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Abstract

Past research has indicated that implementation of a pulsed detonation combustor
(PDC) into a high-bypass turbofan engine yields a more efficient engine at design
conditions. It is proposed that performance gains can be made utilizing this hybrid engine
off-design. A hybrid high-bypass turbofan engine with a PDC model was evaluated for a
range of Mach numbers, altitudes, and fill fractions in the Numerical Propulsion System
Simulation (NPSS). Results were compared to a conventional baseline high-bypass
turbofan engine that shares the same architecture with the hybrid. The NPSS baseline
engine was validated using the Aircraft Engine Design System (AEDsys) program and
the net thrust and specific fuel consumption agreed to within one percent. The effect of
detonation on the core air flow is calculated using a closed form solution for the
Chapman-Jouguet Mach number with a total energy correction applied. Results indicate
that fill fraction can be adjusted to reduce the TSFC to that of the baseline engine and
lower at some thrust levels. With careful selection of design parameters, results suggest a
pulsed detonation combustor may be an appropriate candidate for inclusion in a hybrid

turbofan engine.
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OFF-DESIGN ANAYSIS OF A HIGH BYPASS TURBOFAN USING A PULSED

DETONATION COMBUSTOR

I. Introduction

Since the early 1940’s, pulsed detonation engines (PDE) have been studied as a
means of increasing burn efficiency in an engine as a result of its supersonic detonative
mode of combustion over conventional subsonic deflagration. Detonations provide a
much more efficient means of combusting a fuel-oxidizer mixture due to increased
thermodynamic efficiency as a result of the pressure-rise associated with detonation.
Additionally, with its potential for a cycle time of more than ten times that of a traditional
pulsejet engine and fewer moving parts to maintain, PDEs hold the promise for
applications across the flight envelope spanning subsonic, supersonic and hypersonic
flight.

More advanced concepts such as a hybrid-PDE have been studied in which a
pulsed detonation combustor (PDC) is incorporated into a gas turbine engine as the
primary combustion system with the intention of increasing efficiency by utilizing the
strengths of both engines. In this type of system the exhaust from the detonation chamber
drives the downstream turbine which provides power to the compressor, which, in turn,
provides the air flow to fill and purge the detonation chamber. Although a novel idea, the
hybrid system is not without its challenges. Low-vapor pressure hydrocarbon fuels must
be used efficiently as key PDE cycle parameters such as ignition time and deflagration to

1



detonation time depend on the properties of the fuel. Noise is also a substantial issue as
detonations are significantly louder than deflagration combustion. The periodic, high-
pressure pulses must be assessed on turbine performance and the life of the engine. The
first flight of an aircraft powered by a PDE took place on January 31, 2008 operating
under its own power for 10 seconds at an altitude of approximately 100 feet. With this
demonstration proving that a PDE can be integrated into an aircraft frame without
experiencing structural problems, PDEs are increasingly recognized as a realizable

technology for future aerospace propulsion.

Purpose

A substantial amount of work on PDEs and hybrid PDEs has been accomplished,
with significant developments being made in the last fifteen years. The theoretical
analysis of Petters and Felding (Petters and Felding, 2002:6) indicated that a PDE-hybrid
with the same inlet airflow as a baseline turbofan engine produced a 2% higher thrust and
an 11% reduction in thrust specific fuel consumption (TSFC). Similar studies by Andrus
(Andrus, 2007:81) showed that an optimal hybrid engine operating at design conditions
could yield an 8% decrease in TSFC while maintaining thrust.

The experimental work of Schauer et al. (Schauer et al., 2003), Deng et al. (Deng
et al., 2008), and Rasheed et al. (Rasheed et al., 2005) all investigated a detonation driven
turbine at design conditions; however, the only experimental work done on PDEs at off-

design conditions to date is that of Glaser et al. (Glaser et al., 2004). Glaser’s work



suggests performance gains can be made by varying key parameters such as equivalence
ratio and fill fraction. The objective of this thesis is to build on Andrus’s (Andrus, 2007)
work by performing a simulated off-design analysis of a hybrid-PDE design to evaluate

the effects on thrust and TSFC.

Procedure

The procedure for performing the off-design analysis closely mirrors the steps
used by Andrus in performing his comparative analysis of a high bypass turbofan using a
pulsed detonation combustor with a conventional baseline turbofan. A baseline high-
bypass turbofan is modeled in both the Numerical Propulsion System Simulation (NPSS)
and in the Aircraft Engine Design system (AEDsys) programs. The comparison is made
to ensure identical engine configuration between the two programs. The NPSS program is
the primary software program used in this thesis to evaluate the off-design performance
of a hybrid-PDE. It was developed via a cooperative effort between industry and NASA
to predict and analyze the aerothermodynamic behavior of commercial jet aircraft,
military applications, and space transportation with the goal of reducing development
time and cost of a new engine by half. AEDsys was developed by Mattingly (Mattingly et
al., 2006) for educational use in the field of gas turbine engine design and allows the user
to perform design point and parametric cycle analysis for various engines.

After validating the accuracy of the baseline engine in both AEDsys and NPSS, a

hybrid-PDE model with the identical configuration as the baseline engine, with the



exception of a pulsed detonation combustor replacing the conventional combustor, is
developed in NPSS and run at off-design conditions. An analysis of the hybrid engine
performance is evaluated for a range of Mach numbers, altitudes, and fill fractions. The
effects on thrust and TFSC are compared to that of the NPSS baseline engine running at

the same off-design conditions.

Significance of Research

Much research has been done on turbofan engines with a pulsed detonation
combustor at design conditions, but there is a very limited amount of literature on the
performance of these engines off-design. Because the majority of an engine’s operation
are at off-design conditions, significant cost savings could be realized if hybrid turbofan
engines are more efficient than conventional engines. In addition, a hybrid engine may be
cheaper to build and less expensive to maintain than a conventional engine, offering

additional long term savings.

Organization

This thesis compares the performance of a hybrid-PDE to that of a conventional
turbofan using the NPSS program. Chapter two contains a thorough discussion of pulsed
detonation thermodynamics as well as prior work on PDEs. Chapter three describes the
baseline turbofan model used in AEDsys and NPSS, as well as the hybrid-PDE engine
and its combustor section. Chapter four is a comprehensive analysis of the hybrid-PDE

4



performance as compared to that of the conventional baseline engine. Chapter five

contains the conclusions of this research as well as recommendations for future work.



Il. Literature Review

Introduction

This section presents a thorough discussion of the underlying thermodynamics of
the hybrid-PDE engine as the results of this thesis are essentially governed by the basic
models of detonation to include the Chapman-Jouguet and Zeldovich-von Nuemann-
Doring (ZND) theories.

The Chapman-Jouguet theory allows for the calculation of the detonation velocity
of a detonation wave with known pressures and densities of the unburned gases for a
given g. The steady state solution of the detonation wave requires knowledge of the
equilibrium thermodynamic calculations. Experimental results have shown to agree well
with the detonation velocities resulting from this theory.

Zeldovich, von Nuemann, and Doring (Kuo, 1986) present a model for detonation
wave structure in which parameters such as detonation limits, initiation energy, tube
diameter, etc. are known. Unlike the Chapman-Jouguet theory, experimental
measurements do not agree with the model calculations, mainly because the ZND
structure is unstable and only observed experimentally under transient conditions.
Experimental observations show that the self-sustained detonations have a three-
dimensional cell structure; however, there are currently no acceptable theories that define

this cell structure.



Combustion Waves

In order to understand how a pulsed detonation combustor can be more efficient
than a conventional combustor, it is first necessary to understand the differences between
the detonations and deflagrations of the two burners that produce engine thrust. A
detonation is a supersonic shock wave that propagates through a fluid due to an energy
release in a reaction zone. A deflagration is a wave that propagates at a subsonic rate by
heat transfer. Detonations generate higher pressures and have increased wave speeds,
thus producing greater thrust than deflagrations. Figure 2.1 shows a schematic of a
stationary one-dimensional combustion wave in which subscript one and two denote
conditions of the unburned gases ahead of the wave and burned gases behind the wave,

respectively. Deflagration and detonation wave properties are compared in Table 2.1.

[Unburnad } Hurmned)
u - u, =
&

Py Ty P | .:*:-_r.J Ha

1 1 &

Figure 2.1 Stationary one-dimensional combustion wave (Kuo, 1986:233)



Table 2.1. Qualitative differences between detonation and deflagration in gases
(Kuo, 1986:234)

Detonation Deflagration
u,/a, 5-10 0.0001-0.03
u,/u, 0.4-0.7 4-6
p./p; 13-55 -0.98
T./T, 8-21 4-16
0./ 1.7-2.6 0.06-0.25

A combustion wave is formed in a tube when a combustible gas mixture is ignited
at the closed end of a tube. The properties in Table 2.1 show that the burned gases are
higher in temperature and density than the unburned gases. This increase in density
initiates a compression wave that travels towards the deflagration wave front, causing the
wave to accelerate. Density increases as the deflagration wave continues, causing more
and more compression waves to form. The waves accelerate as pressure and density
increase, thus causing them to amalgamate at the deflagration wave front. If the tube is
sufficiently long, a shock wave will form that is strong enough to ignite the mixture
ahead of the wave front. A detonation is obtained as the continuous compression waves
in the reaction zone keep the shock from decaying. The detonation is inherently self-
sustaining in that the detonation front initiates a chemical reaction by compression by

diffusing heat.

Chapman-Jouguet Theory
To solve for the Hugoniot curve on which the Chapman-Jouguet points are found,

we must first start with the conservation equations (Glassman, 1996:226):



Pl = P,y (2.1)

P, +p1U12 =P, +p2U22 (2.2)
1, 1,
¢l +Eu1 +q=c,T, +Eu2 (2.3)
= p RT.
pl IO]. 1 (2'4)
P, = p,RT,

where EgQs. 2.1, 2.2, and 2.3 are the mass, momentum, and energy respectively. Equation
2.4 is simply the equation of state. The four equations can be reduced to one equation

with two unknowns, p, and p,, by combining Egs. 2.1 and 2.2 to yield (Kuo, 1986:236):

1.2 BB
J‘glul _i_i_m ey
2 5
(2.5)
or in terms of Mach number:

P2 g
mz=Pr (2.6)

1_ P

P>

where Egs. 2.5 and 2.6 are known as the Raleigh-line relation.
The Hugoniot relation can be found by combining Egs. 2.1 - 2.4 to yield

(Glassman, 1996:228):

L[&_&)_%(pz_pl)[i_ij:q 2.7)



where q is the heat flux. The Hugoniot curve as shown in Fig. 2.2 is a plot of the specific
volume (1/p) and pressure of the burned gases for given values of heat flux, specific

volume and pressure of the unburned gases.

Figure 2.2 Hugoniot curve with Rayleigh lines (Kuo, 1986:238)

The plot is broken up into five regions constructed by drawing tangents and
vertical and horizontal lines from the origin (1/p1,p1) to the curve. The two Chapman-
Jouguet points are at the tangents to the curve and are referred to as the upper and lower
C-J points at the upper and lower Raleigh lines, respectively. Of the five regions, only
regions I, 11, and 11l are physically possible. Region V does not bound a valid solution as
p2 and 1/p, are greater than p; and 1/p; and thus would require a compression wave to
move in the negative direction. Region IV is also ruled out as the heat addition stipulates
supersonic flow; however, it is not possible to have heat addition and advance past the

sonic condition in a constant area duct. Regions | and Il are the detonation regions of the
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curve and represent strong and weak detonations, respectively. These regions are
eliminated due to the structure of the detonation wave discussed in the next section.
Region 111 is the weak deflagration region and is often observed in most experimental
conditions; however, since deflagration is not of interest in this thesis, region Il is
irrelevant to this work as well. The upper C-J point is of importance to this research in
that the wave speed at this point corresponds to a minimum detonation wave speed and
implies that the Mach number of the burned gases must be equal to one. The method used
in this work to calculate the velocity of the wave at this point will be discussed later in

this chapter.

Zeldovich-von Nuemann-Doring Theory

The Zeldovich-von Nuemann-Doring (ZND) model is a one-dimensional model
of the structure of a detonation wave. The model assumes a one-dimensional, steady flow
with limited reactions in the shock wave region. As shown in Fig. 2.3 the detonation
wave consists of a thin shock wave region followed by a thick deflagration region
consisting of an induction and reaction zone. The reactants are initially heated by the
shock wave to a temperature which ensures a high enough reaction rate in which the
deflagration can propagate at the same speed as the shock wave. The thin shock layer
results in a sharp spike in temperature, pressure, and density. The peak pressure reached
in this region is referred to as the von Neumann spike. This is followed by relatively
steady profiles through the induction zone due to a slowly increasing rate of reaction

immediately behind the shock front.
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D

Figure 2.3 Thermodynamic property variations across a ZND detonation wave
(Kuo, 1986:261)

The properties change drastically again as reaction rate increases and then reach their
equilibrium values once the reaction has completed. The ZND detonation structure may
also be shown on Fig. 2.4 beginning at the Hugoniot origin and moving up along the left
of the curve until it reaches the von Neumann spike. At this point the pressure decreases
and the path merges with the Hugoniot curve to the upper C-J point.

Although these models assume a detonation to be one-dimensional, it should be
acknowledged that detonation waves moving in tubes are actually three-dimensional and
nonsteady in nature in which the flow proceeds in a cyclic manner with shock velocity

fluctuations about the equilibrium C-J value.
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Figure 2.4 Detonation structure (Williams, 1985:193)

Thermodynamic Cycle Analysis

The pulsed detonation engine thermodynamic cycle is described by Heiser and
Pratt (Heiser and Pratt, 2002:2) as being identical to that of an ideal Humphrey cycle used
in turbojets and ramjets with the exception of heat addition during the combustion
process. The ideal Humphrey cycle is sometimes used to estimate the thermal efficiency
of the PDE cycle as it replaces the Brayton cycle’s constant-pressure heat addition
process with a constant-volume heat addition process. The T-s diagram of these three

processes is shown in Fig. 2.5.
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Figure 2.5 Ideal PDE, Humphrey, and Brayton cycle temperature-entropy diagrams
(Heiser, 2002:4)

The thermal efficiency of the PDE cycle is slightly greater than that of the
Humphrey cycle and much greater than that of the Brayton cycle. The thermal efficiency
of the PDE cycle as proposed by Heiser is identical to that of the Fickett-Jacobs cycle as
described by Wintenberger (Wintenberger and Sheperd, 2004:12) in which an upper limit
is computed to be the amount of mechanical work in a cycle produced by an unsteady
detonation process.

In Fig. 2.5, from state O to 3, an isentropic, adiabatic compression takes place in
all three cycles, raising the temperature to Ts. It is the process from state 3 to 4 in which
the PDE, Humphrey, and Brayton cycles differ. In the Brayton cycle, a constant pressure
heat addition takes place and increases the temperature T3 of the combustor inlet to T, at

the combustor outlet. From state 3 to 4 in the PDE cycle, the ZND detonation wave is
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seen in which the process is constrained by the Chapman-Jouguet condition, requiring the

Mach number at state 4 to be sonic. The path from state 3 to 4 differs slightly from that of

the Brayton and Humphrey cycles in that from state 3 to 3a the heat addition process

generates entropy via the adiabatic normal shock wave, and from state 3a to 4 entropy is

generated via a constant area heat addition process. The process from state 4 to 10 and

state 10 to O of the three cycles are identical in that an isentropic expansion process takes

place followed by a heat rejection to close the cycle.

The derivation for the solutions for the Chapman-Jouguet Mach number, the

entropy difference from states 3 to 4, and cycle thermal efficiency are shown in Appendix

A. They are given here by Egs. 2.8, 2.9, and 2.10 respectively:
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The Chapman-Jouguet Mach number is calculated using the non-dimensional heat

addition g and v, the ratio of static temperature at state 3 to the free-stream static

temperature at state 0. Mc; is then used to calculate the entropy rise from state 3 to 4 and
the thermal efficiency of the cycle. According to Heiser and Pratt (Heiser and Pratt,
2002), all the fluid properties at the detonation tube exit can be solved for using Egs. 2.9

and 2.13 to solve for the entropy and pressure at state 4.

Py _1+yMg Py 2.13)

P+l P

The PDE thermodynamics as described by Heiser and Pratt is used in this thesis
with the addition of a correction factor by Dyer and Kaemming (Dyer and Kaemming,
2002:5). They note that using the pressure and entropy at the detonation tube exit to solve
for all the properties of the fluid at this point is inaccurate because it ignores the eventual
pressure loss that the gas will go through due to expansion waves. They propose using
entropy and the change in enthalpy liberated by the combustion process to solve for the
properties at the detonation tube exit. Available energy is calculated using the known CJ
entropy originally calculated by Heiser and Pratt (Heiser and Pratt, 2002:3), Eq. 2.9, with
the known system enthalpy of (ho+0ada), With 0aqd being the heat flux into the system, to

ensure that energy is conserved.

Pulsed Detonation Engine Cycle
A basic understanding of the PDE cycle is necessary to understand how the

combustor section of the hybrid PDE performs in this research. The cycle consists of four
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distinct processes: fill phase, detonation initiation, detonation wave propagation, and
purge phase. The combustor is then recharged with another fuel/air mixture and the cycle
repeats.

Figure 2.6 illustrates the various stages in a pulsed detonation engine cycle. At

Purging stage
@ (chamber is at ambient condition)

Pa

® Purging starts
1
Pe P3

@ Exhaust Stage (Thrust)
»

@ Filling stage
Fuel - i
Air S Pa

@ Ignition/Initiation stage

@ Detonation Wave reaches the exit @ Detonation Wave Propagation

(Compression+ Heat Addition)
o

PDE Cycle

Figure 2.6 PDE cycle stages

station one in the diagram, the detonation chamber is at ambient conditions. The fill
phase is shown at station 2 as a valve that seals one end of the detonation chamber opens,
permitting the fuel/air mixture into the chamber. The volume of the fuel/air mixture at
ambient conditions to the tube volume is the fill fraction (ff). This is one of the variables
analyzed in this research to determine engine performance over a range of values.

After the fuel/air mixture enters the chamber, the valve closes and a detonation
wave is initiated near the closed end of the chamber as shown at station 3 of the figure.

At the onset of this stage, a spark plug deposits a spark that causes a deflagration wave to
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form at the end of the tube. The deflagration wave propagates through the tube and
transitions to a detonation wave before reaching the open end of the tube. This transition
is known as the deflagration to detonation transition (DDT), and the time elapsed
between the formation of the deflagration wave and detonation wave is known as the
DDT transition time. The detonation wave then propagates to the tube exit at the
Chapman-Jouguet condition. As shown by station 4 in Fig. 2.6, the region ahead of the
detonation wave contains the unburned gas at state one. The burned gas at state 2 just
behind the wave is at a significantly higher pressure and temperature than state one;
however, the burned gas at state 3 near the near the closed end of the chamber will have a
lower temperature and pressure than the gas at state 2 with an intermediate condition
existing between states 2 and 3.

Upon reaching the end of the tube, the detonation wave exits, producing the thrust
of the engine. The purge phase begins as a pressure differential in the tube creates
rarefaction waves which propagate into the tube and expel the burned gases. Pressure and
temperature in the chamber eventually decay to ambient levels and the exhaust velocity
goes to zero. The detonation tube can then be filled with a new fuel/air mixture to begin

the cycle once again.

Prior Work on Hybrid-Pulse Detonation Engines
A significant amount of research, both experimental and analytical, has been done
on integrating a pulsed detonation combustor into a turbine system with the hopes of

increasing thrust and decreasing fuel consumption of an aircraft engine. Petters and
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Felder (Petters and Felder, 2002:4) and Andrus (Andrus, 2007:81) demonstrated that, in
theory, a pulsed detonation hybrid engine can reduce TSFC by 8 to 10% at design
conditions. GE Global Research (Rasheed et al., 2005) built and evaluated an eight tube
PDC integrated with a single-stage axial turbine. Results indicated the ability to produce
detonations at 10 and 20 Hz conditions showing promise for operability over a wide
range of conditions. Noise signatures and internal structural damage due to the cyclic
pulsations of the detonations are a cause for concern in implementing a PDC into a
turbine system. Caldwell and Gutmark (Caldwell and Gutmark, 2008:1) performed
experimental studies to ascertain the flow field and suggest that shock reflection and
blowdown jet interaction length and time scales could minimize noise and structural
damage. During Schauer et al. (Schauer et al., 2003:1) testing of a PDE into a radial
turbine, the turbine withstood all detonations into the inlet, as well as significantly
weakened the strength of the detonation shocks in the exhaust nozzle. This experimental
work (Rasheed et al., 2005) (Caldwell and Gutmark, 2008) (Schauer et al., 2003) among
others prove that after overcoming a few hurdles, these engines can become a reality.
Though much work has been performed on hybrid-PDEs at design conditions,
hardly any off-design analysis, either experimentally or analytically, has been
accomplished. Off-design analysis determines the performance of an engine at a given set
of conditions for a fixed geometry determined from a design operating point. Glaser et al.
(Glaser et al., 2004:1) experimentally investigated the off-design performance of a pulsed
detonation engine by varying the equivalence ratio and fill fraction parameters. Their

PDE system utilized a single stainless steel PDE tube 1” in diameter and 24” in length. A
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fuel/oxidizer mixture of ethylene and oxygen was injected into the tube via a controlled
solenoid valve. A relationship between the wave speed and the equivalence ratio was

found and is shown in Fig. 2.7.
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Figure 2.7 Relationship between equivalence ratio and detonation wave speed (Glaser et al., 2004:6)

As can be seen from the plot, the wave speed increases with equivalence ratio
before leveling out at a maximum equivalence ratio of 1.7 and wave speed of 2583 m/s.
The effect of fill fraction on wave speed was also determined. These results can be seen

in Fig. 2.8.
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Figure 2.8 Relationship between fill fraction and detonation wave speed (Glaser et
al., 2004:7)

Two different air/fuel ratios were investigated, with the two mixtures diverging at
a fill fraction of approximately 0.6 before leveling off at a fill fraction of about 1.0. These
results indicate that performance gains may be made at an equivalence ratio greater than
one and a completely filled detonation tube. Although these tests were not performed on
a hybrid-PDE, they indicate favorable results for pulsed detonation off-design studies,
thus furthering the need for hybrid-PDE off-design research.

