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Abstract

Due to the general shift from conventional warfare to terrorism and urban war-

fare by enemies of the United States in the late 20th Century, locating and tracking

individuals of interest have become critically important. Dismount detection and

tracking are vital to provide security and intelligence in both combat and homeland

defense scenarios including base defense, combat search and rescue (CSAR), and bor-

der patrol.

This thesis focuses on exploiting recent advances in skin detection research to

reliably detect dismounts in a scene. To this end, a signal-plus-noise model is devel-

oped to map modeled skin spectra to the imaging response of an arbitrary sensor,

enabling an in-depth exploration of multispectral features as they are encountered in

the real world for improved skin detection. Knowledge of skin locations within an im-

age is exploited to cue a robust dismount detection algorithm, significantly improving

dismount detection performance and efficiency.

This research explores multiple spectral features and detection algorithms to

find the best features and algorithms for detecting skin in multispectral visible and

short wave infrared (SWIR) imagery. This study concludes that using SWIR imagery

for skin detection and color information for false alarm suppression results in 95%

probability of skin detection at a false alarm rate of only 0.4%.

Skin detections are utilized to cue a dismount detector based on histograms

of oriented gradients. This technique reduces the search space by nearly 3 orders of

magnitude compared to searching an entire image, while reducing the average number

of false positives per image by nearly 2 orders of magnitude at 95% probability of

dismount detection. The skin-detection-cued dismount detector developed in this

thesis has the potential to make significant contribution to the United States Air

Force human measurement and signature intelligence and CSAR missions.
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Improved Multispectral Skin Detection and its

Application to Search Space Reduction for

Dismount Detection Based on

Histograms of Oriented Gradients

I. Introduction

The United States Air Force (USAF) has made intelligence, surveillance, and

reconnaissance (ISR) capabilities a high priority. The Air Force Doctrine Doc-

ument 1 (AFDD-1) states that “As a leader in the military application of air, space,

and intelligence, surveillance, and reconnaissance technology, the Air Force is com-

mitted to innovation to guide research, development, and fielding of unsurpassed

capabilities” [5].

Due to the general shift from conventional warfare to terrorism and urban war-

fare by enemies of the United States in the late 20th Century, locating and tracking

individuals of interest has become of vital importance [5]. Several research efforts

address this growing need for human surveillance and tracking including

• The 2003 Defense Advanced Research Projects Agency (DARPA) Combat

Zones that See (CTS) program [4], [29] which has the goal of creating a dense

network of inexpensive cameras and sensors to monitor “everything that moves”

on a full-city scale and report all observations to a central operating center. The

research was meant to be applied to an urban combat zone to help protect sol-

diers on the ground by improving battlefield awareness.

• The United States Army funded the development of algorithms for unmanned

air vehicle (UAV) ISR systems for tracking targets in urban environments as

part of the Army’s 2007 Small Business Technology Transfer Program [70], [73].

Targets of interest included humans, civilian vehicles, and military targets that

may exhibit highly nonlinear motions.
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Dismount detection is the critical first step to successful dismount tracking.

The overarching goal of this thesis effort is to leverage multispectral skin detection to

augment a state-of-the-art dismount detection methodology.

1.1 Problem Statement

Modern shape-based dismount detection techniques are often either computa-

tionally expensive due to the size of the search space or application-limited due to

constraints imposed by search space reduction techniques. Shape-based detectors also

tend to have a high confusion rate with human-like objects in a scene. Examples of

common false alarm sources for shape-based detectors include parking meters, signs,

small trees, fire hydrants, or anything with similar vertical structure [25].

The goal of this research is to provide a robust method of reducing the search

space for a modern shape-based dismount detector using multispectral skin detections

as cueing sources. Additionally, it is hypothesized that using skin detections for cueing

a shape-based dismount detector will significantly reduce false alarms attributed to

human-like objects. Since typical urban false alarm sources are unlikely to have

material properties similar to exposed skin, skin detection cueing will likely reject

many common false alarm sources from the search space.

1.2 Scope

The scope of this thesis effort must be limited in order to accomplish the research

goals mentioned above. To that end, the tasks accomplished by this effort are as

follows:

1. Develop a signal-plus-noise model to map modeled skin spectra to the imaging

response of an arbitrary sensor.

2. Compare the performance of multiple spectral features for suppressing false

alarms in skin detection using both modeled and real-world data.
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3. Compare the performance of multiple skin detection algorithms using both mod-

eled and real-world data.

4. Develop a method for using skin detections to cue a dismount detector.

5. Compare the performance of one existing sliding-window dismount detector with

a skin detection-cued version of the same detector using multispectral data.

The signal-plus-noise model is developed by adding sensor noise components

that are experimentally determined for a sensor of interest. Specular reflection com-

ponents are added until the modeled data are visually similar to skin data collected by

the imager. The signal-plus-noise model is presented in Section 2.7.7 and Section 4.3.

The normalized difference vegetation index (NDVI) and normalized difference

green-red index (NDGRI) skin spectral features (presented in Section 2.7.3) are com-

pared in terms of false alarm suppression performance for the skin detection algorithms

implemented in this thesis effort. Rules-based and likelihood ratio test (LRT)-based

skin detection algorithms are presented in Section 2.7.8 and Section 3.2.3 respec-

tively, while comparisons of skin detection performance between spectral features and

between algorithms are presented in Section 4.2.

Methods and considerations for using skin detections to cue a dismount detector

are discussed in Section 3.3. Only the dismount detector based on histograms of ori-

ented gradients (HOG) is tested for comparison. A recent effort in [25] compares the

performance of several state-of-the-art dismount detectors. The end result of the work

in [25] showed that the HOG-based sliding-window dismount detector outperformed

the other methods researched, making in-depth comparison of those detection tech-

niques unnecessary for the purposes of this effort. Performance comparison results

are presented in Section 4.5.

1.3 Document Organization

Chapter II of this document provides the necessary background information

for this thesis. This background information describes the basic tracking framework,
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dismount detection techniques, the properties of human skin, and the signal processing

and classification techniques used throughout this thesis effort.

Chapter III provides the methodology employed for this effort. Included in

this discussion are a skin detection algorithm based on a likelihood-ratio test (LRT)

and methodology for using skin detections to cue search windows for a HOG-based

dismount detection system.

Chapter IV provides experimental results and analyses of the results. Included

in this discussion are data set descriptions; designs of experiments; and performance

comparisons for skin detector features, skin detectors, and dismount detectors.

Chapter V provides conclusions drawn from the analyses of results mentioned

in Chapter IV. Specifically, Chapter V includes a summary of results, list of contri-

butions this research effort provides, and recommendations for future work.

Appendix A presents the basics of bilinear interpolation. Appendix B presents

the skin detection masks and skin-detection-cued HOG-based dismount detections for

each HyperSpecTIR version 3 (HST3) image used in this thesis effort. Appendix C is

an electronic appendix (“AppendixC.pdf” on the included disc) that lists the full set

of experimentally-derived expectation maximization (EM) -Gaussian mixture model

(GMM) parameters determined by this thesis effort for LRT-based skin detection.
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II. Background

This chapter provides an overview of how detection systems fit into a tracking

framework, how others have approached the problem of dismount detection,

and general background information on the hyperspectral properties of human skin.

Most importantly, this chapter provides the essential background needed for spatial

features, spectral features, image processing techniques, classifier architectures, and

detection algorithms that are implemented in this thesis effort.

The chapter begins with an overview of how detectors fit into a tracking ar-

chitecture. Next is an overview of passive sensors often used for tracking. Next is a

review of current state-of-the-art techniques used for detecting dismounts, followed by

in-depth descriptions of the spatial feature and detector that is implemented directly

from that research for the purposes of this thesis effort.

An overview of the sliding-window detection scheme and its search-space limita-

tions is provided, followed by common techniques for sliding-window-detector search-

space reduction and their limitations. Next, an overview of hyperspectral image

processing and the hyperspectral properties of human skin, which are exploited by

this thesis effort to aid sliding-window search-space reduction is provided.

The final portion of this chapter provides methodology for approximating the

functional form of a probability density function for incomplete data and applying

that approximation to the likelihood ratio test, a detector scheme that minimizes the

Bayes risk.

2.1 Notation and Terminology Conventions

Due to the large number of variables and parameters that are used in this thesis

effort, some common naming conventions are established for consistency and readabil-

ity. All letter assignments as variables in this section are strictly for demonstration

purposes only.
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2.1.1 Underline and Boldface Notation. Underline notation is used to dif-

ferentiate between scalars, vectors, two-dimensional matrices (henceforth matrices),

and three-dimensional matrices (henceforth cubes).

Lowercase variables that have no special typeface and no underline are consid-

ered scalars (e.g., s is a scalar). Variables that have a single underline are considered

vectors (e.g., v is a vector). Variables that have a double underline are considered

matrices (e.g., M is a matrix). Variables that have a triple underline are considered

cubes (e.g., C is a cube).

Boldface notation is used to indicate that a variable is a structure (e.g., S is a

structure). Structures are used when data do not fit into the scalar, vector, matrix,

or cube paradigm. Structures are often used to organize several disparate forms of

information that are associated with one another (e.g., a string with the file name,

an arbitrary number of image patches, and class labels associated with those image

patches).

2.1.2 Subscript Notation. Subscripts are typically used to indicate that a

variable is the subscripted element of a higher-dimensional set. For example, vectors

are defined as a set of scalars, so vi is the i
th element of the vector v. Multiple levels

are transcended by multiple subscripts (e.g., mi,j is the ith element of vector mj,

which is the jth vector of matrix m).

The length of each subscripted dimension is defined at the time that the variable

is defined (e.g., xm,m ∈ Z[1,M ] indicates that the subscript m can have any integer

value from 1 through M inclusive and that x is of length M).

2.1.3 Special Subscripting Cases. Some subscripted variables do not imply

that they are an element of a larger set. Those cases are specifically defined at the

time of use. For example, subscripted decision spaces Si are used to define the class

i that a sample will be labeled by a detector.
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Some subscripts are only meant to indicate global conventions that are used for

different purposes. For example, η is reserved to indicate thresholds. Thresholds for

different algorithms are subscripted based on the algorithm they apply to (e.g., ηΩ is

a threshold on Ω, ηΛ is a threshold on Λ).

2.1.4 Inner Product Notation. The inner product or dot product of two

equal-length vectors (a and b) is notated as

〈a, b〉 =
N∑

n=1

anbn, (2.1)

where N is the length of a and b.

2.1.5 Variants of the Same Variable. Above-letter symbols are used to

differentiate between different versions of the same base variable. Hat notation is

used to indicate that a variable obtains its value from estimation or approximation of

the base variable’s true value (e.g., ê is an estimate of the variable e).

Tilde notation is used to indicate that a variable obtains its value from a model

of the base variable (e.g., m̃ is a modeled version of the variable m).

Prime notation is used to indicate that a variable may have undergone an op-

tional process, therefore the variable’s value may be that of the original base variable

or modified by the optional process (e.g., o′ can either be the original value o or a

processed version of o).

Dot notation is used to indicate that a variable is the derivative of the base

variable (e.g., ḋ is the first derivative of d).

2.1.6 Detector Terminology. For the purposes of this thesis, a set of com-

mon detector terminology is defined for consistency. A window is defined as a two-

dimensional bounding box within an image. A search window or detector window is
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defined as a window that is to be evaluated by a detector to determine the class of

the contents of that window.

An alarm is defined as a sample that a detector decides is in the class of interest

(the positive class). An alarm is synonymous with a detection from other common

detector terminology. An alarm window is defined as a search window whose contents

a detector decides are in the positive class. A rejection is a sample that the detector

decides is outside the class of interest, or in the negative class.

A hit is defined as an alarm that is truly in the positive class (i.e., a correct

positive decision). A false alarm is defined as an alarm that is truly in the negative

class (i.e., an incorrect positive decision). A correct rejection is defined as a rejection

that is truly in the negative class (i.e., a correct negative decision). A miss is defined

as a rejection that is truly in the positive class (i.e., an incorrect negative decision).

The space that contains all possible observations is defined as S. For a binary

detector, S is partitioned into two decision regions as

Si : i =







1 if criteria for i = 1 are met

0/− 1 if criteria for i = 0/− 1 are met
, (2.2)

where Si is the decision region where the class label i is assigned to an evaluated

sample, S1 ∪ S0/−1 = S and S1 ∩ S0/−1 = ∅. Equation (2.2) is an example of a

decision rule. All detectors described in this thesis employ a decision rule in a format

similar to Eqn. (2.2). For all detectors in this thesis, S1 is the decision region for the

positive class and S0 (or S−1 depending on the algorithm) is the decision region for

the negative class.

2.2 Tracking Architecture

Figure 2.1 illustrates the basic structure of a hyperspectral or multispectral-

based tracking architecture [11], [69], [70]. First, raw imagery are passed from the

imaging system to a detector (a dismount detector for this thesis effort). The detector
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Figure 2.1: Dismount tracking taxonomy.

finds objects of interest within the imagery and passes information about the location

and identity of objects of interest to the tracker portion of the architecture. From the

diagram in Fig. 2.1, it is clear that detector performance has a significant impact on

overall tracking performance since the tracker relies on data provided by the detector.

In a feature-aided tracker, spatial, spectral and other information about detected

targets is used to augment track association beyond the typical kinematics-only ap-

proach. Since the dismount detector described in this thesis requires multispectral

information and generates highly-descriptive spatial and spectral features, it is possi-

ble that those constituent data may be useful for feature-aided tracking. This thesis

effort does not focus on feature-aided tracking, however, since it is outside the scope

outlined in Section 1.2.

2.3 Passive Sensors Used for Tracking

Several types of passive sensors are used for tracking dismounts. Cameras sen-

sitive to the visible region of the electromagnetic spectrum are the most common

due to their low cost and high image quality. Both monochrome and red-green-blue

(RGB) visible cameras are frequently used. Generally, these cameras are advan-

tageous for generating spatial features for detecting specific target classes [18], [19],

[65], [66], [78], [80]. Additionally, RGB cameras (or cameras using similar three-
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channel color spaces [7], [28]) can be used to generate spectral features for skin de-

tection [12], [26], [32], [59], [74].

Infrared cameras are used less frequently than visible cameras, mainly due to

expense and comparatively poor image quality. Cameras sensitive to the mid-wave

infrared (MWIR) and long-wave infrared (LWIR) regions of the electromagnetic

spectrum (3000-5000nm and 8000-12000nm or 7000-14000nm respectively [44], [45])

are often utilized because they are sensitive to thermal emissions and can therefore

detect body heat. They can be very effective in certain environments at detecting

thermal signatures. However, advances in thermal-masking clothing could limit their

potential use in military applications. Additionally, these systems may be less effective

in recovery missions due to the reduced thermal signature of a corpse. Poor contrast

may also be an issue in climates near body temperature.

Cameras sensitive in the near-infrared (NIR) and short-wave infrared (SWIR)

regions of the spectrum (700-1000nm and 1000-3000nm respectively [44], [45]) are less

widely-used due to high cost and limited applications. They do not share the image

quality and resolution benefits of visible sensors, nor do they have the ability to detect

thermal signatures as do sensors sensitive in the MWIR and LWIR. They are most

commonly used for very specific applications that require information from the SWIR

region of the electromagnetic spectrum. Specific applications that utilize NIR and

SWIR imagery include skin detection [35], counting vehicle occupants [58], and face

detection [20].

Hyperspectral cameras are most commonly used for geographical survey and

remote sensing applications. Typically, these are line-scanning cameras that are sensi-

tive to hundreds of narrow regions of the electromagnetic spectrum, nominally ranging

from 400-2500nm. As such, they often have very low frame rates and spatial resolu-

tion. Additionally, the large amount of data they collect per frame requires exten-

sive computational power to process. The advantage of hyperspectral cameras is for

feature-aided tracking [11], [69], [70]. Due to the richness of spectral data available,
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highly discriminative spectral features can often be generated for detecting specific

target classes [40].

Multi-spectral camera systems are often developed to detect specific wavelengths

of interest for a particular detection task. Often they are a combination of multiple

cameras sensitive in the broad range of desired wavelengths and filtered at the specific

wavelengths of interest. This scheme provides many of the benefits of hyperspectral

imaging for detecting spectral features, while significantly reducing the amount of

data collected and therefore lowering computational expense. Additionally, since line-

scanning cameras are often not required for the few wavelengths needed, frame rates

and resolution can be improved dramatically over those of line-scanning hyperspectral

cameras. Specific applications for multispectral sensors include background modeling

and object tracking [14], [16].

2.4 State-of-the-art Dismount Detection Techniques

There are numerous approaches to the problem of dismount detection. The most

common approach to dismount detection is the whole-body detection approach. In

this approach, a classifier is trained based on a set of exemplars or codebook patches.

Spatial features of an object are often utilized to increase separability of object

classes. These features include, but are not limited to, nonadaptive Haar wavelet

features [46], [57], [67], [75], dense encoding of local edge orientations (i.e., HOG)

[18], [19], [65], [66], [78], [80], and sparse encoding of local edge orientations (i.e.,

scale-invariant feature transform (SIFT) ) [39]. One challenge for the whole-body

approach is the number of exemplars necessary to represent the full diversity of pose

configurations within the classifier training set.

Another approach to dismount detection combines expert body part detectors

in an attempt to assemble a stronger “ontological” representation of a dismount [27],

[49], [65], [67], [76], [78]. This approach often breaks the body down into combinations
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of subpart detectors (i.e., torso, legs, arms, and head) [8], [43], [46], [65], [68], [76] or

a codebook representation [6], [37], [38], [64].

One challenge for the ontological approach is associating multiple subpart de-

tections together to determine the likelihood that a dismount is present. One solution

is to train a combination classifier [8], [46], [65]. Probabilistic inference of the most

likely object configuration observed is another solution to the problem of associating

multiple parts detectors in a meaningful way [43], [68], [76].

A more exhaustive survey of state-of-the-art dismount detection techniques is

provided by [25]. This thesis effort focuses on the full-body detection approach using

HOG features combined with linear support vector machines (linSVM) .

2.5 Histograms of Oriented Gradients-based Dismount Detection

This section provides the background necessary to construct the basic compo-

nents of a HOG-based dismount detector. First, the methodology for generating HOG

features is provided, followed by a description of how a linSVM works. Finally, the

bootstrapping technique for training discrimination-based classifiers is provided.

2.5.1 Histograms of Oriented Gradients Feature Generation. One of the

most popular spatial features used in current literature is the HOG feature [19], [25],

[65], [66], [78], [80]. The feature is commonly used in concert with a sliding-window

detector for detecting and classifying in-scene objects. For the purposes of this thesis,

only the HOG parameter set that performed best in [25] is discussed and implemented.

Exploration of the best HOG parameters to use for dismount detection is beyond the

scope of this thesis, especially since that study is specifically accomplished in [25].

