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Abstract

Many organizations are concerned, and struggle, with personnel management. Train-

ing personnel is expensive, so there is a high emphasis on understanding why and

anticipating when individuals leave an organization. The military is no exception.

Moreover, the military is strictly hierarchical and must grow all its leaders, making

retention all the more vital. Intuition holds that there is a relationship between the

economic environment and personnel attrition rates in the military (e.g. when the

economy is bad, attrition is low). This study investigates that relationship in a more

formal manner. Specifically, this study conducts an econometric analysis of U.S. Air

Force officer attrition rates from 2004-2016, utilizing several economic indicators such

as the unemployment rate, labor market momentum, and labor force participation.

Dynamic regression models are used to explore these relationships, and to generate a

reliable attrition forecasting capability. This study finds that the unemployment rate

significantly affects U.S. Air Force officer attrition, reinforcing the results of previous

works. Furthermore, this study identifies a time lag for that relationship; unem-

ployment rates were found to affect attrition two years later. Further insights are

discussed, and paths for expansion of this work are laid out.

iv



Acknowledgements

I am incredibly grateful to my advisor, Dr. Hill, for getting on my case when I

needed it and above all else, for being patient. I also want to thank my sponsor,

the Strategic Analysis branch of the Force Management Division of Headquarters Air

Force (HAF/A1XDX) for providing the personnel data and research guidance.

v



Table of Contents

Page
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Chapter Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Military Retention Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Previous Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Insights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

III Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Data Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
HAF/A1XDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Federal Reserve Bank of St. Louis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cleaning and Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Model Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Initial Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Dynamic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Lagged Economic Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Alternative Economic Subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Summary of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

IV Conclusions and Insights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Appendix A. R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



List of Tables

Table Page

1 Selected Economic Indicators . . . . . . . . . . . . . . . . . . . . . . 14
2 Naïve Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Seasonal Naïve Results . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Seasonal Naïve RMSE Comparison . . . . . . . . . . . . . . . . . . . 22
5 Estimated Coefficients - Initial Model . . . . . . . . . . . . . . . . . . 27
6 Initial Model - Autocorrelation Test . . . . . . . . . . . . . . . . . . . 28
7 Model RMSE Comparison . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Summary Statistics - Lag Results . . . . . . . . . . . . . . . . . . . . 31
9 High Performance Across All Criteria . . . . . . . . . . . . . . . . . . 31
10 Best Across All Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 Common High Performers . . . . . . . . . . . . . . . . . . . . . . . . 32
12 Common High Performer 1 . . . . . . . . . . . . . . . . . . . . . . . . 33
13 Common High Performer 2 . . . . . . . . . . . . . . . . . . . . . . . . 33
14 Top Model - Reduced Model . . . . . . . . . . . . . . . . . . . . . . . 34
15 Alternative Predictors - Best Model . . . . . . . . . . . . . . . . . . . 35
16 Alternative Predictors - Coefficient Estimates . . . . . . . . . . . . . 35

vii



List of Figures

Figure Page

1 Participation and Unemployment . . . . . . . . . . . . . . . . . . . . 13
2 Monthly Officer Separations . . . . . . . . . . . . . . . . . . . . . . . 17
3 Seasonal Plot: Total Separations . . . . . . . . . . . . . . . . . . . . . 18
4 Simple and Seasonal Naïve Forecasts . . . . . . . . . . . . . . . . . . 19
5 Separations - Outliers Removed . . . . . . . . . . . . . . . . . . . . . 21
6 Seasonal Plot: Outliers Removed . . . . . . . . . . . . . . . . . . . . 21
7 Seasonal Naïve Forecast After Imputation . . . . . . . . . . . . . . . 22
8 Correlation Matrix - Economic Indicators . . . . . . . . . . . . . . . . 24
9 Economic Indicators - Raw . . . . . . . . . . . . . . . . . . . . . . . . 25
10 Economic Indicators - Differenced . . . . . . . . . . . . . . . . . . . . 26
11 Initial Attrition Model - Residual Analysis . . . . . . . . . . . . . . . 28
12 Initial Model - Forecasts Against Validation Data . . . . . . . . . . . 29

viii



AIR FORCE OFFICER ATTRITION: AN ECONOMETRIC

ANALYSIS

I. Introduction

1.1 Background

As with any large organization, the personnel management functions of the components

of the Department of Defense (DoD) are concerned with personnel retention. However, since

the DoD must grow all its leaders from an entry level, retention is far more important and

challenging.

The DoD has long offered an all-or-nothing 20-year retirement: stay to 20 years and you

are eligible for retirement benefits, leave before 20 years and you have nothing. This 20-year

goal has certainly been a positive retention motivator.

The new blended retirement system will change the all-or-nothing aspect of military

retirement. Personnel can now leave before 20 years with some level of retirement benefit.

These new options will surely change military retention patterns. How the patterns will

change is unknown.

Part of the military strategy to keep retention at desired levels is to increase pay levels

of targeted personnel groups with retention bonuses. Clearly, military members offered such

a bonus must consider the bonus and retaining versus civilian pay potential if the member

separates.

This research is a study of military retention as affected by economic measures used
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as indicators of civilian employment potential. An important caveat is that the study is

based on pre-blended retirement systems. The blended system is simply too new to provide

meaningful trend data.

1.2 Scope

For both releasability and compatibility reasons, the Air Force personnel data used in this

work has been aggregated to the national level, limiting the detail to which relationships can

be explored. This was done to match the national economic data available, and to protect

personal information of the individuals included in the analysis.

The military personnel data concerns those serving during the 2004-2017 timeframe, and

the economic data matches. Some extraordinary events occurred during that period, notably

the Great Recession beginning in 2008, which may have altered normal military retention

behavior. The U.S. military is also transitioning to a new retirement system. It is possible

that any relationships revealed in this thesis will be affected differently by the new retirement

system.

1.3 Assumptions and Limitations

As with any analytic endeavor, several assumptions are made in order to faciliate the

modeling of real world phenomena. Perhaps most central to this thesis is the assumption

that there exists at least one economic indicator (but ideally many) that helps inform an

individual military member’s decision to stay or leave active duty service. It is also assumed

that if these variables do not directly inform individual retention decisions, they serve as

adequate proxies for unobservable or abstract factors that do influence the individual’s de-

cision. For instance, members may not follow the movements of the Consumer Price Index

(CPI), but that movement should provide information on the cost of living which may affect

2



the decision to stay in the military. Naturally, it is assumed the collective individual behav-

iors adequately aggregate so that the data employed is reflective of the collective individual

behaviors. We also assume that the skills held by the Air Force officer corps are largely trans-

ferrable to civilian labor markets. Standard assumptions asociated with regression modeling

and forecasting are made (independent, normal, and homoscedastic errors) and are tested,

as well.

1.4 Outline

This chapter introduced the retention problem investigated and discussed the founda-

tional motivations and thoughts underpinning the thesis. The next chapter reviews the

related literature - the efforts used to better frame the problem and previous attempts to

model it. The third chapter focuses on the methodology, documenting how and why the

data were attained (i.e. sources and selection criteria), as well as any transformations nec-

essary to conduct the analysis. Chapter III continues by discussing the modeling procedure

in detail, including general steps and specific mathmatical formulations. Lastly, the results

are examined and insights or conclusions are highlighted in Chapter IV.
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II. Literature Review

2.1 Chapter Overview

Managing personnel and modeling retention behaviors have, appropriately, long been a

concern of the Department of Defense as well as almost any non-military organization. This

chapter summarizes the retention problem, examines previous research endeavors, and finally

discusses the impetus for the econometric approach used in this research.

2.2 The Military Retention Problem

All organizations have some problem associated with retaining their people. This is es-

pecially true of the military, wherein members are routinely confronted with deployments,

long duty hours, and frequent relocations - factors generally not found in non-military orga-

nizations. These factors produce high stress on the military members and their families, who

play a significant role in a member’s retention decision [1]. Evidence suggests that individu-

als serving in the military are generally more tolerant of these conflicts [2], but the causes of

attrition involve more than just familial concerns. Kane [3] argues the military suffers from

a chronic personnel mismanagement problem: members’ merit is not always rewarded nearly

as well as it is in the private sector, in terms of personal recognition and upward movement,

partly due to heavy bureaucratic restrictions. This disparity can lead to frustration and job

dissatisfaction, damaging the member’s commitment to the organization and incentivizing

their attrition behavior [2].

Compounding the internal frustrations, civilian labor markets can offer intense incentives

for leaving. Barrows [4] details the mechanisms underpinning U.S. Air Force pilot attrition

4



to civilian airlines, framing the problem with human capital theory. The military offers a

unique opportunity for developing highly desired skill sets, placing members in positions of

high stress, and providing them responsibility at early stages of professional development

[3]. Furthermore, evidence suggests that the military as an insitution is quite adept at

attracting intelligent and capable individuals [5]. Providing innately talented individuals

with a high degree of general and specific training fosters the development of high-performers

with desirable and broadly applicable skill sets. Therein lies the problem. Civilian firms are

typically more flexible in their ability to compensate such individuals through organizational

advancement and wage, often outcompeting the military [3]. These phenomena are in direct

contradiction to the principles for successful retention laid out by Asch [6]. Asch explains

that in order for military compensation to be attractive, it needs to be at least as great as

the members’ expected wages and benefits as would be offered by civilian labor markets.

Compensation should also be contigent upon performance, reflecting the individual’s value

to the organization, to maintain motivation and disincentivize attrition [6]. In order to

help best determine compensation, then, it behooves the military to develop methods for

anticipating the effects of labor market conditions on military members’ retention decisions.

2.3 Previous Research

There have been many forays into personnel retention modeling and forecasting. Saving

et al. [7] find a significant interaction between labor markets and military retention by

analyzing individual career fields within the U.S. Air Force. Their results indicate that

demographic factors such as race and education level are influential to retention at early

stages, but exhibit diminished effects as careers progress. Additionally, their work supports

the conjecture that civilian wages, unemployment rates, and other economic variables affect

military retention.

In 1987, Grimes [8] investigated the retention problem by applying a variety of regression

5



methods (ordinary multiple linear regression, with logarithmic tranformations on response

and/or explanatory variables) to try and predict officer loss estimates 6-12 months in the fu-

ture. He was unable to provide adequate effects estimates or reliable predictions, concluding

that the chronological nature of the data led to serial correlation errors.