Chapter three will describe the baseline and hybrid-PDE models in AEDsys and
NPSS and detail how the pulsed detonation thermodynamics are incorporated into the

hybrid combustor section to solve for the hybrid engine performance.
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I11. Baseline and Hybrid Models

Introduction

To ensure the accuracy of the baseline model in NPSS, it was compared to the
same baseline model in AEDsys (Mattingly et al., 2002) at the design point. The baseline
turbofan models were run in off-design mode in both the AEDsys and NPSS programs
and the results compared. The hybrid turbofan model was developed and run off-design
and its performance compared to that of the baseline model off-design. This chapter
describes the baseline and hybrid models, including the changes made to the hybrid

model to perform an off-design analysis.

Baseline High Bypass Turbofan Engine in AEDsys and NPSS

The modeled engine is based on the parameters of the TF-39-GE-1C engine used
on the C-5 Galaxy, as this engine has known operating parameters and is relevant to the
Air Force. The component efficiencies were unknown, however, and were selected to
correspond to a technology level projected ten to twenty years in the future. The
efficiencies can be found in Mattingly’s Table 4.4 (Mattingly et al., 2002:107) under
level 4 technology. Table 3.1 shows the parameters for the TF-39-GE-1C engine as

compared with the notional baseline of the engine modeled.
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Table 3.1 Parameters for baseline engine

Engine TF359-GE-1C |Baseline Model
Aircraft C-5 NS A
Nach number 0.0 0.0
Altitude (ft) 0.0 0.0
Fn (1bf) 40805 41500
Weight (1) 7186 N/A
Length (in) 100 NS
Max Diam (in) 203 N A
EPR 8 8
FPR 1.56 1.56
PR 26 26
TSFC I:ljfh] 0.315 0.325
Mass flow {lbm/s) 1549 1500
Max TIT (R) 2810 2900

Some of the baseline parameters are slightly different than those for the TF39-GE-1C

engine and were chosen for simplicity.

The baseline engine coded in NPSS utilizes the architecture of a high bypass split
stream turbofan as described by Mattingly (Mattingly et al., 2002:569-587). The model

reference stations and NPSS configuration are shown in Fig. 3.1.

b7 b8
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Figure 3.1 Baseline NPSS high bypass turbofan engine configuration with reference stations
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In Fig. 3.1, the core and bypass flows split at the fan entry and two mixers are
employed, one at the burner exit to combine the fluid exiting the burner with bleed flow
(M1X40) and another at the high pressure turbine exit to combine the fluid exiting the
turbine with bleed flow (M1X44). The bleeds are 5.0%, which is the default value in
AEDsys. The model file that defines the baseline NPSS engine is found in Appendix B.

The engine was also modeled in AEDsys in order to compare results to the NPSS
model and ensure its accuracy. Table 3.2 shows the input variables for the AEDsys
baseline turbofan engine.

Table 3.2 AEDsys baseline turbofan engine input parameters

Input Variables WValue
Mach Number 0.0
Altitude 0.0 ft
Temperature 51867 R
Pressure 14696 psia
Mass Flow 1500 Ibm/'s
T4 2900 R
Compr Press Ratio 2B
LPC PR 156
Fan PR 156
Bypass Ratio 8
Fuel Heating Value 12400 8TU/1bm
Cp Compressor 0.2415 BTU/lbm R
Eamma 1.3986
Cp Turbine 1.2957
Bleed Air 1%
Coolant Air 5%
Coolant Air 2 5%
Diffuser Max Press Ratio 0.995
Burner Press Ratio 0.9G
Nozzle Press Ratio 0.985
Fan Press Ratio 0.98
Fan Polytropic Eff 0.89
LPC Polytropic Eff 0.89
HPC Polytropic Eff 090
HPT Polytropic Eff 0.89
LPT Polytropic Eff 0.89
Burner Eff 0.995
Mech Shaft LP Spool Eff 0.99
Mech Shaft HP Spool Eff 0.99
Max Ttd 3200R
Max Comp Press Ratio 32
Max Press at station 3 650 psia
Max Temp at station 3 1860 R
Max % Ref RPM - LP Spool 110
Max % Ref RPM - HP Spool 110
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All parameters in Table 3.2 are also input into NPSS with the exception of the
polytropic efficiencies. NPSS requires adiabatic efficiency inputs for turbines and
compressors as compared to the AEDsys requirement for polytropic efficiency inputs.
The two efficiencies are related by Egs. 3.1 and 3.2 (Oates, 1997: 214 & 222).

ps (re=Dlre _ 1

e = ﬂ:(yc—l)/nec 1 (3.1)

1— ﬂ-tet (n-Din

= 1_7[t(7rl)/y[ (3.2)

These relationships are used to calculate the adiabatic efficiencies used in the baseline
NPSS model listed in Table 3.3.

Table 3.3 Baseline model NPSS adiabatic efficiency inputs

MPSS efficiency inputs | Value
Fan adiabatic eff 0.8827
LPC adiabatic eff 0.8827
HPC adiabatic eff 0.8573
HPT adiabatic eff 0.9057
LPT adiabatic eff 0.9084

The other difference between the AEDsys and NPSS programs is the
thermodynamic model. The AEDsys thermodynamic package is a subroutine termed
FAIR. FAIR is an 8" order polynomial fit to JANAF specific heat data for pure air, and
CEA data for vitiated air (Mattingly et al., 2002: 89-91). NPSS however, gives the user
control over the thermodynamic quantities by offering a choice of six different
thermodynamic packages. Table 3.4 lists the available models and provides a description

of each. The NPSS data in this thesis was generated using the GasTbl thermodynamics
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package as it is the simplest to implement in NPSS and a close match to the AEDsys
thermodynamic package. However, the GasThl package is limited to results whose
equivalence ratio is less than one; therefore, solutions with equivalence ratios greater than

one could not be investigated.

Table 3.4 NPSS Thermodynamics Packages

Package Description

Implementation of MASA chemical
equilibrium code

CEA

Implementation of MIST gas properties
Janaf prepared by Honeywell

Package developed by Pratt & Whitney

based on Therm, but adding humidity
GasThl calculations and some chemical

Package developed by General Electric that
AllEuel contains gas properties and fuel properties

Package used to calculate the properties of
ideal gases, contains only properties for
INGTherm |Helium and Zenon at present

Package used to define NPSS table and/or
functions that describe the thermodynamic
FPT properties of the fluid

The differences in the thermodynamics packages account for a 1.0%
difference in net thrust and 0.8% difference in TSFC at SLS of the baseline engine in
NPSS and AEDsys at the design point. Andrus (Andrus, 2007:23) provides a complete
explanation on how the thermodynamics packages differ and how they contribute to these

differences.
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Hybrid Turbofan Engine and Pulsed Detonation Combustor in NPSS

The hybrid-PDE model contains the identical architecture of the baseline turbofan
model shown in Fig. 3.1, with the exception of the burner section which is replaced by a
pulsed detonation combustor (PDC). The NPSS Model code for the hybrid turbofan
engine can be found in Appendix C.

The hybrid engine and PDC inputs are listed in Table 3.5.

Table 3.5 Hybrid engine on-design configuration

Input Variables Value
Mass Flow 1500 lbmy/s
Tt4 2900 R
Compr Press Ratio 26
LFC PR 1.56
Fan PR 1.56
Bypass Ratio 8
Tube Inner Diameter 21in
Tube Length 36in
Number of Tubes 24in
ARvalve 0.7
Mvalve 0.8
Equivalence Ratic 0.9012
Frequency 54,906 Hz
Purge Fraction 0.5
Fuel Heating Value 18400 BTU,/1bm
Cp Compressor 0.2415 BTW/Ibm R
gamma C 1.3986
Cp Turhine 1.2857
Bleed Air 1%
Coolant Air 5%
Coolant Air 2 5%
Diffuser Max Press Ratio 0.985
Burner Press Ratio 0.96
Nozzle Press Ratio 0.985
Fan Press Ratio .98
Fan Adiabatic Eff 0.3827
LPC Adiabatic Eff 0.8827
HPC Adiabatic Eff 0.8573
HPT Adiabatic Eff 0.9057
LPT adiabatic Eff 0.9084
Burner Eff 0.935
Mech Shaft LP Spool Eff 0.99
Mech Shaft HP Spool Eff 0.99
Max Ttd 3200R
Max Comp Press Ratio 32
Max Press at station 3 650 psia
Max Temp at station 3 1860 R
Max % Ref RPM - LP Spool 110
IMax % Ref RPM - HP Spool 110
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The inputs in Table 3.5 are identical to those of the baseline engine in NPSS, with

the exception of the new parameters added for the PDC section: tube dimensions, number

of tubes, ARvave, Mvae, €quivalence ratio, frequency, and purge fraction. ARyae IS the

ratio of the inlet valve cross-sectional area to the detonation tube cross-sectional area and

Muyave 1S the Mach number into the valve. The values of these parameters are the results

of a parametric study performed for optimal engine performance at SLS. Altitude, Mach

number, and fill fraction are the parameters varied to analyze the hybrid engine

performance off-design. The NPSS PDC burner element (BRN36) configuration is shown

in Fig. 3.2.
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Flow leaves the high pressure compressor and enters the pulsed detonation
combustor. The flow control at the detonation tube inlet is modeled as a pressure loss
AP /P term between the inlet and detonation tubes. This pressure loss matches the dry-
duct pressure loss experienced by the conventional combustor. For the flow going into
the tubes, this dry duct pressure loss is intended to represent pressure loss through a
valve. Since the detonation engine operates at a higher equivalence ratio than
conventional engines, it requires less air to mix with the fuel for a similar enthalpy
generation. Balancing the mass flow through the tubes necessitates shunting some of the

air around the detonation tubes through an internal bypass. The mass flow rate through
the internal bypass (g ) is defined as:

m..EF' = }5?.*:;-.‘ ai _}i?n."x zEr (32)
where ":==_= s the combined mass flow rate entering the PDC before it is split. The

internal bypass ratio (iBPR) equals:

iBPR =& (3.3)

Myve_air

In order to determine the mass flow rate into the detonation tubes (7ase_as ) the
fill fraction (ff) and purge fraction (pf) must first be defined. The fill air is the air mixed
with the fuel, while the purge air is the unmixed portion. The purge air is used to expel
the burned gases and also serves to cool the detonation tubes between cycles. The fill and
purge fractions are defined in terms of volume of air for their respective portions of the

tube filling process:
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Vv

ff — _fuel-air_mix 3.4
Aube * Itube ( )
V )

pf — purge _air (35)
Aube * Itube

Since the air is stopped in the tube when the valve is closed, total density ( p,) can be

found. The purge and fuel-air masses are calculated by multiplying the total density by

the tube volume and the purge fraction and fill fractions, respectively:
mpurge_air = pf 'Vtube Py (36)

m = ff 'Vtube Py (37)

fuel—air _mix
where Ve = Atube * lube-

Equations 3.6 and 3.7 represent the amount of purge air and fuel-air mixture that
flow into one tube during each cycle. The amount of air to send through the valve at the

opening of the detonation tube is calculated in Eqgs. 3.8 - 3.12:

mfuel—air_mix = mfill_air + mfuel (38)
mfuel—air_mix _ mfiII_air + mfuel (3 9)
mfill_air mfiII_air mfill_air
m . .
fuel—air _mix — 1+ FAR (310)
mfill—alr
m . .
mﬁ" = fuel—air _mix (311)
1+ FAR
m. . — ff *Viuwe * 21 (3.12)
fill _air 1+ FAR

30



where My 4ir 1S the mass of the air that is detonated and mgg is the fuel used during one

cycle. Once the mass of air flowing into the tubes during one cycle is known, the time

averaged steady state mass flow rate into the detonation tubes (Pez:_a:) s calculated by
multiplying the total mass of air into the tubes by the user inputs of frequency (f) and the

number of tubes (Nypes):

Plyse wr = (May o +7 rwrE ) S e
) . } (3.13)

The thermodynamics within the pulsed detonation combustor are modeled after
the work of Heiser and Pratt (Heiser and Pratt, 2002:1) with a Dyer and Kaemming
correction (Dyer and Kaemming, 2002:1) to more accurately conserve system energy. To

calculate the detonation properties at the tube exit, implementation into NPSS required a

(4§
few modifications to Equations 2.7 and 2.8. The quantity * *wj as defined by Egs. 2.11

and 2.12 is rearranged as:

|E\ — hy —

|

w) (3.14)
This allows for burner inlet and exit enthalpies, specific heat, and inlet engine
temperature parameters to be used to solve for the Chapman-Jouguet Mach number, Eq.

2.8, and entropy gain across the burner, Eq. 2.9. The pressure rise across the shock is then

calculated as:

& 1+7MCJ p3 >1 (315)
Po y+1 p,
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Having solved for the pressure and entropy at the detonation tube exit, all properties of
the fluid at this point (station 4) are solved for through thermodynamic relationships.
However, as mentioned in the previous chapter, instead of using the pressure and entropy
at the detonation tube exit to solve for all the properties of the fluid at this point, which
ignores the eventual pressure loss that the gas will go through due to expansion waves,
entropy and the change in enthalpy liberated by the combustion process are used to solve
for the properties at the detonation tube exit. Available energy is calculated using the
known CJ entropy originally calculated by Heiser and Pratt (Heiser and Pratt, 2002:1),
Eq. 2.9, with the known system enthalpy of (ho+qaqq) in order to ensure that energy is
conserved within the system. The NPSS PDC burner element code is found in Appendix
D.

Rasheed et al. (Rasheed et al., 2006) showed that exhausting a pulsed detonation
combustor directly into a turbine lowers the turbine efficiency and has structural
ramifications affecting the engine life. The hybrid model is based on the assumption that
the flow into the turbine is steady flow. A subelement to the PDC was created that allows
for the application of a pressure drop and enthalpy loss, however, no such loss is applied

in this model.

Hybrid Turbofan Engine Off-Design
Fill fraction is the primary method of thrust control as prior work on PDEs
indicated that performance gains may be made at fill fractions other than one (Glaser et

al., 2004:1). Frequency and equivalence ratio can also be used as variables to throttle the
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engine as shown by the work of Schauer et al.(Schauer et al., 2001:6) and Hoke et al.
(Hoke et al., 2005:2). Frequency is chosen to be a user input and constant throughout
flight, whereas for the hybrid engine to operate at altitudes above 13,000 ft, the
equivalence ratio has to be varied to gain the maximum thrust at a given Mach number
and altitude. Therefore, the equivalence ratio is adjusted at each operating condition to
yield maximum thrust. The engine constraints are shown at the bottom of Table 3.2 and
controls were implemented into the solver to ensure the model stayed within these
constraints.

When running the NPSS solver off-design, an error was given for the constant
area mixer, M1X39, which combines the flow coming out of the detonation tubes with the
internal bypass flow of the PDC. In design mode, the user provides a Mach number for
the tube flow into the mixer, which determines the primary entrance area of the mixer.
The area of the internal bypass flow entering the mixer is determined by varying the area
until the static pressure of the two streams equal. This conserves energy, continuity, and
momentum when mixing the flows exiting the tubes and the internal bypass flow into
one.

Running the model in off-design mode at various fill fractions, Mach numbers,
and altitudes, however, yielded a static pressure difference between the two flows when
entering M1X39. As the fill fraction decreases from the design fill fraction, the mass of
the fill air decreases, thus there is less mass flow entering the tubes and more flow

entering the internal bypass as shown in Egs. 3.13 and 3.2, respectively:

= e (3.13)



core_air My _ar (3.2)
As the mass flow of the internal bypass increases, the static pressure (p) decreases for a
fixed area. The internal bypass flow behaves as pipe flow, and as mass flow increases,
velocity increases (assuming incompressible flow), Eqg. 3.16, and thus the static pressure

must decrease to maintain a constant total pressure (p;) shown in Eq. 3.17:

%,ov2 +p=p, =const (3.17)

This yields a lower static pressure entering the mixer from the internal bypass than from
the detonation tubes. The NPSS MIX39 requires that the incoming streams have equal
static pressures in order to mix. To converge to a solution off-design, the static pressure
of the internal bypass flow entering the mixer must be increased to match the static
pressure of the flow coming out of the detonation tubes into the mixer. This is
accomplished by decreasing the mass flow of the internal bypass, as mass flow and static
pressure have an inverse relationship as seen from Eqgs. 3.16 and 3.17. To decrease the
mass flow of the internal bypass, a bleed was implemented, shown in Fig. 3.2 as BLD4,
in which the mass flow is bled from the internal bypass until the static pressure of the two
streams entering MI1X39 match. The bleed flow then enters back into M1X40 and M1X44
on either side of the low pressure turbine. The flow is equally divided into MIX40 and
MIX44 and does not present a static pressure error. MI1X39 caused an NPSS convergence

error because there is an unequal amount of independent (9) and dependent variables
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(10). The internal bleed is added as an independent variable to be varied until the static
pressure of the two flows entering the mixer equal.

MIX39 allows for the flow exiting the PDC to cool to below the temperature
constraint before entering the turbine, however, it has the potential to be the source of a
significant pressure loss. No pressure loss term is applied to the mixer in this model, but
the possibility of such a loss is recognized.

The next chapter utilizes this PDC combustor configuration to analyze the hybrid
turbofan performance at off-design conditions as compared to the conventional baseline

model.
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IV. Analysis and Results

Introduction

This chapter contains the performance of the baseline turbofan evaluated at
off-design conditions in AEDsys and NPSS and an off-design analysis of the hybrid
turbofan modeled in NPSS. The baseline turbofan is evaluated in two programs to

establish a foundation for comparing the engine off-design.

Baseline Turbofan Off-Design Performance

The on-design baseline model yields a thrust variation of approximately 1.0% and
thrust specific fuel consumption (TSFC) variation of approximately 0.8% between
AEDsys and NPSS. This deviation is due to differences in the thermodynamic models of
the two programs in specific heat and enthalpy. The baseline turbofan model is run off-
design in both AEDsys and NPSS. Throttle hooks are shown in Fig. 4.1 across six
different Mach number and altitude levels. The throttle hooks are generated by varying
the fuel-air ratio (FAR) to match a selected a thrust value, which is then plotted against
the corresponding TSFC. As seen in the figure, the two programs display agreement at
the design point; however, the solutions diverge at higher Mach numbers and altitudes.
This divergence is due to differences in off-design component efficiencies. The AEDsys
program component adiabatic efficiencies do not change from their on-design values,
whereas the NPSS program utilizes component maps for off-design performance.

Variation in efficiencies for NPSS at off-design conditions is shown in Figs. 4.2 and 4.3.
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The baseline turbofan is run at maximum thrust at maximum Ty at SLS, and at maximum

7, at all other altitudes. The AEDsys low pressure and high pressure spool efficiencies

remain constant at 0.99 as expected. The NPSS low pressure compressor and turbine and

high pressure compressor efficiencies change as N¢/(N. design) increases. The high

pressure turbine efficiency remains constant; however, the fan efficiency experiences a

severe drop as it moves away from the design speed. The variations for the NPSS

efficiencies are expected and may account for the differences in the throttle hook results

between AEDsys and NPSS.

1.2

Baseline Throttle Hook Comparison NPSS and AEDsys

e NPSS: M = 0.0, Alt = 0.0 ft
X AEDsys: M = 0.0, Alt = 0.0 ft
e NPSS: M = 0.2, Alt = 8 kft

X AEDsys: M = 0.2, Alt = 8 kft

TSEC (Ilbm/hr)/Ibf

0.2

O T T T

Thrust (Ibf)

0 10000 20000 30000 40000 60000

NPSS: M = 0.4, Alt = 16 kft
AEDsys: M = 0.4, Alt = 16 kft
e NPSS: M = 0.6, Alt = 24 kft
X AEDsys: M = 0.6, Alt = 24 kft
e NPSS: M = 0.8, Alt = 32 kft
X AEDsys: M = 0.8, Alt = 32 kft
e NPSS: M = 1.0, Alt = 40 kft

AEDsys: M = 1.0, Alt = 40 kft

Figure 4.1 Throttle hook baseline engine comparison using NPSS and AEDsys

37



Adiabatic Efficiency

0.95

o
o

0.85

o
o

0.75

0.7

Baseline Turbofan LP Spool Adiabatic Efficiencies NPSS and AEDsys

—»— eta f NPSS: M = 0.0, Alt = 0.0ft

—x—eta f NPSS: M = 0.4, Alt = 16 kft
——eta f NPSS: M = 0.8, Alt = 32 kft

—@—eta cL NPSS: M = 0.0, Alt = 0.0 ft

—@— eta cL NPSS: M = 0.4, Alt = 16 kft

—®—etacL NPSS: M =0.8, Alt = 32 kft

eta tL NPSS: M = 0.0, Alt = 0.0 ft
e eta tL NPSS: M = 0.4, Alt = 16 kft

eta tL NPSS: M = 0.8, Alt = 32 kft

w==g===eta LP Spool AEDsys

0.6 0.7 0.8 0.9

Nc/(Nc design)

Figure 4.2 Low pressure spool adiabatic efficiencies for NPSS and AEDsys off-design
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Figure 4.3 High pressure spool adiabatic efficiencies for NPSS and AEDsys off-design
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Hybrid Turbofan Off-Design Results
The hybrid turbofan model is evaluated off-design over a range of Mach numbers,
altitudes, and fill fractions to determine the effects on engine performance. Engine

constraints are placed in NPSS to ensure that the model does not violate the maximum

engine control values of Tu, 7_, Piz and Ty, and N¢/(N design) as listed as the bottom of

Table 3.2.

Code Verification and Operating Limit

The hybrid engine is run in NPSS at the design point in off-design mode to
validate the off-design code for the engine. Table 4.1 shows the engine data at the design
point in both design and off-design mode. The data is very similar with a TSFC and
thrust variation of 0.26% and 0.01%, respectively.

The engine operating envelope is found for both the baseline and hybrid engines
in NPSS and shown in Fig. 4.4. The envelope is attained by running the model at sea
level at increasing flight Mach numbers until NPSS no longer converges to a solution.
The far right boundary is obtained by gradually increasing the flight altitude at the
maximum Mach number. The top boundary is found via a similar method. The models
are run off-design at maximum thrust and a fill fraction of 1.0 using the on-design
parameters shown in Table 3.5 with the exception of the equivalence ratio. The design
equivalence ratio only allows the hybrid engine to operate at a maximum of 13,000 ft. To
obtain maximum performance, the equivalence ratio is varied to yield the maximum

thrust at the flight Mach number and altitude. This is accomplished in NPSS by varying
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the FAR, which is a user input, to yield the maximum thrust at a particular flight
condition. Thus, the equivalence ratio varies along the operating limit line ranging from a
minimum of 0.79 at M = 1.7 and Alt = 75,000 ft to a maximum of 0.93 at M = 1.8 and
Alt = 0.0 ft. The baseline engine has a higher altitude limit of 113,000 ft as compared to
that of the hybrid engine with a maximum of 80,000 ft. Both models have the same Mach

number limit of 2.2.

