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Abstract

Computing systems are used in virtually every aspect of our lives. Technology such

as smart phones and electronically controlled subsystems in cars is becoming so com-

monly used that it is virtually ubiquitous. Occasionally, this technology can be ex-

ploited to perform functions that it was never intended to perform, or fail to provide

information that it is supposed to protect. This can allow for the malicious use of

hardware, such as circumventing copyright restrictions or stealing cryptographic keys

that must be kept secret.

In order to protect these computing systems and secure the data held within,

the individual components must be protected. In order to accomplish this goal, this

research performs work in three areas: investigation of circuit vulnerabilities, effec-

tiveness of static protection methods, and the effectiveness and feasibility of using

dynamic protection. Circuit vulnerabilities are explored by extending X-Hot Input

Analysis (X-HIA), a recently proposed blackbox attack method that reduces the num-

ber of input vectors necessary to identify a circuit, allowing for faster identification.

Several previously demonstrated static obfuscation techniques are evaluated against

X-HIA. Dynamic Polymorphic Reconfiguration (DPR), a previously proposed dy-

namic protection method that has not been previously implemented, is realized so

that it can be evaluated.

X-HIA was shown to be effective at identifying several circuit components, in-

cluding a multiplexer and multiplier, in a significantly shorter time than previous

identification methods. Instead of requiring a number of input/output pairings that

grows factorially or exponentially as the circuit size grows, it requires only a number

that grows polynomially with the size of the circuit. This allows for the identification

iv



of significantly larger circuits. Static protection techniques that are applied to the cir-

cuits under test increase the order of that polynomial, but do not increase the amount

of time required to identify the circuit to the point that it is not feasible to perform

that identification. DPR is implemented, and it is shown both that the overhead is

not prohibitive and that it is effective at causing an identification algorithm to fail.

This formalizes a method of protecting circuits from attack: altering a circuit often

enough that the most efficient algorithms are never able to identify it.
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STATIC AND DYNAMIC COMPONENT OBFUSCATION

ON

RECONFIGURABLE DEVICES

I. Introduction

Computing technology pervades nearly every aspect of our lives. Many people

carry internet-connected smart phones with them in order to always maintain their

link to their digital lives. The entertainment industry relies on MP3 players, Blu-Ray

players, and computerized gaming consoles to deliver their content to consumers.

The shift to digital media has undoubtedly increased access to many resources for

many people, but can also be used to circumvent copyright laws or company policies.

Once hackers discovered how the PlayStation 2 (PS2) video-game console functioned,

they were able to produce a ”mod-chip” for it that allowed them to use the system

to play illicit games and software. As Figure 1 shows, the original circuitry was

not replaced[2]. The mod chip attaches to existing circuitry and alters its function,

bypassing the copyright check. Wireless access points can be modified to allow the

broadcasting power to be increased further than the manufacturer recommends. In

short, computing technology is here to stay, and if it not secured, someone will exploit

it for their own good.

1.1 Motivation

Technology plays an increasingly important role in the United States Military.

The military considers any technology that makes a significant contribution to mil-

itary potential to be a Military Critical Technology (MCT)[1]. Compromise of this

1



Figure 1. PlayStation 2 Mod Chip Installation

technology can have disastrous consequences for the end user, such as the enemy be-

ing able to tap into our intelligence feeds[4]. It is tempting to assume that hardware

implementations are invulnerable to attack because they do not feature large easily

observable components like mechanical systems do. This is not the case. The PS2

was likely cracked using brute-force methods. An amazing amount of information

about a system can be obtained by a determined person in their garage, without

fancy equipment. An adversary must only compromise the weakest link in a system

in order to gain access to critical technology (they did not have to break the copy

protection on a DVD, just the DVD player). For this reason, the hardware itself must

be secured against attack.

Attacks come on two varieties: black-box and white-box attacks. While-box at-

tacks occur when the attacker is able to gain access to information about the inside

workings of a circuit and use this information to analyze the circuit whereas during

black-box attack, an attacker only has information about the input-output behavior

of the circuit. Most white box techniques involve partitioning a circuit into likely

components, and then performing black-box identification on those components. For
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that reason, this research focuses on black-box protection.

The attack against the PS2 was likely a black-box attack. By loading first a

legitimate game, then a illegitimate copy of the same game, and monitoring the

signals between chips, the attackers could deduce which signals prevented the copied

game from being used. Then, a chip was designed that could override these signals

and allow any game to be played. The same modification chip works for several

generations of the PS2, demonstrating that altering the layout of a circuit board does

not provide security if the function of the signals is known.

In the interest of shortening development time and creating more versatile, cost

effective systems, reconfigurable devices such as Field Programmable Gate Arrays

(FPGAs) are frequently used. The same qualities that make these devices highly

desirable can also leave them vulnerable to attack. If the computer controlling the

engine in a car can be easily reprogrammed, the dealer can fix design problems simply

and quickly. This same functionality may allow for illicit modifications circumventing

environmental or safety laws.

1.2 Problem Statement

Hardware protection systems all seek to secure an electronic device that may be

out of our physical control. Obviously, the consumer of the technology will be able to

examine it at their leisure. Even if the consumer is trusted (perhaps this would be the

case with a radio that is only sold to the military), the potential exists for the device

to be lost or stolen, and subsequently fall into the hands of a less trustworthy user.

The goal of obfuscation is twofold: to make it difficult or impossible for an adversary

to discover the function of a captured circuit and to ensure that an adversary cannot

easily replicate or modify the captured system.

Current methods of protecting circuitry seek to protect the circuit at either the
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design stage or the configuration stage of the system. Because this protection only

occurs at a single point in time, and does not change over time, these methods are

referred to as static protection. Because a combinational component can be identified

by enumerating its truth table, an ideal static transformation will require anyone

seeking to identify the circuit to try every possible input combination.

If static protection methods are not adequate, or the cost is too high, then dynamic

methods must be employed. A novel protection concept called Dynamic Polymorphic

Reconfiguration (DPR) that could successfully protect a circuit against black-box

identification methods has been presented but there has been no implementation nor

evaluation performed[14]. Obstacles that must be overcome in order to implement

DPR include defining the transformation frequency as well as formalizing the struc-

ture of the dynamic system, as well as the actual implementation in either an ASIC

or some sort of reconfigurable device. The goal of the dynamic method is to increase

the number of input vectors that must be applied to identify a component beyond the

best static transformation, so that even if all possible inputs are applied to a circuit,

it may still not be identifiable without additional information.

1.3 Contribution

In order to successfully protect a device from unwanted analysis, common devices

are broken down into building blocks, and efficient analysis methods for each building

block are created. The usefulness of static methods against these methods and also

more conventional ones is examined in order to define the requirements of a dynamic

system. Once the requirements for a dynamic system have been established through

analyzing static protection schemes, a framework for DPR (or another dynamic pro-

tection method) to be implemented and tested must be created. This framework may

be specific to the technology being used to implement the dynamic system. Due to
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their speed, flexibility, and widespread use, FPGAs will be used as the platform for

implementing and testing the dynamic protection scheme.
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II. Literature Review

The typical design process for an electronic system involves first specifying the

operation of the system, and then using available technology to meet the requirements.

While this can be an expensive and time consuming process, it is well understood

and practiced regularly.

Conducting this process backwards, or reverse engineering (RE), can be far more

complex. The goal of RE is to discover and describe the operation of a given system.

Theoretically, this can always be accomplished through an exhaustive search, however,

modern systems are sufficiently large that the world’s fastest supercomputer could

not exhaustively test a circuit before the sun burned out.

This chapter is structured as follows: first, the strengths and weaknesses of recon-

figurable computing in general, and FPGAs in particular, are examined in order to

justify their use and the effort of protecting them. Different types of attack methods

are then explored to define what the system being protected may encounter. The spe-

cific methods of attack that this research hopes to defeat, component identification,

is addressed in more detail. Existing methods of component hiding are presented,

and finally the systems on which these techniques will be tested are described.

2.1 Reconfigurable Computing

A reconfigurable computing system is one that is capable of having its operation

defined after it is manufactured. Changing the operation of a device without re-

manufacturing allows for rapid prototyping of digital systems, presenting significant

decreases in the amount of time and money required to iterate through the design

process. As a result, reconfigurable computing platforms are in widespread use. The

Field Programmable Gate Array (FPGA) is a commonly used, powerful, and versatile
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reconfigurable computing platform.

2.1.1 FPGAs.

An FPGA is an array of reprogrammable gates. The operation performed by each

gate is specified prior to programming the device. FPGAs represent a modern im-

provement on the Programmable Logic Devices (PLDS) and Complex Programmable

Logic Devices (CPLDs) that were created in the 70s and 80s. Modern FPGAs may

contain millions of circuit elements, as well as on-chip application-specific integrated

circuits (ASICs) such as arithmetic units or microprocessors to enhance the function

of the device.

Each manufacturer of FPGAs has their own design and nomenclature, but the

basic operation of each is similar. The design of the Xilinx Virtex Series FPGAs is

presented here, but the discussion applies to any FPGA based on lookup table (LUT)

and static random-access memory (SRAM) technology.