Figure 2.2 illustrates the steps involved in HOG feature generation. First, an

image patch is scaled to a resolution of 48 × 96 pixels (leaving a 12-pixel border

around dismounts for training purposes). Next, the image gradient is calculated by

convolving the image with a (−1, 0, 1) mask without smoothing in both the x and

y-directions. Figure 2.3 illustrates how this convolution affects imagery. Consider a
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Figure 2.2: Histograms of oriented gradients (HOG) feature generation process (in-
spired by Fig. 1 in [19]).

row of pixels with values as indicated in the top portion of Fig. 2.3. Note the high-

contrast transitions in pixel values highlighted in blue, red, magenta and green in the

top portion of Fig. 2.3. The bottom portion of Fig. 2.3 represents the row gradient,

the result of convolving the top portion of Fig. 2.3 with the mask in the middle portion

of Fig. 2.3. At each high-contrast transition point in the original image, there is a

2-pixel-wide impulse of magnitude equal to the change in pixel value in the original

image. Directionality of the pixel value transition affects the sign of the gradient

impulse.

Resulting x and y gradients (∇x and ∇y) are combined to produce gradient

magnitude (r) and orientation (φ ∈ R[0◦, 180◦]) by

r =
√

(∇x)2 + (∇y)2, (2.3)

φ = arctan
∇y

∇x
. (2.4)

Gradient orientations are rotated by ±180◦ as necessary to fall within R[0◦, 180◦] per

the suggestion of [19].

Next, the image patch is subdivided into non-overlapping cells of 8 × 8 pixels,

as depicted in Fig. 2.4 (red). For each cell, a 9-bin orientation histogram is taken (see

Fig. 2.5). Each cell pixel contributes its gradient magnitude as a histogram vote. The

magnitude is divided among the two bins whose centers are closest to the orientation

of the pixel. The percentage of the vote that goes to each bin is determined by linear

interpolation of the distance of the pixel orientation from each bin. The closer a bin
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Figure 2.3: Gradient computation toy example. Blue, red, magenta, and green
values represent locations of high-contrast pixel-value transitions in the
original image.

center is to the pixel orientation, the greater percentage of the vote it receives. In

the case that multi-channel imagery are used, the vote for each pixel is determined

by the channel with the greatest gradient magnitude for that pixel.

Figure 2.5 depicts how a pixel contributes its vote to the histogram. If the pixel

has a gradient magnitude of 100 units and orientation of 25◦ (black arrow), the bin

centered at 30◦ will receive 75 units (blue arrow) and the bin centered at 10◦ will

receive 25 units (red arrow) because the pixel orientation is 75% closer to the 30◦ bin

center than the 10◦ bin center. This voting scheme is necessary to prevent aliasing.

If the votes were simply quantized into the nearest bin, detailed orientation informa-

tion would be destroyed. This histogram voting scheme incorporates all orientation

information available, resulting in a more accurate representation of the cell.
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Figure 2.4: The image patch is subdivided into cells of 8 × 8 pixels (red) with no
pixel overlapping of cells. Cells are grouped into blocks (blue) of 2× 2
cells with an overlap of 1 cell in each direction (blue, orange, green).

Once histograms are calculated for each cell, the image patch is divided into

blocks of 2 × 2 cells (Fig. 2.4 blue) with an overlap of one cell (Fig. 2.4 orange, green,

and blue). For each block, the constituent cell histograms are concatenated together

and the resulting vector is normalized by its ℓ2-norm so that the vector has unit

magnitude. The normalized vectors from each block in the image patch are finally

concatenated together to form a 1980-dimensional HOG feature for a 48 × 96-pixel

image patch1. In general, the length of the HOG feature is determined by

length = (#bins)× (#cells per block)× (#blocks), (2.5)

#blocks =

(
wx

#pixels per cell
− 1

)

×

(
wy

#pixels per cell
− 1

)

. (2.6)

1The 48× 96-pixel image patch is suggested by [25] for dismount detection.
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Figure 2.5: Gradient orientation histogram voting toy example. Divisions along
the φ-axis represent orientation histogram bin edges. Divisions along
the r-axis are to aid visual interpretation of magnitude values. The
black arrow represents a pixel gradient. The blue arrow represents
the portion of the pixel gradient’s magnitude that is received by the
orientation bin centered at 30◦. The red arrow represents the portion
of the pixel gradient’s magnitude that is received by the orientation bin
centered at 10◦.

2.5.2 Support Vector Machines. There are several techniques for binary

classification (deciding whether a sample is in a class or not in the class). One popular

family of binary classification techniques is linSVMs [63].

Suppose a matrix of M , N -dimensional pattern vectors (x) and a length-M

vector of corresponding class labels (y ∈ {±1}) exist. Any N -dimensional hyperplane

can be defined as follows:

〈wm, xm〉+ b = 0, (2.7)
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where wm is a weight vector corresponding to pattern vector xm and b is a real-valued

offset. If the two classes are linearly-separable, a hyperplane can be defined to serve

as a decision boundary between two classes as

Si : i =







1 if 〈wm, xm〉+ b > ητ

−1 if 〈wm, xm〉+ b < ητ
, (2.8)

where Si is the decision space for class label i and ηs is a linSVM decision threshold

that is typically set to 0, but can be varied to produce receiver operating characteristic

(ROC) curves.

The margin is defined as the minimum distance from the decision boundary to

any pattern vector as follows:

ε ≡ min
m

ym 〈wm, xm〉

‖wm‖
. (2.9)

Figure 2.6 depicts examples of multiple possible separating hyperplanes for a

two-class dataset and their associated margins.

Note that only the pattern vectors associated with the ε-value are necessary to

define the hyperplane. This subset of the original pattern vectors (α ⊆ x) is defined

as the set of support vectors. The number of support vectors may be significantly

smaller than M , eliminating the need to store the entire set of pattern vectors when

using the linSVM on unknown data.

For optimal classification performance, the hyperplane with the largest margin

should be chosen to serve as the decision boundary. If no hyperplane exists that

perfectly separates the two classes, a soft margin optimization can be used. In soft-

margin optimization, a cost is assigned to every mis-classified sample that is relative

to the distance from the mis-classified sample to the decision hyperplane. The hy-

perplane with the largest margin and lowest cost is chosen to serve as the decision

boundary [63].
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Figure 2.6: Separating hyperplanes and margins toy example.

Determining the optimal values of w and b, and selecting α corresponding to the

optimal decision hyperplane is an optimization problem that is beyond the scope of

this thesis. Details of how to solve the optimization problem (including cost parameter

estimation and extension of SVM using kernel methods) are provided in [63]. An

extensive list of freely available software implementations for learning and applying

linSVMs can be obtained online [62].

2.5.3 Bootstrapping. When training a classifier, it is important that each

class is accurately represented in the training set. For a binary detector scenario,

where the classifier simply distinguishes whether a sample is in the desired class or

not, finding a useful training set can be tricky. For the positive training samples, often

all that is needed is a representative group of samples from the positive class. The neg-

ative class, however, is defined as “everything else”. Representing the entire universe

outside the class of interest is impractical. Therefore, a technique known as boot-
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strapping can be used to help define the most important aspect of any discriminative

(decision boundary-based) classifier: the optimal decision boundary. The descrip-

tion of bootstrapping provided in this section is consistent with methods discussed

in [19], [25], which should not be confused with the traditional definitions of bootstrap-

ping (or bootstrap aggregating, “bagging”) discussed in [10], [13], [21], [31], [56], [72].

Bootstrapping requires multiple classifier training steps. In the first step, the

classifier is trained with an equal number of positive and negative samples. The

negative samples are chosen at random from a large pool of known negative samples.

After the initial training step converges2, the resulting classifier is used to classify

additional random samples from the negative sample pool. The goal is to find as

many false positives as there are positive training samples. Essentially, this step

detects negative samples that are as close as possible to the best-performing decision

boundary. Once hard false positives are identified, those false positives are added to

the negative training set and the classifier is retrained.

Figure 2.7 illustrates the principles of bootstrapping using two-dimensional toy

data. The blue squares represent known positive training samples. The red circles

represent a random sub-sampling of known negative training samples. The red line

represents an approximate maximum-margin decision boundary based on just the

red and blue data. The black pluses represent false alarms when the red decision

boundary is applied to another random sub-sampling of the known negative training

pool. The black line represents a new decision boundary based on the false alarms

from the red decision boundary. This is considered one bootstrapping step.

After each training iteration, the performance of the resulting classifier should

be tested using a known test set. The test set should not include any of the training

samples to avoid biasing the results. The bootstrapping process should continue

to iterate until the classifier performance on the test set saturates based on user-

defined saturation criteria, for example if the performance gain between iterations is

2Convergence criteria vary based on the type of classifier being trained.
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Figure 2.7: Bootstrapping toy example.

less than a user-defined threshold. Performance saturation indicates that additional

bootstrapping steps are unlikely to aid classifier performance further since the best-

discriminating decision boundary within the saturation criteria has likely been found.

In this thesis, bootstrapping is used to help train a linSVM dismount detector

(presented in Section 4.5.2).

2.6 Search Scheme Considerations for Spatial Detectors

Spatial detectors (i.e., detectors that explicitly or implicitly rely on spatial pat-

terns of in-scene pixels to detect objects of interest) often require a search technique

to determine which subset of image pixels should be evaluated. First, this section

provides methodology for the simplest search technique: the sliding-window search

scheme. Next, methodology for determining a measure of overlap between two win-

dows (the coverage statistic) is provided. A technique for deconflicting alarm windows
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that may be detecting the same object is provided next. Finally, general techniques

for search-space reduction are provided.

2.6.1 Sliding-window Search Scheme. A common method for implementing

a sliding-window search scheme is to generate a dense grid of overlapping windows at

multiple scales [25]. A set of sliding-window parameters

θw = {wx, wy, hmin, wmin,∆s,∆x,∆y},

is used to fully describe how the grid is to be implemented.

The authors of [25] determined that the best set of sliding-window parameters

to use for a HOG-based dismount detector is

θw = {wx = 48, wy = 96, hmin = 72, wmin = 0,∆s = 1.1,∆x = 0.1,∆y = 0.025}.

Henceforth this thesis utilizes this set of parameter values when referring to θw.

The base window, which will be scaled and shifted to produce the detection grid,

is wx × wy pixels. The minimum height of a search window (hmin) and the minimum

width of a search window (wmin) are used to compute the minimum scale value as

follows:

smin = max

(
hmin

wy

,
wmin

wx

)

, (2.10)

∴ smin =
hmin

wy

∵ wmin = 0 from θw. (2.11)

The maximum scale value is the largest scale value that will fit within the image

boundaries (x ∈ Z[1,M ] and y ∈ Z[1, N ]), determined as follows:

smax = min

(
M

wx

,
N

wy

)

. (2.12)
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For the purposes of this thesis, it is assumed that all images are wider than they

are tall (M ≥ N), which is commonly the case for imaging sensors. Since wx < wy

from θw,
M
wx

is guaranteed to be greater than N
wy

ifM ≥ N . Therefore from Eqn. (2.12)

smax =
N

wy

. (2.13)

The scale (s) is a geometric sequence with the common ratio (or multiplier)

∆s ∈ R(1,∞) with elements

sn = smin(∆s)n−1. (2.14)

Since sn ≤ smax, the upper bound for n is derived from Eqns. (2.13)–(2.14) as

smin(∆s)nmax−1 ≤ smax, (2.15)

(nmax − 1) ln(∆s) ≤ ln

(
smax

smin

)

, (2.16)

nmax ≤
ln
(

smax

smin

)

ln(∆s)
+ 1, (2.17)

≤
ln(smax)− ln(smin)

ln(∆s)
+ 1

∣
∣
∣
∣
smax=

N
wy

,smin=
hmin
wy

,

≤
ln(N)− ln(wy)− ln(hmin) + ln(wy)

ln(∆s)
+ 1,

≤
ln(N)− ln(hmin)

ln(∆s)
+ 1,

nmax =

⌊
ln(N)− ln (hmin)

ln(∆s)

⌋

+ 1 ∵ nmax ∈ Z, (2.18)

∴ n ∈ Z

[

1,

⌊
ln(N)− ln (hmin)

ln(∆s)

⌋

+ 1

]

. (2.19)

For each scale (sn), the search window is snwx×snwy pixels. The search window

is then shifted through the x and y-directions using the shift multipliers (∆x and ∆y)
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Figure 2.8: Sliding window parameters example.

as follows:

xm,n = 1 + (m− 1)∆xsnwx, ∀xm ≤ M − snwx + 1, (2.20)

ym,n = 1 + (m− 1)∆ysnwy, ∀ym ≤ N − snwy + 1, (2.21)

where xm,n and ym,n are the top-left coordinates for the search window at scale sn.

Figure 2.8 depicts an example of how the parameters described in this section affect

the size and location of the generated search windows.

2.6.2 Coverage Statistic. It can be challenging to accurately determine the

performance of a sliding-window detector for numerous reasons. First, ground-truth

bounding boxes may be subjective based on the human that defines the bounding box

limits. Furthermore, the size and location of the object in a ground-truth patch may

not perfectly coincide with any detector window configuration.

For this reason, it is helpful to utilize a measure of overlap between two windows

of arbitrary size and location. One such useful measure is the coverage statistic [25],

defined as follows:

Ω(ai, aj) =
A(ai ∩ aj)

A(ai ∪ aj)
, (2.22)

where ai and aj are rectangular windows of arbitrary size and location within the

boundaries of the same image, A(ai ∩ aj) is the intersected area of the two windows,
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Figure 2.9: Coverage statistic example.

and A(ai ∪ aj) is the union area of the two windows. If the windows have no overlap,

then A(ai ∩ aj) = 0 and consequently Ω(ai, aj) = 0. If the two windows perfectly

match, then A(ai ∩ aj) = A(ai ∪ aj), and Ω(ai, aj) = 1 as a result. Therefore,

Ω(ai, aj) ∈ R[0, 1]. The coverage statistic concept is illustrated in Fig. 2.9.

2.6.3 Confidence-based Non-maximum Suppression of Detections. Due to

the nature of sliding-window detectors, it is possible that multiple search windows at

similar location and size in the same image could result in multiple alarms for the same

in-scene object. This can be problematic when trying to accurately gauge detector

performance. In order to suppress the number of alarms produced by one object, it is

useful to utilize a detection confidence output from the classifier for each alarm. For

the purposes of linSVM, the magnitude of the classifier’s real-valued output can be

used as the confidence number.

First, it must be determined which alarms may be in conflict. For this, the

coverage statistic is used [25]. If the coverage between two alarm windows from the

same image (ai and aj, i 6= j) is greater than a threshold (ηΩ = 0.5 as suggested

by [25]), the windows are considered to be in conflict. For each conflict detected, the

alarm window with the greater confidence is kept and the other is discarded. This

process continues until all conflicts have been resolved. Figure 2.10 illustrates how

multiple alarm windows (multiple colors on the left side of the figure) are suppressed
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Figure 2.10: Confidence-based non-maximum suppression example. Multiple alarm
windows that are considered to be in conflict (multiple colors on left)
are suppressed leaving only the alarm window with the highest confi-
dence value (red on right).

leaving only the alarm window with the highest confidence value (red on the right

side of the figure).

It is possible that if two objects of interest are positioned very close to one an-

other, two appropriate alarms may be considered to be in conflict by the confidence-

based non-maximum suppression algorithm. In this case, an alarm may be falsely-

suppressed. Figure 2.11 illustrates this scenario. The blue and red rectangles cor-

respond to alarm windows for the green and pink dismounts respectively. The cov-

erage of the two alarm windows is Ω = 0.5, which is the exact threshold where two

alarm windows are considered to be in conflict. In the worst-case scenario, both dis-

mounts are viewed from a sagittal-plane (side-view) aspect. While neither dismount

is partially-occluded (making them both valid targets for detector scoring), one of

their respective alarm windows will likely be suppressed. This situation will result in

a miss when scoring the detector.

2.6.4 Search Space Reduction Techniques for Sliding-window Detectors.

Many sliding-window detectors have a very large search area for each image under

test. This often leads to significant computational costs which can limit the prospects

of real-time processing [18], [19], [25], [46], [57], [61], [71].
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Figure 2.11: Conflicting alarm window example. The blue rectangle represents an
alarm window for the green dismount. The red rectangle represents
an alarm window for the pink dismount.

The total size of the search space of an arbitrary M × N image (assume M ≥

N for this discussion) using sliding window parameter set θw can be derived from

Eqns. (2.11)–(2.21). The total number of search windows (ς) per M × N image is

derived as follows:

ς =
∑

n

⌊
M − snwx

∆xsnwx

+ 1

⌋⌊
N − snwy

∆ysnwy

+ 1

⌋

. (2.23)

For example, the parameter set θw (whose parameter values are defined in Sec-

tion 2.6.1) results in ς ≈ 1.85× 105 search windows per 640× 480 image. Intelligent

reduction of this search space can dramatically improve overall processing speed, es-

pecially if the processing time for an individual search window is significant.

A very common method of search space reduction is to segment an image into

foreground and background pixels. Foreground pixels are defined as pixels that should

be identified using the detector of interest. Background pixels are defined as pixels

that should be ignored by the detector.
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2.6.4.1 Background Subtraction. A common method for segmenting

foreground and background pixels is background subtraction. Numerous implemen-

tations of background subtraction are surveyed in [42]. Most modern background-

subtraction techniques update the estimation of the background pixels over time.

Some background subtraction techniques make the assumption that the back-

ground does not change as a function of time and can therefore be determined a

priori. The work in [42] indicates that such algorithms are of limited use in practical

applications. It is logical that a priori background subtraction methods are at least

limited to fixed observation platforms.

Overall, the advantages of background subtraction techniques are simplicity and

speed. Notable disadvantages of time-dependent background subtraction algorithms

is dependence on in-scene motion for detection of foreground pixels. Background

subtraction systems that utilize a priori knowledge may be more capable of detecting

stationary objects of interest if the a priori background model does not include those

objects of interest.

A notable disadvantage of all background subtraction techniques is the problem

of image registration between subsequent frames. This problem especially holds true

for imaging systems mounted on mobile platforms or in high-vibration environments.

Image registration requirements can negate the speed advantages of background sub-

traction algorithms.

2.6.4.2 Feature Cues. In-scene features can be used to determine

foreground pixels in lieu of background subtraction [24], [27], [30], [37], [48], [65], [79].

One advantage of feature-based cues is that the features used can be custom-tailored

for the class of object being detected. While the feature alone may not be sufficient to

detect an object of interest–possibly due to false alarm sources or multiple instances

of the same feature on one object–they may significantly reduce the search space for

a more accurate spatial feature-based sliding-window detector.

