRD), are processed through a 

sum squared difference (SSD) image correspondence, described by 

 

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n

i

GRDRGRDSRS ii
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2
__ )(  (3.23) 

where n is the number of image pixels. The resulting pdf's are based on the best image 

correspondence with the RE reference set, which is the minimum for the GRD 

processing. 

             
 
                             (3.24) 

 

 These image correspondences build the basis of the detection metric, utilizing 

both the sensor image (IS) and the rendered reference set (IR), which is spatially 

distributed across the operating region, illustrated by Figure 23. This illustrated example 

shows instances of both a H0 and H1 sensor image (blue and red, respectively). The 

underlying H0/H1 pdf's for establishing the detection threshold are determined by 

sampling sensor images from XOR and XAR and computing the image correspondence 

against IR. This can be done through a combination of high fidelity simulation and/or test 

data. The overall performance of the integrity monitor will be dictated by these 

underlying distributions. The following sections show the results of this integrity  

monitor approach for an aerial refueling application. 
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Figure 23: Simplified example of rendered reference set (IR) illustrating  

image correspondence process for integrity monitoring 

3.3 Simulation Evaluation 

 To explore the performance of the proposed integrity monitor approach, an aerial 

refueling (AR) application was modeled within a simulation environment. The AR 

operation lends itself well to the construct of the proposed integrity monitor and is 

developed to show that the system (refueling aircraft) is in the Refueling Envelope (RE), 

and has not violated the alert limit, which in the AR case is the Safety Boundary (SB). In 

this operational case, H0 is defined as the condition when the integrity monitor 

determines the refueling aircraft is in the refueling envelope (RE), and H1 as the case 

when the integrity monitor determines the refueling aircraft to be within the SB. A 

validity region is also defined in order to bound the problem. in which it is assumed that 

the refueling aircraft is always within, under both H0 and H1 conditions, as shown in 

Figure 24. 

Operational Region Boundary

Alert Region Boundary
Rendered Images (IR)
Sensor Image (IS)
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Figure 24: Integrity regions of interests for Aerial Refueling (AR) application 

 

 To determine the underlying H0/H1 distributions, a set of reference images 

uniformly sampled from the RE was rendered using the associated tanker and camera 

models. This rendered image set is used as the common basis for performing the image 

correspondence with the actual sensor image. 
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Figure 25: Illustrated example of a rendered H0 image set for the Refueling Envelope (RE) used as the 
correspondence basis for the integrity detection metric 

 

 The baseline RE reference set utilized for this research was developed using 504 

rendered images distributed in a spherically uniform manner across the entire RE volume. 

Then two random sets of simulated sensor images were generated and drawn from both 

RE and SB regions. It is assumed that the refueling aircraft and corresponding sensor 

images are within the validity region in order to bound the simulation. This bounding 

assumption is an acceptable constraint, given that the system most likely had to pass 

several operational checks to ensure the refueling aircraft is in the general region of the 

RE as defined by the validity region. In order to get detailed statistical representation of 

the pdf's, particularly at the tails of the distribution, both RE and SB image sets included 

over 100,000 simulated sensor images, representing true states of the refueling aircraft. 

The simulation environment for this analysis utilizes the same refueling tanker model for 

the sensor images and the RE reference set, which eliminates the effects of modeling 
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errors. Additionally, variations in the attitude are currently not considered. The resulting 

pdf's for H0 (blue) and H1 (red) conditions are shown in Figure 26 and shows generally 

good distinction between the H0 and H1 hypothesis, which is a necessary condition to 

achieve good detection performance. Several techniques were evaluated for determining 

the pdf including histogram, nearest neighbor, and kernel with a Gaussian weighting 

function [55]. These underlying H0 and H1 distributions will be used as the basis for 

designing the detection thresholds, based on the image correspondence of the sensor 

image with the RE reference set. These results assume uniform prior distributions across 

the RE and SB regions; however, it would be relatively straightforward to incorporate 

non-uniform prior information, based on a particular application, as available. 

 Detection schemes are often characterized using Receiver Operating 

Characteristics or ROC curves [56][57], which illustrate the detection monitor trade-off 

between probability of detection and probability of false-alarm. The predicted detection 

performance for this AR application is a function of these underlying H0/H1 pdf's, and 

this performance is captured in the ROC curves shown in Figure 27. The ROC curves in 

Figure 27 demonstrates that 10
-3

 level integrity monitor detection performance (PD) is 

realizable for both SIL and GRD image correspondence approaches, while still 

maintaining a reasonable probability of false-alarm (PFA) of less than 0.05 (5%). The SIL 

approach demonstrates slightly better performance than GRD under the chosen image 

resolution and RE reference set density. 
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Figure 26: Underlying image correspondence distribution for H0 (Blue) and H1 (Red) conditions 

 

Normally, theoretical ROC curves would extend through the whole range of values [0,1] 

for both Pd and PFA, however this assumes unbounded pdf's. Doing so would require an 

infinite amount of simulation cases and is obviously not practical for a simulation 

evaluation to gain statistics necessary to extend the pdf's near the entire theoretical 

ranges. Overbounding of the pdf tails [19] could be performed to extrapolate and extend 



 

 

69 

the tails of H0/H1 pdf's to determine the integrity detection performance beyond the 

current ranges, but this was not performed as part of this research. 

 

Figure 27: Predicted integrity detection performance for both SIL and GRD  

image correspondence techniques 

 

 In most applications, conditions exist that are outside of the nominally defined 

operational envelope, but yet are not significant enough deviations to be considered 

safety risks that require alerts and action.  Such a case exists for the refueling operation 

under consideration in this research, where there exists a region outside of the RE, but not 

in the SB, which we will refer to as the operational limit volume (OLV). The current 

definitions of H0 and H1 for the image-aided integrity monitor approaches developed 

above only consider conditions within the RE or the SB volume, and not within the OLV 
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volume. OLV conditions were omitted, since they technically aren't considered a safety 

or integrity risk. However, it is possible under certain implementations and operational 

considerations that integrity monitoring coverage is desired under these OLV conditions. 

 Using the same analysis process as the original evaluation, an updated simulation 

was performed, this time considering all points within the validity region, including the 

OLV points. To construct a detection scheme under this new paradigm, the OLV 

conditions must be either mapped to existing H0 or H1 hypothesis, or a new hypothesis 

must be defined, possibly creating a M-ary hypothesis scenario. The approach taken for 

this research was to consider OLV conditions as a safety risk, which is a conservative 

approach, rather than defining a new hypotheses. The resulting image correspondence 

distributions is shown in Figure 28 - Figure 31. Figure 28 and Figure 30 show the 

difference the OLV points have on the underlying pdf distributions. As expected, when 

the OLV points are excluded, the pdf's track the original distributions quite well. The 

impact of including sensor locations from the OLV is clear from these figures, yielding a 

much bigger overlap between the H0/H1 conditions.  

 Much like the pdf's, the ROC curves align with the previous results quite well 

when the OLV conditions are omitted, but take a order of magnitude integrity 

performance hit when OLV are captured under the existing H0/H1 definition and 

detection thresholds. Even under this conservative assumption, the overall monitor 

performance still yields a 0.96 (96%) detection rate at a 0.05 (5%) false-alarm rate, as 

illustrated by the ROC curves shown in Figure 30 and Figure 31. It is likely that these 
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results can be significantly improved by redefining the terms of the H0 and H1 conditions 

or defining a H2 condition specifically for the OLV region. 

