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Abstract

This research details the effect of spatial resolution on target discrimination in

Synthetic Aperture Radar (SAR) images. Multiple SAR image chips containing tar-

gets and non-targets are used to test a baseline Automatic Target Recognition (ATR)

system with reduced spatial resolution. Spatial resolution is reduced by lowering the

pixel count or synthesizing a degraded image by filtering and reducing the pixel count.

A two-parameter Constant False Alarm Rate (CFAR) detector is tested, and three

feature sets, size, contrast, and texture, are used to train a linear classifier and to

estimate probability density functions for the two classes. The results are scored us-

ing Area Under the Receiver Operating Characteristic (AUROC) curve. The CFAR

detector is shown to perform better at a lower resolution. All three feature sets per-

form well together with degradation of resolution; separately the sets have different

performances. The texture features perform the best because they do not depend

on the number of pixels on the target; the size features perform the worst for the

same reason. The contrast features yield improved performance when the resolution

is slightly reduced.
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The Effect of

Synthetic Aperture Radar Image Resolution

on Target Discrimination

I. Introduction

Synthetic Aperture Radar (SAR) is an imaging technique that allows for operations

in all weather conditions, day/night, and with great distance between the system and

the scene to be imaged. SAR imaging has been utilized by both military and civilian

sectors [4]. Uses include terrain mapping and surveillance operations, which both

lead to a high volume of data. This high volume leads to problems in management

of the system; for example in 2004 the Global Hawk was at 30% of usage because

image analysts could not keep up with data being collected [8]. SAR has the ability to

generate enormous amounts of data. Automatic screening of images to cue operators

to zero in on areas of interest could reduce this burden.

Automated systems that screen images for targets are generally referred to as

Automatic Target Recognition (ATR) systems. The study and development of ATR

systems is a relatively young field that has roots in three fields: mathematics, pattern

recognition, and computer science. Also, ATR is typically designed to take advantage

of the unique physical traits of the physical system. Thus ATR that performs well on

one type of system may not transfer to another. For example, an ATR system that

performs facial recognition may not be able to distinguish different speech traits.

1.1 Motivation

The use of a SAR system to map large areas of the earth to detect possible

objects of interest is a task that allows aircrew to have safe stand-off distance while

monitoring the area. The images that are produced may not be sharp and clear,

which makes it difficult for a human operator to find an object. Once an object is

1



located, the operator typically verifies the area with another sensor. This is a slow

and ineffective way to operate, which motivates the need to understand how SAR

image quality, as defined by its spatial resolution, affects ATR performance.

1.2 Research Objectives

The goal of this research is to show that an ATR can perform on lower resolution

images and still maintain a high level of detection with minimal false alarms.

1.3 Research Scope and Assumptions

The scope of this research is limited to SAR images from the Moving and Sta-

tionary Target Acquisition and Recognition (MSTAR) data set collected by the Air

Force Research Laboratory and publicly distributed through the Sensor Data Man-

agement System website. Testing is limited to the amplitude of the data because

the MSTAR data set is distributed in a form that has an unknown weighting. Not

knowing the weighting creates a problem in retrieving the original data. In order to

reduce the resolution a spatial filter is used that works on the amplitude of the image

only.

1.4 Organization

The remainder of this document is organized as follows. Chapter 2 provides

background on SAR images and ATR process. Chapter 3 describes the SAR images

used in this research and how they are manipulated to produce the desired image

quality. Chapter 4 details the ATR process that is used to discriminate targets.

Chapter 5 provides the results for ATR versus SAR image quality. Chapter 6 provides

research conclusions and recommends future research.

2



II. Background

2.1 Overview

This chapter provides a survey of radar systems properties and how they relate

to Synthetic Aperture Radar (SAR) image quality, mainly the spatial resolution of the

image. Spatial resolution is shown to depend on the PSF of the system, where a pixel

in the image is an estimate of the Radar Cross Section (RCS) of the ground sample

distance. An Automatic Target Recognition (ATR) that has been used to perform

target discrimination is discussed. In order to assess the effectiveness of an ATR, a

Meaure of Performance (MOP) is introduced. MOP uses Probability of Detection

(Pd) and Probability of False Alarm (Pfa), which can be graphically represented by a

Recsiver Operating Characteristic (ROC) curve. The ROC curve can be summarized

in a single performance metric, known as the AUROC.

2.2 Radar Fundamentals

Radar is a detection system that exploits the use of the physical properties of

Electro-magnetic (EM) fields. A known signal is generated and transmitted, through

an antenna to propagate into the scene of interest. These fields interact with the

objects in the scene and are scattered. A receiving antenna (which can be the same

or different antenna than the transmitting antenna) is used to sense the scattered

fields. These received signals are filtered and sampled to estimate the amplitude and

distance of the reflecting object.

Basic radar systems use a pulsed signal to detect the distances of reflecting

objects. The pulse signal is transmitted and when it interacts with an object the EM

fields are scattered back to the radar. The returned signal is convolved with a time

reversal of the transmitted signal; this is known as a matched filter. The expected

measure of distance is

rdist =
cTr
2

, (2.1)

where Tr is the round trip time and c is the speed of light in the medium.

3



After the radar system transmits a signal, it has a pre-determined time in which

to transmit another pulse. This waiting period is called Pulse Repetition Interval

(PRI), Tp, and the reciprocal is called Pulse Repetition Frequency (PRF), fp. The

PRF is used to detect the unambiguous range of targets, expressed as

Run =
Tpc

2
=

c

2fp
. (2.2)

Radars use an antenna to transmit the signal giving the signal directivity and

gain, which can be expressed by the antenna pattern. The azimuth resolution for a

single transmission is

raz =
λD

l
, (2.3)

where D is the distance from the antenna, l is the length of the aperture, and λ is

the wavelength of the signal.

2.3 Synthetic Aperture Radar (SAR) Principles

The use of radar to form an image dates back to 1951 when Carl Wiley developed

a method known as Doppler beam sharpening [14]. SAR images are produced from

the relative motion between a scene and the radar. This motion allows for the radar

antenna to sample the scene, thus synthesizing a larger aperture. Figure 2.1 illustrates

a simple collection path. The radar platform moves in the y direction (azimuth) with

a velocity v and transmits pulses in the x direction (range) at different points. The

return pulses are combined in phase to produce a larger synthetic aperture, thus

allowing for greater resolution than that of the original antenna.

SAR image properties can be separated into two different categories; system

and scene [7]. The system properties are under the control of the system designer,

and have predictable functionality. The scene properties are generated from the scene

being imaged.
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Figure 2.1: The radar platform moves with a velocity v in the y-direction while the
antenna points in x-direction. At each point p1, p2, and p3 the system samples the
scene.

2.3.1 System Properties. SAR system performance is described by its Point

Spread Function (PSF), which depends on the bandwidth, B, of the radar signal and

the collection length. Table 2.1 shows how range and azimuth spatial resolutions

are calculated based on the collection mode. The two collection modes are stripmap

and spotlight. The data used for this research was collected in the spotlight mode,

but both modes are discussed for completeness. In stripmap, the aircraft flies in a

straight path and the signal is transmitted perpendicular to the direction of flight. In

spotlight, the aircraft steers the beam to stare at the same swath of ground. Figure

2.2 depicts the two modes. Carrara [1] notes that differences in the modes are limiting

factors on azimuth resolution and scene coverage. In stripmap mode the beamwidth of

the antenna limits the azimuth resolution, and the data collection limits the azimuth

scene coverage. The spotlight mode limits the azimuth resolution by its data collection

length, and the antenna beam width limits the maximum azimuth scene coverage.
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(a) Stripmap

(b) Spotlight

Figure 2.2: [a] and [b] images show the collection method for the stripmap mode
and spotlight mode, respectively.

Table 2.1: System properties that define spatial resolution
Stripmap Spotlight

Range Resolution(∆x) c
2B

c
2B

Azimuth Resolution(∆y) l
2

λ
2∆θ

The PSF, which is the impulse response or response to a point target, is used

as a measure of image quality of the system by defining the spatial resolution by the

-3dB cutoff of the main lobe [11]. The PSF depends on the range resolution ∆x and

azimuth resolution ∆y [11]. The expected PSF is

PSF = sinc(∆x)sinc(∆y). (2.4)

SAR has an impulse response with sidelobes which cause blurring/smearing of the

image. Different types of windowing techniques can be used to suppress the sidelobes.
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Range is the distance perpendicular to the path of flight, and depends on the

bandwidth of the radar signal [4]. The signal model used most often for SAR is the

Linear Frequency Modulated (LFM) chirp model, because it allows for increased range

resolution through pulse compression [11]. The range resolution of a radar system is

determined by the ability to separate two closely spaced targets, and is shown to

depend on the inverse of the bandwidth B of the pulse [11] as

∆x =
c

2B
, (2.5)

which shows the predicted range resolution, ∆x, versus B. This result is from the

output of the matched filter, which maximizes the output signal to noise ratio [10].

Figure 2.3 shows the effect of bandwidth on range resolution for a simulation of

three point targets with 1.5 m spacing. A transmitted signal with a B of 100 MHz

corresponds to a ∆x of 1.5 m, which cannot resolve the point targets (see Figure

2.3 [a]). A transmitted signal with a B of 200 MHz corresponds to a ∆x of 7.5 m,

which is sufficient to resolve the three point targets (see Figure 2.3 [b]). Even though

the signal with a B of 100 MHz has a resolution equal to the spacing of the point

targets, it still could not resolve them because the response from each target is still

wide enough to corrupt the next target.

While the resolution in the range direction is determined by a single transmis-

sion, the azimuth resolution is more complicated, making SAR unique and allowing

for imaging capabilities. The azimuth resolution is also defined by its ability to sepa-

rate two objects. This resolution depends on the length of the aperture, wavelength,

and distance from the radar. However, it can be shown that with SAR, the azimuth

resolution only depends on half the length of the aperture [15], i.e.

