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AFIT/GAE/ENY/10-M03

Abstract

This paper uses KAM torus theory and Simplified General Perturbations 4 (SGP4)

orbit prediction techniques compiled by Dr. William Wiesel and compares it to Ana-

lytical Graphics R⃝ Incorporated (AGI) Satellite Toolkit R⃝ (STK) orbit data. The goal

of this paper is to verify KAM torus theory can be used to describe and propagate an

Earth satellite orbit with similar accuracy to existing general perturbation techniques.

Using SGP4 code including only truncated geopotential effects, KAM torus generating

code, and other utilities were used to describe a particular satellite orbit as a torus and

then propagate the satellite using traditional and KAM torus techniques. These results

were compared with similar data generated from initial conditions in STK. Comparisons

show orbit prediction for this particular satellite can be made with low kilometer level

accuracy. It is claimed with increased mathematical precision and orbital model detail,

KAM torus theory applied to orbit prediction techniques can produce more accurate

results than currently achievable.
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VERIFICATION OF KAM THEORY

ON EARTH ORBITING SATELLITES

I. Introduction

The Air Force’s Joint Space Operations Center is tasked with constantly providing

United States Strategic Command a space situational awareness picture. All objects

orbiting the Earth ten centimeters across or larger are detected, tracked, identified, and

cataloged. The sum total of all these objects is a computerized library of over 17,000

man-made objects called the Space Catalog. JSpOC personnel rely on only twenty-nine

space surveillance sensors worldwide to accurately maintain position data for all objects

in the Space Catalog [3]. The sheer number of items requiring tracking with so few assets

shows how daunting a task this can be.

1.1 Motivation

Current general perturbation orbit prediction techniques produce acceptable results

for low priority objects. However, there is plenty of room for improvement. Higher

priority missions such as manned space walks, collision avoidance, and atmospheric re-

entry already require numerical integration for orbit prediction [4]. In either case, as time

increases so does location uncertainty. The location uncertainty is an ellipsoid in which

the object most likely resides. Location determination techniques produce an estimate of

an objects location. Assumptions or errors residing in the technique or equipment used

correspond to location errors. In Figure 1.1, the location uncertainty (blue ellipsoid) of a

reference satellite is shown growing as time increases. The object must be detected and

tracked again before the ellipsoid grows too large and the satellite is lost. If a satellite

was lost, meaning its uncertainty ellipsoid had grown too large, resources and time would

be required to meticulously scan the entire ellipsoid to reacquire the satellite.

Spacetrack, a phased array radar, is used to track objects in space. A quick

search for “Spacetrack problems” on the Internet will show multiple articles detailing

new scheduling methods and algorithms to track as many high priority objects as possi-

1



ble within a given time period. This research is being completed since tracking all objects

with the precision desired is becoming impossible [5]. These articles show current space

object tracking is already a problem or soon will be.

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Reference satellite error ellipsoid increasing with time.

On February 10, 2009, a Russian satellite, Cosmos 2251, collided with a U.S.

communications satellite, Iridium 33, in orbit. This event produced thousands of pieces

of space junk which required tracking. It also increased the chances of one of the other

36 Iridium satellites in similar orbits being hit by 50% [6]. A simulated picture moments

2



after the collision can be seen in Figure 1.2. Events such as this set to quickly overload

current tracking resources.

Figure 1.2: A model showing approximate aftermath of the Cosmos / Iridium collision.
“Image courtesy of Analytical Graphics, Inc. (www.agi.com).”

1.2 Problem Statement

One option for the overloaded tracking situation is to build more tracking sensors

and employ more people to operate and maintain them. This option would cost large

amounts of money on both the equipment and manning side. Additional computer

resources would also need to be procured. Another option would be to work smarter

and find a way to accurately predict these orbiting object’s position further out into

the future, lessening the frequency with which their tracks need to be updated. Using

a theory conceived almost 60 years ago, Dr. William Wiesel at the Air Force Institute

of Technology may have found such a method. It utilizes Kolmogorov-Arnol’d-Moser

(KAM) theory which is named after the discoverer, A. N. Kolmogorov, and subsequent

verifiers, V. I. Arnol’d and J. Moser. Initial work by Dr. Wiesel shows Earth satellite

orbits can be described using KAM theory [7]. The current research attempts to validate

3



the theory against simulated ‘real’ satellite data produced using Analytical Graphics R⃝,

Incorporated (AGI) Satellite Toolkit R⃝ (STK).

1.3 Method of Investigation

The object of this paper is to test satellite prediction using KAM theory against

current methods. The general perturbations method called Simplified General Pertur-

bations 4 (SGP4) will be used to predict satellite location as the current method. Given

the algorithm necessary for SGP4 to produce accurate data for intervals greater than a

few days, SGP4 and the KAM theory method cannot be directly compared. To solve this

problem STK will be used as an intermediary. STK will be compared to SGP4 to ensure

similar or better results are achieved with the more accurate STK numerical integrator.

STK orbit data will then be compared to the KAM theory method. If similar results are

achieved, then it will have been shown that KAM theory orbit prediction is at least as

accurate as the current SGP4. As an initial step it is important to verify KAM theory

can be applied to Earth orbiting satellites. Once this is complete more detail can be

added to the KAM theory method to produced better results than currently achievable

in less time.

Actual Earth satellites will be used, but their location data will be produced from

AGI’s STK software. Previous investigations by Little [8] used actual satellite location

data provided from a satellite team, but problems were encountered when satellite ma-

neuvers were made. Using the STK software, accurate location data can be used while

removing any outside influence on the problem, allowing the two methods to be more

accurately compared.

1.4 Results

Comparison between KAM torus orbit prediction techniques and STK data as a

truth model resulted in position differences under 3.5 kilometers out to 120 days. This

research is another source that proves Earth orbiting satellites can be modeled as a torus

using KAM theory and propagated accurately. The next step would be to incorporate

more detail into the KAM torus model and compare to similar detailed STK data. Upon
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successful comparison, the detailed KAM torus model would be compared with an actual

satellite and its positional data. Given the accuracy level desired, quadruple precision is

most likely required.
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II. Background

2.1 Hamiltonian Dynamics

From the publication of Sir Isaac Newton’s Philosophiae Naturalis Principia Mathe-

matica in 1687 up until the late eighteenth century, Newtonian Mechanics was mechan-

ics [9]. With F = ma, forces on single particles, or systems of particles, were used

to solve problems of the day. However, Newtonian mechanics had its drawbacks and

some problems could not be solved easily. In 1788, Joseph-Louis Lagrange published

Mécanique Analytique and analytical mechanics was born. In 1834, William Hamilton

released two papers on general methods in dynamics in which he applied his principle

to the Lagrangian [9]. This was manipulated into the Hamiltonian and Hamiltonian’s

equations of motion, which described the system [10].

It should be noted that in this paper, systems are assumed to be holonomic, con-

servative systems. The material in this paper does apply to other systems as well, but

this constraint helps lessen the complexity. A few topics must be covered before jumping

right into the Hamiltonian, the first being generalized coordinates.

