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Abstract 

The ability to accurately describe the atmospheric conditions around us is not only 

important to the Air Force, but to anyone involved in signal propagation.  The programs 

currently utilized to describe the atmosphere take into account a variety of measures.  The 

LEEDR (Laser Environmental Effects Definition and Reference) program in particular, 

allows the user to select a location, aerosol and molecular effects model, numerous cloud 

and precipitation events, as well as other features.  Even with the control that the user 

has, the output that the program provides can vary from actual conditions on a day to day 

basis.  This is due to LEEDR‟s dependence on averaged climatological data.  In order to 

make the output more specific for deterministic conditions, two additions to the LEEDR 

program have been proposed.  The incorporation of calculated or measured ground level 

characteristics will allow the program to extrapolate data from scenario-specific anchor 

points, leading to a more realistic depiction of conditions below the boundary layer for 

the scenario of interest.  After making this modification to the LEEDR program, 

differences were observed in several of the output variables throughout the boundary 

layer.  Also, after interpolating sounding data from a location near the LEEDR site to 

model ground level conditions, LEEDR was able to more accurately model upper air 

measurements.  In addition, a Correlated-k band model has been developed to augment 

the line-by-line LEEDR calculation in order to reduce the computation time required to 

describe atmospheric transmission bands of the spectrum.  This allows the 

implementation of fast calculating path radiance computations.  As a stand-alone module, 

the Correlated-k method is able to calculate transmission for the band interval studied, 
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assuming a homogeneous atmosphere on average, 170% faster than the current 

transmission method in LEEDR.   
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REALISTIC VERTICAL ATMOSPHERIC PROFILES AND EFFECTS FROM 

LIMITED SURFACE OBSERVATIONS 

 

I.  Introduction 

Motivation 

The ability to accurately describe our atmosphere is extremely important in terms 

of our ability to analyze electromagnetic wave propagation.  In terms of signal and image 

analysis in particular, our ability to accurately perform both types of analyses ultimately 

depends on conditions in the atmosphere.  Most current radiative transfer programs that 

are used to perform image and signal analysis however, rely on a database of 

climatologically averaged data.  Thus, atmospheric quantities, such as dewpoint, 

temperature, and aerosol concentration, which depend on a certain hour of the day, are 

taken from a database that averages the data based on previously recorded observations.   

In addition to the previous problem, another problem exists with respect to the 

calculation time that most atmospheric programs use to compute transmission.  After the 

user has specified the characteristics of the atmosphere, as well as the part of the domain, 

most programs (radiative transfer codes) utilize a calculation technique which determines 

the extinction (how much radiation is scattered or absorbed along the user‟s path) in 

radiation at several points along the path.  Thus, at the end of the user‟s path length, a 

discretely sampled estimation of the extinction in the radiation is presented to the user.  

As one would suspect, for a very detailed program, this could become very 

computationally expensive.  The ability to obtain signal or image analysis in a timely 

manner could certainly prove to be very beneficial.  A faster calculation algorithm could 

be implemented to improve upon remote sensing and spectroscopy applications [12].   
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From a community based standpoint, one example that relates to the previous 

discussion is the research currently being conducted between the Navy SPAWAR (Space 

and Naval Warfare Systems Command) and AFIT (Air Force Institute of Technology).  

On June 24, 2009, a representative of the Navy SPAWAR gave a talk concerning their 

ability to accurately predict communication and image capabilities under varying ocean 

atmosphere conditions.  The talk focused on tests that were conducted at Eglin Air Force 

Base, utilizing an atmospheric package called HELEEOS (High Energy Laser End-to-

End Operational Simulation).  The HELEEOS program, in summary, allows the user to 

perform path radiance calculations with respect to radiation of a user-defined wavelength 

(from the visible to far-infrared).  The user has control over numerous features of the 

atmosphere, as well as the target (receiving the radiation), platform (emitting the 

radiation), and observer.  Applications of this program include: remote sensing and signal 

analysis capabilities.  In response to the tests however, the Navy SPAWAR noticed that 

on certain timescales, there was more or less signal degradation than what was accounted 

for by HELEEOS (HELEEOS profile used in these tests is described in more detail in 

[6]).  Thus, a project was proposed, to build an additional atmospheric profile in 

HELEEOS in order to enable the user to have more control over describing their 

environment.  The project, as outlined, would essentially encompass various point-based 

and field-based methodologies.  The field-based models and measurements would 

include “local (shipboard) meteorology, surface meteorology stations, radiosondes, the 

Advanced Navy Aerosol Model (ANAM), and the Global Aerosol Dataset (GADS)” [6].  

Point-based methods on the other hand would include various calculation models.  

Examples of some point-based methods include: NAAPS/FAROP (Navy Aerosol 
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Analysis and Prediction System/Forecast of Aerosol Radiative and Optical Properties) 

and AOD (Aerosol Optical Depth).  In addition to the previously mentioned point-based 

models, AFIT provided a path radiance program that enables the user to define ground 

level conditions. 

Another example that displays the current inability to sufficiently limit deviation 

in path radiance calculations on small timescales comes from the Space Dynamics 

Laboratory at Utah State University.  The SDL (Space Dynamics Laboratory) is currently 

researching a technique to aid in SensorCAD modeling.  The SensorCAD models that 

have been developed provide a very thorough depiction of a signal analysis situation 

involving air and spaced based sensors.  The models take into account natural phenomena 

such as, “solar system celestial objects, stars, zodiacal light” [8], as well as surface 

optical properties and attitude control of the sensor‟s vehicle.  In order to improve upon 

the vast number of capabilities that the SensorCAD models present, a research project has 

been initiated between SDL and AFIT.  The research consisted of enabling the user to 

define ground level atmospheric quantities that could be used to describe higher altitude 

conditions. 

Problem Statement 

  In summary, there are two problems which have been noticed with respect to 

current atmospheric radiative transfer programs: 

1.  Most radiative transfer models do not easily allow detailed weather input including 

probabilistic meteorological data and aerosol information.  The program used to model 

the atmosphere for this project (LEEDR-Laser Environmental Effects Definition and 

Reference) does, but it needs a surface data input option. 

 

2.  Most LBL (Line-by-Line) radiative transfer models require a lot of computation time 

to compute transmission for path radiance calculations, over “bands” of the spectrum.  
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Band models are able to accurately calculate transmission faster over narrow and wide 

bands of the spectrum, while losing some accuracy at individual lines. 

 

In reference to the first point made, turbulence in the atmosphere induces changes 

in the conditions of the atmosphere up until a certain altitude.  This well-mixed region of 

the lower atmosphere is typically called the boundary layer.  The reason for this is due in 

part to the transfer of energy from the ground to the upper atmosphere.  This process can 

be described in general, by analyzing the amount of solar radiation and wind in the 

boundary layer.  Initially, energy is transferred to the ground by solar radiation.  

Depending on the time of day and season, a certain amount of energy is radiated from the 

ground.  The amount of energy in turn induces motion in the molecules above the ground.  

As a result of the induced motion as well as wind (resulting from pressure differences in 

the atmosphere), a mixing of molecules occurs, which in turn transfers energy to higher 

altitudes.  The amount of energy being transferred, as one would suspect, ultimately 

affects the concentration of the molecules.  For path radiance calculations, in which a 

certain path (vertical or horizontal) is considered, transmission is ultimately affected by 

the number of molecules (as well as aerosols) that the radiation comes into contact with.  

In summary, in order to accurately portray the transmission in a certain atmosphere, 

knowledge of the surface conditions is required.   

In addition to accurately modeling the atmosphere, the amount of time to 

calculate the transmission is important.  Current radiative transfer models that use a LBL 

algorithm, calculate the transmission at several points along the user‟s path.  At each 

point, the concentration of the molecules (and aerosols) as well as the radiation at every 

angle with respect to that point, is factored in to the transmission calculations.  In order to 
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speed up the calculations, a Band Model referred to as the Correlated-k, will be 

implemented.  The Correlated-k distribution, in summary, analyzes the distribution of the 

measured effects of the molecules and aerosols on the radiation.  In its final form, it 

allows the user to calculate the transmission, by strictly analyzing the conditions at the 

end of the user‟s path. 

Approach 

  In order to address the problems previously discussed, an in-house atmospheric 

radiative transfer program called LEEDR was chosen to be modified.  Briefly, the 

program allows the user to define the atmosphere in terms of location, rain/cloud events, 

path length, as well as some other more advanced options, and perform LBL transmission 

calculations.   

Currently, LEEDR has the capability for the user to incorporate a variety of 

previously defined atmospheres, which contain information pertaining to specific 

atmosphere variables, such as pressure, site altitude, temperature, and lapse rates.  The 

user has a choice between an ocean atmosphere, standard atmosphere (locations over 

land), ExPERT (Extreme and Percentile Environment Reference Tables) atmospheres at 

specific land locations, and a user-defined Microsoft Excel format atmosphere.  In order 

to obtain the ground level temperature, pressure, etc.  for the user-defined location, each 

atmosphere relies on averages of atmospheric data such as temperature, pressure, 

humidity, and wind speed over a certain time period or season.  Taking the ExPERT 

atmosphere for example, the selection of this atmosphere incorporates averaged variables 

such as: the altimeter, dewpoint, relative humidity, absolute humidity, specific humidity, 

temperature, wind speed, cloud coverage, weather occurrence, yearly min/max, and 
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diurnal temperature change.  Most of these values are based on seasonal and time-of-day 

averages for the chosen site.  The user-defined Microsoft Excel atmosphere on the other 

hand, allows the user to upload an excel file containing two sheets of inputs.  The first 

sheet contains the following: path altitude information, atmosphere type, aerosol 

concentration type, molecular concentration model, turbulence model, and wind model 

type.  While the first sheet describes scenario geometry and specific algorithms used, the 

second sheet delves more into the individual atmospheric quantities such as temperature, 

dewpoint, pressure, relative humidity, molecular absorption, and turbulence. 

 In response to the previously defined atmospheric profiles, the creation of a user-

defined atmospheric variable tab has been proposed.  The tab would essentially allow the 

user to override some of the ground level variables that the program imports from the 

atmospheric databases.  Once the user has specified the ground level value, lapse rates 

previously incorporated in the program will allow the variables to be extrapolated to 

higher altitudes.  In order to account for variables that the user might not be able to 

measure or calculate, the tab will work in unison with the ExPERT atmosphere.  The 

ExPERT atmosphere as stated before, contains atmospheric data corresponding to 

particular sites around the world.  Thus, the addition of this tab will allow the program to 

more accurately characterize a specific site at a specific time. 

 In addition to incorporating a user-defined ground level tab, modification of 

LEEDR‟s current transmission calculation algorithm is a part of this project.  The current 

LEEDR program utilizes a line-by-line calculation technique.  In order to calculate the 

transmission at the end of the user‟s path length, the program first calculates the 

extinction at numerous points along the path.  As one might guess, this process is rather 
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time consuming.  At each section of the user‟s path length, the program has to determine 

the concentration of aerosols, molecules, as well as the transmission effects from 

cloud/rain events.  In order to improve upon this attribute of the program, a new method 

will be implemented into LEEDR. 

Document Outline 

This research paper is divided into five cohesive sections.  The first segment is the 

present section, the introduction.  The subsequent section is entitled Literature Review.  

In this section, discussion will be primarily concerned with the LEEDR program and the 

history leading up to, and including, the transmission algorithm that will be incorporated 

into this program.  In terms of the LEEDR program, more information will be presented 

on the models and atmospheric principles used to create a radiative transfer atmosphere.  

As for the transmission algorithm, information pertaining to evolution of this method will 

be presented to the reader.  The next section, entitled Methodology, will explain the 

additions to the LEEDR program in a more mathematical sense.  Discussion of the 

particular transmission algorithm implemented into LEEDR will be discussed in more 

detail, as well as insight on how the user-defined ground level values become integrated 

into LEEDR‟s calculations.  Following this section, an implication of the results of this 

project will be given.  Lastly, a summary and suggestions of future research will be 

presented to the reader. 
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II. Literature Review 

LEEDR (Laser Environmental Effects Definition and Reference) 

 LEEDR was initially developed with two goals in mind.  Quoting text from a 

research paper by Fiorino et al., LEEDR enables the user to, “…create correlated, 

physically realizable vertical profiles of meteorological data and environmental effects 

such as gaseous and particle extinction, optical turbulence, and cloud free line of sight” 

[5:2].  This program also allows, “…graphical access to and export of the probabilistic 

data from the Extreme and Percentile Environmental Reference Tables (ExPERT)” [5:2]. 

 There are three input tabs incorporated into the program.  The first tab, entitled 

“Location”, creates many of the features used to depict the atmosphere.  The user has 

several options to choose from including: the particular site used for the radiative transfer 

calculations, the molecular effects model, the aerosol effects model, the ground visibility, 

and boundary layer height.  In terms of the location of the site, the user can select a site in 

number of ways.  A site can be chosen by indicating the longitude and latitude of the 

desired location in a text box.  If the specific latitude and longitude is unknown, the user 

has the choice of selecting a site from a two-dimensional world map, located next to the 

latitude and longitude text box.  The two-dimensional world map enables the user to 

select any location in the world by simply pointing the mouse cursor and clicking.  In 

order to aid in this process, two additional features have been integrated into the map.  

First, alongside the map, above the latitude and longitude text box, there are two zoom 

buttons, which allow the user to focus in on a particular state, providence, or country.  