∆y =
l

2
. (2.6)

This is the case for an aircraft moving in a straight path with the antenna looking

perpendicular, but if the antenna is steered to stare at an area, as is the case for
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spotlight, the azimuth resolution is determined by

∆y =
λ

2∆θ
. (2.7)
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(a) 100 MHz

(b) 200 MHz

Figure 2.3: The effect of bandwidth on discriminating point targets can be seen
in the [a] and [b]. Three point targets are located at 1998.5m, 2000m, and 2001.5m
[a] shows the output of the matched filter for a radar signal with a bandwidth of 100
MHz and the three point targets cannot be seen separated. [b] shows the output of
the matched filter for a radar signal with a bandwidth of 200 MHz and the three
individual point targets can be seen.
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2.3.2 Scene Properties. The system properties control spatial resolution,

but the scene makes up the content. The scene has three categories: noise, target,

and clutter. Noise and clutter can then be separated into sub categories to better

classify their effects. Noise in the image can be described as additive or multiplicative,

but these effects are not a part of this research and will not be discussed further.

2.3.2.1 Target. To detect a target, prior knowledge of its return signal

is needed. The target Radar Cross Section (RCS) describes the return echo from the

object, but any small changes in the look angle between the object and the radar can

greatly change the RCS. For SAR imagery this angle and wavelength dependence can

cause images of the same scene to look very different. Figure 2.4 illustrates this with

the BTR-60 imaged over varying azimuth angles. The brighter sides are on the side

of the radar, while a shadow is cast because of the lack of returned energy. An optical

photograph of a BTR-60 is shown for reference.

2.3.2.2 Clutter. The return from clutter is the largest competing factor

in the natural environment for target detection, by human operator or ATR. To model

clutter, everything in the desired environment is considered to affect the system, with

probability density functions used to model their effects. Much research has gone into

trying to measure, model, and predict the radar returns from natural clutter [15].

According to [10] the four most common distributions used are Rayleigh, log-normal,

Weibull, and K-distribution; the Rayleigh distribution is the most popular [10]. For

this research clutter is separated into two classes: natural and man-made. Natural

clutter is more dispersive and is easier to separate than man-made objects. Man-made

objects provide greater confusion for detecting targets of interest.
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(a) BTR-60 optical image

(b) BTR-60 collection of SAR images

Figure 2.4: [a] an optical image of a BTR 60. [b] a collection of SAR images of a
BTR60 as the angle between the radar and the vehicle is varied.
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2.4 Automatic Target Recognition (ATR)

The ATR method used in this thesis is based on the method developed at

Lincoln Laboratory [6]. It consists of three parts: prescreener, discriminator, and

classifier. The prescreener identifies image chips with objects of interest from full

scene imagery. The discriminator rejects image chips that do not contain targets of

interest. The classifier then puts the targets into different classes. Separating the

process into sections reduces the complexity and computational cost of the system.

2.4.1 Prescreener. Detection algorithms can use two different thresholding

techniques, global and adaptive. Global thresholding selects a threshold, and anything

greater than that value is flagged as a detection. This technique is very simple to

implement, but can cause numerous false alarms. Adaptive thresholding adjusts the

threshold by the local statistics around the test pixel.

A popular technique for presceening SAR images for targets uses the belief that

returns from man-made objects are stronger than those from the surrounding natural

clutter. A likelihood test is used, referred to as a two-parameter CFAR test [6]:

x− µc
σc

>
< γ, (2.8)

where x is the pixel under test, µc and σc are the mean and standard deviation of the

clutter, and γ is an adjustable threshold. The pixel is considered to be a target if it is

greater than the threshold and a non-target otherwise. This type of test assumes that

the clutter distribution is known and that the amplitude of the target pixel to clutter

statistic ratio is greater than some threshold. To determine the clutter, a square

annular region surrounding the test pixel is used to window the scene to determine

µc and σc. To ensure that the background clutter is not corrupted by the target, a

guard window is constructed around the test pixel as shown in Figure 2.5. It has

been noted [6] that this stage can be conducted at a lower resolution than the original
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Figure 2.5: CFAR test window depicting the test pixel area, guard area, and the
clutter area. This image illustrates the method to screen out the effects of a target
corrupting the clutter statistics.

image. Once a pixel is declared a target, then a section around the pixel is considered

a Region of Interest (ROI), and is sent to the discrimination stage.

2.4.2 Discriminator. Once the presceener identifies a ROI where a potential

target is located, the discrimination stage rejects regions containing clutter that pass

the detector. The properties of the target then need to be considered in order to

differentiate between objects. Three types of features are considered: size, contrast,

and texture. Properties of the target in the image are referred to as a feature. Different

types of discriminating features that can be used to separate targets from clutter are

covered in [3]. Following is a list of the three feature sets and a description of individual

features:
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Size Features

Mass is the sum of pixels in a binary image;

Diameter is the length of the smallest box that encloses all the bright

scatters in a binary image;

Rotational Inertia (normalized) is the second mechanical moment about

the center of the binary image;

Contrast Features

Peak CFAR is the maximum value in the CFAR image;

Mean CFAR is the mean value of the CFAR image;

Percent Bright is the percentage of pixels that exceed a predetermined

value;

Texture Features

Standard Deviation is the standard deviation of the image;

Fractal Dimension is the log difference of all one pixel size boxes and two

pixel size boxes that encompass all the bright scatters in the binary image;

Rank Filled Ratio is the ratio of the power in the brightest 5% scatters

versus the total power of the image;

These features have been shown to successfully separate image chips between man-

made and natural clutter [12]. The binary image is constructed from a threshold

test to select the brightest scatterers and set those pixel values to one in the image,

then zero out all others. The CFAR image is the output of the image chip where the

two-parameter CFAR detector is conducted on each pixel in the image.

Table 2.2 is from research done on the resolution and polarization of SAR images

and how ATR performance is affected [5]. The study only used two spatial resolutions,

1 ft and 1 m. Discriminating features that perform the best per resolution are indi-

cated. The study shows that three features perform well for both resolutions: ranked
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filled ratio, mass, and mean CFAR. This indicates that ATR can be conducted at

lower resolutions; the Lincoln Laboratory study stops at 1 m, but this research looks

at lower resolutions.

Table 2.2: Best Set of discrimination features from the work conducted at Lincoln
Laboratory [5]

Feature 1 ft × 1 ft 1 m × 1 m

Standard Deviation X
Rank Filled Ratio X X
Fractal Dimension X

Mass X X
Diameter

Normalized Rotational Interia
Peak CFAR X
Mean CFAR X X

Percent Bright

2.4.3 Classifier. Different techniques can be used to reduce the dimension-

ality of the data by mapping the data to a lower dimension. Linear Discriminant

Analysis (LDA), also referred to as Fisher’s LDA, is a commonly used technique [8].

LDA performs dimension reduction, while preserving the class discrimination infor-

mation as much as possible. LDA fails when the discriminatory information is in

the variance of the data and not the mean [13]. LDA projects n dimensional feature

spaces onto a line, known as the Fisher line, allowing for multi-dimensional problems

to be reduced to one dimension. The Fisher line maximizes the separation of the

between-class means while minimizing the in-class variance of the projected points,

or expressed as

J =
µ1 − µ2

σ2
1 + σ2

2

, (2.9)

where µ1 and µ1 are the mean for the two classes, and σ2
1 and σ2

1 are the variance

for the two classes [13]. Figure 2.6 [a] shows a three dimensional feature space of two

classes, generated by the normal (circles) and Rayleigh (triangles) distributions, and

the Fisher line. Figure 2.6 [b] shows the projection of the points onto the Fisher line.
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(a) Feature Space

(b) Project onto Fisher Line

Figure 2.6: [a] is the three dimensional feature space for the two classes (circles and
triangles) with the Fisher line, and [b] is the projection of the two classes onto the
Fisher line.
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The points for the classes on the Fisher line allow probability density functions

(pdfs) of each class to be estimated. Parzen windows can be used to estimate the

pdf of each class. A kernel function, such as a Gaussian, is located over each point

to estimate the pdf of each class, as seen in Figure 2.7. The variance of the Gaussian

kernel is adjusted until the sum of all in-class Gaussians is unimodal. Figure 2.8 shows

the estimated pdfs for the two classes. A threshold test on the Fisher line can be used

to determine the class of an image.

(a) Normal (triangles) class

(b) Rayleigh (circles) class

Figure 2.7: Example of Gaussian kernels applied to points in each classes.
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Figure 2.8: The projection of three feature points in each of the two classes (circles
and triangles) onto the Fisher line. Parzen windows are used to estimate the pdf of
each class. Here Parzen windows uses a Gaussian kernel over each point, then for
each class the variance of the Gaussian is varied until the sum produces a unimodal
function.
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2.4.4 Measure of Performance. To compare different ATR performances a

measure is needed. Probability of False Alarm (Pfa) and Probability of Detection

(Pd) are two of the most common Measures of Performance (MOP) that can be used

to describe the performance of an ATR. Pfa is the ratio of the number of non-targets

declared as targets to the number of non-targets tested. The Pd is the ratio of the

number of detected targets to the total number of targets:

Pfa =
Number of Non-Targets declared a Target

Total number of Non-Targets
(2.10)

Pd =
Number of Targets declared a Target

Total number of Targets
. (2.11)

The Receiver Operating Characteristic (ROC) is a graphical representation of

Pd versus Pfa. In [9] it is shown that the curve does not decrease and that each point

on the curve is from the threshold required to get that Pfa and Pd performance.