2-23



Advantages of spectral feature cues may include speed (depending on the com-

plexity of the feature being generated) and platform motion tolerance. Since spectral

features are temporally independent, they can be used to define foreground pixels on

each image frame independently. An additional advantage of temporal independence

is that stationary objects of interest are relatively easy to find. In fact, stationary

objects may be easier to find, depending on the sensor modality.

One potential disadvantage of spectral feature cues may include sensor modality

issues. Sufficiently useful features may require exotic spectral bands or a large number

of spectral bands. This may add significant cost to the system in terms of frame

capture rate and/or monetary expense.

2.7 Skin Detection

This thesis effort proposes to utilize skin detection as a feature cue for reduc-

ing the search space of a HOG-based dismount detector. This section provides the

background necessary about the spectral properties of skin and how they can be ex-

ploited for skin detection. First, a primer on reflectance and reflectance estimation is

provided, followed by illumination considerations when developing spectral detection

algorithms. Next, the spectral properties of human skin are provided, followed by

features derived to take advantage of the spectral properties of skin for the purpose of

skin detection and false alarm suppression. Methodology for extending these features

to an arbitrary imager are provided next, followed by a basic skin detection algorithm

based on the features described in this section.

2.7.1 Reflectance: Definition and Estimation. Reflectance (ρλ ∈ R[0, 1], ∀λ)

is defined as the percentage of incident electromagnetic power reflected by a material

at wavelength λ. Many applications–especially in hyperspectral remote sensing–prefer

to use imagery converted to the reflectance space since reflectance is an intrinsic ma-

terial property that does not change based on illumination intensity or atmospheric
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Figure 2.12: Reflectance angular dependence.

variations3. However, reflectance can change as a function of illumination and ob-

servation angles [50]. For the purposes of this thesis, the full depth of this angular

relationship is not explored. Instead, the angular relationship is incorporated as fol-

lows:

ρλ(ϕi, ϕo) = ρ⊥λ + cλ(ϕi, ϕo), (2.24)

where ϕi and ϕo are the incident and observation angles with respect to the material

surface normal respectively (as depicted in Fig. 2.12); ρ⊥λ is the material reflectance as

measured by a reflectometer normal to the material surface; and cλ(ϕi, ϕo) is a func-

tion that encapsulates all angle dependence of the reflectance (cλ ∈ R[−ρ⊥λ , 1− ρ⊥λ ]).

It should be noted that ϕi and ϕo can be further parameterized by their respective

azimuth and elevation angles, thus making cλ a four-dimensional function.

3Except in the case that illumination energy physically alters the material itself, whether from
heating or induced chemical changes.
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It is impossible to directly image a scene in reflectance space using passive sen-

sors. Passive sensors require reflected or emitted energy from an in-scene object.

Therefore, passive imagery is typically in radiance space, which is illumination de-

pendent.

It is possible to transform an image from irradiance space to estimated re-

flectance space using one of several techniques. One method is to measure solar

irradiance spectra at the time the image is acquired, then later divide the image

irradiance spectra by the solar irradiance spectra. Another method is to estimate

atmospheric absorption effects at the time of image acquisition, then cancel out those

effects during post-processing.

One method for estimating atmospheric effects includes atmospheric modeling

using a system such as MODTRAN [36] based on weather conditions recorded at

the time and location of image acquisition. A simpler approach to correcting for

atmospheric effects is to use a linear regression using an in-scene target of known

reflectance (this method is also known as the empirical line method (ELM) [22]).

The ELM for estimating reflectance (ρ̂λ) is implemented as

âλ =
µw
λ − µb

λ

ρwλ − ρbλ
, (2.25)

b̂λ =
µb
λρ

w
λ − µw

λ ρ
b
λ

ρwλ − ρbλ
, (2.26)

ρ̂λ =
Xλ − b̂λ

âλ
, (2.27)

where Xλ is the input image at wavelength λ in intensity space; ρwλ and ρbλ are the

known reflectances of a bright and dark in-scene object respectively; and µw
λ and µb

λ

are the average image intensity values of the same bright and dark in-scene objects

respectively. If only one object of known reflectance is available, Eqn. (2.27) can be

simplified to

ρ̂λ =
ρwλ
µw
λ

Xλ, (2.28)
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which assumes that an image intensity value of 0 corresponds to a reflectance value

of 0. This assumption does not necessarily hold true (especially when sensor noise is

considered), but is often accurate enough to be useful.

There are a few key issues that must be considered when using the technique

described in Eqn. (2.27) or (2.28). First, the ELM method assumes that all image

pixels are receiving identical illumination. There are many obvious situations where

this assumption is false, but in practice, ELM is still very effective for estimating

reflectance when it is possible to operate in conditions as close to this assumption as

possible.

The ELM method also assumes that the relationship between image intensity

and reflectance is linear. Depending on the sensor being used, this may or may not be

a valid assumption to make. While the linear relationship may not necessarily hold

true, non-linearity in the relationship tends to be minor and of little consequence in

practice.

Another key issue to consider is image saturation. In bright illumination con-

ditions, it is possible for image intensity values for some pixels to be saturated at the

maximum allowable value. This saturation condition affects the accuracy of ELM es-

timation because there is no way to know what the true values of saturated pixels are.

This is especially a problem if the saturated pixels are on the calibration object itself,

which can drastically affect the reflectance estimation of every pixel in the image.

To mitigate the saturation issue, the imaging sensor should be operated such

that no pixels are saturated. In the event that the operator cannot control image

gain or other parameters that may mitigate the saturation issue (e.g. the sensor

uses “auto-gaining” to set the brightest pixel to the maximum value), a saturation

target should be placed in the scene being imaged. The saturation target should be

significantly brighter than the bright ELM calibration object and placed such that the

saturation target does not “wash out” areas of interest in the scene or cause secondary

illumination of the calibration targets or areas of interest in the scene.
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Figure 2.13: Solar irradiance in Dayton, OH on a sunny day scaled by the maximum
irradiance (solid blue) and the irradiance spectra of light-complected
skin illuminated by sunlight scaled by the same maximum irradiance
(dashed red) from [51], [53].

2.7.2 Illumination Considerations. When developing features for hyperspec-

tral detection applications, it is important to consider limitations of the illumination

source. Solar illumination is often used when remotely estimating reflectance val-

ues from a hyperspectral camera. Figure 2.13 depicts measured solar irradiance in

Dayton, OH on a sunny day scaled by the maximum irradiance (solid line). The

dashed line in Fig. 2.13 is the measured irradiance spectra of light-complected skin

illuminated by sunlight scaled by the same maximum irradiance.

Note that there are areas of extremely-low solar irradiance at the earth’s surface

near 1400nm and 1900nm. These troughs correspond to atmospheric water absorp-

tion. Since solar illumination is very poor at these wavelengths, they should be avoided

for use in any solar-illuminated detection algorithm.
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Figure 2.14: Model-generated skin reflectance spectra from [51], [55].

2.7.3 Properties of Human Skin. Human skin exhibits numerous distinc-

tive absorption features in the visible (VIS) and NIR regions of reflectance spectra.

These absorption features can be exploited for detecting skin [51], [52], [53]. Fig-

ure 2.14 depicts several examples of modeled skin reflectance for various levels of skin

pigmentation (including the extremes), and the relevant wavelengths used for skin

detection algorithms discussed in Section 2.7.8.

It is important to note that there is a distinct drop-off in skin reflectance beyond

1150nm, with local maxima at 1080nm and 1250nm; and local minima at 1200nm and

1400nm. These features are primarily due to water absorption [9]. Based on these

skin-reflectance observations, useful descriptive features can be generated using the
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following:

Q =
ρλ1 − ρλ2

ρλ1 + ρλ2

, λ1 6= λ2, (2.29)

where the feature (Q) is a difference of reflectance at wavelengths λ1 and λ2 normalized

by the sum of the reflectance at those respective wavelengths. Since ρλ ∈ R[0, 1], ∀λ,

the numerator of Eqn. (2.29) must be ∈ R[−1, 1]. Since the magnitude of the de-

nominator of Eqn. (2.29) will always be greater than or equal to the magnitude of

the numerator (except in the statistically improbable case that ρλ1 = ρλ2 = 0), the

absolute value of Q must be less than or equal to 1. Therefore

Q ∈ R[−1, 1] ⇐⇒ (ρλ1 > 0) ∨ (ρλ2 > 0). (2.30)

Equation (2.29) is a generalization inspired by the normalized difference vege-

tation index (NDVI) [23], which is used for remote detection of vegetation.

2.7.4 Normalized Difference Skin Index (NDSI). The large drop-off in skin

reflectance between 1080nm and 1400nm is an excellent candidate for generating a

useful feature from Eqn. (2.29). Additionally, the relative stability of skin reflectance

values at these wavelengths across the gamut of human skin types (as evidenced in

Fig. 2.14) is also useful. However, as noted in Section 2.7.2, reflectance near 1400nm

should be avoided for generating features for detection purposes. Therefore, the next

available wavelength above 1400nm that has sufficient solar irradiance–1580nm–is

used [51], [53].

The normalized difference skin index (NDSI) [51], [53] value (γ) is derived from

Eqn. (2.29) as

γ =
ρλ1=1080nm − ρλ2=1580nm
ρλ1=1080nm + ρλ2=1580nm

. (2.31)
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Figure 2.15: Reflectance spectra of lodgepole pine (blue) and dry grass (red)
from [15].

It is possible that other materials with water-absorption features similar to skin

may be false alarm sources for a detector based solely on the NDSI. Such materials

include certain kinds of vegetation (especially in the yew family) as illustrated in

Fig. 2.15; and materials with high water content and back-scattering properties (e.g.,

snow) as illustrated in Fig. 2.16.

2.7.5 Normalized Difference Vegetation Index (NDVI). A commonly-used

feature for detecting vegetation is the NDVI [23], defined as

α =
ρλ1=860nm − ρλ2=660nm
ρλ1=860nm + ρλ2=660nm

, (2.32)

where α is the NDVI value.

The NDVI feature takes advantage of a typically large derivative in vegeta-

tion reflectance spectra between approximately 660nm and 860nm, as can be seen in
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Figure 2.16: Reflectance spectra of snow from [15].

Fig. 2.15. The lower reflectance values near 660nm are due to chlorophyll absorption,

while the higher reflectance values near 860nm are a result of high scattering in the

NIR. It is possible that the NDVI may be useful for suppressing false alarms produced

by an NDSI-based skin detector.

2.7.6 Normalized Difference Green Red Index (NDGRI). It is observed in

Fig. 2.14 that healthy human skin is more red than green. It is observed in Fig. 2.15

that healthy vegetation (blue curve) is more green than red and dry vegetation (red

curve) is close to equal for the red and green components. The drop in red reflectance

for healthy vegetation is due to chlorophyll absorption. It is observed from Fig. 2.16

that the red and green components of snow are relatively equal. This knowledge

of green-red ratio can be useful for generating another feature for suppressing false

alarms produced by an NDSI-based skin detector.
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Since the green and red components of many RGB cameras are nominally cen-

tered at 540nm and 660nm respectively, the normalized difference green-red index

(NDGRI) feature (β) can be derived from Eqn. (2.29) as

β =
ρλ1=540nm − ρλ2=660nm
ρλ1=540nm + ρλ2=660nm

. (2.33)

2.7.7 Extending Features to an Arbitrary Imaging System. The skin fea-

tures described previously depend on having perfect knowledge of the reflectance of

human skin. In the case of an imaging scenario, many factors affect the estimation of

reflectance spectra. These include, but are not limited to, uncertainty in atmospheric

correction [77], sensor noise, and specular reflection (as noted in Section 2.7.1).

Evidence from [41] indicates that skin is a lambertian surface (ρλ = ρ⊥λ ) if the

illumination source is perpendicular to the tissue surface. This same article shows that

skin is highly forward-scattering (cλ(ϕi, ϕo) > 0) as the illumination angle decreases

from perpendicular to the surface of the skin (as depicted in Fig.2.12).

A typical signal-plus-noise model is derived to approximate how sensor noise

and specular reflection affect reflectance values and consequently generated-feature

values. The signal-plus-noise model for estimated reflectance is

ρ̂λ = ρ⊥λ + cλ + nλ (2.34)

where ρ̂λ is the estimated reflectance from the imager, cλ is the specular reflection

term, and nλ is an assumed-Gaussian noise term distributed as N (0, σ2
λ) (note that

the noise term is modeled in the reflectance space).

Consider the effects the specular and noise components have on Eqn. (2.29):

Q =

(
ρ⊥λ1

+ cλ1 + nλ1

)
−
(
ρ⊥λ2

+ cλ2 + nλ2

)

(
ρ⊥λ1

+ cλ1 + nλ1

)
+
(
ρ⊥λ2

+ cλ2 + nλ2

) . (2.35)
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For the sake of discussion, it is assumed that the specular reflection is independent of

wavelength. That is, cλ = c, ∀λ, and for all pixels in the image. It is further assumed

that the distribution of the noise is wavelength-dependent. Given these assumptions,

Eqn. (2.35) is simplified as:

Q =

(
ρ⊥λ1

− ρ⊥λ2

)
+ (nλ1 − nλ2)

(
ρ⊥λ1

+ ρ⊥λ2

)
+ (nλ1 + nλ2) + 2c

. (2.36)

Under the assumption that each noise term is drawn from a zero-mean normal distri-

bution, E[N (0, σ2
λ)] = 0, and,

E[Q] =

(
ρ⊥λ1

− ρ⊥λ2

)

(
ρ⊥λ1

+ ρ⊥λ2

)
+ 2c

. (2.37)

As can be seen from Eqn. (2.37), a significant amount of specular reflection in a pixel

can significantly lower that pixel’s NDSI, NDVI, and NDGRI values. Furthermore,

even though the expected value of the noise term is zero, sensor noise will still affect

the normalized difference terms as suggested in Eqn. (2.36). The larger the noise

power, the greater impact seen in the imaged data.

2.7.8 Rules-based Skin Detection Algorithms. The rules-based detector uti-

lizes the NDSI values for skin detection and either NDVI or NDGRI values to suppress

detections of potential skin confusers such as vegetation and snow [51], [52], [55].

A rules-based skin detector based on NDSI and NDVI is defined as

Si : i =







1 if α ∈ R[a1, a2] and γ ∈ R[c1, c2]

0 otherwise
, (2.38)

where a1, a2, c1, and c2 are the limits of a rectangular decision region in two-dimensional

(α, γ) space.
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Similarly, a rules-based skin detection based on NDSI and NDGRI is defined as:

Si : i =







1 if β ∈ R[b1, b2] and γ ∈ R[c1, c2]

0 otherwise
. (2.39)

where b1, b2, c1, and c2 are the limits of a rectangular decision region in two-dimensional

(β, γ) space.

The advantage the simple detectors described here is the dependence solely

on the extremes in skin spectral measurements. Given the availability of the model

in [55], these spectra are generated with a high degree of confidence. The upper

and lower bounds on the values for α, β, and γ computed using the skin model and

are: a1 = −0.003891, a2 = 0.50321, b1 = −0.54079, b2 = −0.061525, c1 = 0.65703,

and c2 = 0.76779. It further has the advantage that one only the target information

must be taken into account. In the case of the detector described in Eqn. (2.38) and

Eqn. (2.39), the decision region is rectangular. In order to generate a ROC curve,

(α, γ) for (NDVI,NDSI) and (β, γ) for (NDGRI,NDSI) must be varied across their

respective ranges yielding a two-dimensional ROC curve surface (or choose a few

operating points and determine several one-dimensional ROC curves). Two primary

limitations of this approach are that it does not take into account information on

potential false alarm sources beyond the design of the normalized difference indices,

and it ignores the distribution of the target and false alarm sources, therefore lacking

optimality in terms of minimizing the Bayes risk.

2.8 Classic Detection Theory

This section provides background on classic detection theory and a method for

estimating the probability density function (pdf) of a set of incomplete data.

2.8.1 Likelihood Ratio Test. Binary detectors are often used to determine if

a random sample belongs to the positive or negative class. If the pdf of all samples

in the positive class (f1(x), where x ∈ X and X is the distribution of observations)

2-35



is known and the pdf of all samples in the negative class (f0(x)) is known, a simple

LRT can be devised to hypothesize whether a randomly-observed sample is within

the positive or negative class [17]. Recall from Section 2.1 that S is the space that

contains all possible observations. Therefore, X ∈ S.

The hypothesis that a sample lies within the positive class is defined as H1,

while the hypothesis that a sample lies within the negative class is defined as H0.

Cost factors (Cij; i, j ∈ {0, 1}) represent the relative costs of declaring that Hi is true

given that Hj is actually true.

With the above definitions, it is now possible to define the Bayes risk

R ≡ E[cost] =
∑

i,j={0,1}

CijP [Hi|Hj]Pj , (2.40)

where P [Hi|Hj] is the probability of declaring that Hi is true given that Hj is true,

P1 is the prior probability that any arbitrary sample will be in the positive class,

and P0 is the prior probability that any arbitrary sample will be in the negative class

(P1 ∈ R[0, 1], P0 ∈ R[0, 1], and P1 + P0 = 1).

For the decision regions

Si : i =







1 if evidence suggests that H1 is true

0 if evidence suggests that H0 is true
, (2.41)

it must be determined how the choice of decision rule affects the Bayes risk. It is now

possible to define P [Hi|Hj] in terms of the decision regions: P [Hi|Hj] =
∫

Si
fj(x)dx.

Substituting this definition into Eqn. (2.40) yields

R =
∑

i,j={0,1}

CijPj

∫

Si

fj(x)dx. (2.42)
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Note that for an arbitrary pdf (f(x)), the following holds true:

∫

S1

f(x)dx+

∫

S0

f(x)dx =

∫

S

f(x)dx = 1, (2.43)

∴

∫

S1

f(x)dx = 1−

∫

S0

f(x)dx. (2.44)

From the generality determined in Eqn. (2.44), Eqn. (2.42) can be rewritten and

expanded in terms of only S0 as

R = C10P0 + C11P1 +

∫

S0

[(C00P0 − C10P0) f0(x)− (C11P1 − C01P1) f1(x)]
︸ ︷︷ ︸

Ṙ

dx.

(2.45)

For an optimal decision rule, the Bayes risk should be minimized. To minimize

Eqn. (2.45), any x ∈ S that results in a negative value for Ṙ should be included in

the decision region S0. Therefore,

x ∈ S0 ⇐⇒ (C00P0 − C10P0) f0(x)− (C11P1 − C01P1) f1(x) < 0, (2.46)

⇐⇒ (C00P0 − C10P0) f0(x) < (C11P1 − C01P1) f1(x), (2.47)

⇐⇒
(C00 − C10)P0

(C11 − C01)P1

>
f1(x)

f0(x)
. (2.48)

Since x ∈ S1 ⇐⇒ x /∈ S0, the reverse of the inequality in Eqn. (2.48) holds true for

x ∈ S1.