Fugita and Lakhani [1] use survey and demographic data compiled by the Defense Man-

power Data Center to estimate hierarchical regression equations to describe retention be-

haviors in Reservists and Guard members. Hierarchical regression models are useful when

there exists some causal ordering among predictors, as is often the case with demographic

and economic data. This causal relationship can lead to high multicollinearity, increasing

the estimated standard error of coefficient estimates and resulting in non-significant predic-

tors. They find that, for both officers and enlisted, retention probabilities tend to rise with

increased earnings, years of service, and spousal attitude towards retention. Their work re-

inforces the importance of including demographic variables in retention modeling, and that

wages are in the forefront of a member’s mind when deciding to stay.

Gass [9] takes a more general view by modeling the manpower problem in three different

ways: as a Markov chain with fixed transition rates between nodes, as a minimum-cost

network flow problem, and as a goal-programming problem. While potentially easier to

interpret, these models can present a too-sanitized picture of an enormously complex system,

particularly the current military personnel system.

Barrows [4] analyzes retention, specifically for Air Force pilots, through the lens of human

capital and internal labor market theories. He argues two points important to this thesis:

the degree of specific training is inversely correlated with attrition, and that the Air Force

personnel system suffers from the inefficiences typical of an internal labor market.

To Barrows’ first point, the military offers a high degree of general and specific training.

General training is conducive to attrition, as it allows the individual to more easily transfer

between military and non-military jobs. Specific training decreases worker transferability

and helps improve military retention. This effect is seen in differing retention rates between

6



general pilots (e.g. cargo, heavies) and those with more specific skill sets (e.g. helicopters,

fighters). One can imagine this would also reveal itself in the non-rated officer population;

that is, career fields with transferable skill sets suffer more from attrition than those with

specific skill sets. For instance, logistics or inventory specialists are more general than aircraft

or missile maintenance, which tends to be more military specific.

Regarding Barrows’ second point, workers are somewhat insulated from the competition

posed by outside labor markets (e.g. Field-grade officers do not have to worry about civilians

being hired specifically to replace them), and are paid according to position as opposed to

productivity. Shielding employees from outside competition can possibly remove incentive

for performance; individuals who feel more secure in their jobs may not try as hard. Not

paying according to performance can also be damaging in two ways: high-performers can

feel undervalued and motivated to leave, and under-performers could be receiving more than

they produce.

Looking to the Navy, specifically Junior Surface Warfare Officers (SWOs), Gjurich [10]

found that one of the most important factors affecting retention was marital status. Single

officers are more likely to leave than those with families. This actually may be a proxy

for risk aversion. Those officers with dependents may be less likely to risk unemployment

by leaving the military, choosing instead to retain and keep a relatively secure job. Again,

the importance of demographic factors was reinforced, but little is said of the economic

considerations.

In 2002, Demirel [11] used logit regression to analyze retention behaviors for officers at

the end of their initial service obligation and at ten years of service. While the focus of this

endeavor was to identify any changes in retention related to commissioning source, several

other demographic factors - such as marital status, education level, and gender - were found

to be statistically significant. This reinforces conclusions about demographic factors drawn

by previous research efforts, and shows evidence that these trends generally apply to the

military population, instead of particular service branches.
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Ramlall [12] takes a less technical approach and surveys the existing employee motivation

theories to offer an explanation of how employee motivations affect retention, and how the

disregard for the principles contained therein motivate attrition. Many causes are discussed,

and a few are consistent (or at least common) amongst the spectrum of motivation theories.

When wages and promotions are not viewed as tied to performance, individuals are disin-

centivized and do not feel as loyal to the institution. Also, a lack of flexibility within job

scheduling and structure is seen as disloyal or disrepectful to the individual. Lastly, when

managers fail to act as coaches or are not seen as facilitators to employees’ careers, turnover

rates tend to be greater. Given that civilian labor markets are generally more flexible in

both pay structure and work scheduling, Ramlall’s research underpins the importance of

incorporating civilian labor market conditions.

More recently, Schofield [13] employs a logisitic regression model to identify key demo-

graphic factors influencing the retention decisions of non-rated Air Force Officers. She finds

that career field grouping, distinguished graduate status at commissioning source, years of

prior enlistment, and several other structural variables were significant. She then utilizes

these factors to generate a series of survival functions describing retention patterns and be-

havior. Again, the importance of demographic factors is reinforced. However, any possible

effects of economic factors were unexplored.

Looking at the rated officer corps, Franzen [14] takes a similar approach to Schofield

[13] using logisitic regression to identify significant factors and generating survival functions.

However, Franzen’s work differs from Schofield by choosing to also assess the influence of

economic, demographic, and other variables exogenous to the military. She finds that marital

status, number of dependents, gender, source of commissioning, prior enlisted service, and

the New Orders value from the Advance Durable Goods Report were all significant. The first

couple of factors support the notion that familial strain caused by military service affects

retention, the next few factors (gender, source of commissioning, and prior service) reaffirm

the work conducted by Schofield. The last variable, New Orders, suggests that indicators of

8



economic health play some role in retention decisions. This last observation is a motivation

for this thesis research.

In that vein is the work conducted by Jantscher [15] where she conducts correlation

analysis to determine the relationship between a host of economic indicators and retention

rates for each Air Force Specialty Code (AFSC). The results of the preliminary correlation

analysis provide a subset of economic indicators shown to be correlated with retention, such

as unemployment rates, gross national savings, real GDP growth, etc. She then attempts to

form a regression model to forecast retention, but was unable due to achieve an adequate

model due to high multicollinearity between many of the indicators. Nonetheless, her corre-

lation analysis provides a starting point from which additional modeling techniques may be

applied.

2.4 Insights

Several key themes arise based on this review of the literature:

• Demographic and economic factors can play a significant role in a member’s attitude

towards retention;

• Military members are aware of and incorporate opportunities in the civilian labor

market when deciding to remain in or leave military service;

• Logistic regression on demographic data yields promising results when predicting whether

an individual will remain in service, but may be innappropriate for modeling aggregate

trends; and

• Effects estimation of economic factors through regression can be difficult, as many

indicators are highly correlated.

What is also apparent is that there are several topics yet unexplored:

• Modeling the military population with performanced-based pay structures and ad-

vancement schemes to estimate effects on retention;

9



• Determining how comparable the military population is to the civilian, and how easily

the professional skills sets exhibited by the former transfer to the latter; and

• Applying other forecasting techniques (ARIMA, Exponential Smoothing, Dynamic Re-

gression) to retention data to help achieve models that provide insight into the military

retention problem.

This thesis research focuses on the last point. The research goal is to forecast Air Force

Non-rated officer retention with a dynamic regression model in order to estimate the effects

of different economic indicators. This is approach covered in the next chapter.

10



III. Analysis and Results

3.1 Data Composition

3.1.1 Introduction

Predictive and descriptive analyses begin with attaining an understanding of the data.

Every data set has its idiosyncracies, its own unique challenges. Understanding these char-

acteristics and the meaning of the data - what the variables represent and how they might

interact with each other - is key to any successful analytic endeavor. Below, the data used

in this research are described in detail to include its sources, meaning, and peculiarities.

3.1.2 HAF/A1XDX

The Strategic Analysis branch of the Force Management Division of Headquarters Air

Force (AF/A1XDX) provided the data on Air Force personnel used in this research. The data

are extracted from the Military Personnel Data System (MilPDS), a database containing Air

Force personnel data for every airman over his or her career. The data are input by trained

personnelists or are automatically updated within the system (e.g., age will automatically

increase). The data were originally split into two separate .sas7bdat files, one containing

monthly attrition numbers for each Air Force Specialty Code (AFSC) and the other detailing

monthly assigned levels for each AFSC. Each file contains information starting in October

of 2004 through September of 2017, for a total of 156 observations across 67 AFSCs.
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3.1.3 Federal Reserve Bank of St. Louis

The Federal Reserve Bank of St. Louis is one of 13 banking entities which comprise

the United States’ central bank (the others being 11 regional reserve banks and the Board

of Governors). As a whole, the central bank is responsible for determining and enacting

monetary policy for the U.S. Many of these entities maintain expansive databases contain-

ing information about the U.S. economic environment - financial data, national employ-

ment statistics, private sector business data, etc. Fortunately, the Federal Reserve Bank of

St. Louis offers public access to the Federal Reserve Economic Data (FRED) database via

an online interface. From this interface, historical data on several economic indicators were

retrieved for this research: the nation unemployment rate (both seasonally adjusted and

non-adjusted), the labor force participation rate (LFPR), job openings (adjusted and not),

total nonfarm job quits, the labor market momentum index, real GDP per capita, and the

consumer price index (CPI). Each indicator consists of monthly recordings across varying

time spans (e.g. 1990-2016 or 2001-2017).

The LFPR is the percentage of the population actively employed or looking for employ-

ment. Changes to the participation rate can give insight into the strength of the economy

- e.g. rising participation is usually associated with economic growth. When paired with

unemployment rates, the LFPR can also reveal people’s attitude about the economy. For

example, the steady decline of participation from 2010 onward (seen in Figure 1) might in-

dicate that the decrease in unemployment over the same period is somewhat exaggerated;

people seeking, but unable to find work may become discouraged and exit the labor force,

artificially decreasing the unemployment rate. It is possible that this perception of economic

health affects military retention decisions. In this research, LFPR is restricted to members

of the civilian labor force with at least a baccalaureate degree and no younger than 25 years

of age. This subset of the civilian labor force most closely matches the characteristics of

military officers.
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Figure 1. Participation and Unemployment

It is assumed that the skillsets of the target population (Air Force officers) are most trans-

ferrable to those jobs covered by nonfarm payrolls. Nonfarm is a category of the labor force

that excludes proprietors, private household employees, unincorporated self-employment, un-

paid volunteers, and farm employees [16]. Job quits are generally voluntary separations and

may reflect workers’ willingness to leave the job; it may be that the a higher propensity to

volutarily leave a job translates to a positive outlook on obtaining another and the economy

as a whole.

The labor market momentum index compares current labor market conditions to his-

torical averages. A negative value indicates conditions below the long-term average, and a

positive value indicates favorable conditions. The CPI examines the weighted average price

of a basket of consumer goods and services; it is used to estimate the cost of living. There

is some uncertainty involving employment in separation from the military, so cost of living

information may be especially important to the retention decision as the military is excluded

from CPI statistics.
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By including these variables in a regression model and estimating their effects on military

attrition trends, this work seeks to capture military members’ perceptions of economic health

and job prospects, and use that information as a means to forecast Air Force officer attrition.

3.1.4 Cleaning and Preparation

Perfect data are rarely found or received outside of the classroom, and such is the case

here. Before exploration and modeling, several steps helped produce a useable data set.

The personnel data is first converted from long to wide format. Originally, the personnel

data comes with three variables: Air Force Specialty Code (AFSC), Date, and Separations.