A ROC can be generated by testing a decision rule for varying thresholds, and

comparing results to truth to calculate Pd and Pfa for each threshold. To produce a

complete ROC curve the threshold must be varied so that Pd and Pfa have values from

0 to 1. Another method to produce a ROC curve is by sweeping a threshold across

two pdfs. Each pdf represents a different class, target class and non-target, as the

threshold is moved across the line the area of each of the pdfs is summed to calculate

Pfa and Pd. Figure 2.9 illustrates this technique. In Figure 2.9 [a] the threshold line

is indicated by the vertical black line, Pd is represented by the blue area and Pfa by

the red area. These values are shown in Figure 2.9 [b] where Pfa and Pd for that

threshold are indicated by a red circle. As this threshold line is moved the red circle

traces out the ROC curve.
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(a) Threshold test

(b) ROC

Figure 2.9: [a] shows two pdfs with a threshold line. The shade areas represent Pfa
(red) and Pd (blue) for the given threshold on the Fisher line. [b] is the corresponding
ROC curve with the threshold point, indicated by a red circle, showing the Pfa and
Pd point from [a].
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Figures 2.10 and 2.11 showstwo scenarios; varying the mean to increase the

separation of the two pdfs, and increasing the variance of one pdf, respectively. Figure

2.10 [a] shows four different cases of class separation, with each class represented by

a Gaussian distribution. For each of these cases the separation of the between-class

mean is different. This separation can be visually depicted by the ROC curves in

Figure 2.10 [b]. The two overlapping pdfs produce the chance line, but as they

separate the line is pulled towards the upper left corner. When the pdfs are non-

overlapping the ROC curve forms a right angle signifying good class separation. In

Figure 2.11 [a] four Gaussian distributions are shown with the same mean, but with

the variance of one class increasing. This causes the ROC in Figure 2.11 [b] to cross

the chance line, illustrating an ineffective test. Area Under the ROC (AUROC) is

used to describe the performance as a single value. An AUROC of 1.0 shows good

separation of the two classes, while a score of 0.5 indicates that the two classes have a

complete overlap and the test is useless. In Chapter 5 uses the AUROC to compare the

effectiveness of size, contrast, and texture features to separate target and non-target

classes in SAR imagery as we image resolution is reduced.
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(a) Gaussian distribution

(b) ROC curves

Figure 2.10: [a] Gaussian distributions that have unit variance with different means.
[b] ROC curves, illustrating the separation of the distributions in [a]. [c] Gaussian
distributions with one having zero mean and unit variance and the other with zero
mean and increasing variance.
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(a) Gaussian distribution

(b) ROC curves

Figure 2.11: [a] Gaussian distributions with one having zero mean and unit variance
and the other with zero mean and increasing variance. [b] ROC curves, illustrating
the effect of increasing variance in [c]. Notice that as the variance increases the ROC
curve becomes more vertical, indicating a lack of class separation.
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III. Models and Data Generation

3.1 Overview

This chapter presents the SAR data set used for this research. The images are

distributed in fixed 1 ft × 1 ft resolution, and the spatial resolution of the images

is reduced in two different manners, pixel count reduction and filtering followed by

downsampling.

3.2 SAR Image Set

The MSTAR public data set is used for this research [8]. It is taken from a single

channel X-band collection with a resolution of 1 ft × 1 ft in the spotlight mode. It

contains a large set of target and non-target (clutter) image chips. Figure 3.1 shows

four image chips; [a], [b], and [c] are a T-72, ZSU-23-4, and BTR-60, respectively,

and [d] is a clutter image chip. The data is distributed in complex-value form with

unknown weighting. Weighting is normally applied to suppress the sidelobes of the

PSF. Unknown weighting impedes resolution reduction. Normally, the best way to

reduce the resolution of complex imagery is to:

1. Compute 2D FFT;

2. Remove weighting;

3. Sub-divide aperture (frequency domain);

4. Re-apply weighting to sub-aperture;

5. Compute 2D inverse FFT.

Since the weighting is unknown, this technique cannot be used. Instead, we consider

only the image amplitude and study two alternative approaches–pixel reduction and

filtering degradation–to reduce image resolution.

3.3 Spatial Resolution Degradation

Spatial resolution is varied in two manners; reduction of pixel count and spatial

filtering followed by downsampling. Only three variations of spatial resolutions are
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(a) T-72 (b) ZSU-23-4

(c) BTR-60 (d) clutter

Figure 3.1: Examples of MSTAR image chips with 1 foot resolution.

produced; 2 ft, 4 ft, and 8 ft for both the x and y directions. The lowest spatial

resolution considered is equal to the minimum target width. Resolution in the x

and y direction is varied independently, resulting in sixteen combinations of x-y pixel

resolution.

3.3.1 Pixel Reduction. Reduction in pixel count represents a reduced reso-

lution, allowing for the same image to be processed with less pixels. The pixel count is

reduced by averaging adjoining pixels to match the desired resolution; i.e. averaging

a 2 × 2 pixel block into 1 pixel for 2 ft resolution. Figure 3.2 shows the same image

with different pixel counts. Figure 3.2 [a] is a zoomed in image of a T-72, Figure 3.2

[b] the pixel count reduced by 2 in both directions, representing a spatial resolution
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of 2 ft × 2 ft, Figure 3.2 [c] and Figure 3.2 [d] are reductions of 4 and 8, respectively,

of the original image.

(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 3.2: Effect of pixel averaging to reduce image resolution for a MSTAR image
of a T-72 main battle tank that is centered in an open field.

3.3.2 Degraded Images. Pixel count reduction degrades the image, but it

does not accurately model a collection where the PSF of the system has a wider

mainlobe, corresponding to a decrease in spatial resolution. To simulate a coarser

resolution than the original, the image is filtered with the following modified Hamming

window:

H[p] = 0.54 + 0.46cos
2πp

2−mX
, (3.1)

and then reduced in pixel count as described in [2]. Here X is the length of the x

dimension of the original image, p is defined from 0 to X-1, and m is the reduction

factor, which is the log2 value of the desired coarser resolution. The 2-D modified
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Hamming window is defined by:

H[p, q] = H[p]H[q], (3.2)

where q is defined from 0 to Y -1, and Y is the length of the y dimension. The

steps to degrade the image are as follows: take the Fourier transform of the image,

multiply it with the filter H[p, q], take the Fourier transform of the product, and then

downsample pixel count to match the simulated resolution. Figure 3.3 [a] shows the

original image of a T-72, top left, and the output of this process for the 2 ft (Figure

3.3 [b]), 4 ft (Figure 3.3 [c]), and 8 ft (Figure 3.3 [d]) image degradation. When these

images are compared to Figure 3.2, a noticeable blurring of the image is observable.

(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 3.3: Effect of image degradation to reduce image resolution for a MSTAR
image of a T-72 main battle tank that is centered in an open field.
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IV. Experimental Method

4.1 Overview

This chapter details the techniques used to classify SAR images into two classes:

target and non-target. The two-parameter CFAR test pixel is resized to allow for

consistent performance. Feature sets–size, contrast, and texture–used to separate

target and non-target classes are described. Then a linear classifier is constructed to

use the features for classification. Only the image pixel gray values are used for these

tests. Each image is normalized before testing to ensure the dynamic range is the

same.

4.2 Two-Parameter CFAR

To test the performance of the two-parameter CFAR detector the center pixel

is tested against a threshold; the results are then compared to truth to score Pd and

Pfa, as described in Equations (2.11) and (2.10). ROC curves are constructed by

recording Pd and Pfa for each threshold. To ensure an unbiased test for the two-

parameter CFAR detector, the test pixel size is optimized. Otherwise, reducing the

resolution causes the test pixel to be larger, corrupting the results. The test pixel

now can be considered a test box, and the ratio test from chapter 2 can be modified

to
E[x]− µc

σc

>
< γ, (4.1)

where x can be more than a single pixel, and the expected value of the test box is

used. To find the test box size with the best performance 180 original image chips,

with resolution of 1 ft × 1 ft, are tested with different test box sizes: 1 pixel × 1

pixel (1 pixel), 2 pixels × 2 pixels (4 pixels), 4 pixels × 4 pixels (16 pixels), and

8 pixels × 8 pixels (64 pixels). Figure 4.1 shows ROC curves for the different test

box sizes. Figure 4.1 [c], 16 pixels, can be visually verified as the best performer,

and will be used as the test box size. Figure 4.1 [a], 1 pixel, is the worst performer.

The larger test boxes contain more information, causing the increase in performance.

When resolution is reduced the test box will be modified to match the new spatial
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resolution, i.e. an image with resolution of 2 ft × 2 ft would have a test box size of 2

pixels × 2 pixels.

(a) 1 Pixel (b) 4 Pixels

(c) 16 Pixels (d) 64 Pixels

Figure 4.1: ROC curves for different test box sizes.

4.3 Discrimination

Different feature spaces–size, contrast, and texture–have been shown to effec-

tively discriminate targets in SAR images [3]. Two sub-images used in this research

are the CFAR image and the binary image. The CFAR image is the output of the

two-parameter CFAR detector on every pixel. The binary image is generated from a

threshold test. The threshold is chosen to pass maximum pixels from the target and

to minimize bright spots from background clutter in the image. Figures 4.2 and 4.3

show binary images of various thresholds for a target and non-target. A threshold of

0.90 is selected to create binary images based.

29



(a) η = 0.25 (b) η = 0.50

(c) η = 0.75 (d) η = 0.90

Figure 4.2: Binary image of test of target as threshold η varies.

4.3.1 Size Features. Size features use the physical size of the target to differ-

entiate between classes. Features in the size set are: mass, diameter, and normalized

rotational inertia. Mass is calculated by summing the binary image pixels. Each pixel

is either a 1 or 0, making this feature highly dependent on the threshold of the binary

image. Diameter of the image chip is determined by the smallest dimension of a box

that encloses the bright pixels in the binary image. Rotational inertia is defined as

vrot =
1

XY

X∑
x

Y∑
y

(B[x, y])r[x, y], (4.2)

where B(x, y) is the binary image, r[x, y] of pixel [x, y]is the distance from the center

of mass, and X and Y are the length of each image dimension.

4.3.2 Contrast Features. To compute contrast features, a CFAR image is

constructed. This image is created using a CFAR pixel test on each pixel in the

original image being tested. Peak CFAR is the maximum pixel value in the CFAR
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(a) η = 0.25 (b) η = 0.50

(c) η = 0.75 (d) η = 0.90

Figure 4.3: Binary image of clutter as threshold η varies.

image. Mean CFAR is the average value of the pixels in the CFAR image. Percent

bright CFAR is calculated by summing the pixel values of the image derived from the

multiplication of the binary and CFAR image. This value is normalized by the total

number of pixels in the image.