The likelihood ratio is defined as

ΛX(x) ≡
f1(x)

f0(x)
. (2.49)

The LRT threshold is defined as

ηΛ ≡
(C00 − C10)P0

(C11 − C01)P1

. (2.50)
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Combining Eqns. (2.48)–(2.50), the LRT decision rule is

Si : i =







1 if ΛX(x) > ηΛ

0 if ΛX(x) < ηΛ
. (2.51)

Since ΛX(x) = ηΛ partitions S into S1 and S0, it is known as the decision boundary.

2.8.2 Expectation Maximization for Gaussian Mixture Models. Accurately

estimating the pdf of a random data set is a difficult problem [21], especially if an

incomplete set of observations is available. Even representing the functional form of

the pdf can be daunting depending on the distribution of the data set. Amixture model

is a weighted combination of multiple simple pdfs for the purpose of approximating

any arbitrarily complex pdf.

One of the most commonly-used mixture models is the Gaussian mixture model

(GMM), which is a weighted combination of multiple Gaussian pdfs. The advantage

of the GMM is that a Gaussian pdf can be efficiently described using a relatively

compact set of sufficient statistics (namely the mean (µ) and the variance (σ2)).

Figure 2.17 depicts a toy example. The red dashed curves are two arbitrary Gaussian

pdfs (the left curve is N (−2, 1) and the right curve is N (1, 9)). The solid blue curve

is the weighted sum of the red dashed curves, where the left curve has a weight of 0.2

and the right curve has a weight of 0.8.

Estimating the parameters for a GMM based on an incomplete set of observa-

tions from a data set can be accomplished in a number of ways. The expectation

maximization (EM) algorithm [47] is a useful (albeit suboptimal) method for estimat-

ing GMM parameters. The EM-GMM algorithm is a two-stage iterative process as

outlined in Fig. 2.18.

First, there is an initialization step where an initial guess of the GMM param-

eters is provided. This includes the number of Gaussians used in the GMM (K), the

means of each Gaussian (µk, k = 1, ..., K), the variances of each Gaussian (σ2
k), and
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Figure 2.17: Gaussian mixture model toy example. The red dashed curves are two
arbitrary Gaussian pdfs. The solid blue curve is the weighted sum of
the red dashed curves, where the left curve (N (−2, 1)) has a weight
of 0.2 and the right curve (N (1, 9)) has a weight of 0.8.
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Figure 2.18: Expectation maximization (EM)- Gaussian mixture model (GMM)
flowchart inspired by [47].

the weights of each Gaussian (πk ∈ R[0, 1],
∑K

k=1 πk = 1). Note that the initial guess

for K is not updated by the algorithm whereas the other parameters are.
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In the expectation stage, the probability that the kth Gaussian occurred given

the set of observations (xm,m = 1, ...,M) is evaluated as

Φ(m,k) =
πkfk(xm)

∑K
k=1 πkfk(xm)

, (2.52)

where fk(xm) is the functional evaluation of the kth Gaussian pdf at the point xm.

After the expectation stage is complete, all Gaussian parameters and weights

are re-estimated in the maximization stage by

Mk =
M∑

m=1

Φ(m,k), (2.53)

πk =
Mk

M
, (2.54)

µk =

∑M
m=1 xmΦ(m,k)

Mk

, (2.55)

σ2
k =

∑M
m=1 Φ(m,k)(xm − µk)

2

Mk

, (2.56)

where Mk is a temporary normalization term.

After the maximization stage is complete, the GMM parameters are checked

against a convergence criterion. Typically, convergence is measured by considering

the log-likelihood of the current parameter set (θ = {π, µ, σ2}) or the likelihood that

the GMM with the current parameter set produced the measured data as

ℓ(θ|x) = ln

(
M∏

m=1

K∑

k=1

πkfk(xm)

)

,

=
M∑

m=1

ln

(
K∑

k=1

πkfk(xm)

)

. (2.57)

If θ or ℓ(θ|x) has met their respective convergence criterion, the process stops.

Otherwise, the algorithm loops back to the expectation stage. Typical convergence cri-
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teria include: θ or ℓ(θ) does not deviate beyond some ǫ (i.e., stationarity is achieved),

or some predefined number of training steps has occurred.

Some advantages to note about the EM-GMM algorithm are that it is simple, it

is stable, there are no learning parameters (as used with gradient descent), Hessians

are not required, likelihood increases at each iteration, and the maximum likelihood

value cannot be “overshot”. One disadvantage is that only a local maximum for

the likelihood can be obtained, thus the algorithm is not guaranteed to return an

optimal solution. Additionally, the local maximum that is found is sensitive to the

initialization of the parameters. Finally, the algorithm is computationally expensive.

In this thesis, the EM-GMM algorithm is used to approximate the distribution

of skin and non-skin samples in feature space (presented in Section 3.2.3).

2.9 Summary

This chapter presents the background information necessary for this thesis. The

chapter begins with a description of the notation used throughout this thesis. Next,

the basic dismount tracking architecture is presented, followed by descriptions of

passive sensors commonly used for tracking purposes.

State-of-the-art dismount detection techniques are presented next, including an

in-depth discussion of HOG features, linSVM, and bootstrapping. This discussion is

followed by search space considerations for sliding window detectors, which leads to

the defining purpose of this thesis: utilizing skin detection to reduce the search space

of a sliding window detector.

Next, the properties of human skin and how those properties are exploited for

robust skin detection are presented. Finally, background on classic detection theory is

presented since it is necessary for a skin detection technique described in Chapter III.
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Figure 3.1: Block diagram of the proposed skin-detection-cued dismount detection
system.

III. Methodology

As mentioned in Chapter I, the primary focus of this thesis is dismount detection.

The proposed dismount detection system presented in this chapter employs

recent efforts in human skin detection to cue a robust, spatial-feature-based dismount

detector. The goal is to reduce the search space required for the spatial-feature-based

dismount detector while suppressing potential false alarm sources.

The block diagram depicted in Fig. 3.1 provides an overview of the proposed

process. The proposed dismount-detection system occurs in four stages. The first

stage is an optional pre-processing stage for input imagery. The second stage is de-

tection of skin pixels in an image. The third stage generates search windows within the

image based on the locations of detected skin. The fourth stage runs a histograms of

oriented gradients (HOG)-based dismount detector on each search window generated

in the third stage.

3.1 S1: Optional Pre-processing Stage

In the optional pre-processing stage depicted in Fig. 3.2, any sensor-specific

image pre-processing occurs. For example, it may be necessary to process the imagery

to account for aberrations induced by the sensor. These aberrations can include, but

are not limited to, non-uniformity, bad pixels, and sensor noise.

In particular, it may be necessary to incorporate power thresholding to account

for noise. In image pixels where signal power is very near or below the sensor noise
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Figure 3.2: Stage 1: Optional pre-processing.

floor (deep shadows for example), the noise component of the pixel value may domi-

nate subsequent calculations (this is a known issue with skin detection). Therefore, it

may be necessary to set all pixel values that are below a noise threshold to a constant

very small, non-zero value below the noise threshold value. It is important that the

values be non-zero because of the considerations outlined in Section 2.7.3, Eqn. (2.29).

The input to the optional pre-processing stage is the raw multispectral or hy-

perspectral image cube (X). The output of the optional pre-processing stage is a

similar image cube with altered pixel values (X ′).

3.2 S2: Skin Detection Stage

The second stage of the proposed dismount detection system is the skin detection

stage. The skin detection stage consists of three steps, as depicted in Fig. 3.3. The

first step is to convert the input imagery to reflectance space using the empirical

line method (ELM) as outlined in Section 2.7.1. The second step is to generate

normalized difference skin index (NDSI) and either normalized difference vegetation

index (NDVI) or normalized difference green-red index (NDGRI) features outlined

in Section 2.7.3. The third stage is a skin-detection algorithm based on NDSI and

either NDVI or NDGRI inputs.

The input to the skin detection stage is the raw or pre-processed multispectral

or hyperspectral image cube (X or X ′). The output of the skin detection stage is a

logical matrix of detected and rejected skin pixels (Y ).
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Figure 3.3: Stage 2: Skin detection.

3.2.1 S2-1: Empirical Line Method Step. In the ELM step, reflectance

values are estimated for each image pixel at each wavelength of interest (540nm,

660nm, 1080nm, and 1580nm) using either two in-scene calibration targets of known

reflectance with Eqn. (2.27) or one in-scene calibration target of known reflectance

with Eqn. (2.28).

The input to the ELM step is the raw or pre-processed image cube (X or X ′).

The output of the ELM step is a cube of estimated reflectance values (ρ̂) with indices

corresponding to each pixel in the original image cube.

3.2.2 S2-2: Skin Feature Generation Step. During the skin feature gen-

eration step, NDSI, NDVI, and NDGRI features are generated for each pixel via

Eqn. (2.31), Eqn. (2.32), and Eqn. (2.33) respectively using estimated reflectance

values from the ELM step.
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The input into the skin feature generation step is the estimated-reflectance cube

(ρ̂). The outputs of the skin feature generation step are matrices of NDSI, NDVI, and

NDGRI values (γ, α, and β respectively) with indices corresponding to the original

image pixel locations.

3.2.3 S2-3: Skin Detection Algorithm Step. There are numerous general

detection techniques that can be applied to the skin detection problem. This thesis

effort focuses on two general methods: the simple rules-based detector (Section 2.7.8

[51]) and a detector based on the likelihood-ratio test (LRT) (developed in this

thesis).

The LRT from Section 2.8.1 is used to develop a LRT-based skin detection

method. As discussed in Section 2.8.1, a two-dimensional likelihood ratio consisting

of either a (NDVI,NDSI) or (NDGRI,NDSI) pair is generated as

Si : i =







1 if ΛΘ (θ) ≡ f̂1(θ)

f̂0(θ)
> ηΛ

0 if ΛΘ (θ) ≡ f̂1(θ)

f̂0(θ)
< ηΛ

, (3.1)

where f̂0(θ) = P [Θ = θ|not skin], f̂1(θ) = P [Θ = θ|skin], Θ = {{A,Γ}, {B,Γ}}, θ =

{{α, γ}, {β, γ}} are sets of parameters based on the (NDVI,NDSI) or (NDGRI,NDSI)-

based detectors, f̂1(θ) is the estimated probability density function of human skin,

f̂0(θ) is the estimated probability density function (pdf) of suspected false alarm

sources.

The functional forms of f̂1(θ) and f̂0(θ) are estimated by Gaussian mixture

models using Expectation Maximization [47] as described in Section 2.8.2 such that

f̂j (θ) =

Kj∑

k=1

πj,kN
(

µ
j,k
,Σ

j,k

)

, j ∈ {0, 1}, (3.2)

where Kj is the number of Gaussians utilized to estimate f̂j (θ), πj,k is the weighted

value of each Gaussian such that πj,k ∈ R[0, 1] and
∑Kj

k=1 πj,k = 1. The parameters of
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each Gaussian are represented by mean vector µ
j,k

and covariance matrix Σ
j,k
. The

likelihood ratio represents a two-dimensional decision surface.

The skin model described in Section 2.7.3 is used to generate samples to compute

f̂1 (θ). This makes the implicit assumption that all normal skin types are equally

probable and that the specular reflection component is distributed uniformly with

experimentally-determined upper and lower bounds (c ∼ U [0.04, 0.14]). The USGS

spectral library [15] augmented with measurements with a hand-held spectrometer

are used to generate f̂0 (θ).

Once the functional forms of f̂1 (θ) and f̂0 (θ) are estimated, the likelihood ratio

is computed and compared to the threshold ηΛ.

Inputs to the skin detection algorithm step are the NDSI, NDVI, and NDGRI

values (γ, α, and β respectively) from the feature generation step. The output of the

skin detection algorithm step is a logical matrix of detected and rejected skin pixels

(Y ).

3.3 S3: Search Window Generation Stage

The third stage of the proposed dismount detection system is the search window

generation stage. The search window generation stage consists of five steps, as de-

picted in Fig. 3.4. The first step is to label islands of contiguous skin-detection pixels.

The second step is an optional processing step to reduce the number of skin-detection

pixel islands that are of insignificant size. The third step is to calculate location prop-

erties of skin-detection pixel islands including centroids and extrema. The fourth step

is to generate search windows based on the location properties of skin-detection pixel

islands. The fifth step is to generate image patches from search windows determined

by the previous step.

The inputs to the search window generation stage are a logical matrix of detected

skin pixels (Y ) and the pre-processed image cube (X ′). The output of the search

window generation stage is a structure (P) of image patches corresponding to the
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Figure 3.4: Stage 3: Search window generation.

generated search windows and their corresponding bounding box coordinates in the

original image.

3.3.1 S3-1: Labeling Islands of Contiguous Skin-detection Pixels Step. Dur-

ing the first step of the search window generation stage, islands of skin-detection pix-

els are given unique labels for further processing. Matlab
r provides the functions

bwlabel, bwlabeln, and bwconncomp which automatically detect and label connected

pixels as islands. The connection neighborhood (four nearest neighbors, eight nearest

neighbors, etc.) is adjustable for each of the functions mentioned above. For the

purpose of this thesis, the default neighborhood connectivity setting is eight-nearest-

neighbors.

The input to the labeling islands of contiguous skin-detection pixels step is a

logical matrix of detected skin pixels (Y ). The output of the labeling islands of
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(a) (b) (c)

Figure 3.5: Morphological close operation example. (a) Original image. (b) Orig-
inal skin detection pixel islands. (c) Results of morphological close
operation with δ = 8.

contiguous skin-detection pixels step is a matrix of labeled skin-detection pixel islands

(I).

3.3.2 S3-2: Skin-detection Pixel-island Processing Step. During the optional

skin-detection pixel-island processing step, morphological operations (such as a close

operation with a disk structural element of radius δ, demonstrated in Fig. 3.5) and/or

discarding islands with total pixels less than a threshold (ηA) can be useful for reducing

pixel island edge artifacts and small “orphan” pixel islands. This may reduce the

number of pixel islands, while raising the relative significance of each remaining pixel

island.

The input to the skin-detection pixel-island processing step is a matrix of la-

beled skin-detection pixel islands (I). The output of the skin-detection pixel-island

processing step is a similar matrix of labeled skin-detection pixel islands with possibly

fewer, more-significant islands (I ′).

3.3.3 S3-3: Skin-detection Pixel Island Location Properties Calculation Step.

During the skin-detection pixel island location properties calculation step, the fol-

lowing properties are determined: the centroid and/or bounding extrema of each

skin-detection pixel island. Matlab
r provides the function regionprops that effi-

ciently provides this required information. Conveniently, the regionprops function

accepts a labeled matrix of pixel islands (e.g. I ′).

3-7



The input to the skin-detection pixel island location properties calculation step

is a matrix of labeled pixel islands (I or I ′). The output of the skin-detection pixel

island location properties calculation step is a structure of skin-detection pixel island

location properties (L).

3.3.4 S3-4: Search Window Generation Step. During the search window

generation step, skin-detection pixel island location properties are used to generate

image patches of potential dismounts for later classification. Several approaches can

be taken for generating search windows.

One search window generation approach is to generate windows surrounding

each skin-detection pixel island (I
i
, i ∈ Z[1, ξ] where ξ is the number of skin detec-

tion islands in the image) with every possible bounding box that contains I
i
. In this

approach, the sliding-window parameter set (θw as discussed in Section 2.6.1) is used

to define search window shifting increments similar to the manner discussed in Sec-

tion 2.6.1 and depicted in Fig. 3.6. This method makes no assumptions about the

likely locations of skin within a search window. The advantage of this approach is

that if there is any exposed skin on the dismount, a search window containing that

dismount will be generated. The disadvantage of this approach is that a large set of

search windows is generated, possibly negating much of the search-space reduction

that could be provided by the system.

Another search window generation approach is to assume that the skin detec-

tions are limited to certain regions of a search window that positively contains a

dismount. For example, if the assumption is made that all exposed skin is part of a

face or head, only a relatively small set of search windows need be generated. The

advantage of this approach is that significant search-space reduction can be realized.

The disadvantage of this approach is that it limits the usefulness of exposed skin

regions that are not in the assumed body locations. If there is no exposed skin in

the assumed body locations, the dismount may not be detected, even though the

dismount may have exposed skin in other locations. For example, if a dismount with
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Figure 3.6: Search window positioning relative to a skin detection pixel island with
no assumptions on skin position.

long hair is facing away from the camera but is wearing shorts, the skin detections in

the leg areas may not produce a set of search windows that would include the entire

dismount, while the long hair may obscure any skin in the head region, preventing

detection of the dismount.

For this thesis effort, it is assumed that all skin detections are in the face/head

region. Statistically, at least three out of four upright anatomical-plane aspects (front

coronal, back coronal, left sagittal, and right sagittal, as depicted in Fig. 3.7) of

the head will have exposed skin, logically making it the most likely body part to

have exposed skin visible to an imaging system. While there is a chance of missing

a detection, it is hypothesized that the impact to detection percentage is minimal

compared to the magnitude of the search space reduction.

In the worst-case scenario (i.e. all skin-detection pixel islands are perfectly

positioned such that the full range of scale values can be used), the number of search

windows produced for an M ×N image using the face/head assumption is

ς ≤ ξnmax (1 + 2ζ)2 , (3.3)
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Figure 3.7: Anatomical-plane aspects of the human head in upright position. The
top-left image is front coronal aspect. The top-right image is the back
coronal aspect. The bottom-left image is the right-sagittal aspect. The
bottom-right image is the left-sagittal aspect.

where ξ is the number of skin-detection pixel islands in the image, nmax is the maxi-

mum number of scales possible as determined by Eqn. (2.19) in Section 2.6.1, and ζ

is a “slop” factor for generating additional search windows slightly offset from every

search window cued to a skin-detection pixel island. Each slop window is offset by ζ

increments of ∆xsnwx in the x-direction and ∆ysnwy in the y-direction. Adding slop

windows may help account for how variations in skin-detection pixel island location

statistics affect search window locations. For example, differences in hairline may af-

fect centroid calculations for detected skin on the face, possibly affecting the position

of the generated search window in relation to the rest of the body. Figure 3.8 depicts

how ζ is utilized to generate additional slop windows to help mitigate such variations.
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Figure 3.8: Additional “slop” search windows (red) are generated at intervals of
∆xsnwx and ∆ysnwy in the x and y directions respectively. The black
window is the original search window. The dotted windows represent
the limits, where all windows in between at intervals of ∆ysnwy and
∆xsnwx are also generated. The value of ζ determines how many inter-
vals away from the original search window the slop-space should extend
(orange for ζ = 1, green for ζ = 2, and blue for ζ = 3.