This form is not conducive to modeling. A new variable is thus created for each category

in AFSC containing the associated separation counts. This procedure generates missing

values, which then must be dealt with appropriately. Missing values can result from sev-

eral underlying issues: data storage corruption, entry errors, miscommunication between

software, none of which apply here. Since the attrition data is a monthly count of people

exiting USAF service, the intuition is that these missing values simply represent a lack of an

observation (i.e. zero separations). This is confirmed by the data’s provider. Therefore all

missing values in the personnel data are replaced with zero. Initially, observation dates are

stored as the number of days since 1 Jan 1960 (the standard for SAS). This is transformed

into YYYY-MM-DD to facilitate its merging with the economic data. An additional column

is tabulated, the total separations across all AFSCs. This column total is the response used

Table 1. Selected Economic Indicators

Variable Description

Labor Market Momentum Index Compares current market conditions to long-run average
CPI Weighted average price of a basket of goods and services
Nonfarm Jobs Openings Unfilled positions at the end of the month in the nonfarm sector
Real GDP per Capita Measure of economic output per person, adjusted for inflation
Nonfarm Job Quits Voluntary separations from jobs in the nonfarm sector

Unemployment Rate Percentage of unemployed individuals in the labor force
Labor Force Participation Rate Percentage of the population either employed or actively seeking work
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for the modeling efforts

The economic data do not require much treatment as they come from a professionally

managed database. One of the indicators, real GDP per capita, occurs in quarterly intervals

while the rest are monthly. To make data comparable, the quarterly values are applied across

each month in the quarter (e.g. the observation for Q1 2006 is applied over January, Febuary,

and March 2006). Then, variables are also renamed for clarity. Finally, economic data are

merged with the personnel data through an inner join, preserving only those observations

with dates common to both data sets.

3.2 Model Selection

3.2.1 Introduction

General modeling practices involve horizontally splitting the original data set into at least

two, sometimes three, subsets. This ensures model fitting and assessment are independent

processes. There are many ways to generate these subsets, each particular to the structure of

the data. With time-series data, as in this research, the typical approach is to retain roughly

the first 80 percent of the data for model fitting, leaving the rest for model assessment.

These two sections are respectively known as the training and validation sets. The training

set is used to estimate model parameters, which are then used for predictions on subsequent

observations. These predictions are compared against the validation set - actual, observed

data - as a means of assessing model performance. Model performance is assessed using three

criteria: the corrected Akaike Information Criteria (AICc), training root mean square error

(training RMSE), and validation root mean square error (validation RMSE). Generally, bet-

ter model performance is associated with lower scores for each criteria, so ‘good’ models are

identified by having lower scores relative to other models. The training/validation approach

is applied to each modeling technique employed.

This endeavor utilizes two modeling techniques for forecasting: naïve models and dynamic
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regression models (also known as transfer functions). The former is a far simpler technique

and is used as a baseline. The latter is a bit more complex. Dynamic regression has two major

components, regression and time-series, each with their own assumptions and requirements.

Regression models with multiple predictor variables assume independence of those predic-

tors (also called regressors or exogeneous variables). All regression models assume errors are

normally and independently distributed around zero with constant variance. The regression

portion is primarily concerned with coefficients of the predictor variables. These coefficients

provide insight as to which predictors have a statisically significant effect in explaining the

variability in the data.

ARIMA models are used to address the pecularities of time series data, and a brief review

of those characteristics is necessary to understand the analysis presented later in this chapter.

Foremost is the concept of autocorrelation, which is when a variable (e.g. the temperature)

depends on previous observations of itself. Another concept central to subsequent modeling

efforts is that of stationarity. A stationary variable is one that does not exhibit mean

changes, such as caused by trend or seasonality effects - when plotted over time. Stationarity

is requisite for generating reliable forecasts with time-series models. Last is a matter of

notation. In this work, backshift notation is used to indicate backwards time steps, denoted

with B and is defined below:

For a single step back,

Byt = yt−1,

for two steps back,

B2yt = yt−2,

and in general,

Bkyt = yt−k.

16



3.2.2 Initial Exploration

First, the data are examined visually. Plotting the response, total separations over all

career fields, in Figure 2 shows significant spikes during 2005, ’06, ’07, and ’14. It is known

that during these periods, special spearation incentive programs were introduced by th Air

Fofce to artificially downsize the force. The effects of these periods merit investigation later

on, as they could negatively affect model prediction performance.
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Figure 2. Monthly Officer Separations

No seasonality is immediately obvious in Figure 2. However, if each year is plotted

separately, a clearer picture emerges. First, Figure 3 shows that the extreme points noticed

noticed above seem to be relegated to the November-December time frame. Second, it is

easier to witness the seasonality: bowing across the year, with higher counts at the beginning

and end.
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Figure 3. Seasonal Plot: Total Separations

Considering these plots, it is expected that a seasonal model performs best and some

alteration will have to be made to accomodate the outliers. To confirm, naïve models are fit

to the data and the results are examined. Beyond revealing seasonality and outlier effects,

fitting naïve models establishes a baseline to compare against later models. Naïve models

are very simplistic, so if later models perform worse or only marginally better, it implies

they are not capturing much information.

Figure 4 gives evidence to the negative effects of outliers. Notice the large confidence

intervals surrounding the naïve forecast and the 2014 spike carried through in the seasonal

forecast.
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Figure 4. Simple and Seasonal Naïve Forecasts

Tables 2 and 3 show different error metrics for each of the two models. Judging by

root mean square error (RMSE), the seasonal model generally fits the training data better,

possibily indicating presence of seasonality effects. However, there is a large disparity be-

tween validation RMSEs, possibly caused by the major spike in 2014 - reaffirming the earlier

intuition about outlier effects.

Table 2. Naïve Results

ME RMSE MAE MPE MAPE MASE

Training set -1.651 312.523 195.984 -12.530 42.093 1.261
Test set -62.600 160.642 144.300 -37.265 51.569 0.928

It is known that during years 2005, ’06, ’07, and ’14 special separation programs were

implemented. Given the effect those years appear to have on modeling, they must be ac-

comodated before continuing. Before deciding how, the explicit points in question need to
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Table 3. Seasonal Naïve Results

ME RMSE MAE MPE MAPE MASE

Training set 16.496 291.791 155.452 -7.374 30.452 1.000
Test set -238.850 454.288 271.450 -59.852 67.315 1.746

be identified. To help, refer to Figure 3. As noted above, the spikes generally occur in

November and December. However, the observations from 2005 are close enough to those

from other years that they may have resulted naturally. Minimal removal of information

from the data set is desired, removing only that which is misleading. So, November and

December observations from 2006, ’07, and ’14 are selected for replacement.

Given the seasonality in the data set, the replaced values should stem from matching

observations in previous years, as opposed to previous observations within the same year.

The outliers are replaced (or imputed) with the arithmetic mean of all years not being

replaced (e.g. November 2006, ’07, ’14 are replaced with the mean separations in November

for all other years).

Replotting the response in Figure 5 shows a much better behaved data set. The data

look fairly stationary, setting the stage for developing more complex forecasting models.
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Figure 5. Separations - Outliers Removed

With the outliers replaced, seasonal effects are much more apparent (see Figure 6), further

enforcing the need for a seasonal model.
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Figure 6. Seasonal Plot: Outliers Removed

Table 4 compares the seasonal naïve RMSEs before and after imputing the identified
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outliers. The results indicate that removing and replacing the extreme values for November

and December improved the model. This is further reflected by the forecast (shown in blue)

in Figure 7, which follows the validation data (shown in orange) more closely than those

in Figure 4. Overall, these results imply that imputation of the selected observations was

useful.

Table 4. Seasonal Naïve RMSE Comparison

Raw Data Imputed Data

Training 291.791 161.262
Validation 454.288 186.584
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Figure 7. Seasonal Naïve Forecast After Imputation

3.2.3 Dynamic Regression

Naïve models are simple, regression models adequately involve exogenous predictor vari-

ables, and time series model adequately handle autoregressive components of data. In-

dividually these models are useful, but cannot handle both exogenous and autoregressive

components.

Dynamic regression is a regression model with an ARIMA model fit to the errors. The

regression piece allows use of independent variables in predicting a response, and the ARIMA
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portion helps model the autoregressive information which can exist in time-series data. The

general formulation of a dynamic regression model with ARIMA(1,1,1) errors:

yt = β0 + β1x1,t + ...+ βkxk,t + nt

where,

(1− φ1B)(1−B)nt = (1 + θ1B)et

and et is white noise. The φ1 is the non-seasonal autoregressive coefficient while the θ1 is the

non-seasonal moving average coefficient. The (1−B) indicates the errors are also subjected

to a single order of differencing to achieve a stationary time-series in the error term.

Fitting a dynamic regression model requires taking several steps to ensure key assump-

tions are not violated. First is to address the issue of collinearity. Collinearity between

predictor variables implies a dependent relationship and can lead to innaccurate coefficient

estimates, a result contrary to the goal of any modeling effort. To avoid this pitfall, a cor-

relation matrix of possible regressors is compiled and examined. A correlation matrix shows

how collinear each pair of indicators is. A high correlation coefficient between indicators

implies collinearity, meaning the variables should not be used together in the model. Fig-

ure 8 shows the correlation between all pair-wise combinations of variables in the economic

data set. There are many instances of collinearity, which is expected since many economic

indicators are constructed from similar information. There are some independent subsets,

though, and these are the candidates for the dynamic regression model.
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Figure 8. Correlation Matrix - Economic Indicators

Given their low correlation, Unemployment Rate (Adj.), Labor Force Participation Rate,

and Labor Market Momentum Index are selected as independent variables. To ensure the

assumptions made by the ARIMA piece of the model, the stationarity of the regressors is

checked. Though trend and seasonality components can be incorporated through regression

techniques, ARIMA models require stationarity. Non-stationary variables can produce in-

consistent coefficient estimates, even if they are independent. To assess, a plot of the three

indicators in Figure 9 is generated.
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Figure 9. Economic Indicators - Raw

Each of the three indicators show evidence of a trend or changing mean(i.e. are non-

stationary). To handle this, the data are differenced. The resulting data are shown below in

Figure 10.
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Figure 10. Economic Indicators - Differenced

Simple differencing produces the desired effect, the data are stationary. It is important

to note the regressors now show the month-to-month change, which will be pertinent when

interpreting results.