4.3.3 Texture Features. Texture features are standard deviation, fractal

dimension, and rank filled ratio. The standard deviation is generated by taking the

standard deviation of pixel gray values of the image. The fractal dimension feature

calculates the spatial distribution of the image chip. This feature is based on the

knowledge that targets have closely spaced bright pixels while clutter is more disper-

sive. The fractal dimension of an image chip is:

dim =
logM1 − logM2

log 2
, (4.3)

where M1 is the number of bright pixels in the binary image and M2 is the number

of 2 × 2 pixel boxes needed to encase all the bright pixels [3]. The rank filled ratio
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is computed from the top N scatters of the image. A percentage threshold is chosen

to select the top N bright scatters of the image; these scatters are summed up and

divided by the total value of the image.

4.4 Classifier

This research is not concerned with the identification of individual vehicles but

the ability to distinguish between target and non-target images. The features from

the discrimination stage are used to create a n dimensional feature space; where n

is the number of features extracted from an image. The feature space is projected

onto the Fisher line, reducing the problem from n dimensions to one. The fisher line

is in the feature space such that the Fisher ratio is maximized. The Fisher ratio is

the squared difference of the means of the projected points in the two classes divided

by the sum of their variances. The slope of the Fisher line may be found from their

proportionality to the elements of the largest eigenvector of the product of a between-

class matrix and the inverse of the within-class matrix. The slopes may also be found

by numerically maaximizing the Fisher ratio, or projected may be found directly using

elementary least squares [13].

Each of the feature points that are projected onto the Fisher line can be used to

estimate the pdfs of each class by using Parzen windows with Gaussian kernels [13],

expressed as

p =
1

n

x∑
i=1

1√
2πσ

e
(x−xi)

2

2σ2 , (4.4)

where n is the number of samples in the class, xi is the location of each point on the

Fisher line that the individual Guassians are projected onto, and σ2 is the variance

of the Gaussian. Here σ2 is the smoothing factor and is varied until the pdf is uni-

modal. Sweeping a threshold across the pdfs generates a ROC curve, providing a

measure on how well the features separate the two classes. The AUROC is used as

the performance metric for each given feature set per resolution, allowing for visual

inspection of performance across all resolutions.
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V. Results and Analysis

5.1 Overview

This section presents the results for the performance of target discrimination

in SAR images for various resolutions. First the two-parameter CFAR detector and

discriminating features results are presented using plots of the AUROC versus the

resolution. The individual features from each feature set are presented to evaluate

the top performers. Then ROC curves for the original resolution, best performer, and

worst performer for the two-parameter CFAR detector, discriminating features, and

statistical classifier are presented. Appendix 1 lists all of the AUROC values for the

combinations of spatial resolutions for all feature sets.

Top performers are shown to be the texture and all nine feature sets for both

resolution reduction techniques, with AUROC staying above 0.90. Both contain the

rank filled ratio feature, which in itself has AUROC staying above 0.90. In this

research the rank filled ratio is the most robust feature across spatial resolutions.

5.2 CFAR Detector

The two-parameter detector tests the center pixels of 90 images from each class,

target and non-target, where the results are compared to truth to score Pd and Pfa for

each threshold. In Figure 5.1 the AUROC is plotted against the x and y resolutions,

providing overall shapes for performance. Figure 5.1 [a] shows AUROC results for

resolution degradation by pixel reduction and Figure 5.1 [b] shows AUROC results

for resolution degradation by filtering degradation. In Figure 5.1 [a] the performance

can be seen to increase with a slight reduction in resolution and then taper off. Also,

the x direction can be seen to be more dominant than the y direction, because the y

direction has a steeper slope. Figure 5.1 [b] shows that the overall target detection

performance of the filtering degradation is greater than the pixel reduction and that

neither direction is dominant.

Figures 5.2 and 5.3 shows ROC curves for the original resolution, best performer,

and worst performer. The AUROC for the original image is 0.85. The 2ft × 2ft
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resolution is the best performer for both pixel count reduction and image degradation

with an AUROC of 0.90 and 0.95. The worst performer for both is the 8ft × 8ft

resolution with an AUROC of 0.72 and 0.80.
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(a) Pixel Reduction Case

(b) Filtering Degradation Case

Figure 5.1: Graphs [a] and [b] show AUROC versus the resolution in the x and
y direction. Here [a] is for reduction in pixel count, which shows an increase in
performance with a slight reduction in resolution and then a reduction in performance,
and [b] is for filtering degradation, which shows an increase in performance with a
slight reduction in resolution.
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Figure 5.2: ROC curves for the two parameter CFAR detector for pixel count
reduction. The graph shows ROC curves for the original resolution, best resolution
and worst resolution performance. The AUROC for the original is 0.93. The best
performer is 2 ft × 2 ft resolution with AUROC of 0.97, and the worst performer is
8 ft × 8 ft resolution with an AUROC of 0.71.
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Figure 5.3: ROC curves for the two parameter CFAR detector for filtering degra-
dation. The graph shows ROC curves for the original resolution, best resolution and
worst resolution performance. The AUROC for the original is 0.93. The best per-
former is 2 ft × 2 ft resolution with an AUROC of 0.99, and the worst performer is
8 ft × 8 ft resolution with an AUROC of 0.72.
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5.3 Discriminating Features

This section shows results from tests of the three feature sets–size, contrast, and

texture–for the different resolution combinations. All nine feautres that make up the

three feature sets are combined into a nine feature set, and individual features of each

set are evaluated to assess if one is dominant. These sets are used to create a multi-

dimensional feature space that is projected onto the Fisher line to separate the points

into two classes: target and non-target. The size feature set uses pixel reduction steps

through this process and shows the results at each step, but all other sets have only

the results presented. The results are shown by graphing AUROC versus the spatial

resolution of the image pixel size.

5.3.1 Size Features. The three size features–mass, diameter, and rotational

inertia–are extracted from 180 image chips. Figures 5.4, 5.5, 5.6, and 5.7 show plots

of the feature space with the Fisher line for four different spatial resolutions: original

1 ft × 1 ft resolution, 2 ft × 2 ft resolution, 4 ft × 4 ft resolution, and 8 ft × 8 ft

resolution, respectively. All combinations of resolution are tested, but these four are

used to illustrate the process. The target class is indicated by ‘+’ and the non-target

class by ‘o’. From these plots it is apparent that the separation of the two classes

worsens as resolution is degraded. Figure 5.7 shows the two classes almost completely

overlapping, but to clarify the separation of the two classes these points are projected

onto the Fisher line.

Figures 5.8 and 5.9 show the results of projecting the feature points for each

image chip onto the Fisher line and estimating the pdfs of the two classes. The

two different estimation techniques are Parzen windows with a Gaussian kernel and

using the mean and standard deviation of the projected points of the two classes

to estimate a Gaussian pdf. From the estimated pdfs ROC curves are derived by

varying the threshold to estimate Pd and Pfa. Figure 5.10 shows the ROC curves

for four different resolutions: 1 ft, 2 ft, 4 ft, and 8 ft. The AUROC can be derived

from these results as a single value to grade the feature sets. Figure 5.10 shows the
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Figure 5.4: The 3D size feature space for image chips with a resolution of 1 ft ×
1 ft. The two class are targets, ’+’, and non-targets,’o’. The Fisher line is drawn in
the space for each of the graphs.

resulting ROC curves for the two estimating techniques. Since the Parzen window

and Gaussian pdf estimates produce similar AUROC values, only the Parzen window

technique is used for the rest of the research.

Figure 5.15 shows the plots for the estimated pdfs for the filtering degradation.

The pdfs overlap as the resolution is lowered, indicating that these features do not

perform well at lower resolutions

Figures 5.11 and 5.16 show that the features are sensitive to resolution, which

is expected since these features are based on the number of pixels on a target. As the

pixel count is reduced, more of the information for this feature space is lost, and the

two classes become less separable. Figure 5.11 shows the AUROC staying about the
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Figure 5.5: The 3D size feature space for image chips with a resolution of 2 ft ×
2 ft. The two class are targets, ’+’, and non-targets,’o’. The Fisher line is drawn in
the space for each of the graphs.

same as long as either the x or y resolution is at the highest. Figure 5.16 shows the

AUROC dropping off with any reduction in resolution.

AUROC performance is shown for the individual size features. Figures 5.12,

5.13, and 5.14 show the results for mass, diameter, and rotational inertia features,

respectively, for pixel reduction. Figures 5.17, 5.18, and 5.19 show the results for mass,

diameter, and rotational inertia features, respectively, for the image degradation. The

mass feature is seen as the most robust of all the size features since the AUROC stays

above 0.70. The diameter feature is the worst performer, and has a maximum AUROC

of 0.62. For the filtering degradation, the AUROC curves for all three features quickly

degrade. The results suggest that these features are best when used with higher

resolution.
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Figure 5.6: The 3D size feature space for image chips with a resolution of 4 ft ×
4 ft. The two class are targets, ’+’, and non-targets,’o’. The Fisher line is drawn in
the space for each of the graphs.
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Figure 5.7: The 3D size feature space for image chips with a resolution of 8 ft × 8
ft. The two class are targets, ’+’, and non-targets,’o’. The 8 ft resolution shows the
two classes completely overlapping. The Fisher line is drawn in the space for each of
the graphs.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.8: The estimated pdfs of the two classes after the size features are projected
onto the Fisher line for the pdfs that are estimated using Parzen windows with a
Gaussian kernel. Each of the four plots are for different spatial resolutions of the
image chips. [a] is for 1 ft × 1 ft, [b] is for 2 ft × 2 ft, [c] is for 4 ft × 4 ft, and [d] is
for 8 ft × 8 ft.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.9: The estimated pdfs of the two classes after the size features are projected
onto the Fisher line for the Gaussian pdfs. Each of the four plots are for different
spatial resolutions of the image chips. [a] is for 1 ft × 1 ft, [b] is for 2 ft 2 ft, [c] is
for 4 ft × 4 ft, and [d] is for 8 ft × 8 ft.
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(a) ROC from Parzen windows

(b) ROC from Gaussian

Figure 5.10: The two graphs are estimated ROC curves for a two class test using
pdfs estimated from the size features of SAR image chips. [a] is from pdfs created
using Parzen windows with Gaussian kernels. [b] is from pdfs created with Gaussian
pdfs using the mean and standard deviation of the two classes. The AUROCs are
0.985 for 1 ft × 1 ft resolution, 0.952 for 2 ft × 2 ft resolution, 0.887 for 4 ft × 4 ft
resolution, and 0.724 for 8 ft × 8 ft resolution.
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Figure 5.11: AUROC versus resolution in the x and y directions for the size features
for pixel reduction.
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Figure 5.12: AUROC versus resolution in the x and y directions for the peak CFAR
feature for pixel reduction.

