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Abstract

There have been great advances in recent years in the area of indoor navigation.

Many of these new navigation systems rely on digital images to aid an inertial navigation

estimates. The Air Force Institute of Technology (AFIT) has been conducting research

in this area for a number of years. The image-aiding techniques are centered around

tracking stationary features in order to improve inertial navigation estimates. Previous

research has used stereo vision systems or terrain constraints with monocular systems to

estimate feature locations. While these methods have shown good results, they do have

drawbacks. First, as unmanned exploration vehicles become smaller in size the distance

available to create a baseline between two cameras decreases resulting in a decrease of

distancing accuracy. Second, if using a monocular system, terrain data might not be

known in an unexplored environment. This research explores the use of a small gimbaled

laser range sensor and monocular camera to estimate feature locations. The gimbaled

system consists of a commercial off-the-shelf range sensor, a pair of hobby-style servos,

and a micro controller that accepts azimuth and elevation commands. The system is

approximately 15x8x12 cm and weighs less than 120 grams.

This novel approach, called laser-aided image inertial navigation, provides precise

depth measurements to key features. The location of these key features are then calcu-

lated based on the current state estimates of an Extended Kalman filter. This method of

estimating feature locations is tested both by simulation and real world imagery. Navi-

gation experiments are presented which compare this method with previous image-aided

filters. While only a limited number of tests were conducted, simulated and real world

flight tests show that the monocular laser-aided filter can accurately estimate the trajec-

tory of a vehicle to within a few tenths of a meter. This is done without terrian contraints

or any prior knowledge of the operational area.

iv



Acknowledgements

First, I have to thank my advisor for his patience and support. It’s annoying to have to

repeat the same thing more than once, but you were always willing to take the time to

teach me the obvious. You taught me how to slow down, think things through, and not

run head-long into a problem.

Thank you to my committee members for being willing to support me in my research.

Thank you to friends for listening to my ideas, and helping review my thesis.

Thank you to my parents for believeing in me when others didn’t. Thank you for

encouraging me, and providing me with the tools I needed to get me where I am today.

Most of all, I want to thank my wife for all her love, support, and help. You always

know how to calm me down when things aren’t going well, and are willing to listen to me,

even when you don’t have a clue what I’m saying. Thank you.

Don J. Yates

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . 3

2.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Earth-Fixed Inertial Frame . . . . . . . . . . . . . . 5

2.2.2 Earth-Centered-Earth-Fixed (ECEF) . . . . . . . . . 5

2.2.3 Navigation Frame . . . . . . . . . . . . . . . . . . . 5

2.2.4 Body Frame . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.5 Camera Frame . . . . . . . . . . . . . . . . . . . . . 6

2.2.6 Gimbal Frame . . . . . . . . . . . . . . . . . . . . . 8

2.3 Transformation Matrices . . . . . . . . . . . . . . . . . . . . 8

2.4 Projection Theory . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Inertial Navigation Systems . . . . . . . . . . . . . . . . . . . 14

2.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



Page

2.7 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 19

2.8 Image Aiding Techniques . . . . . . . . . . . . . . . . . . . . 21

2.9 Scale Invariant Feature Transformation . . . . . . . . . . . . 24

2.9.1 Scale-Space Decomposition . . . . . . . . . . . . . . 24

2.9.2 Extrema Detection . . . . . . . . . . . . . . . . . . . 25

2.9.3 Feature Descriptor Calculation . . . . . . . . . . . . 25

2.10 Laser Range Sensors . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Stereo verses Laser . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Navigation Filter . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Feature Location Estimation . . . . . . . . . . . . . . . . . . 34

3.4 Line of Sight Vector Calculations . . . . . . . . . . . . . . . . 35

3.4.1 Rotation Calculation . . . . . . . . . . . . . . . . . . 35

3.4.2 Offset Correction . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Correcting for Translation and Rotation . . . . . . . 36

3.5 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Simulation Experiment . . . . . . . . . . . . . . . . . . . . . 53

4.3 Feature Location Test . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Vicon Experiment . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Hallway Experiment . . . . . . . . . . . . . . . . . . . . . . . 69

vii



Page

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



List of Figures

Figure Page

2.1 Earth and Vehicle-Fixed Navigation Frame . . . . . . . . . . . . . 6

2.2 Navigation Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Vehicle Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Gimbal Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Projective Camera Model . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Camera Image Array . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Kalman Filter Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Image-Inertial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Stochastic Feature Projection . . . . . . . . . . . . . . . . . . . . . 23

2.11 Scale Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Octaves of the Difference of Gaussian Functions Over a Scale-Space 27

2.13 Possible Keypoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.14 Navigation Filter Block Diagram . . . . . . . . . . . . . . . . . . . . 32

3.15 Camera GLRS Disparity . . . . . . . . . . . . . . . . . . . . . . . . 37

3.16 Translation Illustration . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.17 Feature Position Geometry . . . . . . . . . . . . . . . . . . . . . . . 40

4.18 Hardware Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 49

4.19 Experimental Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.20 Experimental Hardware Alignment . . . . . . . . . . . . . . . . . . 50

4.21 Experimental Platform Setup . . . . . . . . . . . . . . . . . . . . . 52

4.22 Simulated Hallway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.23 Simulated Hallway Position Errors . . . . . . . . . . . . . . . . . . . 54

4.24 Simulated Hallway Attitude Errors . . . . . . . . . . . . . . . . . . 55

4.25 RSS Horizontal Error Plot . . . . . . . . . . . . . . . . . . . . . . . 56

ix



Figure Page

4.26 RSS Vertical Error Plot . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.27 RSS Attitude Error Plot . . . . . . . . . . . . . . . . . . . . . . . . 58

4.28 Position Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.29 Estimated Vicon Trajectory . . . . . . . . . . . . . . . . . . . . . . 61

4.30 Vicon Position Trajectory . . . . . . . . . . . . . . . . . . . . . . . . 62

4.31 Vicon Attitude Trajectory . . . . . . . . . . . . . . . . . . . . . . . 63

4.32 Vicon Position Error . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.33 Vicon Attitude Error . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.34 RSS Horizontal Error . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.35 RSS Vertical Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.36 RSS Attitude Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.37 Experimental Hallway . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.38 Platform Hallway Trajectory Estimate . . . . . . . . . . . . . . . . 70

4.39 Platform Hallway Vertical Trajectory . . . . . . . . . . . . . . . . . 71

4.40 Platform Hallway Attitude Estimate . . . . . . . . . . . . . . . . . 72

4.41 Simulated Position Results of Near Ceiling Features . . . . . . . . . 73

4.42 Simulated Attitude Results of Near Ceiling Features . . . . . . . . 74

x



List of Tables

Table Page

3.1 Navigation Filter Uncertainty Table . . . . . . . . . . . . . . . . . . 47

3.2 Feature Location Uncertainties by Distance . . . . . . . . . . . . . . 47

4.3 IMU Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Feature Location Estimates . . . . . . . . . . . . . . . . . . . . . . . 60

xi



List of Abbreviations

Abbreviation Page

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . 1

AFIT Air Force Institute of Technology . . . . . . . . . . . . . . . . 1

GLRS Gimbaled Laser Range Sensor . . . . . . . . . . . . . . . . . . 2

MAV Micro Aerial Vehicle . . . . . . . . . . . . . . . . . . . . . . . . 2

ECEF Earth-Centered Earth-Fixed . . . . . . . . . . . . . . . . . . . 5

NED North-East-Down . . . . . . . . . . . . . . . . . . . . . . . . . 6

DCM Direction Cosine Matrix . . . . . . . . . . . . . . . . . . . . . 9

INS Inertial Navigation System . . . . . . . . . . . . . . . . . . . . 14

IMU Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . 14

EKF Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 20

SIFT Scale Invariant Feature Transformation . . . . . . . . . . . . . 22

SLAM Simultaneous Localization and Mapping . . . . . . . . . . . . 30

RSS Root-Sum-Square . . . . . . . . . . . . . . . . . . . . . . . . . 55

xii



MONOCULAR VISION LOCALIZATION USING A GIMBALED LASER

RANGE SENSOR

I. Introduction

The advent of modern warfare has brought warfighters off the battlefield and into cities

and towns. No longer do massive forces move from battlefield to battlefield engaging the

enemy, rather much smaller groups of soldiers move from city block to city block, and from

house to house. The military has begun using small robotic vehicles to take warfighters

out of harms way, but the complexities of fighting in these urban environments presents

many challenges. One significant challenge is that the Global Positioning System (GPS),

which has become the standard for navigation, may not be available, especially indoors

or underground. The use of autonomous robotic vehicles depends on accurate navigation

solutions, thus alternatives to GPS navigation need to be explored.

There have been great advances in recent years in the area of non-GPS navigation.

Some of these advances have come by the fusing of data from different sensors to improve

inertial navigation estimates. The Air Force Institute of Technology (AFIT) has been re-

searching techniques that combine digital images and inertial sensors. This is the technique

that will be presented in this research.

1.1 Purpose

Image inertial navigation systems, in unstructured indoor environments, have tra-

ditionally used binocular camera systems. By creating a large baseline between cameras,

depth estimates to objects in the cameras’ field of view can be calculated. Unfortunately,

as technology continues to develop and as unmanned vehicles continue to get smaller and

smaller, the available distance to separate binocular systems also continues to decrease. As

the binocular disparity decreases, so do the accuracies of the depth estimates. Binocular

systems also have problems with observability, which arises when the distance to the object

being measured is large when compared to the distance between the cameras.
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This research focuses on the development and testing of a novel approach to solve the

monocular depth estimation problem. The system to be presented uses a gimbaled laser

range sensor (GLRS) and a single camera to estimate locations of interesting objects. Once

a object has been localized, observations of this object can then be used to help localize

the vehicle to which the camera is attached. The application of this approach is to provide

accurate imaged-aided inertial navigation estimates, with an emphasis in application on

micro aerial vehicles (MAV).

