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Abstract

Several fundamental benefits of modularity are agreed upon by industry in-

cluding reusability, flexibility, reconfigurability and extensibility. Interfaces within

or between modules which establish provide/depend relationships are the focus of

current modularity measures. This research outlines a new method and measures

for assessing product modularity in terms of degree of coupling and the recognized

modularity benefits. A five–step analysis process is developed and used to guide the

modularity assessment. Defining and decomposing products are performed first. Us-

ing the resultant functional model from the first step, the identified functions are

mapped to modules in a product in the second step. In the third and fourth steps,

module-to-module interfaces are identified and captured in design structure matri-

ces or a tensor plot. Finally, using results from steps 1–4, the Vector Modularity

Measure that includes a reconfigurability measure can be calculated. The measures

and analysis process are demonstrated using two precision guided munitions in the

United States Air Force inventory. After this demonstration, the research focuses on

extending the approach to a modular satellite design problem, namely AFRL’s Plug-

and-Play Satellite (PnPSat) concept for Operationally Responsive Space. Using the

resulting analysis, recommendations to the existing PnPSat design to further increase

modularity and its derived benefits are given. Lastly, the modularity analysis process

and applications are used to draw conclusions and make recommendations for future

research to include identifying factors that influence both modularity and the timeline

to perform product assembly and check-out.
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Development of Measures to Assess Product

Modularity and Reconfigurability

I. Introduction

This chapter introduces the dissertation research and its documentation. The

motivation for conducting the research is first provided in Section 1.1, followed by a

problem statement stemming from the research motivation. Next, the objectives of

the research are given followed by a method overview for achieving the stated research

objectives. The chapter concludes with an overview of the dissertation document in

Section 1.6.

1.1 Research Motivation

The motivation for beginning this research on modularity grew from initial

responses from several Department of Defense (DoD) offices that were interested

in modularity, standardization, and research efforts that are believed necessary to

enable the operationally responsive space (ORS) concept to become a reality. This

ORS concept is defined in [41] and broadly in the DoD as assured space power focused

on timely satisfaction of Joint Force Commanders’ (JFCs) tactical level needs.

In the ORS acquisition construct, increased risk tolerance is acceptable for the

potential operational gain that will be realized. Additionally, the ORS acquisition

will use streamlined processes to field key capabilities as soon as possible, not waiting

for 100 percent solutions, and emphasizing integration of off-the-shelf components

where possible.

The U.S. Congress felt strongly enough about the ORS concept that it approved

funding and strongly supported the establishment of an official Joint ORS office that

stood up in May, 2007 [40]. The Department of Defense [40, 41] stated that it is
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Table 1.1: Program Attributes or Themes Affected by Modularity
Attributes Affected by Modularity

responsiveness to requirements development timeline
rapid reaction payloads deployment timeline
rapid reaction buses innovation

responsive bus development low cost
responsive payload development flexibility

committed to improving the nation’s means to develop, acquire, field and employ

space capabilities in shortened timeframes and in more affordable ways. The ORS

report [41] identifies that the overall approach to ORS is to expedite development

and fielding of select responsive space systems by leveraging National Security Space

(NSS)-wide technology development activities and operational capabilities.

According to a House Armed Services Committee (HASC) report [24], the Na-

tional Defense Authorization Act for Fiscal Year 2008 reaffirmed support and the

need for ORS. This support came in light of a Chinese anti-satellite test and other

growing threats to space. The committee provided previous legislation stating that

ORS shall consist of low-cost, rapid reaction payloads, buses, spacelift, and launch

control capabilities. The committee indicated that it would like to see more support

for responsive payload and bus development.

The preceding paragraphs highlight the relevance and current interest level in

the ORS concept. In reviewing the preceding paragraphs and the literature, several

recurring program attributes or themes were revealed as being areas of desired im-

provement over existing systems as listed in Table 1.1. Surveying the attributes or

themes highlighted in the table and reviewing the literature, one prevalent theme

continued to appear that policy makers feel would go a long way in helping to make

the ORS concept a reality, and that theme was modularity. The last two decades have

seen an increase in focus on modularity benefits and modular design methods. The

creation of the customizable personal computer in a short time frame or on demand

has become the impetus of trying to capture the benefits of both customization and

time to get a product to the market, or the warfighter in the case of military products.
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This notion that modularity is beneficial depends on the context and purpose behind

modularizing a system. System designers must understand when an increase in mod-

ularity is desirable from a design standpoint and from a system goal(s) perspective.

Modularity has been studied in various scientific areas. Russell [39] gives a

comprehensive though not exhaustive list of all of the disciplines that have used mod-

ularity in their discipline evolution including: cognitive processes of the brain [8],

computers, computer networks, computer programming languages, theoretical biol-

ogy, psychology, speech perception, economics, politics, neuroscience, architecture,

production, education, orthopedic implants, and robots. While modularity had been

studied in the above disciplines, it was not clear whether or not the same benefit can

be realized in evolving the ORS construct. Moreover, it was not clear if designing

systems that are more modular is warranted despite the push from policy makers.

In line with the responsiveness aspect of the ORS construct, it has been recog-

nized that satellite or mission [3] responsiveness has become important in more than

just military situations. It can also be used in disaster monitoring like the tsunami in

southeast Asia or hurricane Katrina in New Orleans. Responsiveness can also support

science missions; for example, when transient phenomena occur it would provide the

ability to get a spacecraft on orbit on short notice to allow observations in space to

occur. It would also support the idea of “responsive science [3]” such that a quick

turnaround of results from one day’s mission can be incorporated into tomorrow’s ex-

periments. Responsiveness would support a growing need to bring science and math

into classrooms. In a responsive space environment, a student can become involved

beginning with the payload manifest and follow it from initial concept to mission

completion which is currently a rare occurrence.

The typical timeline for major missions to occur is on the order of a decade or

more. Even small satellite missions can take 5-7 years. As a result of a joint analysis

team review of the oversight and review process for DoD space systems acquisition,

interim guidance was provided in 2009 from the Under Secretary of Defense for Ac-
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quisition, Technology, and Logistics (USD/AT&L). The interim guidance states that

space acquisition policies from the rescinded National Security Space Acquisition Pol-

icy 03-01 will be incorporated into the Department of Defense Instruction 5000.02.

Figure 1.1 illustrates the acquisition process of the Small Quantity System Model

based on the interim guidance that is to be used for space based systems among oth-

ers [57]. One of the key developments that will enable the ORS concept and the idea

of responsive space in general to progress toward an operational reality is the ability

to reduce the overall timeline from mission concept to spacecraft launch and employ-

ment. This timeline involves several key events or phases that are shown in Figure

1.2. The last phase shown in the figure is assembly and checkout that prepares the

spacecraft for launch and deployment. A typical timeline for assembly and checkout

is on the order of months for smaller missions and years for larger missions. The goal

is to reduce this timeline to be on the order of days or weeks.

It has been hypothesized, without proof, that one way to accomplish this time-

line reduction is through spacecraft designs that incorporate this idea of modularity

early in the design process. Current research by Mikkola [34] has shown systems that

target customization as a goal are dependent on two factors: 1) the degree of modu-

larity embedded in product architectures; and 2) the extent to which components are

standardized. Studying the first factor, degree of modularity, recent research [23] has
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begun to compare goals and design decisions of choosing modular architectures versus

integral architectures. The research has shown that systems with higher degrees of

modularity, tending toward more modular architectures, target goals such as reduced

life cycle cost and getting a product to the warfighter or user quicker. This is in

contrast to systems with lower degrees of modularity, tending toward more integral

architectures, can achieve greater technical performance.

1.2 Problem Statement

It is hypothesized that increasing the modularity of a system will increase the

responsiveness of getting a product to the market or the warfighter in a reduced

timeframe. In proving/disproving this hypothesis, the following questions need to be

answered:

∙ How is product modularity measured?

∙ What design influences increase product modularity?

∙ When is a more modular system, as compared to an an integral system, desirable

from a design standpoint and from a system goal(s) perspective?
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∙ What affect do temporal constraints on assembly have on the modularity versus

design goals relationship?

1.3 Research Objectives

The intent of this research is to investigate a complete measure of product mod-

ularity. The benefits of modularity are investigated in order to better understand how

to develop a measure for it. There are three main thrusts of this investigation. First,

it is important to identify the benefits being realized by modularizing a product. Only

then can a measure be developed to capture product modularity. The second thrust

of this research involves using two Air Force precision guided munitions to further

refine the modularity measure development and to understand design influences that

increase modularity. The third thrust is to extend the use of the modularity measure

from the simpler precision guided munition application to a more complex modular

satellite example. This third thrust also involves relating modularity to the product

assembly and checkout process.

1.4 Method Overview

The overall approach in meeting the research objectives and answering the ques-

tions in the problem statement is outlined below and further expounded upon in

Chapters 3–6. A five-step analysis process is developed and used to guide the assess-

ment of product modularity. Defining and decomposing products is performed first

since the remainder of the research builds upon these definitions and decompositions.

Using the resultant functional model from the first step, the identified functions are

mapped to modules in a product in the second step of the analysis process. In the

third and fourth steps, module-to-module interfaces are identified and captured in a

set of design structure matrices (DSMs) or a tensor plot. Finally, using the results

from steps 1–4, the Vector Modularity Measure that includes a reconfigurability mea-

sure can be calculated. Once the measures are calculated, the results can be used

to compare the modularity of alternative product architectures. After illustrating
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the research methodology on a simplified munitions example, the research focuses on

extending the approach to a modular satellite design problem, namely AFRL’s Plug-

and-Play Satellite (PnPSat). The resulting analysis is used to recommend changes

to the existing PnPSat design to further increase its modularity. The resulting anal-

ysis is also used in conjunction with an assembly and checkout analysis of the three

applications to begin to characterize the modularity versus temporal constraints re-

lationship. This initial characterization uses the first factor in the VMM, degree

of coupling. Lastly, the modularity analysis process and applications are used to

draw conclusions and make recommendations for future research in Chapter 7. These

recommendations include identifying factors that influence both modularity and the

timeline to perform product assembly and check-out.

1.5 Research Contributions

1. A process for accomplishing module identification in conjunction with perform-

ing a system decomposition was defined. Module identification is the starting

point for the Reconfigurability Measure and Vector Modularity Measure calcu-

lations.

2. This research extended previous work to capture the interface types in a layered

or tensor approach. The tensor plot graphically provides the designer with

feedback to identify predominant interface types.

3. In order to begin assessing the modularity of any product, several key steps

must be performed to identify modules and capture associated characteristics

of each module. This research developed a process to do this in a manner that

is repeatable.

4. This research developed a repeatable measure to assess product reconfigurability

recognizing that the measure should account for more than the mathematical

number of reconfigurations possible stemming from module options.
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5. This research extended the current research on measuring product modularity

in the development of the Vector Modularity Measure (VMM). The VMM uses

degree of coupling, reusability, reconfigurability, and extensibility factors to

assess product modularity.

6. The utility of the RM and VMM were demonstrated using the GBU-24 and

the GBU-31 precision guided munitions. This application highlighted reasons

why the GBU-24 is more modular than the GBU-31 (e.g. the GBU-24 has less

pair-wise constraints than the GBU-31).

7. The applications of the RM and VMM were extended from a simpler PGM

example to a more complex example, PnPSat. The analysis process was also

applied resulting in recommendations for future design changes to increase the

modularity of PnPSat and associated modularity benefits being realized.

8. An initial approach to characterizing the modularity versus temporal constraints

relationship was developed and applied to the GBU-24, the GBU-31, and to the

PnPSat. This relationship was characterized using the first factor in the VMM,

degree of coupling.

1.6 Dissertation Overview

This document follows the scholarly article dissertation format for document-

ing the research. Using this format, the document is divided into seven chapters and

contains two appendices. Chapter 2 presents relevant technical background informa-

tion on major concepts and techniques used to conduct the research. These major

concepts and techniques were used as a foundation for the work covered in Chap-

ters 3–6. Sufficient technical detail is presented such that the fundamental research

approach is repeatable and the key contributions are verifiable. The majority of the

documentation presented in Chapter 2 was submitted to and published in the 2009

Conference on Systems Engineering Research Proceedings (see reference [47]).

8



Several factors are used in assessing a product’s modularity, one of which is

reconfigurability. Chapter 3 provides the development of a measure to assess recon-

figurability of modular products. It identifies key concepts that are used in Chapter 4,

extending the Reconfigurability Measure (RM) to the overall Vector Modularity Mea-

sure (VMM). The RM is demonstrated using two precision guided munitions in use

by the United States Air Force. Chapter 3 has been submitted as a research paper

to the ASME Journal of Mechanical Design.

Chapter 4 describes the Vector Modularity Measure (VMM) that is used to

assess a product’s modularity. The VMM uses the RM along with degree of coupling,

reusability, and extensibility to assess product modularity. The VMM is demonstrated

using the precision guided munitions example from Chapter 3. Chapter 4 has been

submitted as a research article to the Taylor & Francis Journal of Engineering Design.

Chapter 5 presents and extends the application of the VMM to a more complex

product, AFRL’s PnPSat. The VMM analysis process was used to evaluate mod-

ularity benefits being realized by PnPSat and recommend future design changes to

further increase PnPSat’s modularity. Chapter 5 has been submitted as a research

article to the AIAA Journal of Spacecraft and Rockets.

Chapter 6 uses the PGM applications to develop an approach to characterizing

the modularity versus temporal constraints relationship. The temporal constraints

referred to in this chapter are associated with a product assembly and checkout pro-

cess timeline. This approach is then used to analyze the PnPSat modularity versus

assembly and checkout process relationship. This relationship focuses on the degree of

coupling factor in the VMM. Lastly, emerging trends from using all three applications

are stated as preliminary findings.

Chapter 7 concludes the main document by providing an overall summary of the

research findings, a summary of key contributions, and recommendations for future

research. This is followed by two appendices that provide a glossary of key terms and

some of the MATLABⓇ code used to support the research.
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II. Background

This chapter presents pertinent technical background information on major concepts

and techniques used to conduct the research. The benefits of modularity along with

key terms associated with modularity are given first as they introduce the foundation

of the research. Tools and techniques for performing system decomposition are de-

scribed in the first section of this chapter. System decomposition is pervasive to all

of the modularity measures studied in the literature survey as well as in the research

documented in this dissertation. Summaries of each of the current modularity mea-

sures are given next. Lastly, a few concepts that are also used in the literature but

not as pervasively as system decomposition are given as they are fundamental to this

research.

Before diving into the specific techniques and methodologies from the literature

survey, the recognized benefits of modularizing a product are reviewed so they can be

balanced and used when making design decisions. According to a 2005 Space Power

Journal article [28], Lee points out the benefits of using components and standards

for space systems, and some of these benefits are also applicable to modular systems

in general. Gershenson et al. [16] list and summarize the benefits of modularity as

cited from numerous previous works. These benefits are summarized in Table 2.1. As

Gershenson et al. point out, while many benefits of modularity are widely accepted,

there has been only little anecdotal evidence and scientific proof of these benefits.

The proof that has been shown has been on simple products and there is even less

of a degree of certainty that these benefits will carry over to more complex products.

Product complexity, as used in this research, is defined similarly as in [36] as having

three main elements: 1. number of modules; 2. number of interfaces between modules

(degree of coupling); and 3. degree of product novelty. Increasing any of the three

elements corresponds to an increase in product complexity.

After reviewing a few related articles on modularity measures, it became readily

apparent that a few definitions need to be established based on some terms that have
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Table 2.1: Modularity Benefits (summarized from [16])
Category Benefits

Product Functionality Reconfiguration; customization; modularity
allows for flexible designs that can respond to
changes in functional requirements over the
life of a product

Product Development Dividing tasks for parallel development; re-
use of existing designs; economies of scale;
increased feasibility of component/product
change; increased product variety; decou-
pling risk

Production Streamlined suppliers; reduced inventory,
fewer works in progress, faster process time;
learning curve effect; parts and material price
breaks

Other Decreased life-cycle costs; maintenance fault
analysis; recycling, re-use, and disposal

been used thus far as well as additional terms that will be introduced. Gershenson

et al. [16] surveyed the literature for a common definition or agreed upon definition

of modularity among many disciplines. What they found was that there was some

consensus in some areas but few definitions of modularity captured product modular-

ity. Gershenson et al. came up with three fundamental elements to modularity: the

independence of a module’s components from external components, the similarity of

components in a module with respect to their life-cycle processes, and the absence of

similarities to external components. They consider modularity to be a relative prop-

erty and so systems or products can have higher or lower degrees of modularity. They

also clarify that products with higher degrees of modularity are either considered to

have a higher percentage of components that are modular or contain components that

are more modular on average. An even more general definition for modularity along

with some additional definitions that are used in this research are given below1:

1http://en.wiktionary.org/wiki/Wiktionary:Main Page and http://www.wikipedia.org were used
as guide markers in finalizing the definitions except as indicated where the exact definition was used.
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∙ Modularity – grouping of components into well defined entities, such as mod-

ules or sub-assemblies, that can be further described by the interfaces between

them.

∙ Interface (I/F) – spatial, informational, material, energy, or structural con-

nection or coupling of one module to another module within a product [42]. I/F

types given below are defined similarly as in [42].

- Spatial I/F – physical adjacency for alignment, orientation, serviceability,

assembly or weight.

- Informational I/F – transference of signals or controls.

- Material I/F – transference of airflow, oil, fuel, or water.

- Energy I/F – transference of heat, vibration, electric, or noise energy.

- Structural I/F – transference of loads or containment.

∙ Modular System or Product: – a system or product composed of modules

according to a particular system architecture.

∙ System Architecture: – the conceptual design that defines the structure

and/or behavior of a system2; it represents the functional, physical and/or

operational architectures of the system [7].

∙ Modular: – an entity containing one or more modules that can be arranged

in a flexible way such that the modules are interchangeable.

∙ Module: – group of components or sub-assemblies that perform one or more

functions; a module has at least one interface with other modules within a

system or subsystem.

∙ Component: – smaller, self-contained part of a larger entity3; components

have at least one interface with another component or module.

2http://en.wikipedia.org/wiki/System architecture
3http://en.wiktionary.org/wiki/component
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∙ Modular Component: – components that can be interchanged with other

components in a module to achieve the functions of the module.

∙ Function – technical process involving energy, material and/or signals being

converted and/or channeled.

∙ Flow – material, signal, and/or energy that can be converted or channeled.

Additional definitions will be included as they are introduced and are also included

in Appendix A for reference.

2.1 System Decomposition

2.1.1 Functional Basis Language. One of the foundations of this work is

decomposing systems in order to analyze their degree of modularity and how it relates

to responsiveness. Two system decompositions are performed, one at the functional

level; and one at the module level that resulted from the functional level decom-

position. The latter is captured using design structure matrices (DSMs) described

in Section 2.1.3 and follows Suh’s axiomatic design principles described in Section

2.6 [54].

Hirtz et al. [21] extended the previous work by [38] to create a functional basis

vocabulary. This vocabulary defines a standardized language to decompose a system

into functions and flows to a level of abstraction needed for a given analysis. Three

levels of abstraction are used to describe the decomposition: class (or primary), sec-

ondary, and tertiary. Functional decomposition is not new. Functional decomposition

is typically done in the early stages of design conceptualization, transforming user re-

quirements into functional requirements that result in a functional model [11,43,54].

This functional decomposition or modeling provides an abstract method for under-

standing and representing the overarching function of a product [21]. Functional

decomposition begins at the top level outlining the overarching function of a prod-

uct. This overarching function is then decomposed into the three levels of abstraction

listed above that are used in the zigzagging technique given in [54] and described in
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Section 2.6. For purposes of this analysis, the functional decomposition abstraction

level stops at the class level.

2.1.2 Module Identification. After functional decomposition has been ac-

complished at the class level, a product’s components and/or modules can be mapped

to their corresponding function(s). For existing products, one method to identify mod-

ule boundaries is to use reverse-engineering. Even though the product exists, clear

boundaries may not present themselves, requiring iterations of function-to-module

mappings until the boundaries are clearly defined. For new products, identifying the

module boundaries also will likely require several iterations of these mappings. An-

other technique to identify modules is to use the dominant flow heuristic developed by

Hirtz et al. ( [44–46]). This heuristic groups components performing similar functions

into modules.

2.1.3 Design Structure Matrix. One use of the design structure matrix

(DSM) is to capture results of performing a system decomposition. Browning [6]

points out that the DSM is a square matrix with identical rows and columns that

displays relationships between components of a system in a compact, visual, and

analytically advantageous format. The row and column headings capture the modules

identified in the system decomposition. As shown in Figure 2.1, the DSM matrix also

shows the dependency and provider relationship between elements where an element

can be a module, a component, activity, parameter, etc. When viewing the rows and

columns of the example matrix (as adapted from [6]), specifically at the Element 3

row, Element 3 depends on information from Elements 1, 5, 6, 9, and 10. Similarly,

reading the column of Element 3 shows that it provides something to Elements 8 and

9. DSMs are one of the tools used to model the module-to-module interfaces in this

research.

Another example of using DSMs, with a similar presentation, is given by Hölttä

et al. [22] where it is used to represent the internal connectivity structure of a product.

Hölttä et al. give examples of what these DSMs would look like for the extremes of
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PROVIDE

1 2 3 4 5 6 7 8 9 10

Element 1 1

Element 2 x 2 x x x x

D Element 3 x 3 x x x x

E Element 4 x 4 x

P Element 5 x 5 x

E Element 6 x x 6 x

N Element 7 x x x x 7 x

D Element 8 x x x x 8

Element 9 x x x 9

Element 10 x 10

Figure 2.1: Example DSM showing dependencies

a fully integral system and a fully modular system of components. The examples

shown in Equation 2.1 are adapted from the examples given by Hölttä et al.

DSMintegral =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
DSMmodular =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1)

2.2 Modularity Measures

A survey of the literature revealed several methods to quantify the degree of

modularity of systems. Each of the methods tackle the concept of measuring the

degree of modularity of a system, a module, or a component in slightly different

ways. In this section, the various methods to quantify the degree of modularity is

reviewed individually. Very little work was found on comparing modularity versus

performance of systems. That work will be summarized in this section as well.
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2.2.1 Gershenson, Guo, Prasad and Zhang [17, 19, 20]. Gershenson et

al. [17, 19] provide a good summary of the work that has been done in the literature

regarding product modularity measures and design methods to achieve modularity

in product design. Gershenson et al. looked qualitatively in 2002 [17] and quanti-

tatively in 2003 [19] at works in various fields in addition to engineering to include

computer science, biology, architecture and art. They also reviewed their own modu-

larity measure [15,17] that they developed in 1999 where they considered modularity

to be a relative property, which is commonly done. Their measure was the ratio of

intra-module similarities to all similarities, both intra- and inter-module, which is

added to the ratio of intra-module dependencies to all dependencies, both intra- and

inter-module as seen in Equation 2.2.

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑖𝑛𝑡𝑟𝑎𝑠𝑖𝑚
𝑎𝑙𝑙𝑠𝑖𝑚

+
𝑖𝑛𝑡𝑟𝑎𝑑𝑒𝑝
𝑎𝑙𝑙𝑑𝑒𝑝

(2.2)

where :

𝑎𝑙𝑙𝑥 = 𝑖𝑛𝑡𝑟𝑎𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑥

𝑥 ∈ {𝑠𝑖𝑚 (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠), 𝑑𝑒𝑝 (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠)}

The similarities that Gershenson et al. considered were component-process similari-

ties whereas the dependencies considered were both the component-process and the

component-component dependencies. Their conclusion after reviewing the literature

was that the measures and methods varied widely in both purpose and process and

that some were highly quantitative in nature whereas others were highly qualitative

in nature. Ultimately, their review of the literature showed no clear consensus other

than those found in defining modularity. They did find that most of the measures

centered on measuring dependencies with components external to modules but there

was always some subjectivity in the measures. They used this finding in their quan-

titative analysis when comparing the various modularity measure methods. They

used cluster analysis to recommend one of the 9 measures as an industry standard
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for other researchers and design engineers to adopt. At this time, no such standard

exists. Finally, they noted that the measures and methods lacked rigorous verifica-

tion and validation. Gershenson et al. reviewed works for the previous 30 years, and

that historical review is not repeated here. The background literature survey in this

section focuses on work done since their article appeared in 2003.

2.2.2 Mikkola [34]. The first of the modularity measures that are reviewed

in this section were initially developed by Mikkola in 2003 and further developed

in 2006 [34]. They include degree of modularity, degree of mass customization, and

degree of product variety. These relations taken together make up the modularity

function (MF) which “is a mathematical model that measures the degree of modular-

ization embedded in a given product architecture by taking into account the number

of components, interfaces, degree of coupling, and substitutability.” Mikkola noted

that modularity is a key enabler for mass customization. She also noted that the

extent of mass customization is dependent on two factors: 1) the degree of modu-

larity embedded in product architectures; and 2) the extent to which components

are standardized. With this, Mikkola also suggests that the degree of modularity

embedded in product architectures is related to the tradeoffs between the amount of

standardization and uniqueness of components. Mikkola goes on to categorize the

degree of customization into four component strategies:

1. standard - noncustomizable components

2. standard - customizable components

3. unique - noncustomizable components

4. unique - customizable components

These categories lead to a customization strategy spectrum shown in Figure 2.2,

adapted from [34]. When looking at Figure 2.2, traditional spacecraft fall into the

right-side of the spectrum. The ORS concept is trying to move this towards the

middle of the spectrum through higher component standardization and an increase
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Figure 2.2: Customization Strategy Spectrum

in product architecture modularity. According to the model, this will promote lower

component costs and it is believed will result in an increased opportunity for mass

customization of spacecraft.

This leads to the modularity function that measures the degree of modular-

ization embedded in product architectures. The terms used in the preceding expla-

nations, along with a few more key factors, define the degree of modularity, 𝑀(𝑢),

developed by Mikkola.

𝑀(𝑢) = 𝑒−𝑢2/2𝑁𝑠𝛿 (2.3)

In Equation 2.3, the degree of modularity is defined with respect to the number of

unique components (𝑢) embedded in a given product architecture where 𝑁 is the total

number of standard and unique components, 𝑁 = 𝑛𝑆𝑇𝐷 + 𝑢, 𝛿 is the average degree

of coupling between components and between modules; and 𝑠 is the substitutability

factor of the unique components into other products or systems. Interfaces 𝑘 and

degree of coupling 𝛿 are related and approximated using the relationship 𝛿 ∼ (𝑘/𝑛)

where 𝑘 is the number of interfaces for a module or subsystem and 𝑛 is the number

of components or modules in a module or subsystem, respectively. This relationship

is an approximation of the average number of interfaces per component or module,

respectively. The substitutability factor, 𝑠, which is the substitutability of unique

components in the product architecture, is estimated as the total number of families

in which the unique components are used (in addition to the product being analyzed)
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1 2 3 4 5 6 7 8 9 10

Element 1 M1 x x x

Element 2 x M1

Element 3 x M1 x x

Element 4 x M1

Element 5 x M2 x x x

Element 6 M3 x x

Element 7 x M3 x x

Element 8 x M3 x x

Element 9 x x x x x M3

Element 10 x x x M3

SS1 SS2

Figure 2.3: Example system DSM for System 1 (S1) showing 2 subsystems, 3
modules, and 10 components along with their various relationships

divided by the number of interfaces required for functionality, 𝑠 ∼ 𝑛𝑃𝐴/𝑘𝐴. A couple

of observations or insights can be made at this point in reference to the setup and

Equation 2.3. The lower the number of unique components the higher the degree

of modularization. A perfectly modular product architecture results in 𝑀(𝑢) = 1.0

and has zero unique components. Unique components that are used across product

families have a higher substitutability factor and hence result in a higher degree of

modularity. Mikkola goes on to outline an algorithm for measuring 𝑀(𝑢) which is

illustrated here using a similar system example adapted from [34].

The degree of modularity measure begins with defining the product architecture

through decomposition of the system into subsystems, modules, and components. For

this example calculation, the DSM in Figure 2.1 is used but is modified as a symmetric

DSM. The DSM represents an example system, System 1 (S1), which is decomposed

into 2 subsystems, SS1 and SS2, respectively. Subsystem 1 is decomposed into Mod-

ule 1 (M1) and Module 2 (M2), which are in turn decomposed into Components 1

through 4 and Component 5, respectively as shown in Figure 2.3. By using the DSM,

Mikkola’s second step of the algorithm is already accomplished, that is identifying

the interfaces between components and modules, both inter- and intra-. In setting up
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Table 2.2: Degree of Coupling for S1, Subsystems, and Modules
Module 𝛿𝑚𝑜𝑑𝑢𝑙𝑒𝑠 Subsystem 𝛿𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝛿

M1 0.75 SS1 0.5 -
M2 0 SS2 0 -
M3 1.2 - - -
M𝑎𝑣𝑔 0.65 SS𝑎𝑣𝑔 0.250 0.9

the DSM, the components and modules should also be identified as being unique or

standard. In our example, M1 and its components are considered unique such that 4

out of the 10 components are unique. The next step is to assess the substitutability

factor of the unique components (or modules) by counting the number of product

families enabled by the component, divided by the number of interfaces required by

the component for functionality. For S1, if M1 can also be used in 2 other systems,

then the substitutability factor, 𝑠, is 2/2 or 1 component per interface. The next

step is to compute the degree of coupling, 𝛿, for each module, and then compute the

average degree of coupling per module. This is followed by computing the degree

of coupling for each subsystem which is then used to find the representative value

of 𝛿 for S1. The 𝛿 for S1 is simply the sum of the average 𝛿s for the modules and

subsystems. The calculated values are shown in Table 2.2. Using the calculated 𝛿

along with 𝑠 = 1.0, N= 10, and 𝑢 = 4, yields 𝑀(𝑢) = 𝑀(4) = 0.41 which can be seen

in the plot of M(u) versus u in Figure 2.4.

It is important to note that this measure is influenced by the way in which

components and modules are assembled, hence the measure is dependent on the

particular product architecture and its boundaries. Also looking at the modularity

function equation itself again (Equation 2.3), for a given product architecture we

can only change the number of unique components and the substitutability factor

and observe the influence of the two on the inherent modularity of a given product.