47



Figure 5.13: AUROC versus resolution in the x and y directions for the diameter
feature for pixel reduction.
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Figure 5.14: AUROC versus resolution in the x and y directions for the rotational
inertia feature for pixel reduction.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.15: The estimated pdfs of the two classes after the size features are pro-
jected onto the Fisher line and estimated using Parzen windows with a Gaussian
kernel. Resolution is reduced by filtering degradation. Each of the four plots are for
different spatial resolutions of the image chips. [a] plot is for 1 ft × 1 ft, [b] is for 2 ft
2 ft, [c] is for 4 ft × 4 ft, and [d] is for 8 ft × 8 ft. The pdfs overlap as the resolution
is lowered, indicating that these features do not perform well at lower resolutions.
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Figure 5.16: AUROC versus resolution in the x and y directions for the size features
for image filter degradation.
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Figure 5.17: AUROC versus resolution in the x and y directions for the mass feature
for image filter degradation.
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Figure 5.18: AUROC versus resolution in the x and y directions for the diameter
feature for image filter degradation.
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Figure 5.19: AUROC versus resolution in the x and y directions for the rotational
inertia feature for image filter degradation.
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5.3.2 Contrast Features. Figure 5.20 and Figure 5.21 show the estimated

pdfs for the 1 ft × 1 ft, 2 ft × 2 ft, 4 ft × 4 ft, and 8 ft × 8 ft resolutions for

pixel count reduction and filtering degradation, respectively. Figure 5.20 shows that

the two classes stay relatively separated. Figure 5.21 shows that as the resolution is

decreased the target pdf variation increases until it almost covers the non-target class.

Figures 5.22 and 5.26 show variations in AUROC for the contrast features as

a function of image resolution. Figure 5.22 shows that in the case of resolution

degradation via pixel reduction, the AUROC for contrast features improves at 2 ft ×

2 ft resolution, but then declines for further resolution degradation. This performance

mirrors the CFAR detector and is not unexpected because the contrast features are

derived from images created by the two-parameter CFAR test.

AUROC performance is shown for the individual contrast features. Figures

5.23, 5.24, and 5.25 show the results for the peak CFAR, mean CFAR, and percent

bright features, respectively, for pixel reduction. Figures 5.27, 5.28, and 5.29 show

the results for peak CFAR, mean CFAR, and percent bright features, respectively,

for the image degradation. The percent bright feature is the best performer and the

mean CFAR is the worst performer.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.20: These graphs show the estimated pdfs for the contrast features for
resolutions of 1 ft, 2 ft, 4, ft, and 8 ft in both the x and y directions. The resolution is
reduced by pixel reduction. The dotted pdf represent non-target class and the solid
pdf represent the target class. [a] is 1 ft × 1 ft, [b] is 2 ft 2 ft, [c] is 4 ft × 4 ft, and
[d] is 8 ft × 8 ft.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.21: These graphs show the estimated pdfs for the contrast features for
resolutions of 1 ft, 2 ft, 4, ft, and 8 ft in both the x and y directions. The resolution is
reduced by filtering degradation. The dotted pdf represent non-target class and the
solid pdf represent the target class. [a] is 1 ft × 1 ft, [b] is 2 ft 2 ft, [c] is 4 ft × 4 ft,
and [d] is 8 ft × 8 ft.
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Figure 5.22: AUROC versus resolution in the x and y directions for the contrast
features for pixel reduction.
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Figure 5.23: AUROC versus resolution in the x and y directions for the peak CFAR
feature for pixel reduction.
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Figure 5.24: AUROC versus resolution in the x and y directions for the mean CFAR
feature for pixel reduction.
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Figure 5.25: AUROC versus resolution in the x and y directions for the percent
bright feature for pixel reduction.
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Figure 5.26: AUROC versus resolution in the x and y directions for the contrast
features for image filter degradation.
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Figure 5.27: AUROC versus resolution in the x and y directions for the peak CFAR
feature for image filter degradation.
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Figure 5.28: AUROC versus resolution in the x and y directions for the mean CFAR
feature for image filter degradation.
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Figure 5.29: AUROC versus resolution in the x and y directions for the percent
bright feature for image filter degradation.
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5.3.3 Texture Features. Figure 5.30 [a] and 5.31 [b] show the estimated pdfs

for pixel reduction and filtering degradation, respectively. Each figure has 1 ft × 1 ft,

2 ft × 2 ft, 4 ft × 4 ft, and 8 ft × 8 ft resolutions. The target class is indicated by

the solid line and the non-target class by the dotted lines. In the pixel reduction case

the pdfs for each class remain relatively the same for each resolution. For filtering

degradation the overall shape of the classes start to change and the pdfs overlap each

other.

Figure 5.32 and 5.36 show AUROC versus the spatial resolution for the texture

feature set and the individual features for pixel count reduction and filtering degrada-

tion. The texture features performed the best of all the feature sets. This is because

the texture feature set is not as dependent on the number of pixels but on their spatial

distribution. Of the three features in the texture feature set the rank filled ratio is

the top performer, and the worst performer is the fractal dimension, although many

references reviewed it highly [5]. The reason for its degraded performance may be

due to the clutter chips that are used for the non-target class containing man-made

objects and fractal dimension separates out natural clutter.

AUROC performance is shown for the individual texture features. Figures 5.33,

5.34, and 5.35 show the results for the standard deviation, fractal dimension, and

rank filled ratio features, respectively, for pixel reduction. Figures 5.37, 5.38, and

5.39 show the results for standard deviation, fractal dimension, and rank filled ratio

features, respectively, for the image degradation.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.30: These graphs show the estimated pdfs for the texture features for
resolutions of 1 ft, 2 ft, 4, ft, and 8 ft in both the x and y directions. The resolution is
reduced by pixel reduction. The dotted pdf represents non-target class and the solid
pdf represents the target class. [a] is 1 ft × 1 ft, [b] is 2 ft × 2 ft, [c] is 4 ft × 4 ft,
and [d] is 8 ft × 8 ft.
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(a) 1 ft × 1 ft (b) 2 ft × 2 ft

(c) 4 ft × 4 ft (d) 8 ft × 8 ft

Figure 5.31: These graphs show the estimated pdfs for the texture features for
resolutions of 1 ft, 2 ft, 4, ft, and 8 ft in both the x and y directions. The resolution
is reduced by filtering degradation. The dotted pdf represents non-target class and
the solid pdf represents the target class. [a] is 1 ft × 1 ft, [b] is 2 ft × 2 ft, [c] is 4 ft
× 4 ft, and [d] is 8 ft × 8 ft.
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Figure 5.32: AUROC versus resolution in the x and y directions for the texture
features for image filter degradation.
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Figure 5.33: AUROC versus resolution in the x and y directions for the standard
deviation feature for image filter degradation.
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Figure 5.34: AUROC versus resolution in the x and y directions for the rank filled
ratio feature for image filter degradation.
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Figure 5.35: AUROC versus resolution in the x and y directions for the fractal
dimension feature for image filter degradation.
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Figure 5.36: AUROC versus resolution in the x and y directions for the texture
features for image filter degradation.
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Figure 5.37: AUROC versus resolution in the x and y directions for the standard
deviation feature for image filter degradation.
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Figure 5.38: AUROC versus resolution in the x and y directions for the rank filled
ratio feature for image filter degradation.
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Figure 5.39: AUROC versus resolution in the x and y directions for the fractal
dimension feature for image filter degradation.
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5.3.4 All Nine Features. The all nine feature set is the combination of

all size, texture, and contrast features. Figures 5.40 [a] and 5.40 [b] show AUROC

versus the x and y spatial resolution for pixel reduction and filtering degradation,

respectively. The nine features provide good class separability between the target and

non-target classes. The pixel reduction AUROC stays within 0.01% of 1.0 and the

image filtering degradation AUROC stays above 0.90, indicating good performance

for all combinations of resolution. Overall performance does not improve significantly

over the texture feature set by combining all nine features.
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(a) Pixel Reduction Case

(b) Filtering Degradation Case

Figure 5.40: AUROC versus resolution in the x and y direction for all nine features
for pixel count reduction and filtering degradation. [a] is for the pixel count reduction,
showing that for all resolutions the performance is within .01%. [b] is for the image
filtering degradation, where the performance stays above 0.90.
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5.4 Feature Comparison

Table 2.2 shows the results of the same features for research done on 1 ft and

1 m resolution SAR images and which of the individual features performed best for

each of the resolutions [5]. Table 5.1 repeats Table 2.2, except the 1 m × 1 m is

replaced with 4 ft × 4 ft. An X indicates good performance, from either resolution

reduction technique, for a feature from this research; a checkmark is from the orignial

study. AUROC of 0.90 or greater constitutes a good feature. Three features did well

at both 1 ft and 1 m: rank filled ratio, mass, and mean CFAR, from the orignial

study. Results of this research did not agree, except for the rank filled ratio.

Table 5.1: Comparison of individual features from the work conducted at Lincoln
Laboratory and this research [5]

Feature 1 ft × 1 ft 4 ft × 4 ft

Standard Deviation X
Rank Filled Ratio X X X X
Fractal Dimension X

Mass X X X
Diameter

Normalized Rotational Interia
Peak CFAR X
Mean CFAR X X

Percent Bright

The rank filled ratio feature performs the best for all resolutions as seen in

Figure 5.32 [d] and Figure 5.36 [d]. The overall shape of the rank filled ratio AUROC

versus spatial resolution is the dominant shape in the texture features plots and with

all nine features, which leads to the conclusion of these experiments that it is the

dominant performer.