With stationary and independent economic indicators, model formulation can transition

from regression to the ARIMA portion. Up to six parameters can be specified and estimated:

the order of autoregression, degree of differencing, and order of the moving average (p, d,

and q, respectively) and their seasonal counterparts (P,D, and Q). Many combinations are

considered. A range is specified for each parameter, and a model is fit for every combination

within the specified ranges; the model with the lowest corrected Akaike Information Criteria

(AICc) is selected. For the first, and all subsequent, dynamic regression models in this work,

the following ranges/values were used: p, q ∈ [0, 5], d,D = 0, and P,Q ∈ [0, 2].
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For this first pass, the model selected was a regression model with a fourth-order moving

average and first-order seasonal autoregression on the errors. More explicitly:

y = β0 + β1x
′
1,t + β2x

′
2,t + β3x

′
3,t + nt

where,

(1− Φ1B
12)nt = (1 + θ1B + θ2B

2 + θ3B
3 + θ4B

4)et

and,

x′i,t = xi,t − xi,t−1

The coefficient estimates are shown in Table 5:

Table 5. Estimated Coefficients - Initial Model

θ1 θ2 θ3 θ4 Φ1 β0 β1 β2 β3

Coeff 0.218 0.145 0.336 0.260 0.576 429.875 -13.390 -15.949 -2.819
StdErr 0.087 0.088 0.092 0.092 0.082 47.602 22.286 35.016 11.494

Model assessment involves analysis of the residuals. Residuals are examined for evi-

dence of remaining autocorrelation, satisfaction of normality assumptions (et ∼ N(0, σ2)),

and outlier effects. Figure 11 provides the plots used to answer those questions. The top

subfigure plots the raw model residuals, and is used to identify possible trends, seasonality,

or heteroscedasticity. Fortunately, none of those features are apparent. The bottom-left is

used to examine significant autocorrelation in the residuals; significant correlations would

indicate a possible violation of the independence of the residuals. The current model’s re-

sults only show one lag-period with significant autocorrelation, which may mean that there

is information unnaccounted for by the current model. Overall autocorrelation, however,

appears insignificant, as further evidenced by the results of a Ljung-Box test for autocorre-

lation (Table 6). The bottom-right plot shows a histogram of the residuals, comparing the

raw distribution against the ideal normal. The plot shows slight skewness, but overall the

data appear normal. Thus, there is little, if any, misbehavior in the model’s residuals.
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Figure 11. Initial Attrition Model - Residual Analysis

Table 6. Initial Model - Autocorrelation Test

Test type Test statistic p-value

Box-Ljung test 10.121 0.812

Forecasts are generated from the training data and compared against the validation

data. Figure 12 plots the training and validation data against the model predictions. Large

movements are generally captured, even if not perfectly forecast. To compare modeling

performance, the RMSEs from the models are compared in Table 7.
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Figure 12. Initial Model - Forecasts Against Validation Data

Table 7. Model RMSE Comparison

Simple Naïve Seasonal Naïve Dynamic Regression

Training 199.832 161.262 130.746
Validation 160.642 186.584 142.988

Dynamic regression demonstrates greater ability to forecast the attrition data than the

naïve models. However, the high standard errors of the regression coefficients (β1, β2, and β3

in Table 5) indicate that none of the economic indicators are statistically significant. This

means the ARIMA model handles all the forecasting and the regression provides little insight.

Essentially, the economic predictor variables do not explain much of the data variability. This

could be for several reasons:

• With differencing, the indicators represent month-to-month changes. For most obser-

vations in the data set those changes are marginal, resulting in an insignificant effect

on attrition, at least numerically.
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• The economic and personnel data are both aggregated to the national level. It is

possible that such a degree of aggregation includes enough noise to mask any economic

effects.

• As they are, the indicators show only the previous month’s change. The regression

coefficients represent the effects last month’s changes have on this month’s attrition.

Intuitively, this does not seem correct. Voluntary separation from the military is a

long, bureaucratic process; as such, it is more probable that members decide to leave

the military more than a month ahead of time.

Unfortunately, there is not much that can be done about the first point. As mentioned

earlier, the indicators must be stationary in order to ensure the reliability of any potential

effects, and the data must be differenced to be stationary.

3.2.4 Lagged Economic Indicators

Occasionally with time-series data, the effect of one variable on another is not be im-

mediately observed. Consider a production firm redirecting profit towards self-investment.

Ideally, this investment will lead to enhanced production capacity and higher revenue, though

likely at a much later date. In the same sense, the current economic conditions could have

a greater effect on attrition 12 months from now than they do today. In this section, the

relationships between attrition and the lagged economic inidicators are explored.

The economic data is observed monthly over 12 years, and so there are many possible

lag-periods to consider. It is also possible that the best lag-period is not identical for all

predictors, so several combinations of different predictors lagged to different periods should

be tested. This results in a very large test space. To decrease computational requirements,

lag-periods are restricted to 0, 6, 12, 18, and 24 months. A separate dynamic regression

model is generated for every combination of predictor and lag-period. This amounts to

125 dynamic regression models. The models are evaluated and compared on three metrics:
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AICc, training RMSE, and validation RMSE. Any models that peform well by comparison

are inspected further.

Table 8 below summarizes the values for each performance metric. Note that the mini-

mum value for each category are below those seen in the previous model. This suggests that

lagging the model’s predictors can yield better results than using current values. The lagged

models are thus invesitgated in greater detail.

Table 8. Summary Statistics - Lag Results

AICc Training.RMSE Validation.RMSE

Min. :1291 Min. :127.0 Min. :122.3
1st Qu.:1299 1st Qu.:133.0 1st Qu.:156.3
Median :1372 Median :134.8 Median :163.9
Mean :1361 Mean :134.6 Mean :164.8
3rd Qu.:1378 3rd Qu.:137.7 3rd Qu.:175.1
Max. :1613 Max. :140.4 Max. :187.6

The 1st quartiles of each performance criteria are used to filter the set of models, seeking

models which perform well in all three categories. Only one model does, when the unem-

ployment rate is lagged by 24 months, labor force participation rate by 18 months, and labor

market momentum by 24 months.

Table 9. High Performance Across All Criteria

UR.lag LFPR.lag LMM.lag AICc Training.RMSE Validation.RMSE

lag24 lag18 lag24 1292.005 126.9902 146.6523

Inspecting the model further reveals that one of the economic indicator is a significant

predictor, unemployment rate lagged at 24 months. Unfortunately, none of the other pre-

dictors are significant in this model (shown in Table 10).

Top performers are also identified by comparing the best five models from each criteria

individually and looking for commonalities. The results in Table 11 show that only AICc and

Training RMSE have commonalities. The models in common are where the unemployment

rate, labor force participation rate, and labor market momentum are respectively lagged

31



Table 10. Best Across All Criteria

term estimate std.error

ma1 -0.6686164 0.0993732
ma2 -0.2256966 0.1119664
sar1 0.8797210 0.1779036
sma1 -0.4942166 0.4519305
UR.lag.train[, "lag24"] 83.5668948 24.7823250

LFPR.lag.train[, "lag18"] 66.5150439 35.9139704
LMM.lag.train[, "lag24"] -2.3988843 13.6970392

at (24, 18, 6), (24, 18, 18), and (24, 18, 24). The identified models are next inspected

individually for coefficient significance.

Table 11. Common High Performers

UR.lag LFPR.lag LMM.lag AICc Training.RMSE Validation.RMSE

Best by AICc
lag24 lag18 lag6 1290.809 128.5034 164.7404
lag24 lag18 lag18 1290.939 128.5950 163.3188
lag24 lag18 lag12 1291.484 128.9926 165.1801
lag24 lag18 lag0 1291.670 129.1358 163.8772
lag24 lag18 lag24 1292.005 126.9902 146.6523

Best by Training RMSE
lag24 lag18 lag24 1292.005 126.9902 146.6523
lag24 lag24 lag12 1292.050 128.2139 175.2866
lag24 lag24 lag6 1292.106 128.3596 171.1853
lag24 lag18 lag6 1290.809 128.5034 164.7404
lag24 lag18 lag18 1290.939 128.5950 163.3188

Best by Validation RMSE
lag0 lag0 lag24 1306.135 135.0200 122.3425
lag0 lag6 lag0 1528.092 133.3393 134.2465
lag0 lag0 lag6 1527.850 133.2320 136.0557
lag6 lag6 lag6 1528.026 133.2758 138.7995
lag6 lag0 lag6 1528.028 133.3174 138.8589

The last common model (24, 18, 24) has already been inspected; it is the same one in Table

10. That leaves two models for comparison (24, 18, 6) and (24, 18, 18). Their coefficients are

summarized in Tables 12 and 13 below, respectively. Both tables show similar results as the
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previous model (24, 18, 24): The unemployment rate is a significant predictor, labor force

particpation has a large effect but with high standard error, and labor market momentum

has a small effect with a large standard error.

Table 12. Common High Performer 1

term estimate std.error

ma1 -0.6988796 0.0973710
ma2 -0.2255698 0.1092249
sar1 0.6372280 0.0883485
UR.lag.train[, "lag24"] 92.7925361 26.0922804
LFPR.lag.train[, "lag18"] 60.2058317 35.8537777
LMM.lag.train[, "lag6"] 10.9102055 11.7262875

Table 13. Common High Performer 2

term estimate std.error

ma1 -0.6768423 0.0997710
ma2 -0.2515895 0.1139329
sar1 0.6368839 0.0873641
UR.lag.train[, "lag24"] 93.4916257 25.9975212
LFPR.lag.train[, "lag18"] 61.6302177 35.3374730
LMM.lag.train[, "lag18"] -10.2948441 11.9100709

Recall in Figure 8 that labor market momentum and labor force particpation rate are

moderately correlated. Investigation into labor market momentum reveals that it is a com-

bination of many economic indicators, including labor force participation. In short, labor

market momentum repeats the information represented by the other two predictors and

could be introducing multicollinearity issues. Given that information and the collection of

estimates discussed above, labor market momentum is removed.

Lagged variable analyis is repeated with labor market momentum excluded from the list

of possible predictors. 25 dynamic regression models are generated (with the identical lag

periods) and compared. This time, no model falls under the 1st quartile for all performance

criteria. Comparing the top five performers for each criteria does yield results. A dynamic

33



regression model with the unemployment rate lagged by 24 months and labor force partici-

pation rate lagged by 18 months falls into the top five performers under AICc and Training

RSME. Notice that the repsective lag periods are identical to those in earlier models. Table

14 summarizes the coefficient estimates.