This can be viewed graphically, similar to Figure 2.4, as M(u) versus u where 𝑢 ∈
{0, 1, , ..., 𝑁} and each set of data points refers to a particular substitutability

factor, 𝑠. For the definition and setup of the modularity function measure developed
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Figure 2.4: M(u) versus u

by Mikkola [34], in order to increase the degree of modularity unique components

should be incorporated into as many other systems as possible (increasing s), as few

unique components as possible should be used (minimizing u), or a combination of

the two techniques. The author notes that another possibility of increasing degree of

modularity is by increasing degree of coupling, 𝛿, which is mathematically a correct

statement using Equation 2.3. However, this goes against the prevailing principle in

systems engineering that lower the degree of coupling increases a products modularity.

Mikkola [34] goes on to relate the degree of modularity embedded in product

architectures with mass customization, 𝑀𝐶[𝑀(𝑢)] and is given in Equations 2.4 and

2.5. This relation includes the degree of modularity 𝑀(𝑢) and a new factor 𝑚 that is

outlined in Equation 2.5. The new factor 𝑚 “is an indicator of the degree of product

𝑀𝐶[𝑀(𝑢)] = 𝑚𝑒−𝑢2/2𝑁𝑠𝛿 0.0 ≤ 𝑚 ≤ 1.0 (2.4)

𝑚 =
𝑘1𝑛𝑆𝑇𝐷−𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 + 𝑘2𝑛𝑆𝑇𝐷−𝐶𝑈𝑆𝑇 + 𝑘3𝑢𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 + 𝑘4𝑢𝐶𝑈𝑆𝑇

𝑁
(2.5)
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where :

0.0 ≤ 𝑘1, 𝑘2, 𝑘3, 𝑘4 ≤ 1.0

𝑁 = 𝑛𝑆𝑇𝐷−𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 + 𝑛𝑆𝑇𝐷−𝐶𝑈𝑆𝑇 + 𝑢𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 + 𝑢𝐶𝑈𝑆𝑇

𝑘1 =
𝑛𝑆𝑇𝐷−𝑁𝑂𝑁−𝐶𝑈𝑆𝑇∑

𝑛𝑆𝑇𝐷−𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 (from aggregate MPS)

𝑘2 =
𝑛𝑆𝑇𝐷−𝐶𝑈𝑆𝑇∑

𝑛𝑆𝑇𝐷−𝐶𝑈𝑆𝑇 (from aggregate MPS)

𝑘3 =
𝑢𝑁𝑂𝑁−𝐶𝑈𝑆𝑇∑

𝑢𝑁𝑂𝑁−𝐶𝑈𝑆𝑇 (from aggregate MPS)

𝑘4 =
𝑢𝐶𝑈𝑆𝑇∑

𝑢𝐶𝑈𝑆𝑇 (from aggregate MPS)

variety present in a given product architecture, which is reflected in the number of

components that are used for creating product variety where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are

contribution percentages per component type that is used in all production lines,

which can be obtained from the Bill of Materials (BOM) and the Master Production

Schedule (MPS). The BOM lists the quantity of all the components used in a given

product, including respective types and prices. The MPS lists the volume of compo-

nents needed in production to satisfy demand. [34]” It is unclear at this point whether

or not this relationship, 𝑀𝐶[𝑀(𝑢)], will be useful but is included for completeness

from the literature survey. This relationship will be revisited as the research effort

progresses. The degree of modularity measure, 𝑀(𝑢) is relevant and will be used as

the research progresses.

2.2.3 Hölttä-Otto, de Weck and Suh [22, 23]. Hölttä-Otto et al. created a

new measure of modularity in 2005 [22] and further developed it in 2007 [23] that

combines two metrics. The two metrics are the non-zero fraction (NZF) and the

singular value modularity index (SMI). The NZF evaluates the sparsity of the inter-

relationships between components and assumes values between zero and one. The

SMI also assumes a value between zero and one but looks at the degree of internal

coupling. This new common measure was then compared to the common measure

created by Gershenson and Guo [20].
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The SMI is the measure that was developed in the earlier work [22] which is

an unambiguous way to quantify the degree of modularity of a product based on its

internal connectivity structure. This internal connectivity structure is represented by

a design structure matrix (DSM), specifically a binary DSM that was chosen for the

sake of simplicity. The DSM was introduced in Section 2.1. Hölttä-Otto et al. [23] use

the binary DSM such that the diagonal entries are zeros and the off-diagonal elements

are set to one or zero if two components have a connection or not, respectively. Again

the binary DSM was used, but according to Hölttä-Otto et al., a non-binary DSM can

also be used which enables differentiation between connections of different strengths.

The DSM examples used in Section 2.1 are shown again in Figure 2.5. Also shown

in Figure 2.5 are example integral and modular systems in Figures 2.5(a) and 2.5(b)

respectively that were adapted from [22] that the DSMs would represent.

Figure 2.5(a) shows that every component connects to every other component in

the integral system, whereas for the modular system in Figure 2.5(b), each component

only connects with its immediate neighbor(s). Both systems have 5 components. The

total number of components in the system is referred to as 𝑁 , and in our example

𝑁 = 5.

A common technique for analyzing multivariate data is the Singular Value De-

composition (SVD) technique [58]. The SVD can be performed on the DSM matrices

to reveal the singular values. The values for the example system, where 𝑁 = 5, were

computed using MATLAB and are plotted in Figure 2.6. The singular values are 𝜎𝑖

through 𝜎𝑁 and are produced in descending order. Using 𝜎1, the singular values were

normalized through 𝜎𝑖/𝜎1. Hölttä-Otto et al. note, as can be noted with our example

in Figure 2.6, that there is a significant difference in the plots for integral versus

modular systems. The modular system shows a more gradual decay of its singular

values. Hölttä-Otto et al. explain the reason for this; the information that describes

the system is more broadly distributed in modular versus integral architectures. More

importantly, the authors go on to explain that a system with a higher decay rate of

singular values can more easily be reduced to a smaller set without much loss of infor-
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

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


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







(b) Modular System
(a) Integral System

DSMb =













0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0













(b) Modular System
(b) Modular System

Figure 2.5: Product structures and their associated binary DSMs for a (a) fully
integral system, and (b) fully modular system
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mation. So for an integral system, it can be described by focusing on the components

that are the most connected. Conversely for a modular system, information from a

wider set of components is required to describe the system.

Hölttä-Otto et al. [23] postulate that the modularity index reflects the degree to

which the important information for describing system connectivity is concentrated

in a few components that are highly connected across the system. The SMI measures

the decay rate of the sorted, normalized singular values in the system and is shown

in Equation 2.6.

SMI =
1

𝑁
argmin

𝛼

𝑁∑
𝑖=1

∣∣∣∣ 𝜎𝑖

𝜎1

− 𝑒−[𝑖−1]/𝛼

∣∣∣∣ (2.6)

In Equation 2.6, developed by Hölttä-Otto et al., it is assumed for the sake of

comparison that singular values in all systems decay exponentially according to

𝑒𝑥𝑝(−(𝑖 − 1)/𝛼). Equation 2.6 can be rewritten in the form shown in Equation

2.7 such that 𝛼∗ is equal to the 𝛼 from Equation 2.6 that minimizes the sum shown

on the right hand side of the equation.

𝑆𝑀𝐼 =
𝛼∗

𝑁
(2.7)

Continuing with our example problem, “fminsearch” was used in MATLAB to find

the 𝛼 that minimized the sum in Equation 2.6. This 𝛼, denoted as 𝛼∗, was then used

to calculate the SMI using Equation 2.7. The results are tabulated in Table 2.3.
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Table 2.3: SMI and NZF Values for the Example System, N=5
System N 𝛼∗ SMI NZF

Integral 5 1.44 0.29 1.0
Modular 5 3.64 0.73 0.4

Hölttä-Otto et al. outline several fundamental characteristics of the SMI to include:

∙ 0 ≤ SMI ≤ 1

∙ An SMI closer to one indicates a more modular system whereas an SMI closer

to zero indicates a more integral system.

∙ The SMI is independent of subjectively drawn boundary lines between modules

which is not the case in the Modularity Function developed by Mikkola [34].

∙ The SMI is scale free and can be computed for systems of varying sizes.

The second metric used and developed by Hölttä-Otto et al. is the non-zero

fraction (NZF). The NZF is the fraction of non-zero entries in the DSM to the total

number of entries, after subtracting out the main diagonal. The NZF is computed

using Equation 2.8.

NZF =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝐷𝑆𝑀𝑖𝑗𝑖∕=𝑗

𝑁(𝑁 − 1)
(2.8)

The NZF is useful in that it indicates the degree of connectedness or the degree

of sparsity of the underlying DSM. This is different than the SMI in that the SMI

measures the degree of modularity of a system. In our example, the integral system

has an NZF = 1 which indicates that each component is connected to every other

component. The example modular system has an NZF = 0.4 which is shown in Table

2.3.

2.2.4 Sosa, Eppinger, and Rowles [42]. Sosa et al. [42] developed a modu-

larity measure in 2007 by further developing and combining several existing measures

using graph theory. A few basics regarding graph theory are presented in Section

2.5. Sosa et al. break the modularity measures into three groups of measures includ-

ing degree modularity, distance modularity, and bridge modularity. These groups of
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measures are based on the notion of centrality. The degree modularity measure repre-

sents how components share direct interfaces with adjacent components. The distance

modularity measure represents how design interfaces may propagate to nonadjacent

components. Finally, the bridge modularity measure represents how components may

act as bridges among other components through their interfaces. Sosa et al. consider

complex products as a network of components that share technical interfaces in order

to function as a whole system. In defining component modularity, they look at the

lack of interfaces or connectivity among the components. These connections represent

design dependencies.

Sosa et al. [42] point out that modularity can be measured at varying levels such

as at the product level, the system or subsystem level and at the component level.

The latter level is the focus of Sosa et al. who define component modularity as the

level of independence of a component from the other components within a product,

where the product is made up of systems or subsystems which in turn are made up of

components. A component is considered more modular if it is more independent as

indicated by its number of connections or its disconnectedness. Conversely, the more

connected or dependent a component is with other components, the less modular it

is. In trying to measure modularity, Sosa et al. aim to look at the patterns of a

component’s connections or design dependencies with the other components in the

product.

To illustrate the three groups of modularity measures, from Sosa et al., the

example bipartite graph from Figure 2.10 in Section 2.5 will be used here with a

few changes. The bipartite graph vertices are grouped back into a single group of

nodes instead of having them split into variables and relations, thus removing the

“bi-” part of the graph. The nodes are then renumbered (re-lettered) as a, b, c, d,

e, and f. The graph still has the same edges and same directional markings with the

addition of two edges that are made more prominent than the others thus showing a

“stronger” connection between the two nodes (between c and a, and between d and

b). The stronger connections (design dependencies) occur when they are considered
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(a) Example bipartite graph from
Chapter 1

(b) Example bipartite graph rear-
ranged into a digraph

Figure 2.7: Example graph transformed from the bipartite graph in Figure 2.10

PROVIDE

a b c d e f

D   a * 2

E   b * 2

P   c *

E   d 1 *

N   e 1 *

D   f 1 *

Figure 2.8: DSM matrix for graph in Figure 2.7

to be of higher importance or influence as subjectively assessed by the designers, users

or stakeholders. The last change is to simply rearrange the nodes pictorially for ease

of directly seeing the components and their connections. These changes are shown

in Figure 2.7. The graphs in Figure 2.7 represent a product that is broken down

into components which also show their design dependencies among and between the

components. The graph in 2.7(b) is used to define the network of components that

will be analyzed over the next few paragraphs.

After breaking down the product, Sosa et al. represent products using the DSM

(refer to Section 2.1.3) which is shown in Figure 2.8 for our example system. For the

DSM, any edge between two nodes will take on a nonzero value. In this example,

adapted from Sosa et al., each edge receives a value of one unless a “strong” depen-

dency exists, noted by the prominent directional arrows, which is then represented in

the matrix entry as a 2.

Having developed the DSM, the first group of modularity measures can be

calculated: degree modularity. To do this, Sosa et al. use a normalized expression
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for component modularity using a ratio shown in Equation 2.9 of actual component

disconnectivity to the maximum possible component disconnectivity.

ComponentModularity =
Actual component disconnectivity

Maximum possible component disconnectivity
(2.9)

The idea of disconnectivity is based on the concept of independence and how indepen-

dent a component is with respect to design dependencies. Having setup the normal-

ized measure for component modularity, the first of the degree modularity measures,

the in-degree of modularity, 𝑀(ID)𝑖 can be calculated using Equation 2.10. This

equation translates mathematically into Equation 2.11 where 𝑥𝑖+ =
∑𝑛

𝑗=1,𝑗 ∕=𝑖 𝑥𝑖𝑗 and

𝑥𝑚𝑎𝑥 is the maximum value that 𝑥𝑖𝑗 can take. The in-degree of a component is a

measure of the number of other components that it depends on for functionality.

𝑀(ID)𝑖 =
Actual indegree disconnectivity

Max. indegree disconnectivity

=
Max. indegree disconnect.− Actual indegree connect.

Max. indegree disconnectivity
(2.10)

𝑀(ID)𝑖 =
𝑥𝑚𝑎𝑥 ⋅ (𝑛− 1) − 𝑥𝑖+

𝑥𝑚𝑎𝑥 ⋅ (𝑛− 1)

= 1 − 𝑥𝑖+

𝑥𝑚𝑎𝑥 ⋅ (𝑛− 1)
(2.11)

The out-degree modularity of component 𝑖 is calculated similarly to the in-degree

using Equations 2.12 and 2.13 where 𝑥+𝑖 =
∑𝑛

𝑗=1,𝑗 ∕=𝑖 𝑥𝑗𝑖.

𝑀(OD)𝑖 =
Actual outdegree disconnectivity

Max. outdegree disconnectivity
(2.12)

𝑀(OD)𝑖 = 1 − 𝑥+𝑖

𝑥𝑚𝑎𝑥 ⋅ (𝑛− 1)
(2.13)

Sosa et al. point out a couple of notes about degree modularity including:
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∙ 0 ≤ 𝑀(ID), 𝑀(OD) ≤ 1

∙ Maximum degree modularity occurs when a component is not connected (has

no design dependencies) to any other component in the product.

∙ Minimum degree modularity reflects strong design dependencies (connections)

between a component and all other components of the product, in other words

the component would be considered highly integral.

∙ If there are no design dependencies, the component is considered disconnected

for the given direction, in- or out-.

The values, 𝑥𝑖+, 𝑀(ID)𝑖, 𝑥+𝑖, and 𝑀(OD)𝑖, for the example problem that were

calculated for each component 𝑖 are shown in Table 2.4.

Table 2.4: Degree, Distance, and Bridge Modularity for the Components in the
Example System, n=6

Component 𝑖 𝑥𝑖+ 𝑀(𝐼𝐷)𝑖 𝑥+𝑖 𝑀(𝑂𝐷)𝑖 𝑀(𝐼𝑇 )𝑖 𝑀(𝑂𝑇 )𝑖
∑

𝑖∕=𝑎,𝑖∕=𝑏,𝑎∕=𝑏

𝑛𝑑𝑎𝑏(𝑖)
𝑛𝑑𝑎𝑏

𝑀(𝐵)𝑖

a 2 0.8 2 0.8 0.03 0.23 4 0.8
b 2 0.8 1 0.9 0.2 0.03 3 0.85
c 0 1.0 2 0.8 1 0.4 0 1.0
d 1 0.9 2 0.8 0.1 0.1 4 0.85
e 1 0.9 0 1.0 0.1 1 0 1.0
f 1 0.9 0 1.0 0.33 1 0 1.0

The next group of modularity measures is the distance modularity. Degree

modularity captures the relationship between components when they are directly

linked to other components. Sosa et al. [42] use distance modularity to capture

the relationship between components when they are not directly linked. Sosa et

al. point out that the measure of modularity of a component should also take into

account how “distant” a component dependency is from another component. This

concept brings in the notion of centrality that the authors are trying to capture

and characterize. The first measure of distance modularity is in-distance modularity,

𝑀(IT)𝑖, and is calculated using Equations 2.14 and 2.15. The authors define distance

modularity as being proportional to the sum of the geodesics of component i with

all other components in a product. It is the direction and not the strength of design
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dependencies that defines distance modularity.

𝑀(IT)𝑖 =
Actual indistance disconnectivity

Max. indistance disconnectivity
(2.14)

𝑀(IT)𝑖 =

𝑛∑
𝑗=1,𝑗 ∕=𝑖

𝑑(𝑖, 𝑗)

𝑛(𝑛− 1)
(2.15)

In Equation 2.15, 𝑑(𝑖, 𝑗) represents the geodesic distance of the design dependency

between components 𝑖 and 𝑗. If multiple paths exist, the shortest path is used.

Similarly, the out-distance modularity is calculated using Equations 2.16 and

2.17. The difference is in the path direction where 𝑑(𝑗, 𝑖) is used. The calculated

values, 𝑀(IT)𝑖 and 𝑀(OT)𝑖, for component 𝑖 for our example problem are shown in

Table 2.4.

𝑀(OT)𝑖 =
Actual outdistance disconnectivity

Max. outdistance disconnectivity
(2.16)

𝑀(OT)𝑖 =

𝑛∑
𝑗=1,𝑗 ∕=𝑖

𝑑(𝑗, 𝑖)

𝑛(𝑛− 1)
(2.17)

As with degree modularity, Sosa et al. point out a few notes about distance

modularity:

∙ High values of 𝑀(IT)𝑖 or 𝑀(OT)𝑖 indicate that component 𝑖 is far from the

other components and hence is more modular.

∙ Disconnected components have a distance modularity of 1 since it is assumed

that a disconnected component is n steps away from all other components in

the product.

∙ The minimum distance modularity is 1/n, which happens when a component is

adjacent to all other components and hence is completely integral.

This leads to the final grouping of modularity measures, bridge modularity

denoted by 𝑀(B)𝑖. Bridge modularity looks at component modularity in yet another
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way. Bridge modularity looks at the relationships between components that are not

directly adjacent to each other. It looks at the components that “bridge” the design

dependencies between two end components in a design dependency path. Bridge

modularity is calculated using the Equations 2.18 and 2.19.

𝑀(B)𝑖 =
Actual bridge disconnectivity

Max. bridge disconnectivity
(2.18)

𝑀(B)𝑖 = 1−

∑
𝑖∕=𝑎,𝑖∕=𝑏,𝑎∕=𝑏

𝑛𝑑𝑎𝑏(𝑖)
𝑛𝑑𝑎𝑏

[(𝑛− 1)(𝑛− 2)]
(2.19)

The quantity
∑

𝑖∕=𝑎,𝑖∕=𝑏,𝑎∕=𝑏

𝑛𝑑𝑎𝑏(𝑖)
𝑛𝑑𝑎𝑏

is the sum of the ratios of all geodesics between com-

ponents a and b that contain component 𝑖 to the total number of geodesics between

a and b. Once the ratios are summed, this value can be used in Equation 2.19 to

calculate the bridge modularity for component 𝑖. The values for the example product

are shown in Table 2.4.

Sosa et al. point out a few observations with regards to bridge modularity which

are also consistent with the values calculated for the example product:

∙ The more a component bridges between other components, or in other words

the more dependency paths it is on, the less modular it is.

∙ Components lying on the most geodesics are those bridging the most compo-

nents and, therefore, are considered to be the least modular.

∙ Maximum bridge disconnectivity, 1.0, occurs when a component does not bridge

any other pair of components because it is not on any of the (n-2)(n-1) maximum

possible paths between the other (n-1) components.

∙ Minimum bridge disconnectivity, 0.0, occurs when it is at the center of a star-

shaped configuration with bidirectional ties to all peripheral components.

∙ A component is more modular if it has a higher 𝑀(B)𝑖 which occurs when it

appears on fewer geodesics.
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Sosa et al. consider their measures to be complementary to each other since

each measure looks at component modularity from related yet slightly different per-

spectives. It should be noted at this point that the design dependencies used in the

example and up to this point were considered to be of the same type, e.g. spatial, ma-

terial, etc.. The authors point out that the design dependencies can be broken down

into categories to include: spatial, structural, material, energy, and information. Each

of the dependency categories need to be characterized when trying to measure the

component modularity. The authors attempt to study how the measures relate to

each other both within and across design dependency category types by performing

two correlation analyses. This correlation analysis appears to be insufficient in cor-

relating the various modularity groups with the various design dependency category

types and provides an opportunity to improve the current state of the research in this

area. Sosa et al. do recognize in the recommendation for future work that a way to

combine the three groups of measures to attain an aggregated measure of component

modularity still needs to be done.

2.3 Comparison of Modular Design Methods

One of the benefits of a modular design method should be the ability to facili-

tate redesign of a complex product, and subsequently improving the overall product.

While many redesigns can occur using various design methods, Guo and Gershen-

son [20] looked at a way to measure the overall value of each of the design methods

in order to compare and select the best modular design method. Here the best mod-

ular design method is one that can produce a more modular design with the greatest

efficiency or in the least amount of iterations. In order to make a comparison among

the various design methods, a common modularity measure first had to be developed

that could be calculated before and after the redesign methods were applied.

In 2004, Guo et al. [20] created Equation 2.20 as a common measure of mod-

ularity. This common measure calculates modularity by averaging the relationships
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within modules and subtracting the averaged relationship external to modules.

Modularity =
1

𝑀

⎛⎜⎜⎜⎜⎝
𝑀∑
𝑘=1

𝑚𝑘∑
𝑖=𝑛𝑘

𝑚𝑘∑
𝑗=𝑛𝑘

𝑅𝑖𝑗

(𝑚𝑘 − 𝑛𝑘 + 1)2
−

𝑀∑
𝑘=1

𝑚𝑘∑
𝑖=𝑛𝑘

(
𝑛𝑘−1∑
𝑗=1

𝑅𝑖𝑗 +
𝑁∑

𝑗=𝑚𝑘+1

𝑅𝑖𝑗

)
(𝑚𝑘 − 𝑛𝑘 + 1)(𝑁 −𝑚𝑘 + 𝑛𝑘 − 1)

⎞⎟⎟⎟⎟⎠ ;

(2.20)

Where: 𝑛𝑘: index of the first component in 𝑘𝑡ℎ module

𝑚𝑘: index of the last component in 𝑘𝑡ℎ module

𝑀 : total number of modules in the product

𝑁 : total number of components in the product

𝑅𝑖𝑗: the value of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column element

in the modularity matrix

Guo et al. used this measure while comparing matrix based redesign methods

but their common measure could also be applied to function based redesign methods

if they are put into a matrix form. An example matrix, Figure 2.1, is revisited here

to demonstrate the calculation method of Equation 2.20, but as Guo et al. point

out, the actual number that is calculated is only relatively useful. That is, the result

that is calculated can indicate whether a system is more or less modular but the real

benefit lies in the comparison of the calculation before and after a system is altered

by a redesign or some other change. This aids in identifying the effects of a redesign

on a system, e.g. is it more or less modular due to the change.

The common modularity measure begins with the system decomposition and the

development of the DSM. For the example calculation, the DSM in Figure 2.1 is used

but is modified as a symmetric DSM, as was done in Figure 2.3 (minus the subsystem

groupings), that is grouped into 3 modules comprised of 4, 1, and 5 components each

as shown in Figure 2.9.

Once the DSM is established, Equation 2.20 can be used to calculate the com-

mon modularity measure. While the equation looks complicated, it is simply a matter
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1 2 3 4 5 6 7 8 9 10
Element 1 M1 x x x
Element 2 x M1
Element 3 x M1 x x
Element 4 x M1
Element 5 x M2 x x x
Element 6 M3 x x
Element 7 x M3 x x
Element 8 x M3 x x
Element 9 x x x x x M3
Element 10 x x x M3

Figure 2.9: Example system DSM showing 3 modules and their components and
relationships

of summing and averaging the number of boxes that have entries within modules and

then between modules and finally performing the subtraction operator. The param-

eters for the example problem are shown in Table 2.5.

Table 2.5: Values used from example DSM to calculate common modularity mea-
sure

Module 𝑘 𝑛𝑘 𝑚𝑘 M N

M1 1 4 3 10
M2 5 5 3 10
M3 6 10 3 10

Using the values in Table 2.5, the common modularity measure was calculated to

be 0.44 for the modular system. This low number shows that there is room for

improvement with regards to the modularity of the system. Again, the useful part of

this measure is in the redesign and re-calculating the value after the design changes to

see if there is an improvement in modularity. Improvement is indicated by the system

being more modular in this case and hence yielding a higher value for the measure.

For the sake of comparison, the common modularity measure was calculated using

the integral and modular system DSMs in Equation 2.1. These values are shown in

Table 2.6. Our integral system had interfaces between each component and every

other component and so the modularity measure is the minimum achievable, -1. For

the modular system, it was assumed that one interface existed between modules 1

and 2 and modules 2 and 3 whereas, because of the setup, two interfaces exist with

module 2. The modularity measure for the modular system is not the theoretical
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Table 2.6: Common modularity measures for fully integral and modular systems
with 3 modules each

System M N 𝑚

Fully integral 3 5 -1.0
Fully modular 3 5 0.44

maximum. For the true maximum (+1) to occur, there would be zero interfaces

between modules and only interfaces within the modules would exist. This is the case

when analyzing a product from several design interface types, e.g. spatial, structural,

material, energy, and information. A module may have no material interfaces (e.g.

functional requirements to transfer airflow, oil, fuel, water, etc.) and would have a +1

modularity measure for this domain. Whereas the same component may have spatial

and structural interfaces that would have a less than maximum value for degree of

modularity.

2.4 Modularity versus Performance

Limited research has been found on modularity versus performance of a sys-

tem. Hölttä et al. [22] offer the only article discussing tradeoff between modularity

and performance for engineered systems and products. They recognize the benefits

of modularity and integrality of systems and the research that has gone into under-

standing both approaches. They also found that the evaluation of which is better and

when is often subjective, qualitative, or speculative. Therefore, Hölttä et al. attempt

to show more quantitatively through two examples what effect technical performance

(efficiency) constraints have on the degree of modularity of two pairs of functionally

equivalent products: a cell phone versus a desk phone, and a laptop computer versus

a desktop computer.

Hölttä et al. first decompose the system using a DSM which in turn is used

to analyze the coupling and modularity of the system. They then compute the SMI

which is described in Section 2.2. While this does present a quantitative method for

comparing whether a system is more modular versus more integral, it really doesn’t
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provide any new information. The SMI that is calculated for a cell phone versus

a desk phone is 0.78 versus 0.87, respectively. The SMI that is calculated for the

laptop computer versus the desktop computer is 0.83 versus 0.87, respectively. In

both cases, as shown in Table 2.7, where technical performance constraints such as

light weight and compactness (smaller volume) were design parameters, the SMI

was smaller versus its non-constrained counterpart. In both cases, this result also

indicates a higher degree of integrality for the constrained system than its counterpart

which is considered to be more modular. Ultimately, while the SMI does provide a

quantitative measure, it doesn’t really provide a quantitative measure of modularity

versus performance.

Table 2.7: SMI and performance constraints for two pairs of functionally similar
systems, adapted from [22]

System Performance Property/Constraint SMI

Desk phone 0.87
Cell phone Compact, Light weight, Mobile 0.78
Desktop computer 0.87
Laptop computer Compact, Light weight, Mobile 0.83

2.5 Graph Theory

A bipartite graph [35] is a simple graph whose vertices can be partitioned into

two sets such that each edge of the graph joins a vertex in the first set to a vertex in

the second set. In constraint theory [12], the two sets of vertices represent nodes and

knots with edges connecting the two. A node corresponds to the model’s relations

whereas the knots correspond to the model’s variables as depicted in Figure 2.10.

The graph is transformed and represented by the constraint matrix where the

columns of the matrix are the knots or variables and the rows are the nodes or

relations. The elements of the matrix will be filled if there is relevancy between a knot

and a node, otherwise it will be empty. The arrows of the bipartite graph determine

whether the elements in the matrix take on values of -1, 0, or +1 which indicate

constraint flow from node to knot, constraint flow from knot to node, or relevancy
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(a) Undirected Bipartite Graph

(b) Directed Bipartite Graph

(c) Relevancy between Directed Bipartite
Graph and the Constraint Matrix

(d) Constraint Matrix Developed

Figure 2.10: Development of the Constraint Matrix from the Bipartite Graph Model
(a), (b), (c), and (d)

exists with no constraint flow, respectively. In this research, bipartite graphs are used

to map directional interfaces between modules.

2.6 Axiomatic Design Principles

There are various methods in practice to decompose a system. In this research,

as mentioned previously, the first axiomatic design principle [54] is used to decompose

a system by mapping functions to modules. The axiomatic design framework is

described as it is also be used as one of the building blocks of this research. Lindholm

et al. [29] generalize the framework developed by Suh [53] by breaking it down into

five concepts:

1. domains
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Figure 2.11: Four domains used in the axiomatic design framework along with the
associated characteristics

2. hierarchies

3. zigzagging

4. design axiom 1

5. design axiom 2

There are four domains that are used in the design framework: 1) customer domain,

2) functional domain, 3) physical domain, and 4) process domain. Each domain

has a characteristic vector associated with it. The customer domain has the needs

or attributes (CAs) that the customer is looking for in the end product or process.

These needs are mapped into the functional domain using functional requirements

(FRs) and constraints (Cs). Design parameters (DPs) are conceived or derived from

the FRs and Cs in the physical domain. Finally, the DPs are mapped into processes,

characterized by process variables (PVs), to produce the product. These mappings

are shown in Figure 2.11.

Hierarchies allow a product or system to be rolled up or broken down to appro-

priate levels of detail or abstraction. Each of the characteristic vectors (FRs, DPs,

and PVs) can be decomposed according to the hierarchy. An example from [55] is

used to demonstrate this decomposition. The example is for a refrigerator design

with two functional requirements as follows:

FR1 = Freeze food for long-term preservation.