Size feature performance worsens with reduction in resolution; this is expected

because these features are dependent on the bright returns from the targets. The

AUROC of the original image is 0.98. For pixel reduction the 1 ft × 1 ft is the best

performer, while the worst performer is for 8 ft × 8ft resolution with an AUROC of

0.72. For filtering degradation the best performer is also 1 ft × 1ft, and the worst
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performance is for 1 ft × 8 ft with a AUROC of 0.56. Filtering degradation performs

worse than pixel reduction because of the smearing effect of a larger PSF. Figure 5.41

shows the ROC curve results of the original, top, and worst performers.

Contrast feature performance closely matches the CFAR detector performance,

with a slight reduction in resolution the performance increased, then worsened. This

is reasonable since all the features are based on the CFAR generated image. The

AUROC for the 1 ft × 1 ft is 0.86. For pixel reduction, the best performance is for

2 ft × 2 ft resolution with a AUROC of 0.99. The worst performance is for 8 ft × 8

ft resolution with a AUROC of 0.82. For filtering degradation the best performer is

for 1 ft × 2 ft resolution with a AUROC of 0.98. The worst performer is for 8 ft × 8

ft resolution for a AUROC of 0.64. Figure 5.42 shows the ROC curve results of the

original, best, and worst performers for both reduction techniques. The tails on the

ROC curves show that the estimated pdfs have high overlap and that a non-linear

classification could allow for more class separation.

The texture features perform extremely well for both cases. This is because

these features rely more on the statistics of the ROI and the spatial distribution of

the scatters rather than pixel count. The 1 ft × 1ft resolution AUROC is 1.0. For

pixel reduction almost every resolution produces an AUROC of 1.0 to within 0.02%.

Filtering degradation has good performance also; the worst performance is for 1 ft ×

8ft resolution with a AUROC of 0.89. Figure 5.43 shows the ROC curves results for

the original, best, and worst performers of each reduction technique.

The all nine features perform well in separating the two classes. The lower

pixel count shows almost perfect separation for all sixteen combinations, where every

AUROC is 1.0 to within 0.02%. The filtering degradation performs well with the

worst performance at a AUROC of 0.96. Figure 5.44 [a] and 5.44 [b] shows ROC

curves for pixel reduction and filtering degradation, respectively.
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(a) Pixel Reduction

(b) Image Degradation

Figure 5.41: ROC curves for the original/best (1 ft × 1 ft for [a] and [b]), and worst
resolution (8 ft × 8 ft for [a] and 1 ft × 8 ft for [b]) for the size features.
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(a) Pixel Reduction

(b) Image Degradation

Figure 5.42: ROC curves for the original (1 ft × 1 ft for [a] and [b]), best (2 ft ×
2 ft for [a] and 2 ft × 1 ft for [b]), and worst resolution (8 ft × 8 ft for [a] and 2 ft ×
8 ft for [b]) for the contrast features.
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(a) Pixel Reduction

(b) Image Degradation

Figure 5.43: ROC curves for the original/best (1 ft × 1 ft for [a] and [b]), and worst
resolution (2 ft × 8 ft for [a] and 8 ft × 8 ft for [b]) for the texture features.
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(a) Pixel Reduction

(b) Image Degradation

Figure 5.44: ROC curves for the original/best (1 ft × 1 ft for [a] and [b]), and worst
resolution (8 ft × 8 ft for [a] and 8 ft × 4 ft for [b]) for all nine features.
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5.5 Summary

This chapter shows the results of detection and discrimination of targets as

the spatial resolution of the SAR image is degraded. The performance for the two-

parameter CFAR peaked at 2 ft × 2 ft resolution for both resolution variation tech-

niques. All nine feature and texture feature sets performed the best; while the size

features performed worst with reduction in resolution. The contrast features were

shown to be ineffective, due to the ROC curves crossing the chance line. The perfor-

mance of each of the sets was dominated by one feature of each set with the other

two features only adding minor improvements to performance. Overall the rank filled

ratio was the top individual feature with AUROC staying above 0.90.
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VI. Conclusions

6.1 Overview

This thesis shows how different discriminating features perform for different

levels of spatial resolution. All nine features and texture features are shown to be the

most robust of the feature sets, while the size features are the worst performers. The

contrast features yield improved performance when the resolution is slightly reduced.

The rank filled ratio was seen to be the top performer of all the individual features.

6.2 General Discussion

This research looks at the performance of ATR to discriminate between targets

and non-targets for various levels of resolution. The test is designed to provide the

maximum performance from ATR, where changes in the performance could only be

attributed to differences in resolution. The resolution is lowered in two different ways.

In the first the higher resolution image is averaged to yield a lower pixel count. This

is a simulation of a system processing less information from a scene, allowing for an

increase in speed. In many of the results it is seen that if either direction is maintained

at 1 ft, the performance level is relatively the same. The other scenario simulates the

same scene imaged for coarser resolutions. The two-parameter CFAR detector had

a better performance with this technique than with pixel reduction. The increase

in performance is due to the smearing of the energy, where smaller groups of bright

scatters are smeared into the other dim pixels, and larger groups of bright scatters

(targets) are still smeared but the area stays bright.

The best overall performer is the texture feature set for both reduction tech-

niques, but this can be attributed to the rank filled ratio feature. This feature’s

AUROC versus resolution shape dominated the overall shape of the texture feature

set shape. This research shows that the rank filled ratio is the essential feature to be

used in ATR.
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6.3 Future Work

Though this research shows how resolution affects the performance of ATR,

there are a multitude of factors that need to be investigated, such as the contrast in

the image, noise effects, phase history of the scene, and how clutter in the scene affects

performance. For example, the phase history is like color to an optical picture, it adds

more information on how to make a decision. How that phase changes with varying

resolution has a large impact on an ATR. The target chips used in this research are

all located in an open field and not obscured, but in real scenes targets can be close

to trees, buildings, roads, and other targets. Factors such as these that affect ATR

performance can be minimized if the right feature set is selected for the correct image

quality. Knowledge of these factors can lead to an adaptive algorithm that analyzes

the image and selects the optimum feature set.
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Appendix A. Tables of AUROC

Table A.1: AUROC for the Two-Parameter CFAR detector for reduced pixel count.

Two-Parameter CFAR ∆x ∆y

0.93 1 1
0.93 2 1
0.80 4 1
0.84 8 1

0.95 1 2
0.97 2 2
0.89 4 2
0.87 8 2

0.90 1 4
0.92 2 4
0.83 4 4
0.85 8 4

0.76 1 8
0.82 2 8
0.72 4 8
0.71 8 8
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Table A.2: AUROC for the Two-Parameter CFAR detector for image degradation
by filtering.

Two-Parameter CFAR ∆x ∆y

0.93 1 1
0.98 2 1
0.91 4 1
0.86 8 1

0.98 1 2
0.99 2 2
0.97 4 2
0.89 8 2

0.96 1 4
0.98 2 4
0.94 4 4
0.83 8 4

0.84 1 8
0.92 2 8
0.80 4 8
0.72 8 8

Table A.3: AUROC for individual Size Discriminating Features for reduced pixel
count.

Size vmass vdia vrot ∆x ∆y

0.98 0.98 0.62 0.95 1 1
0.96 0.96 0.61 0.85 2 1
0.95 0.96 0.59 0.74 4 1
0.89 0.88 0.53 0.59 8 1

0.96 0.97 0.50 0.92 1 2
0.94 0.94 0.54 0.88 2 2
0.94 0.94 0.50 0.91 4 2
0.88 0.88 0.49 0.65 8 2

0.93 0.9420 0.4968 0.8417 1 4
0.91 0.9031 0.5208 0.7995 2 4
0.88 0.8595 0.4961 0.7366 4 4
0.80 0.7864 0.5078 0.6979 8 4

0.90 0.91 0.50 0.81 1 8
0.88 0.88 0.50 0.75 2 8
0.82 0.77 0.50 0.60 4 8
0.72 0.71 0.52 0.54 8 8
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Table A.4: AUROC for individual Size Discriminating Features for image degrada-
tion by filtering.

Size vmass vdia vrot ∆x ∆y

0.98 0.98 0.62 0.95 1 1
0.86 0.84 0.50 0.60 2 1
0.66 0.65 0.51 0.50 4 1
0.63 0.62 0.51 0.57 8 1

0.86 0.86 0.49 0.63 1 2
0.77 0.69 0.51 0.50 2 2
0.59 0.52 0.53 0.56 4 2
0.69 0.64 0.57 0.62 8 2

0.71 0.68 0.51 0.50 1 4
0.68 0.51 0.54 0.58 2 4
0.69 0.63 0.55 0.65 4 4
0.66 0.64 0.56 0.62 8 4

0.56 0.53 0.50 0.56 1 8
0.67 0.59 0.56 0.61 2 8
0.72 0.64 0.57 0.60 4 8
0.66 0.64 0.56 0.63 8 8

Table A.5: AUROC for individual Contrast Discriminating Features for reduced
pixel count.

Contrast vpeak vmean vper ∆x ∆y

0.86 0.59 0.51 0.78 1 1
0.94 0.62 0.55 0.83 2 1
0.93 0.60 0.54 0.82 4 1
0.94 0.63 0.53 0.81 8 1

0.93 0.64 0.52 0.81 1 2
0.99 0.68 0.58 0.93 2 2
0.93 0.59 0.60 0.84 4 2
0.94 0.68 0.54 0.82 8 2

0.90 0.61 0.51 0.80 1 4
0.98 0.66 0.53 0.91 2 4
0.92 0.62 0.55 0.81 4 4
0.91 0.67 0.51 0.74 8 4

0.90 0.61 0.52 0.81 1 8
0.96 0.64 0.53 0.88 2 8
0.86 0.58 0.55 0.78 4 8
0.82 0.62 0.56 0.70 8 8
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Table A.6: AUROC for individual Contrast Discriminating Features for image
degradation by filtering.