Table 14. Top Model - Reduced Model

term estimate std.error

ma1 -0.6951414 0.0974040
ma2 -0.2326008 0.1099844
sar1 0.6315523 0.0887194
UR.lag.train[, "lag24"] 93.0157912 26.2632321
LFPR.lag.train[, "lag18"] 62.4380155 35.8104021

Unfortunately, earlier trends in coefficient estimates hold. The unemployment rate has

a noticeable and significant effect, and the labor force participation rate does not. It is

worth mentioning, however, that the coefficient estimates are very close to those in earlier

models, implying that labor market momentum is a redundant predictor. While these models

provide some evidence of significant effects, it is possible that other combinations of economic

indicators are better fit. In the next section, this idea is explored.

3.2.5 Alternative Economic Subsets

Section 3.2.3 notes that there exist other subsets of economic indicators with low corre-

lation, besides unemployment, labor force participation, and labor market momentum. In

particular, nonfarm job quits and labor force particpation have a correlation coefficient of

-0.07, the next lowest after unemployment and labor force participation. This motivates

examination of dynamic regression models which include the former pair. The models are

generated and analyzed. Each predictor is lagged at 0, 6, 12, 18, and 24 months, and a

dynamic regression model is produced for every combination. These models are compared

by AICc, training RMSE, and validation RMSE, seeking to identify top performers.

From this analysis, only one model produces results comparable to previous models.
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Table 15 displays the specified model and its perfomance scores. Though the scores are

marginally worse than the best models from the previous iteration, the coefficient estimates

are more important in providing insight about attrition.

Table 15. Alternative Predictors - Best Model

Quits.lag LFPR.lag AICc Training.RMSE Validation.RMSE

lag24 lag24 1301.586 137.252 192.0631

Unfortuntely, Table 16 shows no evidence that either predictor is statistically significant.

The combination of labor force participation and nonfarm quits does not affect attrition. As

with the intitial models, predictive capacity is likely managed by the ARIMA portion alone.

Table 16. Alternative Predictors - Coefficient Estimates

term estimate std.error

ma1 -0.8384799 0.0956497
sar1 0.7041322 0.0841965
Quits.lag.train[, "lag24"] -0.1078249 0.0741378
LFPR.lag.train[, "lag24"] 63.5418324 43.4367079

3.2.6 Summary of Analysis

This section analysed nine economic indicators and hundreds of models, in several iter-

ations. The best models were identified and explored, revealing some trends and signifcant

predictors. The insights gleaned from this process are summarized and discussed in the next

chapter.
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IV. Conclusions and Insights

The research sought to identify economic indicators with statistically significant effects

on attrition and to specify a mathematical model with which to build reliable forecasts of

attrition. Regarding the former, nine separate economic indicators were initially consid-

ered (summarized in Table 1). Correlation analysis was used to identify subsets of variables

exhibiting the least interdependence to avoid the effects of multicollinearity. Initial mod-

eling found no statistically significant effects. However, subsequent attempts found that

lagged economic indicators were significant. Specifically, the unemployment rate lagged by

24 months was found to be statistically signifcant in all of the top performing models. No

other variables analyzed (labor market momentum, labor force participation, and nonfarm

job quits) showed evidence of significant effects. Regarding forecasting capacity, all of the

top performing dynamic regression models explored in Chapter III exhibited lower training

and validation RMSE than the naïve models. That is, the dynamic regression technique,

regardless of predictor significance, is better adapted for forecasting attrition than simply

applying previous observations forward. This work confirms results found in previous endeav-

ors (such as Jantscher [15]), reinforcing the relevance of the unemployment rate to attrition.

This work builds on that knowledge by also providing a timeline, finding evidence that the

current unemployment rate has a significant effect on attrition two years later.

Many possibilites were addressed in this work; four naïve models and 33,792 unique

dynamic regression models (176 regression specifications, each with 192 ARIMA variations).

By no means does this encapsulate the total set of possible models. There are many avenues

left unexplored by this research. Future work in this area could, first, explore different subsets

of the economic indicators identified. The initial set of economic indicators can also easily be

expanded; the relevant data is freely accessible to the public. Only five unique lag-periods
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were investigated, and the procedure discussed could easily incorporate more vaired time

lags (at the cost of more time and computational complexity). Lastly, all data considered

were aggregated to the national level and only total attrition across U.S. Air Force officers

was evaluated. Future work in this area could, and should, investigate possible differences

across AFSC groupings and, if possible, at a higher level of fidelity (e.g. state or county

vs. national aggregates).
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Appendix A. R Code

# check for req’d packages, install if not present

list.of.packages <- c("tidyverse", "lubridate", "sas7bdat", "fpp2", "reshape2",

"stargazer", "knitcitations", "RefManageR", "xtable",

"kableExtra", "zoo", "tictoc")

new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]

if(length(new.packages)) install.packages(new.packages, repos="http://cran.us.r-project.org")

#library loadout

library(sas7bdat)

library(zoo)

library(lubridate)

library(reshape2)

library(kableExtra)

library(knitr)

library(gridExtra)

library(tictoc)

library(tidyverse)

library(fpp2)

# set directory for lazy data referencing - allow switch between macOS and Windows

# Basically just set working directory to wherever local repo is held

#setwd("~/Documents/Grad School/Thesis/github/afit.thesis/")

#setwd("C:/Users/Jake Elliott/Desktop/afit.thesis/")

#auto redirect working directory to file’s location

setwd(dirname(sys.frame(1)$ofile))

# source file containing functions created for this analysis

#source("~/Documents/Grad School/Thesis/github/afit.thesis/custom-functions.R")

#source("C:/Users/Jake Elliott/Desktop/afit.thesis/custom-functions.R")

#auto redirect working directory to function file’s location

source(paste0(dirname(sys.frame(1)$ofile), "/custom-functions.R"))

###################

# Import Data #

###################

# Personnel data

# simple list of AFSCs and description

afsc_list <- read.sas7bdat("Data/lu_ao_afs.sas7bdat")

# monthly records of assigned levels, broken out by AFSC - currently in longform

assigned <- read.sas7bdat("Data/assigned_levels.sas7bdat") %>%

spread(AFS, Assigned)

# monthly separation counts, broken out by AFSC - currently in longform
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attrition <- read.sas7bdat("Data/separations_count.sas7bdat") %>%

spread(AFS, Separation_Count)

# Econ data

setwd("Data")

econ_data <- list.files(pattern = "*_natl.csv") %>%

# Import data sets

lapply(read_csv) %>%

# Merge all sets

Reduce(function(x,y) merge(x, y, by = "DATE"), .) %>%

# Store data as tibble

as.tibble()

# Now, because gdp per cap is observed only on a quarterly basis, we add it separately

# in order to handle the missing values resulting from a merge. This merge is

# from the previous in that it keeps all values from the existing data set, creating NAs

# where gdp_per_cap does not match with other observations. Merging the quarterly

# gdp_per_cap data with the monthly indicators results in NAs in gdp_per_cap where

# the dates do not match. We then handle NAs by extending the quarterly records throughout

# their respective quarters (e.g. the GDP per cap for Q1 2014 is applied to Jan-Mar 2014).

# Simultaneously, we will rename the variables for interpretability.

# Read in GDP per capita

gdp_per_cap <- read_csv("real09_gdp_percap.csv")

# Combine gdp per cap with econ_data, using a left-join (all.x = TRUE) to preserve the main data set

econ_data <- merge(econ_data, gdp_per_cap, by = "DATE", all.x = TRUE) %>%

as.tibble() %>%

# Rename column headers to something more meaningful

select(Unemployment.Rate.Adj = UNRATE, Unemployment.Rate.NonAdj = UNRATENSA,

CPI.Adj = CPIAUCSL, Nonfarm.Jobs.Adj = JTSJOL,

Nonfarm.Jobs.NonAdj = JTUJOL, Labor.Force.Participation = LNS11327662,

Labor.Market.Momentum = FRBKCLMCIM, Real.GDP.Per.Capita = A939RX0Q048SBEA,

Nonfarm.Quits.Adj = JTSQUL, Date = DATE)

# The na.locf() command below carries a value forward through NAs until the next non-empty value is met;

# this is how we choose to represent the gdp per capita through an entire quarter

econ_data$Real.GDP.Per.Capita <- as.numeric(econ_data$Real.GDP.Per.Capita) %>%

na.locf()

#######################################

# Data Cleaning and Preparation #

#######################################

# The dates in the personnel data are in total days since 1 Jan 1960 (SAS default)

# We’ll need to reformat the date into something readable and mergeable with our

# econ set. Also, we create a new column - the total number of separations across

# all AFSCs. We’ll also create totals for different categories of officers: rated,

# non-rated, line, etc.

attrition <- mutate(attrition, Total = rowSums(attrition[-1], na.rm = TRUE)) %>%

mutate(temp = EOP_Date * 86400) %>%

mutate(Date = as.POSIXct(temp, origin = "1960-01-01")) %>%

within(rm(temp, EOP_Date))

# repeat prodcedure for assigned data
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assigned <- mutate(assigned, Total = rowSums(assigned[-1], na.rm = TRUE)) %>%

mutate(temp = EOP_Date * 86400) %>%

mutate(Date = as.POSIXct(temp, origin = "1960-01-01")) %>%

within(rm(temp, EOP_Date))

# However, the date variables differ slightly between the econ and personnel sets:

# Though both represent monthly observations, the econ set default to the first

# of each month, and the personnel data defaulted to the last

# (e.g. October 2004 is represented as 01-10-2004 in the former, and 31-10-2004 in the latter)

# To handle this, we’ll create new date variables in each set that have the days

# trimmed off, then merge. Merging isn’t strictly necessary, but it is a convenient

# way to only keep those observations common to both data sets.

econ_data <- mutate(econ_data, "Date1" = paste(year(Date), month(Date)))

attrition <- mutate(attrition, "Date1" = paste(year(Date), month(Date)))

# Merge data sets

df <- merge(econ_data, attrition, by = "Date1")

# Next, we see many NAs within the attrition data set. Given the data’s nature,

# our intuition was that these missing values aren’t a result of encoding error

# or similar, but rather an indication that no separations occurred during

# that period (i.e. NAs indicate no separations were observed, instead of

# indicating some sort of error). This intuition was confirmed by the data’s

# provider, HAF/A1FPX.

df[is.na(df)] <- 0

# Next we’ll go ahead and drop all of our date variables. When we use df

# to create a time series object, the date variables become redundant.

df <- df[, !(names(df) %in% c("Date1", "Date.x", "Date.y"))]

# Now we’ll initialize the time series object - start = Oct 2004, freq = 12 -

# and create the validation and training sets. Since we’re only really interested

# in the Total column for modeling purposes

df.ts.1 <- ts(df, start = c(2004, 10), frequency = 12)

train.ts.1 <- subset(df.ts.1, end = 127)

val.ts.1 <- subset(df.ts.1, start = 128)