Secondly, located on the map itself are 408 ExPERT sites, which are indicated by red and 

yellow circles (Figure 1).   
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Figure 1.  The ExPERT sites in LEEDR 

 
 
 
The ExPERT sites (which will be discussed later in the Methodology section), contain 

measured data pertaining to a particular site.  Thus, radiative transfer calculations and 

upper air measurements are more accurate for locations near these sites, than simply 

clicking on a location near the ExPERT site.  In order to select an ExPERT site, the user 

must click on the “Use this Site” button, located below a separate set of text boxes on the 

Location tab, displaying the nearest ExPERT site, as well as the latitude and longitude 

points of that site.  The user however, does not have to select an ExPERT site.  Any 

location over land or water will suffice in creating a user-defined atmosphere. 

The molecular effects model, which will be discussed in more detail in the next 

section entitled “LEEDR (Absorption/Scattering)”, provides the user with three options.  

The first option entitled “Calculations”, utilizes Rayleigh Scattering and the HITRAN 
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2004 database for molecular absorption, to compute the desired reduction or 

intensification of the transmission.  The second option, entitled “Load from Excel”, as the 

name would suggest, allows for the integration of an excel file into LEEDR, which 

specifies the molecular absorption and molecular scattering in km
-1

.  Lastly, the user can 

also specify coefficients of the absorption and scattering in connection with scattering 

and absorption equations (Absorption = Ae
-altitude/B

, where A is in km
-1

 and B is in km, 

and Scattering = e
A+(B*altitude)

, where A is unit less and B is in km
-1

).   

The aerosol effects model is constructed in a similar manner, in that the user can 

select a previously defined model, or they can define a set of coefficients depicting 

absorption and scattering phenomena.  In the dropdown menu under “Aerosol Effects 

Model”, the user once again has three different options.  The first option allows the user 

to once again define coefficients describing the absorption and scattering effects on 

radiation (Absorption = Scattering = Ae
-altitude/B

, where A is in km
-1

 and B is in km).  The 

second option, somewhat similar to the “Molecular Effects model”, uses the GADS 

aerosol model.  This model, in more detail, incorporates the effects of Wiscombe Mie 

model into the calculations pertaining to transmission.  In summary, the size of the 

particle in relation to the wavelength of the radiation is the primary focus for how 

transmission is going to be affected.  The third and final option presents the user with the 

choice of selecting from a variety of predefined aerosol distribution models.  As 

mentioned before, LEEDR has several (18 to be exact) pre-existing models to select.  

These options include maritime aerosol models, continental average aerosol models, 

arctic models, brownout models, and even some MODTRAN (Moderate Spectral 

Resolution Atmospheric Transmission) models. 



11 

 

In the next tab, entitled “Atmosphere”, the user is given the opportunity to define 

the turbulence model as well as the wind and clouds/rain model.  There are eight different 

turbulence models currently in LEEDR.  These models include: Hufnagel-Valley 5/7 (HV 

5/7), CLEAR 1 (Critical Laser Enhancing Atmospheric Research), None (Vacuum), 

Climatological Cn
2
, SOR (Starfire Optical Range) Special, Constant Cn

2
, NSLOT (Navy 

Surface Layer Optical Turbulence) Cn
2
 and Tunick.  Each turbulence model, to 

summarize, uses different assumptions to help model the variation in atmospheric 

quantities, which ultimately results in changes in the index of refraction structure 

constant, or Cn
2
.  Along with the turbulence models, there are four different wind profile 

methods.  The four different methods consist of: the Climatological Wind Profile, Bufton 

Wind Profile, Excel File Wind Profile, and the Ocean Wind Profile.  Lastly, LEEDR 

incorporates several cloud and rain scenarios.  The user has numerous options including 

two different types (that being maritime and continental) of cumulus clouds, and stratus 

clouds.  In addition, the user can specify a fog deck, drizzle (2mm/hr), very light rain 

(5mm/hr), light rain (12.5mm/hr), moderate rain (25mm/hr), heavy rain (50mm/hr), and 

extreme rain (75mm/hr).  In order to more accurately account for these effects in the 

atmosphere, LEEDR enables the user to define the region in which they are occurring.  

Alongside dropdown menu consisting of the rain and cloud events, the user has the 

opportunity to select an upper and/or lower altitude for the chosen event. 

The last tab, which is referred to as the “Laser/Geometry” in the LEEDR 

program, gives the user the opportunity to select their path length, as well as the 

wavelength of the radiation being observed.  In terms of the path length, the user the 

option of selecting a purely azimuthal or zenith, beginning and ending location.  As for 
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the wavelength of radiation, there are currently 20 different wavelengths (ranging from 

0.355 µm to 10.6 µm) incorporated into LEEDR, as well as a user-defined wavelength 

option enabling the user to select any wavelength from 0.4 µm to 8.6 m. 

LEEDR (Absorption/Scattering) 

 When specifying a molecular or aerosol effects model, there are numerous models 

which the LEEDR program uses to perform these calculations.  In terms of the molecular 

effects model, as previously stated, there are three different options that the user has the 

choice of selecting.  One can obtain a molecular effects model through calculations, one 

can load their own molecular model, or one can create their own model by specifying 

absorption and scattering coefficients.  The aerosol effects model, as was the case with 

the molecular effects model, has three different options.  The first option allows the user 

to select the GADS aerosol model.  The second and third options allow the user to select 

from other regionally pre-defined models or create their own model, respectively.   

Focusing on previously research models, and excluding the equation and excel 

based methods, the aerosol concentration in particular, is modeled by both the GADS and 

ANAM [5:2-4].  The GADS aerosol model creates the aerosol distribution by utilizing 

previous data collection measurements to model 12 different aerosol types, along with 

their relative abundances in different regions, and under different circumstances.  Some 

of the aerosol types, according to d'Almeida et al, consist of: arctic, antarctic, clean-

continental, average-continental, urban, desert, clean-maritime, maritime-mineral, 

maritime-polluted [4:147-168].  Each of the different aerosol types is made to be defined 

by a certain cross section, single scatter albedo, and asymmetry factor.  D‟Amedia also 

notes that, phenomena which induce changes in the concentration of the aerosols include 
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factors such as seasonal-migration of the climatic belts (e.g. polar fronts, intertropical 

convergence zones, etc.), and abundance of water vapor.  In the LEEDR program, GADS 

model data is averaged on a 5° by 5° area.  In order to model aerosol distribution over a 

body of water however, the program reverts to the ANAM model.  Concentration values 

for this model unlike the GADS model, are based off measurements pertaining to areas 1° 

by 1°, from “…just above the sea surface up to a few meters (~10 m)” (above 10 m, 

relations between concentration and wind speed can be used) [7:42].  It is noted in the 

paper entitled Characterizing large aerosols in the lowest level of the marine atmosphere, 

that aerosol distribution with height is based off of the Rotorod technique, which 

describes the presence of large aerosols (> 10 µm) [7:44] near the water‟s surface.  In 

summary, the Rotorod technique employs a device which consists of two stainless steel 

rods coated in Silicone, connected to a platform made to rotate in an azimuthal direction.  

When initiated for testing, the motor causes the platform to rotate, which in turn forces 

the stainless steel rods, which were initially at rest on the platform, to rise up.  Testing of 

aerosol distribution and size can then be performed by observing the steel rods with a 

microscope.  The results of tests (i.e. distribution of aerosols pertaining to a particular 

radius) utilizing the Rotorod technique were then modeled by a lognormal function. 

 Molecular and aerosol scattering are determined from Rayleigh theory and the 

Wiscombe Mie model, respectively.  To summarize, both forms of scattering present in 

LEEDR are based off of a size parameter.  In equation form, the size parameter is 

represented as: 

 
2 r

x



  (1) 
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where r is the radius of the particle, and λ is the wavelength of the radiation.  One 

encounters Rayleigh Scattering when the size parameter is between x=0.2 and x=0.002.  

From an observational standpoint, Rayleigh Scattering is present for raindrops and 

drizzle, when viewed in the microwave.  Mie Scattering, on the other hand, encompasses 

a much wider range.  The size parameter associated with Mie Scattering includes x=2000 

and x=0.2.  A situation that would involve Mie Scattering would include cloud droplets 

(radius ~10µm) in the thermal infrared (4µm to 50µm).  In general, Rayleigh Scattering 

involves situations where the particle is, “… sufficiently small relative to the wavelength 

– i.e., |m|x << 1 – every part of the particle simultaneously experiences the same 

externally imposed oscillating electric field” [11:347].  This in turn causes the particle to 

become polarized.  The resulting dipole creates an electric field, which interacts with the 

incident electric field.  Ultimately, one arrives at an equation depicting the observed 

intensity, which is:  

 4 2 2(1 sin cos )I      (2) 

where I is the intensity (W m
-2 

sr
-1

), ω is the frequency of the incident radiation, Φ is the 

polar angle of the incident wave, and Θ is the angle with respect to the incident wave and 

observed point.  From this equation, conclusions can be made concerning the scattering 

and extinction efficiencies.  If one considers the size parameter to consist of a power 

series, one can in turn derive the extinction and scattering coefficients.  Important 

relations that can be drawn from this assumption are represented in the following two 

equations: 

 s a eQ Q Q  (3) 
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where Qs, Qa, and Qe are the scattering, attenuation, and extinction coefficients, 

respectively. 

 
3s

e

Q
x

Q
    (4) 

where  is the single scatter albedo (represents ratio of scattering and extinction).  With 

these two relations, one can take the analysis further and in turn gain an understanding of 

how the scattering and extinction effects the transmission of the radiation.  Focusing on 

the last equation (4), one can conclude that scattering can be ignored, due to the size 

parameter region that Rayleigh Scattering encompasses.  After taking this into account, 

and adding the basic definition of mass absorption coefficient, one ultimately arrives at: 

 a ak   (5) 

where βa is the volume absorption coefficient (km
-1

), ka is the mass absorption coefficient 

(m
2
/km), and ρ is the density of the absorbing material (kg/m

3
).  This result can be 

summed up, using an example consisting of clouds and water vapor, by, “…for radiation 

passing through a cloud of sufficiently small absorbing particles, the total absorption is 

equal to ka times the total mass path, regardless of the exact sizes of the constituent 

particles” [11:357].  Mie Scattering, on the other hand, uses the Maxwell‟s equations, 

along with the assumption of a homogeneous sphere, to create extinction and scattering 

coefficients.  The extinction coefficient in this case, is: 
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where x is the size parameter, m is the relative index of refraction, ℜ is the real 

component, and an and bn are “Mie scattering coefficients and are functions of x and m” 

[11:359].  The scattering coefficient in turn, is: 
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    (7) 

Once again, analyzing this result in terms of the transmission of the radiation, some 

interesting conclusions can be drawn.  Depending on the size parameter, one can see 

differing amounts of forward and backward scattering.  As the size parameter is increased 

from x=0.1 to x=10,000, one observes mainly forward scattering, initially.  However, as x 

begins to approach 10,000, the percentage of forward scattering and backward scattering 

becomes equal.  This feature is different from Rayleigh Scattering, in which forward and 

backward scattering was primarily equal for all small values of x.   

LEEDR (Turbulence Models) 

 In the LEEDR program, under the “Atmosphere” tab, there are eight different 

turbulence models that the user has the option of choosing.  These models include: HV 

5/7, CLEAR 1, None (Vacuum), Climatological Cn
2
 (applicable to ExPERT, mid-latitude 

and desert sites only), SOR Special, Constant Cn
2
, NSLOT Cn

2
 (for ocean sites only), and 

Tunick.  Each of the models calculates, under different circumstances (isoplantic angles, 

etc.), the value of refractive index structure constant Cn
2
.  The refractive index structure 

constant essentially measures the efficiency of radiation propagation, as a result of 

changes in the distribution of material in the atmosphere.  From this quantity, one can in 

turn account for changes in transmission. 
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The refractive index structure constant measures the amount of deviation in the 

refractive index.  Changes in the refractive index are seen to be the most prominent due 

to disparities in temperature and relative humidity.  Temperature and humidity variations 

arise when one begins to view the atmosphere as it truly is, a fluid.  From this vantage 

point, it becomes evident that the reason for the variation in our refractive index structure 

constant is in due part to convection within the atmosphere.  The resulting affects of 

convection, which are induced by differing areas of pressure associated with weather 

systems, in turn cause differences in temperature, and water vapor.   

In areas of differing indices of refraction, one would obviously notice problems 

arising in any imaging application.  In terms of laser beam propagation, the effects that 

can be observed due to optical turbulence include, “beam wander and broadening” 

[2:159].  For remote sensing applications, optical turbulence can cause “image dancing 

and blurring” [2:159]. 