 

Figure 28: Simulation Testing Results Account for OLV States (pdf - SIL) 

 

Figure 29: Simulation Testing Results Account for OLV States (ROC - SIL) 
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Figure 30: Simulation Testing Results Account for OLV States (pdf - GRD) 

 

 

 

Figure 31: Simulation Testing Results Account for OLV States (ROC - GRD) 
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3.4  Sensitivity Analysis 

 In addition to the baseline integrity monitor results, various sensitivity studies 

were performed to evaluate the integrity monitor performance impacts of environmental 

and hardware considerations. These sensitivity evaluations focused on common vision-

based considerations such as sensor distortions and lighting conditions, and monitor 

design choices such as pixel resolution and reference image density. The sensitivity 

aspects that were evaluated under this research including (1) number of reference images, 

(2) the effects of image distortion, and (3) pixel resolution. 

3.4.1 Reference Set Density 

 Figure 33 shows how the density of the rendered reference set affects the 

underlying H0/H1 distribution. A reference set of 504 RE images was used as the 

baseline for this research, but given no hard integrity requirement to aim for, this value 

was somewhat of an arbitrary choice between performance and processing speed. To 

explore this trade space, a 50% increase and decrease in the number of reference images 

was evaluated (288 and 729 images, respectively). As expected, if the number of 

reference images used is increased, hence higher density reference image set, the 

distinction between H0 and H1 becomes improved, which would lead to improved 

integrity detection performance. Subsequently, when the number of reference images is 

reduced, a small but noticeable increase in the overlap is realized. The results of this 

analysis also showed that the result is mainly on the H0 pdf and has somewhat minimal 

effect on the H1 pdf. This tradeoff between performance and number of reference 

images, and associated processing cost, is potentially beneficial, allowing a designer to 



 

 

74 

trade-off processing power for performance as necessary for that particular application 

and the associated integrity monitor performance requirements. 

 

Figure 32: Image Density Sensitivity Analysis 

 

3.4.2 Image Distortion 

 Since the initial evaluation assumed perfect sensor data, the sensitivity analysis 

evaluated the effect of lens distortion on the H0/H1 pdf's.  The applied distortions were 

based on radial and tangential error models [61][62]. The radial distortion, as the name 

implies, distorts image pixel points (ui,vi) radially in the image plane and is expressed as 
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where k1, k2,… are the radial error model coefficients dictating the extent of the 

distortion, and  
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 For most applications only the first one or two coefficients are utilized for the 

radial distortion model. The tangential error model accounts for situations where the 

centers of curvature of the lens are not strictly collinear, resulting in a distortion that has 

both radial and tangential components.  The tangential error model is expressed as 
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where p1 and  p2 are the tangential error model coefficients. Combining these two error 

effects, we arrive at the distortion model applied for this analysis. 
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 Many tools and techniques exist for calibrating out many of these distortions 

effects; however, residual errors still occur. Therefore, this analysis evaluated the impact 

of these residual effects. Recent flight tests evaluating vision-aided systems for aerial 

refueling were conducted [15], where the distortion parameters were estimated, including 

an estimate in the calibration uncertainty and possible residual distortion errors. These 

calibration uncertainty parameters were used to apply distortion effects to the simulated 

sensor images (IS) and applied such that they represented a 95% certainty of the residual 

error to represent an outer envelope case for this type of sensor. As seen in Figure 33, the 
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impact on the H0/H1 pdf's are very minimal, and the results demonstrate a potential 

robustness to this common type of sensor effect. 

 

Figure 33: Image Distortion Sensitivity Analysis 

 

3.4.3 Pixel Resolution 

 Since this research is mainly a feasibility analysis where post-processing is 

acceptable, processing cost was an inexpensive commodity.  However, one of the big 

trade-offs that is often encountered when using vision systems, particularly when 

considering real-time applications, is image resolution and often the associated system 

performance versus processing costs. To consider this aspect, a sensitivity analysis was 

performed to evaluate how image resolution, which had a strong relationship to the 

processing time for this analysis, would affect the performance of the proposed integrity 

monitor. To this end, 8 different pixel resolutions were evaluated, and the resulting 

H0/H1 pdfs are shown in Figure 34. The results show a surprising robustness to pixel 

resolution, indicating only marginal performance impacts down to extremely limited 
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pixel densities. An interesting phenomena is that reducing pixel density actually shifts the 

distributions to higher image correspondence values. This phenomena is a result of the 

decrease in pixel resolution causing a spatial lowpass filter type effect on the images, 

allowing slightly varying images under higher resolution. This robustness, particularly 

the results shown in Figure 34, indicates a large trade space for reducing the processing 

burden for a real-time implementation of this integrity monitor concept. 

 

Figure 34: Image Pixel Resolution Sensitivity Analysis 

3.5 Ratio Test Integrity Test  

 The initial integrity monitor results discussed thus far only utilized reference 

images from the operational region, RE. However,  it is also possible to utilize a 

reference image set created with rendered images from the alert region, SB, by including 

an additional image correspondence process between the sensor image and rendered SB 

reference set. This is done to create a ratio test statistic as the detection metric. In this 

case Equations (16) and (17) express the ratio of the highest image correspondence 
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between the RE and SB reference sets. This approach is very analogous to the use of ratio 

tests for integer fixing [63]. 

 

Figure 35: Illustrated example of the rendered H1 image set of the Safety Boundary (SB) region used as 
the correspondence basis for the ratio test integrity detection metric 

 

The expression for this type of ratio test, utilizing the silhouette image  correspondence 

techniques, is expressed as   
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and the corresponding gradient threshold ratio expression is 
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 Figure 36 show the results of this approach. The top figures in these plots are 

identical to the distributions using solely the RE reference set, shown in Figure 26. The 

SB pdf (middle figure) shows the results from utilizing the new SB reference set of over 

1100 data points and corresponding rendered images, distributed uniformly about the SB 

area. The SB set distribution has the opposite trend, in this case when the sensor is in the 

RE it has lower correspondence with the SB reference set,  as compared to the RE set. It 

also easily observed that when using the SB reference set, there is less distinction 

between the underlying H0/H1 pdf's. This is mainly attributed to the density discrepancy 

of the reference sets, which is a result of the much larger SB volume. The SB reference 

set was limited for processing time considerations. However, Figure 37 was shown that 

when the ratio detection threshold is utilized, an improved detection performance is 

realized.  

 The resulting ROC detection performance of the ratio threshold approach is 

shown in Figure 38. As with the single RE reference set, the SIL image correspondence 

approach yields the best H1 detection performance, resulting in the best integrity 

protection. In fact, the ratio threshold yields an order of magnitude detection performance 

improvement over the performance using only an RE reference set. The GRD ratio 

detection performance also yields improved performance, and is comparable to the SIL 

image correspondence approach solely with RE reference set. The SIL ratio test yielded 

on the order of 10
-4

 to 10
-5

 level integrity detection performance. In fact, the SIL ratio 

approach was able to successfully detect all ~100,000 H1 conditions evaluated while 

maintaining a probability of false alarm of just over 5x10
-3

. 
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Figure 36: Underlying image correspondence distribution for (Top) H0 (Blue) and H1 (Red) using RE 
reference set, (Mid) using SB reference set, (Bottom) using ratio test 
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Figure 37: Predicted integrity detection performance for both SIL and GRD image correspondence 
techniques using a ratio of RE and SB reference sets 

 

 

Figure 38: Predicted integrity detection performance for SIL image correspondence  

techniques using a ratio of RE and SB reference sets 
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3.6 Summary  