#########################################

# Initial Exploration and Modeling #

#########################################

# Let’s take an initial, unmodified look at our response - total separations across

# all officer AFSCs. We see some pretty substantial spikes; fortunately, we know

# from the sponsor that they are artificially high. Special incentive programs

# for separation were implemented in the same years containing the spikes. So,

# we can do something about those observations - remove them, impute and replace, etc.

autoplot(df.ts.1[,’Total’], ylab = "Total Separations")

# We also will want to look for evidence of seasonality or for any one year that

# stands out. Grouping the separations by year, we can see that the tail ends of

# 2005, 2006, 2007 and 2014 were higher than other years (we saw this in the

# previous plot as well). Aside from those periods, however, no individual year

# stands out. We do notice, though, that separations appear to have a bowed shape

# as the years progress. That is, slightly higher levels of separation at the beginning

# and ends of the calenday year, with lower rates of separation during summer months.

# We may have to account for this seasonality in our modeling by transforming the data.
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p <- ggseasonplot(df.ts.1[,’Total’], year.labels = TRUE, year.labels.left = TRUE) +

ylab("Total Separations") +

ggtitle("Seasonal Plot: Total Separations") +

theme(legend.position = "none")

p

# However, we might want to try modeling before making any alterations to the data.

# It very well could be that we don’t need to replace or impute values, that we’re

# able to forecast fairly accurately without adjustments. We’ll start with

# some naive forecasts against which we compare future forecasts.

n.1 <- naive(train.ts.1[,"Total"], h = dim(val.ts.1)[1])

sn.1 <- snaive(train.ts.1[,"Total"], h = dim(val.ts.1)[1])

n.1.error <- accuracy(n.1, val.ts.1[,"Total"])

sn.1.error <- accuracy(sn.1, val.ts.1[,"Total"])

# There are two takeaways from results below:

# First, we see that the seasonal model performs worse on the validation set,

# indicating that it is possibly overfit or overly affected by some outliers

kable(n.1.error, caption = "Na\\\"ive Performance", digits = 3, align = ’c’)

kable(sn.1.error, caption = "Seasonal Na\\\"ive Performance", digits = 3, align = ’c’)

# Plotting the forecasts against the validation data, we can see that outliers

# might be the source of the problem. The last spike, around 2014-2015, is carried

# through in the forecasts, resulting in high errors. We know from an in-depth

# discussion of the actual data that spike is an aberration. From this, we infer

# that outliers are going to be a problem, and probably ought to be handled.

autoplot(n.1) +

autolayer(val.ts.1[,"Total"]) +

theme(legend.position = "none") +

ylab("Total Attrition")

autoplot(sn.1) +

autolayer(val.ts.1[,"Total"]) +

theme(legend.position = "none") +

ylab("Total Attrition")

# First, though, we need to identify which exact data points are outliers. We can

# refer back to our season plot to help. On visual inspection, it appears that

# roughly Oct-Dec of ’05-’07 and ’14 stand out (possibly Sep ’07, as well).

# These observations are backed by insight provided by the data’s sponsor - HAF/A1.

# From them, we’ve found out that in 2006, ’07, and ’14 special separation

# programs were instituted in order to incentivize attrition. So, these outlying

# points probably reflect the effects of those special programs.

p

# To handle these, we’ll calculate the average values of all other years during

# months and replace the current values. First, let’s create slices of our

# response containing the months we’re concerned with - December and November.

# We also want to grab the correpsonding indices for updating our series later.

dec <- subset(df.ts.1[,’Total’], month = 12)
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dec.ind <- which(cycle(df.ts.1[,’Total’]) == 12)

nov <- subset(df.ts.1[,’Total’], month = 11)

nov.ind <- which(cycle(df.ts.1[,’Total’]) == 11)

# oct <- subset(df.ts.1[,’Total’], month = 10)

# sep <- subset(df.ts.1[,’Total’], month = 9)

# Referring back to p, and combining the graphical insights with information

# from the data’s sponsor, we assume that 2006, ’07, and ’14 are the years which

# saw the largest effects from the separation incentive programs - i.e. artificial

# attrition. Those correspond the the 3rd, 4th, and 11th indices. So now, we

# replace those observations with the average of the non-aberrant years.

dec[c(3,4,11)] <- mean(dec[-c(3,4,11)])

nov[c(3,4,11)] <- mean(nov[-c(3,4,11)])

# And finally, we place these values back into the original series.

df.ts.1[dec.ind, ’Total’] <- dec

df.ts.1[nov.ind, ’Total’] <- nov

# Revisiting the response and seasonality plots, we can more easily see the

# effects of seasonality, and a much more stationary data set without any

# egregious outliers.

autoplot(df.ts.1[,’Total’], ylab = "Total Separations")

ggseasonplot(df.ts.1[,’Total’], year.labels = TRUE, year.labels.left = TRUE) +

ylab("Total Separations") +

ggtitle("Seasonal Plot: Total Separations") +

theme(legend.position = "none")

# Lastly, we might want to retrain and assess our naive models so see if removing

# those outliers effected much

# store split index

set.split <- 127

# New train and val sets

train.ts.2 <- subset(df.ts.1[,’Total’], end = set.split)

val.ts.2 <- subset(df.ts.1[,’Total’], start = set.split+1)

# Train models and generate errors

n.2 <- naive(train.ts.2, h = length(val.ts.2))

sn.2 <- snaive(train.ts.2, h = length(val.ts.2))

n.2.error <- accuracy(n.2, val.ts.2)

sn.2.error <- accuracy(sn.2, val.ts.2)

# Compare the errors

kable(n.1.error, caption = "Na\\\"ive Performance")

kable(n.2.error, caption = "Na\\\"ive Performance")

kable(sn.1.error, caption = "Seasonal Na\\\"ive Performance")

kable(sn.2.error, caption = "Seasonal Na\\\"ive Performance")

# Aaaaaaand compare plots, forecasts
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# Nothing too special about these

autoplot(n.2) +

autolayer(val.ts.2) +

theme(legend.position = "none") +

ylab("Total Attrition")

# Here we see that the variation in the validation set is more closely followed

# by the forecasts. We infer that removing the outliers was beneficial.

autoplot(sn.2) +

autolayer(val.ts.2) +

theme(legend.position = "none") +

ylab("Total Attrition")

# Though our naive models aren’t particularly useful for providing forecasts

# (or identifying key economic indicators), they’re useful for providing a

# baseline comparison for other models. The idea being naive models are our

# simplest methods, and we’ll compare the performance of more sophisticated

# against them - models such as...

# A multivariate regression model with ARIMA errors. Why this? Because a

# multivariate regression model allows us to include outside variables (economic

# indicators) to help predict a response (attrition). The problem with just

# regression, though, is that regression assumes independent errors, and we

# often find autocorrelation with time-series data. Enter the

# ARIMA: fitting an ARIMA model on our regression error, then, allows us to

# handle the autocorrelative nature of the data, but does not allow room for

# any exogeneous information (i.e. info other than the response).

# Separately, each of those methods provides roughly half of what we’re looking

# to model. So, by our powers combined: We’ll relax the assumption of independent

# errors in the regression model, and instead assume that they ARE autocorrelated.

# And since we have a model for predicting autocorrelated data, we now treat the

# ’error’ term in the regression model as its own ARIMA model (technical

# formulation is in the thesis; you can also just search Google for

# "Regression with ARIMA errors"). We’re left with a model that, when correctly

# specified, should provide both forecasts for our response and insight as to

# which variables contribute to those forecasts (response variance, etc).

# Now, before go fitting our data, we need to take some steps to ensure we’re

# fitting it properly - there are other assumptions involved here. First, we need

# independent regressors. Collinearity between our regressor variables will

# inflate regression coefficients’ variances; we won’t have a good idea of how

# influential our economic indicators are. To avoid these issues, we’ll build a

# heat map showing the correlation for every pairwise combination in our set of

# economic indicators.

# generate actual correlation heatmap

# Note: reorder.cormat(), get.upper.tri(), and %ni% are custom functions whose code

# can be found in the script custom-functions.R

df[which(names(econ_data) %ni% c("Date", "Date1"))] %>%

cor() %>%

round(2) %>%

reorder.cormat() %>%

get.upper.tri() %>%

melt(na.rm = TRUE) %>%
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ggplot(aes(Var2, Var1, fill = value)) +

geom_tile(color = "white") +

scale_fill_gradient2(low = "blue", high = "red", mid = "white",

midpoint = 0, limit = c(-1,1), space = "Lab",

name="Collinearity") +

theme_minimal() + # minimal theme

theme(axis.text.x = element_text(angle = 45, vjust = 1,

size = 12, hjust = 1)) +

coord_fixed() +

geom_text(aes(Var2, Var1, label = value), color = "black", size = 3) +

theme(

axis.title.x = element_blank(),

axis.title.y = element_blank(),

panel.grid.major = element_blank(),

panel.border = element_blank(),

panel.background = element_blank(),

axis.ticks = element_blank(),

legend.justification = c(1, 0),

legend.position = c(0.6, 0.7),

legend.direction = "horizontal") +

guides(fill = guide_colorbar(barwidth = 7, barheight = 1,

title.position = "top", title.hjust = 0.5))

# The heatmap shows many isntances of collinearity, which is expected - many

# economic indicators are variations or flavors of the same information. However,

# some non-correlated groups are shown. For our initial model, we select the

# Labor Force Participation Rate, Market Momentum Index, and the Unemployment

# Rate. Though the first two have a noticeable correlation, we suspect they will

# still provide information for our model - the correlation isn’t too strong

# anyway. The model can be adjusted and specified later, this is just a first

# stab.

# grab index of econ vars: LFPR, Unem.Adj, LMM

econ.vars <- which(names(df) %in% c("Labor.Force.Participation",

"Unemployment.Rate.Adj",

"Labor.Market.Momentum"))

# Now that we’ve selected our regressors, we need to check for stationarity. We’re

# looking for evidence of non-zero trend, seasonality, etc.

autoplot(df.ts.1[,econ.vars], facets = TRUE) +

ylab("")

# Yikes, okay not good. Definitely non-stationary. Let’s try differencing, and

# see if that improves the situation.

econ.vars.d <- diff(df.ts.1[,econ.vars])

autoplot(econ.vars.d, facets = TRUE) +

ylab("")

# Oh, yea - way better. Differenced, these variables look useable. Now while

# we’re looking at differencing, we should look to see if our response also

# needs to be differenced. Remember, we have this:
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autoplot(df.ts.1[,"Total"]) +

ylab("Total Attrition")