2.1.1 Generalized Coordinates. Most people are familiar with the standard

Cartesian coordinate system of x, y, and z. However, there are many other types of

coordinate systems: polar, spherical, and cylindrical to mention a few. These coordinate

systems help describe the position of an object in a particular frame of reference or space.

Generalized coordinates can be thought of as a way of describing a system without being

restricted to physical positional coordinates. This idea expanded how a system could be

described and allowed problems to be solved in many new ways.

The coordinates of a system can indeed be the x, y, and z position of an object

in space, but they could also be the frequencies describing its periodic motion, the

coefficients of a Fourier series expansion, a set of angles, or almost anything else. The

concept of generalized coordinates allows the coordinates to be almost anything. Most

problems can be solved in multiple coordinate systems and using a different system may

make a problem much easier to solve. Changing from physical to non-physical coordiantes

could give new insight to an existing problem or make its solution easier. Generalized
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coordinates, q, are most commonly referred to as,

q = (q1, q2, q3, . . . , qn), (2.1)

and for the problem presented here are,

q =

⎧⎨⎩
x

y

z

⎫⎬⎭ . (2.2)

The number of coordinates helps determine the dimensionality of a problem.

2.1.2 Dimensionality. Another concept that must be grasped is dimensionality.

We all live, work, and are most familiar in three-dimensional space. However, mathe-

matical problems are not restricted to three dimensions. A simple pendulum could have

three coordinates while a more complicated problem could have six coordinates or more.

Although a six dimensional object cannot be visualized in three dimensional space, the

mathematics behind the problem work just fine. Later in this paper when six dimensional

objects are discussed, think of a three dimensional object for visualization purposes, but

realize the actual dimensionality is greater.

2.1.3 The Lagrangian. As mentioned earlier, Lagrange initiated what is now

know as analytical mechanics. However, he relied on Jean le Rond d’Alembert’s 1743

work, “Traité de dynamique”, where d’Alembert revealed his principle,

N∑
k=1

(Fk − ṗk) ▪ �rk = 0. (2.3)

With this principle, a dynamic problem is treated as a static one. The total virtual work

done on a system by infinitesimal virtual displacements is equal to zero [10].

Using d’Alembert’s principle and work by Euler, Lagrange began thinking of the

system as a whole and the total energy of the system, instead of individual particles.

Energy comes in two forms, potential and kinetic. Kinetic energy (T ) is the energy of a
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system based on its motion and is given by,

T =
1

2
mv2. (2.4)

While potential energy (V ) is the energy stored within the system. For systems near the

surface of the Earth, the potential energy will be based on position and can be given by,

V = mgℎ. (2.5)

However, in dealing with celestial bodies and their gravitational fields a different approach

must be used. For the moment the above representation is sufficient, but a more accurate

model will be discussed in Section 2.2.1.

A cornerstone to analytical dynamics is a mathematical expression called the La-

grangian (£), which is the difference between the kinetic and potential energy of a

system,

£ = T − V. (2.6)

The Lagrangian is called a descriptive function for a system, because it contains all the

information necessary to produce the equations of motion for the system. However, the

Lagrangian produces n second-order differential equations, where n is the number of

coordinates for the system,
d

dt

(
∂£

∂q̇n

)
− ∂£

∂qn
= 0. (2.7)

While second-order differential equations can be solved, first-order differential equations

would be easier to solve.

The time derivatives of generalized coordinates are generalized velocities, q̇. The

derivative of the Lagrangian with respect to the generalized velocities are the generalized

momenta,

pn =
∂£

∂q̇n
. (2.8)

Generalized coordinates and generalized momenta come in pairs, thus they are normally

referred to as conjugates of each other. If a generalized coordinate or momenta does not
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appear in the Lagrangian, then its conjugate is cyclic, or ignorable, and is constant. If a

generalized coordinate or momenta is constant, a conservation law is within the problem

and much can usually be determined about the system without ever having to solve the

problem [10].

2.1.4 Hamilton’s Principle. William Rowan Hamilton began applying varia-

tional calculus to previous work in the emerging field of analytical mechanics. He looked

at the entire dynamical system between two points in time, t1 and t2 [10]. With varia-

Figure 2.1: Hamilton’s Principle

tional calculus, the path between these two points can vary as long as the endpoints stay

fixed. Integrating over this distance produces a scalar integral which is independent of

the coordinates of the Lagrangian [10],

�I = �

∫ t2

t1

£dt = 0. (2.9)

Hamilton’s principle is essentially an integrated form of d’Alembert’s Principle. Instead

of using d’Alembert’s Principle to derive Lagrange’s equations of motion, Hamilton’s

Principle offered an easier way which was not dependent on physical coordinates [10].

2.1.5 Hamilton’s Equation. While Lagrange’s equations of motion are a set

of n second-order differential equations, Hamilton’s equations of motion are a set of 2n

first-order differential equations [10]. The Hamiltonian, ℋ, can initially be defined as,

ℋ =
n∑
k=1

∂£

∂q̇k
q̇k −£. (2.10)
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To get first-order differential equations and the Hamiltonian in the correct form, the

conjugate momenta, Equation 2.8, must be substituted into Equation 2.10 [10],

ℋ =
n∑
k=1

pkq̇k −£. (2.11)

The Hamiltonian equations of motion are then the partial derivatives of the Hamiltonian

with respect to the generalized momenta and negative generalized coordinates [10],

q̇k =
∂ℋ
∂pk

, (2.12)

ṗk = −∂ℋ
∂qk

. (2.13)

Finally a set of 2n first-order differential equations, also known as Hamilton canonical

equations, are ready to be solved. The combination of variables qk and pk that solve the

above equations can be plotted, and the trajectory of these points through time shows

the motion of the system. These points can then be plotted in phase space [10].

2.1.6 Phase Space. For mathematical problems in grade school, Euclidean

space was most likely used because its properties were well suited for geometrically

showing solutions to the mathematics being worked on at the time. When dealing with

Hamiltonian mechanics, phase space is used. The spot in phase space where the general-

ized coordinates and conjugate momenta produce a solution to the Hamilton canonical

equations a point is produced. The combination of all these points represents the mo-

tion of the system in phase space. While Euclidean space has three dimensions when

n equals three, phase space would have 2n dimensions, or six. Since graphing in the

six-dimensional space is impossible, phase space plots usually include only two or three

of the variables at a time [10].

2.2 Earth Orbiting Satellite

2.2.1 The Geopotential. The geopotential for a given celestial object is its

gravitational field. This gravitational field exerts a force on objects based on their
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distance from the celestial body and the mass of the celestial body. An example of the

two body problem is a small object orbiting around a larger object. The small object, a

Figure 2.2: The Two Body Problem

satellite for example, is a distance r from the center of the larger object, the Earth for

example. The satellite is traveling with a velocity, v, and should continue in a straight

line off the page. However, the mass of the Earth creates a gravitational field in which

an attractive force is exerted upon the satellite. This attractive force and the velocity of

the satellite form an equilibrium that allows the satellite to stay in an orbit around the

Earth. The attractive force the Earth exerts on the satellite is the potential energy and

for the two body problem is given by,

V =
�

r
, (2.14)

where r is the distance from the satellite to the center of the Earth and � is a gravitational

parameter for the Earth, which is based on the mass and gravitational constant of the

Earth [10].