There are multiple methods for determining where to position search windows

relative to the location of I
i
. One method is to position the windows relative to the

centroid of I
i
centered in the x-direction with a scaled offset value (sn∆u) from the

top of the window to the centroid of I
i
(Fig. 3.9 left). Another method is to position

the windows centered in the x-direction based on the centroid of I
i
with a scaled offset

value (sn∆v) from the top of the window to the top of I
i
(Fig. 3.9 right).

The advantage of the ∆u-offset window positioning method is that it may be

less prone to fluctuations in hairline/hat line. The advantage of the ∆v-offset window

positioning method is that it may be less prone to fluctuations in clothing in the neck

and chest areas. Both methods are explored in this thesis.

Search windows are generated at each available scale in the sliding-window pa-

rameter set (θw). Additional windows offset in the x and y-directions may be gen-
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Figure 3.9: Search window positioning relative to a skin detection pixel island. The
left side of the figure illustrates the ∆u method of positioning, while
the right side of the figure illustrates the ∆v method of positioning.

erated to account for variations in centroid locations due to shape, size, or aspect

variations of skin-detection pixel islands.

The input to the search window generation step is a structure of skin-detection

pixel island location properties (L). The output of the search window generation step

is a matrix of search-window bounding box coordinates (W ).

3.3.5 S3-5: Image Patch Generation Step. During the image patch genera-

tion step, image patches are extracted from the original or pre-processed image cube

(X or X ′) for classification in the next stage. To generate each patch, image data

within the spatial boundaries of each detector window bounding box is rescaled to

the global detector window resolution (defined by wx and wy from the parameter set

θw).

Rescaling the image data within each image patch is accomplished using bilinear

interpolation (presented in Appendix A). The Matlab
r function imresize conve-

niently rescales an image from any arbitrary resolution to any arbitrary resolution
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Figure 3.10: Stage 4: HOG-based dismount detection.

with numerous options for calculating resultant pixel values (the default is bilinear

interpolation).

The inputs to the image patch generation step are a matrix of search-window

bounding box coordinates (W ) and the image to which they apply (X or X ′). The

output of the image patch generation stage is a structure of image patches and their

corresponding bounding box coordinates in the original image (P) ready for classifi-

cation.

3.4 S4: HOG-based Dismount Detection Stage

The fourth stage of the proposed dismount detection system is the HOG-based

dismount detection stage. The HOG-based dismount detection stage consists of three

steps, as depicted in Fig. 3.10. The first step is to generate HOG features for each

search window’s corresponding image patch, as described in Section 2.5.1. The second

step is to classify each resultant HOG feature. The third step is to suppress multiple

detections of the same in-scene object so that only one detection per object exists.
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The input to the HOG-based dismount detection stage is a structure of image

patches and their corresponding bounding box coordinates in the original image (P)

ready for classification. The output of the HOG-based dismount detection stage is a

matrix of dismount detection bounding box coordinates (Z).

3.4.1 S4-1: HOG Feature Generation. During the HOG feature generation

step, HOG features for each search window’s corresponding image patch are generated

as described in Section 2.5.1.

The input to the HOG feature generation step is a structure of image patches

and their corresponding bounding box coordinates in the original image (P) ready for

classification. The output of the HOG feature generation step is a structure of HOG

features and their corresponding bounding box coordinates in the original image (H).

3.4.2 S4-2: HOG Feature Classification. During the HOG feature classifica-

tion step, HOG features corresponding to search windows are classified using linSVM

as described in Section 2.5.2. The methodology for training the linSVM classifier em-

ployed in this thesis effort is provided in Section 4.5.2. The output confidence number

from the linSVM is used to classify the HOG feature–and implicitly the search window

it was generated from–as either a dismount or not a dismount by

Si : i =







1 if τ ≤ ητ

0 otherwise
, (3.4)

where S1 is the decision space where the classifier hypothesizes that the HOG feature

is a dismount, S0 is the decision space where the classifier hypothesizes that the HOG

feature is not a dismount, τ is the prediction value provided by the linSVM, and ητ

is a detection threshold on the linSVM prediction value.

The input to the HOG feature classification step is a structure of HOG features

and their corresponding bounding box coordinates in the original image (H). The

output of the HOG feature classification step is a structure of dismount detection
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hypotheses and their corresponding bounding box coordinates in the original image

(Ψ).

3.4.3 S4-3: Suppression of Multiple Detections of the Same Object. Since it

is possible for several dismount detections to occur based on the same in-scene object

(a side-effect of classifying at multiple scales and with minor spatial offsets), the

suppression of multiple detections of the same object step utilizes confidence-based

non-maximum suppression to reduce spurious detections, as described in Section 2.6.3.

The input into the suppression of multiple detections of the same object step

is a structure of dismount detection hypotheses and their corresponding bounding

box coordinates in the original image (Ψ). The output of the suppression of multiple

detections of the same object step is a matrix of unique dismount detection bounding

box coordinates in the original image (Z).

3.5 Summary

This chapter provides methodology for using skin detections to cue a dismount

detector based on HOG. The chapter begins by discussing data conditioning consid-

erations, followed by a LRT-based skin detection algorithm. Next, considerations for

how to position search windows relative to skin detections are presented. Finally, the

HOG-based dismount detection process is presented.
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IV. Experimental Results and Analyses

This chapter provides experimental procedures, experimental results, and anal-

yses of results obtained by this thesis effort. Specifically, this chapter begins

with descriptions of the data sets that are used. Next, skin feature trade-off studies

and skin detector trade-off studies are performed, followed by a discussion of skin

detection results.

Sliding-window detector scoring methodology and image truthing considerations

are presented next, followed by validation of the results presented in [25]. The same

search methodology used on the validation data is applied to a hyperspectral data set

as a baseline for comparison between the full sliding-window histograms of oriented

gradients (HOG)-based dismount detection scheme used in [25] and the skin-detection-

cued HOG-based dismount detection scheme proposed by this thesis.

Next, trade-off studies of different skin detection search window cueing param-

eters are provided. Finally, the performance and search space requirements of the

best skin-detection-cued dismount detector and the baseline dismount detector are

compared.

4.1 Data Sets

Five different sources of data are used for different components of this research

effort: two sets of hyperspectral reflectance measurements (data from the United

States Geological Survey (USGS) [15] and a field spectrometer [1]), one set of modeled

hyperspectral skin reflectance (from the model developed in [51], [55]), one set of

hyperspectral imagery (from the HST3 imager [33]), and one set of panchromatic

visible (VIS) imagery (from [25]).

4.1.1 United States Geological Survey Data Set. The USGS Spectroscopy

Lab has compiled an extensive library of spectral reflectance measurements [15]. Hun-

dreds of materials have been measured and labeled, including 200 types of vegetation;

24 measurements of melting snow, seawater, and different concentrations of mud; and
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1141 measurements of minerals, man-made materials, and chemicals. Measurements

are provided from 0.2-15µm at varying sampling intervals (at or below 1nm). This

research effort employs the USGS data set to train and test different skin detection

algorithms in Section 4.2.

4.1.2 Field Spectrometer Data Set. The USGS data set is augmented with

measurements taken with an ASD FieldSpecr 3 portable spectrometer [1]. Included

are 419 measurements of vegetation (heavily focused on the yew family since they

are known false alarm sources [51], [52]); 110 measurements of melting snow, ice,

murky water, and different concentrations of mud; and 250 measurements of other

materials including soil, human hair of different colors, different types of stone, and

feathers. Measurements are provided from 350-2500nm at 1-nm sampling intervals.

This research effort employs these measured data in concert with the USGS data set

to train and test different skin detection algorithms in Section 4.2.

4.1.3 Skin Reflectance Model Data Set. The human skin reflectance model

developed in [51], [55] is used to generate 3,936 unique samples of skin reflectance

values (ρ̃⊥λ ) with a uniform distribution of all possible human skin parameters. In this

way, the entire range of human skin types is represented in the data set, rather than

being biased by the skin properties of available measurement subjects (which may

not fully represent the possible range of skin properties, depending on demographics

of the subject group). Modeled reflectance values are provided from 350-2500nm at

1-nm sampling intervals. This research effort employs these modeled data in concert

with the USGS data set and field spectrometer data set to train and test different

skin detection algorithms in Section 4.2.

4.1.4 Hyperspectral Data Set. Hyperspectral imagery used for this research

are collected with the SpecTIR HST3 Hyperspectral Imager [33]. The HST3 collects

data in the range of 400-2500nm. The spectral bands are nominally 11nm wide in

the VIS and 8nm wide in the near-infrared (NIR). The full width half maximum
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(FWHM) of each of the bands is 14nm (VIS) and 8nm (NIR). Radiance spectra from

the image cube are transformed into estimated reflectance using the ELM as described

in Section 2.7.1.

Forty-two images are collected, including 39 images with one individual at vary-

ing distances from the camera at different times of day, and 4 images containing a

large group of individuals at varying distances with varying skin colors from very light

to very dark. All 42 images are used for dismount detection testing.

To test the skin detection algorithms, the 4 images containing many individuals

are collected with skin color confusers and skin with various levels of pigmentation

with a representative sample image in Fig. 4.1(top). Each of these 4 images contains

typical color-based skin detection confusers to include a flesh-colored doll, a piece

of cardboard, and a red brick. Other color confusers include a leather boot and

several pieces of wood. These objects are selected because their colors are similar

to some shades of skin [51], [53]. A branch from a conifer (from the yew family) is

included in the scene as it tends to have a high NDSI value. The scene is a suburban

environment with houses, streets, sidewalks, trees, typical yards with grass, bushes,

bark, and other assorted materials. Portions of the reference panels in scene are used

to estimate reflectance using the ELM and are visible in the bottom right portion of

the figure. Fig. 4.1(bottom) shows the corresponding skin truth mask.

4.1.5 Daimler Benchmark Data Set. The Daimler Benchmark data set is

a collection of panchromatic VIS imagery provided by [25]. The data set includes

15,660 dismount image patches for positive training, 6,744 full images containing

no dismounts for negative training, and 21,790 test images including truth window

locations for in-scene dismounts. All of the Daimler Benchmark training data are used

to train the HOG-based dismount detector. A random subset of 264 images from the

Daimler Benchmark test image suite are used to validate the HOG-based dismount

detector performance due to computational time constraints.
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Figure 4.1: Skin truth HyperSpecTIR version 3 (HST3) image. Color image of
suburban test scene (top) and the skin truth pixels (bottom). The scene
contains people with different skin colors as well as several potential
false alarm sources.

4.2 Skin Detection: Considerations and Results

Table 4.1 provides a list of NDSI, NDGRI, and NDVI values for different ma-

terials including skin with different pigmentation levels, skin confusers, and typical

background material in a rural scene. As one would anticipate, materials with sig-

nificant water content, such as vegetation and skin, have the highest NDSI values.

Also note that the NDSI values for the darkest skin can be higher than values for
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vegetation (i.e., separability between skin and vegetation in NDSI space is possible,

but is not guaranteed). Vegetation has the highest NDVI values and objects that are

green have the highest NDGRI values.

Table 4.1: NDVI, NDSI, and NDGRI values for different materials.

Material NDVI NDSI NDGRI

Fair Skin 0.04 0.77 -0.25

Dark Skin 0.51 0.66 -0.34

Paper Bag 0.27 0.15 -0.27

Cardboard 0.3 0.14 -0.33

Red Brick -0.01 -0.01 -0.47

Salt Water -0.10 0.02 0.20

Muddy Water 0.04 0.85 -0.10

Grass 0.88 0.53 0.37

Leaf 0.9 0.27 0.41

Doll 0.04 0.24 -0.28

Soil 0.37 -0.1 -0.18

Mud 0.21 -0.18 -0.20

Snow -0.19 0.93 0.01

Conifer 0.83 0.40 0.47

Data used to generate the scatter plots in Fig. 4.2 are obtained from the USGS

spectral library [15] and reflectometer measurements of known false alarm sources and

skin from living subjects and cadavers as well as model generated data spanning the

possible skin reflectance of normal human skin. False alarm sources include vegetation

such as conifers and heavy water containing substances that are highly forward scatter

such as snow, salt water, crushed ice, and liquid water with suspended materials (such

as silt and sand). A two-dimensional scatter plot of the (NDVI,NDSI) pair is shown

in Fig. 4.2 (left) and the (NDGRI,NDSI) pair in Fig. 4.2 (right).

From Table 4.1 and Fig. 4.2, it is clear that either the NDVI or NDGRI can

be used to suppress false alarms when used in conjunction with the NDSI to identify

skin. If one is searching for fair to moderately-pigmented persons in a scene with a
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Figure 4.2: (a) Joint distribution of NDVI and NDSI values using spectral mea-
surements, skin model generated data, and living and cadaver skin
data. (b) Joint distribution of NDGRI and NDSI values using spec-
tral measurements, skin model generated data, and living and cadaver
skin data. Spectral skin confuser measurements are shown as red circles,
skin model generated data are shown as black dots, and skin measure-
ments (living and cadaver) are shown as green ‘+’.

significant amount of vegetation, the NDVI algorithm may be an effective method for

filtering out water-rich vegetation. However, darkly pigmented people have a high

NDVI value and may be incorrectly discarded by a NDVI threshold set too low. If

one is searching for people in an urban environment, the NDGRI can filter out pixels

that are more green than red in a scene. However, the NDGRI would have greater

difficulty identifying vegetation under low signal-to-noise ratio conditions (observe

from Table 4.1 that NDVI>NDGRI for vegetation). The use of NDVI and NDGRI

in suppression of false alarms when combined with the NDSI for skin detection is

explored in the following sections. Specifically, this section presents a simple rules-

based detection scheme and a LRT-based detection scheme and demonstrates the

differences in false alarm suppression using both the NDVI and NDGRI.

4.3 Skin Detection Results for Modeled Data

To get an idea of performance in a controlled environment with the most diverse

data set available, the rules-based and likelihood-ratio test (LRT)-based skin detec-
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Table 4.2: Noise variance as a function of wavelength. Variances are computed
from reflectance measurements obtained from the SpecTIR HST3 Hy-
perspectral Imager [33]. Values are reported as 10−4.

Wavelength 540nm 660nm 750nm 850nm

Variance 6.69 6.09 7.16 6.68

Wavelength 860nm 1080nm 1580nm

Variance 6.71 8.29 9.01

tors are tested on the combination of modeled human skin data and the USGS spectral

library [15] data augmented with field samples collected using a hand-held spectrom-

eter. Modeled skin data are modified as described earlier using the signal-plus-noise

model described in Eqn. (2.34) with noise parameters described in Table 4.2. USGS

spectral library and field sample data are modified with the estimated sensor noise

only.

In order to test skin detection algorithms on modeled data, it is useful to simu-

late both sensor noise and specular reflections as described in Eqn. 2.36. Although [41]

provides measurements of the specular component of human skin, these values are

measured for broad-band energy and not as a function of wavelength. Furthermore,

there is no translation for this work to map similar measurements in radiance to

reflectance. As such, observation of the hyperspectral data from the HST3 sensor

is used to estimate reasonable specular components where it is assumed that the

specular component is not wavelength-dependent. The sensor noise component is

spectrometer-dependent and is assumed to be the noise term in estimated reflectance

(that is, after atmospheric correction). In the case of the HST3 system, there are two

spectrometers (one VIS and one NIR).

Adding uniform distributed specular reflection of c ∼ U [0.04, 0.14] (at 0.05 inter-

vals) and sensor noise described in Table 4.2 to the (NDVI,NDSI) and (NDGRI,NDSI)

pairs from Fig. 4.2 are shown in Fig. 4.3. Although specular reflection is assumed

constant as a function of wavelength, it does exhibit spatial variation. The spatial

distribution of specular reflections highly depends on the illumination angle (includ-
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Figure 4.3: (a) Joint distribution of NDVI and NDSI values using spectral measure-
ments, skin model generated data, and living and cadaver skin data. (b)
Joint distribution of NDGRI and NDSI values using spectral measure-
ments, skin model generated data, and living and cadaver skin data.
HST3 imaged skin data are shown as red circles, skin model gener-
ated data are shown as black dots, and skin measurements (living and
cadaver) are shown as green ‘+’.

ing secondary illumination sources such as reflections from buildings), the observation

angle, and the subject’s surface geometry. The number of additional noisy samples

added to the detector model is based on the desired distribution of specular reflec-

tions. In this way, it is possible to add an appropriate amount of noise to simulate any

sensor’s response while also accounting for varying percentages of specular reflections

in the scene. Since the true distribution of the data is unknown, the distribution with

the most uncertainty (i.e. the uniform distribution) is used to model the data for

samples shown in Fig. 4.3 (as dictated by information theory). Visually comparing

the distribution of NDGRI and NDSI skin values generated signal-plus-noise model

in Eqn. 2.36 (depicted as black dots in Fig. 4.3) to (NDGRI,NDSI) pairs observed

from the HST3 system (depicted as red circles in Fig. 4.3) visually shows a reasonable

match.

The results presented in Fig. 4.4 and summarized in Table 4.3 and Table 4.4 are

an aggregate of 20 noise realizations where each noise realization is further subject to

K-Fold cross validation (for K=5) for each noise realization. The average performing
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ROC curve is the mean of the 100 simulations (5 cross validation runs × 20 noise

realizations).

Results of the detectors are presented as ROC curves in Fig. 4.4. The rules-

based detectors for the (NDVI,NDSI) and (NDGRI,NDSI) pairs are presented in

Fig. 4.4(a) and (b) respectively where the boundary values for the NDVI are α ∈

R[−1, {0.5, 0.6, 0.7, 1}], the NDGRI are β ∈ R[−1, {−0.02,−0.05, 0.1, 1}], and the

NDSI detector lower boundary varies as γ ∈ R[{R[−1, 0.93]}, 0.93] (where 0.93 is an

experimentally determined upper bound). (Note that for the α ∈ R[−1, 1] and the

β ∈ R[−1, 1] cases, the detector becomes an NDSI-based detector only and provides

a baseline for comparison between NDVI and NDGRI-based detector performances).

Results of the LRT-based detector for the (NDVI,NDSI) and (NDGRI,NDSI) pairs

are presented in Fig. 4.4(c) and (d) respectively.

In both the rules-based and LRT-based detectors, the (NDGRI,NDSI) feature

pair performs better then the (NDVI,NDSI) feature pair. The rules-based detector

performs on average better than the LRT detector. However, when considering best

case performance, the LRT outperforms the rules-based detector.

One should note that neither the rules-based nor the LRT detector ROC curves

are strictly concave down. In the rules-based detector case, this is likely due to the fact

that it is not optimal for minimizing the Bayes risk. In the LRT detector case, this is

likely due to our assumption that a GMM adequately represents the true distribution

of target and non-target samples when in fact this assumption does not hold true.

The error bars depicted in Fig. 4.4 represent the average ± standard deviation

in the PD and PFA directions respectively. This is done at arbitrary points along each

average ROC curve to illustrate the performance envelope. In general, variance in the

PFA direction is worse than in the PD direction. This is intuitive since there is more

variation in the non-skin class (i.e., the entire universe that is not skin) than the skin

class.