FR2 = Maintain food at cold temperature for short-term preservation.
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Figure 2.12: Axiomatic design zigzag technique between functional and physical
domains

Design parameters are then chosen based on satisfying the FRs. In this example

the following two DPs are chosen which sets up the refrigerator to be designed into

two compartments:

DP1 = The freezer section

DP2 = The chiller (i.e. refrigerator) section

The resulting design equation is shown in Equation 2.21.⎧⎨⎩ FR1

FR2

⎫⎬⎭ =

⎡⎣ 𝑋 0

0 𝑋

⎤⎦⎧⎨⎩ DP1

DP2

⎫⎬⎭ (2.21)

It is important to note that in the hierarchy framework, in order to decompose

FRs into lower levels of abstraction, DPs and PVs that satisfy the upper level FRs

need to be selected. Once the process of selecting DPs to satisfy FRs and PVs to

satisfy DPs is complete, the process is repeated until the required level of abstraction

is reached. This process is referred to as zigzagging as it zigzags between the four

domains. This zigzag process is illustrated in Figure 2.12.

The final two concepts in the axiomatic design framework are the two design

axioms.

1. Independence Axiom - Maintain the independence of the functional require-

ments (FRs) [55].
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2. Information Axiom - Minimize the information content of the design [55].

The set of FRs are defined as the minimum set of independent requirements that

the design must meet in order to satisfy the design goal(s). It is important to note

that the independence of the FRs are with respect to the functions, not necessarily

interpreted as physical independence. As for the second axiom, information content

refers to the information that is required in order to satisfy the FRs. The second

axiom relates the information content into a probability of success of satisfying the

FRs. The second axiom translated states that system designs with the smallest set

of required information content are the best as they require the least amount of

information to achieve the design goals.
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III. Development of a Measure to Assess Reconfigurability of Modular

Products

3.1 Introduction

One of several recognized benefits of modularizing a product is the flexibility

that is gained ( [16]). Flexibility in this context refers to a product’s ability to adapt

to changing requirements. Flexibility has two elements, a reconfigurability element

and an extensibility element. This paper focuses on the reconfigurability element.

What does it mean to be reconfigurable? Is it a measure of the number of recon-

figurations possible using the options available in a plug-and-play type architecture?

If so, how does one compare a product with three modules versus a product with

ten modules when each module has three options to choose from when building the

product? It is hypothesized that the number of reconfigurations possible is only one

aspect of measuring reconfigurability. A measure of reconfigurability should also take

into account the number of options available for each module as well as the number

of modules that have options. This paper develops a measure to assess the reconfig-

urability of modular products using these aspects followed by an application of the

measure to two U.S. Air Force munitions. The measure presented strictly focuses on

a mathematical viewpoint.

3.2 Modularity and Reconfigurability

In general, a product can be decomposed into modules and the associated func-

tions that they perform (Fixson [11], Pahl [38], and Suh [54]). The definition of a

module varies among disciplines but here it is defined as a grouping of components or

subassemblies that perform one or more functions. Modules are arranged according

to a product’s architecture. Each of the modules has one or more ways in which it

interfaces with the rest of the product. By interface, we refer to one or more inter-

faces of the five categories of interface types (spatial, informational, material, energy,
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or structural) given by Sosa et al. [42]. To gain the recognized benefits of modular-

ity, including reconfigurability, it is advantageous to have multiple options for each

of the modules that make up a product according to its architecture. Using these

options and the product’s architecture, multiple reconfigurations of a product can be

assembled.

3.3 Reconfigurability Components

In order to compare the reconfigurability across products with varying numbers

of modules and varying numbers of options, more than just the total number of

reconfigurations, 𝑟, is needed. To show this, consider a product with three modules

where each module has two options to choose from when assembling the product.

Compare this to a product with ten modules where each module also has two options

to choose from. In this example of two products, the former has 23 reconfigurations

possible whereas the latter product has 210 reconfigurations possible. How does the

number of reconfigurations change when the total number of options, 𝑆, changes from

six and 20, as in the current example, to 20 and 20? Both products now have the

same number of total options, 𝑆, but the mean number of options across the modules

with options is now different. For the product with 20 options and ten modules,

the mean is still 2. For the former product, the mean is now 6.67 (instead of 2).

The number of reconfigurations is no longer 23 and 210, respectively; they are now a

minimum of 2 ⋅ 2 ⋅ 16 and 210. The value of 𝑟 depends on how the number of options

is varied across the modules. The maximum number of possible combinations for

a given number of modules with options, 𝑡, and total options, 𝑆, occurs when the

standard deviation, 𝜎, is closest to zero, and is in fact maximized at 𝜎 = 0 (the latter

is not possible if 𝑆/𝑡 /∈ ℕ). The number of reconfigurations that are possible, 𝑟, for a

product of a given architecture follows Eq. (3.1). In this equation, 𝑟 is the number of

reconfigurations possible, 𝑠𝑖 is the number of options for the 𝑖𝑡ℎ module with options,

and 𝑘𝑖 is the number of options to be chosen for the 𝑖𝑡ℎ module, which is limited to
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Example Product Module A Module B Module C Module D Module E
𝑠1 𝑠2 𝑠3

Number of Options 1 1 2 3 7

Table 3.1: Example Product Composition of Modules and Options, 𝑛 = 5

one for the purposes of the present reconfigurability measure (RM) development.

𝑟 =

(
𝑠1
𝑘1

)(
𝑠2
𝑘2

)
⋅ ⋅ ⋅
(
𝑠𝑖
𝑘𝑖

)
(3.1)

1 ≤ 𝑖 ≤ 𝑡, 𝑘𝑖 = 1

As seen in Eq. (3.1), the number of reconfigurations or combinations of modules

takes on a 𝑠𝑖-choose-𝑘𝑖 arrangement. For example, assume a product has 𝑛 = 5

modules (see Table 3.1) where three of those modules have multiple options to choose

from when constructing the product; 𝑡 = 3. In this case, where 𝑘𝑖 = 1, the product

has 𝑟 = 42 possible reconfigurations (see Eq. (3.2)).

𝑟 =

(
1

1

)(
1

1

)(
2

1

)(
3

1

)(
7

1

)
= 2 ⋅ 3 ⋅ 7 = 42 (3.2)

Modules A and B form the product platform since those modules have no op-

tions; the product must contain those two specific modules as shown in Fig. 3.1.

Modules C, D, and E have two, three, and seven options available to choose from,

respectively, when assembling the product. The remainder of the reconfigurability

measure development and analysis focuses on only modules with options since only

these modules add to the overall number of reconfigurations possible. Thus, Modules

C, D, and E, become Modules 1, 2, and 3, as depicted by 𝑠1, 𝑠2, and 𝑠3 in Table 3.1.

The mean number of options per module is 4. The standard deviation, 𝜎, is 2.65.

The sum of the options across the three modules, 𝑆, is 12. Using the various elements

given thus far, the reconfigurability measure can be developed.
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Product

Platform

Figure 3.1: Product Platform

3.4 Reconfigurability Measure

All of the pieces (𝑟, 𝑡, 𝑛, 𝑆) that go into and make up the reconfigurability

measure (RM) are now available. The RM is stated first and discussed further in

subsequent subsections. The RM is broken down into four ratios (𝑦1, 𝑦2, 𝑦3, and 𝑦4)

that are captured in vector form, Y , and are given by Eqs. (3.3) and (3.4), and Fig.

3.2.

Y = [ 𝑦1 𝑦2 𝑦3 𝑦4 ] (3.3)

=

[
𝑟

𝑆

𝑟

𝑡

𝑡

𝑛

𝑟

𝑟𝑢.𝑏.

]
(3.4)

where: 𝑆 =
𝑡∑

𝑖=1

𝑠𝑖 = Total number of options

𝑛 = Number of modules in a product

𝑡 = Number of modules with options

𝑟 = Number of possible reconfigurations

𝑟𝑢.𝑏. = Upper bound number of reconfigurations for

a given 𝑆 and 𝑡 pair
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Figure 3.2: Reconfigurability Measure

Equation (3.4) uses the mathematical number of reconfigurations possible, 𝑟.

In reality, the actual number of reconfigurations realizable, 𝑟act, will be less than or

equal to 𝑟 due to pair-wise incompatibilities between option choices for the 𝑖𝑡ℎ and

𝑗𝑡ℎ modules.

𝑟act ≤ 𝑟 (3.5)

To improve the quality of the RM, 𝑟act should be used when available. This may

or may not be possible to determine early in a conceptual design. For more mature

products and in reverse-engineering cases, it may be easier to determine the number

of realizable reconfigurations.

As hypothesized, a RM should take into account not only 𝑟, but also 𝑆 and 𝑡.

The number of reconfigurations possible, 𝑟, is a function of 𝑆 and 𝑡. In developing a

RM, there are four possible combinations of 𝑆 and 𝑡 that need to be addressed which

are summarized in Table 3.2. These relationships are used to evolve the equations

stated in Eqs. (3.3) and (3.4). Two designs can have the same number of modules

with options and the same number of total options, which turns the emphasis towards

the number of reconfigurations possible, 𝑟. The two designs can have the same number
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Situation # Total # of Total # of
Options Modules w/Options
(𝑆) (𝑡)

1 Same Same
2 Same Different
3 Different Same
4 Different Different

Table 3.2: Four Situations When Varying Total Number of Options, 𝑆, and Total
Number of Modules with Options, 𝑡

of modules with options, 𝑡, but different number of total options, 𝑆, and vice versa.

Lastly, the two designs can have different numbers of modules with options and

different numbers of total options.

3.5 Y Measure Development

A product is comprised of 𝑛 modules. Of those 𝑛 modules, 𝑡 have a minimum

of two or more options that can be used in the product’s architectural build. By

definition, in order to have a reconfigurable product, the product must have at least

𝑡 = 1 module with options. The case where 𝑡 = 1 is trivial; the total number of recon-

figurations (where 𝑘1 = 1) will only vary by the number of options, 𝑆 or 𝑠1, available

to that module. Increasing the reconfigurability of the product is straightforward;

either more options for that one module, or adding options to other modules, will

increase the overall product reconfigurability. The real analysis comes when 𝑡 ≥ 2. In

this case, after assessing the reconfigurability, design decisions can be made using the

results of the reconfigurability measure. Now that there are multiple modules with

options, decisions must be made as to which modules to focus on in order to increase

the overall reconfigurability. In making these decisions, several factors come into play

that are highlighted and discussed subsequently. These factors evolve from each of

the situations listed in Table 3.2.

3.5.1 Situation 1. The first situation arises when two designs have the same

number of total options, 𝑆, and the same number of modules with options, 𝑡. One can

47



envision this situation if a manufacturer chooses to use an existing product and add

module options to keep up with technology and perhaps discontinue some obsolete

module options. Consider Product A with 𝑆 = 12, and 𝑡 = 3. Product A.1 also

has 𝑆 = 12, and 𝑡 = 3. Table 3.3 shows the distribution of options for each of the

products. Table 3.4 shows the number of reconfigurations possible, 𝑟, along with the

first ratio, 𝑦4, to be discussed for Product A and Product A.1.

The 𝑦4 term of the RM is a ratio of the number of reconfigurations possible for a

given product divided by the maximum number (or upper bound) of reconfigurations

possible based on the given 𝑆 and 𝑡 pair. The 𝑦4 ratio is an indication of how the

product measures in terms of reconfigurations achievable compared to the maximum

number of reconfigurations possible for the given 𝑆 and 𝑡 pair as shown in Fig. 3.2. If

𝑦4 = 1, then the current design is achieving the maximum number of reconfigurations

possible. As noted earlier in Section 3.3, 𝑟 is maximized when the standard deviation

between the modules with options, 𝑠𝑖, is equal to zero or is minimized for a given

𝑆 and 𝑡 pair. Beyond this, the only way to increase 𝑟 is to increase 𝑆 or 𝑡 which

leads to Situations 2, 3, or 4. In calculating 𝑟u.b. in the natural number domain

(ℕ) for the given 𝑆 and 𝑡 pair, 𝑠𝑖 values are chosen such that 𝜎 is minimized. For

example, if 𝑆 = 20 and 𝑡 = 3, then the mean of the 𝑠𝑖 values used in calculating

𝑟u.b. is 𝑆/𝑡 = 6.67. Since 𝑆/𝑡 /∈ ℕ, then as noted in Section 3.3, 𝜎 cannot equal zero

but should be minimized. Therefore, a theoretical distribution of 𝑠1, 𝑠2 and 𝑠3 values

that minimizes 𝜎 includes a combination of sixes and sevens. In this example, 𝑟u.b.

is calculated as shown in Eq. (3.6), noting the sum of the 𝑠𝑖 values equals 20 and

𝜎 = 0.58.

Module 1 Module 2 Module 3 𝑆 𝑡
𝑠1 𝑠2 𝑠3

Product A 2 2 8 12 3
Product A.1 4 4 4 12 3

Table 3.3: Sample Product A and Product A.1 Module Option Distribution
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𝑟 𝑦4 =
𝑟

𝑟𝑢.𝑏.

Product A 32 0.5
Product A.1 64 1

Table 3.4: Sample Product A and Product A.1 Total Number of Reconfigurations
and 𝑦4

𝑆 𝑡 𝑟 Std 𝑦4
dev

Product A 12 3 32 3.46 0.5
Product A.1 12 3 64 0 1

Table 3.5: Summary of Reconfigurability Measure for Product A and Product A.1

𝑟u.b. = 6 ⋅ 7 ⋅ 7 = 294 (3.6)

Returning to Situation 1, Table 3.4 shows that Product A.1 has twice the num-

ber of reconfigurations as Product A for the same number of total options and the

same number of modules with options. A benefit of this analysis is that the man-

ufacturer can keep the same number of options in inventory but by changing which

module options to carry, he/she can maximize the product variety without increasing

inventory. The summary of the reconfigurability measures of the two sample products

thus far is given in Table 5.

3.5.2 Situation 2. The first situation highlighted the importance of 𝑟 and

the distribution of 𝑠𝑖 values when comparing the reconfigurability of two designs.

Continuing with the example products from Situation 1, the next situation can arise

when, for example, two products having the same number of total options, 𝑆, are

being compared, but they have varying numbers of modules with options, 𝑡. Sample

Product B and Product C are used to illustrate this situation as shown in Tables 3.6

and 3.7.

In this second situation, even though both products have a standard deviation

equal to zero and hence maximized number of reconfigurations possible for their
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Module Module Module Module 𝑆 𝑡
1 2 3 4

Product B 4 4 4 - 12 3
Product C 3 3 3 3 12 4

Table 3.6: Sample Product B and Product C Module Option Distribution

𝑆 𝑡 𝑟 Std 𝑦3 =
𝑡
𝑛

𝑦4 =
𝑟

𝑟𝑢.𝑏.

dev
Product B 12 3 64 0 0.6 1
Product C 12 4 81 0 0.8 1

Table 3.7: Summary of 𝑦3 and 𝑦4 for Product B and Product C, 𝑛 = 5

respective 𝑆 and 𝑡 pairs, Product C is more reconfigurable. The measure uses 𝑡 to

help differentiate two products that have the same number of total options. Using

𝑡 also highlights the significance and potential for additional reconfigurations using

modules in a product that have been identified as capable of having options. Product

C has four modules with options and hence four potential opportunities to increase the

number of options versus Product B that only has three modules with options. Thus,

the 𝑡 term acts as a “reconfigurability potential” factor. This potential is captured

in the 𝑦3 ratio that indicates to a designer how much of the product is reconfigurable

as shown in Fig. 3.2.

The problem setup so far is one of maximizing the product of the 𝑠𝑖 terms (or

𝑟) for a given sum of 𝑠𝑖 terms, 𝑆. This setup is identical to the mathematical problem

of partitioning a number, 𝑆, into 𝑡 parts, such that the product of the partitions (𝑠𝑖

terms) is maximized (Krause [27]). In general, there is a strong correlation between

decreasing the standard deviation of a set of partitions and increasing the number

of reconfigurations. There are some exceptions to this relationship which are not

enumerated here but involve situations where the number of options for multiple

modules is three. This is due to the fact that, in the real number domain, the

maximum number of product reconfigurations for a given 𝑆 occurs when the average

number of options per module is 𝑒 (2.7182818), obviously not possible where 𝑠𝑖 ∈ ℕ

(Krause [27] and authors). As proof of this, the first-order necessary condition (𝑟
′
= 0)
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is given below and it can easily be shown that the second-order sufficient condition

(𝑟
′′
< 0) is also satisfied (Arora [4]).

𝑟 =

(
𝑆

𝑡

)𝑡

(3.7)

𝑙𝑛(𝑟) = 𝑙𝑛

((
𝑆

𝑡

)𝑡
)

(3.8)

= 𝑡 ln(𝑆)− 𝑡 ln(𝑡) (3.9)

Taking the derivative of both sides w.r.t. 𝑡

1

𝑟

𝑑𝑟

𝑑𝑡
= ln(𝑆)− ln(𝑡)− 𝑡

𝑡
(3.10)

𝑑𝑟

𝑑𝑡
= 𝑟 (ln(𝑆)− ln(𝑡)− 1) = 𝑟

′
(3.11)

Setting the r.h.s. equal to 0

=⇒ ln

(
𝑆

𝑡

)
= 1 (3.12)

=⇒ 𝑆

𝑡
= 𝑒 . (3.13)

Having maximized the product of the 𝑠𝑖 values in the real number domain, we

turn the focus to a subset of that domain, the natural number domain, ℕ. In ℕ, the

maximum number of reconfigurations, 𝑟max, for a given 𝑆, allowing 𝑡 to vary in ℕ,

occurs when the maximum number of modules with options have three options, and

the remaining (if there are any) one or two modules have two options. We define

𝑟max = 𝑟∗, where 𝑡∗ is the required number of partitions of the given 𝑆 to achieve

𝑟∗. Beginning with the selection of 𝑡∗ as the ceiling of 𝑆/3 shown in Eq. (3.14), 𝑟∗ is

calculated using one of the cases in Eq. (3.15).
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𝑡∗ =
⌈
𝑆

3

⌉
(3.14)

𝑟∗ =

⎧⎨⎩
3𝑡

∗
: 𝑆

𝑡∗ ∈ ℕ

3(𝑡
∗−1) ⋅ 2 : 𝑆+1

𝑡∗ ∈ ℕ

3(𝑡
∗−2) ⋅ 2 ⋅ 2 : 𝑆+2

𝑡∗ ∈ ℕ

(3.15)

While 𝑆/2 is the mathematical upper bound for 𝑡, we restrict our domain of

interest (DOI) using 𝑡∗ as the upper bound for 𝑡 given 𝑆. This 𝑡∗ in turn yields an

upper bound for 𝑟, 𝑟∗, for the given 𝑆. A lower bound for 𝑟, 𝑟l.b., is also included

in defining our DOI. Equations (3.16), (3.17), (3.18), and (3.19) define further and

summarize our DOI.

𝐷𝑂𝐼 : {𝑠1, 𝑠2, ..., 𝑠𝑡, 𝑡} : 𝑆 =
𝑡∑

𝑖=1

𝑠𝑖 ≥ 2𝑡+ 2 (3.16)

𝑟l.b. = 2𝑡−1 ⋅ 4 = 2𝑡+1 (3.17)

2 ≤ 𝑡 ≤ 𝑡∗ (3.18)

𝑟l.b. ≤ 𝑟 ≤

⎧⎨⎩𝑟u.b. : 𝑡 < 𝑡∗

𝑟∗ : 𝑡 = 𝑡∗
(3.19)

The DOI is established such that decisions can be made after gaining the insights from

performing the reconfigurability measure analysis. When a product has values outside

of the DOI, then design decisions are limited and straightforward such as the case

when 𝑡 = 1. For the given 𝑡, increasing reconfigurability simply involves increasing

module options for 𝑠1, thus not requiring an in-depth analysis that the RM assessment

provides. Another example to illustrate the DOI suitability is if 𝑆 = 4 or 𝑆 = 5, and

𝑡 = 2, then 𝑟 = 4 and 𝑟 = 6, respectively. Unless 𝑆 or 𝑡 changes, there are no changes

to the 𝑠𝑖 values that will produce a larger 𝑟. However, if 𝑆 = 6 and 𝑡 = 2, then there
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Module Module Module Module 𝑆 𝑡
1 2 3 4

Product B 4 4 4 - 12 3
Product C.1 2 2 2 6 12 4

Table 3.8: Sample Product B and Product C.1 Module Option Distribution

𝑆 𝑡 𝑟 Std 𝑦3 =
𝑡
𝑛

𝑦4 =
𝑟

𝑟𝑢.𝑏.

dev
Product B 12 3 64 0 0.6 1
Product C.1 12 4 48 2 0.8 0.59

Table 3.9: Summary of 𝑦3 and 𝑦4 for Product B and Product C.1, 𝑛 = 5

are two possible 𝑠𝑖 distributions that impact 𝑟 differently; specifically, 𝑟 = 2 ⋅ 4 = 8,

or 𝑟 = 3 ⋅ 3 = 9.

Returning to Product B and Product C, they are both maximized for recon-

figurations possible for each of the 𝑆 and 𝑡 pairs respectively. What happens when

one of the products is not maximized? Table 3.8 shows Product B again and a non-

maximized Product C.1 that is in fact minimized (𝑟 = minimum for the given 𝑆 and

𝑡 pair). Even though Product C.1 has more modules with options than Product

B and hence has more potential for increasing the number of reconfigurations, the

current option distribution achieves the least number of reconfigurations possible for

the given 𝑆 and 𝑡 pair. The reconfigurability measure captures this in 𝑟 and 𝑦4 show-

ing that Product C.1 is less reconfigurable than Product B. This is consistent with

the maximum number of reconfigurations possible since Product C.1 has less recon-

figurations possible than Product B. It should also be noted that Product C.1 also

has less reconfigurations possible than Product C which has the maximum number

of reconfigurations possible (for 𝑡 = 4 and 𝑆 = 12).

A practical example of Situation 2 is when a manufacturer determines the total

number of options that he/she would like to keep in inventory and then uses that

number, 𝑆, to determine the maximum number of reconfigurations possible if 𝑡 was

not limited by design, only by 𝑆/2. For example, if 𝑆 = 30, then the theoretical

maximum number of reconfigurations (𝑟 = 𝑟∗) would be 310 = 59, 049 and 𝑡 = 𝑡∗ = 10.
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Module Module Module Module 𝑆 𝑡
1 2 3 4

Product D 4 3 4 3 14 4
Product E 2 3 6 4 15 4

Table 3.10: Sample Product D and Product E Module Option Distribution

If only 7 modules currently have options then the manufacturer could focus on the

modules without options to continue to maximize the number of reconfigurations.

A final note on the assessment thus far; 𝑦3 and 𝑦4 are indicators to designers on

how the current design is performing in terms of reconfigurability as shown in Fig.

3.2. If 𝑦3 = 𝑦4 = 1, then the current product design is maximizing the number of

reconfigurations possible for the given 𝑆 and 𝑡 pair. If either or both terms is less

than one, then the current design is not maximizing the number of reconfigurations

possible and could be increased for the given 𝑆 and 𝑡 pair.

3.5.3 Situation 3. The previous situation (Situation 2) prompted the use of

the 𝑡 term in the reconfigurability measure, specifically in 𝑦3. Situation 3 prompts the

use of 𝑆, total number of options, in the 𝑦1 term, and reinforces the 𝑦4 term. Situation

3 involves two products that have the same number of modules with options but have

different numbers of total options.

Tables 3.10 and 3.11 show Product D and Product E having the same number

of reconfigurations possible, 𝑟. The 𝑦1 term in the RM was developed to further

differentiate two products. This term identifies the average number of product recon-

figurations made possible per module option in inventory as shown in Fig. 3.2. After

calculating the reconfigurability measures for both Product D and Product E, it can

be seen that Product D is slightly more reconfigurable in 𝑦1 than Product E since

Product D is able to achieve the same number of reconfigurations as Product E with

less modules.

This example highlights where efforts would be worthwhile to increase the num-

ber of reconfigurations for Product E, namely on Module 1 (an additional option for

54



𝑆 𝑡 𝑟 Std 𝑦1 =
𝑟
𝑆

𝑦4 =
𝑟

𝑟𝑢.𝑏.

dev
Product D 14 4 144 0.58 10.29 1
Product E 15 4 144 1.71 9.60 0.75

Table 3.11: Summary of 𝑦1 and 𝑦4 for Product D and Product E, 𝑛 = 5

Module Module Module Module Module 𝑆 𝑡
1 2 3 4 5

Product D 4 3 4 3 - 14 4
Product F 4 3 3 6 6 22 5

Table 3.12: Sample Product D and Product F Module Option Distribution

Module 1 could achieve a 50% increase in the number of possible reconfigurations).

Additionally, the 𝑦1 term is an indicator to designers on how the current design is per-

forming in terms of reconfigurability and the average number of reconfigurations that

are achieved for each module that is kept in inventory, or for which (re)configuration

control is maintained.

3.5.4 Situation 4. The last situation reinforces all of the constituent terms

in the reconfigurability measure and gives rise to one additional term, 𝑦2. Situation

4 arises when two products or two designs have 𝑆1 ∕= 𝑆2 and 𝑡1 ∕= 𝑡2 as seen in Table

12.

Table 3.13 shows the complete RM calculated for Product D and Product F

when the total number of modules in the product, 𝑛, is eight. The 𝑦2 term highlights

the average number of reconfigurations being achieved per module with options. An-

other way to view this is as follows: on average, how many reconfigurations is the

design achieving for each decision point in the architectural build? Certainly Prod-

𝑆 𝑡 𝑟 Std 𝑦1 𝑦2 𝑦3 𝑦4
dev 𝑟

𝑆
𝑟
𝑡

𝑡
𝑛

𝑟
𝑟𝑢.𝑏.

Product D 14 4 144 0.58 10.29 36 0.5 1.0
Product F 22 5 1296 1.52 58.91 259.2 0.63 0.81

Table 3.13: Summary of RM (𝑦1, 𝑦2, 𝑦3, and 𝑦4) for Product D and Product F,
𝑛 = 8
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GBU-24 Warhead, forward adapter, guidance control section
(GCS)‡ (𝑠1), airfoil group, support structure, fuze‡

(𝑠2), initiator
‡ (𝑠3), and external aircraft (EA)‡ (𝑠4).

GBU-31 Warhead, guidance set, proximity sensor (PS)‡ (𝑠1),
airfoil group, support structure, fuze‡ (𝑠2), initiator‡

(𝑠3), and external aircraft (EA)‡ (𝑠4).

Table 3.14: GBU-24 and GBU-31 Modules

𝑠1 𝑠2 𝑠3 𝑠4 𝑆 𝑡
GBU-24 2 6 4 7 19 4
GBU-31 2 2 2 11 17 4

Table 3.15: GBU-24 and GBU-31 Module Option Distribution

uct F has more reconfigurations than Product D, but Product F also must maintain

more than 50% more options than Product D. This may or may not be an issue.

Additionally, while Product F has a higher number of reconfigurations possible and is

considered better from reconfigurability and modularity viewpoints, from a logistics

viewpoint, a reconfiguration control viewpoint, or from an assembly time viewpoint,

more doesn’t necessarily mean better.

3.6 Application

Two guided bomb units (GBUs) in the United States Air Force inventory are

used to apply the reconfigurability measure developed in the previous section and

subsections. These GBUs are the GBU-24 and GBU-31. They are commonly referred

to as the Laser Guided Bomb (LGB) and the Joint Direct Attack Munition (JDAM),

respectively. Reconfigurability for the two munitions follows Situation 3 where the

numbers of modules with options are equal but the numbers of total options are

different (𝑡GBU-24 = 𝑡GBU-31, 𝑆GBU-24 ∕= 𝑆GBU-31). The modules that comprise the

GBU-24 and GBU-31 are shown in Table 3.14. The modules indicated with a (‡)

in Table 3.14 refer to modules that have multiple options. These modules are listed

again in Table 3.15 as 𝑠1, 𝑠2, etc., showing the number of options available for each.

Both GBUs are comprised of eight modules (𝑛 = 8), each having 𝑡 = 4 modules with

options.
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𝑆 𝑡 𝑟 Std 𝑦1 𝑦2 𝑦3 𝑦4
dev 𝑟act

𝑆
𝑟act
𝑡

𝑡
𝑛

𝑟act
𝑟𝑢.𝑏.

GBU-24 19 4 84 2.22 4.42 21 0.5 0.17
GBU-31 17 4 33 4.5 1.94 8.25 0.5 0.10

Table 3.16: Summary of RM for GBU-24 and GBU-31, 𝑛 = 8

Data values from Table 3.15 were used to calculate 𝑟, and subsequently, pair-

wise constraints were used to calculate 𝑟act. Next, the complete RMs for both GBUs

were calculated with the results given in Table 3.16. This analysis shows that the

GBU-24 is more reconfigurable and that it is achieving more of its potential number

of reconfigurations than the GBU-31. The GBU-31 is achieving the least number of

reconfigurations for the given 𝑆 and 𝑡 pair.

In this application, if a designer chooses one of the existing modules with options

to increase by one option, then this would impact the increase in the number of

reconfigurations possible by varying amounts. Using the GBU-24, it is easily seen

that focusing on increasing the number of options for Module 1 would yield the

highest increase in terms of more reconfigurations possible. The reason for this is

easily seen when broken up in terms of multiplication and combinations.

𝑟 = 2 ⋅ 6 ⋅ 4 ⋅ 7 = 336, 𝑆 = 19 (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑟 = ⟨3⟩ ⋅ 6 ⋅ 4 ⋅ 7 = 504, 𝑆 = 20

𝑟 = 2 ⋅ ⟨7⟩ ⋅ 4 ⋅ 7 = 392, 𝑆 = 20

𝑟 = 2 ⋅ 6 ⋅ ⟨5⟩ ⋅ 7 = 420, 𝑆 = 20

𝑟 = 2 ⋅ 6 ⋅ 4 ⋅ ⟨8⟩ = 384, 𝑆 = 20

A product with 2⋅6⋅4⋅7 number of reconfigurations can gain 2⋅6⋅4 reconfigurations by
increasing the fourth term, seven, by one to eight. But, this same product can increase

the number of reconfigurations by increasing the first term to three by 6 ⋅ 4 ⋅ 7. This
example is assuming the overall number of options, 𝑆, is increased by one. The same

relation holds true if the second, third, or fourth term is decreased by one (holding

𝑆 constant) as the product would still gain the most number of reconfigurations by
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𝑆 𝑡 𝑟 Std 𝑦1 𝑦2 𝑦3 𝑦4
dev 𝑟

𝑆
𝑟
𝑡

𝑡
𝑛

𝑟
𝑟𝑢.𝑏.