The two body gravity model provides decent estimates for simplified problems.

However, more complicated problems require a better estimate for the geopotential. In

this research the geopotential will be estimated using the following equation,

V = −�
r

∞∑
n=1

n∑
m=1

(
r

R⊕
)−nPm

n (sin �)(Cnm cosm�+ Snm sinm�), (2.15)
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where the Earth’s gravitational parameter is again � and the Earth’s equatorial radius is

R⊕. The Legendre polynomials, Pm
n , and the field coefficients, Cnm and Snm) are used to

help describe the geopotential more precisely anywhere around the Earth’s sphere. The

radius to the satellite from the center of the Earth (r), the geocentric latitude (�), and

the east longitude (�) are found from [7],

r =
√
x2 + y2 + z2, (2.16)

sin � =
z√

x2 + y2
, (2.17)

tan� =
y

x
. (2.18)

The geocentric latitude is the angle between the equatorial plane and a line from the

center of the Earth to a point on the surface. This value is less than the geodetic latitude

more commonly used which is the angle between the equatorial plane and a line normal

to the Earth’s surface.

Figure 2.3: Geocentric and Geographic Latitudes [1]

The gravity model used by Dr. Wiesel’s SGP4 is EGM96, or the Earth Gravity

Model completed in 1996. For Equation 2.15, terms to degree (m=20) and order (n=20)

are used. Although sufficient for application in this research, the EGM96 model does go

up to order and degree 360. An example of the variation in geopotential can be seen in

Figure 2.4 [2].
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Figure 2.4: GRACE Gravity Model, Europe and Africa [2]

2.2.2 Hamiltonian. For an Earth satellite Hamiltonian, an Earth-Centered,

Earth-Fixed (ECEF) reference frame will be used. Earth-Centered means the center

of the Earth is at the origin of the reference frame, and Earth-Fixed means the Earth

appears stationary with respect to the reference frame. In actuality the Earth is still

revolving, however, since the reference frame is revolving with the Earth it looks fixed.

The Hamiltonian can be written as [7],

ℋ =
1

2
(p2x + p2y + p2z) + !⊕(ypx − xpy)

− �

r

∞∑
n=1

n∑
m=1

(
r

R⊕

)−n
Pm
n (sin �)(Cnm cosm�+ Snm sinm�). (2.19)

The Earth’s rotational angular velocity is given by !⊕. The entire last term of Equation

2.19 is the Earth’s geopotential as described earlier. The generalized coordinates and

momenta are then,

q =

⎧⎨⎩
x

y

z

⎫⎬⎭ , (2.20) p =

⎧⎨⎩
px

py

pz

⎫⎬⎭ . (2.21)
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As was the Lagrangian, the Hamiltonian is also a descriptive function in that the

equations of motion for the system can be obtained from it. These equations of motion

are called Hamilton canonical equations [10],

q̇ =

⎧⎨⎩
−!⊕py − ∂V

∂x

!⊕px − ∂V
∂y

−∂V
∂z

⎫⎬⎭ , (2.22) ṗ =

⎧⎨⎩
px + !⊕y

py − !⊕x

pz

⎫⎬⎭ . (2.23)

A complete derivation of the above Hamiltonian and canonical equations can be

found in Appendix B.

2.2.3 Numerical Integration. In this research, the SGP4 propagator will be

compared to a numerical integration for a reference satellite’s orbit. To do this, the above

Hamiltonian will be numerically integrated using a Hamming fourth-order predictor-

corrector algorithm [7]. The following numerical integrator description was referenced

from Dr. Wiesel’s Hamming Fortran program. First, the initial conditions of the orbit

are assigned to a state vector. These initial conditions are the generalized coordinates

and momenta at the start of the integration when time is equal to zero,

x =

⎧⎨⎩ q

p

⎫⎬⎭ =

⎧⎨⎩

x

y

z

ẋ

ẏ

ż

⎫⎬⎭
. (2.24)
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Second, the derivative of the state vector is taken and the Hamilton canonical equations

are substituted in for q̇ and ṗ,

ẋ =

⎧⎨⎩ q̇

ṗ

⎫⎬⎭ =

{
∂ℋ
∂pk

− ∂ℋ
∂qk

}
=

⎧⎨⎩

−!⊕py − ∂V
∂x

!⊕px − ∂V
∂y

−∂V
∂z

px + !⊕y

py − !⊕x

pz

⎫⎬⎭
. (2.25)

Next, the total time of the integration is divided by the number of steps taken during

the integration to get an incremental time step (dt). Finally, the future position is the

old position plus the change in position multiplied by the time step,

xi+1 = xi + ẋidt. (2.26)

Numerical integration, though accurate, is very computationally expensive and thus

requires large amounts of computer resources. All publicly available orbit data from the

DOD Space-Track website is propagated with SGP4. However, numerical integration

may be used within the Air Force for high priority objects, collision avoidance situations,

and the two weeks before large objects re-enter Earth’s atmosphere [4].

2.2.4 SGP4. Simplified General Perturbation 4 (SGP4) is the current orbit

propagator employed by the United States Air Force. It was developed in the 1960’s,

went operational in the 1970’s, and has been updated many times during its history [11].

In 1988, North American Aerospace Defense Command (NORAD) decided to release

the SGP4 code giving end users of NORAD two-line element (TLE) sets the ability to

propagate Earth orbiting objects [12]. Since that time, both military and civilian users

updated their copy of SGP4 to fit a specific use. This created many working versions of

the code. In 2006, a group of four individuals consolidated these working versions into

a standard version of SGP4 that hopefully matched the Department of Defense (DoD)
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version [11]. The Air Force has not released information on object orbit propagation

since 1988, so it is impossible to know for sure what is being used.

SGP4 treats orbiting objects as either near-Earth or deep-space, with the boundary

at an orbital period of 225 minutes. Earth’s geopotential, air drag, solar pressure, and

lunar effects are all accounted for within SGP4. However, the 1980 version of SGP4 used

in this research only accounts for the Earth’s geopotential to order and degree 20 [11].

2.3 Transformation Theory

2.3.1 Generating Functions. Hamiltonian’s have a property in that a coordi-

nate transformation can be made to a different Hamiltonian with different coordinates

and momenta while still describing the same system. These transformations provide

an opportunity to look at a single problem multiple ways. Quite frequently, a different

Hamiltonian will have coordinates and momenta such that the problem is solvable or

simplified [13]. A similar idea is carried out when a person in a room is identified by

saying “look at two o’clock” instead of saying “look 6 feet east and 8 foot north”. Both

commands point in relatively the same direction, but one gets there faster and easier.

It is possible to switch to a new Hamiltonian, but how and which one? In letters

from 1836 and 1837, Carl Gustav Jacobi answered this question with the Hamilton-

Jacobi transformation theory [14]. He was able to learn, use, and improve upon the

ideas Hamilton had only released a few years earlier.