The FPGA is constructed of a 2-dimensional array of logic blocks connected by

a routing matrix. Both the logic blocks and the routing matrix are reconfigurable.

Xilinx refers to each of these logic blocks as a Configurable Logic Block, or CLB.

The CLB in turn contains smaller logic elements, termed Slices. Slices within a

CLB can communicate directly with other Slices in the same CLB. Within each slice

are multiple LUTs. These LUTs act as truth tables, translating multiple inputs to

multiple outputs. Each LUT of the Virtex-5 has 6 inputs and 1 output. The LUTs

are paired with flip-flops (FFs) to facilitate the creation of sequential circuit elements.

By specifying the operation to be performed by each LUT as well as the inter-

connections between and within CLBs, virtually any operation can be implemented

on an FPGA. The operation is specified using a netlist, register transfer logic (RTL)

description, hardware description language (HDL), or circuit description. Proprietary
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tools then transform this specification into an FPGA configuration. The output of

these tools can be used to program the FPGA and is referred to as a bitstream. During

its lifetime, an FPGA may be reprogrammed hundreds or even thousands of times.

2.1.2 Run-time and Partial Reconfiguration.

Typically an FPGA is programmed by bringing it offline and transferring the

bitstream to the FPGA. One area of considerable interest is partial reconfiguration, in

which only a portion of the bitstream is modified. This allows the unaffected portions

of the FPGA to continue to function while the programming operation occurs, leading

to increases in performance[7].

This increased flexibility and performance requires a more complex architecture

and tools. Several vendors including Xilinx do offer devices capable of partial re-

configuration, but there are limitations to these capabilities. Typically, a differential

bitstream is generated, which is not desirable when producing dynamically reconfig-

urable circuitry[19]. Current Xilinx tools do not support the exchange of predefined

modules, although this capability was present in previous tools[18]. The module sup-

port that did exist required each module to be stored on the board when the device is

programmed, and new modules could not be introduced without bringing the FPGA

offline. Stone introduced a design where individual LUTs could be reconfigured while

the FPGA was running[22].

Stone’s research is promising but has its own limitations. First, it contains only

16 CLBs, whereas most modern FPGAs contain thousands. Also, while the function

of a CLB or LUT may be dynamically altered, the routing cannot be changed. One

encouraging result is that the reconfiguration circuit can operate at a higher frequency

than the rest of the FPGA, minimizing circuit downtime.
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2.2 Circuit Vulnerabilities

Military Critical Technologies (MCTs) and proprietary hardware must be secured.

Several classes of attacks are possible against both ASICs and FPGAs. Four of these

classes are discussed here: side channel, reverse engineering, invasive techniques, and

semi-invasive techniques. Side channel attacks attempt to indirectly gain access to

proprietary information about a system. Reverse engineering attempts to create a

higher level description of a system in order to better understand it, and therefore

exploit it. Invasive and semi-invasive techniques are the most direct attacks, in that

they physically attack the circuit in order to exploit it.

2.2.1 Side Channel Attacks.

While an operation is being performed by a digital system, measurements such

as time, power consumption, heat signature, and electromagnetic emissions can be

recorded. Side-channel analysis uses these measurements to make inferences about the

operation of the circuit, which can then be used to exploit the circuit. Information

that would not normally be available, such as secret keys, can be obtained using

side-channel analysis.

Simple Power Analysis (SPA)[23] and Differential Power Analysis (DPA)[11] are

commonly employed against cryptographic circuitry. In order to perform this analysis,

the power consumption of a circuit is monitored by recording the voltage drop across a

low-valued resistor inserted between the circuit and the power supply. In some cases,

attacks can be carried out with little knowledge of the circuit itself[13]. Typically the

differences in power consumed by different functional units that carry out arithmetic

operations are quantified, and information about the key can be obtained. SPA

discerns the key directly from the power traces while DPA uses statistical methods

to test likely keys.
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It has been shown that an FPGA is susceptible to correlation power analysis

(CPA)[21]. A block cipher was implemented on a Xilinx FPGA, and the key was

subsequently extracted using statistical analysis of the power consumed by the device.

Sometimes the key can also be extracted by analyzing the amount of time required

to complete an operation. In many RSA implementations a choice is made between

a squaring operation alone or a square followed by a multiply. Obviously, the square

then multiply choice will take longer to execute. Timing analysis was first completed

in 1996[12]. The key can be obtained from a 512-bit RSA encryption unit by recording

and analyzing the time it takes to complete 5000 encryption operations[15].

2.2.2 Reverse Engineering.

One goal of the reverse engineering process is to identify the components within

a system and the relationships between these components[6]. Given a gate level

description of a circuit, it is possible to select a subset of gates that may be a distinct

component[24].

The goal of an identification algorithm is to determine whether or not a circuit is

equivalent to any circuit contained in a library of circuits. Two circuits are equivalent

if and only if there exists some ordering of the inputs and outputs such that the truth

tables for both circuits are identical[24].

For small circuits, the truth table of a candidate component and a library compo-

nent may be compared directly. For larger circuits, it is not possible to even enumerate

the truth table[14].

It is worth noting that if any two circuits are structurally equivalent, they will

also be functionally equivalent. The reverse does not necessarily hold true. Consider

as an example two adders of the same size, one a conventional ripple-carry adder and

the other a carry-lookahead adder. The two are functionally equivalent, because for
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each possible input, they produce the same output (the sum of the inputs). The two

are not structurally equivalent, because they are different at the gate or transistor

level.

Identification techniques that analyze only the circuit structure to identify a circuit

are known as white-box techniques, while techniques that use only the input-output

relationships of the circuit to identify it are known as black-box techniques.

2.2.3 Invasive Techniques.

While the previously discussed exploitation techniques passively monitor the cir-

cuit to be exploited, this is not always the case. If access to a device is unrestricted, the

device may be physically tampered with. Invasive techniques require the de-packaging

of components, removing the protective packaging around the circuit. These tech-

niques have not been demonstrated against FPGAs, but the SRAM technology that

FPGAs are built on is susceptible to these attacks[25]. In order to conduct these

attacks, specialized tools are required.

2.2.4 Semi-invasive Techniques.

These techniques also require that the outer packaging of a circuit be removed,

but do not require the same level of technical equipment and expertise that invasive

techniques do. In most cases, semi-invasive techniques seek to alter the behavior of

the circuit, which may allow for the breaking of a cryptographic system. The state

of individual transistors or SRAM cells can be altered using radiation[20].

2.3 Component Identification Techniques

Three methods of component identification are presented in this section: a struc-

tural approach that has been used to identify the components in a set of benchmark
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circuits, an approach that does not rely on the structure of the circuit to analyze

components, and X-HIA, the component identification method that will be expanded

upon in the next chapter.

2.3.1 A Structural Approach.

The ISCAS-85 benchmark circuits have been reverse engineered using a structural

approach[10]. Because the approach was both successful and well-documented, it

makes an ideal case study for structural methods of component identification.

The approach used by Hansen, Halcin, and Hayes utilized eight techniques to

describe a circuit at increasingly higher levels.

• The reverse engineers began by looking for library components that were easily

recognizable. Examples of this are XOR gates constructed for basic gates,

multiplexers, and CLA generators.

• Secondly, they identified non-library logic modules that were repeated through-

out the circuit. These elements give insight as to whether or not the circuit

performs the same operation on multiple bits.

• After recognizing some of the modules in the circuit, the engineers looked for

expected circuit elements, such as an XOR gate accompanying CLA generator

logic.

• Small unidentified sections of the circuit were exhaustively analyzed. This is

only feasible for sections of the circuit with a small number of inputs.

• High fan-out signals were identified, because they are likely to be control signals.

This allows the blocks that the control signals feed to be identified more easily.
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• By grouping signals into busses, and then examining where these signals lead,

the circuit can be partitioned further.

• In the case of the ISCAS benchmarks, common names were employed for related

signals. This allowed the reverse engineers to group these signals together.

• If a block contains truly random logic, it must be represented as a black box.

The authors concluded that it is possible to reverse engineer a circuit using white-

box techniques without simply comparing the entire circuit to library circuits. They

successfully reverse-engineered circuits with over 200 input lines, and circuits with

more than 2000 logic gates. The technique they present relies on the existence of

engineers with expertise in the field of circuit design, and plenty of time to work. No

completely analytic method is presented.

2.3.2 Semantic Approaches.

An infinite number of combinational circuits can be generated that match a given

function or truth table. The proof of this is simple: assume that there were only

a finite number of circuits that could represent a given function. After these were

enumerated, add a buffer to the outputs of each of them. This will create at least

one new combinational circuit that matches the function, violating our assumption.

Therefore, there must be an infinite number of circuits to represent any function.

Given the theorem above, no syntactic matching library could ever contain every

possible circuit that could implement a function. Therefore, in order to increase the

chances of matching a circuit component to a component in the library, semantic

methods can be used. Because semantic methods focus only on circuit behavior, the

underlying implementation details do not affect the running of the algorithm.
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2.3.2.1 Doom’s Method.