Table 4.1 Hybrid engine test data showing the design point and the design point run at off-design

using NPSS
NCP NP55_1.6.5 - Rev: —- model : PDC HETF
run by: caitlin solutionMode= STEADY_STATE converge= 1
case: 2 time: 0.000 TimeStep:0.0300 therm_package:GasTh]
iter/pas/Jac/Broy= 4,/ 4/ 0/ 2 run: 12/08/09 13:10:32

Design Values
Pidmax= 0.99500 Pi b = 1.46943 Eta b = 0.99500 Pi n = 0.98500

Eta f = 0.88270 Eta cL= 0.88270 Eta cH= 0.85730 Eta tH= 0.90570 Eta tL= 0.90840
e f = 0.89210 e cL = 0.89210 e cH= (0. 89982 e tH= 0.89259 e tL= 0.89357
gam2 = 1.39978 gam25= 1.39963 gam3= 1.35506 gamd= 1,27739 gamd 5= 1.29762
Eta mL= 0.99000 Eta mH= 0.9900 gam5=1. 31906

PTO L = 0.0kw PTO H = 106.8kwW hpPr = 18400

Bleed = 1.00% cool 1= 1.00% cool 2= 1.00% pi nf = 0.98000
#%  Thrust scale DOES NOT APPLY...

CASE 0: DESIGN CASE 1: OFFDESIGN

Converged? (0 - no, 1 - yes) 1 1
mach Number at 0 0.0100 0.0100
Temperature at 0 518.6700 518.6700
Pressure at 0 14,6960 14,6960
Altitude at 0 0. 0000 0. 0000
Total Temp at 4 3648.0 3648. 3
Pir 1.0001 1.0001
/ Tau r 1.0000 1.0000
Pi d 0.9950 0.9950
Pi f 1.5600 1.5600
/ Tau f 1.1534 1.1534
Pi cL 1.5600 1.5600
/ Tau cL 1.1534 1.1534
Pi cH 16.6667 16.7164
Tau cH 2.3730 2.3750

Tau ml 0.9453 0.9968
Pi tH 0.2842 0.2838
Tau tH 0.7783 0.7780

Tau m2 0. 9964 0. 9980
Pi TL 0.2553 0.2553
Tau tL 0.7503 0.7503

LP spool rRPM (% reference pt) 100. 000 99, 987
HP Spool RPM (% reference pt) 100. 000 100,045
Alpha 8. 000 8§.002
Pt19/pP19 1.5212 1.5212
PO/P19 1.0000 1.0000
Mach Number at 19 0.8003 0.8003
P19,/P9 1.8524 1.8524
PO/P9 0. Bob4d 0. Bobb
Mach Number at 9 1.0000 1.0000
Mass Flow Rate at O 1500. 0000 1499.9210
Corr Mass Flow at O 1499.9263 1499, 8473
Flow Area at 0 (ft2) 1757.3935 1757.3010
Flow Area® at 0 (ft2) 30. 3652 30. 3636
Flow Area at 8 and 18 (ft2) 22.7472 22.747
MB - Fuel/air Ratio (f) 0.06161 0.06161
overall Fuel/Air Ratio (fo) 0.00301 0.00300
Sﬁecif'ic Thrust (F/m0) 32.1463 32.1439
Thrust Spec Fuel Consumption (5) 0. 3410 0.3401
Thrust (Fn) 47699. 0467 47692.9194
Fuel Flow rate (lbm/hr) 16264, 867 16220.177
Propulsive Efficiency (%) 2.0466 2.0465
Thermal efficiency (&3] 40,2805 40. 3875
overall Efficiency (€3] 0.8244 0.8265
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Figure 4.4a Mach number and altitude operating envelope at maximum thrust,
baseline and hybrid engine using NPSS

Figure 4.4b shows the aircraft flight operating envelope as compared to the
operating envelope of the engine. The flight operating envelope is estimated using a lift
to drag ratio at cruise conditions on the order of 10 with each engine supporting 100,000
Ibs of weight. This comes from an assumed thrust to weight ratio of 0.4 for a 40,000 Ib
engine. The flight envelope is much smaller than that of the engine, with a maximum
altitude of 38,000 ft and a maximum Mach number of 1.83. The hybrid engine’s flight
altitude is constrained to lower than that of a conventional aircraft; however, it is still
acceptable for flight. The lower altitude limit of the hybrid engine is due to the limitations
of the internal bypass. The internal bypass ratio is on the order of 0.3 at a fill fraction on
1.0. This ratio increases as the fill fraction is throttled to lower values as seen in Fig. 4.4c.

Figure 4.4c is generated by selecting the fill fraction and varying the FAR upward to
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increase thrust. At the FAR for maximum thrust, any more increase in FAR results in non
convergence in NPSS due to the internal bleed air equaling zero and the static pressure of
the internal bypass flow entering M1X39 no longer equaling the static pressure of the

flow exiting the detonation tubes.

Operating Envelope for the Hybrid Engine
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Figure 4.4b Mach number and altitude engine and flight operating envelope for the
hybrid engine at maximum thrust using NPSS
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Figure 4.4c Internal bypass ratio variation with fill fraction at SLS and cruise
conditions at maximum thrust

Component Data

Component interface data for the baseline and hybrid engines at sea level static

and cruise conditions are shown in Tables 4.2 and 4.3. The models are run at the

configuration shown in Table 3.5 at maximum thrust and a fill fraction of 1.0. At SLS,
the hybrid engine has a 12.7% greater thrust than the baseline engine, but at a cost of a

5.3% increase in TSFC. At cruise conditions of M = 0.8 and Alt = 30,000 ft, the hybrid

engine has a thrust gain of 14.7% over the baseline and it also has a lower TSFC by

3.1%. These results are summarized in Table 4.3c and indicate that the hybrid engine

could yield better performance than the baseline at cruise conditions.
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Table 4.2a NPSS component interface data for the baseline engine at SLS, maximum thrust

NCP NPS5_1.6.5 - Rev: -- model:Baseline HBTF > run by: Caitlin  solutionMode= STEADY_STATE  converge= 1  case: 0
time: 0.000 timeStep:0.0500 therm_package:GasTh] Mode: DESIGN iter/pas/lac/Broy= 5/ 7/1/ 3 run: 01/07/10 11:28:56
Summary Output Data
MN alt Ts W Fg Fn TSFC wfuel WAR OPR
0.010 0.0 0.00 1500.0 42189.2 41668.8 0.3238 13491.12 0.0000 25.870
INPUT FLOW

W gamt PT Tt Ps 15 MN vV Aphy/144, FAR RS imp
FLO INLET.F1_I 1500.00 1.39978 14.697 518.68 14.696 518.67 0.0100 11.16  1757.394 0.0000 0.06856 3719539.18
FL1 SPLIT.FI_I 1500.00 1.39978 14.623 518.68 12.329 493,97 0.5000 544.91 40.864 0.0000 0.06856 97950. 38
FLb2 Fan2l.F1_I 1333.33  1.39978 14,623 518.68 12.329 493,97 0.5000 544,91 36.324 0.0000 0.06856 87067.00
FLb3 Bypass13.F1_I 1333.33  1.39963 22.812 598.26 19.286 569.80 0.5000 585.02 24,947 0.0000 0.06856 93528.29
FLb7 Noz18.F1_I 1333.33  1.39963 22.812 598.26 19.286 569.80 0.5000 585.02 24,947 0.0000 0.06856 93528.29
FLb8 Nozsink19.F1_I 1333.33  1.39963 22.356 598.26 14. 696 530.38 0.8003 903.41 19.734 0.0000 0.06856 79200.91
FL2 LPC20.F1_I 166.67 1.39978 14,623 518.68 12.329 493,97 0.5000 544,91 4.540 0.0000 0.06856 10883, 38
FL25 HPC25.F1_I 166.67 1.39963 22.812 598.26 19. 286 569.80 0.5000 585.02 3.118 0.0000 0.06856 11691.04
FL3 BLD3.FI_I 166.67 1.33513  380.206 1419.66 357.634 1397.08 0.3015 543.7 0.444 0.0000 0.06856 25662.10
FL31 BRN36.F1_I 148,33  1.35513  380.206 1419.66 357.634 1397.08 0.3015 543.7 0.395 0.0000 0.06856 22839.27
FL4 MIX40.F1_I 152,08 1.28210 364.998  2900.00 0.000 0.00 0.0000 0.00 0.000 0.0253  0.00000 0.00
FL41 HPT41.F1_I 160.41 1.28490 364.998  2830.35 0.000 0.00 0.0000 0.00 0.000 0.0239  0.00000 0.00
FL44 MIX44.F1_I 160.41  1.30753 86.67 2112.71 0.000 0.00 0.0000 0.00 0.000 0.0239  0.00000 0.00
FL45 LPT45.F1_I 168.7 1.30042 86.67 2080.7 0.000 0.00 0.0000 0.00 0.000 0.0227  0.00000 0.00
FL7 Noz8.F1_I 168.7 1.33650 7.608 1472.58 13.929 1387.80 0.6000 1072.95 5.810 0.0227 0.06861 17280.63
BL 3 5ink39.F1_I 1.67 1.35513  380.206 1419.66 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FL8 NozSink9.F1_I 168.7 1.33650 7.344  1472.58 14,696 1412.26 0.5024 905.79 6.638 0.0227 0.06861 18797.76

BURNERS
Ttout eff drgp LHV wfuel FAR

BRN36 2900.00 0.9950 0.0400 18400 3.74753  0.02526

Table 4.2b NPSS component interface data for the hybrid engine at SLS, maximum thrust (ff = 1)

NCP NP55_1.6.5 - Rev: -- model: PDC HBTF run by: caitlin solutionMode= STEADY_STATE converge= 1 case: 0
time: 0.000 timestep:0.0500 therm_package:GasThl Mode: DESIGN iter/pas/Jac/Broy= 5/ 7/ 1/ 3 run: 03/06/10 09:14:22
summary Output Data
MN alt dTs W g Fn TSFC wfuel WAR OPR
0.010 0.0 0.00 1500.0 48246.4 47725.9 0.3408 16264.87  0.0000 38.020
INPUT FLOW

W gamt PT Tt P5 Ts MN v Aphy/144, FAR RS imp
FLO  INLET.FI_I 1500.00  1.39978 14.697 518.68 14.696 518.67  0.0100 11.16 1757.394 0.0000 0.06856 3719559.18
FL1  SPLIT.FI_I 1500.00  1.39978 14.623 518.68 13.07 502.60 0.4000 439.7 48.575 0.0000 0.06856 111974.7
FLb2 Fan2l.F1_I 1333.33  1.39978 14.623 518.68 13.07 502.60 0.4000 439.7 43,177 0.0000 0.06856 99533.09
FLb3 Bypassli3.F1_I 1333.33  1.39963 22,812 598. 26 20,477 579.7 0.4000 472,07 29,626 0.0000 0.06856 106920.7
FLb7 Noz18.F1_I 1333.33  1.39963 22,812 598. 26 20.477 79.7 0.4000 472,07 29.626 0.0000 0.06856 106920.7
FLb8 Nozsink18.F1_1 1333.33  1.39963 22.1356 598. 26 14.696 530.38 0.8003 903.41 19.734 0.0000 0.06856 79200.91
FL2 LPC20.F1_I 166.67 1.39978 14.623 518.68 13.07 502.60 0.4000 439.7 5.397 0.0000 0.06856 12441.64
FL25 HPC25.F1_I 166.67 1.39963 22,812 598.26 20.477 579.7 0.4000 472,07 3.703 0.0000 0.06856 13365.09
FL3 BLD3.FI_I 166.67 1.35513  380.206 1419.66 341.620 1380.32 0.4000 717.135 0.348 0.0000 0.06856 20825.7
FL31 BRN3B.FI_I 148.33  1.35513 380.206 1419.66 357.849  1397.30  0.3000 541.11 0.397 0.0000 0.06856 22930.36
F1393 BLD4.F1_I 0.00 1.39978 14.696 518.67 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
F139 MIX39.F1_I1 115.15  1.25230 558.77 3648.04 362,681 3336.83 0.8500 2286.33 0.172 0.0408  0.06865 17160.29
F1392 MIx39.F1_12 7.7 1.35513 364.998 1419.66 362.684 1417.30 0.0969 175.89 0.310 0.0000 0.06856 16413.7
FL4  MIX40.F1_I 152,85 1.27177 454,794 3161.21 424.475 3114.86 0.3305  862.59 0.482 0.0305 0.068863 33574.07
FL4l HPT41.F1_I 161.18 1.27494 454,704 3081.06 363.352 2934.54 0.6000 1523.69 0.317 0.0288 0.06862 24210.48
FL44 MIX44.F1_I 161.18 1.29532 125.458 2387.41 96.133  2246.04  0.6500 1455.77 0.939 0.0288 0.06862 20572, 88
FL45 LPT45.F1_I 169.52  1.29759 125.458 2343.7 96,089 2204.00 0.6500 1443.34 0.999 0,027 0. 06862 21426.97
FL7  Noz8.F1_I 169.52  1.31902 32.033 1738.62 28,857 1714.7 0.4000 789.10 4.734 0.027 0. 06862 23827.24
BL 3 5ink39.F1_I 1.67 1.35513 380.206 1419.66 0.000 0.00  0.0000 0.00 0.000 0.0000 0.00000 0.00
FLE  Nozsink9.Fl_I 169.52  1.31902 31.552 1758.62 7.033 1511.92 1.0000 1859.66 3.000 0.027 0.06862 17157.42
F1394 Nozsinkl.F1_I 0.00 1.50617 14.696 0.00 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00

BURNERS
Ttout eff dprgp LHV wfuel FAR

ERN36 4443,75  0,9950  0.0400 18400 4,51802 0.06161
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Table 4.3a NPSS component interface data for the baseline engine at cruise, maximum thrust

NCP NPSS_1.6.5 - Rev: -- model:Baseline HETF > run by: caitlin  solutiorMode= STEADY_STATE  converge= 1 case: 1
time: 0.000  timestep:0.0500 therm_package:GasThb] Mode: OFFDESIGN iter/pas/Jac/Broy= 19/ 29/ 1/17 run: 01/21/10 15:05:18

summary Output Data
MN alt  dts W Fg Fn TSFC wfuel WAR OPR
0.800  30000.0 0.00 779.5 30734.6 11483.9 0.6705  7700.22 0.0000 31.841

INPUT FLOW

W gamt Pt Tt Ps TS VN v Aphy/144, FAR RS imp
FLO INLET.FI_I 779.47  1.40010 6. 67 464.31 4,364  411.69 0.8000 795.44 34,249 0.0000 0.06856  40793.83
FL1 SPLIT.FI_I 779.47  1,40010 6.646 464,31 0.000 0.00 0.0000 0.00 0.000 0.0000  0.00000 0.00
FLb2 Fan2l.F1_I 685.97  1.40010 6.646 464,31 0.000 0.00 0.0000 0.00 0.000 10,0000  0.00000 0.00
FLb3 Bypass13.F1_1 685.97 1.39968  10.97 564.7 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FLb7 Noz18.F1_1 685.97 1.39968  10.97 564.7 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FLb8 NozSink19.F1_I 685.97 1.39968  10.758 564.7 5,699  470.64 1.0000 1063.58 19,734 0.0000 0.06856 3887101
FL2 LPC20.F1_I 93.49  1.40010 6.646  464.31 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FL25 HPC25.F1_I 03.49 1.39969  12.369 568.03 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FL3 BLD3.FI_I 93.49 1.35799 212.674 1370.63 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FL31 BRN36.F1_I 83.21 1.35799 212,674 1370.63 0.000 0.00 0.0000 0.00 0.000 0.0000  0.00000 0.00
FL4 MIX40.F1_I 85.35 1.28227 204.167 2882.66 0.000 0.00 0.0000 0.00 0.000 0.0257  0.00000 0.00
FLA1 HPTAL.F1_I 90.02 1.28514 204,167 2811.7 0.000 0.00 0.0000 0.00 0.000 0.0243  0.00000 0.00
FL44 MIX44.F1_I 90.02  1.30729 50,031  2111.99 0.000 0.00 0.0000 0.00 0.000 0.0243  0.00000 0.00
FL45 LPT45.F1_I 94,70 1.30927 50,031 2077.93 0.000 0.00 0.0000 0.00 0.000 0.0231  0.00000 0.00
FL7 NozB.F1_I 04,70 1.34283 7.178  1360.36 0.000 0.00 0.0000 0.00 0.000 0.0231  0.00000 0.00
BL 3 5ink39.F1_1 0.93 1.35799 212.674 1370.63 0.000 0.00 0.0000 0.00 0.000 0.0000 0.00000 0.00
FLB NozSink9.F1_I 94,70 1.34283 7,070 1360.36 4,364 1201.26 0.8714 1456.01 6.638 0.0231  0.06861 6456.78

BURNERS
Ttout eff drgP LHV wfuel FAR

BRN36 2882.66  0.9950 0.0400 18400  2.13895 0.02571

Table 4.3b NPSS component interface data for the hybrid engine at cruise, maximum thrust (ff = 1)

NCP NPSS_1.6.5 - Rev: -- model: PDC HBTF run by: caitlin solutiorMode= STEADY_STATE converges= 1 case: 1
time: 0.000 Timestep:0.0300 therm_package:GasThl mode: OFFDESIGN iter/pas/Jac/Broy= 14/ 25/ 1/12 run: 03/06/10 09:14:23

summary Output Data

MN alt dTs W Fg Fn TSFC wfuel WAR OPR
0.800  30000.0 0.00  754.2 31818.0 13173.0 0.6495  §556.12  0.0000 44.695

INPUT FLOW

W ganmt Pt Tt Ps Ts MN v aphy/144. FAR RS imp
FLO  INLET.F]_I 754.16  1.40010 6.67 464,31 4.364 411.69  0.8000 793.44 33,137 0.0000 0.06856 39469.29
FL1  SPLIT.FI_I 754.16  1.40010 6.646 464,31 5.877 448,29 0.4228 438.7 48,575 0.0000 0.06856 51394.06
FLb2 Fan2l.FI_I 665.31  1.40010 6.646 464.31 5.891 448,58 0.4188 434.7 43.177 0.0000 0.06856 45615.04
FLb3 Bypassli3.F1_I 665.31  1.39972 10.473 547.22 9.27 528,51  0.4209 474,28 29,626 0.0000 0.06856 49361.7
FLb7 MNozl8.F1_I 665.31  1.39972 10.47 547,22 9.27 528,51  0.4209 474,28 29.626 0.0000 0.06856 49361.7
FLbB Noz5ink19.F1_I 665.31 1.39972  10.263 547.22 5.441  456.01 1.0000 1046.81 19.734 0.0000 0.06856 37108. 89
FL2  LPC20.F]_I 88.85 1.40010 G.646 464.31 5.763 4457 0.4558 471,77 5.397 0.0000 0.06836 5781.91
FL25 HPC25.F1_I 88.85 1.39971 11.408 552.82 10.142 534,56  0.4134 468,50 3.703 0.0000 0.06836 6702.35
FL3 BLD3.FI_I 88,85 1.35941 197.081 1346.97 77,010 1309.17  0.4002 699,99 0.348 0.0000 0.06856 10798.37
FL31 BRN36.F1_I 79.07 1.35941 197.081 1346.97 185.469 1325.49 0.3001 527.9% 0.397 0.0000 0.06856 11889.13
F1393 BLD4.F1_T 0.00 1.3997 14.696 518.67 0.000 0.00  0.0000 0.00 0.000 0.0000  0.00000 0.00
F139 MIX39.F]_I1 62,83 1.25387 298.535 3524.52 18B.177 3203.63 0.8744 2308.19 0.172 0.0393  0.06864 9165.29
F1392 MIX39.F]_12 18.62 1.35941 189,197 1346.97 188.167 1345.03 0.0897 158.93 0.310 0.0000 0.06856 8500.7
FL4  MIX40.F]_I 81.45 1.27401  239.297  3083.7 223.337 3038.25 0.3303 852.12 0.482 0.0301  0.06863 17666.07
FL41 HPT4L.F1_I 85.89 1.27721 239,297 3003.82 191.17 2860.12  0.5994 1504.12 0.317 0.0285 0.06862 12737.20
FL44 MIX44.F1_I 85.80 1.20731 7.055  2331.29 52.100 2199.58 0.6320 1401.7 0.959 0.0285 0.06862 10939. 36
FL45 LPT45.F1_I 90.34  1.29954 7.055  2286.95 52,095 2156.95 0.6316 1388.43 0.999 0.027 0.06862 11392.06
FL7  Noz8.F1_I 90.34 1.32172 16.788 1704.22 15,123 1661.33  0.3999 777.40 4.734 0.027 0.06862 12491.16
BL 3 Sink39.F1_I 0.89 1.35941 197.081 1346.97 0.000 0.00  0.0000 0.00 0.000 0.0000  0.00000 0.00
FL8  Nozsink9.Fl_I 90.34  1.32172 16.537  1704.22 8.920 1463.35 1.0000 1831.534 3.000 0.027 0.06862 8996.48
F1394 Nozsinkl.F1_I 0,00 1.50617 14,696 0.00 0.000 0.00  0.0000 00 0.000 0.0000 0.00000 0.00

BURNERS
TTout aff drqp LHV wfuel FAR

BRN3G 4304,.85 0.9930 0.0400 18400 2.37670  0.03918
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Table 4.3c Maximum power output comparison baseline and hybrid engines

Baseline engine Hybrid engine
Alt=0.0ft, M =0.0
Thrust {1bf) A41668.8 477259
TEFC Illfh] 0.3238 0.3408
Mass flow rate {lbm/s) |1500 1500
Tr2 (R] 2900.0 3161.2
Alt =30 kft, M=0.8
Thrust (1bf) 11483.9 13173.0
TSFC Illfh] 0.6705 0.6495
Mass flow rate {lbm/s) [779.5 754.2
Tra (R] 28827 30E3.8

Table 4.4 shows a comparison of the fluid properties for both the baseline and
hybrid engine at the entrance and exit of the combustor at SLS and cruise conditions at
maximum thrust. The properties of the flow entering station 3.1 are fairly similar for the
baseline and hybrid engines. The properties of the flow exiting the PDC are taken at the
exit of M1X39 (station 4.0 as shown in Fig. 3.4), which combines the tube and internal
bypass flows. With no internal bypass (and no mixer), the flow exiting the PDC tubes
could be much higher than the 3200 R limit as seen from Tables 4.2b and 4.3b at station
3.9. MIX39 allows the flow to cool below the temperature constraint of 3200R at a cost
of a reduced stagnation pressure. M1X39 is an NPSS element that, through
thermodynamic analysis, drops the exit stagnation pressure due to constant area mixing
(e.g., see Oates pg. 166). The burner pressure ratio of the baseline engine is 0.96 for SLS
or cruise. The burner pressure ratio for the PDC ranges from 1.20 at SLS to 1.21 at cruise
(M =0.8, Alt = 30,000 ft). If the exit stagnation pressure of the flow is considered at the

exit of the detonation tubes (station 3.9 in Tables 4.2b and 4.3b), the pressure ratio of the
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burner is1.47 at SLS and 1.51 at a cruise. Thus, the internal mixer causes about a 23.7%

reduction in the combustor pressure ratio for SLS or cruise.