There should be some function, F, that will take the old coordinates and momenta

and transform them into the new coordinates and momenta. At this point neither the

function, the new coordinates, or the new momenta are known, but the statement is still

accurate. Therefore, the new coordinates, Q, and momenta, P, should be functions of the

old coordinates, q, and momenta, p, and the new Hamiltonian, K, should be a function

of the new coordinates and momenta [13],

Q = Q(qn, pn, t), (2.27)

P = P (qn, pn, t), (2.28)

K = K(Q,P, t). (2.29)
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With one set of old and one set of new coordinates and momenta, there are four

possible combinations. These four combinations translate to four different functions that

transform from the old to the new Hamiltonian. Each function has one old and one new

coordinate and momenta, and with this information the remaining two coordinates and

momenta can be determined [13].

For this problem, the F2 generating function will be used which also happens to

be the most frequently used function. The properties of the F2 generating function are

listed below [15].

F2 = F2(qn, Pn, t), (2.30)

pi =
∂F2

∂qi
, (2.31)

Qi =
∂F2

∂Pi
. (2.32)

By changing the coordinate and momenta combinations in Equation 2.30, the other three

functions and relations can be identified.

At this point, the author will skip forward to the relationship between the old

and new Hamiltonians. If more information is desired on generating functions or the

transformation itself, please see reference [13], pages 43-58. Essentially, the derivative of

the F2 function with respect to time is broken down into a sum of its partial derivatives

with respect to the old coordinates, separated, and substituted in for the new momenta

which creates the generating function. This also explains why the partial of the F2 with

respect to time remains [13].

2.3.2 Hamilton-Jacobi Equation. There is now enough information to form a

relationship between the new and old Hamiltonians [13],

K(Qk, Pk) = ℋ(qk, pk) +
∂F

∂t
. (2.33)
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Recall that when a coordinate or momenta is missing from the Lagrangian or Hamilto-

nian, the conjugate momenta or coordinate is a constant. Therefore, if the new coordinate

and momenta do not appear in the new Hamiltonian, then the new Hamilton canonical

equations would be equal to zero [13].

Q̇k =
∂K
∂Pk

, (2.34)

Ṗk = − ∂K
∂Qk

. (2.35)

If the Hamilton canonical equations are zero and the new coordinates and momenta are

constant, the new Hamiltonian must equal zero. This changes Equation 2.33 into the

Hamilton-Jacobi equation [13],

ℋ(qk, pk) +
∂F

∂t
= 0. (2.36)

This process exentially seeks out a generating function such that the new coordinates

and momenta are integrals of the motion and the new Hamiltonian is zero. As can be

expected, this transformation greatly simplifies the problem.

2.4 KAM Theory

KAM theory’s beginnings were initially proposed by A.N. Kolmogorov in his 1954

paper, “On conservation of conditionally periodic motions for a small change in Hamil-

ton’s function.” In the 1960’s, J. Moser and V.I. Arnol’d proved the theory after releasing

multiple papers [9]. Relatively speaking, this powerful theory has gone unused.

For a completely solvable, or integrable, Hamiltonian, all solutions lie on a n-

dimensional torus in 2n-dimensional phase space, where n is the number of coordinates.

KAM theory simply states, lightly perturbed Hamiltonian systems will have most of

their solutions still lying on the surface of an invariant torus given the perturbation is

small enough [16],[17],

ℋ = ℋ0(I) + �ℋ1(I, �), �≪ 1. (2.37)
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In the above equation, ℋ0 is the Hamiltonian of the unperturbed problem, ℋ1 is the

perturbed, periodic Hamiltonian, and � indicates the perturbations are very small. The

above Hamiltonians for the KAM torus are in action-angle variable form, meaning action

integral variables, I, are the coordinates, q’s, and angle variables, �, are the conjugate

momenta, p’s. Since the coordinates and momenta are different than our current Earth

satellite Hamiltonian, Equation 2.19, a transformation must be used. The process dis-

cussed in Section 2.3 concerning generating functions and the Hamilton-Jacobi equation

will be used and discussed more in the following section. Notice in Equation 2.37 that the

unperturbed system, ℋ0(I), is missing the angle variable momenta, �. From Equation

2.12, this means the rate at which the coordinate action integral variable, I, changes is

zero, so the action inegral variable is a constant.

Invariant, mentioned above, means once a trajectory in phase space is on an in-

variant torus it will remain on the torus. As an example, think of a rolling coin. If a

coin is rolled on a flat surface there is no telling which direction it will go or which side

it will fall onto. This is non-invariant. Now, think of the spiraling coin funnels found in

malls and museums. Once the coin is release, barring some outside force such as a child

picking the coin up, the coin will continue to roll around in circles and eventually fall

down the whole. There is no stopping it and this is invariant. The only difference is the

coin eventually stops, but the satellite motion on the KAM torus is periodic so it will

continue repeating forever. If an Earth satellite is to lie on a KAM torus, it will do so

in phase space and it will be a lightly perturbed invariant torus [7].

2.4.1 Transformation. Discuss here after talking with Wiesel

Earlier, transformation theory and the Hamiltonian-Jacobi equation were discussed.

Equation 2.19 is the Hamiltonian for an Earth orbiting satellite with coordinates x, y,

and z. The KAM theory Hamiltonian, Equation 2.37, is in action and angle variables.

To see if Earth orbits can be described using KAM tori, it is necessary to transform the

Earth satellite Hamiltonian, Equation 2.19, into the form of the KAM theory Hamilto-

nian, Equation 2.37. This can be done using the Hamilton-Jacobi equation, 2.36, and
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methods discussed in Section 2.3 on transformation theory. Dr. Wiesel has shown this

process in reference [16].

2.4.2 KAM Torus Orbital Coordinates. Dr. Wiesel applied a Fast Fourier

Transform (FFT) algorithm to a one year numerical integration of the reference satellite.

The algorithm was able to separate the periodic behavior of the orbit into three base

frequencies. Dr. Wiesel shows in [16] that these three frequencies used to describe the

KAM torus can be linked to three classical Delaunay orbital elements. The largest of

these three frequencies is the ‘mean’ mean anomaly, M. The second frequency is the

longitude of the mean node, Ω. The smallest frequency is the mean argument of perigee,

!. These three angles, with the use of Hamilton-Jacobi theory, will be transformed from

the x, y, z positional coordinates of the original Hamiltonian [7] to the coordinates of the

new KAM Hamiltonian.

2.4.3 Phase Space KAM Torus. In phase space, the three fundamental fre-

quencies listed above creates a torus of a particular size and shape within 2n-dimensional

phase space that describes the satellite’s orbit. The torus is described with a Fourier

series including these frequencies. Also, the coordinates and momenta are grouped to-

gether into one state vector. During the numerical integration of the satellites orbit, the

rate of change of the state vector is found. Using a least squares fitting algorithm, the

state vector and its rate of change can be made to fit a Fourier series torus that includes

the three fundamental frequencies describing the orbit. Once converged, this gives all

the coefficients necessary to uniquely describe the satellite as a Fourier series, which in

turn produces a torus in 2n-dimensional phase space [7].
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III. Methodology

This section lays out the processes taken during the course of this research. Since the

research was computer simulation, computer and software setup will be discussed first.