 This chapter investigated the feasibility of a vision-aided integrity monitor for 

precision relative navigation systems. The research posed the relative navigation integrity 

problem within the context of an aerial refueling application, and using image rendering, 

where an imaging sensor and high fidelity 3-D model is utilized. The approach was 

inspired by Weaver [10], in which image rendering was shown as a feasible approach for 

navigation estimation. This research expanded upon some of Weavers techniques, which 

were subsequently demonstrated in flight test [15], to show that image rendering 

processing can be utilized for integrity purposes. This chapter showed in fact 10
-3

 to 10
-5

 

level of integrity monitoring is attainable for aerial refueling and formation flight 

applications, using rendering image correspondence. Having this level of independent 

monitoring could provide tremendous relief to a GPS based precision relative navigation 

system from a system safety and certification perspective.  The research demonstrated the 

proposed integrity monitor was robust against several degrading imaging effects, 

including lens distortions,  and  reductions in pixel resolutions. The next chapter will 

build off of this approach and extend it to develop techniques to gain further insight into 

the uncertainty of the vision navigation process,  by determining run-time protection 

levels or confidence bounds that dynamically reflect the uncertainty of the navigation 

solution.  
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4 Vision Navigation Integrity using Bayesian Inference 

The next concept developed in this research for determining the relative navigation 

integrity, using vision techniques, follows a similar approach described by Well's [51] 

and discussed in Section 2.1.2.7, using Bayesian inference.  This approach for integrity 

ultimately relies on the ability to determine a rigorous estimate of the pdf for the relative 

state (x) by using a known set of models and conditioned upon a set of observed 

measurements. This is not unlike classical navigation and estimation filter approaches, 

for example Kalman filtering, where the state estimate is based upon an optimal 

combination of modeled and measured states and further, in some cases, the uncertainty 

estimate is solely based on modeling assumptions. Using Bayesian inference, a full pdf 

determination of the navigation state is the goal. This is a progression from Well's work 

in which only a maximum likelihood was utilized to specifically solve for the estimate, 

rather than the full pdf. 

The core of the Bayesian inference process is based upon use of the likelihood 

function,        , as constructed from observed image correspondences (d) between the 

real image and the rendered images using the object model, and conditioned upon the 

relative state (x). Using this likelihood information, in conjunction with prior probability 

of the state     , allows through Bayes law for the determination of the real objective, 

the pdf of the relative state conditioned upon the realized image correspondences,  
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 (4.1) 

 

The general processing for this approach falls within the same core images 

processing steps discussed in Section 1.2, that of image transformation, image 

correspondence, and state estimation, as previously illustrated in Figure 3. Even further, 

this approach follows a very similar process flow to navigation state estimation, 

illustrated in Figure 5, the main difference being that now the main estimation objective 

is to determine the entire pdf of the relative position state, not just the best estimate. It is 

shown that by expanding the estimation process to the entire pdf allows for a 

determination of integrity almost identical to current navigation integrity approaches, as 

described in Section 1.1, where real-time protection levels are computed that bound the 

estimation error to an associated probability.      

Figure 39 illustrates this concept and is drawn to depict the distinct processing steps 

involved, specifically (1) Sensor Data Generation, (2) Image Transformation, (3) Image 

Correspondence, and (4) pdf  Estimation. This research focuses primarily on the last two 

steps, Image Correspondence and pdf estimation; however, aspects of this research 

involved investigating how the choice of image transformation techniques can influence 

the effectiveness of integrity determination. 
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. 

 

Figure 39: Conceptual Overview for Determining Integrity for Image Rendering Image Navigation 

Figure 39 shows a conceptual process flow of the Bayesian inference integrity 

approach, with specific techniques that could be used for each step, for example the 

choice of edge detection as the image transformation method. Ultimately, what we are 

trying to solve for is        , the pdf of the relative position state x, conditioned upon the 

observed correspondence distance, d.  The mapping between the correspondence metric 

and the pdf estimate is a critical aspect of this research. It has been shown there are a 

number of different correspondence metrics available to compare images, and in all cases 

considered some form of distance metric is determined, d. The distance metric is a multi-

dimensional function dependent on several considerations, including the true relative 

state (x), estimated relative state (  ), the sensor imaging parameters (f), the image 

transformation domain (T), and even any potential modeling errors between the actual 

object and the a priori model (D).  

These correspondence distance values,  , can be treated as measurements to create a 

likelihood function,         or L(x), based upon a fixed, but unknown true relative state 

(x).  Another way to look at the likelihood function is that it represents the probability of 

the realized distance values, given the fixed true state, x.  Having this likelihood function, 
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Bayes inference can be performed to compute        , which is the stated goal. Using 

Baye’s Law, this can be performed using the expression 

 
        

           

    
 (4.2) 

where         is the conditional probability of the correspondence distance conditioned 

upon the relative position state, and      and      represent the prior probabilities of the 

relative position state and correspondence distance function, respectively. The expression 

in Equation 4.2 can be further reduced by replacing      with an equivalent expression 

in terms of numerator parameters, 

 
        

           

              
 (4.3) 

yielding an expression which is a function of only the likelihood function and the prior 

for the state. 

Once solving for        , the process for obtaining integrity is straight-forward 

using a protection level computed as, 

 
                       

 
                 
 

 (4.4) 

where Ireq is the integrity risk requirement. 

The result of Equation 4.4 is a minimum containment volume (V), such that the 

probability that the relative navigation state estimation error is outside of that 
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containment volume is less than the integrity risk requirement. As noted in Equation 1.1, 

this is typically broken out into vertical and horizontal/lateral directions. A further 

illustration of this concept for a single directional axis is shown in Figure 40.  

 

Figure 40: Protection Level Determination using Bayesian Inference 

The construction of the likelihood function,        , will be a major focus of the 

research.  To achieve this, we will leverage Well’s and Olson’s work described in Section 

2.1.2.7, in which the         is constructed based on the difference in  edge intensity 

level, on a per pixel basis, between the real image and the rendered image. Utilizing a 

pixel-based approach for the image correspondence allows for multiple independent 

measurements to improve the likelihood function. Whereas a likelihood function relying 

on a consolidated image correspondence, such as SSD that yields a single scalar value per 

image pair, only provides a single measurement. As a result, the likelihood function with 

a wide distribution will occur. With multiple independent measurements, such as the case 
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with a per pixel image correspondence approach, the independent likelihood functions 

can be combined into a joint likelihood function, thus improving the distribution. 

To illustrate this beneficial effect that multiple measurements have, consider the 

following example illustrated in Figure 41 that shows how the uncertainty is reduced by 

incorporation of additional measurements. In this example we are trying to estimate the 

parameter x, given a sensor measurement corrupted by Gaussian random noise. 

         (4.5) 

where w is N(0,σ). The results show how the a posteriori distribution,         Equation 

4.3, is influenced by multiple independent measurements. 

 

Figure 41: Effect of Multiple Measurements on Joint Likelihood Function 

 

 



 

 

89 

The key in understanding the results shown in Figure 41 lies within the 

interpretation of the likelihood function. When actual data is available, the pdf         is 

treated as a likelihood, and becomes a function of the unknown parameters, x.  For 

multiple measurements, a joint likelihood is formed as 

 
                 

   

 (4.6) 

In the above example, this joint likelihood function would be expressed as  

          
 

    
 
 

 
 

 
   

       
 

 (4.7) 

were N is the number of independent measurements. 

A key assumption in use of Equation 4.7 for constructing the joint likelihood 

function is that all measurements are independent and drawn from the same underlying 

distribution. Therefore, close attention will need to be paid to these assumptions in 

executing the proposed research, ensuring that independence is properly justified. In 

determining the underlying distribution, this will be developed using non-parametric pdf 

estimation techniques described in Section 2.3. The data for the pdf estimation will be 

generated through high-fidelity simulation with some lab or flight test confirmation 

possible. 