GBU-24 19 4 336 2.22 17.68 84 0.5 0.67
GBU-24 (Actual) 19 4 84 2.22 4.42 21 0.5 0.17
GBU-31 17 4 88 4.5 5.18 22 0.5 0.28
GBU-31 (Actual) 17 4 33 4.5 1.94 8.25 0.5 0.10

Table 3.17: Comparison of Using 𝑟 Versus 𝑟act in the RM Calculation for the GBU-
24 and GBU-31, Where 𝑛 = 8

increasing the number of options for Module 1. The increase in reconfigurations for

this example would be 5 ⋅ 4 ⋅ 7, 6 ⋅ 3 ⋅ 7, or 6 ⋅ 4 ⋅ 6.

Table 3.16 uses the the actual number of reconfigurations which eliminates com-

binations from 𝑟 due to pair-wise constraints. Both GBUs have pair-wise constraints

that result in 𝑟act < 𝑟. The impacts of 𝑟 versus 𝑟act on Y are shown in Table 3.17, ef-

fectively reducing three of the four Y terms. This highlights the importance of using

𝑟act when it is available. Additionally, it shows the impact of pair-wise constraints on

the achievable number of reconfigurations.

3.7 Conclusions

It was shown that measuring reconfigurability requires more than just calculat-

ing the number of reconfigurations possible for a given product. A reconfigurability

measure (RM), as hypothesized, must also take into account the total number of

options available to a product, 𝑆, and the total number of modules with options, 𝑡.

Using these additional terms in the RM, a designer or decision maker can understand

how the current design is performing compared to how well it could be performing in

terms of the total number of reconfigurations.

If a product has one or more modules that do not currently have options, then

by focusing on one of these modules, the highest increase in the number of reconfigu-

rations will be realized if one or more options can be added to this module. Similarly,

if the number of options for each module with options varies greatly (high standard

deviation), then the highest increase in the number of reconfigurations would come
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when making design changes such that each module with options has the same number

of options for a given 𝑆.

Insight is also gained as to how well the current design is performing in terms

of the number of reconfigurations possible per total options in inventory as well as

per number of modules with options. The latter term, 𝑦2, shows the number of

reconfigurations being realized per decision point that must be made for a given

architectural build. The higher the number of decision points, 𝑡, the higher the

number of potential interfaces and reconfiguration controls will be needed.

Three of the four RM ratios use the number of reconfigurations possible, 𝑟, in

their calculation. Pair-wise constraints effectively reduces 𝑟 and hence the three ratios

that use it. Minimizing the pair-wise constraints on modules will help to maximize

the achievable number of reconfigurations for the given 𝑠𝑖 distribution. In turn,

this minimization of pair-wise constraints will help to increase the reconfigurability,

flexibility, and modularity of a product.

The RM assesses the reconfigurability of modular products strictly from a math-

ematical viewpoint which stemmed from capitalizing on the benefits of modularity.

While this viewpoint is an important starting point in analyzing the reconfigurability

of product designs, a system viewpoint along with other viewpoints must also be con-

sidered before making decisions on design changes to a product. Increasing module

options offers more reconfigurability possibilities mathematically, but it also requires

understanding other ramifications and limitations. Module options have associated

costs, logistics, pair-wise constraints, etc., that must be considered. Ultimately, the

number of reconfigurations maintained will be a balance between user requirements

and cost.

While using the reconfigurability measure as a benchmark for comparing prod-

ucts or designs is useful, a significant benefit of the reconfigurability measure also

comes from setting up the problem. By examining the product architecture, one can

key in on specific areas and even narrow down areas for the greatest increase in re-
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configurability and hence modularity. After the initial problem set-up, focus can be

applied to the appropriate modules to maximize the increase in the number of recon-

figurations. One module may be easy to vary and so already has the highest number

of options available. Higher returns, in terms of total number of reconfigurations,

may be realized when increasing the number of options for other modules.

60



IV. Assessing Modularity – a Vector Approach

4.1 Introduction

Product modularity has gained an increase in focus over the last couple decades.

The benefits of modularity in product design have been widely recognized and qual-

itatively captured by [16]. Some of these benefits include changeability, flexibility,

reusability, reconfigurability, and extensibility. Several measures exist to quantita-

tively assess the modularity of a product in terms of interfaces within and between

modules which is referred to as degree of coupling in this paper [23,34,42]. But, what

does being modular really mean? When comparing the modularity between two

products or two designs for a given product, what does it mean when the modularity

measure indicates one is more modular than the other? A method to capture recog-

nized benefits of modularity in a rigorous manner is proposed and then demonstrated

using two precision guided munition examples.

When decision-makers or designers state they want a product to be more mod-

ular, they are indicating that there are one or more aspects of modularity that they

want captured in a new design. Current modularity measures roll-up contributing

factors to modularity which result in a real number between zero and one as the over-

all modularity value for a product [23, 34, 42]. This methodology gives no additional

insight into the aspects of modularity being realized. The Vector Modularity Mea-

sure (VMM) presented in this paper uses degree of coupling as well as the benefits

of modularity in a vector form to highlight the contributing factors to a product’s

modularity assessment. Each of the equations used in the VMM can be used to gain

insight into the specific modularity benefits being realized. Designers and decision-

makers alike can use this insight to improve existing designs and to aid in overall

product selection based on priorities and goals of modularizing a product.
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4.2 Background

Before introducing the Vector Modularity Measure, the analysis process, and

the applications, a few key terms are introduced. The definitions given below are

those of the authors, except where cited, for purposes of this paper and analysis.

∙ Modularity - grouping of components into well defined entities, such as mod-

ules or sub-assemblies, that can be further described by the interfaces between

them.

∙ Interface (I/F) - spatial, informational, material, energy, or structural con-

nection or coupling of one module to another module within a product [42]. I/F

types given below are defined similarly as in [42].

- Spatial I/F - physical adjacency for alignment, orientation, serviceability,

assembly or weight.

- Informational I/F - transference of signals or controls.

- Material I/F - transference of airflow, oil, fuel, or water.

- Energy I/F - transference of heat, vibration, electric, or noise energy.

- Structural I/F - transference of loads or containment.

∙ Module - group of components or sub-assemblies that perform one or more

functions

∙ Reusability - ability of modules within a product to be used in at least one

other product variant.

∙ Flexibility - a product’s ability to change or adapt to new requirements; mea-

sured in terms of a product’s ability to be reconfigurable and extensible.

∙ Reconfigurability - product’s ability to be assembled or built in multiple

configurations according to its architecture.

∙ Extensibility - built in architectural options for upgrading, or adding func-

tionality to a product.
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∙ Function - technical process involving energy, material and/or signals being

converted and/or channeled.

∙ Flow - material, signal, and/or energy that can be converted or channeled.

The idea of measuring modularity is not new. [17] reviewed the literature and sum-

marized various methods for measuring modularity through 2004. [19] extended the

concept and compared the various modularity measures based on consistency and sen-

sitivity analyses. Several methods have been proposed since 2004 by [23,34], and [42].

These measures quantify the module-to-module connections, both inter- and intra-

module, but ultimately focus on coupling of either design parameters or interfaces.

Mikkola’s measure also accounts for a module’s reusability in an exponent term iden-

tified as a substitutability factor. None of the measures, however, takes into account

the assumed benefits of modularity. While a common consensus exists on the benefits

of modularizing a product, no method or measure captures these benefits.

4.3 Vector Modularity Measure

4.3.1 Measure Overview. The Vector Modularity Measure (VMM) proposed

herein captures the degree of coupling in a product along with the recognized benefits

of modularity in a vector form for further mathematical manipulation. Specifically,

the following aspects of modularity are captured in the VMM introduced here: degree

of coupling between/among the modules in a system; reusability of the modules;

and the flexibility of a product to adapt to changing requirements which is assessed

in terms of its reconfigurability and extensibility. Equation 4.1 defines the Vector

Modularity Measure, and subsequent subsections detail each of the factors comprising

the VMM.

VMM = [ 𝑉 𝑋 Y 𝑍 ] (4.1)

where: 𝑉 = Degree of coupling

𝑋 = Reusability

Y = Reconfigurability
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𝑍 = Extensibility

The Vector Modularity Measure, VMM, is useful when comparing two similar prod-

ucts in terms of modularity. The composition of the VMM points to the benefits of

modularity that are being realized for one product over another one. The measure

is also useful when upgrading an existing product. The measure can be calculated

for an existing product and then compared to iterations of proposed module designs.

Does the new module design increase or decrease the degree of coupling? Is the new

module reusable? Are there constraints on the interfaces that the module imposes

that will limit its ability to be reconfigured with certain other modules in a product?

All of these questions can be answered as a result of performing the VMM calcula-

tions. Another useful aspect of the VMM is that it focuses the designer’s attention on

the benefits of modularity which are the goals of modularizing a product in the first

place. This focus of the designer’s attention in and of itself is beneficial in increasing

a product’s modularity.

4.3.2 Degree of Coupling. The first factor in the VMM, the degree of

coupling, 𝑉 , is used to assess how connected/disconnected each module is from each of

the other modules within a product. This factor can be used to identify which modules

are loosely or highly coupled to the other modules in a product. This assessment

can then be used by designers and decision-makers to guide future design decisions

regarding which modules to target when trying to improve a product’s modularity.

For example, the interfaces that a module has to other modules impose constraints

on that module according to the product’s architecture. These constraints must be

considered when redesigning the module. A module that is loosely coupled has fewer

constraints than a module that is highly coupled from an interface viewpoint.

This idea of using degree of coupling is similar to the use of in- and out-degree

modularity measures in [42]. Another similar concept is the non-zero fraction (NZF)

term in the modularity measure of [23]. The NZF is useful in determining a product’s

connectedness or coupling and will be used in the modularity measure introduced in
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this paper. The NZF uses a symmetrical binary design structure matrix (DSM), an

𝑛 x 𝑛 matrix where each column and row refers to a module in a product. If an

interface exists between two modules, then an “X” is used to indicate the interface.

The NZF is then calculated as the ratio of the total number of non-zero entries to

the total number of entries minus the diagonal entries, 𝑛.

For the VMM, a DSM is built for each of the five interface types (spatial, infor-

mational, etc.). However, the DSMs used herein accommodate directional interfaces

by type and hence are generally nonsymmetric. The NZF is calculated for each of

the five DSMs using Equation 4.2.

NZF =

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐷𝑆𝑀𝑖𝑗𝑖∕=𝑗

𝑛(𝑛− 1)
(4.2)

where: 𝑛 = Total number of modules in a product

The degree of coupling, 𝑉 , between modules is then calculated by summing the five

NZF terms over a product and dividing by the total number of interface types. The

resultant ratio for the degree of coupling factor is the total number of interfaces

divided by the total number of possible interfaces minus the diagonal entries over all

five interface types. This calculation effectively results in averaging the NZF terms

over the five interface types and is shown in Equations 4.3 and 4.4.

𝑉 =
1

5

5∑
𝑘=1

NZFk (4.3)

=

5∑
𝑘=1

(
𝑛∑

𝑖=1

𝑛∑
𝑗=1

𝐷𝑆𝑀𝑖𝑗𝑖∕=𝑗

)
𝑘

5𝑛(𝑛− 1)
(4.4)

The analysis in this paper uses integer values when calculating 𝑉 . The analysis can

be extended to include the real domain as well. One benefit of this extension is that
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it accommodates the potential to evaluate design complexity. For example, if a real

value is assessed to each interface based on the number of interfaces or the level of

complexity for the interface type, Equation 4.4 would need to be slightly modified; the

denominator would need to be removed that normalizes the term since an upper limit

is no longer imposed on the number of interfaces. This extension as well as additional

uses of Equation 4.4 are not expounded upon here but are stated for future research.

4.3.3 Reusability. The reusability factor, 𝑋, is an assessment of the per-

centage of modules of a product that are used in other products. In assessing the

reusability of a product, modules are sorted into two categories: unique and reusable.

This is similar to the categorization that [34] uses to categorize components. Mikkola

identifies reusable components as standard components and then further categorizes

each standard and unique components into customizable and noncustomizable com-

ponents. In assessing reusability, it is not necessary to categorize modules beyond

unique and reusable. In the reusability assessment, each module is assigned a binary

value indicating whether or not it is used in at least one additional product. The

values for the reusable modules are then summed across a product (𝑛mp) and divided

by 𝑛 to attain the overall percentage of a product’s module reuse.

𝑋 =
𝑛mp

𝑛
(4.5)

where: 𝑛mp = Number of modules used in multiple products

𝑛 = Total number of modules

The reusability factor highlights to designers what percentage of a product is being

reused. In order to obtain the benefit of reusability, designers need to avoid or mini-

mize using unique module designs where possible. For the analysis herein, assessing

whether a product is reused or not is sufficient to glean the benefit of reusability being

captured. Knowing the extent a module is reused, or the number of products con-

taining the module, has potential benefits beyond the assessment in this paper. For
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example, as the number of products that use a given module increases, the probability

that the module is or will become a standard module increases. A future adaptation

could account for the number of products each module option (see Section 4.3.4.1)

is used in when building variant configurations of a product. Using this adaptation,

module options that are peculiar to a product (i.e. not reusable in other products)

are highlighted. In the current assessment, however, they are hidden by the over-

all categorization of “unique/reusable” if a given module has multiple options and a

subset of those modules are reusable.

4.3.4 Flexibility. The flexibility of a product is a measure of its ability to

change or adapt to new requirements. Flexibility in this paper is assessed in terms of

a product’s ability to be reconfigurable and extensible with respect to its architecture.

These two components of flexibility are described in Sections 4.3.4.1 and 4.3.4.2.

4.3.4.1 Reconfigurability. The definition of reconfigurability used in

this analysis is a product’s ability to be assembled or built in multiple configurations

according to its architecture. The authors hypothesize in [48] that a measure of

reconfigurability of a product needs to take into account more than the number of

(re)configurations made possible by module options. The reconfigurability measure

(RM), previously developed by the authors [48] is used in this paper as part of the

overall VMM, as the Y term. The reconfigurability factor, Y, is defined by the four

ratios given in Equations 4.6 and 4.7.

Y = [ 𝑦1 𝑦2 𝑦3 𝑦4 ] (4.6)

=

[
𝑟

𝑆

𝑟

𝑡

𝑡

𝑛

𝑟

𝑟u.b.

]
(4.7)

where: 𝑆 =
𝑡∑
1

𝑠𝑖 = Total number of options

𝑛 = Number of modules in a product

𝑡 = Number of modules with options
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𝑟 = Number of possible configurations

𝑟u.b. = Upper bound number of configurations

for a given 𝑆 and 𝑡 pair

A product is comprised of 𝑛 modules that are arranged according to a product’s

architecture. Each of the 𝑛 modules has one or more ways in which it interfaces with

the rest of the product. Each of the 𝑛 modules may or may not have options to choose

from when assembling the product. Each module that has options is counted in an 𝑠𝑖

term. The 𝑠𝑖 term represents the number of module options for the 𝑖𝑡ℎ module where

1 ≤ 𝑖 ≤ 𝑡 such that 𝑡 is the total number of modules with options. The sum of the 𝑠𝑖

terms is equal to 𝑆 as shown above.

The mathematical number of reconfigurations made possible by each module

option is the product of each of the 𝑠𝑖 terms assuming only one option for each module

can be chosen, and no pairwise incompatibilities exist. The mathematical number of

reconfigurations possible is used in conceptual design analysis as well as when in-

depth knowledge of a product is not available. When possible, the actual number of

configurations, 𝑟act, should be used in an assessment to improve the quality of the

RM. In reality, 𝑟act ≤ 𝑟 due to pair-wise incompatibilities between option choices for

the 𝑖𝑡ℎ and 𝑗𝑡ℎ modules.

Returning to Equations 4.6 and 4.7, the 𝑦1 and 𝑦2 ratios refer to the recon-

figurability of a product design. Specifically, 𝑦1 indicates the average number of

reconfigurations made possible per option being maintained in inventory. The 𝑦2 ra-

tio is an indicator of the average number of configurations made possible per module

with options. Alternatively, this second ratio can be assessed as the average number

of reconfigurations made possible per decision point.

Whereas 𝑦1 and 𝑦2 are assessments of the current design, 𝑦3 and 𝑦4 are assess-

ments of how configurable a product design is compared to how reconfigurable it could

be given its architecture. The 𝑦3 term represents how much of a product is reconfig-

urable as well as the maximum 𝑡 achievable (𝑡 ≤ 𝑛) for the given product. The latter
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point is important since the number of reconfigurations possible is a function of 𝑆 and

𝑡. The 𝑆 and 𝑡 pair imposes an upper bound limit on the number of reconfigurations

possible, 𝑟u.b.. The last ratio, 𝑦4, is an indication of how much of the 𝑟u.b. a product

is achieving. When 𝑦3 and 𝑦4 are equal to one, then the current product design has

maximized its reconfigurability for the given 𝑆 and 𝑡 pair. If either 𝑦3 or 𝑦4 (or both)

is less than one, then the product is not maximizing the number of configurations

possible and is not maximizing its reconfigurability. In order to maximize the the

number of configurations for a given 𝑆 and 𝑡 pair, the standard deviation, 𝜎, of the

𝑠𝑖 factors should equal zero (only possible if 𝑆/𝑡 ∈ ℕ) or be minimized.

Increasing the number of module options (𝑠𝑖 and hence 𝑆) and increasing the

number of modules with options (𝑡), increases the combinations possible. The in-

creased number of possible combinations or reconfigurations causes an overall increase

in flexibility. If two products with the same 𝑆 and 𝑡 are assessed, the product with

the lower 𝜎 will in general have more configurations possible and is considered more

reconfigurable, and through extension, more flexible. In general, to maximize the

number of possible configurations, 𝑟, for a product, regardless of the 𝑆 and 𝑡 values,

𝜎 should be minimized. It should be noted that 𝜎 = 0 may not be achievable since

𝑠𝑖 ∈ ℕ, and generally 𝑆/𝑡 ∕∈ ℕ.

The reusability factor only considers whether or not a module is reused. The

reconfigurability factor takes into account the numerous modules that can fit within

a product’s architecture to form different configurations. This factor implies that in-

creased possible reconfigurations are better than fewer reconfigurations from a mod-

ularity viewpoint. That’s not to say from a logistics viewpoint, from a configuration

management viewpoint, or from an assembly time viewpoint that more is necessarily

better. Further, operational or user needs will ultimately determine the number of

configurations that are needed.

4.3.4.2 Extensibility. Extensibility is a measure of a product’s ability

to be extended either through adding functionality or upgrading existing functional-
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ity [18]. The latter component, upgrading functionality, is a characteristic of perfor-

mance and is not assessed in the current measure. However, if a module has built-in

architectural options that adds functionality, then it will be included in the extensi-

bility factor. For example, if a navigation module that provides position information

is upgraded to increase the position accuracy, it still performs the same function and

will not be included in the 𝑍 factor. If the same navigation module has built-in archi-

tectural options to provide velocity information as well as position information, then

the additional functionality will be included in the 𝑍 factor. The additional product

functionality previously mentioned is referred to here as architectural design options,

𝑎, similar to “hooks” and “scars” in software and hardware design respectively [32],

that allow for design evolution. They are the functions that will be performed by

modules that may or may not exist, but are not in the current inventory of module

options. When assembling products with one of the functions in the 𝑎 term, the prod-

uct is considered to be built in an engineer-to-order framework. On the other hand,

the modules that perform the 𝑚 functions are built in a configure-to-order frame-

work since the module options are kept in inventory [26]. The extensibility factor in

the VMM focuses on capturing the built in architectural design options for adding

anticipated functionality to a product as shown in Equation 4.8.

𝑍 =
𝑎

𝑚
, 0 ≤ 𝑎 ≤ 𝑚 (4.8)

where: 𝑎 = Number of anticipated architectural or functional options

𝑚 = Total number of functions

The range for 𝑎 is assumed to be 0 – 𝑚. This range is based on the assumption that

a product would not be fielded with less than 50% anticipated functionality. While 𝑍

has no hard upper limit, it has a practical limit of 1 based on the previous assumption.

This assumption is consistent with the three use cases analyzed. Future use case anal-

ysis should be performed to confirm and refine this assumption. 𝑍 is a relative order

of merit as it is a measure based on a percentage of original primary functionality. It
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Figure 4.1: Vector Modularity Measure Analysis Process

is important to keep the functions in 𝑎 at the same level of abstraction as the functions

in 𝑚 and to follow Suh’s independence axiom [53]. Assessing extensibility requires in-

depth knowledge of a product’s design. In cases where reverse-engineering is used to

upgrade products, extensibility is harder to evaluate but is still an important benefit

of modularity.

4.4 Analysis Process

The analysis process used to calculate a product’s VMM begins with a func-

tional model that is accomplished through a functional decomposition of the product.

Hirtz et al. [21] extended the previous work by [38] to create a functional basis vocab-

ulary. This vocabulary defines a standardized language to decompose a system into

functions and flows to a level of abstraction needed for a given analysis. Three levels

of abstraction are used to describe the decomposition: class (or primary), secondary,

and tertiary.

Functional decomposition (Step 1) is not new. Functional decomposition is

typically done in the early stages of design conceptualization, transforming user re-

quirements into functional requirements [11,43,54]. This functional decomposition or

modeling provides an abstract method for understanding and representing the over-

arching function of a product [21]. Functional decomposition begins at the top level

outlining the overarching function of a product. This overarching function is then

decomposed into the three levels of abstraction listed above. For purposes of this

analysis, the functional decomposition abstraction level stops at the class level.
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After functional decomposition has been accomplished at the class level, a prod-

uct’s components and/or modules can be mapped (Step 2) to their corresponding

function(s). For existing products, one method to identify module boundaries is to

use reverse-engineering. Even though the product exists, clear boundaries may not

present themselves, requiring iterations of Step 2 until the boundaries are clearly de-

fined. For new products, identifying the module boundaries also will likely require

several iterations of Step 2. Another technique to identify modules is to use the

dominant flow heuristic developed by Hirtz et al. ( [44–46]). This heuristic groups

components performing similar functions into modules. Iterations of Step 2 should

continue until the function-to-module ratio is 1:1 or is minimized [7]. The module-

to-function ratio can be 1:1 or 1:many [7].

Using the identified modules, a bipartite graph can be constructed and used to

understand and illustrate the interface mapping (Step 3) between modules. These

interfaces, along with the functional decomposition, require in-depth subject or do-

main knowledge best gleaned from subject matter experts (SMEs). The interfaces

between the modules are categorized similarly as was done by [42] into five categories

- spatial, informational, material, energy, and structural. A design structure matrix

(DSM) can be constructed (Step 4) with the identified modules as row and column

labels. The five matrices (by interface type) can then be populated with the interface

data. An optional tensor graphic can also be constructed to help illustrate the types

and degree of interfaces (see Section 4.5). Finally, assessment of the VMM (Step 5)

of the product can begin starting with the degree of coupling, 𝑉 . 𝑉 is an assessment

of the connectedness/disconnectedness between and among the modules which is also

considered the degree of coupling between and among the modules. After subtracting

the diagonal entries in each of the five DSMs, Equation 4.4 can be used to solve for

𝑉 using the off-diagonal entries in the DSM.

The reusability factor, 𝑋, can be assessed using the modules identified in the

DSM in previous steps. Each of the identified modules, at a minimum, are in the

product being assessed. Additionally, the modules could be used in other products
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or product families. If a module is used in other products, then it is counted as

1. 𝑋 is the number of these modules divided by the total number, 𝑛, of modules.

Keeping track of each module as being reused or unique is straight forward and

the reusability factor is easy to calculate even for products with a large number of

modules. At this point in the modularity assessment, however, it is worthwhile to

keep a list of each module and its associated products. This tracking will aid in

the reconfigurability assessment later in the modularity analysis as well as future

adaptations of the reusability factor (see Section 4.3.3.

To calculate the reconfigurability factor, Y, more knowledge of the product

architecture is needed. Each module in the product performs a function or multiple

functions. In some cases, more than one option for a module can accomplish these

functions and the designer or builder can choose from multiple module options when

constructing the product. The number of options for each of these modules needs to

be identified, starting with the modules identified in the DSM. The number of modules

with multiple options, 𝑡, can then be identified as can 𝑆, the total number of options

for modules with options. Using each of the 𝑠𝑖 terms, the number of configurations

and the standard deviation, 𝑟 and 𝜎, respectively, can then be calculated. Lastly, the

four reconfigurability ratios can be calculated using Equations 4.6 and 4.7.

Lastly, extensibility, 𝑍, can be calculated. The identification of additional ar-

chitectural options requires in-depth knowledge of the architecture of the product

under analysis. Each additional architectural option is counted and summed into 𝑎,

which is then factored into 𝑍 in Equation 4.8.

4.5 Application

The modularity analysis process is demonstrated using two precision guided

munitions (PGMs) in the Air Force inventory. The first PGM is the GBU-24, also

referred to as a laser guided bomb or LGB. The second example is the GBU-31, also

referred to as the Joint Direct Attack Munition or JDAM. Both munitions, shown in

Figures 4.2 and 4.3, can use multiple bomb bodies as the main weapon module. The
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Figure 4.2: GBU-24 (LGB), Mk 84 Variant

Figure 4.3: GBU-31 (JDAM), Mk 84 Variant

Mk 84, 2000 lb, general purpose bomb was used in this analysis for both PGMs. These

two PGM examples were chosen for their similar modular architectures and continued

use by the Air Force. Both munitions are mainstays in the Air Force weapons arsenal

and have evolved over the years due to changing requirements, upgraded technologies,

and employment effectiveness.

4.5.1 GBU-24. The first step in the modularity analysis process is the func-

tional decomposition or function structure. Figure 4.4 depicts the GBU-24 function

structure which is very similar for both munitions. The functional basis language was

used to represent the functional decomposition. The Appendix gives a lay translation

from the functional basis language to a more general language. For example, the over-

arching function of the weapon is to “Channel: Dumb Bomb,” or, move the munition

from the aircraft carriage location to the ground target. In this case, “channel” refers

to movement from one location to another.

The second step is to map the functions identified in the function structure from

Figure 4.4 to modules as shown in Table 4.1. Module identification in the GBU-24

application was straight forward. In less modular designs, this may not be the case.
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Channel: Dumb 

Bomb (M)
Sense: Position & 

Target Info - EM (E)

Process: Position & 

Target Info (S)

Guide:  Fins (M)

Import: Target data -

EM (E)

Store: Target data -

EM (E)

Initiate: Electrical -

initiator (E)

Supply: Electrical -

initiator (E)

Convert: Solid - to a 

gas - explosion (M)

Couple: Bomb body 

to a/c - (M)

Stabilize: Gas -

airflow (M)

Guide: Gas - airflow 

(M)

Stop: Electrical -

fuze (E) (safeguard)

Actuate: Electrical -

fuze (E)

Stop: Electrical -

initiator (E) 

(safeguard)

Supply: Propellant 

(fuel) (M)

Couple:Bomb body & 

GCS (M)

Figure 4.4: GBU-24 Function Structure

It is important to note however, the identification of modules in a product is pivotal

to three of the four contributing factors in the modularity vector (𝑉 , 𝑋, and Y).

Once module identification was performed, Steps 3 and 4 of the analysis process

can be accomplished either sequentially or in parallel. These two steps were chosen to

be accomplished in parallel and the design structure matrix (DSM) was constructed

with the GBU-24 modules as row and column labels. For this initial application and

for simplification, a binary symmetric matrix was chosen that identifies only that

an interface (by type) exists between two modules. After discounting the diagonal

entries, the assessment of interfaces between the modules was made. These interfaces,

along with the functional decomposition, were accomplished using SMEs and hands-

on experience. The DSM/tensor for the GBU-24 is shown in Figure 4.5. Each vertical

layer of the tensor represents an interface type. Only half of the tensor plot is shown

for simplification since it is symmetrical. Each box represents an interface existence

between the two modules identified in the row and column headings in the horizontal

axes. The relationship between the modules, by interface type, is given in a typical
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Table 4.1: GBU-24 Function to Module Mapping

GBU-24 

                                          MODULE Warhead
Forward 

Adapter

Guidance 

Control 

Section

Airfoil 

Group

Support 

Structure
Fuze Initiator

FUNCTION

Import: Target data X

Store: Target Data X

Process: Position & Target Info X

Guide: Fins X

Sense: Position & Target Info X

Couple: Bomb body & aircraft X

Couple: Bomb body & GCS X

Guide: Gas X

Supply: Electrical X

Actuate: Electrical X

Stop: Electrical X

Stop: Electrical X

Initiate: Electrical X

Convert: Solid X

Supply: Propellant X

Stabilize: Gas X

DSM provide/depend association. Using the tensor plot, it is readily seen which

interface types require more or less coupling for a given product.

After developing the GBU-24 tensor, the degree of coupling factor in the Vec-

tor Modularity Measure can be calculated. Using the eight modules identified in the

DSMs/tensor plot, each module was categorized as unique or reused. After categoriza-

tion, reusability was assessed. Continuiing on with the reconfigurability assessment,

a list of products was created for each module that is used in additional products

beyond the GBU-24. The 𝑆, 𝑡, 𝑟act
1, and 𝜎 values were then calculated using the

lists created for each module in the GBU-24. The values for these parameters, 19, 4,

84, and 2.36 respectively, led to the final calculation of the reconfigurability measure.

Lastly, each of the functions identified for the product was summed in the 𝑚 value.