In order to describe the variation of the atmospheric constituents, initial 

consideration was given to the Navier-Stokes equation.  The Navier-Stokes equation 

depicts the turbulence that arises in a fluid due to different velocity regions, as well as 

particle collisions.  However, due to the problem of closure, new methods had to be 

developed to explain deviations in the atmosphere.  One of the first methods developed 

from the observed limitation of the Navier-Stokes equation in the atmosphere, was the 

Kolmogorov model.  According to Kolmogorov, the atmosphere is made up of different 

sized eddies.  The eddies that are present in the atmosphere, Kolmogorov reasoned, were 

due to “convection and wind shear” [2:167] (Figure 2).  According to the model, big 

eddies exist higher in the atmosphere, and successively smaller eddies are observed as 
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one gets closer to the ground.  Inside each eddy, Kolmogorov assumed that the 

atmosphere was homogeneous, isotropic, and ergodic.  That is to say, there are an equal 

number of large and small molecules and aerosols distributed uniformly in each direction 

away from a certain point, and that each state that they could be in is equally likely.  A 

famous quote by Lewis Fry Richardson describes the interactions that take place between 

eddies, “Big whirls have little whirls, that feed on their velocity; and little whirls have 

lesser whirls, and so on to viscosity”.  After going through quite a bit of math concerning 

the velocity distributions that reside in each level of the atmosphere, and the structure 

function (represents the mean square difference in the index of refraction at points 

separated by a distance r), one ultimately arrives at a piecewise function depicting the 

index of refraction: 
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Based on this equation, one can see that Kolmogorov‟s Theory attempts to model the 

deviation in turbulence through the structure constant Cn
2
, which he deduces, varies in 

both time and space.  Figure 2 illustrates this concept: 
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Figure 2.  Kolmogorov’s Model of Variation in the Atmosphere  

 
 
 

where L0 and l0 refer to diameters of homogeneous, ergodic, and isotropic areas.  The 

resulting values of the refractive index structure constant for Kolmogorov‟s model show 

that, atmospheres with structure constants around Cn
2
 ~ 10

-17
m

-2/3
 experience „weak‟ 

turbulence, while atmosphere‟s with Cn
2
 values ~ 10

-13
 m

-2/3
 experience a stronger form 

of turbulence. 

 Since the development of Kolmogorov‟s turbulence model, there have been two 

proposed models that are used in practice.  These models are discussed in more detail in 

the journal article entitled, Propagation through Atmospheric Optical Turbulence by R.  

R.  Beland [2].  The first sets of models are labeled as the Model Optical Turbulence 

Profiles.  These models were created from experimental observed data.  According to the 

text, these models differ from the previous Kolmogorov model in that, they, “were 

derived by curve-fitting a piecewise-continuous polynomial to a variety of measurements 
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(e.g. scintillometer data, acoustic sounder, aircraft, and others)” [2:218].  The turbulence 

model from LEEDR which is categorized under the Model Optical Turbulence Profiles, 

is the CLEAR 1 model.  The other category of models which were proposed, are the 

Parametric Models.  In the text, these models are described as having, “…parameters in 

an attempt to incorporate some dependencies on winds and meteorology and to model the 

complexity of actual Cn
2
 measurements” [2:221].  The HV 5/7 model is one of the most 

recognized models from this category.  Parameters that are utilized in the HV 5/7 include 

the strength of the surface turbulence, speed of high altitude winds, the atmospheric 

coherence length, and isoplanatic angle. 

LBL (Line-By-Line Calculations) 

As noted in the text A First Course in Atmospheric Radiation by Grant W.  Petty 

[11], there are a variety of ways that one could use to analyze transmission and extinction 

in the atmosphere.  The first method that Petty introduces to the reader is the LBL 

technique.  As was mentioned previously, LEEDR includes a line-by-line transmission 

calculation algorithm for wavelengths ranging from ultraviolet to radio frequencies. 

The LBL technique is often considered to be a tedious but extremely accurate 

method for computing transmission calculations.  The reason for this is due in part to the 

number of computations that have to be performed throughout the atmosphere, as well as 

the amount of information being filtered into the absorption calculations.  Due to the 

complexity that arises when attempting to model transmission in the active atmosphere 

however, a few assumptions have been made for the LBL approach.  One assumption is 

that when computing transmission values, a plane-parallel (in which atmospheric 

quantities are assumed to vary more substantially in the vertical direction, than the 
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horizontal) atmosphere is to be utilized.  Another assumption presents itself when one 

considers the broadening of the absorption lines that occur due to pressure and Doppler 

broadening.  In the case of pressure broadening, collisions with other molecules induce 

absorption lines resembling a broadened Lorentz line shape.  Doppler line shapes on 

other hand consist of lines that have a more narrow shape, and a half width that is 

dependent on temperature.  The question that arises though is where one should cut off 

the line shape.  One approach that has been used is to multiply the line by certain values 

ranging from 0 to 1.  To clarify, one would multiply the peak by 1, and the rest of the line 

by a specific value that would decrease to 0, when a sufficient amount of absorption has 

been considered. 

In the discussion of the LBL technique, it is often helpful to begin with the basic 

definitions concerning the transmission of radiation.  In most introductory atmospheric 

science or spectroscopy classes, one of the first laws pertaining to radiation transmission 

that one comes across is Beer‟s law.  Beer‟s law states that, “…the intensity of a beam of 

monochromatic radiation falls off exponentially as it traverses a uniform medium” 

[11:78].  The reason for the reduction in intensity is due in part to the presence of 

aerosols and molecules, which alter the radiation.  This leads us to the basic definition of 

transmittance for monochromatic radiation, which states: 
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where I(x) is the received intensity (Wm
-2

sr
-1

), 0I  is the initial intensity (Wm
-2

sr
-1

), a is 

the absorption coefficient (km
-1

) , and x is the distance (km) that the radiation has 

traveled.   
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Taking the analysis for transmission a step further, one can begin to apply it to a 

plane-parallel atmosphere.  For the LBL calculations, the optical depth, which represents 

the amount of extinction (absorption and scattering) that will occur to the radiation along 

its path, is defined as: 
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where  is the optical depth, which is dependent upon wavenumber, and ( )a z


 is the 

volume absorption coefficient (km
-1

).  In order to aid in the comprehension of the 

previous equation, one can in turn break down the volume absorption coefficient into 

quantities consisting of the density of the absorbers and scatters, as well as the mass 

absorption coefficient.  The mass absorption coefficient accounts for the mass of the 

absorbing and scattering material.  A famous experiment consisting of Petri dishes filled 

with milk, water, and India ink [17] illustrates this coefficient.  The results found that 

based on the amount of India ink and milk applied to the Petri dish, the transmission 

would be affected.  The resulting volume absorption coefficient is: 
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where ρ is the local density (kg/m
3
) at a height z (m), and k is the mass absorption 

coefficient (m
2
/kg) for the particular ith constituent. 

Thus, for a typical absorption spectrum which consists of many peaks and valleys 

along the wavelength or wavenumber spectrum, the LBL method calculates transmission 

at each level of the atmosphere by utilizing the following equation: 
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where k  is the mass extinction coefficient (m
2
/kg) and ρ(z) is the density (kg/m

3
) of the 

absorbing gas.   

Band Models (Wide and Narrow Band Models) 

In order to improve upon the calculation time required for LBL calculations, band 

models were created.  In terms of LEEDR, calculation times over a user-defined part of 

the interval with LBL calculations could range on the order of minutes to hours, 

depending of the level of accuracy given to the atmospheric profile.  In order to speed up 

the calculation time, band models assume certain characteristics of the lines in the 

spectrum. 

  Beginning the discussion with the definition of absorptance (i.e. how much 

radiation of a particular wavenumber is absorbed), which is defined as: 
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where A is the absorptance, T is the Transmission, ∆ν is the wavenumber domain (m
-1

), 

k  absorption coefficient (m
2
/kg), and u is the path length (kg/m

2
).  In order to aid in 

analyzing how the absorptance varies with changing path length and absorption, the 

equivalent width was defined.  Mathematically, the equivalent width is defined as: 

 1W e d





   (14) 
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The equivalent width represents a square line in the absorption spectrum that absorbs the 

same amount of radiation as the observed absorption data.  In the weak line limit, in 

which the optical depth is  << 1, the equivalent width can be written as: 

 W Su  (15) 

where S is the line strength (cm
-1

/molecule cm
-1

) and u is the path length (m).  What this 

ultimately tells us is that, “total path absorption is proportional to the line strength and the 

mass path u, irrespective of line shape” [11:289].  In terms of a strong line limit (where 

the opposite is true  >>1), the equivalent width becomes, 

 2W S u  (16) 

where S is the line strength, u is the mass path, and α is the line half-width. 

Two generally agreed upon band transmission models utilize the previously 

discussed assumption of equivalent width.  The first model that will be mentioned is the 

wide-band transmission model.  These models are typically used when accuracy is of the 

highest importance.  The other type of band model, that being narrow-band transmission 

models, focus more on computation speed rather than accuracy.  In order to achieve a 

faster transmission result, narrow-band models divide the desired part of the spectrum 

into parts based on certain characteristics, including: the number of lines, their position 

and strength, and Planck‟s Function.  The band-averaged transmission can in turn be 

found by making assumptions concerning the orientation of the observed absorption 

lines.  A few models typically used in practice include the Elasser Band Model, and the 

Malkmus Band Model.   



25 

 

In the case of the Elasser Model, a periodic Lorentzian distribution is assumed for 

the absorption lines.  For this model, a set of absorption lines can be modeled by using 

hyperbolic sines and cosines.  
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where kν is the absorption coefficient which is dependent upon wavenumber, S is the line 

intensity, α is the half-width, δ is the line spacing, and β and γ are parameters which 

depend upon the line spacing, wavenumber, and half-width.  In equation form, β and γ 

are represented in the following manner.  
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In order to account for a larger or smaller separation between absorption lines, one often 

utilizes a “grayness parameter”, which is defined as: 

 Ly



  (19) 

where αL is the Lorentzian half-width.  One can begin to see the functionality of the 

equation depicting the absorption coefficient (i.e. equation 17), when one varies the 

grayness parameter. In reference to equation 19, if one makes y large, the resulting set of 

the absorption lines will have small line spacing parameter δ, and thus will tend to 

overlap.  If y is small, the opposite will be true. A small y would entail large line spacing, 

and thus a lot of space in-between absorption lines.  After inserting the grayness 

parameter into equation 17, the absorption coefficient becomes:  



26 

 

 
sinh(2 )

2
cosh(2 ) cos

S y
k

y










 

  
 

 (20) 

Inserting the previous equation (equation 20) into the equation of spectral transmittance 

(equation 21), one arrives at the following two equations for transmittance with the 

Elasser Band Model (equation 22).  
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where u is the mass path length. 
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 where erf is the error function.   

The Malkmus model, on the other hand, does not assume a periodic motion 

(which is only observed with linear molecules such as CO2).  Instead absorption lines are 

assumed to occur at random positions throughout the domain.  In addition, line strengths 

are described according to an exponential model, which states: 
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where S is the line strength, and 
_

S is the mean line strength from 0 to ∞.  Under the same 

conditions as the Elasser Model, transmission is defined as: 
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K-Distribution/Correlated-k 

u ≫ 1 

Large y (order 10 or greater) 
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Even though the band models are able to calculate the transmission in a faster 

manner, certain aspects of the models can lead to deficiencies in calculation accuracy.  

Elasser Band Models are able to calculate transmission for, “P- and R-branches of a 

vibration/rotation band” [11:294].  However, accuracy is limited to linear molecules like 

(e.g.  CO2).  The Random or Malkmus Model accounts for the spectrum of “nonlinear 

molecules like water vapor, ozone, methane, etc.” [11:297] however, when one 

extrapolates this model to nonhomogeneous atmospheres, errors become apparent (e.g. 

Curtis-Godson approximation in the 9.6 µm band for O3 [9:147]).   

Recent research however, with respect to k-Distribution models, has shown much 

more promise in terms of calculating transmission in homogeneous atmospheres (where 

pressure and temperature are essentially constant).  As noted by Petty, the K-Distribution 

model  “…is a relatively recent innovation and is rapidly gaining favor in view of its 

ability to achieve fairly accurate results with two or three orders of magnitude less 

computer time than LBL methods” [11:285].   

Unlike the LBL and Band Models previously mentioned, the k-Distribution 

method proposes a calculation method dependent upon the distribution of the extinction 

in the spectrum.  Thus, the spectral transmission equation can be transformed from one 

that depends on wavenumber, to one that depends upon integration over an interval of 

absorption values: 
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where k is the volume extinction coefficient (km
-1

), u is the path length (km), ∆ν is the 

wavenumber interval (cm
-1

), and f(k) is the probability distribution function (defined as 
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 , where kmin has been set to 0, and kmax has been set to ∞).  However, even 

after transforming the transmission integral from the wavenumber domain to absorption 

coefficient domain, transmission calculations can be extensive.  Since the probability 

density function is mostly likely not monotonic throughout the range of absorption 

coefficients, a large amount of computation points could be needed to effectively 

compute transmission (since the integral in equation 25 can be turned into a Riemann 

sum).  In order to reduce computation time, the cumulative probability function 

(commonly represented as g(k) for the k-Distribution) as a function of absorption 

coefficient value, can be utilized.  The cumulative probability function can be obtained 

by integrating the probability distribution function over the desired absorption interval, 

starting from 0.  Ultimately, what is being obtained through the cumulative probability 

function is the fraction of absorption values (0 through some k), throughout the 

previously defined wavenumber interval. Thus, the transmission equation that was 

represented by equation 25 becomes equation 26, after using the cumulative probability 

function. 
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where T is the transmittance, k(g) is the inverse of the cumulative probability or 

equivalent k function, u is the mass path. 

The extrapolated version of the k-Distribution method is referred to as the 

Correlated-k method.  Essentially, whereas the k-Distribution method is accurate within a 

homogeneous atmosphere, the Correlated-k can be applied to path lengths in which 
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pressure and temperature can vary.  The reason for this is due in part to overlapping 

absorption lines that occur due to different concentrations of molecular species in the 

higher altitudes of the atmosphere (a particular example includes H2O and CO2 at 15µm).  