Table 4.4 Combustor Properties at SLS and Cruise, Maximum Power (ff = 1)

Baseline 5.5 |Hybrid SLS |Baseline Cruise |Hybrid Cruise

Altitude 0.0 ft 0.0 ft 30,000 ft 30,000 ft

Flt Mach number 0.0 0.0 0.8 0.8

Eq Ratio 0.90 0.80

iBPR 0.342 0,308

Mcj 3.37 3.42

Station 3.1 flow in:

Tt 1419.7 R 1419.7R 13706R 1347.0R

Pt 380.2 psi|  380.2 psi 212.7 psi 197.1 psi

Mass flow rate| 148.3 lbm/s| 148.3 lbm/s 83.2 lbm/s 79.1 lbm/s

Mach number 0.3 0.3
Station 4.0 flow out:

Tt 2900.0R 3161.2R 2BB2.7R 303B.8R

Pt 365.0psi|  454.8 psi 204.2 psi 239.3 psi

Mass flow rate| 152.1 lbm/s| 152.9 lbm/s 85.3 lbm/s 81.5 lbmy/s

Mach number 0.33 0.33

The combustor properties in Table 4.4 are calculated assuming steady flow

through the PDC. Applying a 4% pressure loss in the TTSS element to account for
unsteady losses yields a 0.5% reduction in thrust and a 0.5% increase in TSFC. An 8%
loss would yield a 1.2% reduction in thrust and a 1.2% increase in TSFC. These losses
may be low due to their application at the exit of the detonation tubes. Exit losses do not
capture valve losses. In order to model the pressure losses due to the opening and closing
of the valves in to the detonation tubes, unsteady affects should be included in the

thermodynamics of the PDC cycle. This was not included in this work.
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Hybrid Turbofan Performance Comparison
Throttle hooks for the hybrid engine are performed at the configuration shown in
Table 3.5 at maximum thrust at a fill fraction of 1.0 and compared to that of the baseline

engine in Figs. 4.5a and 4.5b.

Throttle Hooks Engine Comparison (NPSS)
1.2

11

e = = Baseline: M =0.0, Alt=0.0 ft

g Hybrid: M = 0.0, Alt = 0.0 ft

0
2 = = = Baseline: M = 0.7, Alt = 30 kft
—V.
< et Hybrid: M = 0.7, Alt = 30 kft
€0.7
Q2
= = == == Baseline: M = 0.9, Alt = 30 kft
rd
4] e Hybrid: M = 0.9, Alt = 30 kft
0.5
= == == Baseline: M = 1.1, Alt = 30 kft
0.4
$000000000000000FF —— Hybrid: M=1.1, Alt=30 kft
03 ——  Smeceemeeee—s====S—
0.2 T T T T 1
0 10000 20000 30000 40000 50000

Thrust (Ibf)

Figure 4.5a Throttle hook comparison baseline and hybrid turbofan engines in
NPSS
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Figure 4.5b Zoomed in view of Fig. 4.5a

Figure 4.5b shows a comparison of the hybrid and baseline engine throttle hooks
at sea level static and 30,000 ft at a variety of Mach numbers. The baseline engine yields
a lower TSFC at lower thrust values for a majority of the thrust range; however, as the
thrust increases, the TSFCs cross. This crossing also occurs at the higher Mach numbers.
It is seen that the baseline engine has a larger thrust range. The lower hybrid range of
thrust occurs since the internal bypass bleed air (BLD4) at station 3.93 (Fig. 3.2) is much
greater than the air flowing through the internal bypass, due to reduced bypass flow
needed to balance the static pressure at MIX39, and the solver cannot converge on a
solution. The internal bypass bleed air variation with thrust is shown in Fig. 4.5c. As the
thrust increases, less air is bled from the internal bypass to balance static pressures in

MI1X39. The thrust increases until the bleed air is zero, after which the static pressures
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will not balance. If it were possible to provide additional air pumped into the mixer, one
could increase the thrust. No attempts were made for this work. The internal bypass bleed

is the limiting factor for the hybrid engine performance.

PDC Internal Bypass Bleed Air Variation with Thrust

100

A ~
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b

50
40
30 N
20 .
10 )
0 T T T T S
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Bleed air from internal bypass (%)

Thrust (Ibf)

Figure 4.5¢ Internal bypass bleed air variation with thrust

Figure 4.6 shows the effects of fill fraction, with throttle hooks run at sea level
static and cruise conditions at maximum thrust at the configuration shown in Table 3.5.
Figure 4.6 shows that fill fraction can be adjusted to reduce the TSFC at any thrust level
to roughly that of the baseline engine and perhaps slightly lower. The best results are seen

at the maximum thrust level of each fill fraction shown in Figs. 4.6b and 4.6d.
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Throttle Hooks for Hybrid Engine at SLS (various fill fractions)
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Figure 4.6a Throttle hooks at various fill fractions at SLS
Throttle Hooks for Hybrid Engine at SLS (various fill fractions)
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Figure 4.6b Throttle hooks at fill fractions from 0.4 to 1.0 at maximum thrust at

SLS
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Throttle Hooks for Hybrid Engine at Cruise (various fill fractions)
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Figure 4.6¢ Throttle hooks at various fill fractions at cruise (M = 0.8, Alt = 30kft)

Throttle Hooks for Hybrid Engine at Cruise (various fill fractions)
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Figure 4.6d Throttle hooks at fill fractions from 0.4 to 1.0 at maximum thrust at
cruise (M = 0.8, Alt = 30kft)

52



For comparison purposes, throttle hooks were run at various frequencies in Fig.
4.7 at the configuration shown in Table 3.5 at a fill fraction of 1.0. The results are very
similar and indicate that frequency may be considered as an additional throttling

parameter for future research.

Throttle Hooks for Hybrid Engine at SLS (various frequencies)
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Figure 4.7a Throttle hooks at various frequencies at SLS
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Figure 4.7b Throttle hooks at various frequencies at maximum thrust at SLS
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Throttle Hooks for Hybrid Engine at Cruise (various frequencies)
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Figure 4.7c Throttle hooks at various frequencies at cruise (M = 0.8, Alt = 30kft)

Throttle Hooks for Hybrid Engine at Cruise (various frequencies)
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Figure 4.7d Throttle hooks at various frequencies at maximum thrust at cruise
(M = 0.8, Alt = 30kft)
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Figures 4.8a, 4.8b, and 4.8c show the effect of flight Mach number for the hybrid
engine as compared to the baseline at various altitudes and fill fractions at sea level and
30,000 ft. The model is run at the configuration in Table 3.5 at maximum thrust. At
higher Mach numbers the baseline engine thrust is slightly higher, except for a fill
fraction of one at sea level. At cruising altitude there is a range of fill fractions where the

hybrid engine can match the baseline.

Thrust Variation with Flight Mach Number (ff = 1.0, various altitudes)
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Figure 4.8a Variation of thrust with flight Mach number comparison of the baseline
and hybrid engines in NPSS at 0.0 ft, 30,000 ft, and 60,000 ft (maximum thrust)
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Thrust Variation with Flight Mach Number at Sea Level (various fill fractions)
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Figure 4.8b Variation of thrust with flight Mach number comparison of the baseline
and hybrid engines in NPSS at fill fractions of 0.6, 0.8, and 1.0 at sea level
(maximum thrust)

Thrust Variation with Flight Mach Number at 30kft (various fill fractions)
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Figure 4.8c Variation of thrust with flight Mach number comparison of baseline and
hybrid engines at fill fractions of 0.6, 0.8, and 1.0 at 30,000 ft (maximum thrust)
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The effects of fill fraction on thrust are plotted at SLS and cruise conditions in
Fig. 4.8d. For the configuration listed in Table 3.5 and at maximum thrust, in general, a

lower fill fraction corresponds to a lower thrust.

Thrust Variation with Fill Fraction for Hybrid Engine
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Figure 4.8d Thrust variation with fill fraction for the hybrid engine at SLS and
cruise (maximum thrust)

The thrust is divided by the freestream pressure to determine the effects of
altitude on the engine. As shown in Fig. 4.8e, the altitude has a significant effect on thrust

as the curves at SLS and cruise conditions are nearly identical.

57



F/Po Variation with Fill Fraction for Hybrid Engine
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Figure 4.8e Thrust divided by free stream pressure variation with fill fraction for
the hybrid engine as SLS and cruise (maximum thrust)

Fill fraction is also varied in Fig. 4.9 to determine the effects on TSFC at SLS and
cruise conditions. The model is run at maximum thrust at the configuration in Table 3.5.
Results indicate that at cruise conditions the lowest TSFC is found at a fill fraction of 0.7.
The two curves are at different thrusts. At a thrust of 13,000 Ibs, TSFC at cruise is 0.6468

and TSFC at SLS is 0.2794.
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TSFC Variation with Fill Fraction for Hybrid Engine
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Figure 4.9 TSFC variation with fill fraction for the hybrid engine at SLS and cruise
(maximum thrust)

The mass flow rate variation with thrust is shown in Figs. 4.10a, 4.10b, and 4.10c.
The model is run at the configuration in Table 3.5 at maximum power at SLS and cruise
conditions and fill fractions of 0.6, 0.8, and 1.0. The baseline engine has a higher mass
flow rate at all thrusts than the hybrid. The fill fraction affects the mass flow rate only by

the range of thrust it covers.
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Figure 4.10a Mass flow rate variation with thrust comparison of the baseline and
hybrid engines at SLS and cruise conditions (maximum thrust)
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Figure 4.10b Mass flow rate variation with thrust comparison of the baseline and
hybrid engines at SLS at fill fractions of 0.6, 0.8, and 1.0 (maximum thrust)
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Figure 4.10c Mass flow rate variation with thrust comparison of the baseline and
hybrid engines at 30,000 ft at fill fractions of 0.6, 0.8, and 1.0 (maximum thrust)

Component Performance

The fan, high pressure compressor (HPC), low pressure turbine (LPT), and

turbofan bypass ratio variation with T/Tg are shown in Figs. 4.11- 4.14. The model is

run at the configuration in Table 3.5 at maximum power at a fill fraction of 1.0 at SLS

and 30,000 ft. For the baseline model, the fan and HPC pressure ratios break at 1.0 at

30,000 ft. The hybrid model is already past the break point in the plots shown. The LPT

is choked for both models. The bypass ratio is shown to steadily increase for both the

baseline and hybrid engines.
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Fan Pressure Ratio Variation with Tt2/To Engine Comparison
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Figure 4.11 Fan pressure ratio variation with T/T, comparison of the baseline and
hybrid engines at SLS and cruise (maximum thrust)

HPC Pressure Ratio Variation with Tt2/To Engine Comparison
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Figure 4.12 High pressure compressor ratio variation with T/T, comparison of the
baseline and hybrid engines at SLS and cruise (maximum thrust)
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LPT Pressure Ratio Variation with Tt2/To Engine Comparison
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Figure 4.13 Low pressure turbine pressure ratio variation with T/To comparison of the
baseline and hybrid engines at SLS and cruise (maximum thrust)

Turbofan Bypass Ratio Variation with Tt2/To Engine Comparison
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Figure 4.14 Turbofan bypass ratio variation with T/T, comparison of the baseline and
hybrid engines at SLS and cruise (maximum thrust)
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Component Adiabatic Efficiencies

It was of interest to determine how changing the adiabatic efficiencies of various
components affected the performance of the hybrid engine. Changes in the inlet, fan,
turbine, compressor, and burner efficiencies were evaluated via throttle hooks shown in
Figs. 4.16 - 4.21, respectively. The dotted lines represent the on-design efficiencies. The
model was run at maximum thrust at the configuration shown in Table 3.5. With a 5%
decrease in efficiency, each component resulted in an average of 1.2% to 1.5% increase
in TSFC with the exception of the burner. The burner efficiency is used to calculate the
heat addition into the system as shown in Eq. 2.11. Decreasing the efficiency of the
burner in Fig. 4.21 less than 97.5% leads to choking, in which case the solver cannot
converge to a solution. Decreasing burner efficiency from its original value of 99.5% to

97.5% resulted in a 3.4% average decrease in TSFC.
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Figure 4.15 Throttle hooks for inlet efficiency of the hybrid engine (maximum
thrust)
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Throttle Hooks Fan Efficiency at SLS
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Figure 4.16 Throttle hooks for fan efficiency of the hybrid engine (maximum thrust)
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Figure 4.17 Throttle hooks for high pressure turbine efficiency of the hybrid engine
(maximum thrust)
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Throttle Hooks Low Pressure Turbine Efficiency at SLS
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Figure 4.18 Throttle hooks for low pressure turbine efficiency of the hybrid engine
(maximum thrust)
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Figure 4.19 Throttle hooks for low pressure compressor efficiency of the hybrid
engine (maximum thrust)

66




Throttle Hooks High Pressure Compressor Efficiency at SLS
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Figure 4.20 Throttle hooks for high pressure compressor efficiency of the hybrid
engine (maximum thrust)
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Figure 4.21 Throttle hooks for burner efficiency of the hybrid engine (maximum
thrust)

67



Parameter On-Design Choices

The design choices listed in Table 3.5 used for the analysis above are based on a
parametric study performed with the turbofan model at design conditions. Since the
current model was modified for off-design performance, changes in these design
parameters may improve engine performance at design and/or off-design conditions.

Throttle hooks were run at SLS and cruise conditions for various on-design
frequencies, purge fractions, and equivalence ratios shown in Figs. 4.22 - 4.24,
respectively, to determine if changing these parameters could improve performance.
Figure 4.22 indicates that a lower design frequency may improve TFSC, but at the
expense of thrust range. A lower equivalence ratio yields TSFC improvements similar to
that of frequency; however, a design equivalence ratio below 0.88 chokes the burner inlet
and a solution cannot be converged in Fig. 4.23. The design purge fraction may yield a
lower TSFC as a purge fraction of 0.75 yields a 2.2% decrease in TSFC below design
value of 0.5 with the same thrust range shown in Fig. 4.24. As seen from Eq. 3.6, the
mass of the purge air increases as the purge fraction increases. The increased purge
fraction increases the mass flow through the tubes while decreasing the flow through the
internal bypass. This results in an increase in thrust as well as TSFC, however, thrust
increases more than TSFC. A thorough parametric study should be conducted to identify
such design parameters as number of tubes, tube geometry, etc., that may yield better

performance at design and off-design conditions.
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Throttle Hooks Frequency Design Choice SLS
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Figure 4.22 Throttle hooks at various design frequencies at SLS and cruise (M = 0.8,
Alt = 30,000 ft)
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Throttle Hooks Equivalence Ratio Design Choice SLS
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Figure 4.23 Throttle hooks at various design equivalence ratios at SLS and cruise
(M =0.8, Alt = 30,000 ft)
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Throttle Hooks Purge Fraction Design Choice (SLS)
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Figure 4.24 Throttle hooks at various design purge fractions at SLS and cruise (M =
0.8, Alt = 30,000 ft)
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V. Conclusions and Recommendations

Introduction

A turbofan engine with a pulsed detonation combustor may have performance
gains over a conventional turbofan, specifically in the areas of thrust and thrust specific
fuel consumption. Research (Andrus, 2007) has shown that at design conditions, the
hybrid engine may allow an 8.0% decrease in TSFC while maintaining thrust. The
objective of this work was to develop a hybrid engine model with a pulsed detonation
combustor to run off-design in NPSS, and to evaluate the performance of the hybrid

engine at various off-design conditions.

Hybrid Turbofan Engine Off-Design Performance

To determine the performance of the hybrid turbofan engine, the model was run
over a range of off-design conditions, at various Mach numbers, altitudes, and fill
fractions, and compared to that of the baseline engine. Equivalence ratio, frequency, and
fill fraction were all potential parameters to be used to throttle the hybrid engine. After
performing an operating limit analysis on the hybrid engine, it was discovered that at
constant equivalence ratio, the aircraft has a maximum operating altitude of 13,000 ft. In
order for the hybrid engine to operate at realistic cruising altitudes, the equivalence ratio
was adjusted until the maximum thrust for the given operating condition was reached.

This allowed for a maximum engine operating envelope of M = 2.2, and Alt = 80,000 ft.
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The estimated aircraft flight envelope resulted in a maximum altitude of 38,000 ft. This is
less than that of an aircraft with a conventional burner, but acceptable for flight.
Frequency or fill fraction could have been chosen as the independent throttling
parameter, but it was decided that frequency would remain fixed and that fill fraction
would be throttled for this model. Results indicate that adjusting either of these
parameters can reduce the TSFC at any thrust level to roughly that of the baseline engine
and slightly lower at some thrust levels, particularly at cruise conditions. These results

are significant as incorporating hybrid PDEs into aircraft may save fuel costs.

Recommendations

The hybrid model described in this research has shown to yield performance gains
over a conventional engine, but not without limitations. The engine yields its lowest
TSFC at maximum thrust which occurs when the internal bypass bleed is zero. The thrust
range is limited due to the internal bypass of the PDC. The model could also not be run at
fill fractions greater than one due to limitations of the internal bypass. Modifying the
burner architecture to eliminate the internal bypass to accommodate fill fractions greater
than one may be considered. This modification would also eliminate the need for an
internal mixer, thus increasing the pressure of the flow exiting the PDC. Should the
internal bypass remain in the PDC, the static pressure entering MIX39 can be controlled
by decreasing the area of the duct into the mixer. Such a valve could allow for better
engine performance as all flow would be maintained within the PDC. Throttling

frequency as well as fill fraction may result in gains. Additionally, distributing all of the
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bleed flow from the internal bypass into MIX 40 immediately preceding the high pressure
turbine may result in better performance than splitting the bleed flow equally between
MI1X40 and M1X44. A boost pump should also be implemented to increase the pressure
of the internal bleed flow into M1X40 due to the pressure increase of the flow exiting the
PDC. Design parameters such as frequency, purge fraction, equivalence ratio, and tube
geometry affect off-design performance and a complete parametric study should be
performed to obtain the design parameters which yield the optimal design and off-design

performance.
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Appendix A. Derivation for Ideal PDE Cycle Thermodynamics

This is a derivation of the entropy rise, thermal efficiency, and Chapman-Jouguet
Mach number according to the Heiser and Pratt thermodynamics used in this thesis

(Shapiro, 1953:193).

Figure A.1
Consider the flow through a control volume of Fig A.1. The continuity equation

for constant area is
P _ Vi
oV, (A1)

The momentum equation is
p1-pr=mld (V2-17)

and noting for a perfect gas pV > =y pM?, this may be arranged to give

P, l+yM!

= A.2
P 1+7M22 (A-2)
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From the perfect-gas law

Ph_pTy
p AT

Inserting equations A.1 and A.2 into A.3 yields

T_2_1+7Mf Vv,
T, 1+yM’V,

From the definition of the Mach number and perfect gas

M, Vo6 _ Vo
Ml Vl

Using the value of V,/V; from Eg. A.5, Eg. A.4 becomes

T, M? (1+yM2)

T, M/ (1+ }/l\/lzz)2

From the energy equation

2 2
To:T+;/—:T(l+ v J:T(l-l-

C, 2c,T
or
-1 )
1+—M
To _T,= 2 ¢
o1 l1+72_1|\/|12

Elimination of T,/T; from Egs. A.6 and A.7 yields
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2 7—1 2
o MZZ(1+7/M12) 1+7 M,

Setting M;=1 and M,=Mc; (Shapiro, 1953:195), Eq. A.6 becomes

Eqg. A.8 becomes

Similarly,

_ (A.8)
T M{ (1+7/M22)2 1+L_1M12
2
2
T, _(+7) Mg
- 2
T (1+yME) A9)
+1 2
2(y+1)M§J(1+7M§J)
i: 2
Tor (1+}/|\/|(2;J)2
V_2=ﬂ=(7/+1)MéJ
V. p, l+yM{
p_ 7+l (A.10)
P, 1+7MCZJ

From the definition of isentropic stagnation pressure

r

&:(1+7/__:I'M ijl
p 2

thus,
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(A.11)

Substituting Eq. A.10 and M;=1 and M,=Mg; into Eq. A.11 yields

e

(1Y Iy
P2 _ y+1 2 «

Pos 1+7Méa y+1

Defining the change in entropy as

(A.12)

C -1

P (p,/p)7

and substituting Eq. A.9 and A.10 into Eqg. A.12 yields the Heiser and Pratt change in

entropy:
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Deriving thermal efficiency

S;p—S
Gy = ho—ho =¢, (TlO -T, ) =CpTo l:exp [%} —1}
P

s,—S
=c,T, exp{uJ—l}
- Cp

y+1

ot L (1+yMngr_l

PUIME y+1
and since
??L:! =].— g.:.{':. E.n.d .fj'— = ggjf
G i ':pj-_:

the thermal efficiency becomes

il
1 (1+yM% )7 1/ z
5\ ?