While zero, one, or two fuze modules (and associated functions) can be used to build

a complete GBU-24, it was assumed that the build would include one fuze module.

The ability to use a second fuze module was considered as additional functionality.

1See [48] for the impact on the reconfigurability measure, 𝑌 , of using 𝑟act versus 𝑟 for the GBU-24
and GBU-31.
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Figure 4.5: GBU-24 Tensor

The additional functionality was captured in the 𝑎 parameter for extensibility. The

equations for all of the modularity factors are summarized in Equations 4.9 and 4.10.

The results for the GBU-24 modularity assessment, including the reconfigurability

measure, are given in Equations 4.11 and 4.12.

VMM =

[ ∑5
𝑘=1 (

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝐷𝑆𝑀𝑖𝑗𝑖 ∕=𝑗)𝑘

5𝑛(𝑛− 1)

𝑛𝑚𝑝

𝑛
Y

𝑎

𝑚

]
(4.9)

Y =

[
𝑟act
𝑆

𝑟act
𝑡

𝑡

𝑛

𝑟act
𝑟u.b.

]
(4.10)

VMMGBU-24 = [ 0.25 0.63 YGBU-24 0.06 ] (4.11)

YGBU-24 = [ 4.42 21 0.5 0.17 ] (4.12)
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4.5.2 GBU-31. The analysis process for the GBU-31 was also accomplished

and is summarized in the following steps and figures. This analysis process is sum-

marized separately from the GBU-24 to outline the complete analysis process from

start to finish. The 𝑆, 𝑡, 𝑟act, and 𝜎 values used for the GBU-31 were 17, 4, 33, and

4.5, respectively.

STEP 1: Figure 4.6

Channel: Dumb 

Bomb (M)
Sense: Position & 

Target Info - EM (E)

Process: Position & 

Target Info (S)

Guide:  Fins (M)

Import: Target data -

EM (E)

Store: Target data -

EM (E)

Initiate: Electrical -

initiator (E)

Supply: Electrical -

initiator (E)

Convert: Solid - to a 

gas - explosion (M)
Couple: Bomb body 

to aircraft - (M)

Stabilize: Gas -

airflow (M)

Guide: Gas - airflow 

(M)

Stop: Electrical -

fuze (E) (safeguard)

Actuate: Electrical -

fuze (E)

Stop: Electrical -

initiator (E) 

(safeguard)

Supply: Propellant 

(fuel) (M)

Figure 4.6: GBU-31 Function Structure

STEP 2: Table 4.2

STEPS 3 and 4: Figure 4.7

STEP 5:

VMM =

[ ∑5
𝑘=1 (

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝐷𝑆𝑀𝑖𝑗𝑖 ∕=𝑗)𝑘

5𝑛(𝑛− 1)

𝑛𝑚𝑝

𝑛
Y

𝑎

𝑚

]
(4.13)

Y =

[
𝑟act
𝑆

𝑟act
𝑡

𝑡

𝑛

𝑟act
𝑟u.b.

]
(4.14)
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Table 4.2: GBU-31 Function to Module Mapping

GBU-31 

                                         MODULE Warhead
Guidance 

Set

Proximity 

Sensor

Airfoil 

Group

Support 

Structure
Fuze Initiator

FUNCTION

Import: Target data X

Store: Target Data X

Process: Position & Target Info X

Guide: Fins X

Sense: Position & Target Info X X

Couple: Bomb body & aircraft X

Guide: Gas X

Supply: Electrical X

Actuate: Electrical X

Stop: Electrical X

Stop: Electrical X

Initiate: Electrical X

Convert: Solid X

Supply: Propellant X

Stabilize: Gas X

Table 4.3: PGM Vector Modularity Measure Results, VMM
PGM Coupl. Reusab. Reconfig. Extens.

𝑉 𝑋 Y 𝑍

GBU-24 0.25 0.63 YGBU-24 0.06
GBU-31 0.26 0.5 YGBU-31 0.00

VMMGBU-31 = [ 0.26 0.50 YGBU-31 0.00 ] (4.15)

YGBU-31 = [ 1.94 8.25 0.5 0.10 ] (4.16)

4.5.3 Results. The results of the modularity assessment, including the

reconfigurability measure, for the GBU-24 and GBU-31 precision guided munitions

are shown in Tables 4.3 and 4.4.

Both PGMs perform the same overarching function, to guide or channel a bomb to a

target on the ground. Both munitions have similar function structures, modules, and

interfaces. This similarity is furthered characterized in the modularity assessment,
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Figure 4.7: GBU-31 Tensor

Table 4.4: PGM Reconfigurability Measure Results, Y
PGM 𝑦1 𝑦2 𝑦3 𝑦4

𝑟act
𝑆

𝑟act
𝑡

𝑡
𝑛

𝑟act
𝑟u.b.

GBU-24 4.42 21 0.5 0.17
GBU-31 1.94 8.25 0.5 0.10

specifically by the degree of coupling, 𝑉 , and extensibility, 𝑍, factors. Both factors

show less than a 6% difference between the two PGMs. This small difference between

the PGMs is the result of a two interface difference for 𝑉 , and a one function difference

in 𝑍.

As mentioned previously, earlier modularity measures [23, 34, 42] focus on cou-

pling of either design parameters or interfaces which is referred to as degree of coupling

in this paper. Stopping at this point (assessing degree of coupling) in the assessment

would yield an insignificant difference in the two products in terms of modularity
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and would result in the two designs being relatively equal in terms of modularity.

The modularity measure equations given by [23,34] and [42] were calculated for both

PGM examples and in all three cases, the modularity measures indicated the same

results as the Vector Modularity Measure introduced in this paper, that the GBU-24

is more modular than the GBU-31. While the analysis was consistent as to which

munition is more modular, previous measures do not offer the additional insight into

the specific benefits of modularity being realized by each munition.

Continuing the analysis process identified in this paper generates the next level

of granularity in assessing the differences in modularity between the two PGMs.

Specifically, the GBU-24 (Mk 84 variant) is identified as being more reusable and

reconfigurable than the GBU-31 (Mk 84 variant). It is important to note that the

Mk 84 variants of both munitions were used in the application in this research. The

BLU-109 bomb body variant can also be used in both PGMs resulting in different

modularity values and conclusions. While both munitions have similar modules, the

GBU-24 has one module more than the GBU-24 that is reused in multiple prod-

ucts. The additional module results in the assessment identifying the GBU-24 as

more reusable than the GBU-31. Neither weapon, however, is completely reusable

(𝑛mp < 𝑛) from a modularity viewpoint.

The fuze-initiator constraints imposed on both GBUs as well as other pair-wise

constraints hampered the total number of configurations achievable, 𝑟. Additionally

for the GBU-31, the distribution of the 𝑠𝑖 terms achieves the minimum number of

configurations possible for the given 𝑆 and 𝑡 pair. Since three out of the four ratios

in Y uses 𝑟 in the reconfigurability factor, the result of the lower 𝑟 for the GBU-31

extended to the overall reconfigurability as rating lower than the GBU-24. While the

analysis showed a small percentage difference between the two degree of coupling mea-

sures (less than 6%), this difference could be greater if non-realistic or non-achievable

interfaces were eliminated. Ultimately, performing the analysis outlined in this pa-

per identified differences in the two PGMs not previously realized when stopping the

analysis after assessing the degree of coupling.
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Finally, this analysis process can also be used when comparing the modularity

of two designs of the same product or of a product that is being upgraded. Using

the tensor plot, for example, modules that are highly coupled to each other and

through which interface type(s) can be visualized. If the intentions of a designer or

decision-maker are to increase modularity of a product, then the analysis can show

contributing factors to the product’s modularity and the benefits of increasing the

modularity.

4.6 Conclusions

Traditional modularity measures produce one real number, between zero and

one, that can be used to compare relative modularity among multiple designs. Whereas

these traditional modularity measures focus on coupling, whether between design pa-

rameters or interfaces among modules, the measure here builds upon that initial real

number. The Vector Modularity Measure presented captures not only the coupling

attribute but also the reusability and flexibility attributes. The flexibility attribute

is measured in terms of a product’s ability to be adaptable to changing requirements

which are specifically measures of reconfigurability and extensibility.

The VMM presented can be used to evaluate and compare multiple designs

from a modularity viewpoint. Whether these designs are for similar products, the

same product, or an upgrade of an existing product, the VMM presented here helps

to illuminate various aspects of the product’s modularity. This is especially helpful

in highlighting where one product design is more modular than another as in the

demonstrated case of the PGM. When comparing designs, the various benefits of

modularity identified through the analysis process can be taken into account when

making design decisions. It is hypothesized that the analysis process can also be used

on conceptual designs as well as existing designs but was not attempted as part of

this research.

Through the two PGM applications, it was demonstrated that while the two

munitions are similar in function structures, modules, and interfaces, they are different
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in terms of reusability and reconfigurability. The particular modularity benefits of the

GBU-24 over the GBU-31 were only highlighted once the analysis process presented

in this paper was accomplished. If gaining the benefits of modularity is a design goal

for a product, the VMM presented here helps to evaluate that design and highlight

the benefits being realized.

Beyond measuring the four factors that make up the VMM, designers can use

each equation of the calculations to determine where improvements to modularity can

be made thus increasing the modularity benefits. For example, looking at Equation

4.7, a product with a lower 𝜎 will in general result in a higher number of configurations,

𝑟, for a given product with the same 𝑆 and 𝑡 which will increase the reconfigurability

of a product. Another example, using Equation 4.5, is to increase 𝑛mp and hence 𝑋

by using modules in a product that have been used in other products.

Another use of this analysis is to refine the functional decomposition of a prod-

uct. The second step in the analysis process maps modules to functions. This paper

analyzed existing products and used reverse engineering to identify the modules and

then map them to the corresponding functions they perform. The function to module

mapping highlights where coupling exists between two or more modules. That is, two

or more modules are necessary to accomplish one function. This information can

then be used to reevaluate the functional decomposition or the module boundaries

and hence the interfaces.

Two observations, based on the specific PGM application, are interesting and

worthy of further investigation. The first observation is that the GBU-31 had a

slightly higher degree of coupling that coincided with it being less reconfigurable

than the GBU-24. Using this observation, a second observation is prompted in the

form of a question. That is, does higher product complexity tend to discourage

higher reconfigurability due to the number of interfaces, the types of interfaces, or a

combination thereof?
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The DSM/tensor in the degree of coupling factor, 𝑉 , currently takes a binary

approach. The next step, for future research, is to use directional information such

that an interface can take on values of 0, 1, or 2 in the DSM/tensor for a given interface

type. A “0” would represent no interface exists between two modules. A “1” would

represent that a one-way directional interface exists. Lastly, a “2” would represent

a bi-directional interface exists. Another future step in advancing the fidelity of this

analysis process is to eliminate the non-realistic/non-achievable interfaces from the

overall calculation in the V factor. Currently, all matches between modules for each

of the interface types are treated as realistic/achievable. Eliminating combinations

of modules when calculating the number of reconfigurations would also advance the

fidelity of this analysis process. The PGM application in this paper eliminated most,

if not all, of the constrained reconfigurations but leaves the process of reconfiguration

elimination to the analyst performing the Vector Modularity Measure assessment

outlined herein.
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V. PnPSat – A Modularity Assessment

5.1 Introduction

When decision makers or designers state they want a spacecraft to be more

modular, they are indicating that there are one or more aspects of modularity that

they want captured in a new design. The benefits of modularity in product design

have been widely recognized and qualitatively captured in [16]. Some of these benefits

include changeability, flexibility, reusability, reconfigurability, and extensibility. The

Vector Modularity Measure (VMM) used in this paper uses degree of coupling as well

as the benefits of modularity, in a vector form, to highlight the contributing factors to

a spacecraft’s modularity assessment. Each of the equations used in the measure can

be used to gain insight into the specific modularity benefits being realized. Designers

and decision-makers alike can use this insight to improve existing designs and to aid

in overall product selection based on priorities and goals of modularizing a product

like a spacecraft.

This paper will briefly review the Vector Modularity Measure developed by the

authors in [51]. A brief summary of the analysis process is then given. This summary

is followed by the application of the analysis process to a more complex product,

PnPSat, than originally presented in [51]. A PnPSat function structure is developed

first in the analysis process using a functional basis developed in [21], followed by

module identification using a dominant flow heuristic developed in [44–46]. PnPSat

functions are mapped to modules and module-to-module interfaces are determined.

The VMM is calculated and assessed next for PnPSat followed by a summary of the

results. These results are used to propose future design implementations to increase

the modularity of PnPSat.

5.2 Background

5.2.1 ORS. Traditional, large, complex satellites typically require 10 to 15

years to develop. These satellites are typically in operational use for 5 to 15 years.
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Tier 1 “Employ it”

On-demand with existing 
assets

Minutes to hours

Tier 2 “Launch/deploy it”

On-call with ready-to-
field assets

Days to weeks

Tier 3 “Develop it”

Rapid transition from 
development to delivery 
of new or modified 
capabilities

Months (not years)

Reconstitute lost 
capabilities

Augment/Surge
existing capabilities

Fill Unanticipated Gaps
in capabilities

Exploit new technical/ 
operational innovations

Respond to unforeseen 
or episodic events

Enhance survivability 
and deterrence

ORS Needs ORS Approaches Warfighting Effects

Figure 5.1: ORS 3-Tier Approach [59]

On the other extreme, “simpler,” smaller satellites take 12 to 18 months to develop

and are operational for 6 months to several years [60]. There still exists a gap of a

year or more between when a need is identified by a Joint Force Commander and

when a potential need is addressed. Congress recognized this shortfall and called

for the creation of the Operationally Responsive Space Office and associated concept

development [41]. Operationally Responsive Space was defined by the same report

as:

“. . . assured space power focused on timely satisfaction of Joint Force
Commanders’ needs. This definition considers ORS as a subset of space
activities designed to satisfy Joint Force Commanders’ (JFCs’) needs,
while also maintaining the ability to address other users’ needs, for im-
proving the responsiveness of space capabilities to meet national security
requirements.”

ORS is focused not on strategic or long-term needs, but on time sensitive needs of

the JFCs and other users. In meeting the responsiveness needs of the JFCs, ORS is

implemented in a 3-tier approach as depicted in Figure 5.1. The first tier or method

of meeting an identified JFC’s need is to use current capabilities such as existing
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satellites or unmanned aerial vehicles (UAVs). If the need cannot be met, then a

tier two approach is used, that is to launch an asset in a time frame of days to

weeks using existing assets in inventory. If an on-call asset is not available, then a

new capability is sought to meet the identified time-sensitive need. The ORS office

is charged with focusing on tier two and tier three approaches. It is thought that

modularizing spacecraft will enable the goal time frame of an asset launch on the

order of weeks to be realized [2, 30,33].

5.2.2 Modularity. A method to assess the modularity of modular products

was previously developed by the authors in [51]. This method is applied to the Plug-

and-Play Satellite (PnPSat) that is being proposed by the Air Force Research Lab

(AFRL) in response to the tier two approach to meeting the JFCs’ needs. The idea

of measuring modularity is not new. A literature review and summary of the various

methods for measuring modularity through 2004 is given in [17]. The concepts are

further extended in [19] along with comparisons of the various modularity measures

based on consistency and sensitivity analyses. Several methods have been proposed

since 2004 in [23,34,42]. These measures quantify the module-to-module connections,

both inter- and intra-module, but ultimately focus on coupling of either design pa-

rameters or interfaces. The modularity measure in [34] also accounts for a module’s

reusability in an exponent term identified as a substitutability factor. None of the

measures, however, take into account the assumed benefits of modularity.

5.3 PnPSat

5.3.1 PnPSat Overview. PnPSat is being designed as a modular, reconfig-

urable small satellite to meet the tier two approach to meeting the JFCs’ needs. It has

open standards and interfaces, self describing components, and an auto-configuring

system [13]. PnPSat performs many of the same functions, on a smaller scale, as tra-

ditionally larger satellites. One of the more complex functions that is not performed

by PnPSat is propulsion.
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Figure 5.2: Example Exterior of PnPSat [9]
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PnPSats are built using a four step process [14]:

1. Spacecraft design

2. Bus assembly and test

3. Payload assembly, alignment, and test

4. Spacecraft integration and test

The first step, spacecraft design, is performed using a software tool called the Mission

to Satellite Design Tool (MSDT) that translates user requirements into a parts list

for subsequent steps in the build process. The second and third steps of the building

process are accomplished in parallel culminating with the integration and testing of

the bus and payload in step four.

The proposed assembly, integration, and test flow of PnPSat is given in Figure

5.3. In general, the test function drives the overall time of spacecraft delivery as

its intended purpose is to verify adequacy of the spacecraft design and assembly

processes [60]. One of the challenges in meeting the ORS goal of a 6- or 7-day

spacecraft to become a reality is the reduction of this test cycle. The goal of PnPSat

is to have the first type of testing, design adequacy, performed prior to selecting a

component or module from inventory during the assembly sequence. This reduces

the overall testing function of the components or modules to verifying the assembly

process. Whereas the qualification test of a traditional spacecraft is a lengthy and

demanding process, a reduced set of functional and environmental tests are being

drafted for PnPSat in order to reduce the overall timeline from design to launch [60].

The architecture of PnPSat involve three basic parts [13]: basic spacecraft;

spacecraft components; and payload or mission sensors for customization. The basic

spacecraft includes the spacecraft structure, the power grids (both main and charg-

ing), the space plug-and-play avionics (SPA) infrastructure, and thermal control. The

spacecraft components include the autonomous flight software; the quantity of high-

performance computing; power generation and storage; guidance, navigation, and
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Figure 5.3: PnPSat Assembly, Integration, & Test Flow
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control components; and the communications radios for both tactical and TT&C.

Thirdly, the mission sensors are customized to the needs of the mission given by the

warfighter.

The current PnPSat includes 25 components plugged onto the basic spacecraft.

These components include [13]:

∙ 2 batteries (plus charge control component) ∙ 3 magnetic torque rods

∙ 2 coarse sun sensor assemblies ∙ fine sun sensor

∙ FITS solar array (plus control component) ∙ 3 reaction wheels

∙ GPS radio (2 components) ∙ intelligent data store

∙ TT&C radio (4 antennas) ∙ magnetometer

∙ 2 packages of HPCOO processors

PnPSat makes use of standardizing mechanical and electrical interfaces in an attempt

to reduce the integration timeline. These standard interfaces can accommodate 48

experiments such that the components can be located on either the interior or exterior

surfaces. The mechanical interface involves a 5 x 5 cm grid pattern that goes across

both the internal and external surfaces of each of the six spacecraft panels. The

electrical interface uses a 25-pin micro-D electrical connector that includes up to

4.5A @ 28v, data, time synchronization pulse, test bypass interface, and a single

point ground. Finally, the current spacecraft structure is 51 x 51 x 61.2 cm and has

a mass of 34.7 kg excluding the launch vehicle adapter [13].

5.4 Vector Modularity Measure

The Vector Modularity Measure (VMM) previously developed by the authors

in [51] captures the degree of coupling in a product along with the recognized benefits

of modularity in a vector form for further mathematical manipulation. Specifically,

the following aspects of modularity are captured in the VMM: degree of coupling

between/among the modules in a system; reusability of the modules; and the flexi-

bility of a product to adapt to changing requirements which is assessed in terms of
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its reconfigurability and extensibility. Equation (5.1) defines the Vector Modularity

Measure, and subsequent subsections briefly describe each of the factors comprising

the VMM. The VMM analysis process identified by the authors will be described in

the next section.

VMM = [ 𝑉 𝑋 Y 𝑍 ] (5.1)

where: 𝑉 = Degree of coupling

𝑋 = Reusability

Y = Reconfigurability

𝑍 = Extensibility

5.4.1 Degree of Coupling. The first factor in the VMM, the degree of

coupling, 𝑉 , is used to assess how connected/disconnected each module in a product

is from each of the other modules. This factor can be used to identify which modules

are loosely or highly coupled to the other modules in a product. This assessment

can then be used by designers and decision-makers to guide future design decisions

regarding which modules to target when trying to improve a product’s modularity.

This idea of using degree of coupling is similar to the use of in- and out-degree

modularity measures in [42]. Another similar concept is the non-zero fraction (NZF)

term in the modularity measure in [23]. The NZF is useful in determining a product’s

connectedness or coupling and is used in the VMM in this paper. The NZF uses a

symmetrical binary design structure matrix (DSM), an 𝑛 x 𝑛 matrix where each

column and row refers to a module in a product. If an interface exists between two

modules, then an X is used to indicate the interface. The NZF is then calculated as

the ratio of the total number of non-zero entries to the total number of entries minus

the diagonal entries, 𝑛.

A DSM is built for each of the five interface types (spatial, informational, etc.).

However, the DSMs used herein accommodate directional interfaces by type and hence

are generally nonsymmetric. The NZF is calculated for each of the five DSMs using
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the same calculation procedure as in Equation (5.2).

NZF =

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐷𝑆𝑀𝑖𝑗𝑖∕=𝑗

𝑛(𝑛− 1)
(5.2)

where: 𝑛 = Total number of modules in a product

The degree of coupling, 𝑉 , between modules is then calculated by summing the five

NZF terms over a product and dividing by the total number of interface types (5).

The resultant ratio for the degree of coupling factor is the total number of interfaces

divided by the total number of possible interfaces minus the diagonal entries over all

five interface types. This calculation effectively results in averaging the NZF terms

over the five interface types and is shown in Equations (5.3) and (5.4).

𝑉 =
1

5

5∑
𝑘=1

NZFk (5.3)

=

5∑
𝑘=1

(
𝑛∑

𝑖=1

𝑛∑
𝑗=1

𝐷𝑆𝑀𝑖𝑗𝑖∕=𝑗

)
𝑘

5𝑛(𝑛− 1)
(5.4)

5.4.2 Reusability. The reusability factor, 𝑋, is an assessment of the per-

centage of modules of a product that are used in other products. In assessing the

reusability of a product, modules are sorted into two categories: unique and reusable.

This is similar to the categorization of components used in [34]. In the reusability

assessment, each module is assigned a binary value indicating whether or not it is

used in at least one additional product. The values for the reusable modules are

then summed across a product and divided by 𝑛 to attain the overall percentage of a

product’s module reuse.

𝑋 = 𝑛mp / 𝑛 (5.5)

where: 𝑛mp = Number of modules used in multiple products
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𝑛 = Total number of modules

The binary use of numbering or counting modules in the reusability factor is used in

order to avoid cross-coupling factors.

Since reusability is one of the benefits of modularity, the reusability factor high-

lights to designers what percentage of a product is being reused. In order to claim

the benefit of reusability, designers need to avoid using unique module designs where

possible. For the analysis herein, assessing whether a product is reused or not is

sufficient to glean the benefit of reusability being captured. Knowing to what extent

a module is reused, or the number of products containing the module, has potential

benefits beyond the assessment in this paper. For example, the greater the number of

products using a module the higher the probability that the module is or will become

a standard module.

5.4.3 Flexibility. The flexibility of a product is a measure of its ability to

change or adapt to new requirements. Flexibility in this paper is assessed in terms of

a product’s ability to be reconfigurable and extensible with respect to its architecture.

These two components of flexibility are described subsequently.

5.4.3.1 Reconfigurability. The definition of reconfigurability used in

this analysis is a product’s ability to be assembled or built in multiple configurations

according to its architecture. Reconfigurability, 𝑌 , captures several attributes. These

attributes include the number of modules in a product that have multiple options,

the total number of options for all modules with options, the number of possible con-

figurations of the product, and how the number of options varies across the modules

with options.

The reconfigurability factor, Y, is defined by the four ratios given in Equations

(5.6) and (5.7). These ratios, used to assess product reconfigurability, were previously

developed by the authors in [51].
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Y = [ 𝑦1 𝑦2 𝑦3 𝑦4 ] (5.6)

=

[
𝑟

𝑆

𝑟

𝑡

𝑡

𝑛

𝑟

𝑟u.b.

]
(5.7)

where: 𝑆 =
𝑡∑
1

𝑠𝑖 = Total number of options

𝑛 = Number of modules in a product

𝑡 = Number of modules with options

𝑟 = Number of possible configurations

𝑟u.b. = Upper bound number of configurations

for a given 𝑆 and 𝑡 pair

A product is comprised of 𝑛 modules. Each of the modules may or may not have

options to choose from when assembling the product according to its architecture.

Each module that has options is counted in an 𝑠𝑖 term. The 𝑠𝑖 term represents the

number of module options for the 𝑖𝑡ℎ module where 1 ≤ 𝑖 ≤ 𝑡 such that 𝑡 is the total

number of modules with options. The sum of the 𝑠𝑖 terms is equal to 𝑆 as shown

above.

The mathematical number of reconfigurations made possible by each module

option is the product of each of the 𝑠𝑖 terms. The mathematical number of recon-

figurations possible is used in conceptual design analysis as well as when in-depth

knowledge of a product is not available. When possible, the actual number of config-

urations, 𝑟act, should be used in an assessment to improve the quality of the RM. In

reality, 𝑟act ≤ 𝑟 due to pair-wise incompatibilities between option choices for the 𝑖𝑡ℎ

module and the 𝑗𝑡ℎ module.

Returning to Equations (5.6) and (5.7), the 𝑦1 and 𝑦2 ratios refer to the re-

configurability of a product design. Specifically, 𝑦1 indicates the average number of

reconfigurations made possible per option being maintained in inventory. The 𝑦2 ra-

tio is an indicator of the average number of configurations made possible per module
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with options. Alternatively, this second ratio can be assessed as the average number

of reconfigurations made possible per decision point.

Whereas 𝑦1 and 𝑦2 are assessments of the current design, 𝑦3 and 𝑦4 are assess-

ments of how configurable a product design is compared to how reconfigurable it could

be given its architecture. The 𝑦3 term represents how much of a product is reconfig-

urable and hence the maximum 𝑡 achievable (𝑡 ≤ 𝑛) for the given product. The latter

point is important since the number of reconfigurations possible is a function of 𝑆 and

𝑡. The 𝑆 and 𝑡 pair imposes an upper bound limit on the number of reconfigurations

possible, 𝑟u.b.. The last ratio, 𝑦4, is an indication of how much of the 𝑟u.b. a product

is achieving. When 𝑦3 and 𝑦4 are equal to one, then the current product design has

maximized its reconfigurability for the given 𝑆 and 𝑡 pair. If either 𝑦3 or 𝑦4 (or both)

is less than one, then the product is not maximizing the number of configurations

possible and is not maximizing its reconfigurability. In order to maximize the number

of configurations for a given 𝑆 and 𝑡 pair, the standard deviation, 𝜎, of the 𝑠𝑖 factors

should equal zero (only possible if 𝑆/𝑡 ∈ ℕ) or be minimized.

Increasing the number of module options (𝑠𝑖 and hence 𝑆) and increasing the

number of modules with options (𝑡), increases the combinations possible. The in-

creased number of possible combinations or reconfigurations causes an overall increase

in flexibility. If two products with the same 𝑆 and 𝑡 are assessed, the product with

the lower 𝜎 will in general have more configurations possible and is considered more

reconfigurable, and through extension, more flexible. In general, to maximize the

number of possible configurations, 𝑟, for a product, regardless of the 𝑆 and 𝑡 values,

𝜎 should be minimized. It should be noted that 𝜎 = 0 may not be achievable since

𝑠𝑖 ∈ ℕ, and generally 𝑆/𝑡 ∕∈ ℕ.

The reusability factor only considers whether or not a module is reused. The

reconfigurability factor takes into account the numerous modules that can fit within

a product’s architecture to form different configurations. This factor implies that in-

creased possible reconfigurations are better than fewer reconfigurations from a mod-
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ularity viewpoint. That’s not to say from a logistics viewpoint, from a configuration

management viewpoint, or from an assembly time viewpoint that more is necessarily

better. Further, operational or user needs will ultimately determine the number of

configurations that are needed.

5.4.3.2 Extensibility. Extensibility is a measure of a product’s ability

to be extended either through adding functionality or upgrading existing functional-

ity [18]. The latter component, upgrading functionality, is a characteristic of perfor-

mance and is not assessed in the current measure. However, if a module has built-in

architectural options that adds functionality, then it will be included in the extensi-

bility factor. For example, if a navigation module that provides position information

is upgraded to increase the position accuracy, it still performs the same function and

will not be included in the 𝑍 factor. If the same navigation module has built-in archi-

tectural options to provide velocity information as well as position information, then

the additional functionality will be included in the 𝑍 factor. The additional product

functionality previously mentioned is referred to here as architectural design options,

𝑎, similar to “hooks” and “scars” in software and hardware design respectively [32],

that allow for design evolution. They are the functions that will be performed by

modules that may or may not exist, but are not in the current inventory of module

options. When assembling products with one of the functions in the 𝑎 term, the prod-

uct is considered to be built in an engineer-to-order framework. On the other hand,

the modules that perform the 𝑚 functions are built in a configure-to-order frame-

work since the module options are kept in inventory [26]. The extensibility factor in

the VMM focuses on capturing the built in architectural design options for adding

anticipated functionality to a product as shown in Equation 5.8.

𝑍 =
𝑎

𝑚
, 0 ≤ 𝑎 ≤ 𝑚 (5.8)

where: 𝑎 = Number of anticipated architectural or functional options

𝑚 = Total number of functions

97



The range for 𝑎 is assumed to be 0 – 𝑚. This range is based on the assumption that

a product would not be fielded with less than 50% anticipated functionality. While 𝑍

has no hard upper limit, it has a practical limit of 1 based on the previous assumption.

This assumption is consistent with the three use cases analyzed. Future use case anal-

ysis should be performed to confirm and refine this assumption. 𝑍 is a relative order

of merit as it is a measure based on a percentage of original primary functionality. It

is important to keep the functions in 𝑎 at the same level of abstraction as the functions

in 𝑚 and to follow Suh’s independence axiom [53]. Assessing extensibility requires in-

depth knowledge of a product’s design. In cases where reverse-engineering is used to

upgrade products, extensibility is harder to evaluate but is still an important benefit

of modularity.