# Hmm, nothing too crazy, actually - is there any statistical evidence

# for differencing?

# regular differencing

ndiffs(df.ts.1[,"Total"])

# seasonal differencing

nsdiffs(df.ts.1[,"Total"])

# Neat! However, before we can build the model, we have to account for the

# differencing performed on our regressors. With simple differencing, we lose

# the first observation, and so we remove the first observation from our

# response.

head(df.ts.1[,"Total"])

head(econ.vars.d[,1])

response.ts <- ts(df.ts.1[-1,"Total"], start = c(2004, 11), frequency = 12)

head(response.ts)

# We also need to split up the econ vars into training and test sets

# store split index

set.split <- 126

# subset our response

train.ts.3 <- subset(response.ts, end = set.split)

val.ts.3 <- subset(response.ts, start = set.split+1)

# subset econ variables

econ.vars.d.train <- subset(econ.vars.d, end = set.split)

econ.vars.d.val <- subset(econ.vars.d, start = set.split+1)

# We’ll utilize the auto arima function from fpp2

tic("dynamic regression")

dyn.reg.1 <- auto.arima(train.ts.3, xreg = econ.vars.d.train, trace = TRUE,

stepwise = FALSE, approximation = FALSE)

toc()

# The first thing we’ll want to check, after the model summary, is how our

# residuals behave. Do they appear to satisfy normality assumptions? Are there

# any outliers? Evidence of leftover autocorrelation? Essentially, we’re

# checking to see if there’s anything other than white noise in the error term.

# No - to all of the above. ACF plots look clean, raw residuals seem

# noisy, and also have a roughly normal distribution. Furthermore, a Ljung-Box

# test shows no evidence that the data aren’t normal (p: 0.8121).

checkresiduals(dyn.reg.1)

# Let’s generate some forecasts then

dyn.reg.1.f <- forecast(dyn.reg.1, xreg = econ.vars.d.val, h = 20)

# We’ll also take a look at some accuracy measures. According to RMSE and MASE,
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# the dynamic regression model performs better than a seasonal naive estimation;

# that’s good news - we’re getting closer towards accurate forecasting.

accuracy(dyn.reg.1.f, val.ts.3)

# And then plot those forecasts over the actual data

autoplot(dyn.reg.1.f) +

autolayer(dyn.reg.1$fitted) +

autolayer(val.ts.3) +

theme(legend.position = "none") +

ylab("Total Attrition")

# In short, our residuals are clean, error is improved from that of naive methods,

# and forecasts track the validation set fairly well. There’s one glaring problem,

# however. Looking back at our model summary, it’s clear that none of the estimated

# coefficients for the economic indicators are statistically significant. Boo.

# This could be for several reasons:

#

# 1) indicators are month-to-month changes, don’t have large enough fluctuations

# to cause significant changes

#

# 2) no lagged information - i.e. current economic info probably doesn’t affect

# current attrition rate

#

# 3) data might be too aggregated, contains too much noise to establish significant

# relationships

# In summary, dynreg gives better forecasts than naive models, but current

# specification doesn’t reveal much in the way of economic insight

#####################################

# Specification - Lagged Effects #

#####################################

# Initially, we’ll test 6, 12, 18, and 24 months for each indicator. We’ll

# build a framework for any desired time-lag later.

# lazy, inefficient lagged variable build - if there’s time later we’ll build a

# function and generalize this process

Unemployment.Rate.lag <- cbind(

lag0 = econ.vars.d[,"Unemployment.Rate.Adj"],

lag6 = stats::lag(econ.vars.d[,"Unemployment.Rate.Adj"], -6),

lag12 = stats::lag(econ.vars.d[,"Unemployment.Rate.Adj"], -12),

lag18 = stats::lag(econ.vars.d[,"Unemployment.Rate.Adj"], -18),

lag24 = stats::lag(econ.vars.d[,"Unemployment.Rate.Adj"], -24)

)

Labor.Force.Participation.lag <- cbind(

lag0 = econ.vars.d[,"Labor.Force.Participation"],

lag6 = stats::lag(econ.vars.d[,"Labor.Force.Participation"],-6),

lag12 = stats::lag(econ.vars.d[,"Labor.Force.Participation"], -12),

lag18 = stats::lag(econ.vars.d[,"Labor.Force.Participation"], -18),

lag24 = stats::lag(econ.vars.d[,"Labor.Force.Participation"], -24)

)
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Labor.Market.Momentum.lag <- cbind(

lag0 = econ.vars.d[,"Labor.Market.Momentum"],

lag6 = stats::lag(econ.vars.d[,"Labor.Market.Momentum"], -6),

lag12 = stats::lag(econ.vars.d[,"Labor.Market.Momentum"], -12),

lag18 = stats::lag(econ.vars.d[,"Labor.Market.Momentum"], -18),

lag24 = stats::lag(econ.vars.d[,"Labor.Market.Momentum"], -24)

)

# create train and val splits

UR.lag.train <- subset(Unemployment.Rate.lag, end = set.split)

UR.lag.val <- subset(Unemployment.Rate.lag, start = set.split+1,

end = dim(econ.vars.d)[1])

LFPR.lag.train <- subset(Labor.Force.Participation.lag, end = set.split)

LFPR.lag.val <- subset(Labor.Force.Participation.lag, start = set.split+1,

end = dim(econ.vars.d)[1])

LMM.lag.train <- subset(Labor.Market.Momentum.lag, end = set.split)

LMM.lag.val <- subset(Labor.Market.Momentum.lag, start = set.split+1,

end = dim(econ.vars.d)[1])

# Initialize table to store results of loop. We are going to capture the

# variable combination, AICc, training RMSE, and validation RMSE. Tibble

# generated, saved to local .rds so we won’t have to re-run this awful loop;

# runtime is approximately 1 hr on 4-core machine, process run in parallel

# lag.results <- tibble("UR.lag" = rep(NA, 125),

# "LFPR.lag" = rep(NA, 125),

# "LMM.lag" = rep(NA, 125),

# "AICc" = rep(NA, 125),

# "Training.RMSE" = rep(NA, 125),

# "Validation.RMSE" = rep(NA, 125))

#

# m <- 1

# for(i in c(1:5)){

# for(j in c(1:5)){

# for(k in c(1:5)){

#

# xreg.train <- cbind(UR.lag.train[,i],

# LFPR.lag.train[,j],

# LMM.lag.train[,k])

#

# xreg.val <- cbind(UR.lag.val[,i],

# LFPR.lag.val[,j],

# LMM.lag.val[,k])

#

# dyn.model <- auto.arima(train.ts.3,

# xreg = xreg.train,

# stepwise = FALSE,

# approximation = FALSE,

# parallel = TRUE)

#

# dyn.model.f <- forecast(dyn.model, xreg = xreg.val, h = 20)

#
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# dyn.model.err <- accuracy(dyn.model.f, val.ts.3)

#

# lag.results[m, "UR.lag"] <- colnames(UR.lag.train)[i]

# lag.results[m, "LFPR.lag"] <- colnames(LFPR.lag.train)[j]

# lag.results[m, "LMM.lag"] <- colnames(LMM.lag.train)[k]

# lag.results[m, "AICc"] <- dyn.model$aicc

# lag.results[m, "Training.RMSE"] <- dyn.model.err[1,2]

# lag.results[m, "Validation.RMSE"] <- dyn.model.err[2,2]

#

# m <- m + 1

# }

# }

# }

#

# saveRDS(lag.results, "lagResults.rds")

# read in compiled lag.results

lag.results <- readRDS("lagResults.rds")

# summarize the selection criteria

summary(lag.results[,4:6])

# filter tibble to return rows where each metric is below respective first quartile

lag.results %>%

filter(lag.results[,"Validation.RMSE"] <= 156.4 &

lag.results[,"Training.RMSE"] <= 133.1 &

lag.results[,"AICc"] <= 1299)

# only one result: 24, 18, 24, might want to go back and loosen filter criteria - for now

# let’s investigate that one model

# best across three

xreg.train <- cbind(UR.lag.train[,"lag24"],

LFPR.lag.train[,"lag18"],

LMM.lag.train[,"lag24"])

xreg.val <- cbind(UR.lag.val[,"lag24"],

LFPR.lag.val[,"lag18"],

LMM.lag.val[,"lag24"])

dyn.reg.2 <- auto.arima(train.ts.3,

xreg = xreg.train,

stepwise = FALSE,

approximation = FALSE)

dyn.reg.2.f <- forecast(dyn.reg.2, xreg = xreg.val, h = 20)

autoplot(dyn.reg.2.f) +

autolayer(dyn.reg.2$fitted) +

autolayer(val.ts.3) +

theme(legend.position = "none") +

ylab("Total Attrition")

# we can also identify the ’top’ model by the minimum of each criteria

top.models.1 <- rbind(lag.results %>%
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filter(AICc == min(AICc)),

lag.results %>%

filter(Training.RMSE == min(Training.RMSE)),

lag.results %>%

filter(Validation.RMSE == min(Validation.RMSE)))

# take best five models according to each criteria and see if there are any

# commonalities

best.by.AICc <- lag.results %>%

arrange(AICc) %>%

head(5)

best.by.trainingRMSE <- lag.results %>%

arrange(Training.RMSE) %>%

head(5)

best.by.validationRMSE <- lag.results %>%

arrange(Validation.RMSE) %>%

head(5)

inner_join(best.by.AICc, best.by.trainingRMSE)

inner_join(best.by.AICc, best.by.validationRMSE)

inner_join(best.by.trainingRMSE, best.by.validationRMSE)

# Only best.by.AICc and best.by.training.MSE have a model in common

# we’ll look more closely at the best model from each category and the model

# common to best.by.AICc and best.by.training.MSE - that’s four more models

# Best from each category:

# AICc: 24, 18, 6

xreg.train <- cbind(UR.lag.train[,"lag24"],

LFPR.lag.train[,"lag18"],

LMM.lag.train[,"lag6"])

xreg.val <- cbind(UR.lag.val[,"lag24"],

LFPR.lag.val[,"lag18"],

LMM.lag.val[,"lag6"])

dyn.reg.3 <- auto.arima(train.ts.3,

xreg = xreg.train,

stepwise = FALSE,

approximation = FALSE)

checkresiduals(dyn.reg.3)

# AICc: 24, 18, 18

xreg.train <- cbind(UR.lag.train[,"lag24"],

LFPR.lag.train[,"lag18"],

LMM.lag.train[,"lag18"])

xreg.val <- cbind(UR.lag.val[,"lag24"],

LFPR.lag.val[,"lag18"],

LMM.lag.val[,"lag18"])
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dyn.reg.6 <- auto.arima(train.ts.3,

xreg = xreg.train,

stepwise = FALSE,

approximation = FALSE)

saveRDS(dyn.reg.6, "dynReg6.rds")