1.2 Contributions

Important contributions of this work include development and testing of a novel

gimbaled laser range sensor and development of a measurement model with corresponding

influence matrixes for use in an extended Kalman filter. Contributions also include data

from simulated and real world experiments, which help to quantify the performance of a

navigation filter which uses this sensor, a camera, and commercial grade IMU.

1.3 Outline

The research presented in this thesis is organized as follows. First, background

material will be presented in Chapter II. This material will not cover every topic in depth,

but will lay the foundation for the research presented in Chapter III. Chapter III covers the

methodology of the proposed laser-aided image inertial algorithm, including development

of the measurement models and uncertainties. Chapter IV goes over the experiment setup

and results of the navigation filter. Finally, Chapter V will give conclusions drawn from

the results in Chapter IV and discusses possible future work.

2



II. Background Material

This chapter presents background material needed to understand the basics concepts of

this thesis. Every topic will not be covered in depth, however basic concepts are presented.

The topics presented include reference frames, transformation matrices, projection theory,

inertial navigation systems, Kalman filters, and image aiding techniques.

2.1 Mathematical Notation

Before beginning the background material for this thesis, it is important to under-

stand the mathematical notation that will be used. This will provide insight regarding the

equations at a quick visual inspection. The notation for this thesis is as follows:

Scalars: Scalars are denoted by lower or upper case italic font, for example x or G.

Vectors: Vectors are represented by lower case letters with bold font, for example

x, or ψ. The vector x is composed of a column of scalar elements xi, where i is the element

number.

Matrices: Matrices are denoted by upper case letters in bold font, for example A.

The matrix A is composed of elements Aij where i is the row index and j is the column

index.

Vector Transpose: The vector or matrix transpose is identified by a superscript

T, as in XT .

Estimated Variables: Estimated variables are given a hat character directly above

the variable, for example x̂.

Computed Variables: Variables that are corrupted by noise are given a tilde char-

acter directly above the variable, for example x̃.

Direction Cosine Matrices: Direction cosine matrices from frame a to frame b

are denoted by Cb
a.

Homogeneous Coordinates: Vectors in homogeneous coordinates are represented

by an underline, for example x. Homogeneous vectors are defined to have a 1 in the last

column element.

3



Reference Frames: A superscript is used to denote which reference frame a vector

is in, for example the vector xc is represented in the c frame.

Relative Position or Motion: In cases were it is important to specify relative

motion, combined subscript letters are used to designate the frames, for example ωab

denotes the rotation rate vector from frame a to frame b.

Functions: Functions are denoted by boldface font with their parameters depicted

in parentheses, for example F(u, t).

All other notation is straightforward and should be understood from context.

2.2 Reference Frames

In order to describe the position and orientation (i.e., attitude) of any object, a

frame of reference or coordinate system must be established. Coordinate systems are

used to express position, velocity, acceleration, attitude, and angular rates of objects. By

convention all coordinate systems in this work are orthogonal and right-handed. There are

several reference frames used in this research, including:

• Earth-Fixed inertial frame (i-frame)

• Earth-Centered Earth-Fixed frame (e-frame)

• Navigation frame (n-frame)

• Body frame (b-frame)

• Camera frame (c-frame)

• Gimbal frame (g-frame)

4



These frames are necessary for the following reasons:

• On-board sensors like accelerometers and rate gyros measure information with respect

to the inertial frame.

• Targets of interest as well as vehicle paths are specified in the navigation frame.

• Forces and torques are applied in the body frame.

• Camera data is relative in the camera frame.

• Range data is relative in the gimbal frame.

2.2.1 Earth-Fixed Inertial Frame. An inertial reference frame is defined as a

frame of reference which is non-rotating and non-accelerating [1]. This is the frame in

which Newton’s laws hold. Although the Earth-Fixed inertial frame is not a true inertial

frame, because the Earth rotates around the sun, it is a valid inertial frame for terrestrial

navigation. The Earth-Fixed inertial frame has its zi axis aligned with the rotation axis

of the Earth. This is roughly aligned with the Earth’s poles. The xi and yi axis are lie in

the equatorial plane. In particular, the xi axis points toward fixed stars, and the yi axis

completes the right-handed reference frame.

2.2.2 Earth-Centered-Earth-Fixed (ECEF). The Earth-Centered Earth-Fixed

(ECEF) frame, sometimes called the Earth frame, has its ze axis aligned with the zi axis,

and the xe and ye axis lie in the equatorial plane. The xe axis is fixed at the intersection

of the Greenwich meridian and the equatorial plane, and the ye axis is again defined using

the right-handed rule.

2.2.3 Navigation Frame. It is entirely possible to define positions of objects using

only the ECEF frame, however it is easier for humans to understand local-level navigation

frames than ECEF. For example, if one were to describe the position of a chair in front of

himself or herself, it is more meaningful to say it’s one meter to the right and two meters

forward than to give the ECEF coordinates. This is the reason for the navigation frame.

The navigation frame is a rotating frame that is tangential to the surface of the Earth in

which xn is defined as pointing toward the North Pole, yn is defined as pointing East, and

5



Figure 2.1. The inertial and Earth frames originate at the

Earth’s center of mass while the vehicle-fixed navigation frame’s

origin is located at a fixed location on a vehicle [2].

zn is defined as pointing toward the center of the Earth, as shown in Figure 2.1. This is a

north-east-down (NED) convention. The origin of the navigation frame is centered at the

center of the navigation system, as shown in Figure 2.2.

2.2.4 Body Frame. The body frame has its origin at the center of mass of the

vehicle. In this frame, xb points out the front of the vehicle, yb points out the right side of

the vehicle, and zb points out the belly or bottom of the vehicle, as shown in Figure 2.3. The

body frame is defined with respect to the roll, pitch, and yaw angles about the navigation

frame.

2.2.5 Camera Frame. The camera frame originates at the optical center and is

defined so that the xc axis points up in the image plane, the yc axis points to the right of

the image plane, and the zc axis points out the optical axis of the camera, in other words,

out the front of the camera.

6



Figure 2.2. The navigation frame is a Cartesian reference frame

that is tangential to the surface of the Earth [2].

Figure 2.3. A rotating reference frame with the origin at the

body’s center of gravity [2].
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2.2.6 Gimbal Frame. The gimbal frame originates at the gimbal rotation center

and is oriented so that xg points along the beam axis of the laser sensor, yg points to the

right of the laser axis, and zg points down from the laser axis.

Figure 2.4. The gimbal frame is aligned with the beam axis of

the laser, and the rotation center of the gimbal

2.3 Transformation Matrices

In order to move from one reference frame to another a set of transformation ma-

trices are need. Transformation matrices define relationships between vectors in different

reference frames. The notation

vi = Ci
nv

n (2.1)

denotes that the rotation matrix C transforms the vector vn from the n frame to the i

frame.
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Rotation matrices, like the one above, have specific properties. Rotation matrices

are orthogonal, CT = C−1, and their determinants must be equal to one, det(C) = 1. A

direction cosine matrix (DCM) is an example of a rotation matrix.

A DCM is a 4-parameter rotation expressed as a 3× 3 matrix [1]. The advantage of

a DCM is that, because it is a 4-parameter rotation, it does not have singularities. DCMs

are commonly used to rotate between the body frame and the navigation frame. Roll,

pitch, and yaw are expressed between these frames. Roll is defined as a rotation of the

body about the xb-axis, pitch is a rotation about the yb-axis, and yaw is a rotation about

the zb-axis. These angles, known as Euler angles, will be denoted by φ, θ, ψ for roll, pitch,

and yaw respectively. The DCM to rotate from the body frame to the navigation frame is

given by Equation (2.2) [1].

Cn
b =











cosψcosθ cosψsinθsinφ− sinψcosφ cosψsinθcosφ+ sinψsinφ

sinψcosθ sinψsinθsinφ+ cosψcosφ sinψsinθcosφ− cosψsinφ

−sinθ cosθsinφ cosθcosφ











(2.2)

The time derivative of Cn
b is given by [1]

Ċ
n

b = Cn
bΩ

b
nb (2.3)

where Ωb
nb is the skew-symmetric form of the rotation vector from the navigation frame

to the body frame, expressed in the body frame, ωbnb. The skew-symmetric operator of a

vector ω is defined as [1]

ω× =











0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0











(2.4)

where ωx, ωy, and ωz are the scaled elements of ω.

A homogeneous transformation matrix combines both a rotation matrix and a trans-

lation vector in a single matrix. The homogeneous transformation matrix from frame n to

frame i is given by [3]
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Ti
n =





Ci
n −vin

0 1



 (2.5)

where 0 ∈ ℜ3 is a row vector of zeros. The vector vin is a translation vector resolved in

the ith coordinate frame.

2.4 Projection Theory

This research uses a simple projective camera model as shown in Figure 2.5. A pro-

jective camera model is a modified form of the pinhole camera model shown in Figure 2.6.

The pinhole camera model has an infinitely small lens. This camera model assumes all rays

pass through the same point, the optical center. The difference between the two models is

that in a projective model the image plane is moved one focal length in front of the optical

center, instead of behind the optical center. This removes the issue of inverting the image.

The focal length, f , is defined by
1

Z
+

1

z
=

1

f
(2.6)

where Z is the distance from an object to the camera lens and z is the distance from the

lens to the image plane.

The image plane consists of an (M × N) array of pixels, where M is the height of

the pixel array and N is the width of the array. This camera model assumes a ray of light

is reflected off an object in the image scene, passes through the image plane, and arrives

at the optical center. The path of the light ray is called the line of sight vector, and can

be calculated based on where the ray intersects the image plane.

It is important to note that the image plane is defined so that x points down, along

the M direction, and y points to the right, the N direction as shown in Figure 2.7. This

is opposite the standard computer vision notation.