4-9



The PD and PFA variance is greater for the LRT detectors than for the rules-

based detectors because for each fold in the K-fold cross validation, a new LRT de-

tector is computed. This is important to note because while the purpose of cross-

validation is to attempt to remove bias when assessing performance, it comes at the

cost of increased variance of the results [31]. Conversely, the rules-based detector does

not change between folds, only the test set it is applied to.

Specific operating points (OPs) drawn from the ROC curves in Fig. 4.4 for a

constant PFA = 0.0005 and constant PD = 0.95 are shown in Table 4.3 and Table 4.4.

Complimentary OPs are provided for the minimum, average, and maximum values

attained for the best average performing ROC curve. For the rules-based skin detector,

the best average performing curve over one of four detector regions is considered. Each

rules-based skin detector region is specified by upper and lower bounds on the NDVI

or NDGRI thresholds (α ∈ [a1, a2] and β ∈ [b1, b2] ). The lower NDSI threshold, c1,

is varied over the range R[−1, 0.93] (where c2 = 0.93 is an experimentally determined

upper bound). For the LRT-based skin detector, the average of all 100 results is used

where models are recomputed for each fold in the cross validation for each of the noise

realizations.

The summaries in Table 4.3 and Table 4.4 indicate that for a PD = 0.95, NDVI

results in a higher false alarm rate than does NDGRI. This is the case for both

the rules-based and LRT-based skin detectors. At that specified operating point,

the rules-based and LRT-based skin detectors perform in a similar manner with the

exception of the maximum error where the rules-based has a lower PFA.

For a PFA = 0.0005, the rules-based detector consistently produces a higher PD

for NDGRI versus NDVI. In the case of the LRT detector, the best performing case

for the NDGRI outperforms the NDVI, and by default this is true for the minimum

performance since NDVI does not have a defined PD at this operating point and the

NDGRI does.
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Table 4.3: Summary of the rules-based skin detector results for the modeled skin
samples and reflectometer measurements of false alarm sources.

Operating Complementary Detector Detector

Feature Point (OP) OP: Min/Avg/Max Param1 Param2

NDVI PD = 0.95 PFA = 0.014/0.015/0.016 a1 = −1.000 c1 = 0.400

a2 = 0.500 c2 = 0.930

NDVI PFA = 0.0005 PD = 0.003/0.011/0.018 a1 = −1.000 c1 = 0.900

a2 = 0.600 c2 = 0.930

NDGRI PD = 0.95 PFA = 0.007/0.008/0.009 b1 = −1.000 c1 = 0.380

b2 = −0.05 c2 = 0.930

NDGRI PFA = 0.0005 PD = 0.022/0.046/0.119 b1 = −1.000 c1 = 0.860

b2 = −0.050 c2 = 0.930

Table 4.4: Summary of the LRT-based skin detector results for the modeled skin
samples and reflectometer measurements of false alarm sources.

Operating Complementary Detector

Feature Point (OP) OP: Min/Avg/Max Param

NDVI PD = 0.95 PFA = 0.009/0.014/0.021 ηΛ = 3.000/38.000

NDVI PFA = 0.0005 PD = NA/0.003/0.211 ηΛ = NA/187.000

NDGRI PD = 0.95 PFA = 0.008/0.009/0.014 ηΛ = 4.000/8.000

NDGRI PFA = 0.0005 PD = 0.000/1.36× 10−5/0.297 ηΛ = 1.05× 105/40.000
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Figure 4.4: The receiver operating characteristic (ROC) curves in (a)-(d) are for
the modeled skin data and spectral library false alarm source data.
The vertical dashed line represents a constant PFA = 0.0005 while
the horizontal dashed line represents a constant PD = 0.95. (a) ROC
curve for (NDVI,NDSI) pair using the rules based detector varying
the lower bound of γ ∈ R[c1 ∈ R[−1, 0.92], 0.93] fixing the upper
bound on NDVI α ∈ R[−1, {0.05, 0.06, 0.07, 1.0}] (solid, dashed, dash-
dotted, and dotted curves) yielding four detector regions. (b) ROC
curve for (NDGRI,NDSI) pair using the rules based detector varying
the lower bound of γ ∈ R[c1 ∈ R[−1, 0.92], 0.93] fixing the upper
bound on NDVI β ∈ R[−1, {−0.02,−0.05,−0.1, 1.0}] (solid, dashed,
dash-dotted, and dotted curves) yielding four detector regions (c) ROC
curve for (NDVI,NDSI) pair using the LRT based detector varying
ηΛ ∈ R[0, 5 × 106]. (d) ROC curve for (NDGRI,NDSI) pair using the
LRT detector varying ηΛ ∈ R[0, 5× 106].

4.3.1 Skin Detection Results for Hyperspectral Test Imagery. Due to the

noise inherent in the system/environment and the fact that the bands selected for
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Table 4.5: HyperSpecTIR version 3 (HST3) bands used to implement skin detection
algorithms.

Target λ Band 1 Band 2 Band 3

540nm 531.37nm 542.74nm 554.08nm

660nm 648.68nm 660.27nm 672.00nm

750nm 743.14nm 754.70nm 766.49nm

850nm 837.50nm 849.05nm 860.89nm

860nm 849.05nm 860.89nm 872.77nm

1080nm 1069.91nm 1078.06nm 1086.29nm

1580nm 1570.83nm 1579.03nm 1587.27nm

skin detection algorithms do not line up with the HST3 band centers, the NDVI,

NDSI, and NDGRI algorithms are modified to accommodate the available spectra.

The algorithms are implemented with the mean of the estimated reflectance of the

three HST3 bands closest to the algorithms’ band centers, which helps suppress sensor

noise. For example, the estimated reflectance at 540nm used for the NDGRI algorithm

is implemented using the mean of the estimated reflectance from the HST3 bands

centered at 531.37nm, 542.74nm, and 554.06nm. The band centers for the HST3

estimated reflectance that correspond to the band centers of the algorithm described

earlier are provided in Table 4.5.

The ROC curves for the rules-based and LRT-based skin detectors on the hy-

perspectral image data are presented in Fig. 4.5. Note that in the case of the image

data, ROC curves are concave down. For the rules-based detector, the same four

detector regions used in Section 4.2 are used to generate the detection results on the

hyperspectral image data. Similarly, the 100 detectors used to generate the detector

results for the LRT detector described in Section 4.2 are used on the hyperspectral

image data.

As noted previously, using the NDVI in both detectors produces the worst re-

sults. The disparity between the NDVI and NDGRI methods on the rules-based

detector is significant. This is not so in the case of the LRT-based skin detector,
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although there is clear performance gain using the NDGRI over the NDVI. Overall,

the rules-based detector outperforms the LRT detector for the image data. This may

be attributed to one of several reasons: fewer false alarm types exist in the image

data versus the spectral library data; a bias in the skin reflectance model that works

favorably on the image data; the rules-based method is tuned to the hyperspectral

image data.

Consistent with the previous analysis, specific OPs drawn from the ROC curves

in Fig. 4.5 for a constant PFA = 0.0005 and constant PD = 0.95 are shown in Table 4.6

and Table 4.7. Complimentary OPs are provided for the minimum, average, and

maximum values attained for the best average performing ROC curve. For the rules-

based detector, the best average performing curve over one of four detector regions

is considered where each detector region is specified by upper and lower bounds on

the NDVI or NDGRI thresholds (α ∈ [a1, a2] and β ∈ [b1, b2] ). The lower NDSI

threshold, c1, is varied over the range R[−1, 0.93] (where c2 = 0.93 is an experimentally

determined upper bound). For the LRT detector, the average of all 100 results is used

where models are recomputed for each fold in the cross validation for each of the noise

realizations.

The summaries in Table 4.6 and Table 4.7 indicate that for a PD = 0.95, NDVI

results in a higher false alarm rate than does NDGRI. This is the case for both the

rules-based and LRT detectors. At that specified operating point, the rules-based

and LRT detectors perform in a similar manner with the exception of the maximum

error where the rules-based skin detector has a lower PFA. For a PFA = 0.0005, the

rules-based skin detector consistently produces a higher PD for NDGRI versus NDVI.

4.3.1.1 Skin Detection Discussion. Two important results are evident

in the skin detector outcomes. First, NDGRI appears to better suppress false alarms

compared to the NDVI. This is intuitive since the false alarm sources in general are

more green than they are red. Second, the rules-based skin detection method compares
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Table 4.6: Summary of the rules-based skin detector results for the HST3 image
data.
Point of Complementary Detector Detector

Feature Interest (POI) POI: Min/Avg/Max Param1 Param2

NDVI PD = 0.95 PFA = 0.016/0.016/0.016 a1 = −1.000 c1 = −1.000

a2 = 1.000 c2 = 0.930

NDVI PFA = 0.0005 PD = 0.760/0.760/0.760 a1 = −1.000 c1 = 0.420

a2 = 0.700 c2 = 0.930

NDGRI PD = 0.95 PFA = 0.004/0.004/0.004 b1 = −1.000 c1 = 0.260

b2 = −0.020 c2 = 0.930

NDGRI PFA = 0.0005 PD = 0.820/0.820/0.820 b1 = −1.000 c1 = 0.410

b2 = −0.020 c2 = 0.930

Table 4.7: Summary of the LRT-based skin detector results for the HST3 image
data.

Point of Complementary Detector

Feature Interest (POI) POI: Min/Avg/Max Threshold

NDVI PD = 0.95 PFA = 1.000/1.000/1.000 ηΛ = 0.000/0.000

NDVI PFA = 0.0005 PD = 0.662/0.669/0.689 ηΛ = 3.000/2.000

NDGRI PD = 0.95 PFA = 0.004/0.004/0.005 ηΛ = 0.034/0.022

NDGRI PFA = 0.0005 PD = 0.772/0.776/0.788 ηΛ = 3.000/4.000

4-15



0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

(a) (NDVI,NDSI) Rules-based method

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

(b) (NDGRI,NDSI) Rules-based method

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

(c) (NDVI,NDSI) LRT-based method

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

(d) (NDGRI,NDSI) LRT-based method

Figure 4.5: The ROC curves in (a)-(d) are for a set of hyperspectral images similar
to that of Fig. 4.1(top). The vertical dashed line represents a constant
PFA = 0.0005 while the horizontal dashed line represents a constant
PD = 0.95. (a) ROC curve for (NDVI,NDSI) pair using the rules based
detector varying the lower bound of γ ∈ R[c1 ∈ R[−1, 0.92], 0.93] fix-
ing the upper bound on NDVI α ∈ R[−1, {0.05, 0.06, 0.07, 1.0}] (solid,
dashed, dash-dotted, and dotted curves) yielding four detector regions.
(b) ROC curve for (NDGRI,NDSI) pair using the rules based detec-
tor varying the lower bound of γ ∈ R[c1 ∈ R[−1, 0.92], 0.93] fixing
the upper bound on NDVI β ∈ R[−1, {−0.02,−0.05,−0.1, 1.0}] (solid,
dashed, dash-dotted, and dotted curves) yielding four detector regions
(c) ROC curve for (NDVI,NDSI) pair using the LRT based detector
varying ηΛ ∈ R[0, 5 × 106]. (d) ROC curve for (NDGRI,NDSI) pair
using the LRT detector varying ηΛ ∈ R[0, 5× 106].

favorably with the LRT-based skin detection method, which comes at somewhat of a

surprise since there is no optimality criterion in the rules-based detector.
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The skin detection algorithm used for the remainder of this thesis effort is the

rules-based detector with parameters β ∈ [−1,−0.02], γ ∈ 0.26, 0.93]. The rules-based

detector is chosen for computational efficiency and parameter adjustability.

4.4 Search Window Generation Results

One of the primary goals of this research effort is to significantly reduce the

search space for a HOG-based dismount detector. Table 4.8 lists the maximum num-

ber of search windows that can be generated for several image sizes using either the

full search space or skin-detection-cued search space. Equations (2.23) and (3.3) with

the sliding window parameter set

θw = {wx = 48, wy = 96, hmin = 72, wmin = 0,∆s = 1.1,∆x = 0.1,∆y = 0.025},

are used to calculate values for Table 4.8.

Table 4.8: Maximum number of search windows possible by image size where ξ is
the number of skin detection pixel islands and ζ is the slop factor, as
described in Section 3.3.4.

Image Size Full Search
Skin-detection-cued Search
ζ = 0 ζ = 1 ζ = 2 ζ = 3

640× 480 1.85× 105 20ξ 180ξ 500ξ 980ξ
640× 512 2.01× 105 21ξ 189ξ 525ξ 1029ξ
1080× 250 1.22× 105 14ξ 126ξ 350ξ 686ξ

As Table 4.8 indicates, the number of search windows generated using the skin-

detection-cueing approach can be orders of magnitude smaller than the full number

of search windows generated from the sliding window parameter set θw, depending on

the number of skin-detection pixel islands present in the image. Figure 4.6 illustrates

the maximum number of possible search windows for a 1080 × 250-pixel image as a

function of the number of skin detection pixel islands (ξ).

Frequently, the skin detection algorithm produces several very small pixel is-

lands that are near other, larger pixels islands. This may be the result of sensor

4-17



10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14
x 10

4

Number of Skin Detection Pixel Islands (ξ)

N
um

be
r 

of
 S

ea
rc

h 
W

in
do

w
s 

( ς
 )

 

 

ζ = 0
ζ = 1
ζ = 2
ζ = 3
Full Search

Figure 4.6: Maximum number of search windows possible for a 1080 × 250-pixel
image.

noise, surface geometry near an edge, mixed pixels, false alarm sources, etc. Elimi-

nating skin-detection pixel islands that are less than a certain size may significantly

reduce the number of pixel islands ξ and therefore the number of search windows per

Table 4.8.

One method of reducing search windows is to attempt to merge smaller skin-

detection pixel islands with other skin-detection pixel islands nearby. To test this, a

morphological close operation using a disk structural element with radius (δ) varying

from 0 to 20 is used to merge nearby skin-detection pixel islands together. Figure 4.7

depicts how varying the radius of the disk structural element used in the close oper-

ation affects the number of search windows produced for the entire HST3 data set of

42 images. For simplicity, all images are tested using the skin-detection pixel island
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Figure 4.7: Search windows generated as a function of morphological close disk
radius (δ).

top-cuing method with ∆v = 15 and slop factor ζ = 0. The effect that morpholog-

ical closing of skin-detection pixel islands has on HOG-based dismount detection is

explored in Section 4.5.5.

Another method of reducing search windows is applying a threshold on skin-

detection pixel island size (ηA) is varied from 0 to 20 pixels. Figure 4.8 illustrates how

varying ηA affects the number of search windows produced for the entire HST3 data

set of 42 images. For simplicity, all images are tested using the skin-detection pixel

island top-cuing method with ∆v = 15 and slop factor ζ = 0. The effect that skin-

detection pixel island thresholding has on HOG-based dismount detection is explored

in Section 4.5.5.
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Figure 4.8: Search windows generated as a function of threshold (ηA).

4.5 HOG-based Dismount Detector Results

4.5.1 Scoring Methodology. To gauge detector performance, alarms are

first pared down to the most-confident alarms using confidence-based non-maximum

suppression as presented in Section 2.6.3. This reduced alarm set is then compared to

the truth set. For each true dismount window (ti, i ∈ Z[1, T ], where T is the number

of true dismounts) in the test image set, if the coverage statistic between any alarm

window (ai, i ∈ Z[1, A] where A is the number of alarms) and tj in the same image

is greater than a threshold (Ω(tj, ai) > 0.25 as suggested by [25]), then the object

in tj is considered to have been detected and the number of detected objects (D) is

incremented by one. No matter how many alarms beyond one match tj, only one
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detection is registered. The probability of detection is therefore

PD =
D

T
. (4.1)

Note that only dismounts in the scene that are upright, not partially occluded, and

whose truth-window height is greater than or equal to hmin ∈ θw(hmin = 72) are

considered in scoring. Detecting or missing people in vehicles, on bicycles, partially

occluded, crouching/sitting, or shorter than hmin are not counted for or against the

PD calculation.

For every alarm window (ai) in an image, if there is no true dismount window

(tj) that matches it (Ω(ai, tj) > 0.25 as suggested in [25]) then the number of false

alarms (F ) is incremented by one. Therefore, the number of false positives per frame

(FPPF) is

FPPF =
F

U
, (4.2)

where U is the number of images tested. Note that only dismounts in the scene that

are upright, not partially occluded, and whose truth-window height is greater than or

equal to hmin ∈ θw (hmin = 72) are considered in FPPF scoring. Any false alarms or

rejections of people in vehicles, on bicycles, partially occluded, crouching/sitting, or

shorter than hmin are not counted for or against the FPPF calculation. The scoring

methodology presented in this section is consistent with the methodology used in [25].

4.5.2 Training the HOG-based Dismount Detector and Validation on Daimler

Benchmark Imagery. In order to validate the HOG algorithm implemented in

this research effort, it is important to replicate results from another recent research

effort [25]. Using the Daimler Benchmark dataset provided by [25], the HOG detector

is trained using 15,660 known positive dismount image patches and 15,660 randomly-

selected known negative image patches. For this thesis, a Matlab
r adaption of

SVM-Light [34] is utilized for training a linSVM and for making predictions after the
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Figure 4.9: HOG-based dismount detector performance on Daimler Benchmark
data using the same scoring techniques described in [25].

linSVM is trained. Due to time constraints, only one bootstrapping step is performed

to enhance the detector with an additional 15,660 hard false positives1.

Due to processing time constraints, only 264 test images out of 21,790 (ap-

proximately 1%) are tested to validate the performance of the HOG-based dismount

detector implemented in this thesis effort. The images chosen for testing are a random

subset of all test images that contain dismounts. The performance of the detector on

this subset of test imagery is depicted in Fig. 4.9.

1The authors of [25] note that it takes several months to train the classifier with multiple boot-
strapping steps. Their observation has been validated by this thesis effort, which required several
weeks to train the classifier with one bootstrapping step.
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Table 4.9: HOG-based dismount detector validation results.
Reference FPPF PD from [25] PD from Fig. 4.9

101 ≈ 0.98 ≈ 0.95

100 ≈ 0.87 ≈ 0.86

10−1 ≈ 0.65 ≈ 0.68

For validation, identical operating points are compared between the ROC curves

in Fig. 6 (d), page 2189 of [25] and Fig. 4.9 of this thesis. The comparative results are

listed in Table 4.9. The results depicted in Fig. 4.9 closely match the results reported

in [25].