Contrast vpeak vmean vper ∆x ∆y

0.86 0.59 0.51 0.78 1 1
0.98 0.69 0.61 0.87 2 1
0.89 0.70 0.63 0.70 4 1
0.68 0.67 0.59 0.51 8 1

0.98 0.72 0.58 0.86 1 2
0.91 0.82 0.65 0.74 2 2
0.82 0.79 0.67 0.51 4 2
0.83 0.79 0.63 0.53 8 2

0.93 0.72 0.59 0.73 1 4
0.84 0.79 0.62 0.61 2 4
0.83 0.81 0.64 0.53 4 4
0.81 0.78 0.60 0.52 8 4

0.72 0.70 0.58 0.56 1 8
0.64 0.63 0.58 0.52 2 8
0.76 0.74 0.59 0.56 4 8
0.75 0.75 0.62 0.55 8 8

Table A.7: AUROC for individual Texture Discriminating Features for reduced
pixel count.

Texture vstd vrank vdim ∆x ∆y

1.0 0.77 0.99 0.67 1 1
1.0 0.80 0.99 0.76 2 1
1.0 0.80 0.99 0.78 4 1
1.0 0.79 0.99 0.64 8 1

1.0 0.80 0.99 0.67 1 2
1.0 0.80 0.99 0.72 2 2
1.0 0.80 0.98 0.75 4 2
1.0 0.80 0.99 0.67 8 2

1.0 0.80 1.0 0.70 1 4
1.0 0.80 0.99 0.75 2 4
1.0 0.80 0.98 0.71 4 4
1.0 0.79 0.98 0.63 8 4

1.0 0.80 0.99 0.66 1 8
1.0 0.80 0.98 0.64 2 8
1.0 0.80 0.99 0.64 4 8
1.0 0.80 0.99 0.58 8 8
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Table A.8: AUROC for individual Texture Discriminating Features for image degra-
dation by filtering.

Texture vstd vrank vdim ∆x ∆y

1.0 0.78 0.99 0.67 1 1
1.0 0.78 0.97 0.63 2 1
0.99 0.75 0.96 0.51 4 1
0.99 0.72 0.95 0.64 8 1

1.0 0.78 0.97 0.51 1 2
0.98 0.71 0.95 0.54 2 2
0.96 0.68 0.93 0.51 4 2
0.95 0.65 0.91 0.59 8 2

1.0 0.75 0.97 0.53 1 4
0.96 0.68 0.95 0.55 2 4
0.95 0.66 0.94 0.57 4 4
0.94 0.62 0.91 0.62 8 4

1.0 0.73 0.96 0.64 1 8
0.95 0.66 0.92 0.50 2 8
0.92 0.64 0.92 0.51 4 8
0.92 0.62 0.91 0.60 8 8
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Appendix B. App 2

This section presents the code used for this research. All scripts where written and

tested using MATLAB 2006b.

B.1 Image Reduction

Listing B.1: ATRToolbox/lowResPix.m

1 function [AA] = lowResPix(A,xa,yb, sinc_filter)

%================================================

% xa is the factor x dim is reduced

% yb is the factor y dim is reduced

% sinc_filter turns filter on, 1, and off , 0,

6 %================================================

[aa bb] = size(A);

%scale factor fix

if xa == 1

rF = 0;

11 else

rF = 1;

end

if yb == 1

cF = 0;

16 else

cF = 1;

end

%================================================

%filter with sinc fliter

21 if sinc_filter == 1

a = (ifft2(A));

[P,Q] = size(a);

p = 0:(P-1);

q = 0:(Q-1);

26 N = 128;

m = log2(xa);

n = log2(yb);
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Hp = 0.54 + 0.46* cos ((2*pi*p)/(2^-m*N));

Hq = 0.54 + 0.46* cos ((2*pi*q)/(2^-n*N));

31 H = Hp ’*Hq;

a = a.*H;

A = abs(fft2(a));

end

%------------------------------------------------

36 x = floor(aa/xa);

y = floor(bb/yb);

AA = zeros(x,y);

[a b] = size(AA);

rowFactor = floor(aa/a);

41 colFactor = floor(bb/b);

for ii = 1:a

for jj = 1:b

46 AA(ii ,jj) =sum(sum(A(( round(ii*rowFactor)-rF):round(ii*...

rowFactor) ,...

round(jj*colFactor -cF):round(jj*colFactor))))./(xa*yb)...

;

end

end

AA = abs(AA);

51 %------------------------------------------------

B.2 Two-Paramter CFAR

Listing B.2: ATRToolbox/prescreener.m

function [H, ratio] = prescreener(M, N, gamma ,image , pixSize)

%John McGowan

%Prescreener --this pulls in an entire scene image and screen for ...

clusters of bright

4 %pixel that could be considered a target.

%

%M and N are the test location of a possible TGT
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%gamma is the Threshold level

%H is the return if 1 (true) then that location is a possible TGT;...

if 0

9 %(false) then no TGT

%First generation test where the image chip is feed and not an ...

entire

%scene.

test_on = 0;

14 if nargin == 0

[ImageCellT72 ]= loadT72 ();

[ImageCellClutter ]= loadClutter ();

19 image = ImageCellT72 (:,:,1);

%image = ImageCellClutter (:,:,1);

%imshow(uint8(image))

image = image./max(max(image));

image = image -mean2(image);

24 gamma = 0;

pixSize = 0; %defines the size test area make even

%------------------------------------------------

[m n] = size(image);

M = floor(m/2):floor(m/2); %pixel under test

29 N = floor(n/2):floor(n/2); %pixel under test

% [a b] = find(image == max(max(image)));

% M = ceil(mean(a));

% N = ceil(mean(b));

end

34 %------------------------------------------------

[m n] = size(image); %size of entire scene

r = pixSize;% round (20/ pixSize); %this number of surronding pixels...

that will be used to find clutter mean/sd
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39 %================================================

%goes around edge to estimate clutter

leftCol = (image (:,1:r));

rightCol = (image (:,(n-r):n));

topRow = (image((m-r):m,:));

44 bottomRow = (image (1:r,:));

meanC = mean([mean(leftCol) mean(rightCol) mean(topRow ,2)’ mean(...

bottomRow ,2) ’]);

stdC = std([std(leftCol) std(rightCol) std(topRow ’) std(bottomRow ...

’)]);

%================================================

49 %threshold test

MeanTgt = mean2(image(M,N));

ratio = (MeanTgt - meanC)/stdC;

H = ratio > gamma; %this will give a 1 or 0

%================================================
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B.3 Feature Code

Listing B.3: ATRToolbox/SizeMass.m

function [massIm] = SizeMass(im, threshold ,s,t)

2 %================================================

%counts the number of bright scatters that exceed a

%set threshold

m = pIm(im, s, t, threshold);

massIm = sum(sum(m)).*s.*t;

Listing B.4: ATRToolbox/SizeDia.m

function [diaIm] = SizeDia(im, threshold ,s,t)

%------------------------------------------------

m = pIm(im, s, t, threshold);

4 %------------------------------------------------

%cal diameter

[a b] = find(m == max(max(m))); %use mean pixel of all scatters

[alast v] = size(a);

[blast v] = size(b);

9 a = sort(a);

b = sort(b);

xx1 = a(1);

yy1 = b(1);

xx4 = a(alast);

14 yy4 = b(blast);

%find first and last x,y construct box

%------------------------------------------------

%%find smallest length

d1 = sqrt((xx4 -xx1)^2+(yy4 -yy1)^2);

19 d2 = (xx4 -xx1);

d3 = (yy4 -yy1);

if d2 == 0

d2 = d3;

end

24 if d3 == 0
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d3 = d2;

end

dd = [d1 d2 d3];

diaIm = max(dd);

29 %------------------------------------------------

Listing B.5: ATRToolbox/SizeRot.m

1 function [rotIm] = SizeRot(im, threshold ,s,t)

%================================================

m = pIm(im, s, t, threshold);

[row col] = size(m);

%================================================

6 [a b] = find(m == max(max(m)));

aa = mean(a);

bb = mean(b);

r = 0;

for ii = 1:row

11 for jj = 1:col

r = r + m(ii,jj)*((ii-aa)^2+(jj-bb)^2);

end

end

rotIm = r./(aa*bb); %normalize by total pixel szie

16 %================================================
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Listing B.6: ATRToolbox/peakCFAR.m

function [PeakCFAR] = peakCFAR(im, pixSizeS , pixSizeT , threshold)

%

%

4 %================================================

%calclulates the maximum value from a CFAR image

imC = cfarIM(im , pixSizeS , pixSizeT , threshold);

PeakCFAR = max(max(imC));

Listing B.7: ATRToolbox/perbCFAR.m

function [PerBright] = perbCFAR(im, pixSizeS , pixSizeT , threshold)

2 %

%================================================

%calclulates the maximum value from a CFAR image

imC = cfarIM(im , pixSizeS , pixSizeT , threshold);

[row col] = size(imC);

7 imCb = binIm(imC ,threshold);

PerBright = sum(sum(imCb))./(row*col)*100;

Listing B.8: ATRToolbox/meanCFAR.m

function [MeanCFAR] = meanCFAR(im, pixSizeS , pixSizeT , threshold)

2 %

%================================================

%calclulates the maximum value from a CFAR image

imC = cfarIM(im , pixSizeS , pixSizeT , threshold);

7 MeanCFAR = mean2(imC);
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Listing B.9: ATRToolbox/disSTD.m

function [vFeature] = disSTD(Im)

3 %------------------------------------------------

vFeature = std2(Im);

%------------------------------------------------

Listing B.10: ATRToolbox/fracDim.m

function [dim] = fracDim(im, thresP)

%------------------------------------------------

%control panel

plot_on = 0;

5 dType = 0; %0 for threshold; 1 for %

[r c]=size(im);

aIm = min(min(im));

bIm = max(max(im));

%------------------------------------------------

10 %binary image

if dType == 0

threshold =(bIm -aIm)*thresP;

%amplitude threshold

Aim = im;

15 A = (Aim);

ind= find(A < threshold);

Aim(ind) = 0;

%A = (Aim);

20 ind= find(A >= threshold);

Aim(ind) = 1;

fracim = Aim;

%

else

25 %------------------------------------------------

%brightess Pixel

numP = 50;
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numPixel = round(r*c*.05); %N brightest pixel

q=im(:);

30 q = sort(q,’descend ’);

if numP < size(q)

numP = size(q);

end

threshold = q(numP);

35

Bim = 0.*im;

A = (im);

ind= find(A >= threshold);

Aind = size(ind);

40 if Aind < numPixel

numPixel = Aind;

end

%ind(1)

if numPixel > 0

45 Bim(ind(1: numPixel)) = 1;

end

fracim = Bim;

end

%------------------------------------------------

50 %calculate fractal dim

M1 = sum(sum(fracim)); % number of points in 1 pixel boxes

%increase image size to guard edges with zeros

55 fracIm = zeros(r+20,c+20);

fracIm (10:r+9,10:c+9) = fracIm (10:r+9,10:c+9) + fracim;

[aa bb] = find(fracIm == 1);

M2 = 0; %intialize 2 pixel box count

60

for ii = 1: length(aa)

for jj = 1: length(bb)
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if fracIm(aa(ii),bb(jj)) == 1

f1 = sum(sum(fracIm(aa(ii):aa(ii)+1,bb(jj):bb(jj)+1)))...