In [4], Trucco shows that by using this camera model the transformation from meters

in the camera frame (sc) to pixels in the image plane (zu) is
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Figure 2.5. A simple projective camera model based on a pinhole

camera model. This model has the image plane moved one focal

length in front of the optical center [2].

zu =
1

scz











−fx 0 cx

0 fy cy

0 0 1











sc (2.7)

where fx and fy are the focal lengths of the camera, and cx, cy are pixel locations at the

origin of the image plane, known as the principal points. scz is the z component of the line

of sight vector, sc.

Equation (2.7) can be re-written as

zu =
1

scz
Tpix
c sc (2.8)

The matrix Tpix
c is sometimes referred to as the calibration or intrinsic matrix and can

be found using a number of calibration techniques [5, 6]. The calibration matrix, Tpix
c ,

projects a 3-dimensional scene onto a 2-dimensional image plane; because of this, scale is

not maintained.
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Figure 2.6. The pinhole camera model has an infinitely small

lens. This camera model assumes all rays pass through the same

point, the optical center. Note the projected image is inverted [2].

Because the projection does not maintain scale, it is common practice to set the z

component of sc equal to one. This is done by normalizing sc by its z component, i.e.,

sc =
sc

scz
(2.9)

where sc, called the homogeneous line of sight vector, is the normalized version of sc.
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Figure 2.7. A camera image consists of an (M × N) array of

pixels. The physical height and width of the array is represented

by H and W , respectively [2].
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2.5 Inertial Navigation Systems

An inertial navigation system (INS) calculates velocities, positions, and attitude

angles by integrating measurements from an inertial measurement unit (IMU). The IMU

measures specific force and rotation rates of the body with respect to inertial space. These

systems typically consist of 2 triads of orthogonal mounted gyros and accelerometers. The

accelerometers are normally aligned with the body’s xb, yb, and zb axis. An INS can be

rigidly attached to a platform body, commonly called a strapdown system, or mounted on

an inertially stabilized gimbal. Strapdown INS comprise 90% of systems in use today [7].

A strapdown INS is used in this research.

At the heart of any INS are the accelerometers and gyros. Accelerometers mea-

sure specific force. Specific force is the difference between the gravitation vector and an

acceleration vector.

fb = ab − g (2.10)

where ab is acceleration caused by body movement, g is acceleration due to gravity, and

fb is the body force measurement that the accelerometer reads. This means that in order

to integrate the accelerometer measurements to calculate body movement, one must know

the starting position and the local gravity field vector. Equation (2.11) is commonly called

the navigation equation [1], where an is integrated to obtain position.

an = Cn
b f
b + gn (2.11)

here Cn
b is the DCM that transforms force in the body frame to force in the navigation

frame. This DCM is calculated by integrating the rate gyros.

Gyros measure angular rates of the body with respect to the inertial frame ωbib. In

order to calculate the rotation rate of the body with respect to the navigation frame, ωbnb,

the rotation rate of the Earth and the rotation rate of the navigation frame with respect

to the Earth-Fixed Inertial frame must be known, i.e.,

ωbnb = ωbib − Cb
n[ω

n
ie + ωnen] (2.12)
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where ωnie is a vector describing the rotation of the earth, and ωnen is the rotation rate of

the navigation frame about the Earth-Fixed Inertial frame due to the vehicle’s velocity.

Because a low quality IMU (which cannot sense Earth rate) will be used for this research,

and because the distance traveled by the vehicle is short (less than 50 meters), ωnie and

ωnen can be neglected.

Another force that can be neglected, but is included here for completeness, is accel-

erations due to the Coriolis effect. The Coriolis effect is seen whenever a body is moving

with respect to a rotating frame. A derivation of the equations of Coriolis can be found

in [8]. The Coriolis acceleration can be expressed as

d2pe

dt2
= −2ωeie × ve (2.13)

where pe is the position of the vehicle in the Earth frame, ve is the velocity of the vehicle

in the Earth frame, and ωeie = [0 0 Ω]T . The constant Ω is the turn rate of the Earth

frame with respect to the i-frame.

The Coriolis correction can be calculated by knowing the rotation rate of the Earth

and the groundspeed of the vehicle in the navigation frame [1], i.e.,

ccorr = (2ωnie + ωnen) × vne (2.14)

where ωnie is the rate of change of the Earth frame with respect to the inertial frame

expressed in the navigation frame, ωnen is the rate of change of the navigation frame with

respect to the Earth frame expressed in the navigation frame, and vne is vehicle velocity in

the Earth frame expressed in the navigation frame.

Although Coriolis acceleration, the rotation rate of the Earth, and rotations of the

navigation frame are ignored, there are some sources of errors that should not be ignored.

These sources of errors include bias errors, scale factors errors, misalignment errors, and

measurement noise. Some of the errors, for example biases, can be estimated and sub-

tracted out of the measurement. However, not all the errors can be corrected, and these
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errors cause the gyros to drift over time. In low quality gyros, the drift rate is fast enough

that only a few seconds can pass before attitude estimates are far from the truth.

Even though an INS’s measurements drift over time, they do have benefits. A major

benefit of an INS is its large bandwidth. A typical INS can be sampled around 100Hz,

which means it can capture high dynamics. While this is true, most INS systems are

coupled with other sensors that have lower bandwidth, but also have slower, if any, drift.

This is called INS aiding. Aiding is accomplished by updating the INS estimates with

measurements from other sensors and, in the case of this research, consists of a camera

and laser range sensor. The fusion of the INS state estimates and other sensors is done

with a Kalman filter.

2.6 Kalman Filter

A Kalman filter estimates system states by fusing a system model, measurement

models, and sensor data in the presence of noise. A state is a characteristic of a system

that is needed in order to capture accurately the system’s dynamics, for example; positions,

velocities, and attitudes.

In the most basic case, a linear system and measurement model and zero-mean, white

Gaussian noise sources, a Kalman filter is an optimal estimator of the system states. The

model can be represented by a differential equation in terms of the system states (x),

inputs (u), and noise sources (w). The following differential equation expresses how the

states change overtime:

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.15)

where F(t) is the state dynamic matrix, B(t) is the matrix that defines how inputs affect

each state , and G(t) is the matrix that defines how the noise sources affect each state. The

noise sources are assumed to be zero-mean, white Gauissan processes. The noise source

covariance is defined as

E[w(t)wT (t+ τ)] = Q(t)δ(τ) (2.16)
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where E[ ] is the expectation operator, Q(t) is process noise, and δ is the Dirac delta

function.

In order to use the Kalman filter in a digital computer, the differential equation

shown in Equation (2.15) must be transformed to a difference equation of the form

xk+1 = Φkxk + Bkuk + Gkwk (2.17)

where the notation xk+1 denotes the state estimate at time k + 1 and xk is the state

estimate at time k. The state transition matrix, Φk, is defined as

Φk = eFk∆t (2.18)

where ∆t is the time step of the discrete system. Bk and Gk are calculated as [9]

Bk =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ (2.19)

Gk =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)Q(τ)GT (τ)ΦT (tk+1, τ)dτ (2.20)

where Q is the process noise covariance matrix. The difference equation shown in Equa-

tion (2.17) can be implemented in a computer; however, it is also necessary to have a model

of the sensor measurements.

The discrete time measurement model is defined as

zk = Hkxk + vk (2.21)

where vk is the measurement noise and Hk is the observation matrix, which relates the

measurements to the states.

There are two steps to a Kalman filter that are repeated recursively: the propagation

and the update phase, as shown in Figure 2.8. In the propagation phase the system

model uncertainty is allowed to grow. The filter uncertainty grows because of noise and
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Figure 2.8. Kalman filter update and propagation cycle from

time k − 1 to time k + 2 [9].

disturbances to the system. The rate of growth depends upon Q and Φk. The state

uncertainties are propagated by

x̂−

k+1 = Φkx̂
+
k + Bkuk (2.22)

where the plus or minus sign, x̂−

k+1 x̂+
k , denotes whether or not a measurement has been

incorporated in to the state estimates. The state estimate uncertainty, P, is propagated

as

P−

k+1 = ΦkP
+
k ΦT

k + Qk (2.23)

Once the state estimates have been propagated, a prediction of what the sensor mea-

surements should be can be calculated. This is done by transforming the state estimates

from state-space to the measurement space through the observation matrix.

zest = Hx̂− (2.24)
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By subtracting the measurement prediction zest from the realized measurement, a residual

is calculated. The residual is then used to update the filter. Its impact on the state

estimate depends on the Kalman gain K.

The Kalman gain is a weighting for the state estimates and the sensor measurements.

If the Kalman gain is low, the filter will depend more on the state estimates, which come

from the system model, than on the sensor measurements. If the Kalman gain is high;

the filter will depend more on the sensor measurements than on the state estimates. The

Kalman gain is calculated by taking into account both the state estimate uncertainty and

the sensor measurement uncertainty. This is seen in the following equation:

Kk = P−

k HT
k [HkP

−

k HT
k + Rk]

−1 (2.25)

where Rk is the sensor noise covariance matrix.

When a sensor measurement is available, the new information is included in the filter

by an update. The Kalman filter update equations are shown below [9].

x̂+
k = x̂−

k + Kk[zmeas − Hkx̂
−

k ] (2.26)

P+
k = P−

k − KkHkP
−

k (2.27)

The performance of a Kalman filter can be “tuned” by adjusting the process noise

covariance matrix, Q, and the sensor noise covariance matrix, R. These matrices are set

based upon knowledge of the system model and the quality of sensors used by the filter.