Hmzl_

To define Mc; we first rearrange the mass and momentum equations

2
P+ :01\/12 =p,+ p_lV12

2

to yield
V2 :VZ P, — P
1 1(\/1_\/2

sz :VZZ[ pz_ le
Vi =V,

The energy equation h, +%Vl2 =h, +%V22 may be rearranged with the momentum

equation to yield
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1
hz - hl = E(Vlz _sz)
Substituting the mass balance equation we get the Hugoniot relation:
h, —hy == (P, — P, +V,)
2 2 2 1 1 2 (A13)
Assuming a perfect gasand h =c,T, h,=c,T,-q,, We get

1
ﬁ( p2v2 - plvl) - qadd = E( pz - pl)(vz +V1) (A14)

The expression for the Mach number of the Rayleigh process at station 1 can be written

as

M2=— | PP (A.15)
7P Vi =V,

Solving egs. A.13 and A.14 to determine the volume and pressure ratios in terms of

approaching Mach number yields

v, 17 y(M7 1) —2(r ) (r ) M/a,, /8

Vi (7/+1)M12

_ 2
p_:1+7M12+\/(M12 _1) -2 7+1)(7_1)M12Qadd laf
P, (}/+1)

For any M; the value of gaqq is found by setting the quantity under the radical equal to

zero. This yields

_ M2 —1)’
rte _ (MG

3, 2(7+1)Mg,
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?‘,Sulving for Mgy with § =¢,T; and w =g,/ g,z vields

-

M2, = ;f+1_‘_|[é.-"wjl+1+\/[(:f+1ﬁl (g/w)+1] -1
(A.16)
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Appendix B. Model File for Baseline Turbofan Engine
I

/' TURBOJET ENGINE BUILD |
Il |

/l BUILD AND VERIFY TURBOJET |
Il |

Il DESIGN POINT ONLY |

Il |

/I Set model name
MODELNAME = "Baseline HBTF CmpareAEDsys.mdl with mixers";

setThermoPackage("GasTbl");
/I setThermoPackage("Janaf");

#include <InterpIncludes.ncp>
#include "ncp.view"
/l#include "bleed_macros.fnc"
/[#include "NewDuct.int"

I #include the definition file for the user defined engine
Il performance component

/l MODEL DEFINITION



1] #HiHHH A FLIGHT CONDITIONS #HtHHTHHHTHHHHHHH
Element FlightConditions AMBIENT {
/I Specify Design conditions

alt = 0.0; /I design altitude (ft)

MN = 0.01; Il design Mach number

Il Ps = 14.696; /[ ambient pressure (psia)

I/l Ts =59.0; /[ ambient temperature (F)

W = 1500.00; /I design mass flow (lbm/s)
}

| || et ST
Element Inlet INLET {

eRamBase = 0.995; //Ram Recovery Factor?

¥

|| BHEHHHEHHEHHHHHEHE SPlItter #HHEHHHHHHHIHHH
Element Splitter SPLIT {
BPR = 8.0; // Bypass Ratio

¥

|| BHEHHHHHHH T FAN S
/I here the fan represents the outer portion of the Low pressure

/I compressor spool

Element Compressor Fan21 {

Il Il use these lines if no compressor map is imlemented

/I effDes = 0.88042; //0.882886;

/I PRdes = 1.56;

/I use these lines if compressor map is used...
#include "fan.map" ; //Compressor sub-element map
S_map.effDes = 0.8827; //0.88289;

S_map.PRdes = 1.56;

¥

|| A Bypass Duct/ Nozzle/ Sink #HHHHHHEHHHHHE
Element Duct Bypass13 {

/I AEDsys assumes flow in bypass duct is isentropic

I/ dPgPbase = 0.015;// pressure loss through the bypass duct

¥
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Element Nozzle Noz18 {
/I Cfg = 0.995;
dPgP = 1.0-0.98; // pressure loss from nozzle inlet to throat
PsExhName = "AMBIENT.FI_O.Ps";

/I AEDsys uses a fixed convergent nozzle for bypass exit
switchType = "CONIC";

¥

Element FlowEnd NozSink19 {

¥

|1 A Low Pressure COMPressor A HHHHHHHIHHHHIHHH
Element Compressor LPC20 {

/I Il use these lines if no compressor map is implemented

/I effDes = 0.88042; // set the design point isentropic efficiency

/I PRdes = 1.56;

/I use these lines if compressor map is used...

#include "lpc.map";

S_map.effDes = 0.8827;// set design point isentropic efficiency
S_map.PRdes = 1.56;

¥

|| A High Pressure COMPressor #tHHHHHHHHHHHHHH
Element Compressor HPC25 {

Il Il use these lines if no compressor map is implemented

Il effDes = 0.85755; // set the design point isentropic efficiency

/I PRdes = 16.66667,

/I use these lines if compressor map is used...

#include "hpc.map" ; // Compressor sub element map
S_map.effDes = 0.8573 ; // design point isentropic efficiency
S_map.PRdes = 16.66667 ; // Set the pressure ratio at design

¥

I #ut . Bleed starting point  #HHHHHHHHHHTH IR
Element Bleed BLD3 {
|| ========================= BLEEDS ==========================
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Il Three Bleeds are taken off of the back side of the
/I High pressure Compressor
BleedOutPort BL_Cool 301 {
fracW = 0.05; // mass flow (5% for cooling turbine)
}

BleedOutPort BL_Cool 302 {
fracW = 0.05; // mass flow (5% for cooling turbine)
}

BleedOutPort BL_Env_303 {
fracW = 0.01; // mass flow fraction (1% bleed)
}

¥

I HHHEHEHEHHTHTHEHHEH T Fuel SHHHHEHH T
Element FuelStart FUEL32{
LHV = 18400; /I BTU/Ibm - Lower Heating Value of the fuel -
/[ default is 18400 BTU/lIbm

¥

1] BT Burner dHHHHEHHEHHTHHEHHEH
Element Burner BRN36{

effBase = 0.995; /I component efficiency

dPgPBase = 1.0 - 0.96; //pi b = 1.0-(dP/P) pressure drop across burner

/I Change from burner default of FAR to TEMPERATURE
switchBurn = TEMPERATURE;

/l Total temp. at exit (degrees Rankine) || not to be used with FAR
TtCombOut = 2900.0;

¥

|| HHHHEHHHHHHEHEHEH A Bleed MiXer/ |GV HHEHHHHHHIHIHEHHHHHHHHEHHE
Element Bleed M1X40 {
BleedInPort BlIn40{
Pscale = 0.88;
}

¥

|| HHHHHHHEHEHH A HP Turbine #HHHHHHHHHHHEHHEHHHHHHE
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Element Turbine HPT41 {
#include "hpt.map™; //High Pressure Turbine Map
S_map.effDes = 0.9057,//0.90555;0.91075;

/I InterStageBleedInPort Blin41 {
/! Pfract = 1; [/[force the bleed to come in at enterance
I}

¥
|| HHHHHHHHHH T Bleed MiXer #HHHHHHHHHHHHHHHHIHHHT

Element Bleed M1X44 {
BleedInPort BlIn44{
Pscale = 0.68;
}

Il FI_11.MN = .29;
/I BI_I1.Pscale = 0.92; // Scale pressure so that the pressure ratio across mixer = 1
/I BI_I11.MN =0.31,

¥

|| BHEHHHIHHEHHHHHEHE LP Turbine #HHHHHHHHHHHHEHER
Element Turbine LPT45 {

#include "Ipt.map" //Low Pressure Turbine Map

S_map.effDes = 0.9084,//0.90836;0.90906;

/I InterStageBleedInPort Blin44 {
1! Pfract=1.; /I force bleed to come in at turbine entrance
I}

¥

|1 B NOZZ|e SHEHHEHHHHHHHHHHHTT
Element Nozzle Noz8 {
//Cfg = 0.995;
//ICv = 0.985;
dPgP = 1.0-0.985;
PsExhName = "AMBIENT.FI_O.Ps";
switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit

¥

|| HHHHHHHEHEHEHHHHE Terminate Flow #HHHHHHHHH
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Element FlowEnd Sink39 {
/I BleedInPort BlIn44{

/! Pscale = 0.96;
I}

[/ sink for the environmental bleed...
}

Element FlowEnd NozSink9 {
/I sink for the core airflow

¥

1l

%%%%% %% % %% %% % %% % %% %% % %% % %% %% %% % %% %% % %% % %% %%
%%%%%%%%%

/] Put shafts in the model

1l

%%%% % %% % %% %% % %% % %% %% % %% % %% %% %% % %% %% % %% % %% %%
%%%%%%%%%

[ LOW-Pressure Shaft #i#HHHHHIHHEHHIHH
Element Shaft LPShf {

ShaftinputPort LPC, FAN, LPT ;

Nmech = 2000.0;

inertia = 1.0; // inertia is only needed for transient analysis

HPX =0.0;// +131.; //+92.30; // Horsepower extracted from the shaft hp (= 325.7
kw)

fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)

¥

| [HHHHHHHH A High Pressure Shaft s
Element Shaft HPShf {

ShaftinputPort HPT, HPC ;

Nmech =11000.0;

inertia = 1.0;

HPX =143.178 ;//+372;/] +415.;/] +400.0; // Horsepower extracted from the shaft hp
(=105.7 kW)/ etam (=0.99)

fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)
/lcout << inertia.unitsunits <<endl;
/Iquit();
}

[ HHHHHHHHE A Engine Performance #HHHHEHHIHHHHHHEHHH
Element EngPerf PERF{
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k
Il

I Flow Connections I

1 I

I This is where the flow is defined for the engine //

1 /1
1

[ Ambient to Splitter #HHHHHHHHHHHHHHHETHHTH
linkPorts( "AMBIENT.FI_O", "INLET.FL_I", "FLO");
linkPorts( "INLET.FI_O",  "SPLIT.FL_I", "FL1");

[ BYpass air

linkPorts( "SPLIT.FI_02",  "Fan21.FI_I", "FLb2"):;
linkPorts( "Fan21.FI_O", "Bypass13.FI_I", "FLb3");
linkPorts( "Bypass13.F_O", "Noz18.FI_I", "FLb7"):;
linkPorts( "Noz18.FI_O",  "NozSink19.FI_I",  "FLb8");
[ Core Air FIOW  HHHHHHHHIHHIHHH
linkPorts( "SPLIT.FI_01",  "LPC20.FI_I", "FL2");
linkPorts( "LPC20.FI_O",  "HPC25.FI_I", "FL25");
linkPorts( "HPC25.FI_O", "BLD3.FL_I", "FL3");

linkPorts( "BLD3.FI_O", "BRN36.FI_I", "FL31");
[T HE Fuel Flow #HH#HHHHHH T I
linkPorts( "FUEL32.Fu_O", "BRN36.Fu_I", "Fu3");
linkPorts( "BRN36.FI_O", "MIX40.FIL_I", "FL4");
linkPorts( "MIX40.FI_O",  "HPT4L1.Fl_I", "FL41");
linkPorts( "HPT41.FI_O", "MIX44.FL_I", "FL44™),
linkPorts( "MIX44.FI_O",  "LPT45.FL_I", "FL45");
linkPorts( "LPT45.F_O",  "Noz8.FI_I", "EL7™):;
linkPorts( "Noz8.Fl_O", "NozSink9.Fl_I", "FL8");

[ Bleed port linkage ###HHHHHHEHHHHHETHHHETHHHETH
/llinkBleedCB("BLD3", "MI1X40", 0.05, 1.0, 1.0, "BL 1");
/NlinkBleedCB("BLD3", "MI1X44", 0.05, 1.0, 1.0, "BL 2");
/NlinkBleedCB("BLD3", "Sink39", 0.01, 1.0, 1.0, "BL 3");

linkPorts( "BLD3.BL_Cool_301", "MIX40.BIIn40", "BL 1");
linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2"),
linkPorts( "BLD3.BL_Env_303",  "Sink39.FI_I","BL 3");

JERSNNANAAAAAAANNANNNNANNNNNNNANNNNNNNNNNNNNNNNNNNS
I Mechanical (Shaft) connections
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11 $$$3ESSIESEEESFESSEESSEEESIEESFEESFEESSEESSES

AR LOW-Pressure Spool #HHHHHHHHHHHHHHHHHHHH
linkPorts("LPC20.Sh_O",  "LPShf.LPC", "LP1"),
linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3"),

[ High-Pressure Spool ##HHEHHHHHHHHHHHEHHHETH
linkPorts("HPC25.Sh_0O",  "HPShf.HPC","HP1");
linkPorts("HPT41.Sh_O",  "HPShf.HPT", "HP2");

/ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

/I Begin Run Definition
[/ VWWWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VY

co ut << " ‘/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\\n "

<" Begin Run Input definitions \n "
<< "VWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY VYV VYV VVANANY
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Appendix C. Model File for Hybrid Turbofan Engine

I

/I Set model name
MODELNAME ="PDC HBTF"; //Pulsed Detonation Combustor High Bypass
Turbofan™;

setThermoPackage("GasTbl");
Il setThermoPackage("FPT");

#include <InterpIncludes.ncp>
#include "ncp.view"

I #include the definition file for the user defined engine
/I performance component

I # R FLIGHT CONDITIONS ####HHH TR
Element FlightConditions AMBIENT {
/I Specify Design conditions
alt = 0.0; I design altitude (ft)
MN =0.01; /I design Mach number
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I/l Ps = 14.696; /[ ambient pressure (psia)
/I Ts =59.0; // ambient temperature (F)
W = 1500.00; /I design mass flow (lbm/s)

¥

| | et ST
Element Inlet INLET {

eRamBase = .995; //Ram Recovery Factor? //.995
}

|| BHEHHHEHHEHHHHHEHE SPlItter HHHEHHHHHHHIHEH
Element Splitter SPLIT {
BPR = 8.0; // Bypass Ratio

¥

|| BHEHHRHHHHHH R FAN S
/I here the fan represents the outer portion of the Low pressure

/I compressor spool

Element Compressor Fan21 {

Il Il use these lines if no compressor map is imlemented

/I effDes = 0.88042; //0.882886;

/I PRdes = 1.56;

/I use these lines if compressor map is used...
#include "fan.map" ; //Compressor sub-element map
S_map.effDes = 0.8827; //0.88289;//.8827
S_map.PRdes = 1.56;

|| HHHHHHHHHEHHEH A Bypass Duct/ Nozzle/ Sink #HHHHHHHEHHEHHEHHT
Element Duct Bypass13 {

I/l AEDsys assumes flow in bypass duct is isentropic (p109, #9)

// dPgPbase = 0.015; /I pressure loss through the bypass duct

¥

Element Nozzle Noz18 {
/I Cfg = 0.995;
dPgP = 1.0-0.98; /I pressure loss from nozzle inlet to throat
PsExhName = "AMBIENT.FI_O.Ps";
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switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for bypass exit
}

Element FlowEnd NozSink19 {

¥

|| HHHHEHAE A LOW Pressure COMPressor #tHHHHHIHHHHHHHHHHHHHHHH
Element Compressor LPC20 {

Il Il use these lines if no compressor map is imlemented

/I effDes = 0.88042; // set the design point isentropic efficiency

/I PRdes = 1.56;

/I use these lines if compressor map is used...

#include "lpc.map™;

S_map.effDes = 0.8827; //0.88289;  set the design point isentropic
/lefficiency//.8827

S_map.PRdes = 1.56;

¥

|| HHHHHHHA A High Pressure COMPressor #HHHHHHHHHHHHHH
Element Compressor HPC25 {

Il Il use these lines if no compressor map is imlemented

/I effDes = 0.85755; //0.8855338; /[ set the design point isentropic efficiency
/I PRdes = 16.66667;

/I use these lines if compressor map is used...

#include "hpc.map" ; // Compressor sub element map
S_map.effDes = 0.8573 ; //0.857535 ; set the maps design point
/lisentropic efficiency//.8573

S_map.PRdes = 16.66667 ; // Set the pressure ratio at design

¥

|| #HHHHHHEHEH . Bleed starting point  #H#HHHHEHHEHHIHHHHHEHER

Element Bleed BLD3 {
|| ==============—=======—======= BLEEDS

Il Three Bleeds are taken off of the back side of the High pressure Compressor
BleedOutPort BL_Cool 301 {
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/[fracBldWork = 1.0; // work fraction where bleed is taken
[[fracBIdP = 1.0; /I Pressure fraction where bleed is taken
fracW = 0.05; /I mass flow (5% for cooling turbine)

}

BleedOutPort BL_Cool 302 {
/[fracBldWork = 1.0; // work fraction (dhb/dh)
[[fracBIdP = 1.0; I/ Pressure fraction (dPb/dP)
fracW = 0.05; // mass flow (5% for cooling turbine)

}

BleedOutPort BL_Env_303 {
/[fracBldWork = 1.0; // (dhb/dh) work fraction - closely tied with

pressure fraction...

[[fracBIdP = 1.0; /I Pressure Fraction (dPb/dP)
fracW = 0.01; // mass flow fraction (1% bleed)

¥
¥

1 BRI Fuel St
Element FuelStart FUEL32{

LHV =18400; /I BTU/lbm - Lower Heating Value of the fuel -
/I default is 18400 BTU/Ibm

¥

|| HHHHHHHEHEHHHHHERHE BUrner S

/I Element Burner BRN36{

/I effBase = 0.995; // component efficiency ... ??

/I dPqPBase = 1.0 - 0.96; //0.04;  // pi b - pressure drop across burner... ?? (dP/P)
I

/I switchBurn = TEMPERATURE; // Change from burner defauls using Fuel-air Ratio
(FAR) to TEMPERATURE

/[ TtCombOut = 2900.0; /I Total temperature at exit (degrees Rankine) || not to be
used with FAR

I

Il 1 or use the default FAR and define what the FAR is...

/I 1l FAR =0.02282; Il Fuel-to-Air ratio; not to be used with TtCombOut,
Wruel, etc.

I

I}

#include "PDC_burner_bleed.int"
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Element PulseDetonationCombustor BRN36{

¥

effBase =.995;  // burning efficiency//.995

dPgPBase = 1.0-0.96; /I pressure loss across valves/through bypass
switchBurn = FAR,; /1 set fuel-air ratio (vs equivalence ratio)

FAR = (0.0683 * 1.00); //approximately 85% of stoichiometric conditions
purgeFrac = 0.2; // designate purge fraction

fillFrac = 0.8; /I designate fill fraction

ITube = 36; /' length of tube in inches

n_tubes = 24; /I number of tubes

dTube = 2.0; I inside diameter of tubes

tCycle =.016776271641; // cycle time

flowby = 1; /I percentage of internal bypass flow into mixer39

|| BHHHHHHHHHEHHEH R Wall heat exchange #HHHHHEHHEHHEHHEHEHHEH
/I *** not uses in the current model ***
//[Element Wall WALL38{

I
I
I
I
I
I
I

Ahx1 = PI1*36; // area of wall inside PDT

Ahx2 = PI1*36*1.02; // area that bypass flow sees

ChxDesl = 0.7;// heat transfer film coefficient - blind guess...

ChxDes2 = 0.7;//

CpMat = 0.1481;//specific heat of material (titanium @ 2160 R)

Il #tubes pi/4 length oD iD(in) rho(lbm/ft"3) Titanium

massMat = 36.*(P1/4.%(36./12.)*(2.25**2-2.%*2)/144.)*280.93;//mass of material in

Ibm

I

I}

|| #HHHHHHHHH A Internal Bypass Bleed #HtHHHEHHHHHHHHHHEHHHHT

Element Bleed BLD4 {

|| ============================ BLEEDS

/] Three Bleeds are taken from the internal bypass of the PDC
BleedOutPort BL_Cool_304 {
/[fracBIdWork = 1.0; // work fraction where bleed is taken
[[fracBIdP = 1.0; /I Pressure fraction where bleed is taken
fracW = 0.499; /I mass flow (50% for cooling turbine)
}
BleedOutPort BL_Cool_305 {
[fracBldWork = 1.0; // work fraction (dhb/dh)
[[fracBIdP = 1.0; Il Pressure fraction (dPb/dP)
fracW = 0.499; I/ mass flow (50% for cooling turbine)
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¥

1] #iHHHHH#H# PDC bypass mixer/Transition to steady-state device #####
Element Mixer MIX39{
FI_I1.MN =.95; // Rather high MN, but it works where lower
I/ values do not...
}

|| B Bleed MixXer/ |GV #HHHHHHHHHIHHEHHHHHE T
Element Bleed M1X40 {
BleedInPort BlIn40{

Pscale = 0.88;
}
BleedInPort BlIn41{
Pscale = .88;
}
}

|| BHEHHHEHHEH R HP Turbine sHHHHHHHHHHIHHIHHHHH
Element Turbine HPT41 {

#include "hpt.map™; //High Pressure Turbine Map

S_map.effDes = 0.9057;//0.90555;0.91075;//.9057

¥
|| HHHHHHHEHEH A Bleed MiXer #HHHHHHHHHEHHEHHHHHEHE

Element Bleed M1X44 {
BleedInPort Blin44{

Pscale = 0.68;
}
BleedInPort BlIn45{
Pscale = .68;
}
}

| HEHHHH R R LP Turbine #H##HHHHHH T ]
Element Turbine LPT45 {

#include "Ipt.map" //Low Pressure Turbine Map

S_map.effDes = 0.9084;//0.90836;0.90906;//.9084
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¥

1] HHHHHHHHHHAHA NOZZ|e HEHHHHHHHHIHIH
Element Nozzle Noz8 {
//Cfg = 0.995;
//Cv = 0.985;
dPgP = 1.0-0.985; // pressure loss across the nozzle
PsExhName = "AMBIENT.FI_O.Ps";
switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit

¥

|| BB Terminate Flow S
Element FlowEnd Sink39 {
/I sink for the environmental bleed...