An important fact of this research is that the only sensor measurements in this 

process are the light intensities from the imaging sensor, which are used to generate 

features using an image transformation technique, such as edge detection. One critical 
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aspect of this research will be how to best make use of these measurements within the 

context of the Bayesian inference process described herein. One aspect of this is to give 

justification for multiple independent measurements and more importantly ensure the 

proper utilization of the image correspondence distance. The benefit of multiple 

independent measurements was made clear above. 

Lastly, the prior probability,       will require some additional assumptions in 

order to have a meaningful representation. One approach that will be considered is the 

use of an additional navigation source, such as an inertial unit. The benefit that the 

inertial system provides is good observability into the dynamic states, where upon 

standard propagation techniques can be applied to determine the prior probability. 

Therefore, some analysis will be required as part of this research to develop the 

appropriate system models to utilize such an approach. Although this approach will rely 

on knowledge of the prior probability, if multiple independent measurements are realized, 

the weight of the prior becomes quickly diminished. This effect can be seen in Figure 41. 

4.1 Measurement Feature Extraction 

In order to utilize the imagery from optical sensors in an effective way, the imagery 

must be transformed into feature space. To understand this process, let's first consider 

how object features     , based on the true object state ( ) with respect to the sensor 

coordinate frame, are transformed into the image frame described by intensities in the 

pixel frame (    ,     ), which can be described mathematically as  
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        (4.8) 

where    is the true orthogonal distance from the object feature to the optical center of 

the sensor, and   
   

 is the homogenous transformation matrix from sensor frame to pixel 

frame [5]. Once the scene is transformed into the pixel frame of the sensor, digital 

imaging techniques can be performed to extract features within that scene. 

Edge detection is an extremely useful and commonly used technique to detect 

discontinuities in intensity values, usually used to define the shape of an object[64].  A 

common method for edge detection is through the use of the gradient, defined by 

Equation 4.9 

     
  
  
  

 
 
 
 
  

  
  

   
 
 
 

 (4.9) 

where f(x,y) is a 2-D function, in this case representing an image.  A desirable property 

of the gradient vector f, is that it points in the direction of the maximum change of f at 

coordinates (x,y).   

To illustrate the process of gradient calculation of an image, consider a simple 

example of 3x3 image pixel plane, as shown in Figure 42, where z5 is the center pixel.   
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z1 z2 z3 

z4 z5 z6 

z7 z7 z8 

Figure 42: Image Neighborhood Mapping for Edge Detection 

 

A simple approximation of the partial derivative in the vertical direction at the center 

point could be computed by the difference 

                             (4.10) 

The horizontal gradient is computed in a similar fashion, and the magnitude of the 

gradient vector is then computed as shown in Equation 4.11.  

      
    

  
   

 (4.11) 

The gradient is then normalized according to 

    
    

  
 (4.12) 

where    and   are the mean and standard deviation of the    

An edge is declared when this magnitude,   , is above a defined threshold, T.   
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Figure 43: Edge Detection Gray-Scale versus Black-White Example 

 

An example output of this process is show in Figure 43.  The figures on the left 

side show gray-scale and black-white images in which the sobel edge detection function 

in MATLAB was applied, resulting in the figures at the right.  It can easily be seen that in 

a general sense, the technique works and performs reasonably well in extracting the edge 

shapes of various objects in the image.  However, some initial differences applying the 

edge detection can be observed, depending on the whether the gray-scale image or a 

black-white silhouette is used.  In particular, the noise level from extraneous objects in 

the image is noticeably higher in the gray-scale image versus the black-white silhouette.  

Some of this can be equalized utilizing the threshold values in either the conversion from 

gray-scale to black-white or in the threshold value of the edge detection itself.  The 

following subsections are dedicated to describing the different edge detection approaches 

evaluated and showing some preliminary results. In general it is difficult to discern 
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performance differences from the following results; rather the intent was to gather an 

understanding and familiarity with the process. 

4.1.1 Prewitt 

The Prewitt edge detection method, Figure 44, is very similar to that of the Sobel 

algorithm and can yield slightly noisier results in favor of a small reduction in 

computational complexity. 

   

Figure 44: Prewitt Edge Detection [64] 

 

 

Figure 45: Edge Detection Example - Prewitt 
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4.1.2 Gaussian Blurring 

One approach for dealing with modeling errors is through the application of a 

Gaussian Blur filter [58][59], applied to the output of the edge detection step described in 

the previous section. The normalized Gaussian Blur filter array, h(x,y), is constructed as 

described by [60]  

               
  
    
      

 

    
(4.13) 

where x and y are the corresponding pixel coordinates, and σ is the associated standard 

deviation of the Gaussian distribution. Figure 46 illustrates several examples of the 

resulting Gaussian Blur filter array as a function of sigma (σ). 

 

Figure 46: Gaussian Blur as Function of Sigma 

The resulting image, IGB, is a result of convolving the original image, I, with the Gaussian 

Blur filter array in the pixel domain  
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                                         (4.14) 

The Gaussian Blur filter is inherently a low-pass filter, thus the primary effect on 

image edges is to smooth or spread them out over the corresponding Gaussian 

distribution. The nature of edges, as represented in image processing, is that of an 

impulse. Thus, energy exists across all spatial frequencies. The Gaussian Blur filter 

attenuates the higher-frequencies, resulting in the desired spreading effect.  

 

Figure 47: Gaussian Blur Filter Response. (a)-(h) From the top, left to right. 

Consider Figure 47(b)-(d), which shows an example edge array and the associated 

spatial frequency. As expected, there is energy across the entire observable frequency 

range. Figure 47(f)-(h) shows the resulting image and associated spatial frequency when 

a 2-sigma Gaussian Blur filter is applied. As expected, the results are lower frequency 

edges spread across the designed Gaussian distribution. Another important aspect 
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demonstrated by this example is how distinct edges can become merged or grouped into 

larger regional edges. This grouping effect is a natural outcome of having too much 

model uncertainty relative to the spatial separation of edge features. 

4.2 Likelihood Determination 

 The first step in the Bayesian inference approach is to determine the underlying 

likelihood function of our vision navigation approach. As indicated in Section 4.1, all of 

the imagery is transformed into edge features, including both the rendered and sensor 

image, with a Gaussian blur filter applied. The blurred edge feature intensities of the 

sensor image become the primary measurement for estimation process, in which the 

difference between the sensor image edge intensities and the rendered images become the 

basis for the likelihood distribution, as shown in Equation 4.15 

                                                (4.15) 

Where      and      is the blurred edge intensities of the sensor image, which is a 

function of the true state (x), and rendered image, which is a function of the estimate state 

(  ), respectively, as described by Equation 4.8. 

 The distribution of              , is a function of many factors, including image 

feature choice, spatial resolution of the rendered state space search, and geometric 

characteristics of the operational application. Hence, it is critical that each 

implementation for a particular application be specifically characterized. The resulting 

underlying likelihood distribution for the aerial refueling application, based on sensor 

edge features that meet a predefined threshold, is illustrated in Figure 48. The actual pdf 
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shows the distribution of        
      

   for all blurred edge features, that meet a 

predefined threshold, where      
      

   represent the pixel locations for those features. 

The results shown in  Figure 48 are the ensemble statistics of    taken across the state 

space within the operational envelope of the application. In the case of the aerial 

refueling application, it is determined using rendered image,      specifically selected to 

minimize the state error between the sensor image and the rendered image state space.  

 

Figure 48: Aerial Refueling Likelihood Distribution 

 

The reason only the rendered reference images that minimize the state error are used, is 

because that is the purpose of the estimation process, to minimize the estimation error. 

One of the assumptions of this process is that the true state lies within the rendered search 

space, hence a minimum estimation error exists within that search space, and the goal of 
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the estimator is to find that state. Therefore we want to characterize the measurement 

distribution when this is state error minimization is satisfied. 