2.7 Extended Kalman Filter

As stated earlier, when the system and measurement models are linear and the

disturbances to the system and sensors are zero-mean, white Gaussian noise sources, a

Kalman filter is an optimal estimator of the system states. In many instances the use of
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a linear system model is not valid. The extended Kalman filter (EKF) was developed to

estimate states of nonlinear systems. A nonlinear system has the form [10]

ẋ = f(x,u, t) + Gw(t) (2.28)

An EKF takes the nonlinear state and/or measurement dynamics and linearizes them

around a nominal trajectory or operating condition. This linearization is a Taylor series

expansion where all terms higher than second order are disregarded. A sample linearization

of the function f is given by:

A[ti,x(t−i )] =
∂f [x,u, t]

∂x

∣

∣

∣x=x̂(t−i ),u +H.O.T.(2.29)

The linearized models are only valid about the current operation condition; therefore,

a linearization is performed at each time step.

One key difference between a traditional Kalman filter and an EKF is that the state

estimates are propagated through the nonlinear dynamics, not the state transition matrix,

i.e.,

x̂(t−i ) = x̂(t+i−1) +

∫ ti

ti−1

f [x̂(t/ti),u(t), t]dt (2.30)

The propagation of the covariance matrix P does not change and is still performed

by Equation (2.23). The state transition matrix Φ at time ti is calculated by evaluating the

linearized state dynamics matrix with the state estimates at time ti. Because Φ depends

on the current state estimate, a covariance analysis cannot be performed without actual

sensor measurements.

If the measurement model is also nonlinear, at each update the observation matrix

H is also linearized about the current state estimates, i.e.,

H[ti,x(t−i )] =
∂h[x, t]

∂x

∣

∣

∣x=x̂(t−
i

)(2.31)
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Because of its proven performance, the EKF has become the industry standard and

will be the filter used in this thesis. The implementation and methodology of the EKF in

the navigation filter will be discussed in the following chapter.

2.8 Image Aiding Techniques

As mentioned in Section 2.5, an INS must be aided in order to bound the uncertainty

caused by gyro drift and measurement noise. This research will focus on aiding the inertial

sensors through vision. The image-aiding algorithm is based on the research presented

in [2]. An overview of this algorithm is shown in Figure 2.9.

Figure 2.9. Overview of the image inertial algorithm [2]. Fea-

tures are extracted at time ti and propagated to the next time

epoc with inertial data. The propagated features are then com-

pared to the current features.

21



As seen in Figure 2.9, the image inertial algorithm consists of six steps:

1. Image capture

2. Transformation from the image space to the feature space

3. Propagation of the navigation state to the next image capture

4. Feature space propagation to the next image capture

5. Statistical feature correspondence

6. Navigation state error estimation and correction

1. In the first step, an image is captured. As discussed in Section 2.4, an image

consists of an array of pixels, which is a projection of a 3-dimensional scene onto a 2-

dimensional plane. Each image must be captured at a known time relative to the IMU

data. Once the image is captured and time tagged, features can be extracted.

2. There are a number of different ways to extract features in an image ([11, 12, ?,

13]); however, the ideal feature transformation would be one that can decompose a feature

into an object and its pose, meaning position and attitude. This feature space parallels

human perception. Humans see an object, and no matter where that object is or how it is

oriented, it does not change the object. A pencil is a pencil, no matter what direction it’s

pointing or where it is. The scale invariant feature transformation (SIFT) [14], which will

be discussed in the next section, cannot completely separate an object and its pose (there

are no current transformations that can); however, it can account for scale and rotations

of an object. Thus, the feature space consists of keypoints and descriptors. This is the

method used in this research for feature extraction.

3. After the image has been transformed to the feature space, the navigation states

are propagated using the methods outlined in Section 2.5 and 2.6, to the next image

capture. This allows the relative changes in position and attitude to be estimated. As

described in Section 2.6 the uncertainty covariance is also propagated to the next image

capture.

4. The estimated changes in the navigation states are used to predict the locations

of features in the next image. This is done through a stochastic projection transforma-
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tion. This transformation takes a keypoint of a feature, which describes the position, and

calculates a new position and position uncertainty, as shown in Figure 2.10. The position

uncertainty is used to constrain the feature match.

5. The projected features are compared to the features extracted in the current

frame using statistical weighting. The statistical weighting is done by calculating the

Mahalanobis distance of the projected and measured feature vectors. For a derivation of

the Mahalanobis distance, see [15].

6. Once the feature correspondence is done, measurements of the errors between the

projected feature positions and the measured positions are used to update the navigation

state vector. The specific implementation of the measurement corrections is discussed in

Section 3.5.

Figure 2.10. Feature are projected into the next image based

on inertial data. The projected features have an associated un-

certainty ellipse [2].
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While it is important to understand the image-inertial algorithm as a whole, the

major contribution of this research is in the feature localization and measurement update.

It’s important, therefore, to have a clear understanding of what a feature is and how the

feature space is calculated.

2.9 Scale Invariant Feature Transformation

As mentioned in the previous section, the scale invariant feature transformation

creates a feature space that consists of two main components, keypoints and descriptors.

The keypoint contains the feature’s location in the image plane and the feature’s scale and

orientation. The descriptor is a vector of 128 elements. These elements make up a set of

8 orientation histograms. Both keypoints and descriptors will be explained further in the

following sections.

There are three steps in the SIFT algorithm: scale-space decomposition, extrema

detection, and the feature descriptor calculation.

2.9.1 Scale-Space Decomposition. The first step in extracting features is to

decompose the image into scale-spaces. This is done by convolving an image, i(x, y), with

a set of Gaussian functions. This causes a blurring effect that can be seen in Figure 2.11.

The Gaussian function, known as a Gaussian spatial filter, is defined as [14]

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (2.32)

where σ is the standard deviation of the blurring function. A difference of Gaussians is

expressed as

D(x, y, k, σ) =

[

G(x, y, kσ) − G(x, y, σ)

]

(2.33)

where k is the multiplier that determines the scale-space.

The resulting collection of images

I(x, y, kσ) = D(x, y, k, σ) ∗ i(x, y) (2.34)
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are placed together into octaves. An octave is a set of images such that the multiplier k is

defined as

k = 2
1
s (2.35)

where s is the number of images. Each octave contains twice the scale-space as the octave

below it. Figure 2.12 shows how the difference of Gaussians are grouped in to octaves.

2.9.2 Extrema Detection. Once the image is decomposed into scale-spaces, local

maximums and minimums are found by comparing each point with its neighboring points.

See Figure 2.13. Note that each point is compared to the surrounding points, and the

point directly above and below its scale-space.

Once candidate features are located, their spatial details are found by calculating the

eigenvalues of the matrix A defined as [2]

A =





∑

x,y∈w(∇fx)2
∑

x,y∈w∇fx∇fy
∑

x,y∈w∇fx∇fy
∑

x,y∈w(∇fy)2



 (2.36)

where w is a window centered on the candidate feature. ∇fx ,∇fy are the gradients of

the scale space image in the x and y directions. The eigenvalues are compared against a

threshold. If the eigenvalue is greater than the threshold, its location (x, y, σ) is extracted

and added to the keypoints.

2.9.3 Feature Descriptor Calculation. The last step is to assign the keypoint a

direction. This direction is calculated by first creating a histogram of 36 bins of orien-

tation gradients around the keypoint. The 3 highest value bins are used to interpolate

the peak and that direction is then selected as the keypoint’s orientation. The descriptor

is calculated by finding the gradient magnitudes of the pixels surrounding the keypoint.

The regions around the keypoint are subdivided into regions and orientation histograms

are calculated for each region. In this way, the SIFT algorithm provides the location

and orientation of a keypoint and the orientations of the regions immediately around the

keypoint.
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Figure 2.11. An image passed through a Gaussian spatial fil-

ter. As the center frequency of the filter increases (decreasing i),

the images show increased sensitivity to higher spatial frequency

detail [2].
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Figure 2.12. Octaves of the Difference of Gaussian Functions

over a Scale-Space. Gaussian blurred images using the variable

scale σ are stacked on the left. On the right are the image differ-

ences of the blurred images [16].

Figure 2.13. Possible Keypoint. This sample point is a local

maximum among its immediate neighbors [16].
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2.10 Laser Range Sensors

A SIFT feature will only provide two dimensions of a 3-dimentional object. In order

to calculate the third dimension another sensor must be used. In this research, the extra

sensor is a laser ranger.

Laser range sensors operate in similar fashion to sonar. Just as a sonar sensor emits

sound waves and measures the time it takes the wave to return, laser range sensors emit a

light wave and time how long it takes for the light wave to return. In this way, each sensor

can determine distance, since objects that are far away will have a longer return time than

close objects. Laser and sonar sensors can also determine distance based on the reflected

wave’s phase shift.

There are, however, two important differences. First, because light rays have much

smaller wavelengths, laser range sensors have an extremely narrow field of view and are

capable of much higher resolution. Second, because light travels much faster than sound

waves, laser range sensors are capable of much faster sampling rates. Because of their high

resolution and fast sampling rates, laser range sensors are becoming more and more widely

used in robotic navigation research.

2.11 Stereo verses Laser

A common technique to estimate depth with a MAV is to use a stereo camera system.

This section compares general stereo systems and a monocular system with a GLRS.

Stereo camera systems use two cameras to estimate depth. This approach is similar

to human vision. While stereo camera systems are common, a major drawback with current

technology is processing time. If the system is using feature extraction to locate and track

features, images from both cameras need to be processed and compared with each other.

This doubles the time required to process images, compared to a monocular system with

laser depth. This means that faster, more powerful, and possibly larger computers maybe

needed.

Another disadvantage with stereo systems is that depth estimate accuracy depends

on the distance to the feature, and the baseline between the cameras. If the baseline is
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small compared to the distance to a feature, the depth estimate is less accurate. With a

GLRS the actual depth measurement is fixed, based on the accuracy of the laser. This

assumes no errors in pointing the GLRS.