Doom, White, Wojcik, and Chishold proposed a different method of component

identification. Their method relies not on finding exact structural matches, but on

finding functionally equivalent circuits. This process begins by narrowing the number

of possible candidate circuits by computing a signature for the component(function)

to be identified. This signature is not necessarily unique to the component being

identified, and all functionally equivalent components will share a signature. This

narrows the search space of equivalent components to those components sharing a

signature with the target component.

An algorithm is presented which allows for the automation of component identi-

fication. The algorithm proceeds through the following five steps:

1. Create Binary Decision Diagrams (BDD) for both the component to be identi-

fied and a candidate component.

2. Compare the signature of each component. If they do not match, discard the

candidate component as a possible match.

3. Place all of the possible matches into the suspect set.

4. Search each possible correspondence for a match, using the BDD generated in

the first step.

5. Determine the legal output correspondences, which are the orderings of the

outputs for which the components are equivalent.

This method successfully identified common circuits. It was much faster than a

”brute force” method. The brute force method grows factorially as the number of

inputs increases, while this method grows exponentially (a significant improvement.)
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2.3.2.2 X-HIA.

X-hot input analysis represents one of the newest methods of identifying components[14].

The name is derived from the principal operation performed while identifying com-

ponents: recording the outputs of the circuit while driving all permutations of X

inputs high (the ”hot inputs”). While the number of permutations grows quickly as

X increases, Porter showed that X can remain small, thereby allowing for very quick

component identification compared to testing all input and output permutations in

order to match to a library component. X-HIA requires the formulation of a unique

identification strategy for each component in the library. It has not been shown that

an efficient strategy can be developed for a wide variety of components, but the re-

sults are promising. For example, an adder with n inputs can be identified using

only about 1.5n input vectors, allowing a 64-bit adder (129 inputs) to be identified

in approximately 200ns using modern testing equipment.

2.4 Component Hiding Techniques

There are several ways to classify circuit obfuscation techniques. Techniques may

be classified according to whether they defend against white-box attacks, black-box

attacks, or both. Alternately, they may be divided by whether they preserve the

original circuit semantics(the truth table) or alter it. Obfuscation methods can also

be grouped by whether they are performed once, when the circuit it created (static

methods) or occur as the circuit is being used (dynamic methods).

2.4.1 White-box methods.

White box methods necessarily involve changing gates or signals inside the cir-

cuit. Examples of transformations that could be used are increasing the number of

input bits, introducing intermediate gates to create new paths within the circuit, or
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introducing new output gates. These transformations may be carried out statically

or dynamically. Both techniques that preserve the semantic meaning of a circuit and

those that do not may defend against white-box attacks.

Typically, there are several stages to any white-box obfuscation method. First, a

gate or signal must be selected for obfuscation. Next, the obfuscation itself must be

selected (i.e. a replacement gate type). Finally, the circuit must be altered, and the

necessary information computed and stored in order to recover the original function

of the component.

2.4.2 Black-box methods.

Because black-box analysis methods rely only upon the truth table of a circuit

in order to identify it, techniques that preserve the semantics of a circuit are not

effective against black-box attacks. White box transformations that do not preserve

the original semantics (function) of the circuit may protect against black-box attacks,

as well as methods that simply alter the truth table without relying on white-box

circuit information.

2.4.3 Dynamic methods.

It is possible to create an FPGA that can be reprogrammed without halting the

operation of a circuit[22]. Alternately, a circuit may be fabricated with gates that

perform multiple functions based on the operating conditions[16]. These advances in

technology allow for the formulation of dynamic obfuscation techniques in which the

circuit is periodically modified in order to make it more difficult to identify.

One method that has been shown to help protect a circuit from unwanted analysis

is Dynamic Polymorphic Reconfiguration (DPR)[14]. This technique relies on six

functions to obfuscate the circuit:
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• GateReplace - performs a gate replacement

• SignalHide - hides a signal

• AddInput - adds an input

• AddGate - adds a gate

• AddOutput - adds an output

• StandAloneKey - creates a standalone recovery key

2.5 Cryptographic Systems

Encryption and decryption of information is absolutely essential to e-commerce,

the military, and even personal computer users. Many online transactions require the

use of cryptography. Cryptography may also be used to digitally sign documents or

perform identify verification. These cryptographic systems all require the use of a

key, so methods of generating the key will first be explored, AES and RSA, two of

the most commonly used cryptographic algorithms, are presented.

2.5.1 Key Generation and Protection.

All modern cryptographic methods rely on the use of a secure key. If this key

is compromised, the security of the entire system is compromised, regardless of the

particular algorithm used[17]. If the system can by analyzed sufficiently, the key may

be able to be read out of a cryptosystem directly. If this were to occur, the security

of the system would be negated.

Key generation techniques fall into two categories: random and pseudo-random.

Random bitstreams are difficult to produce, but cannot be accurately predicted by an

adversary. Pseudo-random bitstreams are easy to produce using a variety of methods,
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XOR

Figure 2. 4-bit LFSR

but can be predicted if some information is known. Many pseudo-random number/bit-

stream generators rely on some sort of seed value. One commonly used pseudo-random

number generator is a linear feedback shift register (LFSR). A LFSR is a shift regis-

ter with the input connected to some combination of the current bits in the register.

Typically, some of the bits in the register are XORed together to form the next bit

to be shifted in. An example of a LFSR is shown in Figure 2.

A LFSR can be described by an associated polynomial. The coefficients of the

polynomial are either 0 or 1, and indicate which bits of the shift register are to be

”tapped” in order to form the input bit. The polynomial for the shift register shown

in Figure 2 is shown in Equation 1.

x3 + x1 + 1 (1)

2.5.2 AES.

The advanced encryption standard (AES) is currently used by the US Government

to protect sensitive and classified information. AES operates on 128 bits of ciphertext

or plaintext at a time and uses either a 128-, 192-, or 256-bit key to perform the

encryption or decryption[3]. AES consists of five functions, each of which is repeated

depending on the size of the key used. If the circuit components that implement these

functions can be identified, the key can be recovered. The five functions used in AES
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are:

• KeyExpansion - This function is only performed once. It is the first function to

be performed when an encryption or decryption operation begins. It takes as

an input the 128-, 192-, or 256-bit AES key and generates 10, 12, or 14 round

keys depending on the key length.

• AddRoundKey - This function takes as an input 2 128-bit operands. It performs

a bitwise XOR operation and returns the result.

• SubBytes - This function takes as an input a 4 × 4 array of bytes. Each byte

is replaced by another according to a non-linear lookup table referred to as the

substitution box, or S-box.

• ShiftRows - This function takes as an input a 4×4 array of bytes. It shifts each

byte in the second row to the left by one position, each byte in the third row

left by two positions, and each byte in the fourth row left by three positions.

• MixColumns - This function takes as an input a 4 × 4 array of bytes. Each

column of the array is multiplied by a fixed polynomial.

Each of these functions can easily be implemented in hardware, or using an 8-

bit microprocessor. If implemented in hardware, each component can be attacked

separately. Once the signals that correspond to the key are identified, the security

of the system is compromised. If the round keys are even partially discovered, the

original key can be recovered[9].

Encryption and decryption are performed using the same hardware on AES, using

the same key. Because the same key encrypts and decrypts a message, it is known as a

symmetric key algorithm. The re-use of the same hardware implies that if encryption

can be protected from exploitation, so can decryption.
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2.5.3 RSA.

RSA is a public-key cryptographic algorithm. As such, two keys are generated,

one for encryption and one for decryption. Only one of these must be kept private,

the other is made freely available.

The basis for any RSA implementation is modular exponentiation. This is a fairly

simple mathematical operation. The repetition required to implement it makes some

RSA hardware very vulnerable to attacks, particularly side-channel attacks.

2.6 Summary

Reconfigurable hardware simplifies the design process by allowing designers to

rapidly iterate through prototype designs. Unfortunately, they are vulnerable to

many of the same attack methods that conventional ASIC circuitry are vulnerable

to, as well as some vulnerabilities introduced by the design process for reconfigurable

hardware. Two of the more direct attacks are black-box and white-box component

analysis. Several examples of these attacks were presented, as well as the existing

methods of countering the attacks. Finally, the crypographic systems that can be

implemented in hardware and may need to remain secure are discussed.
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III. Static Circuit Vulnerabilities

This chapter describes a component identification technique that can be performed

with only black-box information. The effectiveness of various static obfuscation meth-

ods in defending against this identification technique is then explored. In the next

chapter, a dynamic protection technique will be developed using some of the same

circuit transformations in order to further protect a component from identification.

The desired output of an identification routine varies depending on the application.

If a supplier goes out of business, or the original specification of a system is lost, then

all that is necessary is to be able to replicate the original hardware. For this purpose,

simply knowing the truth table or circuit netlist is sufficient, because tools exist that

can implement a circuit given only the truth table or netlist. On the other hand, if the

goal is to understand the working of the circuit (perhaps to locate the key, or check

to ensure that no additional hardware was added by an untrustworthy manufacturer)

then more knowledge is required. Simply knowing the truth table does not suffice;

knowing that the truth table of the component matches the truth table of a multiplier

is much more useful.