5.5 Analysis Process

VMM
STEP 5:

Calculate

Measures

STEP 4:

DSM / Tensor

Construction

STEP 3:

Interface

Mapping

STEP 2:

Function-to-

Module

Mapping

STEP 1:

Functional

Deccomposition

Figure 5.4: Modularity Analysis Process

The analysis process used to calculate a product’s Vector Modularity Measure

begins with a functional model that is accomplished through a functional decompo-

sition of the product. Hirtz et al. [21] extended the previous work in [38] to create

a functional basis vocabulary. This vocabulary defines a standardized language to

decompose a system into functions and flows to a level of abstraction needed for a

given analysis. Three levels of abstraction are used to describe the decomposition:

class (or primary), secondary, and tertiary.
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Functional decomposition (Step 1) is not new. Functional decomposition is

typically done in the early stages of design conceptualization, transforming user re-

quirements into functional requirements [11,43,54]. This functional decomposition or

modeling provides an abstract method for understanding and representing the over-

arching function of a product [21]. Functional decomposition begins at the top level

outlining the overarching function of a product. This overarching function is then

decomposed into the three levels of abstraction listed above. For the purposes of this

analysis, the functional decomposition abstraction level stops at the class level.

After the class level of functional decomposition has been accomplished, a prod-

uct’s components and/or modules can be mapped (Step 2) to its corresponding func-

tion. For existing products, reverse-engineering can be used to identify module bound-

aries. Even though the product exists, clear boundaries may not present themselves

which will require iterations of Step 2 until the boundaries are clearly defined. For new

products, identifying the module boundaries also will likely require several iterations

of Step 2. Using the identified modules, a bipartite graph can be constructed and

used to understand and illustrate the interface mapping (Step 3) between modules.

These interfaces, along with the functional decomposition, require in-depth subject or

domain knowledge best gleaned from subject matter experts (SMEs). The interfaces

between the modules are categorized similarly as was done in [42] into five categories

- spatial, informational, material, energy, and structural. A design structure matrix

(DSM) can be constructed (Step 4) with the identified modules as row and column

labels. The five matrices (by interface type) can then be populated with the interface

data. An optional tensor can also be constructed to help illustrate the types and

degree of interfaces (see Section 5.6). Finally, assessment of the VMM (Step 5) of

the product can begin starting with the degree of coupling, 𝑉 . 𝑉 is an assessment of

the connectedness/disconnectedness between and among the modules which is also

considered the degree of coupling between and among the modules. After subtracting

the diagonal entries in each of the five DSMs, Equation (5.4) can be used to solve for

𝑉 using the off-diagonal entries in the DSM.
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The reusability factor, 𝑋, can be assessed using the modules identified in the

DSM in previous steps. Each of the identified modules, at a minimum, are in the

product being assessed. Additionally, the modules could be used in other products

or product families. If a module is used in other products, then it is counted as 1. 𝑋

is the number of these modules divided by the total number, 𝑛, of modules. Keeping

track of each module as being reused or unique is straight forward and the reusability

factor is easy to calculate even for products with a large number of modules. At this

point in the modularity assessment, however, it is worthwhile to keep a list of each

module and its associated products. This tracking will aid in the reconfigurability

assessment later in the modularity analysis.

To calculate the reconfigurability factor, Y, more knowledge of the product

architecture is needed. Each module in the product performs a function or multiple

functions. In some cases, more than one option for a module can accomplish these

functions and the designer or builder can choose from multiple module options when

constructing the product. The number of options for each of these modules needs

to be identified, starting with the modules identified in the DSM. The number of

modules with multiple options, 𝑡, can then be identified as can 𝑆, the total number

of options for modules with options. Using each of the 𝑠𝑖 terms, the number of

reconfigurations, 𝑟, and the standard deviation can then be calculated. Next, each of

the four reconfigurability ratios can be calculated Equations (5.6) and (5.7).

Lastly, extensibility, 𝑍, can be calculated. The identification of additional ar-

chitectural options requires in-depth knowledge of the architecture of the product

under analysis. Each additional architectural option is counted and summed into 𝑎,

which is then factored into 𝑍 in Equation (5.8).

5.6 Application

The Vector Modularity Measure used in this paper was originally developed and

applied using two simpler products, two precision guided munitions (PGMs) [48]. This

section extends the original application to a more complex product, PnPSat. Whereas
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Figure 5.5: PnPSat Function Structure

the precision guided munitions have clear cut modules and interfaces, PnPSat does

not. By calculating the VMM for PnPSat, it can then be compared to iterations of

proposed modular designs. Does the new modular design increase or decrease the

degree of coupling? Are new modules being proposed reusable? Are there constraints

on the interfaces that new modules impose that will limit its ability to be reconfigured

with certain other modules in PnPSat? All of these questions can be answered as a

result of performing the VMM calculations for PnPSat. Another useful aspect of the

VMM is that it focuses the designer’s attention on the benefits of modularity which

are the goals of modularizing a product in the first place.

Applying the modularity analysis process given in the previous section, the first

step is the functional decomposition or function structure. An initial iteration of
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identifying PnPSat functions was developed first to get the analysis process started.

This initial iteration of identified functions were used throughout the first iteration

of estimating the VMM. After the first iteration, a second iteration and refinement

was made resulting in the function structure for PnPSat given in Figure 5.5. The

functional basis language developed in [21] was used to represent the functional de-

composition.

The second step is to map the functions identified in the function structure from

Figure 5.5 to modules as shown in Table 5.3. Module identification began with the

component list for PnPSat from a bill of materials (BOM). Module identification was

performed using the dominant flow heuristic developed in [44–46] such that compo-

nents performing similar functions are grouped into modules. Iterations of module

identification should continue until all functions have been mapped to modules in a

1:1 ratio [7]. The module-to-function ratios can be 1:1 or 1:many [7]. If a module

performs more than one function, then less modules will be required. Functions that

require more than one module should be minimized. In these cases, another iteration

of module identification should be performed. If more than one module is required,

then the dominant flow heuristic of grouping similar functions into modules was in-

complete. In less modular designs, module identification may not be straightforward.

It is important to note however, the identification of modules in a product is pivotal

to 3 of the 4 contributing factors in the Vector Modularity Measure (𝑉 , 𝑋, and Y).

The modules that comprise PnPSat are shown in Table 5.1. The modules indicated

with a (‡) in Table 5.1 refer to modules that have multiple options. These modules

are listed again in Table 5.2 as 𝑠1, 𝑠2, etc., showing the number of options available

for each. PnPSat is comprised of 8 modules (𝑛 = 8), having 𝑡 = 4 modules with

options.

Once module identification was performed, Steps 3 and 4 of the analysis pro-

cess could be accomplished either sequentially or in parallel. These two steps were

chosen to be accomplished sequentially beginning with interface determination be-

tween modules by type. For this initial assessment and for simplification, a binary
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Table 5.1: PnPSat Modules
Label Module

Mod 1 Structure
Mod 2 Payload (P/L)‡ (𝑠1)
Mod 3 Power‡ (𝑠2)
Mod 4 Thermal
Mod 5 Telecom
Mod 6 Avionics
Mod 7 Attitude determination and control

(ADCS)‡ (𝑠3)
Mod 8 Launch vehicle (LV)‡ (𝑠4)
‡ represents modules with options

Table 5.2: PnPSat Module Option Distribution
Product 𝑠1 𝑠2 𝑠3 𝑠4 𝑆 𝑡

PnPSat 4 2 5 3 14 4

Table 5.3: PnPSat Function-to-Module Mapping

PnPSat 

                                          MODULE Structure P/L Power Thermal Telecom Avionics ADCS

FUNCTION

Sense : Status (attitude) X

Control Magnitude : Torque X

Sense : Status (temperature) X

Control Magnitude : Temperature X

Track : Ground Signal X

Import : Ground Signal (cmd) X

Process : Ground Signal X

Process : H&S Signal (modulation) X

Export : H&S Signal X

Export : P/L Data X

Connect : S/C component to SPA Network X

Provide : Electrical Interfaces (data) X

Provide : Electrical Interface (power) X

Separate : Electrical Energy (for protection) X

Guide : Electrical Tasks X

Provide : S/C Timing X

Process : Targeting Command X

Sense : Ground Target X

Store : Target Info X

Support : S/C and P/L Modules X

Couple : S/C to LV X

Separate : S/C from LV X

Provide : Electrical Power X

Store : Electrical Power X

Distribute : Electrical Power X

Regulate : Electrical Power X

Convert : Electrical Power X
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Figure 5.6: PnPSat Tensor

symmetric matrix was chosen that identifies only that an interface (by type) exists

between two modules. After discounting the diagonal entries, the assessment of in-

terfaces between the modules was made. These interfaces, along with the functional

decomposition, were initially accomplished using PnPSat documentation and later

refined using SMEs and hands-on experience. Using the results from Step 3, the de-

sign structure matrix (DSM) was constructed with the previously identified PnPSat

modules as row and column labels. Using the entries in the DSM, a PnPSat tensor

was plotted using MATLABⓇ for PnPSat as shown in Figure 5.6. Each vertical layer

of the tensor represents an interface type. Only half of the plot is shown for simpli-

fication since it is symmetrical. Each box represents an interface existence between

the two modules labeled as row and column headings in the horizontal axes that cor-

respond to the modules listed in Table 5.1. The relationship between the modules,

by interface type, is given in a typical DSM provide/depend association. Using the

tensor plot, it is readily seen which interface types require more or less coupling for

a given product.
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After developing the PnPSat tensor, the degree of coupling factor in the VMM

was calculated. Using the eight modules identified in the DSMs/tensor plot, each

module was categorized as unique or reused. After categorization, reusability, 𝑋, was

assessed.

The reconfigurability assessment began by creating a list of products for each

identified module from step 2 that is used in additional products beyond PnPSat.

The 𝑆, 𝑡, 𝑟, 𝑛, 𝑟u.b., and 𝜎 values were then calculated using the lists created for

each module in PnPSat. The values for these parameters, 12, 4, 72, 8, 81, and 0.82

respectively, led to the final calculation of the four reconfigurability measure ratios.

Lastly, each of the functions identified for the product was summed in the 𝑚

value. Using information from PnPSat SMEs, the additional functionality, or ar-

chitectural options, not currently being used was included in the 𝑎 term and the

extensibility factor, 𝑍, was assessed. The equations used in the VMM are summa-

rized in Equation (5.9) and the results for the PnPSat VMM are given in Equation

(5.10).

VMM =

⎡⎢⎢⎢⎢⎢⎣
5∑

𝑘=1

(
𝑛∑

𝑖=1

𝑛∑
𝑗=1

𝐷𝑆𝑀𝑖𝑗𝑖 ∕=𝑗

)
𝑘

5𝑛(𝑛− 1)

𝑛mp

𝑛
Y

𝑎

𝑚

⎤⎥⎥⎥⎥⎥⎦ (5.9)

VMMPnPSat = [ 0.27 0.88 YPnPSat 0.92 ] (5.10)

Y =

[
𝑟

𝑆

𝑟

𝑡

𝑡

𝑛

𝑟

𝑟u.b.

]
(5.11)

YPnPSat = [ 6 18 0.5 0.89 ] (5.12)

5.6.1 Results. The results of the Vector Modularity Measure for PnPSat

are shown in Tables 5.4 and 5.5. As mentioned previously, earlier modularity mea-

105



Table 5.4: PnPSat Modularity Measure Results

Product Coupl. Reusab. Reconfig. Extens.
𝑉 𝑋 Y 𝑍

PnPSat 0.27 0.88 see Table 5.5 0.92

Table 5.5: Reconfigurability Measure Results

Product Configurations / Configurations / % of Product % Maximum
option decision point that is possible

reconfigurable Configurations
(𝑦1) (𝑦2) (𝑦3) (𝑦4)

PnPSat 6 18 0.5 0.89

sures [23, 34, 42] focus on coupling of either design parameters or interfaces which is

referred to as degree of coupling in this paper. Stopping at this point would result

in insufficient detail about the modularity of PnPSat. Using the NZF term in [23]

would yield an assessment of PnPSat being highly coupled as seen in Figure 5.7.

Figure 5.7 shows the five DSMs, by interface type, from Figure 5.6 from a bird’s eye

view. The NZF in [23] doesn’t distinguish between interface types and thus assesses

an interface as either existing or not. The resulting degree of coupling, 𝑉 = 0.27,

shows a similar result as the simpler precision guided munition products previously

assessed in [48]. The degree of coupling assessment shows that spatial interfaces are

the dominant type of interfaces and require the most coupling. One reason for this

is that the spatial arrangement of modules is influenced by the mission sensor FOV

requirements. There are currently no material interfaces; however, this could change

with future active cooling or propulsion requirements.

It is currently assumed that each of the modules, with the exception of avionics,

are to be used in additional spacecraft. The resulting reusability assessment, 𝑋 =

0.88, yields a highly reusable product. This is a preliminary assessment since PnPSat

has not yet flown.
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Figure 5.7: Bird’s Eye View of the PnPSat Tensor

Looking at the 𝑦3 and 𝑦4 terms in the reconfigurability measure, PnPSat is

coming close to maximizing the number of configurations possible for the given 𝑆 and

𝑡 pair. One way to increase 𝑟 would be to examine one of the modules not currently

in the 𝑡 term and look to see if there are additional module options that could be

added. Increasing 𝑟 would in turn result in the 𝑦1 and 𝑦2 terms being increased

which is the ultimate goal in increasing the reconfigurability of PnPSat. Currently,

it was assumed that there are no constraints on the PnPSat component and module

combinations. The 𝑟 achievable may be decreased in future iterations if it is deemed

that this assumption is invalid. One design feature of PnPSat that is instrumental

in minimizing the pair-wise constraints is the mounting pattern on the bus structure

and the data and electrical endpoints at various panel locations.

One researcher studying the path to making the ORS construct realizable uti-

lizes a constraint-based approach to minimize the number of satellite configurations.

This approach is used to quickly evaluate a wide variety of satellite configurations
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in order to identify the best configuration to meet the end user’s needs [25]. While

increasing the number of reconfigurations possible is desirable from a reconfigurability

viewpoint, from an evaluation viewpoint, more is not necessarily better.

The designers of PnPSat certainly had extensibility in mind when designing

the spacecraft. There are currently 25 functions being performed by PnPSat. Due

to built-in options through mechanical and electrical interfaces, an additional 23

interfaces to components or modules exist for adding functionality resulting in a

extensibility factor of 𝑍 = 1.92. This is one of the stronger benefits of modularity

being captured by PnPSat.

Finally, this analysis process was used for PnPSat specifically, but it can also

be used to compare the modularity of multiple designs of spacecraft trying to ful-

fill the ORS Tier 2 concept. Using the tensor plot, for example, modules that are

highly coupled to each other can be immediately visualized by interface type. Also,

if the intentions of a designer or decision-maker is to further increase the modular-

ity of PnPSat, then the analysis can show contributing factors to PnPSat’s current

modularity and the benefits of increasing the modularity.

5.7 Future Design Implementations

The Vector Modularity Measure and included Reconfigurability Measure can

be used to highlight where to make improvements to an existing design to increase

modularity and each of the assumed benefits. This section uses the results of the

PnPSat analysis and each of the VMM factors to make future design recommendations

to further increase modularity.

5.7.1 Degree of Coupling. The first term in the VMM analysis, degree of

coupling, shows that of the five interface types, spatial interfaces have the highest

number of module-to-module interfaces. This result can be used to identify which

module(s) to focus on that have the highest number of spatial interfaces. In reducing

the number of spatial interfaces for this target module(s), the overall degree of cou-
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Table 5.6: PnPSat Spatial Interfaces

Module Structure P/L Power Thermal Telecom Avionics ADCS Ext Sys

Structure – X X X X X X X
P/L X – X X X X X X
Power X X – X
Thermal X X – X
Telecom X X – X
Avionics X X – X
ADCS X X – X
Ext Sys X X X X X X X –

pling will also be decreased. For PnPsat, it appears that the design has the minimum

number of spatial interfaces. Reducing this set further would require a change in the

launch vehicle design. The launch vehicle (or external system) imposes constraints

on the spacecraft’s size and weight. This translates to spatial interfaces with each

module in the PnPSat. Additionally, each structural interface imposes a correspond-

ing spatial interface or constraint. The bus structure module is designed to support

all of the subsystems and the subsystems are designed to support the payload. As a

result, spatial interfaces exist between the structure and all of the other modules as

well as between the payload and all of the other modules. Due to the modular design

of each of the remaining modules, no other spatial interfaces exist. This assessment

shows the number of spatial interfaces cannot be reduced further without changing

designs of the launch vehicle. The goal of reducing the degree of coupling requires

studying the other interfaces types to determine if reductions can be made. Currently,

no material interfaces exists but there has been consideration given to adding active

cooling in the future. If this happens, the number of material interfaces in future

design iterations of PnPSat will increase. Structural interfaces are also minimized for

PnPSat since the only structural interfaces that exist are between the bus structure

and each of the other modules in PnPSat. This leads to the remaining two interface

types as the only two types of interfaces that can be further minimized in future

PnPSat design iterations. The author is not a PnPSat SME, but at first glance, it

doesn’t appear that either of these interface types can reduced further. Having stated
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that, it appears that the PnPSat design has achieved the minimum set of interfaces

due to its modular design approach from the initial concept inception.

The current VMM identifies interfaces between modules by type. It does not

currently take into account the number of each of the interface types between modules.

While the types of interfaces may not be able to reduced, it is possible that the number

of each type of interface can be reduced further. The current VMM measure does not

capture this, but it would be worthwhile to investigate this further as it potentially

impacts the total time to assemble the satellite. Assembly and checkout time of

PnPSat is one area of focus in enabling the ORS 6- or 7-day construct to become a

reality.

5.7.2 Reusability. Due to the modular design of the PnPSat, all of the mod-

ules are designed to be used in multiple products except the bus structure. PnPSat is

scoring extremely high in terms of reusability; seven out of eight modules are reusable.

To further increase the reusability measure, the remaining bus structure module could

be designed for reuse. There exists another family of PnPSat, PnPSat2, that is in the

early stages of design. It currently plans on using a hexagon panel for two of the sides

with the remainder sides being rectangular shape panels. In this case, it would be

easy to reconfigure the panels back into the PnPSat bus structure shape. If this new

PnPSat2 design becomes operational, then the remaining module will be considered

reusable and the reusability factor in the VMM will be 1.0.

5.7.3 Reconfigurability. While the goal is to have multiple options for each

of the PnPSat modules, the current PnPSat build only has one set of modules. If

maximizing reconfigurability is a design goal for PnPSat, then an initial starting

point for accomplishing this is to have three options for each of the modules. This

will result in an inventory of 21 modules and 37 number of reconfigurations possible,

assuming no pair-wise constraints exist. Once this happens, then focus can be put

on further increasing the number of options for each module. This is strictly from

a numerical perspective. In reality, the number of options for a given module will
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depend on mission needs. For example, a thermal blanket is the only “module”

currently being used to control spacecraft temperature (i.e. no active cooling). If

thermal requirements are satisfied using this thermal blanket, then there may not

be a need for active cooling to improve the thermal range of the spacecraft. This is

consistent with the ORS objectives of meeting mission requirements without trying

to optimize a given design as is done in traditional (larger) satellite designs.

Another recommendation to increase the reconfigurability is to increase the

number of bus structure modules. This has been considered in the past a possible

future direction but has not come to fruition. By adding multiple bus structures,

additional flexibility will be gained and potential spatial pair-wise constraints that

exists for one bus structure may not exist for another structure. Another consider-

ation to further reduce the number of spatial constraints is to embed the data and

power endpoints into each of the panels. Doing this will give more module mounting

flexibility and is currently being considered for PnPSat2.

5.7.4 Extensibility. The PnPSat design already includes 23 extension points

for adding components or modules, and hence functionality. These extension points

provide data and power to potential components or modules. The current PnPSat

design does not include a propulsion function. One design recommendation is to

add mechanical interfaces (i.e. “scars”) that could be used by a propulsion module.

Adding these interfaces early in the design can help reduce major design changes in

the future. It would also give interface specifications for designing the propulsion

module.

5.8 Conclusions

Traditional modularity measures produce one real number, between 0 and 1,

that can be used to compare relative modularity among multiple designs. Whereas

the traditional modularity measures focus on coupling, whether between design pa-

rameters or interfaces among modules, the Vector Modularity Measure here built
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upon that initial real number. The VMM presented captures not only the coupling

attribute but also the reusability and flexibility attributes. The flexibility attribute

is measured in terms of a product’s ability to be adaptable to changing requirements

which are specifically measures of reconfigurability and extensibility.

The VMM presented can be used to evaluate and compare multiple designs from

a modularity viewpoint. Whether these designs are for similar products, the same

product, or an upgrade of an existing product, the VMM presented and demonstrated

here helps to illuminate various aspects of the product’s modularity. This is especially

helpful in highlighting where one product design is more modular than another. When

comparing designs, the various benefits of modularity identified through the analysis

process can be taken into account when making design decisions.

Through the PnPSat application, the original Vector Modularity Measure was

reinforced using a more complex product than originally used in the development of

the VMM and analysis process. The particular modularity benefits being realized the

most by the current design of PnPSat is reusability and extensibility. The benefit of

reconfigurability is also being realized to a large extent for the given 𝑆 and 𝑡 pair. The

number of configurations possible, 𝑟, with PnPSat could be increased by increasing

𝑡. These benefits of modularity being realized by PnPSat were only highlighted once

the VMM analysis process was accomplished.

Beyond measuring the four factors that make up the VMM, designers can look

at each equation of the calculations to determine where improvements to modular-

ity can be made thus increasing the modularity benefits. For example, using the

reconfigurability measure, a product with a lower 𝜎 will result in a higher number

of configurations, 𝑟, for a given product with the same 𝑆 and 𝑡 which will improve

three of the four reconfigurability ratios of a product. Another example, using the

reusability factor, is to increase 𝑛𝑚𝑝 and hence 𝑋 by using modules in a product that

have been used in other products.

112



Another use of this analysis is to refine the functional decomposition of a prod-

uct. The second step in the analysis process maps modules to functions. The function-

to-module mapping highlights where coupling exists between two or more modules.

That is, two or more modules are necessary to accomplish one function. This in-

formation can then be used to reevaluate the functional decomposition and/or the

module boundaries and hence the interfaces. If a module performs more than one

function, then less modules will be required. Functions that require more than one

module should be minimized. In these cases, another iteration of module identifica-

tion should be performed. If more than one module is required, then the dominant

flow heuristic of grouping similar functions into modules was incomplete.

An observation, based on the previous PGM application, is that one of the

PGMs has a slightly higher degree of coupling that coincides with it being less re-

configurable than the other PGM also coinciding with a higher number of pair-wise

constraints between modules. If the assumption of no pair-wise constraints for PnPSat

proves false, will the number of reconfigurations be reduced? The answer is certainly

yes. Another observation previously noted was whether or not higher product com-

plexity tends to discourage higher reconfigurability due to the number of interfaces,

the types of interfaces, or a combination thereof. After applying the Vector Modu-

larity Measure to PnPSat, the answer seems to be a combination thereof as well as

pair-wise constraints imposed on module-to-module interfaces.
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VI. Temporal Constraints

It was hypothesized in the first chapter that increasing the modularity of a system

will increase the responsiveness of getting a product to the market or the warfighter in

a reduced timeframe. In proving/disproving this hypothesis, the following questions

needed to be answered:

∙ How is product modularity measured?

∙ What design influences increase product modularity?

∙ When is a more modular system, as compared to an an integral system, desirable

from a design standpoint and from a system goal(s) perspective?

∙ What affect do temporal constraints on assembly have on the modularity versus

design goals relationship?

This research has addressed the first three questions in the research articles in Chap-

ters 3–5. This chapter addresses the fourth question by identifying temporal con-

straint influences on the modularity versus design goals relationship associated with

assembly and checkout (A&CO). These influences are related to the first factor in the

Vector Modularity Measure (VMM), degree of coupling. These influences are studied

using the two PGM applications to understand the influences as well as to develop a

process to analyze these influences that can subsequently be applied to other product

applications (e.g. AFRL’s Plug-and-Play Satellite (PnPSat)). A brief summary of

the results are given for the two PGM applications followed by a detailed application

of the analysis process to PnPSat. The analysis process itself and results are given

in Section 6.2. Next, the results from the two PGM applications and the PnPSat

application are used to identify emerging trends. Lastly, the next steps in character-

izing the modularity versus A&CO relationship are provided for the three remaining

factors in the VMM as well as other future research recommendations.
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6.1 PGM Assembly and Checkout

The GBU-24 and GBU-31 assembly and checkout (A&CO) processes are de-

tailed in Technical Order 11A-1-63, Munitions Assembly Procedures [56]. These

procedures guide munition handlers in the assembly and inspection or checkout pro-

cess. Each step in the A&CO procedure was mapped to the modules required to

accomplish the step and the associated interface types. These modules were first

identified through the VMM analysis process. Data was provided by the 9𝑡ℎ Mu-

nitions Squadron (9𝑡ℎ MUNS), Air Force Combat Ammunition Center, Beale AFB,

CA that identifies minimum, maximum, and average times associated with each step

in the A&CO process. Finally, each of the steps in the A&CO process, both main

and sub-processes, and their associated interface(s) were mapped to assembly and

checkout times given by the 9𝑡ℎ MUNS. These mappings are shown for the GBU-24

and GBU-31 in Tables 6.1 and 6.2, respectively.

While clock times were mapped to the process and sub-process steps in the

A&CO procedures, they are not given here due to operational concerns. A brief

summary of the results are given, however, for the modularity versus assembly and

checkout relationship assessment. First, for both PGMs, the warhead module had

the highest number of total interfaces that corresponded to the highest amount of

handling or clock time among all of the modules in each PGM. Additionally, both

PGMs were considered to be the Mk 84 variant of their respective munition, GBU-24

and GBU-31. Another variant of these PGMs uses the BLU-109 warhead. In both

cases, the warhead was the module that the rest of the product was built around

during the assembly process. This “base” module, the warhead, was handled for the

greatest amount of clock time compared with the other modules in the munition. The

average clock time to handle each module was 30 seconds longer for the GBU-31 that

was less modular and had a slightly higher degree of coupling compared to the GBU-

24. The average clock time to handle a GBU-24 module versus a GBU-31 module was

7.21 versus 7.72 minutes. This finding is consistent with the total time to assemble

each of the PGMs. The GBU-31 takes slightly longer to assemble than the GBU-24;
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Table 6.3: PnPSat Jumpstart Exercises and Demonstrations [5]
Trial / Demo Date(s) Purpose A&CO

Steps
Performed1

Trial 1 9-11 Feb 2009 Baseline configuration used; pro-
cess and procedure validation; A
team primary; train B team

1–4, 6-18

RS7 Demo 28–30 Apr 2009 Baseline configuration used; A
team primary; team B assists;
demo A&CO process during 2009
7𝑡ℎ AIAA Responsive Space Con-
ference

1–4, 6–18

Trial 2 11-13 May 2009 Baseline configuration used; per-
sonnel investigation – training,
skill set, number of personnel; B
team primary; team A assists

1–4, 6–18

Trial 3 8-10 Jun 2009 New configuration (Sun-Sync
AIS/Imaging); timed trial; refine
personnel skill set required

1–4, 6–18

Media Day
Demo

23 Jun 2009 New configuration (Sun-Sync
AIS/Imaging); timed trial; refine
personnel skill set required

1–4, 10

Trial 4 15-18 Dec 2009 Payload A&CO incorporated 1–8, 11–17

1 From Table 6.4

again, times are not given here due to operational concerns. Lastly, handling times

(clock times) associated with spatial and structural interface types were the greatest

among the five interface types. The analysis process that was used and developed

through analyzing the PGM A&CO procedures and the VMM degree of coupling

term is given next in Section 6.2, followed by additional preliminary findings given in

Section 6.3.

6.2 PnPSat Assembly and Checkout

Four PnPSat Jumpstart Exercises (time trials) and two rapid A&CO (also called

assembly, integration and test (AI&T)) demonstrations have been performed to un-

derstand and develop the appropriate level of modularity and checkout (or tests)
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required to enable the 6 or 7-day ORS construct to become a reality. Table 6.3 sum-

marizes the Jumpstart Exercises and demonstrations using AFRL’s Plug-and-Play

Satellite (PnPSat) along with the A&CO steps that were accomplished (the steps are

listed in Table 6.4. Fundamentally, a new paradigm in building and testing satellites

in preparation for launch was conceived for PnPSat from the beginning during initial

design conception. One of the key tenets in reducing the overall timeline for the

A&CO phase was to minimize the tests required during and after satellite assembly

to make a go/no-go decision for launch. The Jumpstart time trials have been instru-

mental in understanding and defining this minimum set of tests. The summary of

the Jumpstart Exercises in Table 6.3 shows the progression of the time trials along

with the purpose of each trial. Initially, trial one was used for validating the proposed

A&CO procedures and to use the A team that consisted of personnel that were the

most familiar with the build process and modules. Trial one was also used to train

a secondary team, the B team, that was not as familiar with the build process and

modules. The first of two demonstrations was used to demonstrate the procedures to

academia and industry during the 2009 7𝑡ℎ AIAA Responsive Space Conference. The

second time trial was used to continue to refine the A&CO procedures and to use

the B team as the primary lead. After using a baseline configuration for the satellite

build process through the second trial, a new configuration was established and refine-

ment of the procedures and necessary skill set continued. The second demonstration

was held using this new configuration that only involved mounting the internal and

external components and performing a functional test. The last time trial used the

new configuration and included, for the first time, the payload build and integration

process steps.

The following four-step process, given below, resulted from analyzing the two

PGMs described in Section 6.1 and was used to relate modularity and the PnPSat

A&CO process. For the current analysis, only the first factor in the VMM was used

to characterize this relationship with recommendations for future research using the

other three VMM factors in Section 6.3.2. Although the current analysis has been
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applied to a sample size of three, it is postulated that a potential use of the results of

the four-step process is as a predictive tool in assessing the overall time for assembly

and checkout in new product designs. While the small sample size isn’t broad enough

to be used to show causal relationships between interface types and clock time to

assemble modules, potentially it can be used as an indicator as the sample size of

analyzed products increases.