An advantage of stereo systems is weight. Depending on the application, small,

lightweight cameras maybe used. A typical web camera weights only 10 grams. The weight

of a GLRS would be around 40 grams, although the addition of supporting hardware, such

as frame grabbers, for an additional camera may negate this benefit.

As technology improves, and computer speed increases, stereo camera systems may

prove to be a better solution for most applications. However, the specific application will

still determine which system offers the greatest benefits.

2.12 Related work

Much of the previous work regarding monocular vision localization involves using

multiple images and knowledge of the vehicle’s motion to estimate feature locations. This

method, called egomotion, is presented in [17]. Although the author showed that this

method can work, it does have some limitations. First, because this method is basically

a binocular system over time, it suffers from the same observability issues that a stereo

camera system does. Secondly, unconstrained optical methods suffer from scale ambiguity

[18]. Scale ambiguity limits the observability of the vehicle motion. It is impossible to

tell from two-dimensional images if a vehicle is rapidly approaching a large object, or if

it is slowly approaching a small object. Both vehicle motions will look the same without

outside information, such as a map.

In [19], a map of the work area is created prior to navigation. Once the map is

known, the vehicle searches the camera images for straight-line correspondences to the

map in order to localize its position. This is a model-based method. Model-based methods

are well-suited for absolute localization. The drawbacks of this approach are that (1) it

requires prior knowledge of the area and (2) the computational costs of storing a map and

matching the corresponding features are high.
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Another method of absolute localization that does not require prior information

is simultaneous localization and mapping (SLAM). In [20], a monocular camera is used

to measure feature locations and simultaneous build a map of the area. The feature

localization is done by exploiting the certain geometry of the corners of a corridor. This is

also a limitation of the algorithm, as it assumes flight in a corridor or similar structured

room.

There is a large body of work that involves a monocular camera and scanning laser

range sensors. Most of these systems involve using a one-dimensional laser; the laser is

rotated to create a slit through the scene, as in [21]. Harati uses a mono camera to

estimate distances to features and then cross validates these estimates with a scanning laser.

This approach gives accurate depth estimates to features close to the laser slit, but the

measurement uncertainty grows as the features move away from the laser measurements.

In [22], a 360 degree scanning laser is combined with a monocular camera to accurately

localize a vehicle. Although the system proved to be very precise, its large size and weight

are not well-suited for use on small aerial vehicles.

A smaller sensor package is presented in [23]. In that article, a Swiss Ranger camera

provides depth measurements by means of a 3D point cloud. The Swiss Ranger uses mod-

ulated IR light and measurements of the reflected light phase shift to estimate distances.

The 3D point cloud of depth measurements are then compared to pixel locations in a

monocular camera. This system is capable of creating a dense 3D map of the environment,

which is then used for vehicle localization. Unfortunately, this system is still too large for

use on small MAVs.

Many elaborate solutions have been developed to solve the monocular depth estimate

problem, but the question that this research tries to answer is, does a more simple and

straightforward solution exist? Can depth estimates be obtained with a simple, direct

range measurement?

This research will use an understanding of the material presented thus far to develop a

feature localization algorithm. A detailed development of the feature localization algorithm

is presented in the next chapter.
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III. Methodology

In this section, the navigation filter presented in [2] is shown and adaptations to the filter

are discussed. This is followed by an overview of the feature location estimation algorithm

and the assumptions made by the algorithm are stated. Next, the method used to calculate

the gimbal line of sight vector is discussed, followed by a development of the measurement

model. Finally, measurement model errors are analyzed.

3.1 Navigation Filter

The navigation filter used in this research is based upon the work presented in [2].

A block diagram of the navigation filter can be seen in Figure 3.14. The navigation filter

tracks the location of stationary features to estimate and remove errors in the INS. The

INS is then used to aid the feature tracker.

3.2 System Model

The system dynamics are captured using error models. For a full description of the

error models, see [2]. It is important to note that error models were chosen in order to

reduce errors caused by linearization of the measurement models. The error dynamics can

be expressed as a linear, stochastic, state-space model driven by white Gaussian noise [9]:

δẋ(t) = F(t)δx(t) + G(t)w(t) (3.37)

The error dynamics δx(t) correspond to an accelerometer and gyroscope model that have

biases and random noise. The biases are modeled as first-order Gauss-Markov processes [9].

The biases are estimated through the error state vector.

The error state vector δx(t) is comprised of fifteen base elements: position errors

(δpn), velocity errors (δvn), attitude errors (ψ), accelerometer bias errors (δab), and gy-

roscope bias errors (δbb) with additional states for tracked features. The base error state
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Figure 3.14. The navigation filter tracks the location of station-

ary features to estimate and remove errors in the INS. The INS is

then used to aid the feature tracker [2].

vector is expressed as
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(3.38)

The driving white noise vector, w, consists of the noise associated with the ac-

celerometer measurement (wb
a), gyro measurement (wb

b), accelerometer bias (wb
abias), and
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gyro bias (wb
bbias

). w is expressed as
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The overall error state dynamics in augmented form are [2]
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Note that (×) denotes skew symmetric form (see Equation (2.4)). For a complete

description of the filter development, see [2]. In this research, the only changes to the

navigation filter are in the measurement model, which is presented in Section 3.4.

3.3 Feature Location Estimation

The feature localization is a five-step process.

1. Image capture and feature transformation

2. Feature selection

3. LOS vector calculation and correction

4. LOS scaling

5. Calculation of feature position

In the first step, an image is captured and features are extracted through SIFT.

Once all the SIFT features are found, candidate features are selected based upon the

feature’s distinctiveness, spatial separation, and recognizability. If another feature needs

to be added to the state vector, the LOS vector is calculated as discussed in Section 3.3.

The LOS vector is used to steer the GLRS at the feature, and the range to the feature

is returned. The range measurement is used to scale the homogeneous LOS vector. Once

the LOS vector is scaled properly, it is transformed into the navigation frame. Then the

position of the feature is calculated based upon the LOS vector and the current navigation

state estimates. This approach is based on a few assumptions. These assumptions are

listed below.

• An IMU is available and is rigidly mounted relative to a digital camera.

• The time images are taken is known relative to IMU measurements.

• The initial navigation states are known along with their statistics.

• There is sufficient alignment time for initial feature extraction.

• Tracked features are stationary.

• The IMU, camera, and GLRS are co-located.
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3.4 Line of Sight Vector Calculations

In order calculate the position of a feature, an accurate depth measurement to the

feature is needed. A GLRS can provide this depth measurement, provided it can be pointed

at the feature.

3.4.1 Rotation Calculation. A camera provides a homogeneous line of sight vector

sc to the feature. This line of sight vector can be calculated from Equation (2.8). It is

repeated here for clarity.

zu =
1

scz
Tpix
c sc

Taking the inverse of Tpix
c yields

sc = sczT
c
pixzu (3.41)

This transformation takes the undistorted (x, y) pixel location, zu, and creates a line of

sight vector towards the feature in the camera frame. sc is then normalized to create the

homogeneous LOS vector, sc.
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In order to point the GLRS at a feature, the homogeneous LOS vector must be

rotated into the gimbal frame. If it is assumed that the GLRS, IMU, and camera are co-

located, then the transformation between frames consists only of rotations. To rotate the

homogeneous LOS vector into the gimbal frame, it must first be rotated from the camera

frame to the body frame. This is done by

sb = Cb
cs
c (3.43)

where
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To move from the body frame to the gimbal frame the following transformation is

used:

sg = C
g
bs
b (3.45)

where

C
g
b =
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The elevation, el, and azimuth, az, angels can be measured based on the commanded pulse

width to the gimbal servos [3]. Equation (3.46) can be re-written as

C
g
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3.4.2 Offset Correction. The vector sg is the LOS vector pointing at the feature

in the gimbal frame. It is important to note that any disparity that exists between the

camera and the GLRS will cause a offset between the GLRS beam and the feature location,

regardless of distance. An illustration of this is shown in Figure 3.15.

A method to remove this offset is to use the range reading (zl) from the GLRS to

adjust the azimuth and elevation commands to the gimbal.

coffset = f(zl); (3.48)

The correction term, coffset, is a function of distance only, and can be found by calibration.

Once the initial range to the feature is determined the correction can be made and the

gimbal LOS vector can be recalculated. If both the vehicle and the feature are station-

ary, sg can now be used to calculate the feature’s position by scaling it with the range

measurement. The next section discusses accounting for vehicle movement.

3.4.3 Correcting for Translation and Rotation. The gimbal LOS vector sg is only

valid at the time the image is captured if the vehicle is moving. To correct for vehicle
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Figure 3.15. An offset between the camera and the GLRS re-

sults in an identical offset between the laser beam and the feature

location.

movement, the navigation filter’s estimates of rotation are used. If a two degree of freedom

(azimuth and elevation) gimbal is used, then a correction for rotations can be calculated

based upon the filter’s current estimates of yaw,ψcurr, and pitch, θcurr, and the estimates

of ψpix and θpix when the image was captured. The correction is applied in the body to

gimbal rotation matrix, i.e.,

C
g
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where

elcorr = el + (θcurr − θpix)

azcorr = az + (ψcurr − ψpix)

Because the corrections only depend on the relative change in yaw and pitch angles, errors

in the absolute measurement of ψ and θ do not affect the filters ability to correct for vehicle

rotations.
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Unfortunately, translations of the camera cannot be compensated for. In order to

correct for translations one would need to know the location of the feature, which is being

estimated. An illustration of this problem is shown in Figure 3.16. However, errors due to

translation will have a larger effect on objects that are close than objects at a distance. If

you’re traveling in a car looking at a distant mountain, it appears stationary. On the other

hand, a near traffic light appears to move much faster. Using this knowledge a possible

solution to dealing with camera translations would be to test the ratio of velocity to feature

distance measured by the GLRS. By dividing the vehicle velocity by the distance to the

feature, an approximation of the measurement error can be found. If the velocity is large

compared to the distance to the feature, then the resulting error will be large. If the

velocity is small compared to the distance to the feature, then the error will be small. The

resulting error calculation can then be compared to a threshold; if the error is too large a

new feature can be selected. Because of implementation restrictions, this test will not be

explored in this research. However, because it only takes roughly 5 ms/deg to steer the

gimbal [24], and the dynamics of the test platform are comparatively slow, the errors due

to translation are assumed to be small.