;

65 f2 = sum(sum(fracIm(aa(ii) -1:aa(ii),bb(jj) -1:bb(jj))))...

;

f3 = sum(sum(fracIm(aa(ii):aa(ii)+1,bb(jj) -1:bb(jj))))...

;

f4 = sum(sum(fracIm(aa(ii) -1:aa(ii),bb(jj):bb(jj)+1)))...

;

%finds box that contains highest number of pixels

f = [f1 f2 f3 f4];

70 b = find(f == max(f));

if b(1) == 1

fracIm(aa(ii):aa(ii)+1,bb(jj):bb(jj)+1) = 0;

elseif b(1) == 2

fracIm(aa(ii) -1:aa(ii),bb(jj) -1:bb(jj)) = 0;

75 elseif b(1) == 3

fracIm(aa(ii):aa(ii)+1,bb(jj) -1:bb(jj)) = 0;

else

fracIm(aa(ii) -1:aa(ii),bb(jj):bb(jj)+1) = 0;

end

80

M2 = M2+1; %count boxes

end

end

85 end

dim = (log(M1)-log(M2))/log(2);

%------------------------------------------------

%plot

if plot_on == 1

90 if dType == 0

figure (1)

imagesc(Aim)

colormap(’gray’)
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title(’Amplitude Thresholding ’)

95 else

figure (2)

imagesc(Bim)

colormap(’gray’)

title(’Brightness Thresholding ’)

100 end

end

Listing B.11: ATRToolbox/disINT.m

function [wRank] = disINT(Im)

%------------------------------------------------

[aa bb] = size(Im);

4 It = Im(:);

It = sort(It ,’descend ’);

p = sum(It(1: ceil (.05* aa*bb)));

wRank = p/sum(sum(Im));

9 %------------------------------------------------
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B.4 Sub-Image

Listing B.12: ATRToolbox/binIm.m

1 function[im] = binIm(im, threshold)

%create a binary image form SAR images

%define dynamic range and apply threshold

Bmax = max(max(im));

6 Bmin = min(min(im));

t = threshold *(Bmax -Bmin);

if t == 0

error(’bad image ’)

end

11 [ r c] = size(im);

%intialize image

Aim = zeros(r,c);

%

ind= find(im >= t);

16 Aim(ind) = 1;

im = Aim;

%------------------------------------------------

Listing B.13: ATRToolbox/pIm.m

function [p] = pIm(im,s,t,threshold);

2 %from a binay image finds mean and gets rid of anything in a ...

radius n.

[aa bb] = size(im);

%

%create binary image with closely spaced points

m = binIm(im,threshold);

7 %find mean and std x,y

[a b] = find(m == max(max(m))); %use mean pixel of all scatters

mM = ceil(mean(a));

nM = ceil(mean(b));

mS = ceil (12/s);
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12 nS = ceil (12/t);

r = ceil(sqrt(mS^2+nS^2));

for ii = 1:aa

for jj = 1:bb

if m(ii ,jj) == 1

17 px = [ii jj; mM nM];

dx = pdist(px);

if dx > r

m(ii ,jj) = 0;

end

22 end

end

end

p = m;

%------------------------------------------------

Listing B.14: ATRToolbox/cfarIm.m

function [ratio] = cfarIM(image , pixSizeS , pixSizeT , threshold);

%================================================

%CFAR image

4 %------------------------------------------------

[m n] = size(image); %size of entire scene

rS = pixSizeS; %this number of surronding pixels that will be used...

to find clutter mean/sd

rT = pixSizeT;

9 %================================================

%goes around edge to estimate clutter

leftCol = (image (:,1:rT));

rightCol = (image(:,ceil(n-rT):n));

topRow = (image(ceil(m-rS):m,:));

14 bottomRow = (image (1:rS ,:));

meanC = mean([mean(leftCol) mean(rightCol) mean(topRow ,2)’ mean(...

bottomRow ,2) ’]);
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stdC = std([std(leftCol) std(rightCol) std(topRow ’) std(bottomRow ...

’)]);

%================================================

19 %threshold test

ratio = (image - meanC)/stdC;

%------------------------------------------------
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B.5 Fisher Line

Listing B.15: ATRToolbox/Fisher.m

function [fisher_pv , fisher_uv , Sigma , c, norm_plot , x, Asum , roc]...

= Fisher(vector , plot_on , numClass , class1 , class2 , class3);

%------------------------------------------------

%variables

4 [r,c] = size(vector);

totalsize = class1+class2+class3;

%------------------------------------------------

%program

%Use least square to find Fisher ine

9 mf1 = mean2(vector (1:class1 ,:));

mf2 = mean2(vector ((1+ class1):totalsize));

m1 = totalsize/class1 .*ones(1,class1);

m2 = -totalsize/class2 .*ones(1,class2);

m = [m1 m2]’;

14

one_v = ones(r,1);

v = [one_v vector ];

v_tran = v’;

19 V = v_tran*v;

M= v_tran*m;

c = inv(V)*M;

y = v*c;

24 fisher_pv = y(1:class1 ,1);

fisher_uv = y((1+ class1):totalsize ,1);

[pv_row ,pv_col] = size(fisher_pv);

[uv_row , uv_col] = size(fisher_uv);

29 if plot_on == 1

figure (8)

z = y(1:30 ,1) .*0;
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plot(y(1:30 ,1),z,’+’)

hold on

34

z = y(31:60 ,1) .*0;

plot(y(31:60 ,1),z,’o’)

% title(’Fisher ’)

%h = legend(’PV’,’UV ’,1);

39 %set(h,’Interpreter ’,’none ’);

hold off

end

%------------------------------------------------

44

%Add a Gaussian disturbition over each target then vary the ...

varince until

%the sum of th Gaussian distrubition of each class is smooth. The...

new

%Gaussian is then normalized , so it is a true pdf.

class_type = 1; % this is used to select b/w the 2 classes 1=pv; ...

2=uv

49 x = -10:.01:10;

for class_type = 1:2;

if class_type == 1

dis = fisher_pv;

54 class_size = pv_row;

else

dis = fisher_uv;

class_size = uv_row;

end

59 smooth = 0; %this is an indicator that there is one peak

sigma = .1; %this is the start value of the variance

step_size = .001; %controls the resolution of the sigma increases

while smooth == 0
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64 count = 0; %Used to count number of peaks

[a b] = size(dis); %a is number of points

for a_count = 1:a %creates gaussian distro over each point...

in class

69 %each row holds 1 point of a single class ’ distro

point = dis(a_count ,1);

gauss_plot(a_count ,:, class_type) = gaussmf(x,[sigma point...

]);

end

74 sum_plot (:,:, class_type) = sum(gauss_plot (:,:, class_type));

a_max = max(max(sum_plot (:,:, class_type)));

norm_plot (:,:, class_type) = sum_plot (:,:, class_type)./...

class_size;%a_max ;%

%count peaks to determine unimotel (one peak)

[A,B,C] = size (norm_plot);

79 a = 1;

for B_count = 2:B

pos = a*( norm_plot(A,( B_count),class_type)-norm_plot(A,(...

B_count -1),class_type));

if pos > 0

else

84 a = -1*a;

count = count + 1; %When this is one then unimotel

end

end

89 if count == 1

smooth = 1;

else

sigma = sigma + step_size;

end
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end

Sigma(1, class_type) = sigma;

end

99 %------------------------------------------------

%Create a ROC curve of the two classes

[roc , Asum] = ROC(norm_plot , plot_on);

104 %------------------------------------------------

%plots

if plot_on == 1

figure (111)

plot(x, gauss_plot (:,:,1))

109 % hold on

figure (112)

plot(x, gauss_plot (:,:,2))

114 %hold on

figure (8)

plot(x,norm_plot (:,:,1))

hold on

plot(x,norm_plot (:,:,2))

119 %h = legend(’PV’,’UV ’,1);

%set(h,’Interpreter ’,’none ’);

axis ([-5.5 5 -.25 1])

end

%------------------------------------------------

124 %return
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B.6 ROC

Listing B.16: ATRToolbox/ROC.m

1 function [area , Asum] = ROC(norm_plot , plot_on);

%------------------------------------------------

%variables

[a, b, c] =size(norm_plot);

6 %------------------------------------------------

%program

for class_type = 1:c

class = norm_plot (:,:, class_type);

11

%sum up the amount of area as going form left to right

for a_sum = 1:a

for b_sum = 1:b

if b_sum == 1

16 area(a_sum , b_sum ,class_type) = class(a_sum ,b_sum)...

;

else

area(a_sum , b_sum ,class_type) = class(a_sum ,b_sum)...

+ area(a_sum , b_sum -1 ,class_type);

end

21 end

end

a_max(1, class_type) = max(max(area(:,:, class_type)));

area(:,:, class_type) = area(:,:, class_type)./ a_max(1,...

class_type);

26 end

Asum = area (:,1:( length(area (:,:,1)) -1) ,2)*diff(area (:,:,1))’;

%------------------------------------------------

%plots
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if plot_on == 1

31 figure (211)

h211 = plot(area (:,:,1), area (:,:,2));

xlabel(’P_f’)

ylabel(’P_d’)

axis equal

36 axis ([-.1 1.1 -.1 1.1])

%set(gca ,’XTickLabel ’,{})

%set(gca ,’YTickLabel ’,{})

hold on

end

41 %------------------------------------------------

return
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