1. Identify A&CO procedural steps

2. Associate clock times with each step

3. Identify required modules to perform each step and associated interface types

4. Summarize clock times associated with handling each module and associated

interface types

Step 1. The PnPSat A&CO procedures used in the fourth Jumpstart Exer-

cise are based on refinement of previous Jumpstart Exercise procedures. The refined

procedures are given in PNP-4025, PnPSat Rapid AI&T Procedures [9], and are

graphically depicted in Figure 6.1. These procedures were first given in Section 5.3.1

and are described briefly here. The A&CO procedure begins with the assembly of

the bus structure in a “flat-satellite” configuration. This is followed by the installa-

tion of the internal components and harnesses being mated to the power and data

network. The vehicle is then powered-up on internal power followed by performing a

bus functional test to verify internal devices. The bus panels are then folded up and

external components are installed, including the solar array and payload items. The

RF links are connected next from the vehicle to the ground station. The vehicle is

powered-up again, this time with the solar array simulator power followed by another

bus functional test. The vehicle is then lifted and the vehicle mass and center of

gravity measured. The payload and bus assembly is then placed on a vibration table

and sine sweeps are run. An optional single axis random vibration test can also be

run. Following the vibration test, the payload and bus assembly are powered-up again

and another bus functional test is performed. S-Band and UHF compatibility to the
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PnPSat Assembly, Integration, & Test Flow
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Figure 6.1: PnPSat Assembly, Integration, and Test Flow
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ground station simulator are demonstrated next. This is followed by a demonstration

of array first-motion deployment along with a full deployment and illumination of

the array to verify end-to-end power flow. The mission flight software is loaded next

followed by running a nominal “day in the life (DITL)” mission scenario. Included in

this scenario is performing nominal ground commanding and operations testing with

the RF links. Following the nominal DITL scenario, an off-nominal event or stressing

case (e.g. system reset) is performed. Once all data is captured from the A&CO

performed thus far, the data is sent to the user for a go/no-go decision. Lastly, the

vehicle is prepared for shipment to the launch location where it will be integrated

with the launch vehicle.

Step 2. The list of PnPSat A&CO steps were listed next and times were asso-

ciated with each step from the fourth Jumpstart Exercise as shown in Table 6.4. Not

all of the steps were accomplished in the fourth Jumpstart Exercise, times associated

with these omitted steps are from the third Jumpstart Exercise and are indicated

with a (∓).

Step 3. During the VMM analysis process, one of the steps is module iden-

tification. These modules are used here and are mapped to each step in the A&CO

procedures. The interface types associated with each step in the A&CO procedures

are also mapped. The results for this step for PnPSat are given in Table 6.5. The

following question was used in accomplishing these mappings: if the design of a mod-

ule changes, does it impact the step being accomplished and/or the interface types

involved? If the answer was yes, an “X” was used to indicate the module(s) and

interface type(s) associated with each step.

Step 4. Tables 6.4 and 6.5 were used to summarize clock time associated with

handling each of the PnPSat modules and associated interface types. For PnPSat,

the bus structure had the highest number of total interfaces that corresponded to the

highest amount of handling time compared to the rest of the modules. Additionally,

the bus structure was the module that the rest of the product was built around during
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Table 6.4: PnPSat A&CO Times Associated With Each Step [10]
Step Description Duration

(hours)

1 Assembly of the bus structure in a “flat-satellite” config-
uration

1.37𝑎

2 Install the internal components and mate harnesses to
the power and data network

1.37𝑎

3 Power up the vehicle on internal power and run a bus
functional test to verify internal devices

0.83

4 Fold up the bus panels and install external components,
including solar array

1.48

5 Install payload items 3.5𝑏

6 Connect the RF links from the vehicle to the ground
station

0.25

7 Power-up the vehicle with solar array simulator power
and run bus functional test

1.28

8 Lift and measure vehicle mass and center of gravity 0.98
9 Place on vibration table and run sine sweeps and single

axis random vibration (Optional)
1.17∓

10 Power-up and run bus functional test 0.83∓

11 Demonstrate S-Band and UHF Compatibility to ground
station simulator

0.33

12 Demonstrate array first-motion deployment 0.08
13 Deploy array and illuminate to verify end-to-end power

flow
0.17

14 Load Mission Flight Software 0.25
15 Run nominal Day in the Life scenario and verify L/EO

events
3.0𝑐

16 Perform nominal ground commanding and ops testing
with RF links

3.0𝑐

17 Perform stressing cases or off-nominal events (device
POR, system resets)

3.0𝑐

18 Set vehicle for launch 1.5∓
𝑎 The panels were assembled in parallel and as needed during performance of steps one and two.
𝑏 The payload was assembled and tested in parallel before mounting externally to the bus structure.
𝑐 Total time to accomplish steps 15–17.
∓ Times taken from the third Jumpstart Exercise.
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Table 6.6: Clock Times Associated with Handling Modules and Interface Types
Modules Interfaces

Product MOD 1 MOD 2 MOD 3 MOD 4 MOD 5 MOD 6 MOD 7 SP I M E ST

GBU-24 15.95 6.00 4.50 8.53 1.92 9.33 4.25 15.95 0.0 0.0 4.83 14.95
GBU-31 19.37 3.42 10.12 12.12 6.25 4.20 5.28 19.98 9.70 2.92 5.87 10.20
PnPSat 13.75 12.51 12.94 10.49 13.53 12.05 12.69 8.10 6.77 0.0 4.36 10.25

the assembly process. This “base” module, the bus structure, was handled for the

greatest amount of time compared with the other modules in PnPSat. Lastly, han-

dling times associated with spatial and structural interface types were the greatest

among the five interface types. These results, along with the PGM results, were stud-

ied to begin to characterize the modularity versus assembly and checkout relationship.

The preliminary findings for this relationship are given in Section 6.3.1.

6.3 Modularity and Assembly & Checkout

6.3.1 Preliminary Results and Findings. The assembly and checkout pro-

cedures for PnPSat were identified at the main process level. For the purposes of

comparison, the PGM assembly and checkout procedures were also mapped at the

main process level. The module and interface type mappings previously identified in

the sub-process steps of the PGM A&CO procedures were rolled up into the main

process mappings resulting in six and nine steps for the GBU-24 and GBU-31, respec-

tively. After performing the four step process to relate modularity and the A&CO

process, additional analysis was performed to identify emerging trends. The times

that were associated with each step in the assembly process were also used to analyze

the clock time associated with handling each module in each of the three products:

GBU-24, GBU-31, and PnPSat. These clock times were again used in analyzing the

handling time associated with each interface type. These associations are tabulated

in Table 6.6. The modules are listed as MOD 1, MOD 2, etc. and refer to the modules

in Tables 6.1, 6.2, and 6.5 in the same order given. The units of time for the PGMs

and PnPSat are minutes and hours, respectively.

Four trends emerged from the modularity versus assembly timeline preliminary

analysis using the GBU-24, GBU-31, and PnPSat. First, handling the module in
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Table 6.7: Number of Interfaces Affected During A&CO
MOD 1 MOD 2 MOD 3 MOD 4 MOD 5 MOD 6 MOD 7

GBU-24 15 8 7 8 7 7 6
GBU-31 17 7 6 10 6 9 7
PnPSat 15 13 9 6 8 10 6

Table 6.8: Number of I/Fs and Clock Times for Handling the ADCS and Avionics
Modules

PnPSat Module Number of I/Fs Handling Time (hrs)

ADCS 6 12.69
Avionics 10 12.05

a product that had the highest number of interfaces required the greatest

amount of clock time. The handling time (or clock time) is used here to capture

the total time that a module is handled during the assembly process not accounting

for the number of personnel required (i.e. not man-hours). The total assembly time of

a product is less than or equal to the handling time due to possible parallel processing

of modules, thereby reducing the overall assembly time. An extension of this research

could consider mapping man-hours required for each A&CO step as was done, simi-

larly, with clock time. These mappings could then be used to relate man-hours and

the components of the VMM.

Due to the analysis of a limited sample size, an extrapolation cannot be made

that given any two modules in a product, the one with more interfaces will require

a greater amount of handling time. This was demonstrated in the current PnPSat

application; the ADCS module has six interfaces whereas the avionics module has ten

interfaces. The associated handling times are shown in Table 6.8, showing the ADCS

module requiring a greater amount of handling time than the avionics module.

Second, the module that was considered the base module was handled

for the greatest amount of clock time in all three applications as shown in Table

6.6. The PGM variants used in the analysis are built around the Mk 84 warhead and

correspondingly, the warhead is handled the most among the other modules in both

the GBU-24 and the GBU-31. PnPSat is built around the “flat-satellite” concept
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Table 6.9: Number of Module-to-Module Interfaces by Type
SP I M E ST

GBU-24 15 1 5 6 8
GBU-31 14 2 4 8 9
PnPSat 18 8 0 5 7

and correspondingly the bus structure is handled for the greatest amount of time

compared with the other modules that comprise the product. Preliminarily, there

appears to be a correlation between the base module and the module in a product

having the greatest number of interfaces. That is, they are the same. If this holds true

upon further case studies analyses, then finding one and two will become redundant

with each other.

The third “trend” is actually a single data point that resulted from comparing

two similar products; the term trend is used loosely here. For similar products, the

product with the higher degree of coupling will require a higher average

clock time to handle each module. This is a preliminary finding and more

studies need to be conducted to confirm this result. An associated masters student

is attempting to extend this finding using a discrete event model of the PGM A&CO

procedures [37].

The fourth trend that emerged was: among the five interface types, re-

quired handling or clock times associated with spatial and structural in-

terface types were the greatest. For the two PGMs, this coincided with the two

dominant (in number) interface types for each product. For the PnPSat, it did not;

the two dominant interface types (by number) were spatial and informational with

structural interfaces as the third dominant interface type by one interface (see Table

6.9). While these emerging trends are not surprising, the research behind this trend

identification provides validation that was previously lacking. These results are also

being extended by an associated masters student through a discrete model of the

PGM A&CO processes whose preliminary findings are consistent with the research
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findings herein [37]. That is, for the simpler PGM product, higher product modularity

corresponds to a lower total assembly time.

6.3.2 Future Work. One limitation of the research was that the assembly

procedures were not standardized, i.e. what was considered a main process versus a

sub-process was not clearly defined but used as a general categorization. The analysis

herein focused on the concept of a main process in characterizing the interfaces and

assembly times. Future iterations should focus on defining and differentiating both

main and sub-processes. Once this has been accomplished, then comparisons can be

made on the modules and interface types associated with each step to further under-

stand critical path issues during assembly and checkout. Due to the non-standardized

grouping of procedural steps into main “chunks” or headings, the current analysis did

not consider the number of steps in an assembly and checkout process in the overall

assessment. Instead, the research used clock times associated with each step. Ad-

ditionally for future research, design for assembly (DFA) concepts and techniques

should be considered when addressing the process versus sub-process definitions as

well as the assembly process itself. Some aspects of the A&CO process that need to

be considered using DFA concepts and techniques include: number of personnel re-

quired to accomplish each step; skill level required; parallel processing of some steps;

identification of the required path for product assembly and its associated timeline

(i.e. critical path with respect to time).

In order to associate handling or clock times with each each specific interface,

by type, the main process steps need to be broken down into sub-process steps. Clock

times are currently associated with these main process steps, they would also needed

to be broken down and associated with the sub-process steps. This decomposition

of main process steps should continue until all interface types can be mapped to a

single or a minimum set of sub-processes. Once this decomposition is accomplished,

an assessment can be made of the average handling (or clock) time associated with

each interface and by each type of interface.
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The “8𝑡ℎ” module for each of the products was used in assessing modularity and

was used in the modularity versus assembly and checkout relationship but was not

used in analyzing product designs for trends in the A&CO process. The interfaces

with the modules of a product and the aircraft or launch vehicle (the 8𝑡ℎ module) are

important to capture but present themselves in a unique category during the analysis.

This unique category should be further developed and understood.

In characterizing the modularity versus assembly and checkout relationship,

each of the VMM factors should be considered individually for the influences they

have on this relationship. The degree of coupling term has been the main focus of

this relationship characterization thus far. The spatial and structural interface types

had the most influence on the A&CO handling time for the current sample size. A

larger sample size of applications needs to be analyzed to further characterize these

influences.

Future research should focus on understanding the temporal constraint influ-

ences of A&CO and its relationship to modularity using the other three VMM factors

(reusability, reconfigurability, and extensibility). For the reusability factor, the more a

module is reused, the higher the probability that the module will become a standard

interface. Standard interfaces in turn will tend to reduce the number of pair-wise

constraints associated with that module and hence the number of reconfigurations

possible will increase. While from a reconfigurability viewpoint, a larger number of

reconfigurations possible is desirable, it is not clear how this impacts the assembly and

checkout process. Is a separate A&CO process maintained for each reconfiguration?

How are steps changed in the A&CO process to incorporate the desired configura-

tion? PnPSat is trying to address this electronically and automatically but is in

the infancy stage. The extensibility influences are harder to measure than the other

VMM factors. If a product leaves “open slots” during the assembly process for adding

functionality in the future, does this cause confusion or require extra verification steps

thus increasing the total time to assemble a product?
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Overall, this research has provided a starting point for characterizing the mod-

ularity versus assembly and checkout process. It has also provided some specific areas

to focus on to develop this relationship further. Characterizing two other relationships

are also worthy of future research, namely: 1. modularity versus mission assurance;

and 2. modularity versus cost.
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VII. Conclusion

This chapter provides an overall summary of research activities including a summary

of key findings. This is followed by recommendations for future research. Lastly, it

provides sponsor and collaboration acknowledgement. This final chapter in the main

document is followed by two appendices: one summarizing key terms; and one that

provides some of the developmental MATLABⓇ code used to support the research.

7.1 Research Summary

A goal of this research was proving/disproving the hypothesis in the problem

statement. Specifically, will increasing the modularity of a system increase the respon-

siveness of getting a product to the market or the warfighter in a reduced timeframe?

Several questions needed to be addressed in proving/disproving this hypothesis:

∙ How is product modularity measured?

– Product modularity can be measured using the Vector Modularity Measure

(VMM) and the Reconfigurability Measure (RM). The VMM incorporates

degree of coupling along with the recognized benefits of modularity.

∙ What design influences increase product modularity?

– If increasing a product’s modularity is a design goal, then each of the

terms in the VMM and RM can be used to identify the target factors that

influence modularity and the associated benefits.

∙ When is a more modular system, as compared to an an integral system, desirable

from a design standpoint and from a system goal(s) perspective?

– A more modular system is desirable when trying to attain the recognized

benefits of modularity; specifically: reusability, reconfigurability, and ex-

tensibility. It should be noted that difficult performance requirements
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and/or tight space/weight constraints may not align with objectives sup-

porting modularity.

∙ What affect do temporal constraints on assembly have on the modularity versus

design goals relationship?

– A preliminary finding shows a product with a lower degree of coupling

(more modular) has a reduced average clock time to handle each module

in the product. This finding is preliminary and related research suggest

both the number of modules as well as the degree of coupling will impact

temporal processing constraints [37]. See Section 7.2 for future recommen-

dations.

The research that was conducted supports the initial hypothesis. See Section 7.2 for

recommendations for furthering this research. The remainder of this section describes

the resulting conclusions from this research.

Traditional modularity measures produce a real number, between zero and one,

that can be used to compare relative modularity among multiple designs. These tra-

ditional modularity measures focus on coupling, whether between design parameters

or interfaces among modules. After studying the literature on modularity measures,

it was determined that these measures were insufficient in capturing the benefits of

modularity. A Vector Modularity Measure (VMM) was developed as a result of this

research; the VMM builds upon the initial real number of previous modularity mea-

sures. The VMM presented captures not only the coupling attribute but also the

reusability and flexibility attributes. The flexibility attribute is measured in terms of

a product’s ability to be adaptable to changing requirements; specifically, measures

of reconfigurability and extensibility.

The VMM presented and demonstrated can be used to evaluate and compare

multiple designs from a modularity viewpoint. Whether these designs are for similar

products, the same product, or an upgrade of an existing product, the VMM presented

in this research helps to illuminate various aspects of the product’s modularity. This

135



is especially helpful in highlighting where one product design is more modular than

another as in the demonstrated case of the precision guided munitions (PGMs). When

comparing designs, the various benefits of modularity identified through the analysis

process can be taken into account when making design decisions.

One of the key factors in the VMM is the reconfigurability measure (RM).

This research demonstrated that measuring reconfigurability requires more than just

calculating the number of reconfigurations possible, 𝑟, for a given product. A recon-

figurability measure, as presented, must also take into account the total number of

options available to a product, 𝑆, and the total number of modules with options, 𝑡.

Using these additional terms in the RM, a designer or decision maker can understand

how the current design is measuring compared to how well it could be measuring in

terms of the total number of reconfigurations. If a product has one or more modules

that do not currently have options, then by focusing on one of these modules, the

highest increase in the number of reconfigurations will be realized if one or more op-

tions can be added to this module. Similarly, if the number of options for each module

with options varies greatly (high standard deviation), then the highest increase in the

number of reconfigurations would come when making design changes such that each

module with options has the same number of options, if possible, for a given 𝑆.

Insight is also gained into how well the current design is measuring in terms of

the number of reconfigurations possible per total options in inventory as well as per

number of modules with options. The latter ratio shows the number of reconfigura-

tions being realized per decision point that must be made for a given architectural

build. The higher the number of decision points the higher the number of potential

interfaces and reconfiguration controls will be needed.

Three of the four RM ratios use the number of reconfigurations possible in their

calculation. Pair-wise constraints effectively reduce the number of configurations

possible and hence the three ratios that use it. Minimizing the pair-wise constraints

on modules will help to maximize the achievable number of reconfigurations for the
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given distribution of options among the modules. In turn, this minimization of pair-

wise constraints will help to increase the reconfigurability, flexibility, and modularity

of a product. One way to reduce the number of pair-wise constraints, as demonstrated

with PnPSat, is through the use of standard interfaces.

The RM assesses the reconfigurability of modular products strictly from a math-

ematical viewpoint which stemmed from capitalizing on the benefits of modularity.

While this viewpoint is an important starting point in analyzing the reconfigurability

of product designs, a system viewpoint must also be considered before making deci-

sions on design changes to a product. Increasing module options offers more possible

configurations, but it also requires understanding other ramifications and limitations.

Module options have associated costs, logistics, pair-wise constraints, etc., that must

be considered. Ultimately, the number of reconfigurations maintained will be a bal-

ance between user requirements and cost.

Through the two precision guided munition (PGM) applications, it was demon-

strated that while the two munitions are similar in function structures, modules,

and interfaces, they are different in terms of reusability and reconfigurability. The

particular modularity benefits of the guided bomb unit-24 (GBU-24) over the GBU-

31 were only highlighted once the analysis process resulting from this research was

accomplished. If gaining the benefits of modularity is a design goal for a product,

the Vector Modularity Measure guides the evaluation of that design to highlight the

benefits being realized.

Beyond measuring the four factors that make up the VMM and the four ratios

that make up the RM, designers can use each component measure to determine where

changes can be made to increase modularity and subsequently the benefits being

realized. For example, using the RM from Equation 3.4, a product with a lower

standard deviation among the modules with options (𝜎) generally will result in a

higher number of configurations for a given product with the same 𝑆 and 𝑡, thus

increasing the reconfigurability of a product. Another example, using the numerator
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in the reusability equation (Equation 4.5), is to increase the number of modules

used in multiple products (𝑛mp) and hence reusability. By examining the product

architecture, one can key in on specific areas and even narrow down areas for the

greatest increase in reconfigurability and hence modularity. After the initial problem

set-up, focus can be applied to the appropriate modules to maximize the increase in

the number of reconfigurations. One module may be easy to vary and so already has

the highest number of options available. Higher returns, in terms of total number

of reconfigurations, may be realized when increasing the number of options for other

modules.

Another use of this analysis is to refine the functional decomposition of a prod-

uct. The second step in the analysis process maps modules to functions. This research

analyzed existing products and used reverse engineering to identify modules and map

them to the corresponding functions they perform. The function-to-module mapping

highlights where coupling exists between two or more modules. That is, two or more

modules are necessary to accomplish one function. This information can then be used

to reevaluate the functional decomposition or the module boundaries and hence the

interfaces. If a module performs more than one function, then less modules will be

required. Functions that require more than one module should be minimized. In

these cases, another iteration of module identification should be performed. If more

than one module is required, then the dominant flow heuristic of grouping similar

functions into modules was incomplete.

Through the PnPSat application, the original Vector Modularity Measure was

reinforced using a more complex product than originally used in the development of

the VMM and analysis process. The analysis process revealed that the particular

modularity benefits being realized the most by the current design of PnPSat are

reusability and extensibility. The benefit of reconfigurability is also being realized to

a large extent for the given 𝑆 and 𝑡 pair. The number of configurations possible with

PnPSat could be increased by increasing the number of modules with options.
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An observation, based on the previous PGM application, was that one of the

PGMs has a slightly higher degree of coupling. This coincides with it being less

reconfigurable than the other PGM, and also coincides with it having more pair-

wise constraints between modules. For simplicity purposes, an assumption was made

that there are no pair-wise constraints for PnPSat; as the probability of this being

true is extremely low, the number of reconfigurations realizable will certainly be

reduced. Another noted observation is whether or not higher product complexity

tends to discourage higher reconfigurability. If so, is this due to the greater number

of interfaces, the types of interfaces, or a combination thereof. After applying the

Vector Modularity Measure to PnPSat, the answer seems to be a combination thereof

as well as a result of pair-wise constraints imposed on module-to-module interfaces.

An approach to characterizing modularity versus the assembly and checkout

process was developed. Through applying this approach to the two PGMs and to

PnPSat, four emerging trends were identified. The first trend revealed that handling

of the module in a product that had the highest number of interfaces required the

greatest amount of clock time. The second trend showed that the module that was

considered to be the base module, the one that the other modules were built around,

was handled for the greatest amount of clock time. There is likely some correlation

between this trend and the first, as the base module often has more interfaces than

other modules. The third “trend” was based on a single data point, thus the term

trend is used loosely. The data point showed that for similar products, the product

with the higher degree of coupling will require a higher average clock time to handle

each module. Lastly, among the five interface types, required handling or clock times

associated with spatial and structural interface types were the greatest.

7.1.1 Research Contributions. A summary of the research contributions

and associated publications are listed below:

1. A process for accomplishing module identification in conjunction with perform-

ing a system decomposition was defined. This process used an existing func-
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tional basis language to model the system in order to use one of several tech-

niques to identify module boundaries in a product. The process of mapping

functions to modules is defined as an iterative process. Module identification

is the starting point for the Reconfigurability Measure and Vector Modularity

Measure calculations. This work was submitted as part of [52] and [50].

2. Previous work identified five interface types between components or modules.

Other work identified uses a matrix to capture the existence of interfaces be-

tween modules. This research extended both approaches to capture the five in-

terface types in a layered or tensor approach. The layers are combined to form

a tensor and are captured in a tensor plot developed and coded in MATLABⓇ.

The tensor plot graphically provides the designer with feedback to identify pre-

dominant interface types. This work was submitted as part of [52] and [50].

3. In order to begin assessing the modularity of any product, several key steps

must be performed to identify modules and capture associated characteristics

of each module. This research developed a process to do this in a manner that

is repeatable. This process is suitable for more than the VMM and RM metrics;

it can also be extended to perform other product characterizations as they are

developed. This work was submitted as part of [52] and [50].

4. The current research on measuring product reconfigurability is limited. This re-

search developed a measure to assess product reconfigurability recognizing that

the measure should account for more than the mathematical number of recon-

figurations possible stemming from module options. This work was submitted

as [48] and [49].

5. This work extended the current research on measuring product modularity.

It recognized that a modularity measure needs to consider degree of coupling

between modules. It also recognized that current measures in the literature did

not consider the benefits of the modularity being realized. This work extended

the current research on measuring product modularity to capture these benefits
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that are used in the development of the Vector Modularity Measure (VMM). The

VMM uses degree of coupling, reusability, reconfigurability, and extensibility

factors to assess product modularity. This work was submitted as [48], [52]

and [50].

6. The utility of the RM and VMM were demonstrated using the GBU-24 and the

GBU-31 precision guided munitions. This application resulted in demonstrating

that the GBU-24 is more modular than the GBU-31. This application also

highlighted reasons why the GBU-24 is more modular than the GBU-31 (e.g.

the GBU-24 has less pair-wise constraints than the GBU-31). This work was

submitted as part of [52].

7. The applications of the RM and VMM were extended from a simpler PGM

example to a more complex example, PnPSat. The analysis process was also

applied resulting in recommendations for future design changes to increase the

modularity of PnPSat and associated modularity benefits being realized; namely

reusability and extensibility. This work was submitted as [50].

8. An initial approach to characterizing the modularity versus temporal constraint

relationships was developed and applied to the GBU-24, the GBU-31, and to

the PnPSat. Stemming from the preliminary analysis, four emerging trends

identified which modules and interface types required the greatest amount of

handling time during the assembly and checkout process. Related research

further explored the relationship between modularity and temporal processing

constraints and is discussed in [37].

7.2 Recommendations for Future Research

The recommendations given in this section focus on improving the fidelity and

usefulness of the Vector Modularity Measure. The VMM developed due to this re-

search is a departure from traditional modularity measures that result in a scalar

number between zero and one. As such, examining its development will guide future
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refinements of the measure thus improving its fidelity and usefulness. Recommenda-

tions for improving or extending each of the factors that comprise the VMM are given

first. These are followed by recommendations for further characterizing the modular-

ity versus temporal constraints relationship. Lastly, several general recommendations

for future research are given.

7.2.1 Degree of Coupling, 𝑉 . An extension of this analysis is to include

the real domain as well. One benefit of this extension is that it accommodates the

potential to evaluate design complexity. For example, if a real value is assessed to

each interface based on the number of interfaces or the level of complexity for the

interface type, Equation 4.4 would need to be slightly modified; the denominator

that normalizes the term would need to be removed since an upper limit is no longer

apparent based on the number of interfaces.

Advancing the fidelity of the degree of coupling term in the VMM can be ac-

complished by eliminating the non-realistic/non-achievable interfaces from the overall

calculation in the 𝑉 factor. Currently, all matches between modules for each of the

interface types are treated as realistic/achievable which may result in a low degree of

sensitivity to changes in module-to-module interfaces.

7.2.2 Reusability, 𝑋. For the analysis herein, assessing whether a product

is reused or not is sufficient to glean the benefit of reusability being captured. Know-

ing the extent to which a module is reused, or the number of products containing the

module, has potential benefits beyond the assessment in this research. For example,

as the number of products that use a given module increases, the probability that

the module is or will become a standard module increases. A future adaptation could

account for the number of products each module option is used in when building

variants of a product. Using this adaptation, module options that are peculiar to a

product (i.e. not reusable in other products) are highlighted. In the current assess-

ment, however, they are hidden by the overall categorization of “unique/reusable” if

a given module has multiple options and a subset of those modules are reusable.
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7.2.3 Reconfigurability, Y. Eliminating combinations of modules (due to

pair-wise constraints) when calculating the number of reconfigurations would advance

the fidelity of this analysis process. The PGM applications in this research elimi-

nated most, if not all, of the constrained reconfigurations but leaves the process of

reconfiguration elimination to the analyst performing the Vector Modularity Measure

assessment outlined herein.

The RM assesses the reconfigurability of modular products strictly from a math-

ematical viewpoint which stemmed from capitalizing on the benefits of modularity.

This viewpoint is an important starting point in analyzing the reconfigurability of

product designs, and should be combined with a system viewpoint along with other

viewpoints before making decisions on design changes to a product. Increasing mod-

ule options offers more possible reconfigurations, but it also requires understanding

other ramifications and limitations. Module options have associated costs, logistics,

pair-wise constraints, etc., that must be considered. Ultimately, the number of re-

configurations maintained will be a balance between user requirements and cost. A

methodology to examine these various viewpoint should be pursued, building on the

mathematical viewpoint presented in this research.

7.2.4 Extensibility, 𝑍. The extensibility factor in the VMM is used to com-

pare the built-in architectural design options for upgrading, or adding functionality

to a product. The current VMM uses this factor in a limited capacity for comparison

between product designs. A future direction is to relate this factor to the number

of modules, the number of interfaces, and/or the types of interfaces required to be

maintained to ensure the availability of these design options. This factor, together

with the other measures, could possibly be used to evaluate redesign effort associated

with product improvements. Another future use would be to study how often these

options are utilized in upgrading products.

7.2.5 Modularity Versus Temporal Constraints Relationship. The future

work recommendations in this subsection were first stated in Section 6.3.2 and are
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included here in order to have all recommendations in one chapter/section. One

limitation of the research was that the assembly procedures were not standardized,

i.e. what was considered a main process versus a sub-process was not clearly defined

but used as a general categorization. The analysis herein focused on the concept of

a main process in characterizing the interfaces and assembly times. Future iterations

should focus on defining and differentiating both main and sub-processes. Once this

has been accomplished, then comparisons can be made on the modules and interface

types associated with each step to further understand critical path issues during

assembly and checkout. Due to the non-standardized grouping of procedural steps

into main “chunks” or headings, the current analysis did not consider the number

of steps in an assembly and checkout process in the overall assessment. Instead,

the research used clock times associated with each step. Additionally for future

research, design for assembly (DFA) concepts and techniques should be considered

when addressing the process versus sub-process definitions as well as the assembly

process itself. Some aspects of the A&CO process that need to be considered using

DFA concepts and techniques include: number of personnel required to accomplish

each step; skill level required; parallel processing of some steps; identification of the

required path for product assembly and its associated timeline (i.e. critical path with

respect to time).