3.5 Measurement Model

Using the methods described in Sections 3.3 and 3.3.1, the distance from a feature

to the center of the gimbal/body frame can be calculated. To calculate the position of the

feature, the filter’s estimate of the vehicle’s position and the vector sb, properly scaled and

rotated into the navigation frame, are used. The GLRS provides the scalar zl, which is the

distance from the center of the gimbal/body frame to the feature, and it used to scale sb.

The vector sg is need in order to point the GLRS at a feature. However, to calculate

the feature’s position in the navigation frame, it is necessary to find sn, which can be done

by scaling and rotate the vector sb into the navigation frame.

The vector sb is calculated by scaling sb by the distance to the feature, zl.

sb = zls
b (3.50)
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Figure 3.16. In order to find the angle θ to correct for the

translation along B, the initial distance to the feature A would

need to be known.
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The rotation of sb into the navigation is accomplished by

sn = Cn
b s
b (3.51)

With the assumption that the IMU, camera, and GLRS are co-located, the feature’s posi-

tion tn can be found by vector addition.

tn = pn + sn (3.52)

Figure 3.17 shows an illustration of the geometry of the measurement.

Figure 3.17. Feature and vehicle position geometry shown in

the navigation frame. The feature location is found by vector

addition.

Equation (3.52) can be written as

tn = pn + Cn
bC

b
cT

c
pixzlzu (3.53)
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It is important to realize that the measurement of the feature location comes from

two different sensors. The camera provides the line of sight vector, and the GLRS provides

the proper scaling. Both of these measurements have errors associated with them. To add

the feature location to the EKF, the sensor needs to be modeled and the uncertainties

of the measurements need to be quantified. The measurement from the camera can be

modeled as

zu = Tpix
c sc + vcam (3.54)

where vcam is a zero-mean, white Gaussian noise source with units in pixels. sc is the

homogenous form of sc, where

sc = Cc
bC

b
n[t

n − pn] (3.55)

The laser range sensor can be modeled as

zl = scz + vzlaser (3.56)

where scz is the z component of the line of sight vector in the camera frame, and vzlaser is

a zero-mean, white Gaussian noise source with units in meters.

Once the position of a feature has been initialized, its estimated location is added to

the navigation state. By using the vehicle’s position estimate and the estimated location

of the feature, Equation (3.54) can be used to calculate an estimated LOS vector. This

estimate, along with the actual measurement provided by the camera, is then used to

update the filter states.

Both the camera model and the laser range sensor model are functions of the vehicle

position, the attitude of the vehicle, and the feature location, i.e.,

zu = f(pn,ψ, tn) (3.57)

zl = j(pn,ψ, tn) (3.58)
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In order to use the nonlinear measurement models above in an EKF, the observation matrix,

H, must be linearized about the current state estimate. This linearization is done by

taking the partial derivatives of the measurement model with respect to the measurement

parameters, pn, ψ and, tn,.

The partial derivative of Equation (3.54) with respect to pn is

Hzupn =
∂zu

∂sc
∂sc

∂sc
∂sc

∂pn
(3.59)
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and
∂sc

∂pn
= Cc

bC
b
n (3.62)

The partial derivative of Equation (3.54) with respect to ψ is

Hzuψ
=
∂zu
∂sc

∂sc

∂sc
∂sc

∂ψ
(3.63)

where

∂sc

∂ψ
=

∂

∂ψ
Cc
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b
n[I +ψ(×)](tn − pn) (3.64)

= Cc
bC

b
n(s

n×) , sn = tn − pn (3.65)

The partial derivative of Equation (3.54) with respect to tn is

Hzutn =
∂zu
∂sc

∂sc

∂sc
∂sc

∂tn
(3.66)
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where
∂sc

∂tn
= Cc

bC
b
n (3.67)

The partial derivative of Equation (3.56) with respect to pn is

Hzlp
n =

∂zl
∂scz

∂scz
∂pn

(3.68)

where
∂zl
∂scz

= 1 (3.69)

and

∂scz
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= [0 0 1]
∂sc

∂pn
(3.70)

= [0 0 1]Cc
bC

b
n (3.71)

The partial derivative of Equation (3.56) with respect to ψ is

Hzlψ =
∂zl
∂scz

∂scz
∂ψ

(3.72)

where

∂scz
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∂ψ
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b
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Finally, the partial derivative of Equation (3.56) with respect to tn is

Hzlt
n =

∂zl
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(3.75)

where
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= [0 0 1]Cc
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b
n (3.77)
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The partials can now be evaluated at the current state estimates and the total state

observation matrix H can be augmented with the evaluated partials.

In order to add the feature location estimate to the filter, the uncertainties of the

measurements must be known. This is calculated by summing the uncertainty in the

parameters in measurement Equation (3.53). This assumes parameters are independent.

The uncertainty in the measurement parameters is found by calculating the measurement’s

influence matrices.

The calculation of the influence matrices (G) is similar to the observation matrices.

The influence matrices define how much the individual uncertainties effect the overall

uncertainty of the feature location. The uncertainties that are considered in the calculation

of the feature location are:

• Position uncertainty of the vehicle

• Attitude uncertainty of the vehicle

• Pixel measurement uncertainty

• Depth measurement uncertainty

All other influence matrices are considered to be zero.

The influence matrix corresponding to the position uncertainty is defined as

Gtp =
∂tn

∂pn
(3.78)

Evaluating the partial derivative yields

Gtp = I3×3 (3.79)

This result is intuitive, as any uncertainty in the vehicle position will directly affect the

uncertainty of the feature location.

The influence matrix corresponding to the attitude uncertainty is defined as

Gtψ =
∂tn

∂ψ
(3.80)
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Evaluating the partial derivative yields

Gtψ = [Cn
bC

b
cs
c](×) (3.81)

The influence matrix corresponding to the pixel measurement uncertainty is defined

as

Gtzu =
∂tn

∂zu
(3.82)

Evaluating the partial derivative yields

Gtzu = zlC
n
bC

b
cT

c
pix
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The influence matrix corresponding to the range measurement uncertainty is defined

as

Gtzl
=
∂tn

∂zl
(3.84)

Evaluating the partial derivative yields

Gtzl
= Cn

bC
b
cs
c (3.85)

The influence matrices needed by the EKF are now known. As mentioned earlier,

assuming they are independent, the uncertainty in the parameters can be summed to find

the total uncertainty in the feature location estimate, i.e.,

Ptt = GtpPppG
T
tp+GtψPψψG

T
tψ+GtzuPzuzuG

T
tzu

+Gtzl
Pzlzl

GT
tzl

+GtpPpψG
T
tψ+GtψPψpG

T
tp

(3.86)

where Ptt is the over all uncertainty of the feature location, Ppp is the uncertainty of the

vehicle position, Pψψ is the uncertainty in attitude, Pzuzu is the uncertainty of the camera

measurement, and Pzlzl
is the uncertainty of the laser range sensor. The matrices Pψp
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and Ppψ are cross correlation matrixes that define how the uncertainty in position effects

uncertainty in attitude and vise-versa.

Using Equation (3.86) it is possible to determine the theoretical uncertainty of the

feature location estimates given the uncertainties in the other measurements. This is

discussed in the following section.

3.6 Error Analysis

This section uses Equation (3.86) to calculate the uncertainty in the feature location

estimates. The sources of error that are considered are: vehicle position errors, attitude

estimation errors, pixel measurements errors, and range measurement errors. Table 3.1

shows average uncertainties in position, attitude, camera and range measurements by a

similar image-aided filter [25]. Using these values, the uncertainty in a feature’s location

given a nominal attitude and trajectory can be calculated.

For purpose of clarity, the body frame, navigation frame, and camera frame were

aligned and collocated with each other during this analysis. The feature’s location in the

navigation frame was at one meter in the positive y-axis, one meter in the negative z-axis,

and the depth (or position in the x-axis) was varied, as listed in Table 3.2.

Table 3.2 shows that, as the range to the feature increases, so does the uncertainty

in its location. As expected, because of the accuracy of the laser measurement, the uncer-

tainties in the y and z axis are greater than the uncertainty in the x axis. Table 3.2 also

shows that at close range, less than five meters, feature locations should be accurate to

within half a meter. In the following chapter, test results are presented which verify this

error analysis.
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Source Uncertainty

pn 0.25 meters

ψ 2 degrees

zu 1 pixel

zl 0.01 meters

Table 3.1. Average uncertainty in position, attitude, camera

and range measurements. The values were derived from previous

research [25].

Feature Range Feature Location Uncertainty

100 σx = 3.18, σy = 18.68, σz = 18.68

50 σx = 1.61, σy = 9.34, σz = 9.34

20 σx = 0.24, σy = 3.74, σz = 3.74

10 σx = 0.08, σy = 1.88, σz = 1.89

5 σx = 0.05, σy = 0.46, σz = 0.46

Table 3.2. Feature location uncertainties, units are in meters.

Note that closer features have less uncertainty.

47



IV. Results

Simulated and real world data were collected and analyzed in order to determine if the

methods introduced in the previous chapter are valid. This chapter details the simulation

environment, real world hardware/software setup, and data collections experiments that

will be used to draw conclusions in the following chapter.