To define a circuit by applying all possible inputs and recording the outputs (enu-

merating the truth table line by line) is not feasible. For a circuit with 60 binary input

lines, this discovery process would take approximately thirty-six thousand years us-

ing a gigahertz tester. Circuits or programs are often composed of common building

blocks. This can stem from design processes used by engineers, who are used to

working with these components, or from the automated translation from a high-level

language to a circuit description. As a result, the search space for an unidentified

circuit can be significantly smaller than 2n, where n is the number of inputs. An

algorithm to identify these common components quickly is presented here.

Several methods have been proposed for protecting circuits. These circuit transfor-
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mations are performed once, at design time. They seek to change the implementation

of the circuit from one that can be easily identified to one that is difficult to iden-

tify. These transformations are described and their effectiveness against the matching

techniques presented is evaluated.

3.1 A general identification method

Circuitry can be broken down into combinational and sequential elements. In a

combinational circuit, the output depends only on the current inputs. In a sequential

circuit, the output may depend on the past inputs in additional to the current ones.

As a result, sequential circuits are much more difficult to analyze than combinational

circuits. Sequential circuits may be broken down into flip-flops with combinational

circuitry in between. If the combinational portion can be protected, then the sequen-

tial circuit is protected.

Many circuit analysis techniques approach the identification problem rather blindly.

Significant increases in performance have been achieved by classifying inputs and

outputs into narrow containers prior to the matching algorithm being run[8]. This

narrows the search space considerably.

This identification method expands on these techniques by taking into account

the likely function of a circuit. Once a likely function is identified, the following steps

are tailored to identifying the inputs and outputs of that particular function. If the

identification fails, the identifier moves on to the next most likely function, and runs

a sequence tailored to that function. If all possible functions are tested and fail, then

the algorithm has failed to identify the component.

By following a systematic, easily automated process, the components can be iden-

tified using far fewer steps than conventional brute force attacks. This process can

be divided into four steps: input/output identification, input/output space analysis,
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input/output partitioning, and bit ordering and correspondence discovery. This tech-

nique builds upon that presented by Porter in [14] and described briefly in Chapter

II.

3.1.1 Input/Output Identification.

As all black-box analysis techniques rely upon the ability to force an input and

measure an output, identification of each pin as either an input or an output is

a necessary first step. This is easily accomplished using modern technology and

techniques.

The ideal electronic device has the following characteristics: infinite input resis-

tance and zero output resistance. While in practice no device can be fabricated that

meets this standard, the input resistance is several orders of magnitude higher than

the output resistance.

It is possible for Automatic Test Equipment(ATE) to quickly measure the re-

sponse of a pin to small currents (100 - 250 µA) without damaging the pins. This

measurement allows for the identification of a pin as either an input or an output[5].

When using reconfigurable hardware such as an FPGA, this process may be sim-

plified. If any of the original design information is available, it is likely that the I/O

configuration will be stored and can simply be read from the file. If not, the same

techniques that are used to analyze ASIC circuitry can be utilized.

3.1.2 Input/Output Space Analysis.

Analysis of the I/O space allows for a probabilistic classification of a circuit, that

is, it does not absolutely determine the function of a component, but it does lend

itself to determining the likely function of the circuit. This in turn allows the search

routine to test the most likely functions first, greatly improving the efficiency of the
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Table 1. Expected Input/Output Ratios

Device Input and Output Information

Name Input Pins Output Pins Ratio

n-input gate n 1 n
1

= n

m-bit adder 2m + 1 m + 1 2m+1

m+1
≈ 2

k : 1 m-bit MUX km + dlog2ke m
km+dlog2ke

m
≈ k

m-bit multiplier 2m 2m 2m
2m

= 1

decoder n 2n n
2n

< 1

algorithm. Both the number and ratio of input and output pins yields information

about the likely function of a circuit.

Comparison of the input/output space of a circuit to Table 1 shrinks the number of

likely circuit candidates. However, in many cases there will still be multiple candidate

circuits. For example, It is impossible to distinguish between the 1-bit 2:1 multiplexer

and a 3-input logic gate by looking only at the number of inputs and outputs. For this

reason, an IO Signature is created for each component in the library. IO Signatures

of different components can be compared. Candidate functions can then be ordered

from most likely to least likely, and tested in that order.

3.1.3 Input/Output Partitioning.

Input/Output Partitioning organizes the inputs and outputs such that related bits

are grouped together. For example, the inputs of a division unit could be grouped

into a divisor and a dividend.

Symmetric Groups are groups whose labels may be exchanged without affect-

ing the function of the circuit. Examples of circuits that contain symmetric groups

are commutative mathematical functions, such as addition and multiplication. Sym-

metric groups will be labeled Group A, Group B, etc during the labeling process.

Asymmetric Groups are groups that are not symmetric, such as a group of control
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lines on a multiplexer, or the operands of a divider. Asymmetric groups will be given

distinct labels corresponding to their function within the circuit.

3.1.4 Bit Ordering and Correspondences.

For some circuits, the ordering (significance) of bits within a group can be deter-

mined (as in an adder or multiplier). In others, such as a multiplexer, no ordering

can be made within a group.

If the order of the lines within a group can be established, then the lines of Group

A (containing m lines) will be referred to with increasing order of significance as

a0, a1, ..., am−1. If the absolute ordering cannot be established, but it can be estab-

lished that bits in different groups share significant positions, then these bits will be

said to correspond with each other.

In some cases, particularly with control lines, the order cannot be established, but

the effect of particular logic values upon the operation of a circuit can be established.

As an example, the ordering of the control lines of a 4:1 multiplexer cannot be estab-

lished, but the combination (0, 0) may lead to group A being selected, (1, 0) lead to

group B being selected, and so forth. In this case, a table or other expedient method

of presenting this information will be given.

3.1.5 Process Flow.

Figure 3 shows the overall process flow for identifying a component. First, a

proper subcircuit must be selected. This subcircuit corresponds to a likely library

component. Depending on how the subcircuit was identified, it may be necessary

to examine it to discover the function of each pin: either power, ground, input, or

output. This step is only necessary when working with ASIC components. Then,

the inputs and outputs are partitioned and bit order/correspondences are verified as
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described above. These steps are repeated until the component is identified, or no

more information can be gathered.

3.2 Static Protection Analysis

Static transformations can be grouped into three categories: those that alter cir-

cuit semantics but not the number of input or output bits, those that add input and/or

output lines without altering the semantics of the original inputs and outputs, and

those that alter both the input/output count and circuit semantics. Obfuscation tech-
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niques may also be categorized depending on what level of circuit description they

act on. Techniques that only rely only upon the truth table for the circuit description

are black box techniques, while those that require information about circuit structure

are white box techniques.

Semantic preserving techniques allow the circuit to still perform the original func-

tion (such as encryption) with no extra recovery circuitry. If the circuit semantics

are not preserved, then additional circuitry must be added in order to recover the

original function.

3.2.1 Semantic-Preserving Techniques.

In order to obfuscate a circuit while preserving the original semantics, additional

inputs and/or outputs must be added to the circuit.

3.2.1.1 Addition of input bits.

Several input bits can be added to the circuit such that when the correct com-

bination is applied, the function of the original circuit is unchanged. Every other

combination will result in a different function being performed. In effect, there is a

combinational lock on the circuit, and the circuit will not work properly unless the

correct combination is presented.

Consider a component with n inputs and m outputs. If the component is one of

the components analyzed above, the number of input vectors required to analyze the

component is a polynomial function of n. Extra inputs can be added to a circuit to

form a sort of combinational lock. When the correct combination is applied to these

inputs, the circuit will function in its original manner. When an incorrect combination

is applied, the outputs of the circuit will be garbled. When a combinational lock of

size k bits is added to the component, the analysis tool must first identify which input
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bits make up the combinational lock. If n, k, and the correct key are known, then the

identification routine must be run (n + k)(n + k − 1)...(n + 1) > nk times in order to

test every possible permutation of input bits of size k. On average, half of the possible

permutations will have to be tested before the key bits are located. Even with all

information given to the component identification algorithm other than which inputs

form the key, the asymptotic complexity of the identification algorithm is increased

by a factor of nk. This is a significant increase, considering that the asymptotic

complexity of identifying an adder is O(n) and that of identifying a multiplier is

O(n2) (see Chapter IV).

While the addition of the combinational lock adds security while adding relatively

few inputs to the circuit, care must be taken with the implementation of such a

system. In order to meet the assumptions listed above, the circuit must behave

differently for each combination applied to the lock bits. This can be accomplished

by replacing gates with polymorphic gates (described in detail in Chapter IV). This

may cause the size of the circuit to grow significantly when the lock is added to the

circuit. The analysis above assumes that only black-box information about the circuit

is available. If white-box analysis is able to identify the lock bits, significantly less

security is added to the system. Similarly, if the adversary can observe the operation

of the circuit in a larger system and determine the proper input combination to apply

to the lock, the lock adds no security.