The proposed solution or Correlated-k algorithm proposed solution is in turn given by 

Liou.  For an example, in which two atmospheric gases are considered, one can use the 

respective molecular mixing ratios (or concentrations), to compute a new exponential 

term in the transmittance equation.  Using the transmittance equation previously defined 

(23), and assuming the gas lines to be statistically independent, one can in turn use the 

previously defined k-Distribution method to calculate the new transmission.  The 

resulting equation is: 
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where ρ is the air density (kg/m
3
), q and qc are the mixing ratios of the two gases, and 

k(g1) and k(g2) are the two equivalent k functions of the gases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

III. Methodology 

Overview 

 This chapter delves into the mathematical concerns pertaining to both sections of 

this research project.  In terms of the User-Defined Ground Level tab, discussion of how 

the user‟s values become factored into the LEEDR program‟s calculations will be 

presented.  As for the Correlated-k algorithm, the particular algorithm from which this 

research project‟s Correlated-k algorithm was model is developed, is discussed.   

User-Defined Ground Level Tab 

 Through a newly created graphical user interface (GUI), the user is given the 

choice of modifying several variables that are important to the description of the 

atmosphere.  These variables include those that are directly measurable, such as pressure 

and temperature, as well as other important variables, such as relative humidity, absolute 

humidity, dewpoint, and saturation mixing ratio.   

When LEEDR is initialized, the variables on the User-Defined Ground Level tab 

are grayed out.  It is not until the user selects an ExPERT atmosphere, that the variables 

are enabled for modification.  Figure 3 displays the User-Defined Ground Level tab, after 

the user has selected an ExPERT atmosphere: 
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Figure 3.  User-Defined Ground Level GUI Tab Incorporated into LEEDR 

 
 
 

The reason for directly connecting the User-Defined Ground Level tab to the 

ExPERT atmosphere is that the ExPERT atmosphere already contains climatologically 

averaged atmospheric data pertaining to a particular site.  Immediately after selecting the 

site, the user is given the opportunity to change the time of day (in 3-hour increments), 

and the relative humidity percentile (1
st
 percentile-Dry to 99

th
 percentile-Most Damp, in 

unevenly spaced increments), on the Location tab.  Thus, with the addition of the ground 

level tab, the user has more control of the atmosphere for these sites (from the ground to 

the boundary layer) by having the opportunity to override some of the ExPERT database 

ground level values. 
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In order to select a variable, a checkbox has been inserted next to each of the 

variables‟ edit boxes.  If the box is left unchecked, ExPERT LUT (Lookup Table) values 

will be used for the ground level values.  If checked, the ExPERT LUT values will be 

overwritten.  To safeguard against modifying a variable that already has a uniquely 

defined value, certain variables under certain conditions will become disabled.  For 

instance, if the user entered ground level values for pressure, temperature, and dewpoint, 

the option to change the ground level values of specific humidity and saturation mixing 

ratio would become disabled.  This is illustrated in Figure 4. 

 

 

 

Figure 4.  User-Defined GUI Tab Safeguarding Technique 
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Figure 4 depicts a situation in which pressure (mb), temperature (°F), and 

dewpoint (°F) have been chosen.  The other variables, relative humidity, specific 

humidity, absolute humidity, and saturation mixing ratio, are disabled, due to their 

dependence on the previously modified pressure, temperature, and dewpoint. 

After each ground level variable is defined, different methods based on the 

particular variable, are utilized in order to extrapolate the values throughout the boundary 

layer.  In terms of pressure and temperature, the appropriate saturated or unsaturated 

lapse rate is used.  Dewpoint and relative humidity are calculated based on the ground 

level temperature, as well as each variable‟s respective ground level value.  After 

calculating the dewpoint, LEEDR is able to use the extrapolated dewpoint and 

temperature to determine the relative humidity.  The Goff-Gratch equation [20:350] is 

used to convert dewpoint to vapor pressure and obtain other moisture parameters.   

After calculating the pressure, temperature, dewpoint, and relative humidity, 

LEEDR is able to determine the absolute humidity, specific humidity, and saturation 

mixing ratio.  For the case in which a user-defined absolute humidity, specific humidity, 

or saturation mixing ratio is not supplied, LEEDR uses the Goff-Gratch equation to 

initialize the computation of these variables.  In summary, the Goff-Gratch equation with 

dewpoint as the variable produces the saturation vapor pressure.  From the saturation 

vapor pressure, one can determine the saturation mixing ratio.  One can then use the 

saturation mixing ratio to define the specific humidity, which can be used to compute the 

absolute humidity.  If the user supplies a ground level absolute humidity, specific 

humidity, or saturation mixing ratio however, the saturation vapor pressure is determined 

by utilizing Bolton‟s equation [28].  Bolton‟s equation is defined as the following: 
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where Td is the dewpoint (°C), and es is the saturation vapor pressure (g/kg).  Whereas 

the Goff-Gratch equation is accurate from -50°C < Td < 50°C, Bolton‟s equation has been 

shown to be accurate for the following dewpoint range: -30°C ≤ T ≤ 35°C, which is 

acceptable for the calculations in LEEDR.  After determining the saturation vapor 

pressure using Bolton‟s equation, the saturation mixing ratio, specific humidity, and 

absolute humidity are computed in the same manner as mentioned before (e.g.  saturation 

mixing ratio is determined from the saturation vapor pressure, which is in turn utilized to 

calculate the specific humidity, etc.). 

Correlated-k Binning Method 

The main focus of the Correlated-k section of this project is to speed up the 

transmission calculation time for a user-defined spectral interval, while retaining the 

near-continuous consideration of the spectral band of interest.  This part of the project is 

accomplished in essence, by utilizing method similar to that used in Modtran.  

Essentially, the user is able to perform path radiance calculations based on very small 

intervals of band-averaged transmittance, at the end of the user‟s path length.  In 

summary,  

“Modtran is a „narrow band model‟ atmospheric radiative transfer code.  The 

atmosphere is modeled as stratified (horizontally homogeneous), and its 

constituent profiles, both molecular and particulate, may be defined either using 

built-in models or by user-specified vertical profiles.  The spectral range extends 

from the UV into the far-infrared (0-50,000 cm-1), providing resolution as fine as 

0.2 cm-1” [1]. 

 

 The Correlated-k section of this project is described as a three step process.  First, 

the LEEDR program is run under a certain scenario, in order to obtain extinction 
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coefficients as a function of frequency.  Once the extinction coefficients are determined, 

a Matlab script is used to save the coefficients in a flat-file database for the Correlated-k 

method.  After the extinction coefficients are stored, a second Matlab script, which 

contains the Correlated-k method, performs one of two functions based on the user‟s 

inputs.  If the user has not run the script previously (for the particular set of extinction 

coefficients), the script performs the Correlated-k method on the extinction coefficients, 

and stores the resulting k(g) points.  If however, the user has run the script, and in turn 

determined the k(g) points, the script then by-passes the Correlated-k section, and solely 

compute the transmittance over the desired interval and path length. 

The specific Correlated-k algorithm that was used for this project is depicted in 

the Liou text [9:127-137].  Figure 5 displays the method that Liou utilizes. 
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Figure 5.  Illustration of the mapping of the absorption coefficient from the ν-domain to the g-

domain.  (a) Absorption coefficients of three lines in the ν-domain and division of the k-space into 10 

equal intervals.  The numbers are the data points in each interval with a total number of 35.  (b) By 

definition, g(j∆k) ≡ n(0,j∆k)/N, j = 0, 1, …, 9.  Thus, the data points in the ν-domain are transformed 

to the g-domain, where g is a monotonic increasing function.  (Courtesy of [9:134]) 

 
 
 

The top graph (labeled (a) in Figure 5) represents a hypothetical extinction 

spectrum interval.  For this particular example, there are 35 extinction points, ranging in 

value from 0 to 9·∆k.  In order to begin the process of obtaining the corresponding k(g) 

points (referenced in equation 26), the extinction points are put, for example, in 10 

different evenly spaced bins.  The particular k(g) point is determined by summing the 

number of extinction points in a certain bin, as well as any extinction points in bins 

corresponding to lower extinction values, and dividing by the total number of extinction 
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points in the domain.  Thus, for the first k(g) point corresponding to the region ∆k in the 

top graph, there are 4 points in this bin, and 35 extinction points in the domain.  The 

resulting g value for this bin would be g = 4/35.  Although it was not specifically stated in 

Liou, the middle extinction value pertaining to the bin, was used for the corresponding 

k(g) point.  Thus, for the first k(g) point, 
2

k
would be the k(g) value for g = 4/35.  The 

graph (b) in Figure 5 represents the end result of performing the calculations over all of 

the bins.   

Mathematically, the Correlated-k for homogeneous atmospheres (or k-

Distribution method) calculates the cumulative probability in essentially one of two ways.  

By definition, the cumulative probability function is defined as: 
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where f(k) is the probability distribution function of the extinction points.  Another way 

to calculate the cumulative probability distribution function, which is utilized for this 

project, is through the following equation: 
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Relating this back to Figure 5, n(0,k) is the number of points in the particular bin as well 

as any lower bins, N is the total number of extinction points in the domain, and j is the 

particular absorption line being observed across the part of the spectrum ∆ν (e.g. in 

Figure 5, j would vary from 1 to 3, since there are 3 peaks in the part of the spectrum).  

Thus, one is able to obtain a discrete number of k(g) points. 
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Once the k(g) points (or equation), have been determined, the optical depth can be 

defined.  The optical depth, by definition is the amount of extinction, corresponding to a 

particular molecule (or group of molecules) that one encounters along an atmospheric 

path length.  Mathematically, the optical depth is represented as: 
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where τ is the optical depth, βe is the volume extinction coefficient (km
-1

), ρi is the mass 

density of a particular molecular absorber (kg/m
3
), and ke,i is the mass extinction 

coefficient (m
2
/kg).  For the optical depth calculations in LEEDR, the following 

molecular absorbers (along with their respective mass extinction coefficients) are 

utilized: H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, and HNO3.  The 

resulting transmission value can then be found by referencing the appropriate equation 

(25-27). 

For a homogeneous atmosphere, the optical depth equation can be modified.  Due 

to the fact that pressure and temperature are essentially constant in a homogeneous 

atmosphere, the extinction coefficients can be factored out of the equation.  Thus, for the 

case in which one has the volume extinction coefficient (which was the case for this 

project), the equation is reduced to the extinction coefficient multiplied by the path 

length.  If, on the other hand, one has the mass extinction coefficient, the equation 

becomes the integral of the mass density of the particular absorber, multiplied by its 

respective extinction coefficient. 

In order to compute the transmission in a homogeneous atmosphere for this 

project, a slight modification was made to equation 26.  Equation 26, in essence, 
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computes the transmission by integrating (or summing) over the number of transmission 

points, over the g domain.  The Riemann sum in particular, approximates the 

transmission over the g domain, by referencing a single value (
( )ik g u

e


) across a certain 

section of the domain (∆gi).  In regions of low extinction, this approximation works well.  

This is due in part to the small extinction difference between the top bin and lower bin 

(Figure 5a illustrates top and lower bins).  Figure 6 and Figure 7 show an example 

spectral band where LEEDR depicts several weaker extinction lines, for a 1 km vertical 

path, from 13163 cm
-1

 to 13167 cm
-1

. 

 

 

 

Figure 6.  Region of Low LEEDR Extinction 
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Figure 7.  Correlated-k Transmission in a Region of Low LEEDR Extinction 

 
 
 

As one can see in Figure 7, very little transmission is lost based on which ( )k g ue point is 

chosen over a certain ∆g.  For this particular plot, one could lose a maximum of 20% 

transmission for one interval, based on the g point chosen.  Comparing this example, to 

an interval containing higher extinction values, the need for a more appropriate 

transmission equation becomes apparent.  Figure 8 and Figure 9 show an example 

spectral band where LEEDR depicts two relatively strong extinction lines, for a 1 km 

vertical path, from 13131 cm
-1

 to 13135 cm
-1

. 
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Figure 8.  Region of High LEEDR Extinction 

      
 

      
Figure 9.  Correlated-k Transmission in a Region of High LEEDR Extinction 
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For the interval shown in Figure 8 and 9, the largest path extinction value is around 18 

km
-1

, whereas the previous interval (shown in Figure 6 and 7) did not contain any 

extinction value higher than 3.5 km
-1

.  Thus, as a result of the higher extinction, based on 

which k(g) point is selected, transmission differences for a single ∆g interval can vary by 

~50%.  In order to combat this problem, a trapezoid modification was utilized.  As a 

result, equation 26 becomes: 
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  (32) 

By modifying equation 26, equal weight is given to each ( )k g ue bound point for a 

particular subinterval ∆g, and thus a better approximation of the transmittance is given 

over the entire wavelength interval. 