First, the hardware and software that were developed and used are presented. This

is followed by a simulated flight experiment. After simulation, an experiment to test the

GLRS’s ability to estimate feature locations is performed. Then a data collection run,

using the Vicon motion capture system, is used to gather truth data to compare against

the navigation filter’s estimates. Finally, an eleven-minute data collection run through a

hallway is performed and compared against similar stereo vision experiments.

4.1 Hardware Overview

Four main components are needed to test the monocular vision localization algorithm;

a gimbaled laser range sensor, an IMU, a digital camera, and a computer. Figure 4.18 shows

a block diagram of the key components and the sensor interfaces.

The key component for this research is a laser range sensor. There are many com-

mercial laser range finders, however a sensor that has high precision (millimeter accuracy),

long range (greater that 50 meters), and small size was desired. For this reason, the Fluke

416D Laser Distance Meter [26] was chosen. This sensor is accurate within approximately

1.5mm and has a range of sixty meters. Unfortunately, this sensor does not have an in-

terface other than the LCD screen. Attempts were made to interface the unit with a

micro-controller; however, these attempts were unsuccessful.

The laser range sensor was mounted to a Pandora pan and tilt gimbal [27]. This

gimbal uses standard hobby-style analog servos (HS-81 and HS-65HB) to rotate the sensor.

Figure 4.19 shows the laser range sensor mounted on the gimbal.

The GLRS is mounted so that its nominal xc-axis is aligned with the camera’s zc-

axis. Also, it is mounted as close as possible to the camera without impeding the gimbals’

movement. The IMU is mounted behind the gimbal, again as close as possible to the camera
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Figure 4.18. Hardware block diagram with sensor interfaces.

The measurements made by the laser range sensor are recorded

by the computer keyboard, due to issues with the sensor interface.

without impeding the GLRS. The IMU’s x-axis is aligned with the camera’s zc-axis and

the gimbals’ nominal xc-axis, as shown in Figure 4.20.

In order to reduce the weight of the system, a small commercial IMU and a lightweight

web camera were chosen. While there are many commercial IMUs available the device used

in this research is the Analog Devices ADIS16355 [28]. The ADIS16355 specifications are

shown in Table 4.3. The web camera has a resolution of 320x240 pixels.

The total weight of the experimental setup is 195 grams, which is light enough to be

carried by a quadrotor MAV such as the one in [29]. Unfortunately, because the distance

measurements from the GLRS needed to be read from the LCD screen and typed into

the computer, actual flight tests were not performed. An alternative approach taken was

to mount the experimental setup as shown in Figure 4.19 to a cart, see Figure 4.21. An

advantage of this approach is that the data from the sensors could be sent to a laptop

computer without weight restrictions.
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Figure 4.19. Experimental hardware. The laser range sensor is

mounted to the gimbal directly above the camera and in front of

the IMU.

Figure 4.20. Experimental hardware alignment. The camera,

GLRS, and IMU are aligned in a row.
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Parameter Value (Units)

Sampling interval 10 (ms)

Gyro bias sigma 0.015 (deg/s)

Gyro bias time constant 2∗ (hr)

Angular random walk 4.2 (deg/
√
hr)

Accel bias sigma 0.7 (mg)

Accel bias time constant 2∗ (hr)

Velocity random walk 2 (m/s/
√
hr)

Table 4.3. The ADIS16355 IMU specifications. An asterisk (∗)
denotes estimated values
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Figure 4.21. Experimental platform. Data from the cam-

era, IMU, and GLRS are all sent to the laptop computer to be

recorded.
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Because flight tests were not conducted, data from the sensors was gathered by

the computer and later used in the navigation filter. The images, IMU data, and range

measurements were recorded using a custom-built graphical user interface (GUI). The GUI

uses an open source computer vision library, OpenCV. Images were time tagged and used

at roughly 2 frames per second. Using the Shi and Tomasi’s method [30], features were

extracted and a pointing vector was calculated to aim the GLRS at a feature. The Shi

and Tomasi’s method was used during data collections for increased speed, but SIFT was

later used on the gathered data in the navigation filter. Once the distance to a feature was

recorded, a new feature was selected. The pixel location, range data, and images were all

time-tagged relative to the IMU’s 100Hz clock.

4.2 Simulation Experiment

Simulated images and flight data were generated in MATLAB and the Profgen trajec-

tory generation software [31]. In MATLAB a 40 meter hallway was created with simulated

features. The Profgen software tool was then used to create a reference trajectory through

the hallway. The trajectory created was for a level vehicle (zero roll, pitch, and yaw) that

is stationary for 60 seconds then moves North through the hallway at 0.5 m/s until it

reaches the end of the hallway. Figure 4.22 shows an illustration of the simulated hallway

and trajectory.

Figure 4.22. Simulated hallway. Simulated features are gener-

ated along the flight path of the vehicle.
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Inertial data was generated by subjecting the true angular rates and specific force

data to random measurement errors based on the IMU specifications in Table 4.3.

The simulations were based off the actual IMU and camera models that were used

later for real data collections. Thus, the simulation results should be consistent with real

world performance.

Once all the necessary data was generated, the simulated sensor data was processed

by the navigation filter. During simulation only one feature could be added to the tracker

per image, and a maximum of 12 features were tracked at any one time. Also, pixel noise

was added to the simulated features to simulate optical distortions.

The performance of the navigation filter was tested using the ensemble statistics of

100 simulated hallway runs. Figures 4.23 and 4.24 show the ensemble position and attitude

errors.

Figure 4.23. The ensemble statistics of error in position are

shown, along with uncertainty bounds. The estimated one sigma

uncertainty in the Northern trajectory is greater than the other

two, but is still less than half a meter.

54



Notice that, after alignment, the filter estimates appear to be within the one-sigma

bound more than 63% of the time with several outliers. This indicates that the filter may

need to be tuned by adjusting the measurement and model uncertainties.

The ensemble data shows larger errors and uncertainty in the Northern position

estimates than in the other two axes. This is attributed to lower observability in the

direction of travel; recall that depth is only measured once during feature initialization.

Also, the yaw axis has greater errors and uncertainty than either of the other two attitude

axes; however, it is still accurate to within less than a degree on average.

A root-sum-square (RSS) calculation was performed to calculate the overall horizon-

tal, vertical, and attitude errors. The results are shown in Figures 4.25 4.26 and 4.27.

Figure 4.24. The ensemble statistics of error in attitude are

shown. The filter estimates are constrained within a degree on

average over a 110 second period.
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Figure 4.25. Simulated RSS horizontal error. The horizon-

tal error is constrained to less than 30 centimeters. Note that

the errors grow after 60 seconds, which is when the position and

attitude alignments stop.
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Figure 4.26. Simulated RSS vertical error. The vertical error

is constrained to less than 5 centimeters.
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Figure 4.27. Simulated RSS attitude error. The attitude error

is constrained to less than a degree.

Based on the ensemble statsics, the RSS horizontal error in position is constrained

to within 30 centimeters. The vertical error is constrained to within 5 centimeters. The

attitude error is less than a degree.

The simulated results show that an image-aided filter using a GLRS can accurately

estimate a vehicle’s trajectory and attitude. To test the validity of the simulation results,

real data must be gathered and analyzed. Real world data is presented in the following

sections.
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4.3 Feature Location Test

In order to gain confidence in the GLRS’s measurements, an experiment was con-

ducted to test the accuracy of the calculated feature location. The experimental setup

shown in Figure 4.21 was placed at a known location, then position and attitude align-

ments were performed. During the alignments, the navigation filter estimated four feature

locations. Figure 4.28 shows the features that were used as well as a map with their

estimated positions.

Figure 4.28. The features used are shown with a red cross. On

the bottom is a map of the area used and the estimated position

of each feature.

A tape measure was then used to measure the location of the features relative to

the IMU, which was positioned at the center of the navigation frame. Table 4.4 shows the

error between the estimated feature locations and the measured locations in the order in

which features were added to the filter.
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Order added xn error yn error zn error

1. -0.03 meters 0.08 meters -0.05 meters

2. -0.12 meters 0.07 meters 0.05 meters

3. -0.04 meters 0.04 meters -0.9 meters

4. -0.06 meters -0.02 meters 0.03 meters

Table 4.4. The error between the estimated feature locations and

the measured locations are shown. Errors are in the navigation

frame.

If the position or attitude alignments were not performed, errors in the filters esti-

mates would affect the feature location estimates. This emphasizes the need for both a

position and attitude alignment while the first few features are initialized. As predicted in

Section 3.5, Table 4.4 shows the errors in the feature locations are less than half a meter.

In fact the errors are generally within a few centimeters. It is important to state that many

more data samples are needed before statistical categorizing the accuracy of the system.

While the above results are not statistically meaningful, they do, however, give con-

fidence in the GLRS’s ability to calculate accurately a feature’s location. Then next step

will be to test the navigation filter’s ability to produce accurate position and attitude

estimates.

4.4 Vicon Experiment

To be able to determine the accuracy of the navigation filter’s output, both in posi-

tion and attitude, truth data must be available. This truth data was provided by the Vicon

motion capture system. This system provides accurate, high-rate, three-dimensional posi-

tion and attitude estimates. The estimates are produced using measurements from eight

cameras and reflective markers that are placed on the object to be tracked. The camera

measurements are then fed into the Vicon’s IQ software [32] to produce a final trajectory.

In this experiment the test platform was allowed to run a position and attitude

alignment for sixty seconds. While the alignment was performed, features were located

60



and added to the filter. A total of nine features were added before the platform was moved.

After initializing the features, the platform was yawed in both directions then returned to

center, after which, the platform was moved along the negative xn-axis. Figure 4.29 shows

a map with the platform’s estimated trajectory and feature locations.

During alignment it was noted that some features that were initialized were dropped

as soon as the laser beam was moved to another feature. This happened predominately

when the laser beam was pointed directly at a lightly colored feature. A total of twelve

features were initialized, yet three features had this problem and were dropped by the

filter. The remainder of the experiment used only nine features. Figures 4.30 and 4.31

show the true and estimated trajectory and attitude during the experiment.