3.2.1.2 Adding Output Bits.

The addition of output bits will not significantly affect the algorithms presented

previously. The additional outputs will simply be considered unidentified, but the

original circuit will still be identified.
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3.2.2 Non-Semantic-Preserving Techniques.

As demonstrated in the previous section, semantic-preserving techniques can offer

only a limited amount of real-world protection. Therefore, techniques that alter the

semantic description of the circuit should be employed in order to increase protection.

The transformations can be made in two different ways. An existing semantic

description of the circuit(i.e. a truth table) can be altered directly or a syntac-

tic/structural description of the circuit can be altered. Each set of techniques has

advantages and disadvantages.

3.2.2.1 Line inversion.

The simplest black-box transformation inverts the outputs on certain lines of the

truth table. Inverting every line would result in the trivial transformation of the

circuit from one with active-high outputs to active-low outputs, or vice-verse. A

non-trivial transformation utilizes an inversion schedule. This schedule determines

whether or not a line of the truth table can be inverted. In practice, this may be ac-

complished through a boolean function which determines whether nor not the output

is inverted based on the input. This is equivalent to the replacement of a primary

output with a 2-input XOR gate with one input connected to the previous output

and one input connected to a combinational logic block or key that selects when that

output is to be inverted. Therefore, it can be analyzed in the same manner as a

gate addition obfuscation strategy, and has the capability to successfully obfuscate a

circuit.

3.2.2.2 Column Exchange.

While row exchange can be applied to the truth table as a whole, column exchange

must be applied to only certain rows. This is because inputs and outputs are con-
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Figure 4. Column Exchange Operation

sidered in arbitrary order by most identification algorithms. An example of column

exchange may be to change the order of bits in an operand depending on the parity

of that operand, possibly confusing algorithmic attempts to order the bits within

that operand. Alternately, columns could be permuted based on the hamming weight

of the input. Figure 4 demonstrates the results of column exchange on a 3-input,

2-output circuit. The columns have been exchanged in the highlighted area.

Performing column exchange is equivalent to the addition of polymorphic switches

(see Chapter IV) that are controlled by internal circuit signals (instead of additional

pseudo-primary inputs). The algorithm for component identification presented in this

chapter is defeated if non-trivial exchanges are performed. Non-trivial exchanges are

those that exchange inputs or outputs that do not share logical significance. In other

words, the exchange must alter the truth table. In order for the original intent to be

recovered, the exchange operation must be performed again before the outputs are

used.
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3.3 Summary

In this chapter, a black-box component identification method was described. Sev-

eral white- and black-box transformations intended to protect a component from

being identified were presented, and their effectiveness against this new identifica-

tion method was estimated. If the component identification method can identify

many common components, static protection will not provide enough security to

make component identification infeasible.
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IV. Dynamic Techniques

Dynamic protection techniques can be used to enhance the protection offered by

static defenses. It may be possible to provide additional protection while still consum-

ing fewer resources if implemented properly. This chapter describes the requirements

of such a dynamic component hiding solution, presents one possible method by which

such a solution could be realized, and outlines a method of implementing and testing

this method on an FPGA.

Regardless of the algorithms used to identify a circuit, certain bounds are not

likely to be broken. When performing black-box identification, the function of each

input pin must be identified. This suggests that even the world’s best attacker would

be forced to apply at least as many input vectors as there are input pins and record

the results for analysis. Therefore, the theoretical minimum number of input vec-

tors required to identify a n-input circuit is n vectors. This seems to hold true for

even simple components, such as an adder (the required number of input vectors is

only about 50 percent higher than this theoretical minimum.) For even the most

complicated circuitry, there are upper bounds to the difficulty of circuit identifica-

tion. Regardless of circuit function, the truth table for a combinational circuit can

be enumerated in 2n cycles, where n is the number of inputs.

The bounding of static solutions leads to a dynamic approach. The bounds on

the number of cycles necessary to identify a given circuit dictate the requirements

for a dynamic system. In addition, the frequency of reconfiguration is of critical

importance. If reconfiguration occurs infrequently so that each configuration can be

fully analyzed and understood by an adversary, then the dynamic system provides

little or no additional security. If the reconfiguration occurs much more frequently

than necessary, then unnecessary overhead (measured in wasted clock cycles and

power consumption) is incurred in order to implement the security measure. If the
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proper frequency is selected, then maximum security can be provided at the lowest

possible cost.

4.1 Requirements and Constraints

4.1.1 Adaptability to a Key.

Prior to each reconfiguration, a change or changes must be made to the circuit.

The method of selecting these changes is subject to the same trade-off as the change

selection methods for a static implementation. If changes are too predictable, then

more information is leaked from the system. If changes are too random, it is possible

that no additional security will be added. For this reason, a key will be used to

determine the changes made to the system. There are several reasons for this. First,

as long as the key is properly protected, the changes being made are unpredictable

to an adversary. Second, use of a key allows for the repetition of a set of changes,

which is useful when analyzing a system that may be used. Third, if some sort of

hardware signature (digital fingerprint) is available, this may be used to generate the

key. This will allow for a system to work predicably on a given piece of hardware, but

if a design is stolen and applied to a different piece of hardware, then it will not work

as expected, further complicating the task of replicating the function of a component.

4.1.2 Recoverability.

In most cases, the original semantic intent of the circuit must be recoverable.

This is analogous to the ability of an encrypted message to be decrypted. In very

limited situations, such as ”shredding” a component to protect it from compromise,

the intent does not have to be recoverable. Due to the protection of a key (i.e. if the

key is lost, a circuit is effectively shredded), this research focuses on techniques that

allow for the recovery of the original circuit semantics.
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4.2 Gate Replacement

Gate replacement essentially involves 2 steps: selecting a gate to be replaced and

selecting a replacement gate. Each of these steps can be accomplished dynamically

using a key-based system. Gates can be numbered in a predictable fashion using

netlist IDs or circuit layering techniques. Assuming that only AND, OR, XOR, and

their inverse gates are allowed, all gate types can be represented using 3 bits. Then,

a portion of the key can be used to select the gate that will be replaced, and the next

3 bits can be used to determine the replacement gate type. If the key is partitioned

into 16 bit sections, then circuits with up to 8192 gates can be obfuscated.

This is no different from random gate selection and replacement; it does not guar-

antee that the gate replacement makes the circuit harder to identify. This technique

relies on the sheer number of replacements being made to obfuscate the circuit, in-

stead of the quality of individual transformations.

There is a limitation of this technique: after a few replacement operations the key

will be exhausted. Even a relatively large 1024 bit key will only last for 64 iterations.

This can be overcome by using the key value supplied to generate a much longer key

bitstream. This method is discussed in detail later in this chapter.

4.3 Input and/or Output Reordering

Because of the nature of black-box identification algorithms, changing the order

if inputs or outputs once does not affect the running of the algorithm. Changing the

order dynamically can dramatically affect the results. Take an adder for example. In

the algorithm presented previously, the least significant bits of the input and output

are the first identified. If the bits change order midway through the identification of

the adder, then the process of identification must begin again. Repeatedly changing

the order of input or output lines can prevent an attacker from ever gaining a full
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picture of the operation of the adder.

This can be implemented using a key as well. For example, consider a crossbar

switch inserted in series with the component to be obfuscated. If the switch is inserted

before the component, any possible ordering of the inputs is possible. Similarly, if

the switch is inserted after the component, any possible ordering of the outputs is

possible. The key can serve as the input to the switch. Assuming that the component

proceeding or preceding the obfuscated component also has access to the key, the lines

can be re-ordered as necessary so that the circuit still functions correctly.

The same problems with key length arise when reordering is used. There are n!

possible ordering of n lines, so if every possible ordering is possible, a large key will

be needed to select even one ordering.

4.4 Row Exchange and Line Inversion

As presented in the previous chapter, the row exchange and line inversion opera-

tions can be an effective obfuscation techniques. When properly applied, properties

such as parity can be hidden.

With the advent of reconfigurable hardware, this operation is fairly easy to com-

plete. Because FPGAs use lookup tables to implement the desired operations, the

outputs of these LUTs can simply be exchanged or complemented. Implementation

without run-time reconfigurable hardware requires the addition of many gates to the

circuit, increasing the area used, power consumed, and the delay through the compo-

nent.

Selection of proper rows to swap or invert is a tremendous hurdle that makes this

operation difficult to implement. The number of rows in a truth table grows exponen-

tially as the number of inputs is increased. The number of possible orderings grows

factorially as the number of rows is increased. Therefore, this cannot be implemented
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except on very small cut-sets.

4.5 Polymorphic Gates and Networks

One method of implementing a key based system is the use of polymorphic gates.

A polymorphic gate can be formed by replacing any 2-input gate with a multiplexer.

The gate’s inputs will become the MUX select lines, while the inputs to the MUX will

become the additional input lines. An example showing an AND gate, a polymorphic

gate, and a polymorphic gate acting as an AND gate is shown in Figure 5. Adding a

single polymorphic gate can add as many as 4 key bits to the circuit. By tying the

middle two inputs of the MUX together any of the 6 basic gate types can be formed

while only adding 3 inputs to the circuit. If several polymorphic gates are added,

then a key of reasonable size can be added to the circuit in a very simple manner, as

demonstrated in Figure 6. Implemented statically, this functions as a combinational

lock. Inverters can be introduced between the input of the circuit and the MUX if

desired.