¥

Element FlowEnd NozSink9 {
/I sink for the core airflow

¥

Element FlowEnd NozSink1 {
/1 sink for the ibypass bleed airflow
}
Il
%%%%% %% % %% %% %% %% %% % %% %% % %% %% %% %% % %% %% %% % %% %
%%%%%%%% %
/I Put shafts in the model
Il
%%%%% %% % %% %% %% %% %% % %% %% % %% %% %% %% % %% %% %% % %% %
%%%%%%%% %

[T LOW-Pressure Shaft ##HHHHHEHHEHHIHH
Element Shaft LPShf {

ShaftinputPort LPC, FAN, LPT ;

Nmech = 2000.0;

inertia = 1.0; // inertia is only needed for transient analysis

HPX = 0.0 ; //+92.30; // Horsepower extracted from the shaft hp ( =325.7 kW)

fracLoss = 1.0-.99; // Fractional loss on positive port torque (1.0

//- eta_m)1.0-.99
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| A High Pressure Shaft #pH I #HHHIHI
Element Shaft HPShf {

ShaftinputPort HPT, HPC ;

Nmech = 11000.0;

inertia = 1.0;// inertia is only needed for transient analysis

HPX = 143.178 ;// +400.0; // Horsepower extracted from the shaft hp (= 105.7 kW)/
etam (=0.99)

fracLoss = 1.0 - .99; // Fractional loss on positive port torque (1.0 - eta_m)

//1.0-.99

¥

[ Engine Performance #HHHHEHHHHHHHEHHH
Element EngPerf PERF{

}

I

I Flow Connections 1l

1 I

I This is where the flow is defined for the engine //

I I

1

[ Ambient to Splitter #HHHHHHHEHEHHIHHHTHEHE
linkPorts( "AMBIENT.FI_O", "INLET.FIL_I", "FLO");
linkPorts( "INLET.FI_O",  "SPLIT.FI_I", "FL1");

[ BYpass alr  #HHHHHHHHHEHEHH

linkPorts( "SPLIT.FI_02",  "Fan2l.FI_I", "FLb2");

linkPorts( "Fan21.FI_O", "Bypass13.FI_I", "FLb3");

linkPorts( "Bypass13.FI_O", "Noz18.FI_I", "FLb7");

linkPorts( "Noz18.FI_O",  "NozSink19.FI_I",  "FLb8");
[ Core Alr FIOW  HHHHHHHHHHHIHHHHHHEHE
linkPorts( "SPLIT.FI_01",  "LPC20.FI_I", "FL2");
linkPorts( "LPC20.FI_O",  "HPC25.FI_I", "FL25");
linkPorts( "HPC25.FI_O",  "BLD3.FI_I", "FL3");

linkPorts( "BLD3.FI_O", "BRN36.FI_I", "FL31");
[ Fuel Flow  #HHHHEHHEHHHHHH
linkPorts( "FUEL32.Fu_O", "BRN36.Fu_I", "Fu3");
/linkPorts( "BRN36.FI_O1", "WALL38.FI_I1", "Wal");
/NlinkPorts( "BRN36.FI_02", "WALL38.FI_I2", "Wa2");
/linkPorts( "WALL38.FI_O1", "MIX39.FI_I1", "FI39");
/NlinkPorts( "WALL38.FI_02", "MIX39.FI_I2", "FI392");
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linkPorts( "BRN36.FI_O1", "MIX39.FI_I1", "FI39");

linkPorts( "BRN36.FI_02", "MIX39.FI_I2", "FI392");

linkPorts( "BRN36.FI_03", "BLDA4.FI_I", "FI393");

linkPorts( "BLD4.FI_O", "NozSink1.Fl_I", "FI394");
linkPorts( "MIX39.FI_O",  "MIX40.FIL_I", "FL4");
linkPorts( "MIX40.FI_O",  "HPT41.Fl_I", "FL41");
linkPorts( "HPT41.FI_O", "MIX44.FL_I", "FL44"),
linkPorts( "MIX44.FI_O",  "LPT45.FL_I", "FL45");
linkPorts( "LPT45.F_O",  "Noz8.FI_I", "EL7™):;
linkPorts( "Noz8.Fl_O", "NozSink9.Fl_I", "FL8");

[ 1A Bleed port linkage #HHHHHHHIHHHHHHHHHIHHHH
linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
linkPorts( "BLD3.BL_Env_303", "Sink39.FI_I","BL 3");
linkPorts( "BLD4.BL_Cool_304", "MIX40.BlIn41", "BL 4");
linkPorts( "BLD4.BL_Cool_305", "MIX44.BlIn45", "BL 5");

JIENNNNANNARNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNS
I Mechanical (Shaft) connections

11 $$$3EESIEESEEESTESSEESFEEESIEESFEESTEESSEESSES

AR LOW-Pressure Spool ##HHHHHHHHHHHHHHHHH
linkPorts("LPC20.Sh_O",  "LPShf.LPC", "LP1"),
linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3"),

[ High-Pressure Spool ##HHHHHHHHHHHHEHHHETH
linkPorts("HPC25.Sh_0O",  "HPShf.HPC","HP1");
linkPorts("HPT41.Sh_O",  "HPShf.HPT", "HP2");

/ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

/I Begin Run Definition
[/ VWWWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VY

co ut << " ‘/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\\n "

<" Begin Run Input definitions \n "
<< "VWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY VYV VYV VYVANANY
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Appendix D. Pulsed Detonation Combustor Code

#ifndef _ PDC__
#define _ PDC__

”*************************************************************

/I * Air Force Institute of Technology

/[ * 2950 Hobson Way, Bldg 641

/[ * Wright Patterson AFB, OH 45433

IN*

/I * Written by lonio Q. Andrus, Capt., USAF
/I * Modified by Caitlin R. Thorn, Capt., USAF

/I BASED ON "Burner.int" included in NPSS, written by~~
/I * NASA Glenn Research Center

/[ * 21000 Brookpark Rd

/[ * Cleveland, OH 44135

I*

/**************************************************************

#include <InterpIncludes.ncp>

class PulseDetonationCombustor extends Element {

title = """

description = isA() + " will calculate performance for
pulsed detonation combustor.™;

usageNotes ="

The burner element performs high level burner performance
calculations. This element works with an entrance fluid and
fuel stream. It mixes the two flows together and then

performs the burn calculations. Please note that the burner

has no control over the actual fuel stream conditions--fuel type,
LHV, etc. These values are properties of the fuel flow itself
and are usually set in the FuelStart element.
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There are two ways to specify the burner exit conditions. The
first way is specify the burner fuel-to-air ratio. The second
way is to set equivalence ratio. The type of input used is
controlled by an option switch.

The burner tracks several different pressure losses. The first,
dPgP, accounts for duct friction pressure drops and approximates
the pressure loss through valves. The second, dPqPRayleigh,
accounts for the Rayleigh pressure drop. dPRayleigh is input or
calculated - see switchHotLoss, an iteration is necessary since
the pressure loss itself is a function of the exit conditions.

The burner also allow two efficiencies to be input. The first
efficiency, eff, refers to the efficiency based on enthalpy

change. The second efficiency, effChem, refers to the efficiency
based on temperature change. Both terms can be input. However,
the enthalpy efficiency is always applied first.

Additionally,

The user can request a pre burner pressure loss dPqP. The
pressure loss calculations are performed before all the other
calculations are done. This means that the combustion entrance
pressure will not match the value indicated by the burner entrance.

The user can request a heat transfer Qhx. The heat transfer
calculations are performed after all the other calculations are
done. This means that if heat transfer is being used, the exit
temperature will not match the value indicated by the burner
calculations.

background ="";

real a_dPgP {
value = 0.0; IOstatus = "input"; units = "none";
description = "Duct friction pressure drop adder";

¥
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real a_dPgPAud {
value = 0.0; IOstatus = "unset"; units = "psia";
description = "Audit factor adder applied to pressure ratio";
}
real a_eff {
value = 0.0; IOstatus = "input"”; units = "none";
description = "Adiabatic efficiency adder";

¥

real a_effChem {

value = 0.0; IOstatus = "input”; units = "none";

description = "Chemical efficiency adder";

}

real ARvalve { // Added 15Feb2007 - 1A

value = 0.5; IOstatus = "input”; units = "none";

description = "Ratio of valve throat area to tube cross section area”;

}
real deltaS { //Added 17Jan2007 - 1A
value = 0.0; IOstatus = "output”; units = "none";
description = "Change in entropy due to detonation™;
}
real DDT { //Added 17Jan2007 - 1A
value = 0.0005; IOstatus = "input"; units = "none"; //seconds
description = "Detonation to deflaration time in seconds";
}
real dPgP {

value = 0.0; IOstatus = "output™; units = "none";
description = "Adjusted duct friction pressure drop";
}
real dPgPBase {
value = 0.0; IOstatus = "input"; units = "none";
description = "Duct friction pressure drop ";

}

real dPgPRayleigh {
value = 0.0; IOstatus = "input"; units = "none";
description = "Adjusted Rayleigh pressure drop";

}

real dTube { //Added 17Jan2007 - 1A
value = 2.0; IOstatus = "input"; units = "none"; // inches...
description = "Inside diameter of the detonation tube™;

}

real eff {

value = 1.0; IOstatus = "output™; units = "none";
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description = "Adjusted adiabatic burner efficiency";

real effBase {
value = 1.0; IOstatus = "input"”; units = "none";
description = "Adiabatic burner efficiency, from socket ";
}
real effChem {
value = 1.0; IOstatus = "input"”; units = "none";
description = "Adjusted chemical efficiency";
}
real effChemBase {
value = 1.0; IOstatus = "input"”; units = "none";
description = "Chemical efficiency, from socket";
}
real eqRatio {
value = 1.0; IOstatus = "input"”; units = "none";
description = "Equivalence ratio for fuel-air mixture";
}
real FAR {
value = 0.0; IOstatus = "output”; units = "none™;
description = "Fuel-to-air ratio";
}
real FARDes {
value = 0.0; IOstatus = "output”; units = "none™;
description = "Fuel-to-air ratio at design";

}
real fillFrac { //Added 17Jan2007 - 1A
value = 1.0; IOstatus = "input"”; units = "none";
description = "Fill fraction ";
}
real flowby {//added Dec09 - CT
value = 1.0; IOstatus = "input"”; units = "none";
description = "Percentage of internal bypass into Mixer39";
}
real fuelFractV {
value = 0.0; IOstatus = "input”;  units ="none";
description = "Fraction of the incoming flow velocity fuel
enters the burner”;

}
real iBPR { //added 17Jan2007 - IA

value = 1.0; IOstatus = "output”; units = "none";
description = "Bypass ratio internal to the PDC";
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real iIBPRdes { /ladded 1Feb2007 - 1A
value = 1.0; IOstatus = "output™; units = "none";
description = "Bypass ratio internal to the PDC at
design conditions™;

}

real ITube { //added 17Jan2007 - IA
value = 36; I0status = "input"; units = "none"; //inches??
description = "length of the individual detonation tubes™;

}

real n_tubes{ //added 17Jan2007 - IA
value = 36; I0status = "input"; units = "none";
description = "Total number of detonation tubes used
in the PDC";

}

real MCJ { //added 17Jan2007 - 1A
value = 3.0; IOstatus = "output™; units = "none";
description = "Chapman-Jouguet Mach number of the
detonation wave.";

}

real Mvalve { /ladded 15Feb2007 - IA
value = 1.0; IOstatus = "input"; units = "none";
description = "Mach number of flow passing through
the valve throat.";

}

real gadd{ //added 17Jan 2007- IA
value = 0.0; IOstatus = "output™; units = "none";
description = "Heat addition due to fuel combustion”;
}
real Qhx {
value = 0.0; IOstatus = "input"; units = "Btu/sec";
description = "Heat loss to thermal mass storage";

}

real PqPRayleigh {
value = 1.0; IOstatus = "output”; units = "none™;
description = "Adjusted Rayleigh pressure drop”;

}

real PqPRayleighDelta {
value = 0.0; IOstatus = "output”; units = "none™;
description = "Bounded Rayleigh pressure drop - for loop only";

}

real PqPRayleighError {
value = 1.0; IOstatus = "output”; units = "none™;
description = "Adjusted Rayleigh pressure drop error";
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}

real PqPRayleighMin {
value = 0.05; IOstatus = "input"; units = "none™;
description = "Rayleigh pressure drop lower limit - for loop only";

}

real PqPRayleighStep {
value = 0.05; IOstatus = "input"; units = "none";
description = "Maximum step for Rayleigh pressure drop
- for loop only™;

}

real PgPRayleighNew {
value = 1.0; IOstatus = "output”; units = "none™;
description = "Previous adjusted Rayleigh pressure drop
- for loop only™;

}

real purgeFrac { /[Added 17Jan2007 - 1A

value = 0.25; 10status = "input"; units = "none";
description = "Purge fraction coefficient for flow";

}

real s_dPgP {
value = 1.0; IOstatus = "input"; units = "none";
description = "Duct friction pressure drop scalar";

}

real s_dPgPAud {
value = 1.0; 1Ostatus = "unset"; units = "none";
description = "Audit factor scalar applied to pressure ratio™;

real s_eff {
value = 1.0; IOstatus = "input"; units = "none";
description = "Adiabatic efficiency scalar”;
}
real s_effChem {
value = 1.0; IOstatus = "input"; units = "none";
description = "Chemical efficiency scalar";
}
real tauBIDn { // Added 17Jan2007 - 1A
value = 5.; 10status = "input"; units="none";
description = "Blowdown time constant™;

}
real tauValveOpen { // Added 18Jan2007 - 1A
value = 0.33333; I0status = "output™; units="none";
description = "time valve open/ time cycle - from 0 to 1";
}
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real tCycle{ /I Added 17Jan2007 - IA
value = 0.01; 10status = "output"; units = "none"; //seconds
description = "Detonation engine cycle time (= 1/frequency)";
}
real tolRayleigh {
value = 4e-05; IOstatus = "input"”; units = "none";
description = "lteration tolerance on momentum pressure drop";

real tolWfuel {
value = 1e-05; IOstatus = "input"”; units = "none";
description = "lteration tolerance on temperature burn";
}
real TtCombOut {
value = 0.0; IOstatus = "input"”; units ="R";
description = "Exit temperature";
}
real TtLast {
value = 0.0; IOstatus = "input"”; units ="R";
description = "Previous exit temperature - for loop only";

}
real TTSSeff{ // Added 17Jan2007 - 1A
value = 1.0; IOstatus = "input"”; units = "none";
description = "Efficiency factor for the transition device.";
}
real TTSSAPqP{  // Added 17Jan2007 - 1A
value = 0.0; IOstatus = "input"”; units = "none";
description = "Change in Pressure divided by Pressure
for transistion to steady state calculation.";

}

real tValve{ // Added 17Jan2007 - 1A
value = 0.0002; I1Ostatus = "input"; units = "none"; //seconds
description = "Time for valves to open/close";

}

real Wfuel {

value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Combustor fuel flow";

}

real WfuelError {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Combustor fuel flow error™;

}

real WfuelLast {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
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description = "Previous combustor fuel flow - for loop only";

real WfuelNew {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Next combustor fuel flow - for loop only";
}
int countFuel {
value = 0; 10status = "output”;
description = "Fuel loop counter";
}
int countFuelMax {
value = 50; IOstatus = "input";
description = "Fuel loop maximum counter";
}
int countRayleigh {
value = 0; 10status = "output”;
description = "Rayleigh loop counter";
}
int countRayleighMax {
value = 25; [Ostatus = "input";
description = "Rayleigh loop maximum counter";
}
int flagRayleighLossTooMuch {
value = 0; 10status = "output”;
description = "If true, Rayleigh loop results in too much loss";

}
int flagRayleighChoked {
value = 0; 10status = "output";
description = "If true, Rayleigh loop results in supersonic flow";

¥

/[ for backward compatibilty with old "aud"
FunctVariable a_dPgPaud {
units = "none"; 10status = "input™;
getFunction = "get_aAud"; setFunction = "set_aAud";
}
real get_aAud() { return a_dPgPAud; }
void set_aAud(real userValue) { a_dPqPAud = userValue; }

FunctVariable s_dPgPaud {
units = "none"; 10status = "input”;
getFunction = "get_sAud"; setFunction = "set_sAud";

¥
106



real get_sAud() { return s_dPqPAud,; }
void set_sAud(real userValue) { s_dPgPAud = userValue; }

Option switchAud {
allowedValues = { "BASE", "AUDIT" }
description = "Determines if the audit factors are used";
IOstatus = "input";
trigger=TRUE;
}

Option switchBurn {
allowedValues = { "FAR", "EQRATIO" }; //"FUEL", "WFUEL",
"TEMPERATURE", __mod 18 Dec 2006 - IA - added "FILLFRACTION"
description = "Switch determines if burner is running to fuel flow, FAR, or T4. Setting
option to FUEL will burn using the burner value as an input. Setting the option to
WFUEL will burn using the value coming in from the fuel station.";
trigger=TRUE;
}

Option switchDes {
allowedValues = { "DESIGN", "OFFDESIGN" };
description = "Design switch";
trigger=TRUE;
}
/l input kept in for backward compatible (remove later)
Option switchHotLoss {
allowedValues = { "INPUT", "CALCULATE","input" };
description = "Switch determines if the hot pressure loss is input or iterated on™;
trigger=TRUE;

/I FLUID PORTS
FluidinputPort FI_I {
description = "Incoming flow";
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¥

FluidOutputPort FI_O1 {
description = "Exiting combustion flow";

¥

FluidOutputPort FI_02 {
description = "Exiting bypass flow";

¥

FluidOutputPort FI_03 {
description = "Exiting bypass excess flow";

¥
/I FUEL PORTS

FuellnputPort Fu_I {
description = "Incoming fuel flow";

¥
/| BLEED PORTS

/l THERMAL PORTS
Il MECHANICAL PORTS
I FLOW STATIONS

Il flow stations modified 18 Dec 2006- 1A
FlowStation FI_Icomb {
description = "Inlet station to detonation tube section
of burner (after the initial pressure loss is applied)”;

¥

FlowStation FI_IcombAir {
description = "Copy of the inlet station to detonation tube
section of burner(after the initial pressure loss is applied,
before flow is split and partitioned)";

¥

FlowsStation FI_Iprg {
description = "Station containing detonation tube purge fluid";
}
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FlowStation FI_Ocomb {
description = "EXxit station to combustion section of burner
(before thermal storage heat transfer is calculated)";

¥

FlowStation FI_Vit {
description = "Vitiated Fluid flow station before detonation (cold)";

¥

/! ----end flow station modifications

I SOCKETS

Socket S_dPqgP {
allowedValues = { "dPgPBase" };
description = "Dry duct and valve pressure loss™; //__mod -1A- 18 Dec 2006
socketType = "dPgP";

¥

Socket S_eff {
allowedValues = { "effBase"”, "effChemBase" };
description = "PulseDetonationCombustor adiabatic efficiency";
socketType = "BURN_EFFICIENCY™;

¥

Socket S _Qhx {
allowedValues = { "Qhx" };
description = "Thermal storage socket";
socketType = "HEATTRANSFER";

}

Il TABLES

J] #**%%%x \/ARIABLE CHANGED METHODOLOGY ##**xx
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void variableChanged( string name, any oldVal ) {
/I Check to see what variables were changed....
// Change input/output status as necessary - IA- 18 Dec 06

if( name == "switchBurn" ) {
if (switchBurn =="FAR") {
FAR.IOstatus = "input™;
Wfuel.lOstatus = "output™;
TtCombOut.lO0status = "output”;
eqRatio.lOstatus = "output";
}
/I elseif (switchBurn == "FUEL" ) {
I FAR.IOstatus = "output";
Il Wrfuel.lOstatus = "input";
I TtCombOut.lO0status = "output”;
I}
/I elseif (switchBurn == "WFUEL" ) {
Il FAR.1Ostatus = "output";
I Wfuel.lOstatus = "output™;
Il TtCombOut.lOstatus = "output™;
I}
1 added 5 Feb 2007 -1A-
else if (switchBurn == "EQRATIO" ) {
FAR.1Ostatus = "output";
Wfuel.lOstatus = "output™;
TtCombOut.10status = "output”;
eqRatio.lOstatus = "input™;

}
/! end of additions -1A-

¥

else if( name == "switchHotLoss" ) {
if (switchHotLoss == "INPUT") {
dPgPRayleigh.IOstatus = "input";

¥
else if ( switchHotLoss == "input" ){ switchHotLoss = "INPUT"; }
else {
dPgPRayleigh.10status = "output";
¥

¥

else if( name == "switchAud" ) {
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a_dPgPAud.IOstatus = "inactive";

s_dPgPAud.lOstatus = "inactive™;

if( switchAud =="AUDIT") {
a_dPgPAud.IOstatus = "input™;
s_dPgPAud.l0status = "input™;

if (1S_dPgP.isEmpty() ) {

S_dPgP.execute();
¥
dPgP = dPgPBase * s_dPqP + a_dPqP; // calculate pressure losses (dry duct and

Valve)

if( switchDes == "OFFDESIGN" ) {

if( switchAud =="AUDIT") {

dPgP = dPgP * s_dPgPAud + a_dPgPAud,

}
}

/lcomment -1A- Collect total enthalpy at inlet
real hin = Fl_I.ht;

real Pin=(1-dPgP) * Fl_L.Pt; //coment -lIA- apply pressure losses as calculated
above
/lcomment -1A- copy flow to combustor flow
FI_Icomb.copyFlowStatic( "FI_I");
FI_Icomb.setTotal_hP( hin, Pin);

}
void calcBurn() {

real TtCombOutTemp;
111



real htStoich;
real WFuelLimit;
real WFuelHeat;

FI_Ocomb.copyFlow( "FI_Icomb");

if (1S_eff.isEmpty() ) {
S_eff.execute();

}
eff = effBase * s_eff + a_eff;
effChem = effChemBase * s_effChem + a_effChem;

if (effChem<1.0){
TtCombOutTemp = effChem *( FI_Ocomb.Tt - Fl_Icomb.Tt) +
FI_lcomb.Tt;
FI_Ocomb.setTotal TP( TtCombOutTemp, Fl_Ilcomb.Pt); // use Pin

}
}
void calcRayleighLoss() {

flagRayleighChoked = 0;
flagRayleighLossTooMuch = 0;

PgPRayleigh = 1.0;
PgPRayleighError = 0.0;



for( countRayleigh=0; countRayleigh<=countRayleighMax;
countRayleigh++) {

if( switchHotLoss == "INPUT™ ) {
PgPRayleigh = 1.0 - dPgPRayleigh;

else if( switchHotLoss == "CALCULATE") {
dPgPRayleigh = 1.0 - PgPRayleigh;

real PtCombOut = PgPRayleigh * FI_lcomb.Pt;

FI_Ocomb.setTotal_hP( FI_Ocomb.ht, PtCombOut );

PgPRayleighNew = PgPRayleigh;

if (switchHotLoss == "CALCULATE") {

FI_Ocomb.A = Fl_lcomb.A;
flagRayleighChoked = 0;
if( FI_Ocomb.MN >1.0) {
/[l when MN > 1.0 FlowStation static calc is
1 not consistent with Area
I FI_Ocomb.MN = 1.0;
// do not do this - creates major iteration problems
flagRayleighChoked = 1;
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/I Calculate the exit static pressure from the momentum equation
Il assume the fuel has the same velocity as the entrance flow

real PsMomMethl,;

PsMomMethl = FI_lcomb.W*FI_Icomb.V - FI_Ocomb.W*FI_Ocomb.V;