 The distribution of        
      

   closely fits that of a Laplacian distribution, with 

the exception of a small local maximum near the positive tail. The tail artifact is a result 

of instances where there are sensor images, but no strong rendered edge features at this 

location. This occurs for two main reasons. First, the discrete nature of the rendered state 

space search, in this case 0.5m, results in some outlier cases where the Gaussian blurring 

is insufficient to make up spatial discrepancies, resulting in slight mismatches between 

the sensor image and rendered images, even under perfect modeling conditions.  

Secondly, this research chose to use the presence of sensor images as the constraint in 

performing any image correspondence. Therefore, this characteristic is only present on 

the positive tail. Ideally, under no image processing throughput constraints, the state 

space resolution can be fine enough to eliminate this characteristics, an example of which 

will be shown in subsequent sections.  To account for this tail effect a Gaussian  

distribution was chosen to over-bound the inherent pdf, as described in Equation 4.16, 

 

      
 

    
 
         

      
     

 

    

(4.16) 

where the likelihood,      , is determined for each of the n edge feature pixels that meet 

the predefined threshold (i.e. edge threshold). The mean ( ) and standard deviation ( ), 

again are based on the specific state-space search choices discussed above. At this step in 

the process, the measurement has been realized and the likelihood is now a function of 

the state space. 
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4.3 PDF Determination using Bayesian Inference  

 Once the likelihood is determined, Baye's law can be used to infer information on 

the state and ultimately the uncertainty associated with that state, as given by  

 

 

        
        

           
 (4.17) 

The prior,     , is assumed non-informative, hence a uniform distribution across the state 

search space is utilized. However, part of the sensitivity analysis, which is covered in 

subsequent sections evaluates a more informative prior.  

 To incorporate the multiple measurements, the likelihoods from each individual 

pixel measurement is incorporated into the overall likelihood function, 

       
 

    
 
 

 
 

 
   

        
      

      
 

       

 

 (4.18) 

and subsequently the resulting pdf is determined as 

 

 

        

 
 

    
 
 

 
 

 
   

        
      

      
 

    

  
 

    
 
 

 
 

 
   

        
      

      
 

      

 (4.19) 

 

4.3.1 Log-Likelihood 

 It has been previously discussed in this research that one of the benefits of going 

to a pixel edge feature intensity based approach is the abundance of potential independent 
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measurements available for the inference. Figure 49 demonstrates a possible utilization of 

the multiple measurements available on a single image for a refueling application. This 

particular example represents 100 Gaussian-blurred edge features points selected from a 

simulated EO sensor. However, one of the unexpected outcomes of this multiple 

measurement approach was dealing with the resulting machine precision issues as the 

number of measurements used in the Bayesian inference process increased. The machine 

precision issues arise out of the fact of system noise, the presence of modeling error, and 

quantization of the rendered reference set state space. All of these contributors result in 

the same effect, errors in the measurements between the sensor and the rendered image 

features. The net result is the spread in the measurement likelihood function,     , that 

was observed. For example, if the conditions existed for no sensor noise, perfect model 

knowledge and negligible state space search quantization, a Dirac function would result 

for     . Since this is not the case, and the fact that likelihood values are less than one, 

means that as the number of measurements grows, the product of those likelihoods 

functions, Equation 4.18, will start converging to zero, thus causing machine precision 

issues when computing the resulting pdf using Bayesian inference, as shown Equation 

4.19. 

 To demonstrate this effect, consider the example scenario in Figure 50, in which a 

varying number of measurements are used to compute        . When normal 

computation approaches are taken the resulting pdf will eventually hit machine precision 

limits and result in zeros, in this case somewhere between 1000 and 2000 points. 

However, the log-likelihood approach is successful in computing the posteriori pdf up to 
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the 5000 data points evaluated. The point at which machine precision begins to effect the 

overall Bayesian inference process is highly dependent on the application and the nature 

of the underlying likelihood function. 

 

Figure 49: Multiple Measurements Illustration for Aerial Refueling  

 

 

Figure 50: Likelihood Machine Precision Issues 
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 The use of the log-likelihood means that Equation 4.18 and subsequently the 

computation of the a posteriori,         turns into a summation, rather than a product, 

effectively minimizing the effect of machine precision issues. 

                        

 

 (4.20) 

4.4 PL calculation 

 Once the pdf,        , is determined all of the information that was able to be 

inferred from the imaging measurement and image processing is known, and no further 

information is brought to bear on the state and state uncertainty estimation process. What 

remains at this point, is using the resulting pdf to determine the appropriate uncertainty 

bounds.  

 Equation 4.4 described the governing equation for computing the protection level, 

once the posteriori pdf is determined,        . As stated previously, the idea is to 

compute the minimum state space confidence interval or protection level, centered upon 

the state estimate, that satisfies the integrity risk requirement. Since the state space is 

multi-dimensional, so too must the determination of the protection levels.  To illustrate 

this process consider, Figure 51, which shows the 3-dimensional posteriori pdf at two 

discrete vertical positions within the rendered search space. The top two plots show  the 

result at the vertical state closest to the state estimate,   , in both a 3-D view (right) and a 

2-D contour view (left). The figure also shows the true state and resulting horizontal 

protection level corresponding to a integrity risk of 10
-6

. A second view, at a slightly 

higher vertical rendered state is also shown, and as expected there is less area under the 
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curve or confidence in these states, as captured by        . The fact that there is 

significant pdf is spread across the state space is a direct result of uncertainty in the 

inference process and this is reflected in larger protection levels to capture this 

uncertainty.  

 Although Equation 4.4 describes the process of protection level determination as a 

function across a continuous function, in practice, this is how it is computed in practice. 

Due to natural limitations in computer processing throughput, a discrete state search 

space is utilized. For this research, a somewhat simple approach was taken to the multi-

dimensional optimization for the protection level determination.  The implementation for 

this research incrementally increases all axes simultaneously for the protection level until 

the integrity risk requirement is met. Subsequently, the protection level (PL) computation 

is discretized,  

 

                      

  

  

 

 (4.21) 

where               are the values of the a posteriori pdf at each of discrete (i,j,k) state 

space across the search volume, and dv is the discretized search volume increment. The 

state space indices are determined by all discrete states within the defined integral range, 

as shown for the x-axis and similarly for the other axes,  

 
                                           (4.22) 
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  is a positive natural number and    is the discritize state resolution, in this case, 0.5m. 

The final protection level is determined by finding the minimum integral space, or 

        such that PL(N) is greater than or equal to the integrity requirement.  

   

  

Figure 51: Example Posteriori PDF show at two (2) distinct vertical states  

 

Consider Figure 52 in which two levels of integrity risk are evaluated for the same 

example, 0.5 and 10
-6

. The underlying pdf,        , is the same in both cases, and the 

protection levels are centered about the mode of the        , which is used as the state 

estimate. As expected a larger protection level is required for the high integrity 

requirement of 10
-6

. The spatial size differences of the protection levels are not 

proportional to the change in integrity, because most of the probability of         is 
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contained around the mode and diminishes rapidly as the state space diverges from the 

mode. It can also be observed that the protection level for the 10
-6

 case is skewed in the 

x-axis. This is a result of the fact that the search space is limited and in this case, hit the 

lower x-limit in that axis. 

 

Figure 52: Protection Level Computation Illustration for Different Two Risk Requirements 

 

4.5 Simulation Evaluation 

 To explore the performance of the Bayesian inference integrity approach, the 

research turns to an aerial refueling (AR) application within a simulation environment. 