In the case of realistic nonhomogeneous atmospheres, one does notice a 

dependence of the extinction coefficient on path length.  Thus, one would need to be able 

to model the extinction coefficient as a function of altitude (rather than utilizing the local 

value), and compute the integral over a certain altitude.  Based on the quantities that one 

is able to obtain, one can in turn modify the optical depth by noting that the mass density 

of the molecular absorber can be represented by its mixing ratio, and the air density.  The 

resulting equation is:  
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where βe is the volume extinction coefficient (km
-1

), ke,i is the mass extinction coefficient 

(kg/m
2
), q is the mixing ratio (defined as q=ma/m where ma is the mass density of the 

molecular absorber and m is the mass density of the air) , and ρ is the air density 
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(defined as ρ = p/RdT where p is pressure in Pa, Rd is the gas constant of dry air in J K
-1

 
 

kg
-1

, and T is temperature in K). 
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IV. Analysis and Results 

Overview 

This chapter focuses on the differences created in the boundary layer by the user-

defined ground level GUI in LEEDR, as well as the time and accuracy variations 

observed between the Correlated-k scripts and the LBL method currently implemented in 

LEEDR.  In terms of the user-defined ground level tab, modifications of ground level 

characteristics ultimately lead to deviation from the default LEEDR values.  In addition, 

when compared to sounding data, the modified ground level values are shown to be more 

accurate than the climatological data, throughout the boundary layer, for a specific site 

and time.  The Correlated-k algorithm on the other hand, enabled the user to compute a 

band representative transmittance by referencing 4 cm
-1

 intervals, while reducing 

computation time in comparison to the LBL algorithm. 

User-Defined Ground Level Input Tab 

In order to provide an accurate test of the user-defined ground level GUI, the 

current version of LEEDR and the version with the ground level GUI are compared 

directly to an upper air sounding measurement.  The ExPERT (climatological) site 

chosen from LEEDR for this part of the project is Wright-Patterson AFB, OH.  The upper 

air sounding data is taken from the closest location with respect to the ExPERT location 

where a weather balloon is regularly launched for measurement.  This site is Wilmington, 

OH, which is symbolized as ILN or KILN [18].  The particular date and time of day 

chosen is, 11 March 2004 at 1900L (00Z EST).  The time (i.e.  00Z or 1900L) is selected 

due to its relation with the boundary layer.  By choosing a late afternoon time (soundings 

are taken at 12Z and 00Z), one would encounter a larger boundary layer, and thus more 
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of a comparison could be made between the sounding data and the ground level modified 

LEEDR values.  The date is selected due to its interpolated temperature value, with 

respect to the average Wright-Patterson AFB temperature for March.  The average 

normal temperature for Dayton, OH, according to the National Weather Service‟s website 

[19], is 49.5 °F for March. 

Table 1 lists all of the information that is utilized in order to compute the LEEDR 

atmosphere.  The first section, entitled “Conditions from Upper Air Sounding”, lists the 

measurements that were obtained from the upper air sounding website at the lowest 

recorded altitude (which was 317 m), corresponding to the previously defined location 

and time.  The second section, entitled “LEEDR Data” lists the inputs that are entered 

into the LEEDR program in order to model atmospheric conditions on March 11, 2004 at 

00Z. 
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Table 1.  LEEDR Data without Ground level Modification 

Conditions from Upper Air 

Sounding 

  

Upper Air Sounding 

Location: 

Location: Wilmington, OH 

(ILN) 

Latitude: 39.428 °N 

  Longitude: 83.792 °W 

  Elevation: 317 m 

Pressure: 986 mb  

Temperature: 45.32 °F  

Dewpoint: 18.32 °F  

Relative Humidity: 34 %  

LEEDR Data   

Location Tab: Current Location: Latitude: 39.83 °N 

  Longitude: 84.05 °W 

  Elevation: 251 m 

 Nearest ExPERT Site: Dayton/Wright-Patterson 

 Season: Winter 

 Time of Day: 1800-2100 

 Percentile of Relative 

Humidity: 

50
th

 Percentile – Median 

(Average) 

 Atmosphere: ExPERT Atmosphere 

 Molecular Effects Model: Calculations 

 Aerosol Effects Model: GADS Worldwide Aerosols 

LEEDR Atmosphere Tab: Turbulence Model: HV 5/7 

 Wind Model: Climatological Wind Profile 

 Clouds/Rain None 

LEEDR Laser/Geometry 

Tab 

Laser Settings: Wavelength: 1.31525 µm 

 Vertical Path: Upper Altitude: 2000 m 

  Lower Altitude: 0 m 

Ground Level Tab: Pressure: 986 mb 

 Temperature: 45.32 °F 

 Dewpoint: 18.32 °F 

  

 

 

All of the values in the section “LEEDR Data” of Table 1 are selected based on 

their closest match to the date and time of the upper air data.  For example, the time 

chosen for this atmosphere is 1800-2100.  This is the closest match that could have been 

selected, in response to the upper air measurement time of 00Z or 1900L.  Based on the 
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way that LEEDR is configured, the user can only select a time interval of 3 hours for an 

ExPERT atmosphere.  The relative humidity percentile selected is the 50
th

 percentile 

because this is most representative for “average” conditions.  So, the lowest elevation 

pressure, temperature, and dewpoint from the sounding are entered into LEEDR through 

the ground level GUI, and a comparison is made where the LEEDR data and the 

sounding data are started at an elevation of 0 m.   

After compiling both atmospheric profiles, the variations observed in pressure, 

temperature, dewpoint, and relative humidity are show in Figure 10.  The relative 

humidity profiles are calculated from the pressure, temperature, and dewpoint. 
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Figure 10.  Variation Observed in LEEDR Output Variables based on Ground Level Modification 

 
 
 

Figure 10 displays the upper air sounding data, “LEEDR (Winter 03112004 00Z)” 

ground-modified, and “LEEDR (Default)” ExPERT database ground level data, at the 

altitude of the lowest sounding (i.e. 0 m corresponds to the lowest sounding altitude).  

When compared to the sounding data, one notices a much better correlation between the 

modified ground level data and the upper air sounding data, within the boundary layer.  

Also of note, is how well the LEEDR ground level GUI “predicts” the height of the 

boundary layer (which was 1000 m for the LEEDR data, and 1031 m for the upper air 

sounding) and the temperature variation within it.  Above the boundary layer, as is shown 
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in Figure 10, the ground-modified LEEDR values merge with the ExPERT database and 

values.   

Correlated-k Algorithm Development 

In order to test the Correlated-k script for a homogeneous atmosphere, the 

following scenario shown in Table 2, is used in LEEDR. 

 

 
Table 2.  LEEDR Defined Atmosphere for Correlated-k Method 

Location Tab   

Current Location: Type: Land 

 Latitude:  39.83 

 Longitude:  -84.05 

Nearest ExPERT Site: Dayton/Wright-Patterson AFB  

 Latitude: 39.83 39.83 

 Longitude: -84.05 -84.05 

Season Summer  

Time of Day: 1200-1500  

Relative Humidity : 50
th

 Percentile – Median 

(Average) 

 

Atmosphere: ExPERT Atmosphere  

Molecular Effects 

Model: 

Calculations  

Aerosol Effects Model: Clear (No Aerosols)  

Atmosphere Tab   

Turbulence: Turbulence Model: HV 5/7 

Wind: Wind Model: Climatological Wind 

Profile 

Clouds/Rain: None  

Laser/Geometry Tab   

Laser Settings: Wavelength: 1.31525 µm 1.31525um 

Geometry Settings: Vertical Path: Upper Altitude (m): 0 

  Lower Altitude (m): 1000 

 

 

 

As indicated in Table 2, only molecular absorbers are present (i.e. no aerosols, 

cloud droplets, or rain droplets).  This enables faster extinction calculations over a user-
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defined interval, due to the fact that LEEDR does not have to calculate absorption and 

scattering from cloud droplets and aerosols.  This in turn enables one to obtain extinction 

points with unique extinction coefficients for the Correlated-k method, over a larger 

section of the domain.  The larger number of extinction points allows one to obtain a 

better understanding of how the transmission calculated from the Correlated-k method 

coincides with the transmission derived from the LBL method. 

In order to accurately model the transmission in the previously defined 

homogeneous atmosphere, extinction coefficients are obtained on 4 cm
-1

 intervals.  Once 

obtained, the extinction coefficients are binned, in evenly spaced bins across the 4 cm
-1

 

domain.  After binning the extinction coefficients, the corresponding k(g) points are 

determined, using equation 30.  After determining the k(g) points, equation 26 is used to 

compute the band-averaged transmission over the 4 cm
-1

 interval.  Figures 11-14 provide 

a conceptual model that illustrates the process that is used for this project to obtain the 

Correlated-k band-averaged transmission for a 4 cm
-1

 interval.  The particular interval 

13123 cm
-1

 to 13127 cm
-1

 is presented, under the atmospheric conditions presented in 

Table 2. 
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Figure 11.  LEEDR Extinction Coefficients Obtained for Correlated-k Process 

 
 
 

Figure 11 represents a plot of extinction verses frequency, obtained directly from 

LEEDR.  One hundred equally spaced points were used to derive the extinction values 

over the 1 km vertical path over the 4 cm
-1

 spectral interval. 
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Figure 12.  Binned LEEDR Extinction Coefficients 

 
 
 

The red crosses shown in Figure 12 represent extinction data that is received 

directly from the LBL calculation method in LEEDR.  For this particular figure, 100 

points were analyzed over the 4 cm
-1

 interval.  The black lines represent the bin edges 

that were used for this project. The blue lines in turn, represent LEEDR connecting the 

discretely sampled extinction points.  Note that no LEEDR data is available in this case, 

between the red crosses.  Also, for the Correlated-k method used in this project, 15 

evenly spaced bins are utilized.  The ultimate choice of 15 evenly spaced bins is based 

upon the transmission differences that are observed for differing bin sizes. 
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Figure 13.  Resulting k(g) Points for Correlated-k Method 

 
 
 

In reference to Figure 13, each of the red crosses represents the cumulative sum 

from the bins corresponding to lower extinction, to higher extinction (from g = 0 to g = 

1).  Figure 12 and Figure 13 represent the Correlated-k method applied to this spectral 

interval as is demonstrated by Liou in Figure 5a and 5b. 
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Figure 14.  Band-Averaged Correlated-k Transmittance for 4 cm
-1

 Interval 

 
 
 

Figure 14 represents the end result of the Correlated-k process for a single 4 cm
-1

 

interval.  The result is a band-averaged transmission value, for the entire interval.  The 

transmission value displayed here however, is only a small portion of what would be 

displayed to the user.  Ultimately, for a user-defined interval (which will consist of 

multiple 4 cm
-1

 intervals), the band-averaged transmission values will be appropriately 

weighted (in terms of boundary conditions in which the user‟s interval references a 

portion of a 4 cm
-1

 interval in the database), and displayed to the user. 

Currently, the Correlated-k process is a stand-alone process (it is not currently 

incorporated into LEEDR).  In order to automate the Correlated-k process depicted in 

previous Figures 11-14, two Matlab scripts are used.  The first script stores the LEEDR 

extinction coefficients over the 4cm
-1

 intervals, in a flat-file database.  A typical database 
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file of extinction coefficients includes the frequency (Hz) in the first column, and the 

corresponding extinction coefficients in the subsequent columns.  A second Matlab script 

is used to perform one of two functions.  The script either performs the Correlated-k 

binning method, or computes the transmission over the specified part of the domain and 

path length. 

The second script initially prompts the user for an extinction coefficient database.  

Assuming the user has not run the script previously, the user in turn selects the 

appropriate extinction coefficient database.  The user then is then prompted for a database 

consisting of k(g) points.  Once again, assuming the user has not run the script 

previously, the user does not provide a k(g) point database.  Subsequently, the user is 

prompted to enter the path length and domain.  After entering the path length and 

domain, the extinction coefficients from the database, corresponding to user‟s specified 

domain and path length, are used in the Correlated-k binning method.  Once the k(g) 

points are determined, the script prompts the user to save the k(g) points in a different 

flat-file database.  By saving the k(g) points in a database, the user can supply them to the 

script (via the second prompt), by-pass the Correlated-k binning method, and compute the 

transmittance. 

Transmission Calculations 

In order to ensure the validity of the Correlated-k method used in this project to 

the reader, the hypothetical spectrum that was presented in the Methodology section 

(Figure 5) is reproduced by passing the following extinction spectrum, into the 

Correlated-k script.  Thus Figure 5a is recreated in Figure 15.   
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Figure 15.  Hypothetical Extinction Spectrum (Courtesy of Liou [9:134]) 

 
 
 

In order to obtain the g values for Figure 15, extinction is assumed to vary from 0 

km
-1

 to 9 km
-1

, in increments of 1 km
-1

.  The resulting k(g) values are inserted in the 

middle of each axis marker of Figure 16. 
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Figure 16.  Hypothetical k(g) Plot Produced from Correlated-k Script 

 
 
 

Figure 16 shows that the resulting k(g) values from the Correlated-k script 

coincide perfectly with those presented in the text [9:134] and Figure 5b. 

 With this understanding of the production of the k(g) points, the Correlated-k 

transmission can now be compared to a broader spectral band LBL output from LEEDR.  

Figure 17 illustrates accuracy that one can obtain with LEEDR, by using a similar 

amount of k(g) points as the Correlated-k method (i.e. 165 LEEDR points.  The current 

Correlated-k method encompasses eleven 4cm
-1

 intervals from 13123 cm
-1

 to 13167 cm
-1

 

with 15 bins or k(g) points each).   
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Figure 17.  Accuracy Comparison between Correlated-k and LEEDR Transmission 

 
 
 

While the LEEDR LBL output shown in Figure 17 displays far more detail in 

terms of peaks and minima of transmission than the Correlated-k line, much more 

computation time is required.  In order to obtain the LEEDR transmission plot in Figure 

17, one has to wait, on average, for 7 minutes (more discussion concerning computation 

time will be presented in the subsequent section).  The Correlated-k transmission plot 

however, took on average, 35 seconds, after the k(g) database was constructed.   