PsMomMethl = PsMomMeth1/C_GRAVITY;

PsMomMethl = PsMomMethl + FI_lcomb.Ps * FI_lcomb.A;

PsMomMethl = PsMomMeth1/FI_Ocomb.A;

real PsMomMeth2;

/IPsMomMeth2 = FI_Ocomb.W*FI_Icomb.V;

PsMomMeth2 = FI_lcomb.W*FI_Ilcomb.V + Wfuel*FIl_lcomb.V*fuelFractV;

PsMomMeth2 = PsMomMeth2/C_GRAVITY;

PsMomMeth2 = PsMomMeth2 + FI_lcomb.Ps * FI_lcomb.A;

PsMomMeth2 = PsMomMeth2/FI_Ocomb.A;

PsMomMeth2 =
PsMomMeth2/(1.0+FI_Ocomb.gams*FI_Ocomb.MN*FI_Ocomb.MN);

/[PsMomMethl = PsMonMeth2;

/I Note Methl = Meth2 when MN <=1.0
/I Use Meth2 - seems more stable the Methl when MN > 1.0

PgPRayleighNew = (PsMomMeth2/FI_Ocomb.Ps) * PgPRayleigh;
}

/I Check against tolerance
PgPRayleighError = PgPRayleighNew - PgPRayleigh;
if( abs(PqPRayleighError) < tolRayleigh ) { break; }

// Bounding of PgPRayleigh movement to PgPRayleighStep

real sign;

sign = PgPRayleighError/abs(PgPRayleighError);

PgPRayleighDelta = sign *
min(abs(PgPRayleighError),PqPRayleighStep);

PgPRayleighNew = PgPRayleigh + PgPRayleighDelta;

/I Lower limit of PqPRayleigh - limit too much loss to PqPRayleighMin
if( PqPRayleighNew < PgPRayleighMin ) {
if( flagRayleighLossTooMuch ==1) {
ESOreport( 1023901, "Rayleigh pressure loss limited, too much loss", FALSE );
break;
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}
PgPRayleighNew = PgPRayleighMin;
flagRayleighLossTooMuch = 1;

else {
flagRayleighLossTooMuch = 0;

¥

/*

// debug info

cout << FI_Ocomb.A << "™,
cout << FI_Ocomb.MN << " ";
cout << FI_Ocomb.Ps << " ";
cout << PsMomMethl << ™" ";
cout << PsMomMeth2 << ";
cout << PgPRayleigh <<™™;
cout << PgPRayleighNew << " ";
cout << endl;

*/

if( countRayleigh >= countRayleighMax ) {
ESOreport( 1023901, "Rayleigh iteration failed to converge, counter exceed max",
FALSE);
break;

¥

PgPRayleigh = PgPRayleighNew;

¥

if( flagRayleighChoked == 1) {
ESOreport( 1023901, "Rayleigh FI_Ocomb.MN exceed choked
condition", FALSE );
}
}

void calculate() {
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calcPreLoss(); // creates Fl_Icomb, applies pre-losses

real FARIn = Fl_lcomb.FAR;
real WARIn = Fl_lcomb.WAR;

/[------ Added 6 Feb 2007 - |1A----------------

if (FI_ILMN ==0. && FI_I.Aphy ==0.){
FI_Icomb.MN = 0.4,
FI_Icomb.setTotal_hP(FI_Icomb.ht, FI_Icomb.Pt);

}
f]------ End Additions 6 Feb 2007

if (switchBurn == "FAR") {

Wfuel = (FI_Icomb.W /(1. + FARiIn + WARIn))*( FAR - FARIn);
Fu_lL.Wfuel = Wfuel;
eqRatio = FAR/Fu_l.FARst; // Added 5 Feb 2007 - IA

calcBurn();
calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

}
| R R R R R
// Added 5 February 2007 - 1A
// do an equivalence ratio calculation
else if (switchBurn == "EQRATIO") {
FAR = eqRatio*Fu_l.FARst;
Wiuel = (FI_lcomb.W /( 1. + FARin + WARIn))*( FAR - FARIn );
Fu_lL.Wfuel = Wfuel;

calcBurn();
calcRayleighLoss();
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TtCombOut = FI_Ocomb.Tt;

FI_Vit.copyFlowStatic("FI_Ocomb");
FI_Vit.setTotal TP(FI_lcomb.Tt, FI_Icomb.Pt);

/[Take a snapshot of air after it has entered the detonation tubes
FI_IcombAir.copyFlowStatic("FIl_lcomb");

/I Copy input flow properties for internal bypass flow
Il - W set later
FI_O2.copyFlow("Fl_lcombAir");

if (switchDes == "DESIGN"){

real uCJ, a_1, rhoVit, freq, PcqPi, errors;

real gamt, Cpt, beta, MCJ2, PcqPi2; // average (static gamma, Cp)
real Atube, Vtube;//, mCycle, Wtube;

real MFP, Wvalve, gma_lI;

real mFillAir, mPurgeAir, mPureAir; //tauVO, WvalveOpen,

real tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel;

real gam_s, gmm_fc;//, a_inlet;

real WtotAir, Whbypass;

int count;
/I---- initiated but not iterated -------------------=---m-mm---

/[static density of cool vitiated fluid
rhoVit = FlI_Vit.rhot; //(Ibm/ft"3)
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/I speed of sound in pure air, stagnated in detonation tube
/[ that the detonation wave propogates in to
a_1 = sqrt(FI_Icomb.gamt*FIl_lcomb.Rt*FI_lcomb.Tt*25037.);

/I Calculate Chapman-Jouguet Mach number for wave as described
/I in Heiser and Pratt

[[*** input variables: //

[[*** output variables: //MCJ, deltaS, gadd //

/*** Flow Stations: //FI_Ocomb, FI_lIcomb //
/l'local variables:  //gamt, Cpt, gadd, beta, MCJ2 //

/f------ Arithmetically average specific heats --------------------
gamt = (FI_Ocomb.gamt + FI_Icomb.gamt)/2.0; // arithmetic mean of
/I gamma for stopped
// fluid
Cpt = (FI_Ocomb.Cpt + FI_Ilcomb.Cpt)/2.0; // arithmetic mean of Cp
/[ for a stopped fluid

/[----- Calculate heat addition per Heiser-Pratt cycle ------------
/I calculate non-dimensional heat addition
gadd = (FI_Ocomb.ht - FI_Icomb.ht)/(Cpt*FI_Icomb.Tt);

[[------- Calculate Chapman-Jouget Mach number --------------------
beta = (gamt + 1.0)*qadd+1.0;

MCJ2 = beta + sqrt( beta**2 - 1.0 );

MCJ = sqrt(MCJ2);

fl-memeaee- Calculate Entropy gain based on CJ detonation ----------
deltaS = Cpt*(-log(MCJ2*((gamt+1.0)/
(1.0+gamt*MCJ2))**((gamt+1.0)/gamt)) );

/[---- calculate the pressure rise using the H &P method ------
PcgPi = (1.0+ gamt*MCJ2)/(gamt+1.0);
uCJ=a 1*MCJ;

[[------ Calculate tube volume and Area ----------===------
Atube = (P1/4.)*dTube**2/144.; |/ ft"2
Vtube = Atube*(ITube/12); // fti*3
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I

f]-meaee- calculate the valve inlet mass flow rate ----------
gma_I=FI_lcombAir.gamt;
MFP = Mvalve*sqrt( (gma_1*32.174)/(FI_IcombAir.Rt*778.16) )
*(1.+(gma_I-1.)/2.*Mvalve**2)**( (gma_lI+1.)/(2.*(1.-gma_l)));
Whvalve = (FI_IcombAir.Pt/sqrt(FI_IcombAir.Tt))
*(Atube*144.*ARvalve)*MFP;

[I*** input Variables: //dTube, ITube, n_tubes, fillFrac

I I purgeFrac,

/[*** iterated Variables // freq

[[*** output Variables: // iBPR

/[*** local variables: //WfillAir, WpurgeAir, WpureAir, WtotAir
I Whypass, WpurgeAir, Wvit, //

/[*** Flow Stations: // FI_IcombAir, Fl_lcomb, FI_Ilprg, Fl_Vit, //

ff-=-=--- Calculate the split and partition of flow -----------
/I amount of air that will be mixed with fuel - one tube
mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);

/[ amount of air that will purge during each cycle - one tube
mPurgeAir = Vtube*(FI_IcombAir.rhos*purgeFrac);

/] total air per cycle flowing though one tube
mPureAir = mFillAir + mPurgeAir;

/[*** input Variables: // DDT, tValve, Ltube, ff, pf, tCycle

[[*** iterated Variables: // uCJ, PcqPi

/I*** output Variables // tCycle, tauValveOpen, freq

/[*** local variables: // tDetonation, tDetProp, tBlowdown, tPurge,
1 /1 tFill

e Detonation time -----------------------
// DetProp time is relatively independant of fill fraction...
tDetProp= ITube/(uCJ*12);
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I

I
I

|1

I

I
I

I
I

//DDT is input, tDetonationPropogatio calcd (may need to iterate)
tDetonation = DDT + tDetProp;

e Blowdown time ------------------------

Il assume choked flow at tube exit and calculate blowdown based on
/I draw-down time of a pressurized tank calculated on pressure

/I differential

gam_s = Fl_lcombAir.gams; // larger gamma is more conservative
gmm_fc = ((gam_s + 1.)/2.)**(-(gam_s+1.)/( 2.*(gam_s-1.)) ); //

tBlowdown: Use ~1/2 calcd pressure (to match experimental data)
/I we'll use CJ det wave velocity as the speed of sound in the gas
/I since a cannot be directly calc'd

/I note tBlowdown is proportional to tube length

/[ tauBIDn is proportional to tube length...

tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(ITube/uCJ);

R Fill and Purge time --------------------

/I Use the choked flow at valve inlet and the mass flow rate as

/I calculated outside the loop to calculate fill time (m/ mdot)
tPurge = tValve + mPurgeAir/Wvalve; //(s)

tFill = tvValve + mFillAir/Wvalve; //(s)

/NNmprovement could be made by calculating vitiated air velocity...

flmmmmmemmmeaenes Cycle Time output calculation --------------
tCycle = tDetonation + tBlowdown + tPurge + tFill;
tauValveOpen = (tPurge+tFill)/tCycle;

freq = 1./tCycle; //tCycle is user input

/lcout << "\n \n tDetonation, tBlowdown, tPurge, tFill PcqPi'<<" "<< tDetonation <<"
"<< tBlowdown<<" "<< tPurge<<" "<< tFill<<" freq" << 1/tCycle << " " << PcqPi <<

endl;

flmmmmmemeaeees Set total mass flow through tubes -------------
WitotAir = mPureAir*n_tubes*freq;
/I steady-state flow rate into tubes

/I conservation of mass check
if (WtotAir > Fl_LW) {

fillFrac = fillFrac*(FI_I.W/WtotAir);
purgeFrac = purgeFrac*(Fl_1.W/WHtotAir);

mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);
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I

/I amount of air that will be mixed with fuel - 1 tube

mPurgeAir = Vtube*(FI_IcombAir.rhos*purgeFrac);

/I amount of air that will purge during each cycle -1 tube

mPureAir = mFillAir + mPurgeAir;
/I total air per cycle flowing though one tube

WitotAir = FI_LW;

cerr << "ATTENTION !pf & ff changed to: " << purgeFrac << " " <<

fillFrac << endl;

ESOreport( 2222100,"Purge and fill fractions changed in order to maintain

conservation of mass through the engine”, FALSE );

//break;

e Set iIBPR --------===-mmmmmmemme oo
Whypass = (FI_I.W - WtotAir)*flowby;
/I steady-state flow rate sent to bypass

IBPR = Wbypass/WtotAir;
/I steady-state internal PDC bypass ratio

iBPRdes = iBPR;

ffemmmmemeeeee Set bypass exit flow SPLIT -------------------
FI_0O2.W = Wbypass;
FI_O3.W = (FI_L.W - WtotAir)-((FI_L.W-WtotAir)*flowby);

[[--=------ Set purge and fill stations PARTITION ---------
FI_Iprg.copyFlowStatic("FI_IcombAir");
I copy flow for purge function

R PURGE AIR ---------emememeeem
FI_Iprg.AphyDes = (Atube*144)*n_tubes; //Set physical area
FI_Iprg.W = mPurgeAir*freq*n_tubes; // set mass flow rate

e FILL AIR -----------mmmmmo-
FI_Icomb.copyFlow("FI_IcombAir");

FI_Icomb.AphyDes = Atube*144.*n_tubes*tauValveOpen;
/I Actual area is multiplied by tauVVO to get equivalent
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/I area. - Fluid flows steadily through this area

FI_Icomb.W = mFillAir*n_tubes*freq; //
FI_Icomb.setTotal_hP(FI_IcombAir.ht, FI_lcombAir.Pt);
//sets time-averaged static conditions

/l FAR was calculated prior to enteringh this convergence loop -

I/ so we just need to modify Wfuel based on changed FI_Icomb.W
Wfuel = ( FI_Icomb.W /(1. + FARiIn + WARIn))*( FAR - FARIn);
Fu_L.Wfuel = Wfuel;

calcBurn();
calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

/I Apply Dyer-Kaemming correction to obtain tube flow at exit

/I (ignores the kinetic energy of the shock wave.)

//:::::::::::::::: == == == e s s ——
FI_Ocomb.setTotal hS(FI_Ocomb.ht, FI_lcomb.S+deltaS);

¥

/l OFF-DESIGN CODE //added Dec 09 - CT
if (switchDes == "OFFDESIGN"){

/lreal uCJ, a_1, rhoVit, freq, PcqPi, errors;

/Ireal gamt, Cpt, beta, MCJ2, PcgPi2; // average (static gamma, Cp)
/lreal Atube, Vtube;//, mCycle, Wtube;

/Ireal MFP, Wvalve, gma_;

[lreal mFillAir, mPurgeAir, mPureAir; //tauvVO, WvalveOpen,
/Ireal tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel;

/lreal gam_s, gmm_fc;//, a_inlet;

/Ireal WtotAir, Whbypass;

//int count;
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/I---- initiated but not iterated -------------------=---m-m-----
/Istatic density of cool vitiated fluid
rhoVit = FI_Vit.rhot; //(Ibm/ft"3)

I speed of sound in pure air, stagnated in detonation tube
/[ that the detonation wave propogates in to
a_1 = sqgrt(Fl_lcomb.gamt*FI_Icomb.Rt*FI_Icomb.Tt*25037.);

/I Calculate Chapman-Jouguet Mach number for wave as described
/I in Heiser and Pratt

[[*** input variables: //

[[*** output variables: //MCJ, deltaS, gadd //

/*** Flow Stations: //FI_Ocomb, FI_lIcomb //
/l'local variables:  //gamt, Cpt, gadd, beta, MCJ2 //

[------ Arithmetically average specific heats --------------------
gamt = (FI_Ocomb.gamt + FI_Icomb.gamt)/2.0; // arithmetic mean of
/I gamma for stopped
// fluid
Cpt = (FI_Ocomb.Cpt + FI_Ilcomb.Cpt)/2.0; // arithmetic mean of Cp
/[ for a stopped fluid

/[----- Calculate heat addition per Heiser-Pratt cycle ------------
/[ calculate non-dimensional heat addition
gadd = (FI_Ocomb.ht - FI_Icomb.ht)/(Cpt*FI_Icomb.Tt);

[[------- Calculate Chapman-Jouget Mach number --------------------
beta = (gamt + 1.0)*qadd+1.0;

MCJ2 = beta + sqrt( beta**2 - 1.0 );

MCJ = sgrt(MCJ2);

fl-memeaee- Calculate Entropy gain based on CJ detonation ----------
deltaS = Cpt*(-log(MCJ2*((gamt+1.0)/
(1.0+gamt*MCJ2))**((gamt+1.0)/gamt)) );

/[---- calculate the pressure rise using the H &P method ------
PcgPi = (1.0+ gamt*MCJ2)/(gamt+1.0);
uCJ=a 1*MCJ;
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f]-=e-- Calculate tube volume and Area -------------------
Atube = (P1/4.)*dTube**2/144.; // ft"2
Vtube = Atube*(ITube/12); // ft"3

ff-=-=--- calculate the valve inlet mass flow rate ----------
gma_I=FI_lcombAir.gamt;
MFP = Mvalve*sqrt( (gma_1*32.174)/(FI_IcombAir.Rt*778.16) )
*(1.+(gma_I-1.)/2.*Mvalve**2)**( (gma_lI+1.)/(2.*(1.-gma_l)));
Whvalve = (FI_IcombAir.Pt/sqrt(FI_IcombAir.Tt))
*(Atube*144.*ARvalve)*MFP;

[I*** input Variables: //dTube, ITube, n_tubes, fillFrac

I I purgeFrac,

/[*** iterated Variables // freq

[[*** output Variables: // iBPR

/[*** local variables: //WfillAir, WpurgeAir, WpureAir, WtotAir
I Whypass, WpurgeAir, Wvit, //

/[*** Flow Stations: // FI_IcombAir, Fl_lcomb, FI_Ilprg, Fl_Vit, //

ff-=-=--- Calculate the split and partition of flow -----------
/I amount of air that will be mixed with fuel - one tube
mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);

/[ amount of air that will purge during each cycle - one tube
mPurgeAir = Vtube*(FI_IcombAir.rhos*purgeFrac);

/] total air per cycle flowing though one tube
mPureAir = mFillAir + mPurgeAir;

[[*** input Variables: // DDT, tValve, Ltube, ff, pf, tCycle

[[*** iterated Variables: // uCJ, PcqPi

[[*** output Variables // tCycle, tauValveOpen, freq

/I*** local variables: // tDetonation, tDetProp, tBlowdown, tPurge,
1 /1 tFill



I

I

I
I

|1

I

I
I

I
I

R Detonation time -----------------------
I/ DetProp time is relatively independant of fill fraction...
tDetProp= ITube/(uCJ*12);

//DDT is input, tDetonationPropogatio calcd (may need to iterate)
tDetonation = DDT + tDetProp;

e Blowdown time ------------------------

Il assume choked flow at tube exit and calculate blowdown based on
/I draw-down time of a pressurized tank calculated on pressure

/I differential

gam_s = Fl_lcombAir.gams; // larger gamma is more conservative
gmm_fc = ((gam_s + 1.)/2.)**(-(gam_s+1.)/( 2.*(gam_s-1.)) ); //

tBlowdown: Use ~1/2 calcd pressure (to match experimental data)
/I we'll use CJ det wave velocity as the speed of sound in the gas
/I since a cannot be directly calc'd

/I note tBlowdown is proportional to tube length

/[ tauBIDn is proportional to tube length...

tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(ITube/uClJ);

e Fill and Purge time --------------------

/I Use the choked flow at valve inlet and the mass flow rate as

/I calculated outside the loop to calculate fill time (m/ mdot)
tPurge = tValve + mPurgeAir/Wvalve; //(s)

tFill = tvValve + mFillAir/Wvalve; //(s)

/NNmprovement could be made by calculating vitiated air velocity...

flmmmmmemmaeaenes Cycle Time output calculation --------------
tCycle = tDetonation + tBlowdown + tPurge + tFill;
tauValveOpen = (tPurge+tFill)/tCycle;

freq = 1./tCycle; /[frequency is input (Thorn thesis)

/lcout << "\n \n tDetonation, tBlowdown, tPurge, tFill PcqPi'<<" "<< tDetonation <<"
"<< tBlowdown<<" "<< tPurge<<" "<< tFill<<" freq" << 1/tCycle << " " << PcqPi <<

endl;
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WitotAir = mPureAir*n_tubes*freq;

/] steady-state flow rate into tubes
/I conservation of mass check
if (WtotAir > Fl_LW) {

fillFrac = fillFrac*(Fl_I.W/WtotAir);
purgeFrac = purgeFrac*(FIl_1.W/WtotAir);

mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);
/Il amount of air that will be mixed with fuel - 1 tube

mPurgeAir = Vtube*(FI_IcombAir.rhos*purgeFrac);
/I amount of air that will purge during each cycle -1 tube

mPureAir = mFillAir + mPurgeAir;
/] total air per cycle flowing though one tube

WitotAir = FI_LW;
I cerr << "ATTENTION !pf & ff changed to: " << purgeFrac << " " <<
fillFrac << endl;

ESOreport( 2222100,"Purge and fill fractions changed in order to maintain
conservation of mass through the engine”, FALSE );
/lbreak;

e Set iIBPR --------===-mmmmmmm oo
Whypass = (FI_I.W - WtotAir)*flowby;
/I steady-state flow rate sent to bypass

IBPR = Wbypass/WtotAir;
/I steady-state internal PDC bypass ratio

/liBPRdes = iBPR;

ffemmmmemeeeee Set bypass exit flow SPLIT -------------------
FI_0O2.W = Wbypass;
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FI_O3.W = (FI_IL.W - WtotAir)-((FI_I.W-WtotAir)*flowby); //bleed flow needed

/[for static pressure
/lof iBPR entering
/I Mixer39 to equal
/[ static pressure
/lentering from tubes

[[--=------ Set purge and fill stations PARTITION ---------

FI_Iprg.copyFlowStatic("FI_IcombAir™);

/I copy flow for purge function

/| J— PURGE AIR ------mmmmmmeeav
FI_Iprg.AphyDes = (Atube*144)*n_tubes; //Set physical area
FI_Iprg.W = mPurgeAir*freq*n_tubes; // set mass flow rate

[ J——— S [N | —————
FI_Icomb.copyFlow("FI_IcombAir");

FI_Icomb.AphyDes = Atube*144.*n_tubes*tauValveOpen;
/I Actual area is multiplied by tauVO to get equivalent

/I area. - Fluid flows steadily through this area

FI_Icomb.W = mFillAir*n_tubes*freq; //
FI_Icomb.setTotal_hP(FI_lcombAir.ht, FI_lcombAir.Pt);
/[sets time-averaged static conditions

Il FAR was calculated prior to enteringh this convergence loop -

I/ so we just need to modify Wfuel based on changed FI_Icomb.W
Wfuel = ( FI_Icomb.W /(1. + FARiIn + WARIn))*( FAR - FARIn);
Fu_L.Wfuel = Wfuel;

calcBurn();
calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

/I Apply Dyer-Kaemming correction to obtain tube flow at exit

/I (ignores the kinetic energy of the shock wave.)