The simulation environment is nearly identical to that described in Section 3.3, used to 

demonstrate the integrity monitor approach. However, in this case, there is less interest in 

demonstrating the detection of discrete instances when the state violates a safety 

boundary. Rather the simulation for this aspect of the research, and the associated 

evaluation trajectory, as shown in  Figure 53, is intended to validate the approach across 

the operating range of the application and ensure the protection level's bound the error to 
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the appropriate probability.  The baseline simulated evaluation trajectory included 181 

positions across the aerial refueling operating region, some of which included safety 

violations.  

 

Figure 53: Bayesian Inference Simulation Trajectory 

 

 The range of state values that the evaluation trajectory represents, with respect to 

the refueling tanker, is captured in Table 4-1. Additionally, this table captures the span of  

the state search space of the rendered image database. Based on this state space range and 

spatial resolution, the result is a full rendered reference image database of 53,366 images 

for possible use in the image correspondence process, depending on the initial estimate of 

the relative position state. However, in order to keep the image processing and computer 

simulation to a tractable level, only a subset of the image reference database is utilized. 

Offline analysis provided guidance on the size of the subset rendered reference database 
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and it was concluded that having rendered images a minimum of +/-6 meters in any axis 

of the true state of the refueling aircraft / vision sensor, or 2197 images, would be 

sufficient to capture the statistics up to the desired 10
-6

 integrity risk. However, if 

additional integrity performance beyond this is desired, additional rendered state space 

would potentially be required. 

Table 4-1: Rendered Image State Space 

Relative Position State x-axis (m) y-axis (m) z-axis (m) Resolution (m) 

True State Space [7.5, 14.5] [-2,2.5] [-10, -2] N/A 

Search State Space [1.5, 20.5] [-8,8.5] [-16, 4] 0.5  

  

 

Figure 54: Bayesian Inference Dynamic Reference Database Illustration 

 

This initial state is based on an erroneous true state to represent a projected estimate from 

the previous state estimate, 
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                       (4.23) 

where       is set to 0.5m for the simulation. Figure 54 illustrates this rendered 

reference subset selection process for the x-y axis; However as indicated, this subset 

selection is applied each time epoch to all axes in the simulation. 

 For the baseline analysis, a integrity risk threshold of 10
-6

 was selected and the 

Bayesian inference was based on using 100 edge feature measurements for each sensor 

image. Figure 55 shows the results of this process for each time epoch across the entire 

simulated trajectory. The results are broken out in terms of horizontal and vertical error 

components, a choice commonly made when evaluating navigation systems. The figure 

shows both the navigation error and corresponding protection level / confidence bound. 

Since the integrity requirement is set so high, relative to the number of time epochs, no 

violations of the protection levels are expected, which is in fact the case. The estimated 

relative position state,   , is chosen by selecting the mode of the pdf,        , and    also 

serves as the center point of the protection level computation, as indicated previously. 

The quantization in the protection levels, a result of the rendered image spatial 

quantization, is easily observed in these results. One important characteristic of these 

results is somewhat weak correlation between navigation error and protection level. This 

is not entirely unexpected, since the intent of the protection level is to capture the 

uncertainty in the navigation estimation process, which is not always directly related to 

accuracy.  
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Figure 55: Protection Level Error Bounding (10-6 Integrity Risk, 100 Likelihood/Measurement Pts) 

 

 To explore this relationship between accuracy and integrity, a single dimensional 

(x-axis) test was developed. In this test a single edge feature point was strategically 

selected to highlight the case of ambiguity or uncertainty in the vision navigation 

estimation process. Figure 56 illustrates this case, in which the measurement point on the 

sensor image is selected as one of the trailing edge points of the wing. The hypothesis 

being that moving along the x-axis would highlight the ambiguity of the position state 

when either the leading edge or trailing edge of the rendered reference set corresponds to 

this measurement point.  
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Figure 56: 1-D Bayesian Inference Spatial Density Test 

 

The lower image plots in Figure 56 show the sensor image and the corresponding 

measurement location. The upper plots show the rendered images that correspond to the 

peak correspondences for the leading and trailing edge, right and left figures, 

respectively. The bottom plot shows the resulting pdf,        , across the x-axis state 

space. The first peak represents the leading edge and the second peak represents the 

trailing edge. It is obvious, by looking at the similarity in the images, that the true state is 
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represented most accurately when the sensor image feature measurement (red cross) 

aligns with the trailing edge of the rendered image. This is also evident in the peaks of 

        for which the trailing edge peak has the highest pdf value or likelihood and is 

selected as the navigation solution. By choosing this peak as the state estimate, the error 

is minimized, and more important to this research         captures the uncertainty in the 

process. Hence, when protection levels are to be computed, a very large state space 

would be required to capture the necessary uncertainty in        . This example 

highlights many of the concepts at work with the Bayesian inference process and is a 

perfect example of the showing the distinction between accuracy, in this case the 

estimation error is very low, and integrity or uncertainty, which is very high under these 

conditions. While this was a simple example, the use of multiple measurements across 

the sensor image is quite effective at removing this ambiguity, but the ability to address 

this ambiguity is something that is very scene dependent.  

 In addition to ambiguity and uncertainty aspects, the lower subplot of Figure 56 

also shows the results of an analysis performed to evaluate the impact on the spatial 

resolution and quantization effects of the rendered reference set state space. To explore 

this aspect of the process, three different spatial resolutions along the 1-D x-axis were 

evaluated; 1cm, 10cm and 50cm. All three show similar trends and capture the expected 

uncertainty; however, it does appear that some information is lost at the 50cm spacing 

that is captured by the higher resolution reference sets.  

 This could cause potential issues in the navigation error; however, further analysis 

showed that impact to the integrity protection level bounds resulted in almost negligible 

performance difference.  In contrast, the 1cm case demonstrates a fair amount of high 
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frequency noise components in the areas of interest. This was traced to artifacts in the 

simulation rendering process, a limitation causing small pixel noise in the rendered 

imagery and nothing systematic in the overall process. 

4.6 Sensitivity Analysis 

 In addition to the baseline evaluation, presented above, additional sensitivity 

studies were performed to evaluate the various trade-offs related to the vision-based 

Bayesian inference process. These sensitivity evaluations focused on some of the 

previously discussed algorithmic considerations such as number of likelihood 

measurements utilized, integrity risk threshold, and informative versus non-informative 

prior information. It will be demonstrated that these algorithmic consideration come 

down to a performance trade-off between integrity and continuity, as previously defined 

in Section 1.4. This is the classic performance balance that almost all navigation and 

other "service-like" systems face, where you can gain safety by improving your integrity 

risk, but this almost always comes at a cost of continuity in the form of alerts to the user 

that the system should no longer be used. Although continuity is not explicitly evaluated 

in this research, the general trend can be inferred by the size of the protection level, since 

larger protection levels indicate higher uncertainty, and likely a higher probability the 

system is deemed unusable. 

4.6.1 Likelihood Measurement Number 

 One of the most beneficial attributes of imaging sensors is the density of 

measurements available for each image taken at a single instant in time. Modern imagery 

sensors that contain tens of millions of pixel measurements are common today, even in 
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our daily consumer electronics, such as phones, and watches, and are almost standard on 

unmanned vehicles of all classes. Although not every pixel can be treated as independent, 

due to digital imaging design and processing of the sensor itself, the access to large 

measurement sets are ripe for exploitation in this process. Figure 57 illustrates the 

potential large trade-space available for the use of  multiple measurement features for the 

aerial refueling application, even for a low resolution image of 800x600. Example of 20 

and 100 measurement sets are show in Figure 57.   This sensitivity analysis is intended to 

explore the impact of the number of  measurements on the Bayesian inference integrity 

determination results. Section 4.3.1 touched upon some of the effects of multiple 

measurements, and it can be easily observed in Figure 50 that use of simultaneous 

multiple measurements in the Bayesian inference process can improve the uncertainty in 

the a posteriori pdf. 