4.5.3 Truthing Methodology Considerations. A few observations are worth

noting between the borders around positive training samples and those around truth

windows in the Daimler Benchmark data set. Figure 4.10 (top) illustrates five random

examples of training images from the Daimler Benchmark data set. Figure 4.10 (bot-

tom) illustrates five random examples of how the test data from the Daimler Bench-

mark are truthed. Note that in the training samples there is significantly more space

between the bounding boxes (the edges of each image patch) and the dismount than

is present in the test imagery. The borders around training samples are intentionally

added to prevent edge effects from adversely affecting HOG calculations [19], [25].

Adding borders to the training samples can be viewed as an artificial bias for the

detector in favor of larger scales than the truth-window scales, significantly affecting

how the detector performance is scored.

It is useful to consider an “apples-to-apples” comparison in terms of alarm

window versus truth window scales when scoring the dismount detector. In order to

make such a comparison, either the alarm window must be rescaled to match the truth

windows or vice versa. For the purposes of discussion, windows that are at bordered-

scale are defined as windows that include borders around a dismount (i.e., similar to

those in Fig. 4.10 (top)). Windows that are at borderless-scale are defined as windows

with no borders around a dismount (i.e., similar to those in Fig. 4.10 (bottom)).
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Figure 4.10: Examples of Daimler Benchmark bounding-box differences. Training
images (top row) have additional space between the dismount and the
bounding box compared to test images (bottom row).

From Section 4.5.1, it is clear that the coverage statistic plays a pivotal role in

how the detector is scored. Noting the bounding-box differences in Fig. 4.10, consider

how they affect the coverage statistic. Assuming each positive training image patch

has a 12-pixel border of background pixels around the dismount on average (as stated

in [25]) and each truth window puts no such border around the same dismount, the

best possible coverage statistic value between a perfectly-scaled and positioned search

window (in terms of how the detector is trained) and the corresponding truth window

is significantly less than the ideal Ω = 1.

From visual inspection of 10 randomly-selected positive training samples (not

pictured here), the 12-pixel border assumption appears to be inaccurate for the Daim-

ler Benchmark data set. From visual inspection, there are approximately 10 pixels of

background space above and below a given dismount within the training patch, while

the horizontal space between the dismount and the vertical edges of the bounding

boxes vary significantly as a function of dismount aspect in the image (as illustrated

in Fig. 4.10 (top)).
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Figure 4.11: Example of best possible coverage given bounding-box differences.
Red boxes indicate what the detector considers to be a “perfect detec-
tion,” where ai is at bordered-scale and a′i is at borderless-scale. Yellow
boxes indicate truth windows, where tj is at borderless-scale and t′j is
at bordered-scale. Blue boxes indicate how minor shifts in the alarm
window affect the coverage statistic, where ak is at bordered-scale and
a′k is at borderless-scale. Dashed lines are used to aid visibility of boxes
whose boundaries overlap.

Figure 4.11 (left) illustrates the coverage between the size of the window used

in training (ai at bordered-scale in red) and the truth window (tj at borderless-scale

in yellow), which is consistent with the truthing methods of the Daimler Benchmark

test imagery and scoring methods used in [25].

Note that a “perfect detection” when the alarm window is at bordered-scale

and the truth window is at borderless-scale corresponds with coverage Ω(ai, tj) ≈

0.775 < 1. The truthing scheme illustrated in Fig. 4.11 (left) biases scoring in favor of

alarm windows that are closer to borderless-scale. Furthermore, this truthing scheme

is insensitive to minor shifts of the alarm window (illustrated by ak in blue) in the x

and y-directions, as shifting the alarm window several pixels in any direction results

in the same coverage value (Ω(ak, tj) ≈ 0.775).
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Figure 4.11 (middle) illustrates a new version of the truth window t′j that is

at bordered-scale. Note that a perfect detection using this truthing scheme results

in coverage Ω(ai, t
′
j) = 1 (therefore no bias on scale when scoring) and coverage is

sensitive to all shifts of the alarm window (Ω(ak, t
′
j) ≈ 0.563).

To convert the truth windows to bordered-scale (tj → t′j), truth windows

should be expanded to the scale of the training sample windows (as depicted in

Fig. 4.10 (top)). Each truth window is expanded by ∆ty (the equivalent of 10 pixels

at the scale of the window since it is observed that a border of approximately 10 pixels

exists above and below training samples at sn = 1) above and below the window. An

equal number of pixels (∆tx) is added to the left and right borders of the truth win-

dow until a ratio of 2:1 (since wy = 96 and wx = 48) is reached. The scaled additive

factor ∆ty is calculated by

∆ty =
h× 10

wy − 20
,

=
h

7.6
, (4.3)

where h is the height of tj. The scaled additive factor ∆tx is calculated by

∆tx =
h+ 2∆ty − 2w

4
, (4.4)

where w is the width of tj.

Figure 4.11 (right) illustrates a new version of the alarm windows a′i and a′k

that are at borderless-scale. To convert the alarm windows to borderless-scale ∆ty

pixels are removed from the top and bottom of the alarm windows and ∆tx pixels are

removed from the left and right of the alarm windows. Equation (4.3) and Eqn. (4.4)

are still used to calculate ∆ty and ∆tx respectively, except h and w now refer to the

respective height and width of the alarm window ai or ak. Note from Fig. 4.11 (right)

that when alarm windows are converted to borderless-scale, truth windows are no

longer forced to have the same height-to-width ratio as alarm windows. Variance in
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truth window widths therefore can lead to variations in the perceived performance

when scoring occurs since it may be impossible to achieve perfect overlap of the alarm

and truth windows. Furthermore, there are similar issues with multiple alarm window

positions yielding the highest possible coverage value as with the original truth method

(Fig. 4.11 (left)), though the highest possible coverage value is significantly higher.

Figure 4.12 demonstrates how ROC curves for the Daimler Benchmark imagery

are affected by all three truthing methodologies discussed. The blue curve depicts

the ROC curve calculated using the techniques described in [25] (i.e., truth windows

at borderless-scale and alarm windows at bordered-scale). The red curve depicts

the resulting ROC curve when truth windows are converted to bordered-scale (i.e.,

both alarm and truth windows are at bordered-scale). The green curve depicts the

resulting ROC curve when alarm windows are converted to borderless-scale (i.e., both

alarm and truth windows are at borderless-scale). Note that the underlying detector

does not change, but how the detector is scored (and therefore the ROC curve) does

change. The differences appear to be minor in Fig. 4.12 (differences of no more than

0.05 PD at the same FPPF), but it is important to note that there is literally no

change in how the detector operates or the data on which it operates. Differences

on this scale may be acceptable when considering different random subsets of a data

pool, but not when testing on the same identical data set with the same underlying

detector. The purpose of this discussion is to highlight the importance of specificity

when reporting how a sliding-window detector performs.

For all further scoring, the truth windows are converted to bordered-scale using

the technique described above. This is done for several reasons:

1. The full range of the coverage statistic is utilized.

2. There is only one alarm scale and position that results in a perfect score (Ω = 1).

3. Scoring is an “apples-to-apples” comparison (i.e., the truth windows and alarm

windows are all at bordered-scale).

4. Alarm windows and truth windows have the same aspect ratio.
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Figure 4.12: Comparison of how truthing techniques affect the HOG-based dis-
mount detector performance on Daimler Benchmark data. The blue
curve results from using the original truth windows. The red curve
results from expanding the truth windows to bordered-scale (as de-
scribed in Eqn. (4.3) and Eqn. (4.4)). The green curve results
from shrinking the alarm windows to borderless-scale (as described
in Eqn. (4.3) and Eqn. (4.4)).

4.5.4 Full Image Search Results for HST3 Imagery. In [25], only dismounts

that are greater than or equal to 72 pixels in height are scored when the ROC curves

are generated. This is intuitive for fair scoring since the search window scale is limited

to be no less than 72 pixels in height (hmin ∈ θw where hmin = 72).

As a baseline for comparison with the methodology proposed by this thesis

effort, the HOG-based dismount detector trained on the Daimler Benchmark training

set is applied to the HST3 data set using the exact same methods and parameters

used in the validation comparison in Section 4.5.2. The results of this baseline full

search of the HST3 imagery are depicted in Fig. 4.13. The red curve denotes results
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Figure 4.13: Full search results for HST3 data. The red curve represents scoring
of upright dismounts that are not occluded and whose height h ≥ 72
pixels. The blue curve represents scoring of upright dismounts that
are not occluded regardless of height.

from scoring only targets that are greater than or equal to 72 pixels in height. The

blue curve denotes results from scoring all dismounts that are in an upright position

and not partially-occluded.

Note that the stair-stepping in the PD dimension occurs for both curves in

Fig. 4.13. This stair-stepping is a result of the small number of dismounts that meet

the 72-pixel height requirement in the dataset (66 dismounts with no restriction on

height, 22 dismounts with h ≥ hmin, where hmin = 72 pixels).

4.5.5 Skin-detection-cued Search Results for HST3 imagery. There are sev-

eral key parameters that can be adjusted to affect skin-detection-cued dismount detec-

tion performance. These include ∆u (pixel island centroid-based) or ∆v (pixel island

top-based) for search window positioning, δ (morphological close disk radius) or ηA
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(threshold on the number of pixels in a skin detection pixel island) for reducing the

number of skin-detection pixel islands, and ζ for adding shifted windows. For testing

purposes, the standard sliding window parameter set (θw) described in Section 2.6.1

remains constant.

Assuming that all parameters above are independent of one another (i.e., no

synergistic effects between parameters), finding the best parameter set involves set-

ting all parameters to a constant value except for the parameter under test. As the

best parameters are found from each test, they are subsequently used to help de-

termine the best values for other parameters. For the purposes of this thesis, “best

parameters values” are experimentally determined by sweeping values of the parame-

ter and visually comparing resultant ROC curves. This subjective approach is a form

of greedy search and therefore has no guarantee of optimality.

The skin detection algorithm used for this parameter study is the rules-based

detector with parameters b1 = −1, b2 = −0.02, c1 = 0.26, c2 = 0.93. The rules-based

detector is chosen for computational efficiency and parameter adjustability.

Power thresholding on estimated reflectance values is used prior to NDSI and

NDGRI calculations because there are many deeply-shadowed areas in each HST3

image tested in this thesis effort. In those shadowed areas, all estimated reflectance

values are below 0.02, which is near the HST3 noise floor. Values near the noise floor

have wildly varying NDSI or NDGRI values across the entire range of R[−1, 1] since

sensor noise is dominating the original pixel values. Therefore, pixels that are less

than 0.02 estimated reflectance at 1080nm are set to a very small constant (to prevent

divide-by-zero errors) at all wavelengths. This forces all NDSI values for those pixels

to be 0, guaranteeing they will be ignored by the skin detector.

For all parameter trade-off studies in Sections 4.5.5.1-4.5.5.3, only limited ROC

curves are generated to determine relative performance of different parameter values.

The full range of performance is not explored due to the computation time necessary
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to process each ROC curve when a high number of false alarms are present and the

large number or ROC curves necessary to make valid assessments.

4.5.5.1 ∆u Versus ∆v Trade-off Results. Likely the most critical

parameter is the offset value used to position primary search windows relative to

skin-detection pixel islands. Two methods of determining the y-location for the search

window are presented in Section 3.3.4. First, the best subjective values for ∆u and ∆v

are determined. To experimentally determine the best subjective value for ∆u–the

scaled distance from the top of a search window to the centroid of a skin-detection pixel

island–control values ζ = 0 (i.e., no additional shifted search windows are generated),

δ = 0, and ηA = 0 (i.e., no modifications are made to skin-detection pixel islands) are

used.

To roughly determine the range of values needed for ∆u, ∆u is first varied

from 5 to 40 in increments of 5 and linSVM predictions are made. To generate

comparative ROC curves, the threshold on prediction values (ητ ) is varied from -2 to

10 in increments of 0.2. The ROC curves for each ∆u-value are visually compared

and the parameter value associated with the dominant curve is chosen (∆u = 15).

Next, the range for ∆u is varied from 12 to 20 by increments of 2 and ROC curves are

generated for comparison using the method mentioned above. The best value from

this test is ∆u = 16.

Finally, the range for ∆u is varied from 14 to 18 by increments of 1 and ROC

curves are generated for comparison using the method mentioned above. The resulting

ROC curves are depicted in Fig. 4.14. Note that there is no clear winner evident in

Fig. 4.14. The red curve almost always dominates the blue, teal, and purple curves

(except for a few cross-over points), but the green and red curves battle for dominance

all along the range of performance. Since the red curve dominates at low FPPF, and

performance between the red and green curves crosses over frequently at high FPPF,

it is determined that the red curve is the “winner” in this subjective comparison,

therefore ∆u = 16 (red) is selected for use in future testing.
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∆ u = 14
∆ u = 15
∆ u = 16
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Figure 4.14: Performance comparison for multiple centroid-cueing parameter (∆u)
values.

To experimentally determine a reasonable value for ∆v, the same control vari-

able values are used as those for the ∆u assessment. Similar coarse-to-fine sweeps

of ∆v values are used to generate ROC curves for comparison. The resulting ROC

curves from the finest sweep of ∆v values are depicted in Fig. 4.15. As with the

∆u comparison above, no ROC curve associated with a ∆v value clearly dominates

in Fig. 4.15. The blue curve, while marginally dominant at higher FPPF, is grossly

dominated at lower FPPF. However, the teal curve dominates (or is almost tied with

the dominant curve) more often than it is dominated by other curves, therefore it is

determined that ∆v = 15 (teal) is a reasonable value to use.

To determine whether the ∆u or ∆v method performs better, ROC curves for

∆u = 16 and ∆v = 15 are compared in Fig. 4.16. From this comparison, it is
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Figure 4.15: Performance comparison for multiple top-cueing parameter (∆v) val-
ues.

determined that the ∆v = 15 (red) method has a marginal performance advantage

over the ∆u = 16 (blue) method on the limited data set used in this research effort.

Therefore, ∆v = 15 is used for all further testing. However, the results are not

definitively conclusive, especially since variations in clothing and hairline are minimal

in the data set tested, so this choice may not be globally suitable beyond the scope

of this data set.

4.5.5.2 Morphological Close Disk Radius Versus Area Threshold Trade-

off Results. Next, reasonable values for the morphological close disk radius (δ)

and the threshold on skin detection pixel island area (ηA) for reducing the number of

skin detection pixel islands are experimentally determined. To determine a reasonable
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∆ u = 16
∆ v = 15

Figure 4.16: Performance comparison of ∆u and ∆v cueing methods.

value for δ, control values ∆v = 15 and ζ = 0 (no additional shifted search windows

are generated) are used.

To experimentally determine a reasonable value for δ, coarse-to-fine sweeps of δ

values (again similar to the ∆u comparison methodology above) are used to generate

ROC curves for comparison. The resulting ROC curves from the finest sweep of δ

values are depicted in Fig. 4.17. Again, there is no clearly-dominant ROC curve, but

the red and teal curves approach dominance. Since the teal curve dominates the red

curve in two regions while the red curve only dominates the teal curve in one region,

it is determined that δ = 8 (teal) is a reasonable value to use.

To experimentally determine a reasonable value for ηA, the same control variable

values are used as those for the δ assessment. Similar coarse-to-fine sweeps of ηA values

are used to generate ROC curves for comparison. The resulting ROC curves from the
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Figure 4.17: Performance comparison for multiple morphological close disk radius
(δ) values.

finest sweep of ηA values are depicted in Fig. 4.18. Since the results for all values of

ηA from 38 to 42 are identical, ηA = 38 is chosen as a reasonable value to use because

the least amount of information is destroyed.

To determine whether the δ or ηA method performs better, ROC curves for

δ = 8 and ηA = 38 are compared in Fig. 4.19. From this comparison, it is determined

that the ηA = 38 method has a significant performance advantage over the δ = 8

method on the limited data set used in this research effort. Therefore, ηA = 38 is

used for all further testing.

Note that the ηA = 38 method may make it impossible to detect distant dis-

mounts or dismounts with very small areas of exposed skin. The choice of whether
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Figure 4.18: Performance comparison for multiple skin detection pixel island area
threshold (ηA) values. Note that all curves are identical. Therefore,
only the curve for ηA = 42 appears to be present because all other
curves lie directly beneath it.

to use ηA thresholding or δ-radius disk close operations to suppress spurious skin

detection pixel islands should be considered based on the operational environment.

4.5.5.3 ζ Trade-off Results. Next, a reasonable number of shifted

search windows in each direction (ζ) to add to the base skin-detection-cued search

windows is experimentally determined. To determine a reasonable value for ζ, control

values ∆v = 15, δ = 0 (i.e., no morphological close operations), and ηA = 38 are used

while ζ ∈ Z[0, 3].

Figure 4.20 depicts ROC curves for each ζ-value. The performances of all ROC

curves in Fig. 4.20 where ζ > 0 are very similar. The ROC curve for ζ = 0 has better
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Figure 4.19: Performance comparison of δ and ηA methods.

false alarm performance in general. Based on the results depicted in Fig. 4.20, ζ = 0

(blue) is experimentally determined to be a reasonable value to use since the blue

curve marginally dominates performance across most of the performance range.

4.5.6 Full Search Versus Skin-detection-cued Search Performance Results for

HST3 Data. Figure 4.21 depicts the comparative ROC curves for the full search

HOG-based dismount detector on the HST3 data versus the skin-detection-cued HOG-

based dismount detector using the experimentally determined parameter values (∆v =

15, ηA = 38, and ζ = 0). At 95% probability of detection, the skin-detection-cued

HOG-based dismount detector outperforms the full-search method in terms of false

alarm suppression by an order of magnitude in false positives per frame. Additionally,

the ROC curve for the skin-detection-cued HOG-based dismount detector dominates
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Figure 4.20: Performance comparison for multiple slop parameter (ζ) values.

the ROC curve for the full-search HOG-based dismount detector across the entire

range of operating points. This indicates that the skin-detection-cued HOG-based

dismount detector significantly outperforms the full-search HOG-based dismount de-

tector for the data set tested.

The total number of search windows generated for each image in the HST3 data

set are depicted in Fig. 4.22. Using skin-detection-cueing to generate search windows

with ζ = 0 leads to a reduction of the search space by nearly three orders of magnitude

for the HST3 data, depending on the number of dismounts in the scene.

4.6 Summary

This chapter begins by describing the data sets used in this research, followed

by exploration of multiple aspects of skin detection including features for false-alarm
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Figure 4.21: Full search (blue) versus skin-detection-cued search (red) performance
for HST3 data.

suppression and skin detection algorithms. It is concluded that the NDGRI feature

is better for suppressing false alarms during the skin detection process with the data

tested. It is also concluded that the rules-based and LRT-based skin detection algo-

rithms perform almost identically on the data tested, thus making it logical to use

the rules-based skin detector for further testing due to computational efficiency.

Next, search window generation is explored noting how image resolution, the

number of skin detection pixel islands, and the slop factor affect the number of search

windows generated. It is concluded that methods for intelligently reducing the number

of skin detection pixel islands can significantly reduce the number of search windows

generated.