Figure 18 illustrates the adverse effects of trying to obtain LEEDR LBL results in 

the same amount of computation time as the Correlated-k method.  The shorter 

computation time limits how many points across the interval where the LEEDR LBL 

calculation can be completed, thus leaving much of the spectral band unaccounted for.  
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This highlights a major advantage that the Correlated-k offers: near-continuous 

consideration of each spectral band of interest. 

 

 

 

Figure 18.  Transmission Differences resulting from a Similar Correlated-k and LEEDR Run-time 

 
 
 

The LEEDR plot for Figure 18 took, on average, took 48 seconds to compute (10 points).  
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Figure 19.  Transmission Values for LEEDR, Correlated-k, Correlated-k (with LBLRTM), and 

Plexus from 13123 cm
-1

 to 13167 cm
-1 

 
 
 

Figure 19 makes a comparison among several radiative transfer methods across 

the interval 13123 cm
-1

 to 13167 cm
-1

.  The “Plexus” line refers to a 4 cm
-1

 interval 

Modtran 4.0 Correlated-k output.  Plexus is an Air Force Research Lab (AFRL) GUI that 

runs Modtran 4.0.  The LBLRTM [16] line is a Correlated-k output based on 190,000 

point LBL output supplied by the LBLRTM model.  The “LEEDR” and “Correlated-k” 

output in this case, is the same transmission data that is represented in Figure 17.  Note 

the similarities between the Correlated-k lines derived from LEEDR and LBLRTM. 
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Figure 20.  Correlated-k Transmission with Varying Bin Numbers 

 
 
 

 Figure 20 displays a variety of Correlated-k transmission values calculated by 

varying the number of evenly spaced bins encasing the extinction points.  The previous 

figure has been inserted to reinforce the reasoning for choosing 15 bins, for each 4 cm
-1

 

interval.  As was discussed for the previous figure (Figure 19), the Correlated-k 

transmission with LBLRTM contained 190,000 extinction points across the 13123 cm
-1

 to 

13167 cm
-1

 interval.  Due to the number of points, as well as the method utilized to obtain 

the extinction points, the Correlated-k with LBLRTM correction or “Correlated-k 

(LBLRTM)”, can be assumed to provide the most accurate representation of the 

transmission.  In Figure 20, the Correlated-k transmission algorithm was run under three 

different bin numbers (14, 15, and 16 bins).  As is shown in the figure, the Correlated-k 
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line associated with 15 bins, correlates more closely to the LBLRTM line, and can thus 

be assumed to be the most accurate Correlated-k method with LEEDR extinction points.   

 Based on the previous description of the Correlated-k method however, one 

would expect the Correlated-k transmission to converge as the number of bins is 

increased.  The reasoning for this is due in part to the fact that as more and more bins are 

used, the spacing in each bin decreases, and thus fewer points would be captured by any 

particular bin.  Thus, when computing transmittance, less deviation would be observed 

due to the lack of variation in k(g) points.  The lack of convergence that is shown in 

Figure 20 however, appears to be due to an under sampling issue. In order to create the 

Correlated-k transmission (with the exception of the Correlated-k with LBLRTM 

extinction values in Figure 20), 100 extinction points were utilized across the wavelength 

interval. In order to investigate the possibility of an under sampling error, LEEDR was 

run for 10,000 points over the interval 13123 cm
-1

 to 13167 cm
-1

.  Notably, with the 

additional sampling, the 10,000 point extinction data, the bin size that provided the best 

match to the LBLRTM Correlated-k line was the 15 point bin size.  Thus, the 15 point 

bin size is considered optimal.  
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Figure 21.  LEEDR Transmission Running Means with Correlated-k Transmission 

 
 
 

Another way to check if the Correlated-k method is providing reasonable values is 

to compare it to a running mean.  Figure 21 shows several running means based on the 

LEEDR 10,000 point LBL output compared to the Plexus and Correlated-k.  For this 

particular figure, a constant window width was utilized, along with the midpoint for the 

window‟s domain.  What the running mean allows one to observe is the trend of the data, 

while retaining the area under the curve.  As one can see from Figure 21, as the window 

size increases, the smoothed out LEEDR transmission overlaps the Correlated-k 

transmission.  The overlapped transmissions, (that in turn, have a similar area under the 

curve) are what one would expect to see utilizing the running mean method. 
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 The reason for utilizing the running mean can be explained by the way each 

method is constructed.  The LBL algorithm is very thorough, and thus one is able to 

observe a lot of detail, with respect to individual absorbers.  In a typical LBL spectrum, 

one can observe numerous P- and R- branches corresponding to vibrational and rotational 

transitions.  The Correlated-k algorithm however, calculates band-averaged transmission 

by referencing the distribution of extinction coefficients, typically from LBL calculations.  

As a result of creating a cumulative average of extinction coefficients and in turn 

calculating the k(g) points, the average extinction value changes between the 

wavenumber or frequency domain, and the g domain.  The running mean inherently 

assumes that two methods have the same average for the dependent variable.   

The previous comments can be summed up by noting the assumption that is made 

between for the Correlated-k method (equations 23 and 24) in the Methodology section.  

In order to transfer from the wavenumber or frequency domain, to the g domain, the 

following is assumed: 

 

1

0

( ) exp exp ( )

u u

d
T u k du k g du dg 








   
     

       
     (34) 

Thus, in order to observe the same transmission values between the LBL and Correlated-

k methods, one must ultimately have the same averaged extinction coefficients (k(g) and 

k ).  The process is further illustrated through the following figures (Figures 22-24):  
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Figure 22.  Average LEEDR Extinction from 13123 cm
-1

 to 13127 cm
-1 

 
 
 

Figure 22 displays the LEEDR extinction points that are obtained through a 

sample 4 cm
-1

 interval, as well as the average extinction value k .  In essence, the black 

line displays the representative LEEDR or LBL extinction, across the interval. 
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Figure 23.  Average Correlated-k Extinction from 13123 cm
-1

 to 13127 cm
-1 

 
 
 

Figure 23 represents the average Correlated-k extinction k(g), after the extinction 

has been transformed from the frequency domain, to the g domain.  Figure 24 overlays 

the Correlated-k average extinction onto the previous LEEDR extinction plot (Figure 22). 
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Figure 24.  Average LEEDR and Correlated-k Extinction from 13123 cm
-1

 to 13127 cm
-1 

 
 
 

As one can see in Figure 24, the two average extinction values nearly coincide.  

The average extinction that was calculated for the Correlated-k method in the g domain is 

0.1628 km
-1

, while the average extinction for the LBL method in the frequency domain is 

0.1962 km
-1

.  Based on the overlapping transmission values of the two methods, this is 

what one would expect.   

 In addition to the LEEDR running means and Correlated-k transmission that are 

displayed in Figure 21, transmission values computed from the radiative transfer program 

Plexus, using a Modtran transmission algorithm, was presented.  In theory, the 

Correlated-k method, and the Plexus transmission curves, should match.  On average 

however, one does notice slight differences.  Throughout the entire interval, Plexus was 
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able to calculate a transmittance of 0.683.  The Correlated-k method, on the other hand, 

computed an average transmittance of 0.677. 

The previously discussed transmission differences between the Correlated-k and 

Plexus can be explained by noting the databases that each method utilizes to compute 

transmittance.  The Plexus program uses the HITRAN98 database [23], while the LEEDR 

program (with LBL calculation algorithm) relies on HITRAN2004 [23].  In terms of the 

particular part of the spectrum observed by the Correlated-k method, line parameters 

corresponding to O2 were updated for the 2000 and 2004 versions of the HITRAN 

database. From the 1998 version to the 2000 version in particular, “The Atmospheric A 

band, between the ground electronic state 3
gX   (with vibrational level ν = 0) and 

electronic state l
gb   (with vibrational level ν = 0), centered at 0.76 µm, has been 

revised…”[24]. The previously mentioned update to HITRAN could potentially describe 

the differences in transmission between the Plexus and Correlated-k methods.   

Calculation Times  

In order to compute the Correlated-k transmission, the extinction coefficients had 

to be inserted into the appropriate database, and subsequently referenced by another 

script.  The following run times correspond to six different intervals along the previously 

mentioned 13123 cm
-1

 to 13167 cm
-1

 interval: 
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Table 3.  Correlated-k Run Times to Compile Extinction Coefficient Database 

Interval (cm
-1

) Run Times (seconds): 

13123 to 13127 39 

13127 to 13131 21 

13131 to 13135 16 

13135 to 13139 20 

13139 to 13143 19 

13143 to 13147 20 

 

 

 

The extinction database script on average, took 23 seconds ± 8 seconds to store the 

coefficients.  For the most part, similar times were recorded for each interval.  One does 

however, notice one outlier.  The first time recorded lies 16 seconds away from the mean 

run time.  This can ultimately be attributed to an extra GUI prompting the user for the 

location and name of the new database. 

The second script was analyzed for two different run times, since it served two 

purposes.  The functions of this script were to produce a k(g) point database, as well as 

compute the transmission.  In order to compile the database of the k(g) points, the 

following times were observed: 

 

 
Table 4.  Correlated-k Run Times to Produce k(g) Database 

Interval (cm
-1

) Run Times (seconds): 

13123 to 13127 35 

13127 to 13131 44 

13131 to 13135 36 

13135 to 13139 40 

13139 to 13143 45 

13143 to 13147 31 
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The average run time to compile a 4 cm
-1

 of k(g) coefficients was 39 seconds, with a 

standard deviation of 5 seconds.   

The previous two tables display a portion of the entire k(g) point database that has 

been compiled.  Presently, the database spans thirty-three 4 cm
-1

 intervals, from 13123 

cm
-1

 to 13167 cm
-1

.  In order to provide a comparison however, between the 

transmissions calculation times using the Correlated-k method, verses the LBL method in 

LEEDR, transmission calculation times will be compared over the entire 13123 cm
-1

 to 

13167 cm
-1

.  The following calculation times were observed using the Correlated-k 

method, after the k(g) database had been compiled: 

 

 
Table 5.  Correlated-k Transmission File Run Times 

Interval (cm
-1

) Run Times (seconds): 

13123 to 13167 35 

13123 to 13167 31 

13123 to 13167 36 

13123 to 13167 34 

13123 to 13167 36 

13123 to 13167 36 

 

 

 

On average, the second script took 35 seconds ± 2 seconds to compute the transmission.  

The reason for the longer than normal run times (e.g. LBLRTM takes under a second to 

compute transmission over this interval), is due to the time it takes Matlab to load the 

k(g) database, and check the values with the user‟s previous given path length and 

wavelength domain. For a series of six consecutive runs, the following transmission 

calculation times were recorded (excluding any user input, as well as the time needed to 

load the k(g) database). 
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Table 6. Correlated-k Transmission Computation Times 

Interval (cm
-1

) Run Times (seconds): 

13123 to 13167 0.000524 

13123 to 13167 0.000395 

13123 to 13167 0.000615 

13123 to 13167 0.000397 

13123 to 13167 0.000433 

13123 to 13167 0.000394 

 

 

 

The average time needed to compute the transmittance, after importing the k(g) values, is 

4.597*10
-4

 seconds. 

As was mentioned in the previous Correlated-k section, in order to compare the 

Correlated-k transmission algorithm to LEEDR, LEEDR was run under two different 

circumstances.  The first case attempted to obtain a similar amount of accuracy, with 

respect to the Correlated-k script.  In order to obtain the 165 LEEDR transmission values 

over the 13123 cm
-1

 to 13167 cm
-1

 interval, the following times were recorded from 

LEEDR: 

 

 
Table 7.  LEEDR Run Times for Comparable Transmission Resolution to Correlated-k 

           

Interval (cm
-1

) Run Time: 

13123 to 13167 6 minutes 37 seconds 

13123 to 13167 6 minutes 59 seconds 

13123 to 13167 7 minutes 4 seconds 

13123 to 13167 7 minutes 1 seconds 

13123 to 13167 7 minutes 4 seconds 

13123 to 13167 7 minutes 16 seconds 
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The average run time for this case was 7 minutes 10 seconds, with a standard deviation of 

15 seconds.  In conclusion, in order to retain the same amount of accuracy as the 

Correlated-k, one would have to wait about 6 minutes 35 seconds longer for LEEDR to 

compute the transmission. 

 The other case that was presented in the previous section was a LEEDR 

transmission case which took the same order of time to compute as the Correlated-k 

script.  Calculation times for this case were observed to be the following: 

 

 
Table 8.  LEEDR Run Times Used to Display Transmission Accuracy Loss to Correlated-k 

Interval (cm
-1

) Run Time (seconds): 

13123 to 13167 48  

13123 to 13167 48 

13123 to 13167 48 

13123 to 13167 48 

13123 to 13167 48 

13123 to 13167 48 

 

 

 

The average run time in this case was 48 seconds.  However, what is ultimately shown 

(through Table 7 and Figure 18) is that for a LEEDR run time comparable to the 

Correlated-k script, accuracy is sacrificed.  For a 48 second LEEDR run time, one obtains 

10 LEEDR transmission points, whereas the Correlated-k script is able to describe the 

interval with 11 transmission points. 
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V.  Conclusions and Recommendations 

Overview 

 This chapter is divided into two sections.  The first section provides a conclusion 

of the research results presented in this paper for the user-defined Ground Level tab, as 

well as the Correlated-k algorithm.  Subsequently, a section entitled Recommendations 

for Future Research discusses the modifications that need to be made to the Correlated-k 

algorithm, as seen by the author. 