Polymorphic gates are very adaptable, and require a very low overhead. Poly-

morphic gates can be implemented using 11 primitive gates, including inverters. In

comparison, an XOR can be implemented using 4 NAND gates. The cost to convert a

primitive gate to a polymorphic gate is 10 gates, while the cost of converting an XOR
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Figure 6. Adding A Key to a Half Adder

gate is only 7 gates. Additionally, they are equally easy to implement in both ASIC

designs and reconfigurable hardware. The maximum delay through the polymorphic

gate is 4 gate delays plus 2 inverter delays, so care must be taken if the gate is inserted

into the critical path. If the gate is not inserted into the critical path then the circuit

timing will likely remain unaffected.

Polymorphic switches may also be used. A 2-input, 2-output switch requires a

single control line. The operation of such a switch is shown in Figure 7.

Polymorphic switches can be connected to form polymorphic networks. An exam-

ple of how a LFSR could be used to form a polymorphic network that switches the

order of inputs over time is shown in Figure 8. When combined with the obfuscated

half adder, a dynamically changing, obfuscated, circuit is formed, shown in Figure 9.
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4.5.1 32-Bit Adder Cost Analysis.

In order to estimate the cost of polymorphically obfuscating a component, a 32-

bit adder is examined. As a basis, a ripple-carry adder using 32 full adders, each

constructed from 2-input gates, is used. Assuming that one gate from each adder is

randomly selected to be replaced, the increase in area and delay through the adder

is computed. Table 2 gives the results of replacing each gate in the circuit with a

polymorphic gate, and Table 3 gives the best case, worst case, and average increases

38



k
0

k
2

k
3

k
1

0 01 1

3
2

1
0

Sum

Cout

b

a

XOR

(a) Network altering the order of the inputs
to the half adder

k
0

k
1

1 10 1

k
3

k
2

Sum

Cout

3
2

1
0

a

b

XOR

(b) After one transition of the LFSR, the or-
der changes

k
2

k
3

0 11 0

k
1

k
0

3
2

1
0

Sum

Cout

b

a

XOR

(c) The order changes again after another
LFSR transition

k
2

k
3

0 11 0

k
1

k
0

3
2

1
0

Sum

Cout

b

a

XOR

(d) Black-Box Model of the Obfuscated Half
Adder and Polymorphic Network

Figure 9. A Polymorphic Obfuscated Half Adder

in area and critical path delay if random gate selection is used to replace a single gate

in each circuit. The critical path of a ripple-carry adder is through the carry chain, so

only the delay from the carry-in to the carry-out is considered. Approximately 80%

penalty is expected to be incurred by replacing one gate in each adder.

4.6 Polymorphic Key Generation

It is not always possible for the user to provide extremely large secure keys. Gener-

ating long streams of random numbers is a complex and difficult process. Even if large

secure bitstreams are available, entering the key into a device could be significantly
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Table 2. Gate Replacement Costs

Gate Replaced Delay (gates) % Increase Area (gates) % Increase

None 2 0 % 11 0 %

XOR1 2 0 % 18 63.4 %

XOR2 2 0 % 18 63.4 %

AND1 2 0 % 21 90.9 %

AND2 6 200 % 21 90.9 %

OR 6 200 % 21 90.9 %

Table 3. Adder Cost Analysis

% Increase in Delay % Increase in Area

Best Case 0 % 63.4 %

Worse Case 200 % 90.9 %

Average 80 % 79.9 %

more difficult than any other operation that the device was designed to perform. If

the key is generated from some sort of hardware signature, the area consumed by the

generator grows with the signature size. Therefore, it is sometimes necessary to use

the supplied key as a starting point, and have the dynamic obfuscation unit generate

its own bitstream.

4.6.1 Truly Random Bitstream Generation.

The generation of a truly random bitstream is possible. If random noise is sampled,

a random bitstream is produced. This is not feasible for most applications because

it requires specialized hardware and a source of randomness. An example of a good

source of random noise is the emission of a star.

Even if it is possible to generate a random bitstream, it is not necessarily desirable.

In order for the original circuit semantics to be retained, the key bits would have to be

provided to some sort of correction unit. If these key bits were read by an adversary,

the alterations to the circuit could be reversed and the circuit no longer obfuscated.
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4.6.2 Pseudo-random Bitstream Generation.

Various methods of generating pseudo-random bitstreams are available. This im-

plementation uses a 64-bit LFSR to generate the key. The LSFR is initially seeded

with a key of the user’s choice. At whatever intervals the user desires, the LFSR can

be stepped through all possible 64-bit patterns.

Several options are available as to how the polymorphic key is used. One method

would be to have the initial seed hard-coded into the device. The user would have

to provide a correction key in order for the device to function properly. After a set

number of clock cycles, or perhaps a number depending on the inputs to the device,

the next 64 bit key would be generated by the LFSR, and the user would have to

provide a correction key for the new key. In this way, only a user that knows both

the initial seed, LFSR configuration, and proper operating key would be able to use

the device.

4.7 Level Of Protection

Consider a component with n inputs and m outputs. If the component is one of

the components analyzed above the number of input vectors required to analyze the

component is a polynomial function of n. When a combinational lock of size k bits is

added to the component, it was previously shown that the number of vectors required

to identify the circuit grew by a factor approximating 0.5nk. Given an 8-bit adder

(16 inputs) with a 4-bit combinational lock, the circuit could likely be identified using

49152 input vectors, taking approximately 50 microseconds using a 1 GHz tester. Let

Ti be the number of vectors required to identify the circuit before the combinational

lock was applied (the identification period).

When that circuit is implemented polymorphically, the location of the key bits as

well as the key can change with each circuit evolution. Even if the circuit semantics
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remain unaltered, the identification problem is made much more difficult. Assume

that after Tp (the polymorphic period) inputs are applied, the circuit is altered. Then

in order to identify the circuit, only Tp traces are available. Assume that Tp > Ti, so

each evolution of the circuit has the potential be fully identified.

After testing x configurations, the probability of having guessed the correct key

configuration are computed by Equation 2. During any given circuit evolution, only

Tp/Ti configurations can be tested. If the adder described above evolves every 1000

clock cycles, then the probability of it being identified during any clock cycle is about

.000636.

P ≈ 1 − (1 − (nk − x)−1)x (2)

4.8 Evaluation

In order to demonstrate that DPR is a viable solution for protecting hardware, an

evaluation platform must be constructed, and then DPR must be tested. First, the

evaluation platform itself is described, followed by the general testing methodology.

4.8.1 Evaluation Platform.

Due to the cost and time associated with ASIC manufacturing techniques, and the

lack of reconfigurable computing platforms that support full run-time reconfiguration,

a system for testing both dynamic and static techniques is necessary. This system

must meet the following requirements:

• The system must be able to be implemented on a readily available commercial

FPGA

• The system must be able to take input from the user, and be able to provide

feedback
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• The system must be able to test multiple obfuscation strategies on multiple

base circuits

The system that was created for test is shown in Figure 10.

The test bench is implemented on a Xilinx Virtex-5 FX series FPGA. A ML507

development and evaluation board is used, which contains a XC5VFX70TFFG1136

FPGA and supporting hardware. The components making up the obfuscation test

bench are described here:

• The PowerPC is a 32-bit microprocessor that is able to interface with the FPGA

on Xilinx FX series boards. The PowerPC interfaces via a bus with both the

RS-232 serial UART and the polymorphic component. It receives input from

and returns information to the user via the UART, and provides the inputs and

records the outputs of the component under test via the polymorphic compo-

nent.

• The UART is a RS-232 compliant serial UART that allows for bidirectional

communication with any laptop or desktop computer with the correct port.
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• The Poly Component is a wrapper for the component under test (CUT). It

includes registers for storing the operands that the CUT will operate on, the

polymorphic key, the result returned by the CUT, the current status, and the

control commands from the PowerPC. Any type of combinational or sequential

component can be contained inside of this wrapper, with any sort of obfuscation

technique applied to it.

4.8.2 Evaluation Methodology.

Obfuscated and non-obfuscated hardware will be compared by first implementing

a non-obfuscated component, and verifying its functionality. The area used by the

component and its speed will be recorded. Then, the component will be obfuscated,

and again the functionality will be verified. The area and speed of the obfuscated

component will then be compared to that of the original component in order to

quantify the cost of the obfuscation.

4.9 Summary

A previously presented method of dynamically protecting components was refined

so that it is suitable for implementation on an FPGA. The requirements of any im-

plementation were proposed, and a set circuit alterations that could realize DPR was

demonstrated. The additional protection achieved by these alterations, and the over-

head required to implement them, were estimated. Finally, a system was described

that will allow DPR to be tested on an FPGA.
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V. Results

5.1 X-HIA Extension Results

The steps outlined in Chapter III were followed in identifying an adder, multi-

plexer, multiplier, and primitive gate. Each component was successfully identified.