 To explore this sensitivity, the Bayesian inference process was performed across a 

wide range of number of measurement, 5 through 100. The number of measurements has 

two direct impacts on the performance, impacting both the navigation error and the 

spatial size of the protection level, as shown in Figure 58. 
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Figure 57: Example Image Showing Multiple Likelihood Measurements: 

(Top) 20 Measurements, (Bottom) 100 Measurements 

 

The impact to the spatial size of the protection level is most striking, being reduced by 

almost a factor of 10, in both the horizontal and vertical axes, when going from 20 

measurements to 100 measurements utilized in the likelihood function. It is clear from 

Figure 58 that the lower limit on the protection level is being constrained by the 0.5m 
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spatial resolution of the rendered reference set, so it is not evident how tight the 

convergence between the protection level bound and the navigation error can be made if 

there were no such constraint. Additionally, the navigation error is improved marginally 

as additional measurements are considered, and  both cases exhibit possible performance 

limitations as a result of the reference set quantization. These search space quantization 

limitations are illustrated in by flat-line errors in the vertical dimension. Figure 59 shows 

the relationship across the entire sensitivity range, plotting the computational difference 

between the protection level and the navigation error. What clear is that there is a striking 

break point for the aerial refueling application between the 20 – 40 measurement point, at 

which point it settles out to what looks like the spatial resolution limit as the 

measurements increase. This trend is very likely to be application specific, since it is 

being driven by the geometric ambiguity of the world model. 

 It is clear from Figure 58 and Figure 59 that including more measurements in the 

Bayesian inference process has a much more impactful effect on the integrity, in terms of 

the size of protection levels, than on accuracy of the navigation solution, which is 

negligibly effected. 
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Figure 58: Comparison of Bayesian Inference between 20 vs 100 Measurements 
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Figure 59: Protection Level Bound minus Navigation Error as a Function of Measurement Number 

4.6.2 Impact of Integrity Requirement 

 Each operational application requiring high-precision navigation have potentially 

unique performance requirements, leading to operational specific trade-offs between 

integrity and continuity. Not all applications require extremely high levels of integrity 

requirements and can perform with less confidence in solution. This analysis examines 

the impact of changing the integrity risk requirements for the Bayesian inference 

approach. The protection level requirement is really an after the fact operation, once the 

Bayesian inference process has determined the a posteriori pdf. Therefore, the pdf and 

the corresponding navigation accuracy is not impacted by the integrity risk requirement – 

only the size of protection level's. This can be easily inferred by considering the 

governing equations of the protection level, Equation 4.21, and illustrated by Figure 60, 

which shows the results for vastly different integrity requirements, that of 10
-6

 and 0.05.  
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Figure 60: Impact on Integrity Risk Requirement on Protection Level 

 

As expected, Figure 60 demonstrates that the integrity risk requirement has a direct 

impact on the protection level bound, where the larger integrity requirement, or lower 

integrity risk requirement, the larger the protection level bound. The size of the protection 
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level can subsequently have a significant impact on the overall continuity and usability of 

the system as a whole. This example also demonstrates that the integrity risk requirement 

has no impact on the navigation error,  which remains unchanged between the 10
-6

 and 

0.05 scenarios.  

 The last major observation of this analysis is the lack of dynamics in the 

protection level for the 0.05 (95%) integrity case. This indicates that most of the 

probability of the pdf (more than 95%) is contained within the rendered reference set 

quantization distance of 0.5m.  

 

Figure 61: Achieved PL Confidence Probability for 0.05 Integrity Risk Requirement 

 

To further illustrate this point, consider Figure 61 which shows the realized probability 

bounded by the protection level. Even thought the integrity risk requirement was set to 

0.05, or a containment of 0.95, the figure shows that in a vast majority of the cases, a 
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much larger probability is contained by the protection level, with many cases being 

greater than 0.99. Again, this characteristics is a result of the 0.5m spatial resolution in 

the rendered reference set, hence causing similar quantization in the resulting pdf, 

       . Therefore, when integrating         for the protection level, getting the precise 

integrity risk requirement becomes problematic. There are several ways this characteristic 

can be addressed, if it poses a performance issue. The most direct method is to increase 

the spatial resolution of the reference set, or potentially interpolating         after the 

fact. However, when performing interpolation, it is important to ensure that         

maintains the properties of a pdf (i.e., integrates to unity) and even more importantly, that 

the interpolation regions are representative of the true uncertainty. 

 

4.6.3 Informative versus non-informative Prior  

 The initial analysis of the Bayesian inference approach relied on a non-

informative prior,     , which was results in a constant value for     across the search 

space, and computed as 

      
 

 
    (4.24) 

where   is the volume of the state search space. However, a case can be made that some 

informative prior can be determined based on propagating previous navigation estimates 

in a manner similar to Equation 4.23, which was limited only to determining the search 

space. To test the case where a more informative prior can be assumed, an evaluation was 

performed with a Gaussian distribution of the form,   
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 (4.25) 

with a mean of     , which is the center of the search space, and with  the same  . The 

use of this informative prior will effectively increase the values of the a posteriori pdf, 

       , closest to     . The resulting pdf,         now becomes a blend between the prior and 

the likelihood, L(x), according to  Equation 4.17 and driven by the uncertainty in each.  

 The purpose of this analysis is to evaluate the impact the use of informative versus non-

informative priors can have on the overall system performance. Figure 62 shows the results 

from the simulation for each of these cases and shows in general, the use of informative 

priors does not significantly impact the protection level or navigation error, however 

there are some interesting findings. The hypothesis going into this analysis was that with 

additional informative knowledge of the state ( ), that the overall performance would be 

better. However, the results actually show the contrary, that the overall navigation 

performance is slightly better with non-informative     , where as the Gaussian prior 

case shows small sporadic error divergences, as compared to the uniform case. 

 To understand the cause of this characteristic, consider Figure 63, which shows 

the navigation error and the error associated with the mean of the prior,     . The figure 

shows a correlation between the cases where the Gaussian navigation solution diverges 

and where the prior distribution has a excessively large mean, particularly in the vertical 

axis. This indicates, that statistically, the prior can draw off the mode         sufficiently 

to change the estimated position within the search space. 
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Figure 62: Uniform versus Gaussian Prior Bayesian Inference Performance 
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 Again, the net effect is small, but non-negligible, in terms of navigation accuracy.  

The effect on the protection level is not as observable in Figure 62, and the protection 

level values are almost identical between the Gaussian and uniform distribution. 

 

Figure 63: Horizontal Error Performance vs Gaussian Prior Error 

 

4.7 Summary 

 This chapter investigated a Bayesian inference approach for determining integrity 

for a vision-based precision relative navigation system. Like the previous Chapter, the 

research posed the relative navigation integrity problem within the context of an aerial 

refueling application and using image rendering, where a imaging sensor and high 

fidelity 3-D model is utilized. The chapter provided a detailed description of the Bayesian 

inference approach by expanding on work by Well's [51], which used a Bayesian 



 

 

125 

approach for a maximum likelihood estimation (MLE) for a localization application. This 

research showed how this can be generalized for a full pdf inference at the pixel level for 

a vision navigation application, including the computation of the protection levels that 

can be used for integrity purposes.  