User-Defined Ground Level Input Tab 

In summary, the user-defined Ground Level tab in LEEDR enables the user to 

redefine several ground level values, to more accurately model upper air conditions.  As 

is shown in Figure 10, a comparison of upper air sounding data from a nearby location to 

data from an ExPERT site, the GUI-modified values for boundary layer pressure, 

temperature, dewpoint, and relative humidity more closely resemble the upper air data, 

than the default LEEDR values.  Furthermore, the LEEDR ground level GUI predicts 

very well the height of the boundary layer (which in Figure 10 was 1000 m for the 

LEEDR data, and 1031 m for the upper air sounding) and the temperature variation 

within it.  After testing the accuracy of these values, the modified LEEDR program with 

the user-defined Ground Level tab will aid in SensorCAD model development at the 

Space Dynamics Laboratory at Utah State University. 

Correlated-k 

 The Correlated-k scripts provide a means of calculating the transmission in a 

much faster manner, while retaining some of the accuracy LBL calculations.  On average, 

the Correlated-k scripts enable the user to calculate transmission from 13123 cm
-1

 to 
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13167 cm
-1

 over a 1 km vertical path length on average, 6 minutes 35 seconds faster than 

LEEDR.  Running LEEDR for the same amount of time as the Correlated-k scripts would 

result in a drastic loss of accuracy.  Importantly, the Correlated-k implemented in this 

research offers the LEEDR user a capability for fast, near-continuous consideration of 

each spectral band of interest when calculating transmission and/or extinction.  This will 

enable future LEEDR path radiance calculations. 

 The transmission calculated from the Correlated-k scripts proved to be accurate 

when compared to the running means of LEEDR‟s transmission.  However, when 

compared to the Modtran radiative transfer program in Plexus under a similar resolution, 

minor differences were noted over the current domain of the Correlated-k algorithm.  

These disparities are likely due to the different HITRAN databases that were utilized for 

each method.  The average transmittance calculated from Plexus over the interval, 13123 

cm
-1

 to 13167 cm
-1

, was 0.683.  The Correlated-k method, on the other hand, computed 

an average transmittance of 0.677.  While these differences are small, future research 

(which will be suggested in the following section) is needed in implementing smaller 

band intervals and other inhomogeneous atmosphere techniques to achieve higher 

accuracy in the Correlated-k transmission values. 

Recommendations for Future Research 

 

 The calculation time of the Correlated-k script, as it stands, is an improvement 

over the LBL calculation algorithm currently incorporated into LEEDR, for a user-

defined domain interval.  The series of Matlab scripts enable the user to compute an 

accurate depiction of the transmission over a certain interval, in a homogeneous 
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atmosphere.  Before extrapolating this method to nonhomogeneous atmospheres 

however, the accuracy of the Correlated-k transmission values needs to be improved. 

The differences  between the Correlated-k method and Plexus transmission values 

is believed to be due to the number of extinction points analyzed throughout a 4 cm
-1

 

interval.  For this project, 100 points were utilized.  As was shown in Figures 11-12 at the 

beginning of the Results and Analysis section, 100 extinction points resulted in several 

bins without an extinction coefficient.  Thus, the next logical step for the Correlated-k 

algorithm would be to increase the number of extinction coefficients per interval.  In 

theory, as the amount of extinction points are increased, coefficients would begin to fill 

out different bins, and a better defined g value would be obtained.  Thus, future research 

will have to determine the appropriate amount of extinction points to achieve accurate 

Correlated-k transmission values.   
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Appendix 

Extinction Coefficient Database Source Code 

%% Purpose 
% File to read in LEEDR k vs.  frequency values and write them to the 

appropriate 
% database. 

  
clc; clear; 
%% Variables 
sheetNum = ['C' 'D' 'E' 'F' 'G' 'H' 'I']; 
tol = 1e6; 
newHeader = {'Frequency (Hz)' ' Wavelength (m)' ' Wavelength (um)' ' 

Wavelength (mm)' ' k_1km     '... 
            ' k_2km     ' ' k_3km     ' ' k_4km     ' ' k_5km     ' ' 

k_6km     ' ' k_7km     ' ' k_8km     '}; 
firstCell = 0; 
lastCell = 0; 
newDataV = 'n'; 

  
%% User Input 
% SELECT DATABASE. 
[databaseFile,databasePath] = uigetfile({'*.txt';'*.xls'},'Absorption 

Co Database','L:\Students\10M\Ranney\Data'); 
if(isequal(databaseFile,0) || isequal(databasePath,0)) 
    newDataV = input('Create new database (enter y or n)?: ','s'); 
    if(strcmp(newDataV,'y')) 
        [newFile,newPath] = uiputfile({'*.txt';'*.xls'},'Select Name 

and Path of New Database','L:\Students\10M\Ranney\Data'); % Can save 

file as any type extention (.xls or .txt is default). 
        if(isequal(newFile,0)) 
            disp('Terminating Program'); 
            return; 
        end 
    else 
        disp('Terminating Program'); 
        return; 
    end 
else 
    disp(['Extinction coefficient database: ', 

fullfile(databasePath,databaseFile)]); 
    oldData = dlmread(fullfile(databasePath,databaseFile),'',1,0); 
    oldData(:,end) = []; 
    disp(['Extinction Database has the following domain (cm-1): [' 

num2str(round(inv(oldData(1,2).*100))) ',' 

num2str(round(inv(oldData(end,2).*100))) ']']); 
    disp(['Extinction Database has ' num2str(size(oldData,1)) ' points 

in the previously displayed domain']); 
end 

  
counter = 1; 
% SELECT LEEDR FILE. 
multiOption = 'off'; 
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[leedrPlots,leedrPath] = uigetfile('*.fig','K vs.  Frequency 

Plot','L:\Students\10M\Ranney\Data','MultiSelect',multiOption); 
if(isequal(leedrPlots,0) || isequal(leedrPath,0)) 
    disp('Terminating Program'); 
    return; 
else 
    disp('LEEDR absorption file: '); 
    disp(fullfile(leedrPath,leedrPlots)); 
end 

  
%% Extract Data From Plot 
openfig(fullfile(leedrPath,leedrPlots)); 
freq = get(get(gca,'Children'),'xData'); 
kValues = get(get(gca,'Children'),'yData'); 
pathLength = str2double(input('Enter path length (km): ','s')); 
res = input('Enter resolution (e.g.  1um,2cm-1,4cm-1,30cm-1): ','s'); 
if(strcmp(res,'4cm-1')) 
    tolL = 1e10; 
    tolU = 1e10; 
else 
    tol = 1e6; 
end 

  
%% Write To Tab-Delimited 
if(strcmp(newDataV,'y')) 
    databaseFile = newFile; 
    databasePath = newPath; 
end 

  
if(strcmp(newDataV,'y')) 
       absCoVars = zeros(length(newHeader),length(freq)); 
       absCoVars(1,:) = freq(:); 
       absCoVars(2,:) = (3e8)./freq(:); 
       absCoVars(3,:) = ((3e8)./freq(:)).*1e6; 
       absCoVars(4,:) = ((3e8)./freq(:)).*1000; 
       absCoVars(pathLength+4,:) = kValues(:); 
       absCoVars = sortrows(absCoVars',1)'; 

        
       if(strcmp(databaseFile(end-3:end),'.xls')) 
           

xlswrite(fullfile(databasePath,databaseFile),newHeader,region,'A1'); 
           

xlswrite(fullfile(databasePath,databaseFile),transpose(absCoVars),regio

n,'A2'); 
       else 
           fid = fopen(fullfile(databasePath,databaseFile),'w'); 
           fprintf(fid,'%s',cell2mat(newHeader)); 
           fprintf(fid,'\r\n'); 
           fprintf(fid,'%-14.6g %-14.6g %-15.6g %-15.6g %-10.6g %-10.6g 

%-10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g \r\n',absCoVars); 
           fclose(fid); 
       end 
else     
    newDataA = zeros(size(oldData,1)+length(freq),length(newHeader)); 
    newDataA(1:length(freq),1) = fliplr(freq); 
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    newDataA(1:length(freq),2) = (3e8)./fliplr(freq); 
    newDataA(1:length(freq),3) = (3e8./fliplr(freq)).*1e6; 
    newDataA(1:length(freq),4) = (3e8./fliplr(freq)).*1000; 
    newDataA(1:length(freq),4+pathLength) = fliplr(kValues); 
    newDataA(length(freq)+1:end,:) = oldData(:,:); 

  
    cells = zeros(2,1); 
    for i=length(freq)+1:size(newDataA,1) 
        if(abs(newDataA(1,1)-newDataA(i,1)) < tolL) 
            cells(1) = i; 
            tolL = abs(newDataA(1,1)-newDataA(i,1)); 
        elseif(abs(newDataA(length(freq),1)-newDataA(i,1)) <= tolU) 
            cells(2) = i; 
            tolU = abs(newDataA(length(freq),1)-newDataA(i,1)); 
        end 
    end 

     
    if((cells(2)-cells(1)+1) == size(oldData,1)) % new data is in same 

domain as old data. 
        disp('HERE1'); 
        newDataA(length(freq)+1:end,4+pathLength) = fliplr(kValues); 
        newDataA(1:length(freq),:) = []; 
    elseif(isequal(cells(1),0) && isequal(cells(2),length(freq)+1)) % 

new data resides before old data but has boundary issue. 
        disp('HERE2'); 
        newDataA(length(freq)+1,4+pathLength) = 

newDataA(length(freq),4+pathLength); 
        newDataA(length(freq),:) = []; 
    elseif(isequal(cells(2),0) && isequal(cells(1),size(newDataA,1))) % 

new data resides after old data but has boundary issue. 
        disp('HERE3'); 
        newDataA(end,4+pathLength) = newDataA(1,4+pathLength); 
        newDataA(1,:) = []; 
        newDataA = sortrows(newDataA,1); 
    else % new data is somewhere within old data domain. 
        disp('HERE4'); 
        newDataA(cells(1):cells(2),4+pathLength) = fliplr(kValues); 
        newDataA(1:length(freq),:) = []; 
    end 

     
    fid = fopen(fullfile(databasePath,databaseFile),'w'); 
    fprintf(fid,'%s',cell2mat(newHeader)); 
    fprintf(fid,'\r\n'); 
    fprintf(fid,'%-14.6g %-14.6g %-15.6g %-15.6g %-10.6g %-10.6g %-

10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g \r\n',newDataA'); 
    fclose(fid); 
end 
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Correlated-k Source Code 

%% Purpose 
% Creates expFit Database or computes transmission for the selected 

region. 

  
% Function:  
%           -Reads in absorption coefficient database from user (k vs. 
%           frequency).   
%           -Based on whether user supplies absorption database, script 

prompts user 
%           for exponential fit database.   
%           -If user supplies absorption coefficient database and 
%           exponential fit database, 
%               -If user's wavelength interval and/or path length 

doesn't 
%               coincide with exponential database, new exponential 

data is 
%               appended.   
%               -Otherwise, transmission is computed. 
%           -If user supplies only absorption database, 
%               -Script checks user's wavelength interval and path 

length  
%               to make sure it matches with absorption database, and  
%               subsequently adds the exponential fits from the 

Correlated-k  
%               binning method to a new exponential fit database. 
%           -If user only supplies exponential database, 
%               -Scripts checks user wavelength interval and path 

length to 
%               make sure it coincides with exponential database.  If 
%               user-defined input is found in database, script 

computes 
%               transmittance. 

  
clc; clear; 
tic 
%% Input From User 
[absFile,absPath] =  uigetfile('*.txt', 'Select the Absorption 

Database','L:\Students\10M\Ranney\Data'); 
if isequal(absFile,0) || isequal(absPath,0) 
    disp('No Absorption Database Selected'); 
else 
    disp(['Absorption Database: ', fullfile(absPath,absFile)]); 
    absData = dlmread(fullfile(absPath,absFile),'',1,0); 
    absData(:,end) = []; % dlmread reads in blank column after k_8 

(return character after last write statement?). 
    disp(['Absorption Database has the following domain (cm-1): [' 

num2str(round(inv(absData(1,2).*100))) ',' 

num2str(round(inv(absData(end,2).*100))) ']']); 
    disp(['Absorption Database has ' num2str(size(absData,1)) ' files 

in the previously displayed domain']); 
    absData = sortrows(absData,2); % flips data in terms of increasing 

wavelength. 
end 
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[kgFile,kgPath] = uigetfile('*.txt','Select k(g) 

Database','L:\Students\10M\Ranney\Data'); 
if isequal(kgFile,0) || isequal(kgPath,0) 
    if(~exist('absData','var')) 
        disp('No k(g) Database Selected'); 
        disp('Terminating Program'); 
        return; 
    else 
        disp('No k(g) Database Selected'); 
    end 
else 
    disp(['k(g) Database: ' fullfile(kgPath,kgFile)]); 
    kgFitData = dlmread(fullfile(kgPath,kgFile),'',0,0); 
    kgFitData(:,end) = []; 
    kgFitData(:,1) = 3e8./kgFitData(:,1); 
    kgFitData = sortrows(kgFitData,1); 
    disp(['Wavelength domain of files currently in database: [' 

num2str(kgFitData(1,1),'%-3.5e') ',' num2str(kgFitData(end,1),'%-3.5e') 