The performance of the baseline dismount detector is validated next by re-

producing the methods outlined in [25] on the same data set they used. It is con-
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Figure 4.22: Total number of search windows generated for full search (blue) versus
skin-detection-cued search (red) using HST3 data.

cluded that the methods used in this thesis produce the same results as those used

in [25]. A discussion on truthing techniques concludes that minor differences in scoring

methodology produce measurable difference is performance curves. Therefore, scor-

ing methodology should be explicitly described when presenting results for a sliding-

window detector.

Next, search window positioning parameter sets are experimentally determined.

It is concluded that reasonable parameters to use for generating skin-detection-cued

search windows for the data set used in this research are ∆v = 15, δ = 0, ηA = 38,

and ζ = 0.

Finally, a comparison is made between the performance of the baseline full-

search dismount detector and the skin-detection-cued dismount detector. It is con-
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cluded that the skin-detection-cued dismount detector requires nearly 3 orders of mag-

nitude less search windows for the data set tested. Furthermore, the skin-detection-

cued dismount detector produces nearly 2 orders of magnitude less false positives per

frame than the full-search method at 0.95 probability of detection.
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V. Conclusions and Future Work

This chapter summarizes the work accomplished in this thesis effort and pro-

vides recommendations for future work. First, a summary of the methods and

conclusions is provided, followed by recommendations for future work. Finally, contri-

butions made by this thesis effort to the sensor modeling, skin detection, and dismount

detection research communities are provided.

5.1 Summary of Methods and Conclusions

The primary focus of this thesis is to employ skin detections to cue a dismount

detector based on histograms of oriented gradients (HOG). For skin detection, a

trade-off study is conducted coupling the normalized difference skin index (NDSI)

feature for skin detection with the normalized difference vegetation index (NDVI)

feature or normalized difference green-red index (NDGRI) feature for false alarm

suppression. It is concluded that the NDGRI feature provides better false alarm

suppression overall than the NDVI feature.

Next, a trade-off study is conducted comparing the performance of a rules-based

skin detector and a likelihood-ratio test (LRT)-based skin detector (developed in this

thesis effort) on both modeled and imaged hyperspectral data. In order to develop

the LRT-based skin detector, this thesis effort develops methodology for simulating

the response of an arbitrary sensor by applying sensor noise parameters to laboratory-

measured spectral data. While the LRT-based skin detector performs slightly better

than the rules-based skin detector in general, the performance differences between

the two detectors is not significant. Therefore, since the rules-based skin detector is

significantly less complex than the LRT-based skin detector, it is concluded that the

rules-based skin detector should be used in situations where detector flexibility and

low computational complexity are desired.

Next, a HOG-based dismount detector is trained using training samples from the

Daimler Benchmark data set provided by [25] and validated on a subset of test images

from the Daimler Benchmark data set. The validation performance is almost identical
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(differences of ±0.03PD at the same false positives per frame (FPPF) operating

points) to the results presented in [25].

A study of truthing methodology for dismounts in imagery is conducted to

determine the effect of detector scale bias on scoring methodology. It is concluded

that adjusting truth windows to match the scale bias introduced when training the

detector gives the most accurate assessment of the detector “as trained.” Using truth

windows where dismounts completely fill the windows (i.e., with no space between the

edges of a truth window and the dismount it contains) gives an unbiased assessment

of the true performance of the dismount detector.

Next, the same full-search methodology used to validate the results in [25] is

used on the HyperSpecTIR version 3 (HST3) data set. A trade-off study is then

conducted to experimentally determine parameters to use when generating search

windows from skin detection pixel islands. For the HST3 data set used in this thesis,

it is concluded that the best experimentally-determined values to use are top-cueing

with ∆v = 15, thresholding of skin detection pixel islands by area with ηA = 38,

and no additional “slop” windows (ζ = 0). Finally, comparisons are made between

the full-search and skin-detection-cued search methods in terms of performance and

search space size. This skin-detection-cueing technique reduces the required search

space by nearly three orders of magnitude depending on the number of dismounts in

the scene, while improving the false alarm rate from approximately 50 to 0.65 false

positives per frame at 95% probability of dismount detection, nearly two orders of

magnitude improvement in false alarm suppression.

5.2 Recommendations for future work

There are many avenues for expansion upon this thesis effort in future work.

First, significant effort should be placed on collecting a larger, more diverse database

of hyperspectral or multispectral imagery. At the time of this research effort, no

publicly-available high-resolution hyperspectral image database exists as a bench-

mark for future testing. Once significantly more data are available, the HOG-based
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dismount detector should be retrained on a subset of those data so that the detec-

tor is trained on sensor-specific data. Operationally, the dismount detector should

be trained on example imagery from the sensor that is employed, thus making the

detector as robust as possible.

With the diversity of spectral information available in a larger hyperspectral or

multispectral dataset, the HOG-based detector should be extended beyond panchro-

matic imagery. In [19], it is suggested that if RGB imagery are available, using the

image channel with the greatest gradient magnitude for each pixel when assigning his-

togram votes can significantly improve performance. This technique is logical because

it takes advantage of the channel containing the most contrast for edge-orientation

binning. Applying this technique to hyperspectral or multispectral imagery may pro-

duce similar improvements in dismount detection performance.

Integrating skin detection cueing of a HOG-based dismount detector into a

tracking framework is another natural extension of this work. Utilizing a real-time,

multispectral sensor, such as the one designed in [60], will provide additional util-

ity over line-scanning hyperspectral systems like the HST3 due to reduced operator

complexity and increased frame rate.

While skin detection has been demonstrated as useful for cueing a HOG-based

dismount detection system by this thesis effort, it is clearly not without limitations.

The most significant limitation is that the methods developed in this thesis require

exposed skin in the head/face region of a dismount. Augmenting the skin detection

cueing approach with clothing detection cueing can have multiple benefits. First,

if no exposed skin is available on a particular dismount, clothing may provide a

reasonable cueing source. Furthermore, having additional information about clothing

may improve the tracker’s ability to disambiguate targets of interest.

One of the most challenging and time-consuming tasks required in the course

of this thesis effort is determining which image pixels are truly skin. This task is

critical for accurately gauging skin detection performance. Due to mixed-pixel effects
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and human subjectivity, this task is very difficult to accomplish in any reasonable

amount of time. Systems such as Digital Imaging and Remote Sensing Image Gener-

ation (DIRSIG) [2] use first-principles approaches to accurately simulate any sensor’s

response to a simulated scene. Since the entire scene is software-generated, perfect

pixel truth is known. Incorporating the first-principles human skin model [51], [55]

into a system such as DIRSIG would be beneficial not just for pixel-truthing, but also

for generating a large and arbitrarily diverse data set that fits any sensor modality

that can be simulated by the software. Additionally, the first-principles model of hu-

man skin should be extended to a full Bidirectional Reflectance Distribution Function

(BRDF) model to incorporate angular dependencies as discussed in Section 2.7.1.

The first steps toward first-principles integration into software simulation of

humans have already been taken. In [54], a 3-dimensional model of a human face

is successfully populated with skin-model-generated reflectance spectra to generate

part of a holistic human avatar. Adding clothing, hair, and fingernail spectra to this

avatar model would complete the software simulation.

To rapidly add diversity of poses to the human avatar simulation, human motion

capture systems [3] can be used to animate the avatar, a technique commonly used

for assisting computer animation in theatrical movies. This would allow videos of

complex motion to be generated for any arbitrary sensor modality within the spectral

range of the models used to populate avatar pixel spectra. Applications of such simu-

lation capabilities are far-reaching throughout the human measurement and signature

intelligence (H-MASINT) community.

5.3 Contributions

This thesis effort makes several significant contributions to the skin detection,

sensor modeling, and dismount detection research domains. In the skin detection do-

main, this thesis effort improves detection performance by determining the best set of

several spectral features (NDSI, NDVI, NDGRI) required to improve separability of

the skin class from materials outside the skin class. Additionally, multiple skin detec-
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tion algorithms are compared including the LRT, which incorporates an optimality

criterion.

In the sensor modeling domain, this thesis provides methodology for applying

sensor noise and specular reflection components to modeled or laboratory-measured

data. This allows the performance of any arbitrary imager sensitive in the spectral

range of the model or laboratory-measured data to be simulated to be simulated as

long as the noise components of the imager and the target geometry and BRDF are

known. This is useful for evaluating sensor design prior to prototyping if the noise

components of the constituent components can be approximated.

In the dismount detection domain, utilizing skin detection for cueing a HOG-

based dismount detector reduces the search space required by nearly 3 orders of

magnitude. Additionally, dismount detector false alarm performance is improved by

nearly 2 orders of magnitude at 95% probability of detection when compared to the

original full-search system. The skin-detection-cued HOG-based dismount detector

developed in this thesis has the potential to make a significant contribution to the

United States Air Force (USAF) intelligence, surveillance, and reconnaissance (ISR)

and human H-MASINT missions.
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Appendix A. Bilinear Interpolation

Bilinear interpolation is used to approximate the value at an arbitrary point within

a two-dimensional set of known data. Bilinear interpolation is a combination of 3

linear interpolations (2 in the x-direction and one in the y-direction). The four points

with known values (Qij ; i, j ∈ {1, 2} at position (xi, yj)) that are nearest the desired

value (Z at position (x, y)) are used for the interpolation calculations (as depicted in

Fig. A.1).
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Figure A.1: Bilinear interpolation example.

First, linear interpolation is performed to determine the intermediate values at

R1 and R2 by

R1 =
x2 − x

x2 − x1

Q11 +
x− x1

x2 − x1

Q21, (A.1)

R2 =
x2 − x

x2 − x1

Q12 +
x− x1

x2 − x1

Q22, (A.2)
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where x1 and x2 are the x coordinates associated withQij . Finally, linear interpolation

is performed to determine the value of at the desired point by

Z =
y2 − y

y2 − y1
R1 +

y − y1
y2 − y1

R2. (A.3)
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Appendix B. Skin Detection Masks For All HST3 Images Used

This appendix presents the skin detection and dismount detection results for all HST3

images used in this thesis. The top window of each figure depicts the original RGB

image from the HST3 imager for reference. The second image is the skin detec-

tion mask using the rules-based skin detection algorithm with γ ∈ R[0.26, 0.93] and

β ∈ R[−1,−0.02]. The third image depicts the dismount detection results at the

95% probability of detection operating point. The fourth image depicts the dismount

detection results at the 0.05 FPPF operating point. For the third and fourth images,

white boxes indicate dismount alarms that are considered hits, while red boxes in-

dicate dismount alarms that are considered false alarms. The parameters used for

cueing the dismount detector are ∆v = 15, ηA = 38, and ζ = 0.

B-1



(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.1: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 1. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.2: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 2. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.3: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 3. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.4: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 4. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.5: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 5. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.6: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 6. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.7: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 7. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.8: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 8. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.9: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 9. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.10: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 10. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.

B-11



(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.11: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 11. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.12: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 12. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.13: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 13. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.14: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 14. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.15: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 15. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.16: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 16. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.17: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 17. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.18: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 18. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.19: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 19. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.20: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 20. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.21: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 21. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.

B-22



(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.22: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 22. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.23: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 23. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.24: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 24. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.25: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 25. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.26: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 26. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.27: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 27. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.28: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 28. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.29: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 29. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.30: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 30. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.31: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 31. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.32: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 32. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.33: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 33. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.34: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 34. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.35: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 35. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.

B-36



(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.36: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 36. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.37: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 37. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.38: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 38. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.39: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 39. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.40: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 40. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.41: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 41. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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(a) Original HST3 image

(b) Skin detection mask

(c) Dismount detection boxes at 0.95 PD operating point

(d) Dismount detection boxes at 0.05 FPPF operating point

Figure B.42: Skin detection and skin-detection-cued HOG-based dismount detec-
tion results for HST3 image 42. (a) RGB conversion of the original
HST3 image. (b) Rules-based skin detections (γ ∈ R[0.26, 0.93], β ∈
R[−1,−0.02]). (c) Skin-detection-cued HOG-based dismount detec-
tions at 0.95 PD operating point. (d) Skin-detection-cued HOG-based
dismount detections at 0.05 FPPF operating point. White boxes are
hits. Red boxes are false alarms.
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Appendix C. Likelihood Ratio Expectation Maximization Estimated

Gaussian Mixture Model Parameters

This appendix includes example likelihood ratio parameter sets from each fold of

the five-fold cross validation using the best-performing Monte-Carlo simulation. The

parameters are presented for both the normalized difference green-red index (NDGRI)

method and the normalized difference vegetation index (NDVI) method.

C.1 NDGRI Method

Table C.1: NDGRI LRT Parameter Set 1.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.41682 -0.30437 0.69125 0.014384 -0.00044787 0.015709
0.10364 -0.47765 0.71174 0.041977 -0.0011302 0.016056
0.47954 -0.22926 0.55092 0.0074163 -0.00061235 0.0074237

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.2896 0.41809 0.34511 0.079366 -0.011888 0.019954
0.2104 -0.17539 0.087885 0.087202 -0.013372 0.017419
0.40539 -0.047265 0.26182 0.10632 -0.013049 0.18785
0.094609 0.06077 1 0.10716 -2.4547e-015 7.0916e-028
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Table C.2: NDGRI LRT Parameter Set 2.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.45667 -0.22813 0.54901 0.0071773 -0.0005665 0.007249
0.098022 -0.48695 0.71827 0.041252 -0.00017763 0.015986
0.44531 -0.30161 0.68493 0.014605 -0.00068813 0.015837

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.20867 -0.1738 0.089513 0.091738 -0.013903 0.016994
0.29133 0.41622 0.34997 0.080846 -0.011955 0.019433
0.37139 -0.040166 0.23453 0.1412 -0.0041843 0.20309
0.12861 0.0038624 0.88807 0.0066253 -0.00097311 0.016058

C-2



Table C.3: NDGRI LRT Parameter Set 3.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.45342 -0.22837 0.54878 0.007262 -0.00058891 0.0071914
0.45028 -0.30138 0.68451 0.014503 -0.00065761 0.015901
0.096305 -0.49172 0.71826 0.040737 -0.00030859 0.016003

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.2964 0.41015 0.34468 0.078943 -0.010788 0.019589
0.2036 -0.18605 0.087626 0.088336 -0.014613 0.017634
0.13452 0.012277 0.89538 0.0067291 -0.00048387 0.014717
0.36548 -0.032222 0.23129 0.14569 -0.0032095 0.20029

Table C.4: NDGRI LRT Parameter Set 4.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.4621 -0.22796 0.54941 0.0072343 -0.00055564 0.0072745
0.43932 -0.30283 0.68703 0.014525 -0.00057685 0.015799
0.098582 -0.48687 0.71382 0.041005 -0.00077207 0.016046

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.28875 0.41495 0.34782 0.078794 -0.012214 0.019571
0.21125 -0.16706 0.091292 0.091423 -0.012562 0.017085
0.37686 -0.037779 0.24156 0.14045 -0.004267 0.21107
0.12314 0.011227 0.88915 0.0057924 -9.0853e-005 0.015372
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Table C.5: NDGRI LRT Parameter Set 5.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.050133 -0.59208 0.7318 0.033064 0.0015989 0.016124
0.4286 -0.3185 0.70081 0.016378 0.00020274 0.015271
0.52127 -0.23059 0.55481 0.007588 -0.00060002 0.0078278

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDGRI NDSI a b c

0.29662 0.40849 0.34461 0.080767 -0.011121 0.020191
0.20338 -0.18723 0.087516 0.086818 -0.014475 0.017403
0.3733 -0.04409 0.23317 0.1408 -0.0026442 0.1981
0.1267 0.0063058 0.89827 0.0058912 -0.00064135 0.013808

C.2 NDVI Method

Table C.6: NDVI LRT Parameter Set 1.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.15367 0.035487 0.66381 0.001974 0.00017854 0.012638
0.38571 0.24027 0.70751 0.013946 -0.0011796 0.015543
0.46063 0.18224 0.54568 0.0071414 -0.0013245 0.0073813

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.30579 0.83431 0.32276 0.0095513 -0.0020667 0.023481
0.19421 0.39192 0.10894 0.038061 0.0058172 0.025447
0.11427 -0.11887 0.11237 0.38555 0.05796 0.4202
0.38573 0.067291 0.44727 0.038866 -0.032526 0.18267
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Table C.7: NDVI LRT Parameter Set 2.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.38945 0.23958 0.70718 0.014 -0.0012945 0.01555
0.45621 0.18251 0.54512 0.0070739 -0.0012998 0.0073428
0.15433 0.035163 0.66205 0.001959 0.000207 0.012425

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.30263 0.83598 0.32309 0.0090406 -0.001726 0.022803
0.19737 0.3928 0.11423 0.036388 0.0064582 0.027436
0.11368 -0.1514 0.12108 0.38669 0.068923 0.44034
0.38632 0.064141 0.47107 0.038873 -0.030889 0.17679

C-5



Table C.8: NDVI LRT Parameter Set 3.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.48076 0.18635 0.54763 0.0070731 -0.0011553 0.0076632
0.35668 0.24298 0.71772 0.014339 -0.0018013 0.015123
0.16256 0.036812 0.65734 0.0020634 0.00011849 0.011971

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.29551 0.83708 0.32738 0.0089934 -0.0022423 0.022675
0.20449 0.40671 0.12022 0.041558 0.007967 0.027712
0.38633 0.071321 0.46782 0.039777 -0.031114 0.1754
0.11367 -0.15832 0.1766 0.36129 0.055615 0.42459

Table C.9: NDVI LRT Parameter Set 4.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.4748 0.18603 0.5471 0.0070586 -0.0011658 0.0076018
0.36167 0.24268 0.71595 0.014265 -0.0016176 0.015166
0.16353 0.037025 0.65846 0.0020781 0.0001141 0.012115

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.20631 0.40917 0.11743 0.041941 0.0068124 0.025183
0.29369 0.8374 0.33145 0.0087117 -0.0026371 0.022916
0.39751 0.062235 0.45742 0.040581 -0.031246 0.18015
0.10249 -0.15489 0.18158 0.39856 0.062769 0.40457
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Table C.10: NDVI LRT Parameter Set 5.
Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.15154 0.034884 0.66235 0.0019417 0.00018487 0.01248
0.38797 0.23959 0.70766 0.014091 -0.0013436 0.015527
0.46049 0.1826 0.54549 0.0071311 -0.0013438 0.0074363

Non-Skin Distribution Parameters

Means Standard Deviations

[
a b
b c

]

Weights NDVI NDSI a b c

0.20184 0.39651 0.11678 0.038581 0.0069766 0.028383
0.29816 0.83654 0.32018 0.0089604 -0.0014221 0.022447
0.38842 0.062817 0.48182 0.039027 -0.03109 0.18391
0.11158 -0.16668 0.090277 0.37373 0.058886 0.45383
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