Any assumptions made during this research will then be listed. Finally, the programing

and testing process will be discussed for SGP4, STK, and KAM torus orbit propagation

techniques.

3.1 Computer Software

3.1.1 Fortran Programming. The author performed all programming within

the Microsoft R⃝ Visual Studio R⃝ 2008 program development environment on a Windows

Vista R⃝ 64-bit computer. The compiler was Intel R⃝ Visual Fortran Compiler Professional

Edition for Windows R⃝, version 11.1.046. Both software suites were used with educational

licenses. Almost all Fortran code was previously written and provided to the author by

Dr. Wiesel. Code was updated to Fortran 95/2003 wherever possible and edited to

run within the Microsoft R⃝ Visual Studio R⃝ (MVS) environment. Double precision was

chosen for all real variables with a user defined length of 15 digits. This helps ensure

maximum portability and consistency on different computer systems and allows for future

precision changes from one location. The ‘IMPLICT NONE’ command was always used

to minimize possible variable errors.

3.1.2 Commercial Orbit Prediction. In order to help validate previous results,

it was necessary to compare to an outside source. Analytical Graphics R⃝ (AGI) Satellite

Toolkit R⃝ (STK) was easily accessible with a free educational license and was recommend

by Dr. Wiesel. The author used STK Version 9.0.1, which has multiple propagators

that will determine a satellite’s position in time. The author choose the High Precision

Orbit Propagator (HPOP) due to its ease of use and detailed capabilities far exceeding

necessary requirements. The HPOP propagator is a numerical integrator utilizing the

differential equations of motion for the satellite initially generated from ephemeris data,

as stated in the STK help files. For those unfamiliar, ephemeris data includes position

and velocity of a satellite for a given time period. STK allows the user to import a specific

satellite file, choose the date and time, and ephemeris data is automatically generated
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via an AGI server connection. Almost any force or perturbation can be modeled with

the HPOP propagator in great detail.

3.1.3 Plotting. All plotting was completed using the Windows R⃝ version of

Gnuplot c,, Version 4.2.6. The software is free and relatively easy to use for simple

graphs. However, the program has many advanced features allowing for very detailed

and specific plots. Dr. Wiesel uses Gnuplot and example scripts were easily edited by

the author.

3.2 Assumptions

Given the academic nature and initial testing of this theory, certain effects and

details have not been accounted for that normally would for a developed technique used

by NASA on an actual satellite. The geopotential, Equation 2.15, discussed in Section

2.2.1 is used to calculate the Earth’s gravitational force on the satellite as it orbits the

Earth. For this research, order and degree truncated to 20 was decided sufficient.

Air drag, ocean tides, lunar and solar gravitational effects, and other third body

effects have all been assumed small enough when compared to Earth’s gravity to be ne-

glected. If these smaller terms had been accounted for then a more detailed geopotential

model, higher order and degree for Equation 2.15, would have been used.

While actual satellite mission orbit prediction would use most if not all the above

effects, the mission of this research to show KAM theory can be applied to Earth satellites

for orbit prediction can reliably succeed without these effects.

3.3 Reference Satellite

Continuing with Dr. Wiesel’s work, the reference satellite for this research will be

the same. This will allow for continuity between papers and with future research. The

reference satellite’s initial conditions are listed in Table 3.1, orbital elements are listed

in Table 3.2, and a picture of the orbit is in Figure 3.1.

3.4 SGP4 Verification
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Table 3.1: Reference Satellite Initial Conditions

x y z
Position (km) -4412.83115168178 4676.00408732872 -2910.15168627727

Velocity (km/sec) -4.42110219123704 -5.02218008450107 -2.27614671171868

Table 3.2: Reference Satellite Orbital Elements

Semi-major Right Ascension Argument of Mean
Axis Eccentricity Inclination Ascending Node Perigee Anomaly

a e i Ω ! M
7,049.5 km 0.05 30.0∘ 261.72∘ 141.41∘ 88.42∘

Figure 3.1: Reference Satellite Orbit from STK.

3.4.1 Test Case. The version of SGP4 used is in this research is different from

the original 1980 version of SGP4 released by Hoots and Roehrich in [12]. As stated

earlier, the author was given Dr. Wiesel’s existing Fortran code. The first step was to

make sure it would run properly on the author’s computer and produce correct results.

Starting with the SGP4 program, a test satellite was both numerically integrated using

a Hamming fourth-order predictor-corrector algorithm and propagated with SGP4. The
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differences in x, y, z position between the numerical integrator and SGP4 results are

called the residuals. These residuals are then plotted both individually and together as

a total magnitude.

3.4.2 Reference Satellite. For comparison later in this paper, the above process

was also completed for the reference satellite discussed above. Throughout this research

the reference satellite was used to help ensure proper program operation and for result

comparison with other satellites that were used.

3.5 Comparing SGP4 and STK Propagators

Next, the SGP4 satellite propagator was compared to STK’s HPOP propagator.

The satellites tested were randomly chosen from all orbiting satellites with only two

requirements. The first being a relatively equal spacing of satellites in the low Earth

orbit (LEO) region. Second, within the LEO group a few satellites had to be very close

to each other to compare results. Satellites from medium Earth orbit (MEO) and high

Earth orbit (HEO) were not included in this test since the deep-space section of the

SGP4 code was not included in the version used in this research. The satellites chosen

are listed in the following table with data taken from STK at the initial time prior to

propagating. The satellites used in the SGP4 versus STK comparison can be seen in

Table 3.3: STK Satellite Orbital Data & Elements

Satellite Altitude Semi-Major Axis Eccentricity Inclination Period
(km) (km) (degrees) (mins)

Grace 1 467.94 6839.52 0.00125 88.99∘ 93.82
Grace 2 468.23 6838.84 0.00133 88.99∘ 93.81

Swift 584.6 6972.19 0.00196 20.53∘ 96.56
Reference Satellite 679.28 7049.5 0.05 29.96∘ 98.17

Figure 3.2.

Each satellite had position and velocity information created with HPOP which

was read into the SGP4 and STK Fortran program. The SGP4 propagator used the first

line of each satellite’s inertial data as the initial conditions and proceeded from there.

All tested satellites were initiated with the same start date and time. Satellites were
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Figure 3.2: Satellites used in SGP4 / STK comparison.

propagated out in increments of 10, 15, 30 and 60 days. The residuals, the difference in

location between the two propagators, were calculated at each time step. Each satellite

that completed the program and showed residuals of tens of meters or less would then

be run with the next higher propagation time step.

3.6 Torus Frequencies

An Earth satellite orbit can be approximated as a KAM torus [7]. The primary

purpose of this research is to verify this statement against simulated STK orbit data.