Figure 4.29. A map of the Vicon room and the estimated

platform trajectory. Features are shown as red crosses with circles.
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Figure 4.30. Position trajectory. The estimated trajectory is

within a tenth of a meter to the true trajectory. The true trajec-

tory is almost always within the one sigma standard deviation.
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Figure 4.31. Attitude trajectory. Only the yaw axis was excited

during this experiment, however there is a jump in pitch near the

end of the run.
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The filter’s estimated trajectory closely follows the true trajectory. Figure 4.31 shows

a jump in pitch near the end of the run, however the platform was kept level. This jump

maybe explained by the Vicon camera’s losing sight of a sufficient number of markers. De-

spite this, the estimated trajectory was within two-tenths of a meter to the true trajectory,

and the attitude estimates were roughly within a degree, although only the yaw axis was

excited during this experiment.

Figures 4.32 and 4.33 show the errors committed by the filter. The errors, as ex-

pected, are within the one sigma bound at least sixty-three percent of the time. This is

an indication that the filter is properly tuned. Tuning was accomplished by adjusting the

measurement model’s uncertainties.

Figure 4.32. Position error. The one-sigma uncertainty bounds

the errors sixty-three percent of the time. The filter’s position

uncertainty is less than a tenth of a meter.
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Notice that the Northern trajectory has greater error and uncertainty than either

the East or vertical axis. This agrees with the simulation and is again attributed to low

observablity. Most of the features used by the filter in this experiment were near the center

of the image plane. Picking features near the edges of the image plane and near the center

would help with observability.

Figure 4.33. Attitude error. The error in attitude is generally

constrained to less than half a degree. The errors in the zn-axis

happen when the platform yaws.
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The error in attitude is generally constrained to less than half a degree. The errors

in the zn-axis happen when the platform yaws. The errors may be due to a misalignment

between the image capture time and the IMU time. If the other two axis were excited,

this misalignment error may have been observed. Figure 4.33 also shows a bias in the yaw

estimate after it is excited. Notice that there is also a large error in pitch near the end of

the data. This is attributed to the cameras losing sight of marks.

An RSS analysis was performed to gain a better understanding of the overall errors

committed by the filter and to compare results to similar stereo aided filters. The horizontal

RSS errors are shown in Figure 4.34. The errors are constrained to less than 0.25 meters,

which is similar to the RSS horizontal errors of the stereo and monocular filters described

in [25]. This result is also consistent with the results of the simulation. Figure 4.35 shows

the RSS vertical errors.
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Figure 4.34. Root-sum-squared horizontal errors. The errors

are constrained to less than 0.25 meters. Note that the errors

grow after the alignments stop.
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Figure 4.35. Root-sum-squared vertical errors. The errors are

constrained to less than 0.15 meters.

The vertical error is smaller than the horizontal, which is consistent with the sim-

ulation, and is constrained to less than 0.15 meters. Again, this result is consistent with

RSS vertical errors from similar stereo and monocular filters over the same flight time.

Figure 4.36 shows the RSS errors in attitude. The spike at the end of the plot is from

when the platform was rotated. Even with this spike the errors are constrained to less than

1.5 degrees. Again, this is consistent with other vision-aided filters. One more experiment

was conducted to better compare this research to previous vision-aided research at AFIT.
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Figure 4.36. Root-sum-squared attitude errors. The yaw axis

is the greatest contributor of error; it was also the only axis that

was excited.
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4.5 Hallway Experiment

A hallway experiment was conducted in order to further compare this research to

other vision aided filters studied at AFIT. In this experiment the platform was positioned

at a known location at the end of a hallway. Figure 4.37 shows a picture of the hallway

used.

Figure 4.37. The hallway used for testing. This is the same

hallway that was used in previous research [2] [25].

This hallway has points that were surveyed and marked. These surveyed points were

used as starting and ending points. The platform was pushed as straight as possible down

the hallway periodically stopping to add more features. When stopped, no alignments

were performed. Only an initial sixty-second alignment was performed at the starting

location. Figure 4.38 shows the estimated trajectory of the platform overlaid on a map of

the hallway.
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Monocular
Laser Aided

Figure 4.38. Platform Hallway Trajectory Estimate

There is no truth data for the experiment except for the starting and ending positions,

and that care was taken to keep the platform level. At the end of the eleven-minute data

collection, the horizontal error was less than half a meter. Possible sources of error could

be from loss of features during movement. In fact, there were times during the flight when

only two features were tracked.

Figure 4.39 shows the vertical estimate for the flight. Note that the altitude should

have stayed near zero for the flight, but it is off by almost two meters. Also, there seems

to be a stairway effect. The jumps occur at the same time the platform is moved. Because

the large majority of features were tracked along the ceiling, there is low observability in

the vertical direction. When the platform is moved forward the pixels move up in the

image plane, and the filter cannot distinguish between forward movement and movement

in the positive zn-axis. This results in a bias in the positive zn-axis.
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Figure 4.39. Platform hallway vertical trajectory. There is a

stairway effect caused by periodic stops to add features to the

navigation filter.

This bias can also be seen in the filter estimates of attitude. If the filter thinks

it’s moving in the negative z-axis, there should be a decrease in the estimate of pitch.

Figure 4.40 shows this decrease. By the end of the run the filter’s estimate of pitch should

be close to zero, since the cart was kept level, however it’s off by 2 degrees. Also, because

the cart was kept level, roll should be close to zero, however, there are errors in roll as

well. These errors could be due loss of features during movement, this could also be true

for the pitch axis.
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Figure 4.40. Filter’s estimate of roll, pitch, and yaw. Note that

pitch is consistantly decreasing.

To verify this theroy, a simulation was run in which only features near the top of the

image plane were used. Figure 4.41 shows a 120 second simulated data run which only

used features near the top of the images. A bias again, appears in the positive zn-axis,

which agrees with real world results presented above. There is also a clear bias in the East

position estimate, which is due to an error in the yaw estimate. Figure 4.42 shows a small

bias in the pitch axis as well, and a much larger bias in the yaw axis. While this is only

one data set, and futher experiments are need, the results agree with real data results.

Comparing these results with previous research shows similar performance. In fact,

the same bias in the positive zn-axis is seen in [25] in both monocular and binocular filters

during data collections in the same hallway.
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Figure 4.41. Position error of simulated data with near ceiling

features. Notice that a bias appears in the positive zn-axis and

the East or yn-axis.

Overall, the results in this chapter show that the monocular laser-aided filter success-

fully estimates the true navigation states, and agrees with simulated data. Furthermore,

the monocular laser-aided filter appears to perform at the same level as other stereo and

monocular aided filters. In the next chapter conclusions and future work are presented.
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Figure 4.42. Attitude error of simulated data with near ceiling

features. There is a bias in the pitch and yaw axis.
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V. Conclusions

The goal of this research was to develop a straightforward way of estimating depth to

features. This information is then used to estimate locations of features that are tracked

in order to aid an IMU.

The straightforward method presented here was to use a gimbaled laser range sensor

to estimate feature locations. Tests were performed to measure the accuracy of the GLRS’s

estimates. Using a tape measure, the estimated feature locations were shown to be accurate

to within a few centimeters.

Simulations were then used to estimate the theoretical accuracy of an image-aided

filter that had feature depth measurements provided by the GLRS. The simulations showed

that the filter should be able to estimate trajectories to within three-tenths of a meter and

attitude estimates to within a degree.

Following this, real world data runs were conducted to estimate the accuracy of

the image-aided filter using the GLRS’s estimates. The data runs showed that the filter

could produce accurate trajectories, on the same level as previous image-aided filters. It

was noticed that at times the laser beam interfered with the tracking of SIFT features.

This happened more often with features that were close to the test platform and were

surrounded by lightly colored objects, such as a white wall.

5.1 Future Work

The main obstacle faced during this research was interfacing a laser range sensor with

a computer. Without this ability, real time experiments were not practical. In hindsight,

a better choice for a laser sensor may have been the Aerius Photonics MLR100 miniature

Laser Rangefinder [33]. The MLR100 has a range of 80 meters and is accurate to 19

centimeters. The MLR100’s main advantage is that it has a USB interface. With the

ability to interface directly a laser range sensor with the navigation filter, features could

be added to the filter as needed. Further work needs to be done to test the monocular

laser-aided filter’s performance under a wider variety of flight profiles.

75



More work needs to be done in feature selection. When features are not well spread

over the image plane, observability issues arise. Poor observability can cause the filter

to commit estimation errors. Further work should be conducted to test alogithums that

maximize observability and feature tracking time.

Also, statistical tests should be conducted in order to quantify the accuracy of the

GLRS’s pointing vector. If it is found that the GLRS can accurately point at features to

within a small distance, candidate features could be selected that have a minimum scale,

only large features are selected. This would help insure the range measurement is from

the candidate feature and not an object in front of or behind the feature. A Monte-Carlo

analysis of repeated data collections would provide these statistics.

It is possible that other techniques can be developed to help aid the navigation filter

by using the GLRS. For example, if the filter has a sufficient number of features, or there

are no good features to be found, the GLRS could still be used to measure distances to

objects. The GLRS could be pointed directly in front, above, below, or to the sides of the

vehicle to measure the distance between the platform and walls, ceiling, and the floor.

5.2 Summary

This research developed, built, and tested a GLRS for an image-aided filter. The

performance of the navigation filter showed that position could be estimated to within

tenths of meters; however, there are observability issues that arise when features are not

well spread over the image plane. This could lead to problems in scenes where there are few

distinct features. Overall, the result showed that accurate trajectories could be produced

without using terrain constraints or multiple cameras. These findings will help designers

and engineers build smaller and more accurate UAVs for commercial and military use.
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