//:::::::::::::::: == == == e s s ——
FI_Ocomb.setTotal hS(FI_Ocomb.ht, FI_lcomb.S+deltaS);
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//END OFF-DESIGN CODE

//:::::::::::::::::::::::::::::::::::: == == == -—====

I TTSS

[I*** local Variables: // Snew, Pnew

[*** Input Variables: // deltaS, TTSSeff, TTSSdPgP
/*** Flwo stations: // FI_Ocomb, FI_Vit

real hnew, Pnew; //

f]-=e-- Calculate new Entropy and Pressure --------------

I eff = (dht) TTSF/(dht)comb + 1.

I current h - ( h gained)*(1.-eff)

hnew = FI_Ocomb.ht - (FI_Ocomb.ht - FI_Icomb.ht)*(1.0-TTSSeff);
Pnew = FI_Ocomb.Pt*(1.0-TTSSdPgP);

/IEnd of 12Jan2007 additinos - 1A
B
FI_O1.copyFlow( "FI_Ocomb");

[[------- update fluid properties based on new Entropy and Pressure
FI_Ol.setTotal_hP(hnew, Pnew); //added 12Jan2007 - IA

if (1S_Qhx.isEmpty() ) {
S_Qhx.execute();

}

real hout = FI_O1.ht - Qhx /Fl_O1.W,

FI_Ol.setTotal_hP( hout, FI_O1.Pt);



if (switchDes == "DESIGN") {
FARDes = FAR;

void VCinit()

{
ESOregCreate( 1023901, 8, ™", TRUE, FALSE, TRUE ); // provisional

ESOregCreate( 1093901, 8, ", TRUE, FALSE, TRUE ); // provisional
ESOregCreate( 2222100, 2, ", TRUE, FALSE, TRUE ); // provisional

k
k

#endif
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	Appendix B. Model File for Baseline Turbofan Engine
	//
	//--------------------------------------------------------------------
	//   T U R B O J E T   E N G I N E   B U I L D                       |
	//                                                                   |
	//   B U I L D   A N D   V E R I F Y   T U R B O J E T               |
	//                                                                   |
	//   D E S I G N    P O I N T    O N L Y                             |
	//                                                                   |
	//-------------------------------------------------------------------
	//   T U R B O J E T   C O N F I G U R A T I O N
	//-------------------------------------------------------------------
	cout << "\t------------------------------------------------------\n"
	<< "\t  Baseline High Bypass Turbofan built to match AEDsys  \n"
	<< "\t------------------------------------------------------\n\n";
	// Set model name
	MODELNAME = "Baseline HBTF CmpareAEDsys.mdl with mixers";
	//--------------------------------------------------------
	// set the thermo package
	//--------------------------------------------------------
	setThermoPackage("GasTbl");
	//   setThermoPackage("Janaf");
	//--------------------------------------------------------
	// include the standard intepretted things
	//--------------------------------------------------------
	#include <InterpIncludes.ncp>
	#include "ncp.view"
	//#include "bleed_macros.fnc"
	//#include "NewDuct.int"
	//-----------------------------------------------------------------
	// #include the definition file for the user defined engine
	// performance component
	//-----------------------------------------------------------------
	#include "EngPerf.cmp" ;
	//--------------------------------------------------------
	// MODEL DEFINITION
	//--------------------------------------------------------
	// #################### FLIGHT CONDITIONS #####################
	Element FlightConditions AMBIENT {
	// Specify Design conditions
	alt = 0.0;    // design altitude (ft)
	MN = 0.01;  // design Mach number
	//  Ps = 14.696; // ambient pressure (psia)
	//  Ts = 59.0;  // ambient temperature (F)
	W = 1500.00;  // design mass flow (lbm/s)
	}
	//########################### Inlet ############################
	Element Inlet INLET {
	eRamBase = 0.995; //Ram Recovery Factor?
	}
	// ###################### Splitter ###############################
	Element Splitter SPLIT {
	BPR =  8.0;  // Bypass Ratio
	}
	// ##########################  FAN ###############################
	// here the fan represents the outer portion of the Low pressure
	// compressor spool
	Element Compressor Fan21 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042; //0.882886;
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "fan.map" ; //Compressor sub-element map
	S_map.effDes = 0.8827; //0.88289;
	S_map.PRdes = 1.56;
	}
	// ##################### Bypass Duct/ Nozzle/ Sink ###################
	Element Duct Bypass13 {
	// AEDsys assumes flow in bypass duct is isentropic
	// dPqPbase = 0.015;// pressure loss through the bypass duct
	}
	Element Nozzle Noz18 {
	// Cfg = 0.995;
	dPqP = 1.0-0.98; // pressure loss from nozzle inlet to throat
	PsExhName = "AMBIENT.Fl_O.Ps";
	// AEDsys uses a fixed convergent nozzle for bypass exit
	switchType = "CONIC";
	}
	Element FlowEnd NozSink19 {
	}
	// ################ Low Pressure Compressor ###########################
	Element Compressor LPC20 {
	// // use these lines if no compressor map is implemented
	// effDes = 0.88042; // set the design point isentropic efficiency
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "lpc.map";
	S_map.effDes = 0.8827;// set design point isentropic efficiency
	S_map.PRdes = 1.56;
	}
	// ###################### High Pressure Compressor ##################
	Element Compressor HPC25 {
	// // use these lines if no compressor map is implemented
	// effDes = 0.85755; // set the design point isentropic efficiency
	// PRdes = 16.66667;
	// use these lines if compressor map is used...
	#include "hpc.map" ; // Compressor sub element map
	S_map.effDes = 0.8573 ; // design point isentropic efficiency
	S_map.PRdes = 16.66667 ; // Set the pressure ratio at design
	}
	// #################   Bleed starting point   #########################
	Element Bleed BLD3 {
	// ========================= BLEEDS ==========================
	// Three Bleeds are taken off of the back side of the
	//  High pressure Compressor
	BleedOutPort BL_Cool_301 {
	fracW = 0.05;   // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Cool_302 {
	fracW = 0.05; // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Env_303 {
	fracW = 0.01; // mass flow fraction (1% bleed)
	}
	}
	// ############################ Fuel #############################
	Element FuelStart FUEL32{
	LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel -
	// default is 18400 BTU/lbm
	}
	// ############################## Burner #########################
	Element Burner BRN36{
	effBase = 0.995; // component efficiency
	dPqPBase = 1.0 - 0.96; //pi b = 1.0-(dP/P) pressure drop across burner
	// Change from burner default of FAR to TEMPERATURE
	switchBurn = TEMPERATURE;
	// Total temp. at exit (degrees Rankine) || not to be used with FAR
	TtCombOut = 2900.0;
	}
	// ########################## Bleed Mixer/IGV ###########################
	Element Bleed MIX40 {
	BleedInPort BlIn40{
	Pscale = 0.88;
	}
	}
	// ########################## HP Turbine ###########################
	Element Turbine HPT41 {
	#include "hpt.map";  //High Pressure Turbine Map
	S_map.effDes = 0.9057;//0.90555;0.91075;
	// InterStageBleedInPort BlIn41 {
	//  Pfract = 1;  //force the bleed to come in at enterance
	// }
	}
	// ########################## Bleed Mixer ###########################
	Element Bleed MIX44 {
	BleedInPort BlIn44{
	Pscale = 0.68;
	}
	// Fl_I1.MN = .29;
	// Bl_I1.Pscale = 0.92; // Scale pressure so that the pressure ratio across mixer = 1
	// Bl_I1.MN = 0.31;
	}
	// ########################## LP Turbine ###########################
	Element Turbine LPT45 {
	#include "lpt.map"  //Low Pressure Turbine Map
	S_map.effDes = 0.9084;//0.90836;0.90906;
	// InterStageBleedInPort BlIn44 {
	//  Pfract = 1.; // force bleed to come in at turbine entrance
	// }
	}
	// ######################### Nozzle #######################
	Element Nozzle Noz8 {
	//Cfg = 0.995;
	//Cv = 0.985;
	dPqP = 1.0-0.985;
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit
	}
	// ########################## Terminate Flow ################
	Element FlowEnd Sink39 {
	// BleedInPort BlIn44{
	//  Pscale = 0.96;
	// }
	// sink for the environmental bleed...
	}
	Element FlowEnd NozSink9 {
	// sink for the core airflow
	}
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	// Put shafts in the model
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	//######################### Low-Pressure Shaft ################
	Element Shaft LPShf {
	ShaftInputPort LPC, FAN, LPT ;
	Nmech = 2000.0;
	inertia = 1.0; // inertia is only needed for transient analysis
	HPX = 0.0 ;// +131.; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 kW)
	fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)
	}
	//######################### High Pressure Shaft ###################
	Element Shaft HPShf {
	ShaftInputPort HPT, HPC ;
	Nmech = 11000.0;
	inertia = 1.0;
	HPX = 143.178 ;//+372;// +415.;//  +400.0; // Horsepower extracted from the shaft hp  ( = 105.7 kW)/ eta m ( = 0.99)
	fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)
	//cout << inertia.unitsunits <<endl;
	//quit();
	}
	//######################## Engine Performance ######################
	Element EngPerf PERF{
	}
	//___________________________________________________________
	//                  Flow Connections                       //
	//                                                         //
	//        This is where the flow is defined for the engine //
	//_________________________________________________________//
	//
	//############# Ambient to Splitter #########################
	linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" );
	linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" );
	//#############  Bypass air     #############################
	linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" );
	linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" );
	linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" );
	linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" );
	//############# Core Air Flow   #############################
	linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" );
	linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" );
	linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" );
	linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ;
	//##############   Fuel Flow   ##############################
	linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" );
	linkPorts( "BRN36.Fl_O",  "MIX40.Fl_I",   "FL4");
	linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" );
	linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44");
	linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" );
	linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7");
	linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" );
	//############## Bleed port linkage ##########################
	//linkBleedCB("BLD3", "MIX40", 0.05, 1.0, 1.0, "BL 1");
	//linkBleedCB("BLD3", "MIX44", 0.05, 1.0, 1.0, "BL 2");
	//linkBleedCB("BLD3", "Sink39", 0.01, 1.0, 1.0, "BL 3");
	linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
	linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
	linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");
	//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//          Mechanical (Shaft) connections
	// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//############### Low-Pressure Spool #######################
	linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");
	linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
	linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3");
	//############## High-Pressure Spool #######################
	linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");
	linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2");
	// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
	//   Begin Run Definition
	// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
	cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
	<< "               Begin Run Input definitions     \n "
	<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";
	Appendix C. Model File for Hybrid Turbofan Engine
	//
	//------------------------------------------------------------------------
	//   H Y B R I D   T U R B O F A N    E N G I N E   |
	//                                                                       |
	//-----------------------------------------------------------------------
	//     C O N F I G U R A T I O N
	//-----------------------------------------------------------------------
	cout << "\t-------------------------------------------------------------\n"
	<< "\t  Hybrid Pulsed Detonation Combustor High Bypass Turbofan ... \n"
	<< "\t-----------------------------------------------------------\n\n";
	// Set model name
	MODELNAME = "PDC HBTF"; //Pulsed Detonation Combustor High Bypass Turbofan";
	//--------------------------------------------------------
	// set the thermo package
	//--------------------------------------------------------
	setThermoPackage("GasTbl");
	// setThermoPackage("FPT");
	//--------------------------------------------------------
	// include the standard intepretted things
	//--------------------------------------------------------
	#include <InterpIncludes.ncp>
	#include "ncp.view"
	//-------------------------------------------------------------------
	// #include the definition file for the user defined engine
	// performance component
	//-------------------------------------------------------------------
	#include "EngPerf.cmp" ;
	//--------------------------------------------------------
	// MODEL DEFINITION
	//--------------------------------------------------------
	// #################### FLIGHT CONDITIONS #####################
	Element FlightConditions AMBIENT {
	// Specify Design conditions
	alt = 0.0;   // design altitude (ft)
	MN = 0.01;  // design Mach number
	//  Ps = 14.696; // ambient pressure (psia)
	//  Ts = 59.0; // ambient temperature (F)
	W = 1500.00;  // design mass flow (lbm/s)
	}
	//########################### Inlet ############################
	Element Inlet INLET {
	eRamBase = .995; //Ram Recovery Factor? //.995
	}
	// ###################### Splitter ###############################
	Element Splitter SPLIT {
	BPR =  8.0;  // Bypass Ratio
	}
	// ##########################  FAN ###############################
	// here the fan represents the outer portion of the Low pressure
	// compressor spool
	Element Compressor Fan21 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042; //0.882886;
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "fan.map" ; //Compressor sub-element map
	S_map.effDes = 0.8827; //0.88289;//.8827
	S_map.PRdes = 1.56;
	}
	// ##################### Bypass Duct/ Nozzle/ Sink ###################
	Element Duct Bypass13 {
	// AEDsys assumes flow in bypass duct is isentropic (p109, #9)
	// dPqPbase = 0.015; // pressure loss through the bypass duct
	}
	Element Nozzle Noz18 {
	// Cfg = 0.995;
	dPqP = 1.0-0.98;  // pressure loss from nozzle inlet to throat
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for bypass exit
	}
	Element FlowEnd NozSink19 {
	}
	// ################ Low Pressure Compressor ###########################
	Element Compressor LPC20 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042;  // set the design point isentropic efficiency
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "lpc.map";
	S_map.effDes = 0.8827; // 0.88289; set the design point isentropic
	//efficiency//.8827
	S_map.PRdes = 1.56;
	}
	// ###################### High Pressure Compressor ##################
	Element Compressor HPC25 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.85755; //0.8855338;  // set the design point isentropic efficiency
	// PRdes = 16.66667;
	// use these lines if compressor map is used...
	#include "hpc.map" ; // Compressor sub element map
	S_map.effDes = 0.8573 ; //0.857535 ; set the maps design point
	//isentropic efficiency//.8573
	S_map.PRdes = 16.66667 ; // Set the pressure ratio at design
	}
	// ######################   Bleed starting point   #########################
	Element Bleed BLD3 {
	// ============================ BLEEDS ============================
	// Three Bleeds are taken off of the back side of the High pressure Compressor
	BleedOutPort BL_Cool_301 {
	//fracBldWork = 1.0;  // work fraction where bleed is taken
	//fracBldP = 1.0;     // Pressure fraction where bleed is taken
	fracW = 0.05;    // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Cool_302 {
	//fracBldWork = 1.0; // work fraction (dhb/dh)
	//fracBldP = 1.0;  // Pressure fraction (dPb/dP)
	fracW = 0.05; // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Env_303 {
	//fracBldWork = 1.0; // (dhb/dh)  work fraction - closely tied with pressure fraction...
	//fracBldP = 1.0;  // Pressure Fraction (dPb/dP)
	fracW = 0.01; // mass flow fraction (1% bleed)
	}
	}
	// ############################ Fuel #############################
	Element FuelStart FUEL32{
	LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel -
	// default is 18400 BTU/lbm
	}
	// ############################## Burner #########################
	// Element Burner BRN36{
	//   effBase = 0.995; // component efficiency ... ??
	//   dPqPBase = 1.0 - 0.96; //0.04; // pi b - pressure drop across burner... ?? (dP/P)
	//
	//   switchBurn = TEMPERATURE; // Change from burner defauls using Fuel-air Ratio (FAR) to TEMPERATURE
	//   TtCombOut = 2900.0; // Total temperature at exit (degrees Rankine) || not to be used with FAR
	//
	//   // or use the default FAR and define what the FAR is...
	//   //  FAR = 0.02282;  // Fuel-to-Air ratio;  not to be used with TtCombOut, Wfuel, etc.
	//
	// }
	#include "PDC_burner_bleed.int"
	Element PulseDetonationCombustor BRN36{
	effBase = .995; // burning efficiency//.995
	dPqPBase = 1.0-0.96; // pressure loss across valves/through bypass
	switchBurn = FAR; // set fuel-air ratio (vs equivalence ratio)
	FAR = (0.0683 * 1.00); //approximately 85% of stoichiometric conditions
	purgeFrac = 0.2; // designate purge fraction
	fillFrac = 0.8;  // designate fill fraction
	lTube = 36;  // length of tube in inches
	n_tubes = 24;  // number of tubes
	dTube = 2.0;  // inside diameter of tubes
	tCycle = .016776271641; // cycle time
	flowby = 1;                      // percentage of internal bypass flow into mixer39
	}
	// ########################## Wall heat exchange ########################
	// *** not uses in the current model ***
	//Element Wall WALL38{
	// Ahx1 = PI*36; // area of wall inside PDT
	// Ahx2 = PI*36*1.02; // area that bypass flow sees
	// ChxDes1 = 0.7;// heat transfer film coefficient - blind guess...
	// ChxDes2 = 0.7;//
	// CpMat = 0.1481;//specific heat of material (titanium @ 2160 R)
	// //     # tubes  pi/4  length     oD    iD(in)        rho(lbm/ft^3) Titanium
	// massMat = 36.*(PI/4.*(36./12.)*(2.25**2-2.**2)/144.)*280.93;//mass of material in lbm
	//
	//}
	// ######################   Internal Bypass Bleed   #########################
	Element Bleed BLD4 {
	// ============================ BLEEDS ============================
	// Three Bleeds are taken from the internal bypass of the PDC
	BleedOutPort BL_Cool_304 {
	//fracBldWork = 1.0;  // work fraction where bleed is taken
	//fracBldP = 1.0;     // Pressure fraction where bleed is taken
	fracW = 0.499;    // mass flow (50% for cooling turbine)
	}
	BleedOutPort BL_Cool_305 {
	//fracBldWork = 1.0; // work fraction (dhb/dh)
	//fracBldP = 1.0;  // Pressure fraction (dPb/dP)
	fracW = 0.499; // mass flow (50% for cooling turbine)
	}
	}
	// ############# PDC bypass mixer/Transition to steady-state device #####
	Element Mixer MIX39{
	Fl_I1.MN = .95;  // Rather high MN, but it works where lower
	// values do not...
	}
	// ########################## Bleed Mixer/IGV ###########################
	Element Bleed MIX40 {
	BleedInPort BlIn40{
	Pscale = 0.88;
	}
	BleedInPort BlIn41{
	Pscale = .88;
	}
	}
	// ########################## HP Turbine ###########################
	Element Turbine HPT41 {
	#include "hpt.map";  //High Pressure Turbine Map
	S_map.effDes = 0.9057;//0.90555;0.91075;//.9057
	}
	// ########################## Bleed Mixer ###########################
	Element Bleed MIX44 {
	BleedInPort BlIn44{
	Pscale = 0.68;
	}
	BleedInPort BlIn45{
	Pscale = .68;
	}
	}
	// ########################## LP Turbine ###########################
	Element Turbine LPT45 {
	#include "lpt.map"  //Low Pressure Turbine Map
	S_map.effDes = 0.9084;//0.90836;0.90906;//.9084
	}
	// ######################### Nozzle #######################
	Element Nozzle Noz8 {
	//Cfg = 0.995;
	//Cv = 0.985;
	dPqP = 1.0-0.985; // pressure loss across the nozzle
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit
	}
	// ########################## Terminate Flow ################
	Element FlowEnd Sink39 {
	// sink for the environmental bleed...
	}
	Element FlowEnd NozSink9 {
	// sink for the core airflow
	}
	Element FlowEnd NozSink1 {
	// sink for the ibypass bleed airflow
	}
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	// Put shafts in the model
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	//######################### Low-Pressure Shaft ################
	Element Shaft LPShf {
	ShaftInputPort LPC, FAN, LPT ;
	Nmech = 2000.0;
	inertia = 1.0; // inertia is only needed for transient analysis
	HPX = 0.0 ; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 kW)
	fracLoss = 1.0-.99; // Fractional loss on positive port torque (1.0
	//- eta_m)1.0-.99
	}
	//######################### High Pressure Shaft ###################
	Element Shaft HPShf {
	ShaftInputPort HPT, HPC ;
	Nmech = 11000.0;
	inertia = 1.0;// inertia is only needed for transient analysis
	HPX = 143.178 ;//  +400.0; // Horsepower extracted from the shaft hp  ( = 105.7 kW)/ eta m ( = 0.99)
	fracLoss = 1.0 - .99; // Fractional loss on positive port torque (1.0 - eta_m)
	//1.0-.99
	}
	//######################## Engine Performance ######################
	Element EngPerf PERF{
	}
	//___________________________________________________________
	//                  Flow Connections                       //
	//                                                         //
	//        This is where the flow is defined for the engine //
	//_________________________________________________________//
	//
	//############# Ambient to Splitter #########################
	linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" );
	linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" );
	//#############  Bypass air     #############################
	linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" );
	linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" );
	linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" );
	linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" );
	//############# Core Air Flow   #############################
	linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" );
	linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" );
	linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" );
	linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ;
	//##############   Fuel Flow   ##############################
	linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" );
	//linkPorts( "BRN36.Fl_O1",  "WALL38.Fl_I1",  "Wa1" );
	//linkPorts( "BRN36.Fl_O2",  "WALL38.Fl_I2",  "Wa2" );
	//linkPorts( "WALL38.Fl_O1", "MIX39.Fl_I1",  "Fl39");
	//linkPorts( "WALL38.Fl_O2", "MIX39.Fl_I2",  "Fl392");
	linkPorts( "BRN36.Fl_O1",  "MIX39.Fl_I1",  "Fl39");
	linkPorts( "BRN36.Fl_O2",  "MIX39.Fl_I2",  "Fl392");
	linkPorts( "BRN36.Fl_O3",  "BLD4.Fl_I",  "Fl393");
	linkPorts( "BLD4.Fl_O",  "NozSink1.Fl_I", "Fl394");
	linkPorts( "MIX39.Fl_O", "MIX40.Fl_I",   "FL4");
	linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" );
	linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44");
	linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" );
	linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7");
	linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" );
	//############## Bleed port linkage ##########################
	linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
	linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
	linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");
	linkPorts( "BLD4.BL_Cool_304", "MIX40.BlIn41", "BL 4");
	linkPorts( "BLD4.BL_Cool_305", "MIX44.BlIn45", "BL 5");
	//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//          Mechanical (Shaft) connections
	// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//############### Low-Pressure Spool #######################
	linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");
	linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
	linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3");
	//############## High-Pressure Spool #######################
	linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");
	linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2");
	// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
	//   Begin Run Definition
	// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
	cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
	<< "               Begin Run Input definitions     \n "
	<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";
	Vita