']']); 
    disp(['Number of points in domain: ' 

num2str(round(size(kgFitData,1)/2))]); 
end 
lowerPath = input('Enter lower path length (m): '); % Input coincides 

with LEEDR. 
upperPath = input('Enter upper path length (m): ');  
lowerWave = input('Enter lower wavelength bound (m) (5 decimal place 

accuracy): '); 
upperWave = input('Enter upper wavelength bound (m) (5 decimal place 

accuracy): '); 
waveRes = input('Enter wavelength domain resolution (e.g.  1cm-1,4cm-

1,1um): ','s'); 
if(strcmp(waveRes,'4cm-1')) 
    tol = 1e-11; 
else 
    tol = 1e-8; 
end 
numBins = 16; 

  
%% Checking user input. 
corrKBool = 0; 
if(lowerWave>=upperWave || lowerPath>=upperPath) 
    disp('Bad Wavelength/Path Bounds'); 
    return; 
end 
if(exist('kgFitData','var')) 
    [corrKBool,waveInt] = 

kgCheck(unique(kgFitData(:,1),'first'),corrKBool,lowerWave,upperWave,to

l); 
else 
    corrKBool = 1; 
end 
if(exist('absData','var')) 
    if(lowerWave < absData(1,2) || upperWave > absData(end,2)) 
        disp('User defined wavelength is outside absorption database'); 
        return; 
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    end 
    if(absData(length(find((absData(:,2)-(absData(2,2)-

absData(1,2))./2)<=lowerWave)),((upperPath-lowerPath)./1000)+4) == 0) 
        disp('No absorption data exists for user-defined path length'); 
        return; 
    end 
end 

  
%% Correlated-k Binning Method 
if(corrKBool) 
    if(~exist('absData','var')) 
        disp('Cannot perform Correlated-k method.  No absorption 

database supplied'); 
        return; 
    end 

  
    lowerCell = length(find(absData(:,2)<=lowerWave)); 
    upperCell = size(absData,1)-length(find(absData(:,2)>upperWave)); 
    if(upperCell>size(absData,1)) 
        upperCell = size(absData,1); 
    end 

  
    expFitRes = round((round(inv(lowerWave*100))-

round(inv(upperWave*100)))/4); % Determining number of 4cm-1 intervals. 
    gXCounter = zeros(numBins+1,1); 
    yIntervals = zeros(numBins+1,1); 
    gSumMat = zeros(numBins); 

     
    newBoundWave = 

linspace(absData(lowerCell,2),absData(upperCell,2),expFitRes+1)'; 
    disp(['Resolution is set at: ' num2str((newBoundWave(2)-

newBoundWave(1)).*1e9) ' nm']) 

     
    % Determines which data points fall in newly defined wavelength 
    % boundary 
    cellBoundary = zeros(expFitRes+1,1); 
    absCo = zeros(upperCell-lowerCell+1,1); 
    cellBoundary(1) = 1; 
    for i=2:length(cellBoundary)-1 
        cellBoundary(i) = cellBoundary(i-1)+length(find(newBoundWave(i-

1) < absData(lowerCell:upperCell,2) & newBoundWave(i) > 

absData(lowerCell:upperCell,2))); 
    end 
    cellBoundary(end) = upperCell-lowerCell+1; 
    absCo(:) = absData(lowerCell:upperCell,((upperPath-

lowerPath)./1000)+4); 

     
    % Allocate arrays for kgFit data 
    if(isequal(kgFile,0)) 
        kgOutputData = zeros(2*expFitRes,numBins+2); 
    else 
        kgOutputData = zeros(2*expFitRes+size(kgFitData,1),numBins+2); 
        kgOutputData(2*expFitRes+1:end,:) = kgFitData; 
    end 
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    kgOutputData(1:expFitRes,1) = newBoundWave(1:end-

1)+(newBoundWave(2)-newBoundWave(1))./2; 
    kgOutputData(expFitRes+1:2*expFitRes,1) = newBoundWave(1:end-

1)+(newBoundWave(2)-newBoundWave(1))./2; 
    kgOutputData(1:2*expFitRes,:) = 

sortrows(kgOutputData(1:2*expFitRes,:),1); 

     
    % Correlated-k Binning Method 
    for i=1:expFitRes 
        if(i == 1) 
            yMin = min(absCo(cellBoundary(i):cellBoundary(i+1))); 
            yMax = max(absCo(cellBoundary(i):cellBoundary(i+1))); 
        else 
            yMin = min(absCo(cellBoundary(i)+1:cellBoundary(i+1))); 
            yMax = max(absCo(cellBoundary(i)+1:cellBoundary(i+1))); 
        end 

     
        yIntervals(1:end) = linspace(yMin,yMax,numBins+1)'; 
        gXCounter(1:end) = 

histc(absCo(cellBoundary(i):cellBoundary(i+1)),yIntervals(:))'; 
        gXCounter(end-1) = gXCounter(end-1)+gXCounter(end); 
% Creates k values that are in the middle of the intervals. 
        kgOutputData(i+i-1,2) = 0; 
        kgOutputData(i+i-1,3:end) = yIntervals(1:end-

1)+(yIntervals(2:end)-yIntervals(1:end-1))./2; 

  
% Calculating k(g).  Puts bin summations in lower triangular matrix. 
        for j=1:numBins 
            gSumMat(j,1:end) = gXCounter(1:end-1)'; 
        end 
        gXCounter(1:end-1) = sum(tril(gSumMat,0),2)'; 

  
% Creates g points by dividing sum 
        kgOutputData(2*i,2) = 0; 
        kgOutputData(2*i,3:end) = gXCounter(1:end-1)./gXCounter(end-1); 

% Removed transpose. 
    end 

     
    % Deleting duplicate data assuming database contains the same 
    % resolution. 
    if(~isequal(kgFile,0)) 
        cells = zeros(1,2); 
        tol = (newBoundWave(2)-newBoundWave(1))./2; 
        counter = 0; 
        for i=2*expFitRes+1:(2*expFitRes+1)+round(size(kgFitData,1)./2) 
            if(abs(kgOutputData(1,1)-kgOutputData(i+counter,1)) < tol) 
                cells(1) = i+counter; 
            elseif(abs(kgOutputData(2*expFitRes,1)-

kgOutputData(i+counter,1)) < tol) 
                cells(2) = i+counter; 
            end 
            counter = counter+1; 
        end 
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        if(isequal(cells(1),0) && isequal(cells(2),2*expFitRes+1)) % 

new data has domain that starts after old data, with overlapping 

boundary. 
            disp('Here2'); 
            kgOutputData(2*expFitRes-1,:) = 

kgOutputData(2*expFitRes+1,:); 
            kgOutputData(2*expFitRes,:) = 

kgOutputData(2*expFitRes+2,:); 
            kgOutputData(2*expFitRes+1,:) = []; 
            kgOutputData(2*expFitRes+2,:) = []; 
        elseif(isequal(cells(2),0) && 

isequal(cells(1),size(kgOutputData,1)-1)) % new data has domain that 

starts before old data, with overlapping boundary. 
            disp('Here3'); 
            kgOutputData(1,:) = kgOutputData(size(kgOutputData,1)-1,:); 
            kgOutputData(2,:) = kgOutputData(size(kgOutputData,1),:); 
            kgOutputData(size(kgOutputData,1)-1,:) = []; 
            kgOutputData(size(kgOutputData,1),:) = []; 
        else % new data is outside old frequency range. 
            kgOutputData = sortrows(kgOutputData,1); 
        end 
    kgOutputData = sortrows(expOutputData,1); 
    end 
toc     
%% Writing Exponential Fits/K(g) Points to Database 
    if(isequal(kgFile,0)) 
        [kgOutputFile,kgOutputPath] = uiputfile('*.txt','Enter Name for 

kgFit Database','L:\Students\10M\Ranney\Data'); 
        if(isequal(kgOutputFile,0)) 
            disp('No kgFit Database Selected'); 
            return; 
        else 
            disp(['kgFit Database: ' 

fullfile(kgOutputPath,kgOutputFile)]); 
        end 
    else 
        disp(['kgFit Database: ' fullfile(kgPath,kgFile)]); 
        kgOutputFile = kgFile; 
        kgOutputPath = kgPath; 
    end 

     
    % K(g) data not currently incorporated into transmission. 
    kgFid = fopen(fullfile(kgOutputPath,kgOutputFile),'w'); 
    kgOutputData(:,1) = 3e8./kgOutputData(:,1); % Transform to 

frequency 
    kgOutputData = sortrows(kgOutputData,1); 
    fprintf(kgFid,'%-13.5e %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-

10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g %-10.6g 

%-10.6g %-10.6g %-10.6g \r\n',kgOutputData'); 
    fclose(kgFid); 

     
%% Calculating Transmission 
else 
    gValues = zeros(1,round(size(kgFitData,1)./2)); 
    gValues(1,:) = unique(kgFitData(:,1),'first'); 
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    kgFitTrans = zeros((length(gValues)-

length(find(gValues(:)>(upperWave))))-

length(find(gValues(:)<=(lowerWave)))+1,1); 

     
    % Loading Leedr Transmission Plot 
    [leedrFile,leedrPath] = uigetfile('*.fig','Leedr Transmission File 

in Frequency Domain','L:\Students\10M\Ranney\Data'); 
    if(isequal(leedrFile,0) || isequal(leedrPath,0)) 
        disp('No LEEDR transmission file selected'); 
    else 
        disp(['LEEDR transmission file: ', 

fullfile(leedrPath,leedrFile)]); 
        openfig(fullfile(leedrPath,leedrFile)); 
        leedrTrans = get(get(gca,'Children'),'yData')'; 
        leedrWave = 3e8./get(get(gca,'Children'),'xData')'; % Assuming 

Frequency domain. 
        leedrWave = sortrows(leedrWave,1); 

     
        leedrTrans(leedrWave>upperWave) = []; 
        leedrWave(leedrWave>upperWave) = []; 
        leedrTrans(leedrWave<lowerWave) = []; 
        leedrWave(leedrWave<lowerWave) = []; 
    end 

     
    massPathNum = (upperPath-lowerPath)/1000; 
    for 

i=length(find(gValues(:)<=(lowerWave+waveInt))):(length(gValues)-

length(find(gValues(:)>(upperWave))))-

length(find(gValues(:)<=(lowerWave)))+1 
       for j=3:numBins+2 
           kgFitTrans(i) = kgFitTrans(i)+((abs(exp(-kgFitData((i+i-

1),j-1))-exp(-kgFitData((i+i-1),j))).*massPathNum)*(kgFitData(2*i,j)-

kgFitData(2*i,j-1)))./2; 
           if(exp(-kgFitData((i+i-1),j))>exp(-kgFitData((i+i-1),j-1))) 
               kgFitTrans(i) = kgFitTrans(i)+exp(-kgFitData((i+i-1),j-

1).*massPathNum).*(kgFitData(2*i,j)-kgFitData(2*i,j-1)); 
           else 
               kgFitTrans(i) = kgFitTrans(i)+exp(-kgFitData((i+i-

1),j).*massPathNum).*(kgFitData(2*i,j)-kgFitData(2*i,j-1)); 
           end 
       end 
   end 
toc 
%% Plotting the Transmission Over the User-Specified Interval 
    tol = 1e-8; 
    if(lowerWave <= 50e-6 || abs(lowerWave-50e-6) < tol) 
        if(~isequal(leedrFile,0)) 
            figure 
            plot(leedrWave.*1e6,leedrTrans,'b-'); % Assuming meter 

domain. 
            hold on; 
            plot(gValues.*1e6,kgFitTrans,'r-'); 
            hold off; 
            legend('LEEDR','Correlated-k'); 
        else 
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            plot(gValues.*1e6,kgFitTrans,'r-'); 
            legend('Correlated-k'); 
        end 
        xlabel('Wavelength (\mum)'); 
    elseif(lowerWave > 50e-6) 
        if(~isequal(leedrFile,0)) 
            figure 
            plot(leedrWave.*1000,leedrTrans,'b-'); 
            hold on; 
            plot(gValues.*1000,kgFitTrans,'r-'); 
            hold off; 
            legend('LEEDR','Correlated-k'); 
        else 
            plot(gValues.*1000,kgFitTrans,'r-'); 
            legend('Correlated-k'); 
        end 
        xlabel('Wavelength (mm)'); 
    end 
    ylabel('Transmission'); 
    title('Transmission vs.  Wavelength'); 
end 

 

kgCheck Function (Correlated-k ) 

function [corrKBool,waveInt] = 

kgCheck(gValues,corrKBool,lowerWave,upperWave,tol) 
    if(size(gValues,1) > 1) 
        waveInt = abs(gValues(2)-gValues(1))/2; 
    else 
        waveInt = abs(gValues(1)-inv((inv(gValues(1)*100)+2))/100); % 

Assumes a 4cm-1 interval  
    end 
    if(lowerWave<(gValues(1)-waveInt)) % LowerWave exists outside 

exponential database 
        if(abs(lowerWave-(gValues(1)-waveInt))<tol) % LowerWave is 

close enough to lower bound of exponential database.  Current tolerance 

is 10.^-13 (1um resolution). 
            corrKBool = 0; 
        else 
            corrKBool = 1; 
            disp('User defined lower wavelength is outside kgFit 

database'); 
        end 
    end 
    if(upperWave>(gValues(end)+waveInt)) % UpperWave exists outside 

exponential database 
        if(abs(upperWave-(gValues(end)+waveInt))<tol) % UpperWave is 

close enough to lower bound of exponential database 
            corrKBool = 0; 
        else 
            corrKBool = 1; 
            disp('User defined upper wavelength is outside kgFit 

database'); 
        end 
    end end 
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