# trainingMSE: 24, 18, 24 - already done, best under 1st quartiles

# validationMSE: 0, 0, 24 - problem: not interested in predictions based on

# current data, doesn’t allow for forecasts into future - purely reactive, not

# proactive information

# most common model: 24, 18, 6 - already looked at with dyn.reg.3

# Q: So...what does dyn.reg.3 show?

# A: Similar pattern with previous models - UR is significant, LFPR is almost

# significant, and LMM is not. Investigation into LMM reveals that it is a

# result of Principle component analysis of several indicators, including

# UR. Explains the .56 corr with LFPR from the heatmap, and indicates that

# LMM and LFPR capture similar information. Corr might be causing

# inefficiencies in coeff of other two variables - UR and LFPR. Try dropping

# LMM and re-running lag analysis.

# lag.results.2 <- tibble("UR.lag" = rep(NA, 25),

# "LFPR.lag" = rep(NA, 25),

# "AICc" = rep(NA, 25),

# "Training.RMSE" = rep(NA, 25),

# "Validation.RMSE" = rep(NA, 25))

#

# m <- 1

# for(i in c(1:5)){

# for(j in c(1:5)){

#

# xreg.train <- cbind(UR.lag.train[,i],

# LFPR.lag.train[,j])

#

# xreg.val <- cbind(UR.lag.val[,i],

# LFPR.lag.val[,j])

#

# dyn.model <- auto.arima(train.ts.3,

# xreg = xreg.train,

# stepwise = FALSE,

# approximation = FALSE,

# parallel = TRUE)

#

# dyn.model.f <- forecast(dyn.model, xreg = xreg.val, h = 20)

#

# dyn.model.err <- accuracy(dyn.model.f, val.ts.3)

#

# lag.results.2[m, "UR.lag"] <- colnames(UR.lag.train)[i]

# lag.results.2[m, "LFPR.lag"] <- colnames(LFPR.lag.train)[j]

# lag.results.2[m, "AICc"] <- dyn.model$aicc

# lag.results.2[m, "Training.RMSE"] <- dyn.model.err[1,2]

# lag.results.2[m, "Validation.RMSE"] <- dyn.model.err[2,2]

#
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# m <- m + 1

# }

# }

#

# saveRDS(lag.results.2, "lagResults2.rds")

lag.results.2 <- readRDS("lagResults2.rds")

# Now that we have a data set with only 2 variables - UR and LFPR - let’s

# the best models in the same manner as before

summary(lag.results.2[,3:5])

lag.results.2 %>%

filter(lag.results.2[,"Validation.RMSE"] <= 151.8 &

lag.results.2[,"Training.RMSE"] <= 133.9 &

lag.results.2[,"AICc"] <= 1303)

# No single model falls below the 1st quartile for all three. Look at best by

# each criteria

top.models.2 <- rbind(lag.results.2 %>%

filter(AICc == min(AICc)),

lag.results.2 %>%

filter(Training.RMSE == min(Training.RMSE)),

lag.results.2 %>%

filter(Validation.RMSE == min(Validation.RMSE)))

# take best five models according to each criteria and see if there are any

# commonalities

best.by.AICc.2 <- lag.results.2 %>%

arrange(AICc) %>%

head(5)

best.by.trainingRMSE.2 <- lag.results.2 %>%

arrange(Training.RMSE) %>%

head(5)

best.by.validationRMSE.2 <- lag.results.2 %>%

arrange(Validation.RMSE) %>%

head(5)

inner_join(best.by.AICc.2, best.by.trainingRMSE.2)

inner_join(best.by.AICc.2, best.by.validationRMSE.2)

inner_join(best.by.trainingRMSE.2, best.by.validationRMSE.2)

# Best model by AICc from 2-variable (24, 18) has slightly better AICc

# and validation RMSE than that of 3-variable (24, 18, 6). Also, results from

# 2 model are comparable to our ’best’ model from 3-variable (24, 18, 24).

# Let’s look at the coefficients:

# lag2 best by AICc: 24, 18

xreg.train <- cbind(UR.lag.train[,"lag24"],

LFPR.lag.train[,"lag18"])
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xreg.val <- cbind(UR.lag.val[,"lag24"],

LFPR.lag.val[,"lag18"])

dyn.reg.4 <- auto.arima(train.ts.3,

xreg = xreg.train,

stepwise = FALSE,

approximation = FALSE)

checkresiduals(dyn.reg.4)

# From this ’round’ we can say our ’best’ model is the 24,18: minimizes

# information loss, and provides similar results to the ’best’ model from

# previous round. When faced with similar results, pick simplest - Occam’s razor

# Now, we are getting mild results with this variable selection. Let’s try

# including a different subset of variables. Referring back to the heatmap, we

# can see other subsets with low collinearity: LFPR and nonfarm quits, nonfarm

# quits and cpi. However, nonfarm quits and cpi are highly negatively correlated

# so we can either choose one to place with nonfarm quits or do both groups

# separately. FOr now, let’s start with LFPR and nonfarm quits - if those

# results don’t look great, we’ll try the other subset.

#LFPR and NonfarmQuits

# need to difference nonfarmquits

econ.vars.2 <- which(names(df) %in% c("Labor.Force.Participation",

"Unemployment.Rate.Adj",

"Labor.Market.Momentum",

"Nonfarm.Quits.Adj",

"CPI.Adj"))

econ.vars.2.d <- diff(df.ts.1[,econ.vars.2])

autoplot(econ.vars.2.d[,c("CPI.Adj", "Nonfarm.Quits.Adj")], facets = TRUE)

# create lag set for Nonfarm quits, LFPR already exists

Quits.lag <- cbind(

lag0 = econ.vars.2.d[,"Nonfarm.Quits.Adj"],

lag6 = stats::lag(econ.vars.2.d[,"Nonfarm.Quits.Adj"], -6),

lag12 = stats::lag(econ.vars.2.d[,"Nonfarm.Quits.Adj"], -12),

lag18 = stats::lag(econ.vars.2.d[,"Nonfarm.Quits.Adj"], -18),

lag24 = stats::lag(econ.vars.2.d[,"Nonfarm.Quits.Adj"], -24)

)

# create train and val splits for nonfarm quits

Quits.lag.train <- subset(Quits.lag, end = set.split)

Quits.lag.val <- subset(Quits.lag, start = set.split+1,

end = dim(econ.vars.2.d)[1])

lag.results.3 <- tibble("Quits.lag" = rep(NA, 25),

"LFPR.lag" = rep(NA, 25),

"AICc" = rep(NA, 25),

"Training.RMSE" = rep(NA, 25),

"Validation.RMSE" = rep(NA, 25))

# m <- 1
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# for(i in c(1:5)){

# for(j in c(1:5)){

#

# xreg.train <- cbind(Quits.lag.train[,i],

# LFPR.lag.train[,j])

#

# xreg.val <- cbind(Quits.lag.val[,i],

# LFPR.lag.val[,j])

#

# dyn.model <- auto.arima(train.ts.3,

# xreg = xreg.train,

# stepwise = FALSE,

# approximation = FALSE,

# parallel = TRUE)

#

# dyn.model.f <- forecast(dyn.model, xreg = xreg.val, h = 20)

#

# dyn.model.err <- accuracy(dyn.model.f, val.ts.3)

#

# lag.results.3[m, "Quits.lag"] <- colnames(Quits.lag.train)[i]

# lag.results.3[m, "LFPR.lag"] <- colnames(LFPR.lag.train)[j]

# lag.results.3[m, "AICc"] <- dyn.model$aicc

# lag.results.3[m, "Training.RMSE"] <- dyn.model.err[1,2]

# lag.results.3[m, "Validation.RMSE"] <- dyn.model.err[2,2]

#

# m <- m + 1

# }

# }

#

# saveRDS(lag.results.3, "lagResults3.rds")

lag.results.3 <- readRDS("lagResults3.rds")

# top model for each

top.models.3 <- rbind(lag.results.3 %>%

filter(AICc == min(AICc)),

lag.results.3 %>%

filter(Training.RMSE == min(Training.RMSE)),

lag.results.3 %>%

filter(Validation.RMSE == min(Validation.RMSE)))

summary(lag.results.3[,3:5])

lag.results.3 %>%

filter(lag.results.3[,"Validation.RMSE"] <= 152.9 &

lag.results.3[,"Training.RMSE"] <= 135.6 &

lag.results.3[,"AICc"] <= 1303)

# none fall under 1st quartile for all three

# look at top 5 from each

best.by.AICc.3 <- lag.results.3 %>%

arrange(AICc) %>%

head(5)
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best.by.trainingRMSE.3 <- lag.results.3 %>%

arrange(Training.RMSE) %>%

head(5)

best.by.validationRMSE.3 <- lag.results.3 %>%

arrange(Validation.RMSE) %>%

head(5)

inner_join(best.by.AICc.3, best.by.trainingRMSE.3)

inner_join(best.by.AICc.3, best.by.validationRMSE.3)

inner_join(best.by.trainingRMSE.3, best.by.validationRMSE.3)

# Only trainingRMSE and ValidationRMSE have one in common, and model isn’t

# usful as it uses lag0 variables (i.e. current data)

# let’s compare the top models for each ’round’ so far (order is AIC, train, val)

top.models.1

top.models.2

top.models.3

# only min AICc from 3rd round (LFPR and nonfarmquits) look comparable to other

# models, let’s inspect the model more closely (24,24)

xreg.train <- cbind(Quits.lag.train[,"lag24"],

LFPR.lag.train[,"lag24"])

xreg.val <- cbind(Quits.lag.val[,"lag24"],

LFPR.lag.val[,"lag24"])

dyn.reg.5 <- auto.arima(train.ts.3,

xreg = xreg.train,

stepwise = FALSE,

approximation = FALSE)

checkresiduals(dyn.reg.5)

#results: residuals look ’okay’, but not a clean as previous models, and

# none of the coefficients look to be significant

# final choice:

# dyn.reg.4: URlag24, LFPRlag18

#save all models used so they do not have to be regnerated

saveRDS(dyn.reg.1, "dynReg1.rds")

saveRDS(dyn.reg.2, "dynReg2.rds")

saveRDS(dyn.reg.3, "dynReg3.rds")

saveRDS(dyn.reg.4, "dynReg4.rds")

saveRDS(dyn.reg.5, "dynReg5.rds")
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of this work are laid out.
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