Dr. Wiesel numerically integrated a reference satellite for one year, with x, y, z position

data stored in a file for each time step. Reference satellite characteristics were discussed

in Section 3.3, and the process for finding the three torus frequencies was discussed in

Section 2.4.2.
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A program written by Dr. Wiesel called ‘PeakEater’ takes an orbit file with position

and time data and produces a file describing a torus. The torus is created using a Fourier

series,

r =
n∑

j=1

Cj cos(j ▪Q) + Sj sin(j ▪Q), (3.1)

where Cj and Sj are the Fourier series coefficient vectors, the Q vectors is the three torus

frequencies multiplied by time (Qi = !it + Q0i), and j is an indice vector indicating

each torus frequency has its own set of Fourier series coefficients. Remember, the torus

has n-dimensions in 2n-dimensional phase space.

Once the location on a torus is found, that point linearly drifts with time,

Q =

⎧⎨⎩
!1t+Q01

!2t+Q02

!3t+Q03

⎫⎬⎭ . (3.2)

This linear drift around the torus in phase space is the satellite propagating around the

orbit in real space.

Using the reference satellite’s initial conditions, STK produced a 120 day orbit

propagation with HPOP. A program from Dr. Wiesel called ‘Coordinate Residuals’

compared the STK orbit to the KAM torus Fourier series. Once the location of the STK

orbit is found on the torus, the orbit is propagated forward using the time. The location

on the torus is then converted back into positional coordinates and these are compared

to the STK position to again produce residuals. These residuals are again plotted as

individual coordinate residuals and as a residual magnitude.
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IV. Results and Discussion

In this section the results will be presented and discussed. As a reminder, coordinate

residuals are the differences between each coordinate (x, y, z) for the two methods being

compared. Residual magnitude is the magnitude of the residual coordinates for the two

methods being compared.

4.1 SGP4 Verification

4.1.1 Test Case. The first step was to ensure all code from Dr. Wiesel was

implemented correctly. After running the test case, output plots of coordinate residuals

and residual magnitude of all three coordinates were compared. The initial plots using

SGP4 matched Dr. Wiesel’s and thus confirmed the initial SGP4 propagator and nu-

merical integrators were working. Figure 4.1 shows the x, y, and z residuals between the

numerical integration and the SGP4 propagator stayed under 1.2 kilometer for the first

6 days, while Figure 4.2 shows the magnitude of the residual error remained under 1.25

kilometers over the 6 day period.
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Figure 4.1: SGP4 verification showing coordinate residuals for test case.
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Figure 4.2: SGP4 verification showing residual magnitude for test case.

4.1.2 Reference Satellite. With the SGP4 program working properly, the ref-

erence satellite was run next for a fifty-five day period. Figure 4.3 shows individual

coordinate residuals as high as six kilometers and Figure 4.4 shows error magnitude at

a maximum of seven kilometers during the 55 day period. These plots will be used for

comparison later in the paper.

4.2 Comparing SGP4 and STK Propagators

The results of comparing the SGP4 and STK propagators are discussed here. The

Grace 1 and Grace 2 satellites were chosen for their similar orbits. Results for these two

Table 4.1: SGP4/STK Satellite Residual Results

Comparison Coordinate Residuals Residual
Satellite Length x y z Magnitude

(days) (km) (km) (km) (km)
Grace 1 25 3.5 4 3 4.5
Grace2 20 3 3.5 2.5 4
SWIFT 25 2 2 3 3

Reference Satellite 55 3 2 3 3.5
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Figure 4.3: SGP4 verification showing coordinate residuals for reference satellite.
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Figure 4.4: SGP4 verification showing residual magnitude for reference satellite.

satellites should be very similar. As can be seen in Figures 4.5 to 4.8, the results are

indeed very similar and help to show the program is working correctly. If results for

these two satellites had been off, the author would have been alerted to look for an error

that otherwise may have gone unnoticed if all satellites were dissimilar.
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Figure 4.5: SGP4/STK coordinate residuals for Grace 1 satellite.
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Figure 4.6: SGP4/STK residual magnitude for Grace 1 satellite.

The comparison between SGP4 and STK for the Grace 1 and Grace 2 satellites

was good to under 4.5 and 4 kilometers in magnitude respectively. A complete listing of

coordinate residuals and residual magnitudes can be seen in Table 4.1 and plots for the

remaining satellites can be found in Appendix D.
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Figure 4.7: SGP4/STK coordinate residuals for Grace 2 satellite.
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Figure 4.8: SGP4/STK residual magnitude for Grace 2 satellite.

Some satellites tested would not produce residuals under 100 kilometers within

the first ten to fifteen days. The actual reason is not know at this time, however there

are some possibilities. The original 1980 SGP4 code did have some errors for certain

satellite orbits. This was one of the reasons users started modifying the 1980 version.

Another possibility is the chance of errors within the least squares converging process.
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The matrices can be singular or near singular, with high condition numbers, which could

cause problems in convergence.

4.3 STK and Torus Comparison for Reference Satellite

As mentioned earlier. the reference satellite was numerically integrated by Dr.

Wiesel for one year. This one year long numerical integration was used to identify the

three torus frequencies which describe the reference satellite as a torus in phase space.

The reference satellite was propagated for 60 days with STK. This 60 days of orbit data

was then fit to the year long reference torus. The differences in individual coordinates

and total magnitude were calculated as before and used for plotting.

Initial residuals reached 500 kilometers within 60 days at a linear rate as seen in

Figure 4.9.
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Figure 4.9: Torus vs. STK data coordinate residuals for reference satellite.

Dr. Wiesel suggested the frequencies describing the numerically integrated orbit

may differ from the STK orbit frequencies since their calculation methods are different.

If the frequencies used to fit the STK orbit data to the reference satellite torus were

adjusted, better accuracy could be achieved. Of the three torus frequencies, !1, the

mean motion, is the largest and would be the one to adjust. First, the slope with which
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Figure 4.10: Torus vs. STK data residual magnitude for reference satellite.

the residual magnitude rose in Figure 4.10 was found at multiple points and had units

of kilometers per day. This was done to get an average value for the entire plot. Each

calculated slope was then divided by the distance the point used was from the origin

of the ECEF system. This then gave the amount of radians per day the residuals were

increasing. Finally, days were converted to time units which are used within the program.

The change in frequency was rather small at a 0.0012% change. The average value for

the plot was the frequency difference between the numerically integrated torus and the

STK orbit data torus. By trial and error it was determined if this value should be added

or subtracted from the original torus frequency, !1.

After implementing the frequency change and re-running the programs, residuals

improved to thirty kilometers within sixty days, or an over 90% improvement. The entire

process was completed a second time with the frequency only changing by 6 X 10-5%.

However, the residuals again improved to under 5 kilometers in a 60 day period which

was another improvement of 80%. These results can be seen in Figures 4.11 to 4.12.

Finally, STK orbit data for the reference satellite was propagated 120 days and fit

to the reference satellite torus. As seen in the following plots, coordinate residuals were

under three kilometers and residual magnitude remained under 3.5 kilometers.
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Figure 4.11: Torus vs. STK data coordinate residuals for reference satellite.
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Figure 4.12: Torus vs. STK data residual magnitude for reference satellite.