For clarity, the flowchart describing the identification process is shown again in Fig-

ure 11. The results, in terms of information gleaned and required number of input

vectors, is presented at the end of this section.

5.1.1 Circuit 1: 4-bit Adder.

The first circuit to be identified is a 14-pin circuit (excluding power and ground

connections). The circuit is shown in Figure 12.

5.1.1.1 Input/Output Identification.

The procedure previously described was followed, yielding the information listed

in Figure 13. The pin numbers listed are arbitrary.

5.1.1.2 Input/Output Space Analysis.

There are 9 input pins and 5 output pins. Referencing Table 1, likely circuit

candidates are an adder or a multiplexer. Because the number of input and output

lines correspond exactly to a 4-bit adder with carry, an adder is selected as the

most likely component. If the identification stalls under that assumption, the list of

probable components will be expanded until a suitable ID is found.
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5.1.1.3 Input/Output Partitioning.

A generalized technique for partitioning circuits and finding bit ordering is X-hot-

input analysis (X-HIA), where X refers to the number of input lines that are logically

high at one time. X-HIA relies on the application of inputs such that small groups or

individual signals can be identified as having an effect on specific outputs. Through

1-HIA, where a single input signal is high, it is possible to determine relationships

between the inputs and outputs. These relationships are shown in Figure 14.

From the 1-HIA results, groupings can be established. The inputs can be divided
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Figure 12. Circuit 1. The first circuit to be identified contains 14 input and output
pins. At this point, nothing is known about the circuit other than this count.

into four groups: LSB (pins 4, 5, and 6), group1 (pins 1 and 9), group2 (pins 2 and

8), and group3 (pins 3 and 7). The group LSB contains the 2 least significant bits of

the inputs, as well as the carry-in. The two bits within each of the other three groups

share significance, and cannot be distinguished. The output can be divided into two

asymmetric groups: Sum and Cout.

5.1.1.4 Bit Ordering.

Some bit ordering can be found from the 1-HIA results as well. Pin 13 can be

labelled Sum0, as it is excited 3 times. Additionally, it can be determined which

groups correspond to which bits of the sum, which will be very useful later.

The next and final step of identifying the adder is to exercise each group individu-

ally. Both signals contained within group1 will be excited, then group2, then group3,

as shown in Table 4 This will determine the relative order of each of the output pins,

which will in turn determine the order of each of the input pins.

From the results above, group1 can be identified as the MSB, group2 as significant
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Figure 13. The ATE determines that Circuit 1 contains 9 input pins and 5 output pins.

Table 4. 2-HIA indicates the order of the input and output lines relative to each other
by causing a carry operation to occur

Inputs Outputs
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1

position 2, and group3 as position 1.

5.1.1.5 Identification.

The component was successfully identified as a 4-bit adder. A validation test(see

[5]) can be performed to confirm that the component is in fact an adder.

Due to the nature of an adder, its inputs cannot be grouped into an A input and a

B input. All that can be identified is the positional significance of each of the inputs

and outputs. The circuit can be characterized as shown in Table 5.
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Figure 14. 1-HIA Analysis shows that each of the inputs stimulates exactly one output
when applied individually.

5.1.2 Circuit 2: Multiplexer.

The second sub-circuit consists of 11 pins (again excluding power and ground con-

nections). While this circuit is small enough that the truth table could be enumerated,

the identification algorithm is used to identify it to demonstrate its feasibility.

5.1.2.1 Input/Output Identification.

The procedure listed previously was followed, indicating that the circuit contains

8 input pins and 3 output pins. The inputs are labelled 1-8, and the outputs 9-11.

5.1.2.2 Input/Output Space Analysis.

Analysis of the number and ratio of inputs and outputs would lead us to think

that this is some sort of multiplexer or encoder. Since the number of inputs and

outputs precisely matches that of an 8-3 encoder, the identification algorithm will

start assuming that the component is an encoder.
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Table 5. Circuit 1 Pin Summary

Pin Pin Group Semantic
Number Direction Assignment Meaning

1 In group1 Position 3

2 In group2 Position 2

3 In group3 Position 1

4 In LSB Position 0

5 In LSB Position 0

6 In LSB Position 0

7 In group3 Position 1

8 In group2 Position 2

9 In group1 Position 3

10 Out Sum Sum.1

11 Out Sum Sum.3

12 Out Cout Carry Out

13 Out Sum Sum.0

14 Out Sum Sum.2

Table 6. 1-HIA shows that circuit 2 is not an encoder, but may be a multiplexer

Input Output
Excited Excited

1 10

2 -

3 -

4 11

5 -

6 -

7 -

8 -

5.1.2.3 Bit Ordering: First Pass.

An encoder consists of only two groups: input and output. Therefore, no further

group analysis is needed for an encoder.

Pin identification of an encoder is simple: perform 1-HIA analysis and record the

output combination. The encoder is then completely described. The results of 1-HIA

can be seen in Table 6.

From the 1-HIA analysis, the component is clearly not a simple encoder. However,

the results are consistent with a 2-bit-wide MUX (with at least one extra pin). The
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Table 7. 2-HIA shows that pins 7 and 8 are the MUX control lines

Input Output
Excited Excited

1-2 10

1-3 10

1-5 10

1-6 10

1-7 -

1-8 -

Table 8. Circuit 2 Control Analysis

Input Control Value
Excited (0,1) (1,0) (1,1)

2 10 - 9

3 - 10 9

5 11 - 9

6 - 11 9

identification process will continue to see if the component could possibly be clas-

sified as a multiplexer. Proceeding with this new information, the process of group

identification must be repeated.

5.1.2.4 Group Identification and Bit Ordering.

From the 1-HIA analysis, pins 1 and 11 will be classified as group A, and pins

10 and 11 placed into group Out. One of these will be held high, and then 2-HIA

performed, pulling one other pin high at a time, and recording the results.

From the first round of 2-HIA, inputs 7 and 8 can be grouped together in the

group Control. Now, for each possible permutation that can be placed on the control

line, each of the other un-grouped inputs will be enabled, one at a time. The results

are given in Table 8.
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Table 9. Circuit 2 Pin Summary

Pin Pin Group Semantic
Number Direction Assignment Meaning

1 In A A.0

2 In B B.0

3 In C C.0

4 In A A.1

5 In B B.1

6 In C C.1

7 In Control Control Line

8 In Control Control Line

9 Out Unassigned Invalid Indicator

10 Out Out Out.0

11 Out Out Out.1

5.1.2.5 Identification.

These results confirm that the component does in fact act like a multiplexer. An

automated system would likely ignore the extra output line, for the sake of simplicity.

Manual analysis shows that this extra line is an ”invalid” indicator, since only 3 of

the 4 possible control line settings are valid.

The analysis of this component demonstrates the iterative nature of the identi-

fication process. Some steps, particularly group identification and pin ordering, are

repeated several times as more information is gleaned about the circuit.

A summary of the information that is learned about Circuit 2 is given in Table 9.

Note that unlike the adder, in which the ordering of the inputs could be determined

but not the partitioning, in this case the partitioning can be determined but no

ordering information can be found.

5.1.3 Circuit 3: Multiplier.

The final circuit to be analyzed in this paper contains 16 bits.
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5.1.3.1 Input/Output Identification.

The procedure listed previously was followed. The circuit contains 8 inputs, la-

belled 1-8, and 8 outputs, labelled 9-16.

5.1.3.2 Input/Output Space Analysis.

Referring to Table 1, the circuit is likely a 4-bit × 4-bit multiplier.

5.1.3.3 Input/Output Partitioning.

Performing 1-HIA upon the circuit does not cause any outputs to be excited,

which is consistent with the assumption that the circuit is a multiplier. Holding the

first input line high, and ”walking” a one down the rest of the inputs, allows the

inputs to be partitioned into group A and group B. If the first input line is placed in

group A, then all input lines do not cause an output line to be excited can be placed

in group A as well, and those that do can be placed in group B.

5.1.3.4 Bit Ordering and Correspondences.

To find which bits in groups A and B share logical significance, first one group,

then the other, must be held to the pattern 1111, and 1-HIA performed on the other

group. The results are recorded, and the test repeated again, with the two groups

interchanged. Bits that cause the same output pattern when excited share logical

significance.

This process also allows for the MSB of the output, designated out7, to be deter-

mined. It is the only bit never to be excited in the previous test. The determination

of out7 allows a0, b0, a3, and b3 to be found. This is accomplished by holding all

bits of A to be logical 1, and performing 2-HIA upon B. b3 will be high during all

combinations that excite out7. Only 1 bit, namely b0, can be excited along with b3
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without causing out7 to be excited. Because the correspondences between the two

input groups are known, the least and most significant bits of A are now known as

well.

By counting the number of times each bit went high during the modified 1-HIA

analysis, output bits can be assigned two possible positions. Multiplying 1111 by 1

allows for the determination of the lower 4 bit positions(with no ordering), and so

yields the significance of each output bit. This knowledge, along with the LSB of one

of the inputs, allows for the significance of every input bit to be determined.