 The research demonstrated the proposed Bayesian inference integrity approach 

within a simulation environment. It was shown how the use of multiple image feature 

measurements can improving the uncertainty in the navigation solution, and subsequent 

size of the protection levels. In addition, the impact that integrity risk requirements and 

informative versus non-informative prior information was investigated. The aggregate 

results show that the Bayesian inference approach is a robust and flexible method of 

providing fault-free integrity for a vision based navigation system. 
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5 Conclusions 

 This dissertation addresses the lack of quantitative integrity approaches for vision 

navigation by developing two distinct integrity determination techniques using image 

rendering correspondence. This chapter describes the findings from this research, in 

particular the major conclusions and touches upon possible future work. Finally, a brief 

overall summary of this dissertation is presented. 

5.1 Conclusions 

This research developed two frameworks, or approaches, for determining integrity 

for vision navigation in a compatible format with existing navigation systems, in the form 

of a discrete monitor or in the form of a real-time computed protection level bound on the 

relative state estimate. System integrity includes many aspects, this research the focused 

on the fault-free, algorithmic aspects of the vision navigation process.  

 The first contribution of this dissertation  was demonstrating the feasibility of a 

discrete vision-aided integrity monitor. This vision-based navigation integrity monitor 

generalized the concept of integrity in terms of operating and alerting regions. The 

integrity monitor approach was based on the concept that most navigation operations 

have well-defined regions that require a certain navigation performance, whether the 

operation is based around a glide-slope, a formation flight position, or even a flight path 

clearance. The concept of this vision navigation integrity monitor was to detect large 

divergences from these operating regions, that can become safety risks. 
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 As part of this research an  aerial refueling simulation was developed and using 

image rendering correspondence, where a imaging sensor and high fidelity 3-D model is 

utilized. The approach was an expansion of work by Weaver [10], in which image 

rendering was shown as a feasible approach for navigation estimation. This research 

expanded some of Weaver's techniques, such as the use of edge features with SSD as a 

image correspondence metric, and which were subsequently demonstrated in flight test 

[15].  This research showed that image rendering processing can be utilized for integrity 

purposes in addition to navigation estimation. Two different image feature approaches 

were evaluated, that of edge features and image silhouettes, for which the research 

showed that 10
-3

 to 10
-5

 level of integrity monitoring is attainable. Additionally, this 

research showed, in the form of ROC curves, the trade-space between detection 

probability  (integrity) and false-alarms (continuity). The research  demonstrated that the 

proposed integrity monitor was robust against several effects, including lens distortions, 

spatial rendering quantization and reductions in pixel resolutions. Finally, the use of a 

ratio-test approach for the integrity monitor, which indicated that another order of 

magnitude of integrity monitoring performance was realizable.  

Another major contribution this research presented was the development a second 

methodology for determining integrity for a vision navigation system, based on a 

Bayesian inference approach. Instead of a discrete detection monitor, this approach 

determined real-time protection levels that bound the navigation error to a user 

configurable integrity risk requirement. The use of protection levels, mimics that of high 

precision GNSS navigation systems, such as LAAS and terrestrial navigation systems. 
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 The Bayesian inference approach was inspired by work by Well's [51], which 

used a Bayesian approach for a maximum likelihood estimation (MLE) for a localization 

application, in which only the mode of the likelihood function was desired. This research 

showed how the Bayesian framework can be generalized for a full pdf inference 

operating at the pixel edge feature level. These innovations allowed for successfully 

demonstrating the error bounding of a simulated aerial refueling operation up to a 10
-6

 

integrity risk threshold. A critical component of this approach is availability and 

utilization of multiple measurements for a single sensor image. The research showed how 

the use of multiple measurements was a power factor in reducing the uncertainty in the 

vision navigation estimation process and providing greater levels of integrity without 

sacrificing continuity performance. Along that line, the research investigated the 

algorithmic trade-space between safety (i.e., integrity risk) and operational alerts 

(continuity risk). Various factors presented within this trade-space include integrity risk 

threshold, number of measurements, and informative versus non-informative prior 

information. The key finding is that there are choices the user can make to improve the 

integrity of the system, such as utilization of more measurements or increasing the 

integrity risk threshold directly. These options will provide a useful flexibility for future 

utilization of these integrity determination techniques. 

5.2 Future Work 

 This research provided a good foundation for developing means for determining 

safety critical integrity for vision navigation system, and although this work has 
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demonstrated the success of these approaches in a simulated environment, additional 

work is required to continue maturing these techniques.  

 The primary means for evaluating the vision navigation integrity algorithms 

presented in this dissertation was through the use of simulation. Although these 

simulations proved very valuable to develop these methods, further analysis is required to 

understand the impact of real-world considerations. As with all sensors and navigation 

systems, vision-based navigation solutions have a real-world challenges; some unique to 

imaging sensors, such as lighting conditions; and others are common to many navigation 

and estimation approaches, such as model errors and real-time processing considerations.  

Not surprisingly, lighting effects can be one of the biggest challenges when working with 

vision sensors as a primary means for navigation. Further research is needed to evaluate 

these vision integrity techniques under different lighting conditions. There has been much 

work to develop image processing approaches that are somewhat resistant to lighting 

effects by transforming images to feature space (e.g. SIFT, edges, etc...), however this 

research did not explore these aspects in any sort of rigorous way. 

 This research relied on a priori models to perform image correspondence with the 

sensor imagery. The use of models is by no means unique to these research approaches, 

and in fact many estimation and navigation algorithms rely heavily on the use of models 

in this manner, Kalman filter being a obvious example; however, as with all these 

algorithms, this makes them susceptible to model mismatching. In [15], some limited 

evaluations showed somewhat minimal effects from small model mismatching on the 

overall vision navigation process. Additionally, the use of the Gaussian blur filtering can 



 

 

130 

be used to mitigate some of these effects, however a more thorough investigation is likely 

required to truly understand the impact and limits of this effect.  

 The possible combined effects of lighting and model mismatching conditions can 

occur where image features can be present in the sensor image that are not present in the 

rendered image, or vice versa. These mismatches can cause potential issues in the 

likelihood determinations, critical to both integrity approaches presented. A possible 

impact to this to the Bayesian inference approach would be a extremely low likelihood 

for a measurement or several measurements for a rendered image that is closely aligned 

to the true state. These small likelihoods can lower the overall likelihood value for that 

estimated state and possibly effect overall performance. A possible way to mitigate this 

would be to set a minimum floor in the underlying likelihood functions, so that under 

these conditions the overall impact would be constrained. This type of scenario is quite 

likely in operational use of vision navigation systems and further research is warranted to 

explore this. 

 Lastly,  additional investigation is warranted to evaluate how these techniques can 

apply to other operations. The evaluation for this research was based on a refueling 

operations , hover the underlying theories should apply to the broader class of navigation 

estimation challenges. To adapt the research to other applications, it is likely that one of 

the most critical aspects would be the derivation of the underlying image correspondence 

distribution. Both the integrity monitor and Bayesian inference approaches relied heavily 

on the underlying statistics of the correspondence between the rendered and sensor 

images. Therefore to apply these integrity approaches to new applications a similar 

rigorous analysis would be required to determine those statistical distributions, possibly 
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unique to that application and feature selection. A possible impact to broadening the 

operational envelope is dealing with non-stationary statistical distributions for the image 

correspondence. Hence a method for dealing with possible multiple distributions, 

depending on the operational state and variations in the model confidence are all areas for 

future consideration.   

5.3 Summary 

 The development of trust in any system is vital to its utilization and operational 

use, particularly for safety critical applications, such as navigation. This dissertation 

described the rationale for developing vision-based precision navigation systems and the 

motivation for addressing the lack of quantitative integrity in this area. This research is a 

step forward in addressing this integrity gap and bringing the realization of vision 

navigation to the maturity and robustness necessary for making it a viable navigation 

solution.  
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