Recalling Section 4.2, SGP4 was able to compare to STK orbit data for the refer-

ence satellite out to 55 days with 3.5 kilometers of residual magnitude error, but could

not converge on anything greater than sixty days. The torus model allows much great

comparison time periods with equal or better accuracy.
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Figure 4.13: Torus vs. STK data coordinate residuals for reference satellite.
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Figure 4.14: Torus vs. STK data residual magnitude for reference satellite.

It is also important to note that when working in the ‘fixed’ frame in STK, this

paper’s ECEF frame, some perturbations not included in this paper have been added

back in automatically. STK is not intended to be used as a simplified model, so some

perturbations were ‘hard-coded’ into STK. These ‘hard-coded’ perturbations could be

accounting for the patterns seen in the figures presented in this chapter.
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V. Conclusions

5.1 Comparing SGP4 and STK

The results from comparing actual satellites with SGP4 and STK propagation

methods produce relatively low residuals. In normal location monitoring, times between

tracks would probably not reach twenty to twenty-five days as seen here. Therefore the

three to five kilometers in magnitude error would be plenty low enough to ensure that

satellite was not lost. These results also show how quickly predicted results can become

large and how frequently these predictions must be updated to ensure satellite location

is known within a reasonable distance and reliability. Applying these techniques to a

17,000 object, and growing, space catalog is indeed a very daunting task.

5.2 KAM Torus Orbit Prediction

The results obtained from comparing STK orbit data with a known KAM torus

model were surprisingly accurate. At time periods out to 120 days, individual coordinate

residuals remained under three kilometers. Time periods greater than 120 days were

tried and could have been presented here. However, at those time lengths STK orbit

reliability has diminished with the simplified model being used in this research and any

results would not have as much meaning as the more accurate 120 day orbit periods.

With SGP4 and STK orbit prediction techniques, errors slowly start to creep into

results and grow as orbit propagation time periods increase. However, the KAM torus

model showed constant coordinate residuals. This shows the periodic nature of the KAM

torus and the linear drift of the position of the satellite on the torus in phase space keeping

the residuals at constant low values. It also shows the theory behind this KAM torus,

that lightly perturbed Hamiltonian system’s solutions lie on a KAM torus and once on

this invariant torus the solution stays on it.

5.3 Recommendations

As part of the initial studies, this research has done very well. The KAM torus

model takes into account the entire geopotential model while other existing techniques

must estimate the geopotential. However, the KAM torus method does not yet include
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other perturbing forces that are commonly accounted for in orbit prediction. A future

step would be to incorporate effects such as air drag, lunar effects , and solar effects and

verify if the solution to the Hamiltonian still lies on the surface of a torus.

It is believed Dr. Wiesel will be looking into satellites drifting from one invariant

torus to a nearby invariant torus, so this topic holds avenues for possible research.

Finally, it would be outstanding to work with an existing satellite team whose

satellite has been accurately modeled with current KAM torus methods and work towards

updating the KAM torus method to the degree that the satellite team would navigate

their satellite with the KAM torus method.

Also, Dr. Wiesel has discussed using KAM torus methods to navigate a constella-

tion of satellites. With the linear drift of a satellite on the surface of a torus in phase

space, station keeping between satellites would merely entail maintaining equal linear

spacing on the surface of the torus in phase space.

Although KAM theory is relatively old, KAM torus orbit prediction methods are

relatively new and hold enormous possibilities for the future. Hopefully these ideas are

getting more people interested and the rate of research and testing can increase.
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Appendix A. Hamiltonian Mechanics Example

In this appendix, the simple pendulum will be used as an example to illustrate the

application of Lagrangian and Hamiltonian mechanics discussed in Chapter II. A simple

pendulum is fixed to an upper, non-moving surface. The pendulum is allowed to move

sideways in the plane of the paper about the point where it meets the surface.

Figure A.1: A Simple Pendulum

As discussed earlier, multiple coordinate systems can usually be used for a given

problem. For this problem Cartesian coordinates can be used, but polar coordinates

simplify the problem,

q =

⎧⎨⎩ l

�

⎫⎬⎭ . (A.1)

The kinetic energy of the pendulum is,

T =
1

2
mv2, (A.2)

where the velocity for the pendulum is the angular velocity, v = l�̇. This results in the

kinetic energy being,

T =
1

2
ml2�̇2. (A.3)

The potential energy of the pendulum based on its height is,

V = mgℎ. (A.4)
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The height of the pendulum mass can be determined from its vertical distance, ℎ =

−l cos �, which gives a potential energy of,

V = mg(−l cos �) = −mgl cos �. (A.5)

As mentioned in Section 2.1.3, the Lagrangian of a system is the kinetic energy

minus the potential energy, and for this system is,

£ = T − V =
1

2
ml2�̇2 − (−mgl cos �) =

1

2
ml2�̇2 +mgl cos �. (A.6)

To simplify the problem, the Lagrangian per unit mass will be used instead,

£ =
£

m
=

1

2
l2�̇2 + gl cos �. (A.7)

Remembering the generalized velocities are,

q̇ =

⎧⎨⎩ l̇

�̇

⎫⎬⎭ , (A.8)

and the Lagrangian equations of motion (EOM) come from,

d

dt

(
∂£

∂q̇k

)
− ∂£

∂qk
= 0, (A.9)

the Lagrangian equations of motion (EOM) can be solved for,

l2�̈ + gl sin � = 0. (A.10)

However, in this example the Hamiltonian is being solved. The generalized momenta is,

p� =
∂£

∂�̇
= l2�̇. (A.11)
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The Hamiltonian comes from,

ℋ =
n∑
k=1

pkq̇k −£. (A.12)

Solving for the generalized velocity from the generalized momenta,

�̇ =
p�
l2
, (A.13)

and substituting into the Hamiltonian gives,

ℋ =
1

2

p�
2

l2
− gl cos �). (A.14)

The Hamilton canonical equations come from,

q̇k =
∂ℋ
∂pk

, (A.15) ṗk = −∂ℋ
∂qk

, (A.16)

and are,

�̇ =
p�
l2
, (A.17) ṗ� = −gl sin �. (A.18)
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Appendix B. Earth Orbiting Satellite Hamiltonian Derivation

In this appendix, the Hamiltonian for the Earth orbiting reference satellite used through-

out this paper will be derived. The same steps seen in the simple pendulum example in

Appendix A will be followed.

For the Earth orbiting satellite problem, an Earth-Centered, Earth-Fixed (ECEF)

frame of reference will be used. Regular Cartesian coordinates (x, y, z) will be used to

describe position,

q =

⎧⎨⎩
x

y

z

⎫⎬⎭ . (B.1)

The velocity of the satellite is simply the time derivative of the position. However,

remember the ECEF reference frame is rotating, so to get the true velocity an additional

term must be added to take into account this rotation about the z-axis.

q̇ =

⎧⎨⎩
ẋ− !⊕y

ẏ + !⊕x

ż

⎫⎬⎭ (B.2)

The kinetic energy can then be determined by simply plugging the velocity into Equation

2.4,

T =
1

2
m((ẋ− !⊕y)2 + (ẏ + !⊕x)2 + ż2). (B.3)

For simplicity, it is not uncommon to divide the above equation through by the mass

which then gives kinetic energy per unit mass. One reason for doing this is not being

required to carry the mass throughout then entire process that follows, while another is

the mass may not yet me know for the satellite. Either way, in this paper the kinetic

energy and all quantities with mass that follow will be per unit mass.