5.1.3.5 Identification.

The component is fully identified as a multiplier. Both the partitioning of the

inputs, and the order of the bits, are completely discovered.

5.1.4 Circuit 4: Logic Gates.

Any of the 4 primitive logic gates(AND, OR, NAND, and NOR) of arbitrary input

size may be identified with only 2 tests applied. If XOR gates are treated as primitive

gates, then even/odd parity gates can be detected with the addition of one more test,

for a total of 3.

The zero response of a gate may be defined as the output of the gate when all

inputs are forced to logic zero. Only a single test vector, comprised of all zeros, is

required to determine the zero response.

After determining the zero response of a gate, first 1 arbitrary input bit, then 2

should be pulled high. Table 10 indicates that 3 test vectors (all zeros, a single 1,

and two 1s) can differentiate between 6 different gates.
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Table 10. Logic Gate Properties

Gate Type Zero Response 1-HIA Response 2-HIA Response

AND 0 0 0

OR 0 1 1

XOR 0 1 0

NAND 1 1 1

NOR 1 0 0

XNOR 1 0 1

Table 11. Component Identification Performance

Identification Performance
Device Partition Order Define Running
Name Input Input/ Control Time

Output Lines

n-input gate N/A N/A N/A O(1)

m-bit adder
√

N/A O(m)

k : 1 n-bit MUX
√ √

O(nk)

m-bit multiplier
√ √

N/A O(m2)

decoder N/A N/A O(2n)

5.1.5 Circuit 5: Decoder.

Due to the nature of a decoder, exhaustive testing must be performed to identify

its operation. If more information about the circuit is known, i.e. the order of the

outputs, then identification may be faster. For this reason, a decoder should be

examined as part of a larger system, such as a register file, in order to glean pertinent

information about it.

5.2 Identification Performance

Table 11 shows the capabilities of this method for identifying common components.

5.3 DPR Evaluation Results

DPR was implemented and tested. Two circuits were tested: an adder and an

AES encrypter. First, the non-obfuscated versions of each circuit were implemented

55



and verified, and the area required and maximum speed were recorded. Then, the

circuits were obfuscated and verified again. The area and speed of the obfuscated

circuits was recorded and compared to the original.

5.3.1 Configuration.

The system described in Chapter IV was constructed. The key is stored in a

LFSR, in order to facilitate a simple and repeatable key pattern. A 64-bit LFSR was

used with the characteristic polynomial given in Equation 3. This is a maximal-length

LFSR[17].

x64 + x4 + x3 + x1 + 1 (3)

The PowerPC and associated busses and peripheral components all operate at 125

MHz.

5.3.2 Adder Test.

The first circuit tested was a 32-bit ripple-carry adder. This adder was constructed

using 32 full adders, each of which was constructed using five two-input gates. The

original circuit uses conventional gates, while the polymorphic version replaces every

gate with a polymorphic gate. The original and polymorphic circuits are shown in

Figure 15.

The system was tested under a variety of conditions. After proper operation was

verified, the polymorphic component was tested using a variety of keys. The results

of this test were very promising. As expected both the size of the circuit and the

maximum propagation delay increased (see Table 12). Because the increase in delay

was so small, the clock frequency of the system as a whole did not have to be changed.

Analysis of the output of the Xilinx implementation tools shows that the reason for
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Table 12. Adder Comparison

Original Adder Polymorphic Adder % Increase

FF Used 255 383 50.2%

LUTs Used 268 847 216%

Max Delay 7.936ns 7.975ns .491%

Max Freqnency 126 MHz 125 MHz -.8%

such a small increase in the delay is because the majority of the delay is a result

of signals traveling between components on the FPGA, not due to the delay of the

components.

The 32-bit adder has a 9-bit key. The identification period (the number of clock

cycles required to identify the adder) is 96 cycles. If the key is moved every 1000

clock cycles, then 10 identification attempts may be made during each polymorphic

period. The probability of identifying the adder during any given polymorphic period

is 1.11 × 10−15. If the adder is tested continuously on a 1 GHz tester (not possible

with this hardware) the probability of the adder being identified within the first year

of testing is 3.4%. The probability of the adder being identified within the first decade

of testing is 30%.

5.3.3 AES Test.

Polymorphic networks were added to a pipelined implementation of AES in order

to make it harder to identify. The order of the inputs and outputs was altered using

polymorphic switches. The component that performs the AddRoundKey operation

was altered to include polymorphic gates. This component was selected because it is

the simplest component to identify (it essentially consists of an array of XOR gates).

Proper encryption was verified when the correct key was applied. Additionally, it

was confirmed that when the key was changed, the output of the encrypter changed.

The number of clock cycles required to perform the encryption was unaltered by the

addition of the obfuscation elements. The difference in LUT and FF count utilized
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Figure 15. Test Circuits

is given in Table 13. Figure 16 shows the implementation of both the original and

obfuscated AES circuit on a Virtex-5 FX FPGA. The additional logic consumed is not

visible by examining the layout of the FPGA without comparing the circuit netlists

line by line.

The modified AES encryption component was used under the same conditions as

the original encryption component. There was no observable difference in behavior

other than the changes in the order of the inputs. The alterations in order to make

the circuit dynamic appear to result in a robust and useful circuit. In the as-tested

configuration, there was no need to insert ”stalls” in the code in order to get correct
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Table 13. AES Comparison

Original Adder Polymorphic Adder % Increase

FF Used 13065 13193 .97%

LUTs Used 12870 13070 1.12%

results from the encryption unit.
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(a) Original AES Encryption circuit imple-

mented on a Xilinx Virtex-5 FX FPGA. The

yellow portions are the sections of the FPGA

containing the AES circuit.

(b) Obfuscated AES Encryption circuit im-

plemented on a Xilinx Virtex-5 FX FPGA.

There is very little difference between the

original and obfuscated circuits.

Figure 16. AES Device Usage
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5.4 Summary

X-HIA was extended to identify several additional components: a multiplexer,

multiplier, encoder, and basic gates. The number of input vectors required to iden-

tify each of these components grows polynomially as the number of inputs grows, a

significant improvement over the exponential or factorial growth rate of previously

presented methods.

DPR was successfully implemented and tested on a commercial FPGA. The over-

head required to implement DPR was less than predicted, due to the optimization

that takes place during the FPGA design process.
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VI. Conclusion

Significant progress was made in the characterization of black-box analysis threats

and formalization of a DPR system. This chapter presents the conclusions drawn,

covers the contributions made, and provides suggestions for future work on related

topics.

6.1 Conclusions

X-HIA was extended to encompass several common circuit sub-components in-

stead of just an adder. It was successfully shown to identify a multiplier and several

simpler components in polynomial time, instead of exponential or factorial time like

other methods.

After showing that many components could be efficiently identified, static protec-

tion was applied to these components and evaluated. It was shown that the static

protection was only able to increase the order of the polynomial, not increase the

amount of time necessary to identify the current beyond the polynomial level.

Using the information gained from extending X-HIA and implementing static

protection, DPR was implemented on an FPGA and evaluated. It was shown that

the amount of time that we can expect a circuit to be identified in was increased

significantly over the amount of time required if only static protection is used. The

overhead associated with implementing DPR was measured.

The contributions made by this research are in the following areas:

• Black-box Identification - By extending X-HIA to more components, this new

identification method is shown to be viable

• Threat Characterization - Analyzing the effects of static and dynamic obfusca-

tion against X-HIA allows for a better understanding of the threats to circuitry
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• DPR System Formalization - While DPR was previously described by Porter,

no system for its use had been formalized

6.2 Future Work

The work presented here leads to several exciting future research opportunities:

white-box characterization of the polymorphic components, implementation of the

X-HIA identification algorithm, and automation of the adaptation of an arbitrary

component to DPR.

6.2.1 White-Box Characterization.

The polymorphic components added to the circuit may present a white-box vul-

nerability. If an attacker has access to white-box information about the circuit the

topology of the gates may be uncovered. This could leak information about the cir-

cuit to the adversary. In order to further protect the circuit, white-box obfuscation

may need to be performed on the circuit once it is prepared for DPR.

6.2.2 X-HIA Implementation.

Using the basic system-level framework that was used to analyze DPR, the X-HIA

process could be automated. The benefits of this would be twofold: the availability

of an efficient component identification technique and the ability to quickly quantify

the obfuscatory effects of black-box transformations.

6.2.3 Automation of DPR preparation.

Currently, a gate-level netlist must be modified by hand in order to implement

DPR. This is not practical for very large and complex circuits. This process could be

automated, significantly decreasing the amount of time necessary to protect a circuit
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and also allowing for the testing of many different selection routines against each

other.

6.2.4 Uncloneable Functions.

The latest research in digital fingerprinting allows for the generation of keys that

are linked to individual pieces of hardware. If these keys are used to control the

DPR system, then a FPGA bitstream could be generated that would only function

properly on a single device.

6.3 Summary

X-HIA can be extended to identify several common components. Static protection

techniques can slow down the identification process, but it is still feasible to identify

a component using currently available technology. DPR can be used to significantly

decrease the chances of a component being identified.
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