In order to associate handling or clock times with each each specific interface,

by type, the main process steps need to be broken down into sub-process steps. Clock

times are currently associated with these main process steps; they would also need

to be broken down and associated with the sub-process steps. This decomposition

of main process steps should continue until all interface types can be mapped to a

single or a minimum set of sub-processes. Once this decomposition is accomplished,

an assessment can be made of the average handling (or clock) time associated with

each interface and by each type of interface. Additionally, the number of personnel

required can be associated with each interface and by each type of interface as well.
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The “8𝑡ℎ” module for each of the products was used in assessing modularity and

was used in the modularity versus assembly and checkout relationship, but it was not

used in analyzing product designs for trends in the A&CO process. The interfaces

with the modules of a product and the aircraft or launch vehicle (the 8𝑡ℎ module) are

important to capture but present themselves in a unique category during the analysis.

This unique category should be further developed and understood.

In characterizing the modularity versus assembly and checkout relationship,

each of the VMM factors should be considered individually for the influences they

have on this relationship. The degree of coupling term has been the main focus of

this relationship characterization thus far. The spatial and structural interface types

had the most influence on the A&CO handling time for the current sample size. A

larger sample size of applications needs to be analyzed to further characterize these

influences.

Future research should focus on understanding the temporal constraint influ-

ences of A&CO and its relationship to modularity using the other three VMM factors

(reusability, reconfigurability, and extensibility). For the reusability factor, the more a

module is reused, the higher the probability that the module will become a standard

interface. Standard interfaces in turn will tend to reduce the number of pair-wise

constraints associated with that module and hence the number of reconfigurations

possible will increase. While from a reconfigurability viewpoint, a larger number of

reconfigurations possible is desirable, it is not clear how this impacts the assembly and

checkout process. Is a separate A&CO process maintained for each reconfiguration?

How are steps changed in the A&CO process to incorporate the desired configura-

tion? PnPSat is trying to address this electronically and automatically but is in

the infancy stage. The extensibility influences are harder to measure than the other

VMM factors. If a product leaves “open slots” during the assembly process for adding

functionality in the future, does this cause confusion or require extra verification steps

thus increasing the total time to assemble a product?
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7.2.6 General Recommendations. Two observations, based on the specific

PGM application, are interesting and worthy of further investigation. The first ob-

servation is that the GBU-31 had a slightly higher degree of coupling that coincided

with it being less reconfigurable than the GBU-24. Using this observation, a second

observation is prompted in the form of a question. That is, does higher product com-

plexity tend to discourage higher reconfigurability due to the number of interfaces,

the types of interfaces, or a combination thereof? Further investigation of the PGM

applications and other product domain applications are warranted in order to answer

these questions.

The VMM was applied to only one of the proposed concept satellites, PnPSat,

attempting to fulfill the ORS 6- or 7-day satellite objective. Future research should

focus on applying the measure to similar products that are attempting to fulfill the

ORS construct. Another future direction of this research is to continue to refine

the required testing deemed necessary to space qualify the spacecraft (with payload)

while reducing the overall design to launch timeline.

The benefits of modularity were addressed by this research. The benefits in-

cluded in the research are agreed upon generalized benefits of modularity. A future

direction of this application is to identify any additional benefits not captured herein.

Also, specific application domains may have additional benefits not identified in the

general case that may be worthy of study and employment.

Having identified the benefits of modularity, one of the next steps in extending

this research should be to compare the relationship between modularity and the

product assembly and checkout timeline. This research has given a starting point

to characterize this relationship. Studying the interfaces by types and degrees may

yield a noticeable time difference required during assembly and checkout associated

with each type of interface. If this proves true, designers can focus on eliminating

or at least minimizing these types of interfaces, thus reducing the overall time for

assembly and checkout. The preliminary analysis from Chapter 6.3 indicates that
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spatial and structural interfaces are dominant drivers in the overall assembly and

checkout process. These findings were based on a limited sample size and further

analysis should be performed to confirm them.

A method proposed by Abdelsalam et al. [1] seeks to optimize the sequencing

of design activities that affects both time and cost. This method was not attempted

during this research but is stated here for consideration for future research since both

time and cost are key contributors in getting products to the market or the warfighter

in responsive timeframes. Abdelsalam et al. recognize that getting a product to

the market (or the warfighter) in a timely fashion can make all the difference in

whether or not the product is competitive (or useful). Abdelsalam et al. look at a

method that is an excel-based framework to obtain an optimum sequence of design

processes (comprised of activities) within a product development project. They seek

to minimize the project total iterative time and cost using stochastic estimates for

time and cost for the various activities in the product development.

Overall, this research has provided a starting point for characterizing the mod-

ularity versus assembly and checkout process. It has also provided some specific areas

to focus on to develop this relationship further. Characterizing two other relationships

are also worthy of future research, namely: 1. modularity versus mission assurance

or probability of success; and 2. modularity versus cost.
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Appendix A. Glossary of Key Terms

A.1 Modularity Definitions

∙ Modularity - is the grouping of components into well defined entities, such

as modules or sub-assemblies, that can be further described by the interfaces

between them.

∙ Interface (I/F) - the spatial, informational, material, energy, or structural

connection or coupling of one module to another module within a product [42].

I/F types given below are defined similarly as in Sosa et al. [42].

- Spatial I/F - physical adjacency for alignment, orientation, serviceability,

assembly or weight.

- Informational I/F - transference of signals or controls.

- Material I/F - transference of airflow, oil, fuel, or water.

- Energy I/F - transference of heat, vibration, electric, or noise energy.

- Structural I/F - transference of loads or containment.

∙ Module - a group of components or sub-assemblies that perform one or more

functions

∙ Flexibility - a product’s ability to change or adapt to new requirements; it is

measured in terms of a product’s ability to be reconfigurable and extensible.

∙ Reusability - the ability of modules within a product to be used in at least

one other product variant.

∙ Reconfigurability - the ability to interface, with slight modification (or re-

configuration), with additional external systems.

∙ Extensibility - built in architectural options for upgrading, or adding func-

tionality to a product.
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∙ Function - a technical process involving energy, material and/or signals being

converted and/or channeled.

∙ Flow - material, signal, and/or energy that can be converted or channeled.

A.2 PGM Function Definitions

Precision guided munition function definitions (from Figures 4.4 and 4.6) are

listed in this appendix in operational terms. Each function-flow pairing follows the

basic format given by [21] and which is shown in a slightly modified format given in

Equation A-1. In this format, the function is an action verb from the functional basis

terminology, the flow is a noun, and in () is the flow type. The three flow types are

Material (M), Energy (E), and Signal (S).

Function : flow (flow type) (A-1)

Channel : Dumb bomb (M) - Channel indicates movement from one location

to another; it is used here to represent the movement of the munition from the

aircraft to the target.

Import : Target data - EM (E) - Import is used to indicate or describe a

flow entering the system boundary; target data is imported or downloaded from

the aircraft to the munition guidance set.

Store : Target data - EM (E) - Store refers to the accumulation of a flow;

target data is stored in memory in the munition guidance set for later use in

munition guidance processing.

Process : Position and target information (S) - Process refers to submit-

ting information to a treatment or method having a set number of operations

or steps; the munition guidance set processes the position and target data or

information to continually update the current position, desired position, overall

flight path, control inputs, and fuzing timing.
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Guide : Fins (M) - Guide is a secondary function (from channel) that in-

dicates the direction of flow along a specific path; it is used here to indicate

the reception of a control input from the guidance set that in turn provides an

input to the mechanism to rotate the fins to achieve the desired flight path.

Sense : Position and target information (E) - Sense is to perceive or

become aware of a flow; it is used here in the traditional way of sensing an

energy source, the laser return for the GBU-24 and the GPS signal for the

GBU-31, that is used in determining relative position to the target.

Couple : Bomb body to aircraft (M) - Couple is a secondary function

(from connect) that indicates joining or bringing together flows such that the

members are still distinguishable from each other; the use of coupling is also

used in the traditional way, here it represents the attachment or mating of the

munition with the aircraft.

Couple : Bomb body to GCS (M) - Couple is a secondary function (from

connect) that indicates joining or bringing together flows such that the members

are still distinguishable from each other; the use of coupling is also used in

the traditional way, here it represents the joining of the bomb body with the

guidance control section.

Guide : Gas - airflow (M) - Guide is a secondary function (from channel)

that indicates the direction of flow along a specific path; it is used here to

indicate the guidance of the airflow around the actuators (e.g. fins) to achieve

the desired flight path.

Actuate : Electrical - fuze (E) - Actuate refers to the commencing of energy,

signal, or material in response to an imported control signal; it is used here to

represent the commencing the electrical signal that will ignite the explosive

material in the munition.
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Convert : Solid - to a gas - explosion (M) - Convert is used to represent

the conversion of one form of flow to another; the conversion used here is the

explosive material or fuel that is ignited and converted into explosive energy.

Stop : Electrical - fuze (E) (safeguard) - Stop is a secondary function (from

control magnitude) used to indicate the ceasing, preventing or transferring of a

flow; it is used here to represent the prevention of inadvertent fuzing which is

one of two safeguard mechanisms.

Supply : Electrical - initiator (E) - Supply is a secondary function (from

provision) used to indicate the provision of a flow from storage; upon release of

the munition, the initiator is activated and electrical energy is generated, stored

and supplied to the fuze.

Stop : Electrical - initiator (E) (safeguard) - Stop is a secondary function

(from control magnitude) used to indicate the ceasing, preventing or transferring

of a flow; it is used here to represent the prevention of inadvertent charging of the

initiator that would result in fuzing which is one of two safeguard mechanisms.

Initiate : Electrical - initiator (E) - Initiate is a secondary function (from

control magnitude) that refers to the commencing of energy, signal, or material

in response to an imported control signal; upon release of the munition, the

initiator is activated and electrical energy is generated that is subsequently

supplied to the fuze.

Stabilize : Gas - airflow (M) - Stabilize is a secondary function (from

support) to indicate the prevention of a flow from changing course or location;

the strakes are used to stabilize the airflow around the bomb body and to help

guide the airflow towards the aft of the bomb body.

Supply : Propellant - fuel (M) - Supply is a secondary function (from

provision) used to indicate the provision of a flow from storage; the explosive

material is carried or housed within the bomb body.
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A.3 Space Plug-n-Play Avionics (SPA) Definitions

Space Plug-n-Play Avionics (SPA) The Operationally Responsive Space office

has signed onto the AFRL definition of Space Plug-n-Play Avionics as a means

for achieving modularity for their spacecraft. SPA is defined as an interface-

driven standard that promotes the rapid development of spacecraft payloads

and buses. The standard is comprised of an open system framework that com-

bines commercial standards (e.g. USB) with hardware and software extensions

necessary for modern real-time embedded systems [31].

SPA Concept: Architectural Overview The SPA approach an architecture of

choosing components (such as sensors or actuators) in a pick and choose fashion

that can be constructed in numerous arrangements and levels of complexity. By

allowing this type of arrangement, the architecture setup lends itself easily to

expansion and modification of components. This also allows the system to be

more robust to component failures [31].

SPA-U (USB-Based SPA) SPA-U is an interface standard that is based on the

current USB (version 1.1) standard that supports 12 Mbps data transport. A

benefit of this standard is that it is suitable for interfacing with most spacecraft

devices [31].

SPA-S (Spacewire-Based SPA) “Spacewire is a European Space Agency (ESA)

standard that supports high data rate transport (up to 625 Mbps has been

demonstrated)and routable interconnect using a switched fabric concept [31].”

SPA-U Applique Sensor Interface Module (ASIM) The ASIM is a compact

reference design of the standard that provides a bridge between a compliant

implementation of the SPA-U or SPA-S standard and a user design. The ASIM

contains automatic support for useful services including power management,

synchronization and electronic datasheets [31].
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Appendix B. MATLABⓇ Code Used to Support the Research

The MATLABⓇ code used to support the research is given below. The code is used

to plot the interface data resulting from the Vector Modularity Measure analysis

process. The tensor plot provides a visual graphic to study the sparsity of the five

design structure matrices. The code given is for the two precision guided munitions

(GBU-24 and GBU-31) and can be readily adapted for future applications.

B.1 GBU-24 Tensor Plot Code

Listing B.1: Code/gbu24tensor.m

1 clf

% Tensor Plot of 5 DSMs - Spatial , Informational , Material , Energy

% and Informational

% Uses plotcube function from the Mathworks website (www....

mathworks.com)

5 %

%%%%%%%GBU -24 dsmtensor

%%%%%%%%%%%% Spatial .. Row zero blue

plotcube ([1 1 1],[ 0 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 1 0],.9,[0 0 1]);

10 plotcube ([1 1 1],[ 0 2 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 3 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 4 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 6 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 5 0],.9,[0 0 1]);

15 %plotcube ([1 1 1],[ 2 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 2 4 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 1 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 2 0],.9,[0 0 1]);

20 plotcube ([1 1 1],[ 4 0 0],.9,[0 0 1]);
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plotcube ([1 1 1],[ 4 1 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 5 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 5 1 0],.9,[0 0 1]);

%%%%%%%%%%%%%%%%%%%

25 %%%%%%%%%%%% Structural .. Row one green

plotcube ([1 1 1],[ 0 1 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 2 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 3 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 4 1],.9,[0 1 0]);

30 plotcube ([1 1 1],[ 0 6 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 1 5 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 4 0 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 6 0 1],.9,[0 1 0]);

%%%%%%%%%%%%%%%%%%%

35 %%%%%%%%%%%% Energy .. Row two red

plotcube ([1 1 1],[ 0 2 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 0 3 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 0 6 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 1 5 2],.9,[1 0 0]);

40 plotcube ([1 1 1],[ 4 0 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 5 1 2],.9,[1 0 0]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Material .. Row three yellow

plotcube ([1 1 1],[ 0 3 3],.9,[1 1 0]);

45 plotcube ([1 1 1],[ 0 4 3],.9,[1 1 0]);

plotcube ([1 1 1],[ 0 6 3],.9,[1 1 0]);

plotcube ([1 1 1],[ 1 5 3],.9,[1 1 0]);

plotcube ([1 1 1],[ 4 0 3],.9,[1 1 0]);

%%%%%%%%%%%%%%%%%%%

50 %%%%%%%%%%%% Information .. Row four

plotcube ([1 1 1],[ 2 2 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 2 4 4],.9,[1 0 1]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%% Row 0 of gray

plotcube ([1 1 1],[ 0 7 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 0] ,.05 ,[0.5 0.5 0.5]);

60 plotcube ([1 1 1],[ 3 4 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 0] ,.05 ,[0.5 0.5 0.5]);

65 %%%%%%%%%

%%%%%%%%%% Row 1 of gray

plotcube ([1 1 1],[ 0 7 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 1] ,.05 ,[0.5 0.5 0.5]);

70 plotcube ([1 1 1],[ 3 4 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 1] ,.05 ,[0.5 0.5 0.5]);

75 %%%%%%%%%

%%%%%%%%%% Row 2 of gray

plotcube ([1 1 1],[ 0 7 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 2] ,.05 ,[0.5 0.5 0.5]);

80 plotcube ([1 1 1],[ 3 4 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 2] ,.05 ,[0.5 0.5 0.5]);

85 %%%%%%%%%

%%%%%%%%%% Row 3 of gray

plotcube ([1 1 1],[ 0 7 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 3] ,.05 ,[0.5 0.5 0.5]);

90 plotcube ([1 1 1],[ 3 4 3] ,.05 ,[0.5 0.5 0.5]);
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plotcube ([1 1 1],[4 3 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 3] ,.05 ,[0.5 0.5 0.5]);

95 %%%%%%%%%

%%%%%%%%%% Row 4 of gray

plotcube ([1 1 1],[ 0 7 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 4] ,.05 ,[0.5 0.5 0.5]);

100 plotcube ([1 1 1],[ 3 4 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 4] ,.05 ,[0.5 0.5 0.5]);

105 title(’GBU -24 Interface Tensor Plot’,’FontSize ’ ,18)

xlabel(’Provide ’,’FontSize ’ ,14)

ylabel(’Depend ’,’FontSize ’ ,14)

zlabel(’Interface Type’,’FontSize ’ ,14)

set(gca ,’XLim’ ,[0 8]);

110 set(gca ,’XTick ’ ,0.5:7.5);

modules =[’Mod 1’;

’Mod 2’;

’Mod 3’;

’Mod 4’;

115 ’Mod 5’;

’Mod 6’;

’Mod 7’;

’Mod 8’];

set(gca ,’XTickLabel ’,modules ,’FontSize ’ ,9);

120 %

set(gca ,’YLim’ ,[0 8]);

set(gca ,’YTick ’ ,0.5:7.5);

modulesrev =[’Mod 8’;

’Mod 7’;

125 ’Mod 6’;
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’Mod 5’;

’Mod 4’;

’Mod 3’;

’Mod 2’;

130 ’Mod 1’];

set(gca ,’YTickLabel ’,modulesrev ,’FontSize ’ ,9);

%

set(gca ,’ZLim’ ,[0 5]);

set(gca ,’ZTick ’ ,0.5:4.5);

135 %interfaces =[’ Spatial ’;

% ’ Structural ’;

% ’ Energy ’;

% ’ Material ’;

% ’Informational ’];

140 %set(gca ,’ZTickLabel ’,interfaces ,’FontSize ’,9);

%NOTE labels have to have the same number of columns , i.e. same ...

number of

%items in the string e.g. mod 3, mod 4

set(gca ,’ZTickLabel ’,[’ Spatial ’;’ Structure ’;’ ...

Energy ’;

’ Material ’;’Informational ’],’FontSize ’ ,9);

145 %%%%%%%%%

% commented out for formateps purposes

%print -depsc GBU24tensor

%print -djpeg GBU24tensor

print formateps

B.2 GBU-31 Tensor Plot Code

Listing B.2: Code/gbu31tensor.m

1 clf

% Tensor Plot of 5 DSMs - Spatial , Informational , Material , Energy

% and Informational

% Uses plotcube function from the Mathworks website (www....

mathworks.com)

5 %
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%%%%%%%%%%% GBU -31 tensor

%%%%%%%%%%%% Spatial .. Row zero blue

plotcube ([1 1 1],[ 0 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 1 0],.9,[0 0 1]);

10 plotcube ([1 1 1],[ 0 2 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 3 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 4 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 5 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 4 0],.9,[0 0 1]);

15 plotcube ([1 1 1],[ 2 1 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 1 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 3 2 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 4 0 0],.9,[0 0 1]);

20 plotcube ([1 1 1],[ 5 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 5 1 0],.9,[0 0 1]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Structural .. Row one green

plotcube ([1 1 1],[ 0 1 1],.9,[0 1 0]);

25 plotcube ([1 1 1],[ 0 2 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 3 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 4 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 5 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 1 4 1],.9,[0 1 0]);

30 plotcube ([1 1 1],[ 4 0 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 6 0 1],.9,[0 1 0]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Energy .. Row two red

plotcube ([1 1 1],[ 0 2 2],.9,[1 0 0]);

35 plotcube ([1 1 1],[ 0 3 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 0 4 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 0 5 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 1 4 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 2 1 2],.9,[1 0 0]);

40 plotcube ([1 1 1],[ 4 0 2],.9,[1 0 0]);
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plotcube ([1 1 1],[ 5 1 2],.9,[1 0 0]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Material .. Row three yellow

plotcube ([1 1 1],[ 0 3 3],.9,[1 1 0]);

45 plotcube ([1 1 1],[ 0 4 3],.9,[1 1 0]);

plotcube ([1 1 1],[ 0 5 3],.9,[1 1 0]);

plotcube ([1 1 1],[ 4 0 3],.9,[1 1 0]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Information .. Row four

50 %plotcube ([1 1 1],[ 1 0 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 2 3 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 2 5 4],.9,[1 0 1]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% Row 0 of gray

plotcube ([1 1 1],[ 0 7 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 0] ,.05 ,[0.5 0.5 0.5]);

60 plotcube ([1 1 1],[ 3 4 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 0] ,.05 ,[0.5 0.5 0.5]);

65 %%%%%%%%%

%%%%%%%%%% Row 1 of gray

plotcube ([1 1 1],[ 0 7 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 1] ,.05 ,[0.5 0.5 0.5]);

70 plotcube ([1 1 1],[ 3 4 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 1] ,.05 ,[0.5 0.5 0.5]);

75 %%%%%%%%%
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%%%%%%%%%% Row 2 of gray

plotcube ([1 1 1],[ 0 7 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 2] ,.05 ,[0.5 0.5 0.5]);

80 plotcube ([1 1 1],[ 3 4 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 2] ,.05 ,[0.5 0.5 0.5]);

85 %%%%%%%%%

%%%%%%%%%% Row 3 of gray

plotcube ([1 1 1],[ 0 7 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 3] ,.05 ,[0.5 0.5 0.5]);

90 plotcube ([1 1 1],[ 3 4 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 3] ,.05 ,[0.5 0.5 0.5]);

95 %%%%%%%%%

%%%%%%%%%% Row 4 of gray

plotcube ([1 1 1],[ 0 7 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[1 6 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 4] ,.05 ,[0.5 0.5 0.5]);

100 plotcube ([1 1 1],[ 3 4 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 6 1 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 4] ,.05 ,[0.5 0.5 0.5]);

105 title(’GBU -31 Interface Tensor Plot’,’FontSize ’ ,18)

xlabel(’Provide ’,’FontSize ’ ,14)

ylabel(’Depend ’,’FontSize ’ ,14)

zlabel(’Interface Type’,’FontSize ’ ,14)

set(gca ,’XLim’ ,[0 8]);

110 set(gca ,’XTick ’ ,0.5:7.5);
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modules =[’Mod 1’;

’Mod 2’;

’Mod 3’;

’Mod 4’;

115 ’Mod 5’;

’Mod 6’;

’Mod 7’;

’Mod 8’];

set(gca ,’XTickLabel ’,modules ,’FontSize ’ ,9);

120 %

set(gca ,’YLim’ ,[0 8]);

set(gca ,’YTick ’ ,0.5:7.5);

modulesrev =[’Mod 8’;

’Mod 7’;

125 ’Mod 6’;

’Mod 5’;

’Mod 4’;

’Mod 3’;

’Mod 2’;

130 ’Mod 1’];

set(gca ,’YTickLabel ’,modulesrev ,’FontSize ’ ,9);

%

set(gca ,’ZLim’ ,[0 5]);

set(gca ,’ZTick ’ ,0.5:4.5);

135 %interfaces =[’ Spatial ’;

% ’ Structural ’;

% ’ Energy ’;

% ’ Material ’;

% ’Informational ’];

140 %set(gca ,’ZTickLabel ’,interfaces ,’FontSize ’,9);

%NOTE labels have to have the same number of columns , i.e. same ...

number of

%items in the string e.g. mod 3, mod 4

set(gca ,’ZTickLabel ’,[’ Spatial ’;’ Structure ’;’ ...

Energy ’;
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’ Material ’;’Informational ’],’FontSize ’ ,9);

145 %%%%%%%%%

print -depsc GBU31tensor

print -djpeg GBU31tensor

B.3 PnPSat Tensor Plot Code

Listing B.3: Code/pnpsattensor.m

1 clf

% **** UPDATED 14 Jan 2010

% Tensor Plot of 5 DSMs - Spatial , Informational , Material , Energy

% and Informational

5 % Uses plotcube function from the Mathworks website (www....

mathworks.com)

%

% [ 0 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 0 1 0 0 0 0 0 0

10 % 1 0 1 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 1 0 0 1 0 0 0 0

% 1 0 0 1 1 1 0 0

% 1 0 0 1 1 1 0 0

15 %%%%%%% PnPSat dsmtensor

%%%%%%%%%%%% Spatial .. Row zero blue

%[ A B C]

% C = Interface type , here 0 = spatial

% A = Col 0, 1, 2 etc

20 % B = Row 7 = 0, 6 = 1, 5 = 4 etc

plotcube ([1 1 1],[ 0 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 1 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 2 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 3 0],.9,[0 0 1]);

25 plotcube ([1 1 1],[ 0 4 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 5 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 0 6 0],.9,[0 0 1]);
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plotcube ([1 1 1],[ 1 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 1 0],.9,[0 0 1]);

30 plotcube ([1 1 1],[ 1 2 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 3 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 4 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 1 5 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 2 0 0],.9,[0 0 1]);

35 plotcube ([1 1 1],[ 3 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 4 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 5 0 0],.9,[0 0 1]);

plotcube ([1 1 1],[ 6 0 0],.9,[0 0 1]);

40 %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Structural .. Row one green

% [ 0 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

45 % 1 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

% 1 0 0 0 0 0 0 0

50

plotcube ([1 1 1],[ 0 0 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 1 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 2 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 3 1],.9,[0 1 0]);

55 plotcube ([1 1 1],[ 0 4 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 5 1],.9,[0 1 0]);

plotcube ([1 1 1],[ 0 6 1],.9,[0 1 0]);

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Energy .. Row two red

60

% [ 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0
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% 0 0 0 0 0 0 0 0

% 0 1 0 0 0 0 0 0

65 % 0 0 1 0 0 0 0 0

% 0 0 1 0 0 0 0 0

% 0 0 1 0 0 0 0 0

% 0 0 0 0 0 0 0 0

plotcube ([1 1 1],[ 1 4 2],.9,[1 0 0]);

70 plotcube ([1 1 1],[ 1 5 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 2 1 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 2 2 2],.9,[1 0 0]);

plotcube ([1 1 1],[ 2 3 2],.9,[1 0 0]);

%%%%%%%%%%%%%%%%%%%

75 %%%%%%%%%%%% Material .. Row three yellow

%

%%% PnPSat ... no Material I/Fs

%

% plotcube ([1 1 1],[ 0 3 3],.9,[1 1 0]);

80 %

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Information .. Row four

% [ 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0

85 % 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0

% 1 1 1 0 1 0 0 0

% 0 0 0 0 0 1 0 0

90 % 0 1 0 0 1 0 0 0

%

plotcube ([1 1 1],[ 0 2 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 1 0 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 1 2 4],.9,[1 0 1]);

95 plotcube ([1 1 1],[ 1 3 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 2 2 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 4 0 4],.9,[1 0 1]);
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plotcube ([1 1 1],[ 4 2 4],.9,[1 0 1]);

plotcube ([1 1 1],[ 5 1 4],.9,[1 0 1]);

100 %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% Row 0 of gray

plotcube ([1 1 1],[ 0 7 0] ,.05 ,[0.5 0.5 0.5]);

105 plotcube ([1 1 1],[1 6 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 3 4 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 0] ,.05 ,[0.5 0.5 0.5]);

110 plotcube ([1 1 1],[ 6 1 0] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 0] ,.05 ,[0.5 0.5 0.5]);

%%%%%%%%%

%%%%%%%%%% Row 1 of gray

plotcube ([1 1 1],[ 0 7 1] ,.05 ,[0.5 0.5 0.5]);

115 plotcube ([1 1 1],[1 6 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 3 4 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 1] ,.05 ,[0.5 0.5 0.5]);

120 plotcube ([1 1 1],[ 6 1 1] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 1] ,.05 ,[0.5 0.5 0.5]);

%%%%%%%%%

%%%%%%%%%% Row 2 of gray

plotcube ([1 1 1],[ 0 7 2] ,.05 ,[0.5 0.5 0.5]);

125 plotcube ([1 1 1],[1 6 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 3 4 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 2] ,.05 ,[0.5 0.5 0.5]);

130 plotcube ([1 1 1],[ 6 1 2] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 2] ,.05 ,[0.5 0.5 0.5]);

%%%%%%%%%
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%%%%%%%%%% Row 3 of gray

plotcube ([1 1 1],[ 0 7 3] ,.05 ,[0.5 0.5 0.5]);

135 plotcube ([1 1 1],[1 6 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 3 4 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 3] ,.05 ,[0.5 0.5 0.5]);

140 plotcube ([1 1 1],[ 6 1 3] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 3] ,.05 ,[0.5 0.5 0.5]);

%%%%%%%%%

%%%%%%%%%% Row 4 of gray

plotcube ([1 1 1],[ 0 7 4] ,.05 ,[0.5 0.5 0.5]);

145 plotcube ([1 1 1],[1 6 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[2 5 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[ 3 4 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[4 3 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[5 2 4] ,.05 ,[0.5 0.5 0.5]);

150 plotcube ([1 1 1],[ 6 1 4] ,.05 ,[0.5 0.5 0.5]);

plotcube ([1 1 1],[7 0 4] ,.05 ,[0.5 0.5 0.5]);

%title(’PnPSat Interface Tensor Plot ’,’FontSize ’,18)

xlabel(’Provide ’,’FontSize ’ ,14)

ylabel(’Depend ’,’FontSize ’ ,14)

155 zlabel(’Interface Type’,’FontSize ’ ,14)

set(gca ,’XLim’ ,[0 8]);

set(gca ,’XTick ’ ,0.5:7.5);

modules =[’Mod 1’;

’Mod 2’;

160 ’Mod 3’;

’Mod 4’;

’Mod 5’;

’Mod 6’;

’Mod 7’;

165 ’Mod 8’];

set(gca ,’XTickLabel ’,modules ,’FontSize ’ ,9);

%
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set(gca ,’YLim’ ,[0 8]);

set(gca ,’YTick ’ ,0.5:7.5);

170 modulesrev =[’Mod 8’;

’Mod 7’;

’Mod 6’;

’Mod 5’;

’Mod 4’;

175 ’Mod 3’;

’Mod 2’;

’Mod 1’];

set(gca ,’YTickLabel ’,modulesrev ,’FontSize ’ ,9);

%

180 set(gca ,’ZLim’ ,[0 5]);

set(gca ,’ZTick ’ ,0.5:4.5);

%interfaces =[’ Spatial ’;

% ’ Structural ’;

% ’ Energy ’;

185 % ’ Material ’;

% ’Informational ’];

%set(gca ,’ZTickLabel ’,interfaces ,’FontSize ’,9);

%NOTE labels have to have the same number of columns , i.e. same ...

number of

%items in the string e.g. mod 3, mod 4

190 set(gca ,’ZTickLabel ’,[’ Spatial ’;’ Structural ’;’ ...

Energy ’;

’ Material ’;’Informational ’],’FontSize ’ ,9);

%%%%%%%%%

print -depsc PnPSattensor

print -djpeg PnPSattensor
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