T =
1

2
((ẋ− !⊕y)2 + (ẏ + !⊕x)2 + ż2). (B.4)
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The potential energy, as discussed in Section 2.2.1, is given by,

V = −�
r

∞∑
n=1

n∑
m=1

(
r

R⊕
)−nPm

n (sin �)(Cnm cosm�+ Snm sinm�). (B.5)

The Lagrangian is then found by plugging the kinetic and potential energy into equation

B.6,

£ =
1

2
((ẋ−!⊕y)2+(ẏ+!⊕x)2+ż2)−�

r

∞∑
n=1

n∑
m=1

(
r

R⊕
)−nPm

n (sin �)(Cnm cosm�+Snm sinm�).

(B.6)

The canonical momenta are obtained using equation 2.8,

p =

⎧⎨⎩
px

py

pz

⎫⎬⎭ =

⎧⎨⎩
ẋ− !⊕y

ẏ + !⊕x

ż

⎫⎬⎭ . (B.7)

Finally, the Hamiltonian is obtained using equation 2.10,

ℋ =
1

2
(p2x + p2y + pz)

2 + !⊕(ypx − xpy)

− �

r

∞∑
n=1

n∑
m=1

(
r

ℜ
)−nPm

n (sin �)(Cnm cosm�+ Snm sinm�) (B.8)
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Appendix C. Non-linear Least Squares Estimation within SGP4

C.1 Least Squares Origin

The least squares estimation process is a method of using observations, or data

points, to accurately predict the next data point for a system. Consider a non-linear

system for which the solution is a function of time,

x(t) = h(x(t0), t). (C.1)

If the initial location and time are know, the current location can be found. In this

paper, the above system is the orbiting satellite being propagated via SGP4.

The data the author would like SGP4 to model is the STK orbit data which will be

called the observations, z. For each step through time, SGP4 results will be compared to

the STK data. The difference between the two is an error, since the ideal case would be

for SGP4 to exactly match STK and produce no error. The error is the SGP4 location

minus the STK location for each time step,

e = x− z. (C.2)

These errors are then added up to determine the total error produced during the prop-

agation,

E =
N∑
i=1

ei. (C.3)

The case in which SGP4 propagation best matched the STK data should create the

smallest total error, E. However, if the SGP4 data was smaller than the STK data for a

given time step a negative number would be produced. When added up at the end, this

would make the total error look smaller even though it was not. To fix this problem the

individual errors for each time step are squared, ensuring all numbers are positive,

e2 = (x− z)2. (C.4)
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These squared errors are then added up at the end to produce a total squared error,

E2 =
N∑
i=1

e2i . (C.5)

Even though the errors have been squared, the case in which SGP4 and STK matched

the best would still be when the squared error was the least. This is where least squares

estimation gets its name.

C.2 Non-Linear Least Squares

Starting with Equation C.1, SGP4 will propagate a satellite through time non-

linearly. As mentioned earlier, this is completed by incrementing the orbital elements

through time to produce a new location and velocity. The state of the satellite will be

used to refer to its position and velocity,

x =

⎧⎨⎩

x

y

z

ẋ

ẏ

ż

⎫⎬⎭
. (C.6)

In an effort to predict the future state of the system, the dynamics (Equation C.1) will

be linearized. Essentially, to get from the starting point to the ending point a bunch

of small steps will be taken. To get from one state to the next state, a state transition

matrix, Φ, is use,

�x(ti+1) = Φ(ti+1, ti)�x(ti), (C.7)

where the next state is,

x(ti+1) = xi + �x(ti+1), (C.8)

Earlier it was said the SGP4 process is non-linear. The entire SGP4 process will be

represented by a non-linear function, G, such that the state (Equation C.6) and time
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put through this function will produce the correct STK orbit data (z) for that time,

zi(ti) = G(x(ti), ti). (C.9)

Equation C.9 will be called the observation relation. Although the STK orbit data is

considered the truth model, there is still error within it. The assumptions made within

the STK program create errors that make the STK state of the satellite differ from the

actual state of the satellite. The difference between the STK state and true state can be

represented as an error,

e = z − z0. (C.10)

Applying Equation C.9 to Equation C.10, and then substituting in Equation C.8 pro-

duces,

e = G(x, t)−G(x0, t) = G(x0 + �x, t)−G(x0, t). (C.11)

After expanding and subtracting,

e ≈ ∂G

∂x
�x(t). (C.12)

This represents the true error in the STK orbit data. It is assumed this true error in the

data will equal the residual in the data, e≈r. The partial fraction matrix in Equation

C.12 relates the error in the state to the error in the reference trajectory,

Hi(ti) =
G

x
(xref (ti), ti). (C.13)

The residual can then be calculated on the reference trajectory,

ri = zi −G(xref (ti), ti). (C.14)

Remembering Equation C.7 and applying it to Equation C.14 produces,

ri ≈ Hi�x(ti) = HiΦ(ti, t0)�x(t0), (C.15)

45



r = Ti�x(t0), (C.16)

where T = HΦ. From this relation, once the residuals, r, are determined the correction,

�x(t0), can be found. However, the T matrix cannot simply be divided through like a

scalar value. Its inverse may also not be able to be determined, so another method must

be used. First, the transpose of T is left multiplied to each side of Equation C.16.

T Tr = T TT�x(t0). (C.17)

The operation T TT is guaranteed to produce a square matrix which the inverse can then

be taken to solve for �x(t0),

�x0 = (T TT )−1T Tr. (C.18)

This change added to the initial trajectory produces a better trajectory,

x0 = rref (t0) + �x0. (C.19)

This process is continued until the change is less than a tolerance or a certain number

of iterations is reached.
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Appendix D. Plotting Results

D.1 SGP4/STK Residual Plots

In this appendix, all plots from the discussion in Section 4.2 concerning the com-

parison of the SGP4 and STK propagators will be shown. As a reminder, coordinate

residual plots show the difference between the individual coordinates (x, y, z) in the

two propagators. Residual magnitude plots show the magnitude of all the coordinate

residuals.
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Figure D.1: SGP4/STK coordinate residuals for Grace 1 satellite.
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Figure D.2: SGP4/STK residual magnitude for Grace 1 satellite.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  5  10  15  20  25

E
rr

or
 (

km
)

Time (days)

Delta x
Delta y
Delta z

(a)

Figure D.3: SGP4/STK coordinate residuals for Grace 2 satellite.
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Figure D.4: SGP4/STK residual magnitude for Grace 2 satellite.
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Figure D.5: SGP4/STK coordinate residuals for SWIFT satellite.

49



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30

E
rr

or
 (

km
)

Time (days)

RError

(a)

Figure D.6: SGP4/STK residual magnitude for SWIFT satellite.
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Figure D.7: SGP4/STK coordinate residuals for Reference Satellite.
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Figure D.8: SGP4/STK residual magnitude for Reference Satellite.
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