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Abstract

Polarimetrc Synthetic Aperture Radar (SAR) has been shown to be a powerful

tool in remote sensing because uses up to four simultaneous measurements giving

additional degrees of freedom for processing. Typically, polarization decomposition

techniques are applied to the polarization-dependent data to form colorful imagery

that is easy for operators systems to interpret. Yet, the presumption is that the SAR

system operates with maximum bandwidth which requires extensive processing for

near- or real-time application. In this research, color space selection is investigated

when processing sparse polarimetric SAR data as in the case of the publicly available

“Gotcha Volumetric SAR Data Set, Version 1.0”. To improve information quality

in resultant color imagery, three scattering matrix decompositions were investigated

(linear, Pauli and Krogager) using two common color spaces (RGB, CMY) to deter-

mine the best combination for accurate feature extraction. A mathematical model is

presented for each decomposition technique and color space to the Crámer-Rao lower

bound (CRLB) and quantify the performance bounds from an estimation perspective

for given SAR system and processing parameters. After a deep literature review in

color science, the mathematical model for color spaces was not able to be computed

together with the mathematical model for decomposition techniques. The color spaces

used for this research were functions of variables that are out of the scope of electrical

engineering research and include factors such as the way humans sense color, envi-

ronment influences in the color stimulus and device technical characteristics used to

display the SAR image. Hence, SAR imagery was computed for specific combinations

of decomposition technique and color space and allow the reader to gain an abstract

view of the performance differences.
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3.1.4 Crámer-Rao Lower Bound. . . . . . . . . . . . . . . . . . . . . 41

vi



Page

IV. Performance Limits for Colored SAR Imagery and feature Extraction . . 45

4.1 Data Set Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Processing Raw SAR Data for Image Formation. . . . . . . . . . . . 45

4.2.1 Polarimetric Image Formation. . . . . . . . . . . . . . . . . . . 45

4.2.2 SAR imagery Obtained from Gotcha Data Set. . . . . . . . . . 49

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Suggestions for Further Research. . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



List of Figures
Figure Page

2.1 Polarization Ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Poincaré Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Radar Polarimetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 RGB Color Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 RGB cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 RGB Color Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 CMY cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 CMY Color Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 SAR Image from sparse data VV Polarization . . . . . . . . . . . . 27

3.2 Surface plot for VV Polarization Channel . . . . . . . . . . . . . . 27

3.3 SAR Image from sparse data HH Polarization . . . . . . . . . . . . 28

3.4 Surface plot for HH Polarization Channel . . . . . . . . . . . . . . 28

3.5 SAR Image from sparse data VH Polarization . . . . . . . . . . . . 29

3.6 Surface plot for VH Polarization Channel . . . . . . . . . . . . . . 29

3.7 SAR Image from sparse data HV Polarization . . . . . . . . . . . . 30

3.8 Surface plot for HV Polarization Channel . . . . . . . . . . . . . . 30

3.9 Energy on k1 component of Linear decomp. . . . . . . . . . . . . . 32

3.10 Energy on k2 component of Linear decomp. . . . . . . . . . . . . . 33

3.11 Energy on k3 component of Linear decomp. . . . . . . . . . . . . . 34

3.12 SAR Image using Linear decomposition . . . . . . . . . . . . . . . 34

3.13 Energy on k1 component of Pauli decomp. . . . . . . . . . . . . . . 36

3.14 Energy on k2 component of Pauli decomp. . . . . . . . . . . . . . . 37

3.15 Energy on k3 component of Pauli decomp. . . . . . . . . . . . . . . 38

3.16 SAR Image using Pauli decomposition . . . . . . . . . . . . . . . . 38

3.17 Energy on k1 component of Krogager decomp. . . . . . . . . . . . 39

3.18 Energy on k2 component of Krogager decomp. . . . . . . . . . . . 39

viii



Figure Page

3.19 Energy on k3 component of Krogager decomp. . . . . . . . . . . . 40

3.20 SAR Image using Krogager decomposition . . . . . . . . . . . . . . 41

4.1 Gotcha data set graphic representation. . . . . . . . . . . . . . . . 46

4.2 Target area for Gotcha data collection. . . . . . . . . . . . . . . . . 46

4.3 Block Diagram of PFA process [24]. . . . . . . . . . . . . . . . . . 47

4.4 Graphic description of image processing. . . . . . . . . . . . . . . . 48

4.5 Decomposed SAR image. . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Linear decomposition, RGB color space, pass 1, 1 degree . . . . . . 50

4.7 Linear decomposition, CMY color space, pass 1, 1 degree . . . . . 50

4.8 Pauli decomposition, RGB color space, pass 1, 1 degree . . . . . . 51

4.9 Pauli decomposition, CMY color space, pass 1, 1 degree . . . . . . 51

4.10 Krogager decomposition, RGB color space, pass 1, 1 degree . . . . 52

4.11 Krogager decomposition, CMY color space, pass 1, 1 degree . . . . 52

4.12 Linear decomposition, RGB color space, pass 1, 60 degree . . . . . 53

4.13 Linear decomposition, CMY color space, pass 1, 60 degree . . . . . 53

4.14 Pauli decomposition, RGB color space, pass 1, 60 degree . . . . . . 54

4.15 Pauli decomposition, CMY color space, pass 1, 60 degree . . . . . 54

4.16 Krogager decomposition, RGB color space, pass 1, 60 degree . . . . 55

4.17 Krogager decomposition, CMY color space, pass 1, 60 degree . . . 55

4.18 Linear decomposition, RGB color space, pass 1, 150 degree . . . . 56

4.19 Linear decomposition, CMY color space, pass 1, 150 degree . . . . 56

4.20 Pauli decomposition, RGB color space, pass 1, 150 degree . . . . . 57

4.21 Pauli decomposition, CMY color space, pass 1, 150 degree . . . . . 57

4.22 Krogager decomposition, RGB color space, pass 1, 150 degree . . . 58

4.23 Krogager decomposition, CMY color space, pass 1, 150 degree . . . 58

4.24 Linear decomposition, RGB color space, pass 1, 320 degree . . . . 59

4.25 Linear decomposition, CMY color space, pass 1, 320 degree . . . . 59

4.26 Pauli decomposition, RGB color space, pass 1, 320 degree . . . . . 60

ix



Figure Page

4.27 Pauli decomposition, CMY color space, pass 1, 320 degree . . . . . 60

4.28 Krogager decomposition, RGB color space, pass 1, 320 degree . . . 61

4.29 Krogager decomposition, CMY color space, pass 1, 320 degree . . . 61

4.30 Linear decomposition, RGB color space, pass 1, full azimuth angle 62

4.31 Linear decomposition, CMY color space, pass 1, full azimuth angle 62

4.32 Pauli decomposition, RGB color space, pass 1, full azimuth angle . 63

4.33 Pauli decomposition, CMY color space, pass 1, full azimuth angle . 63

4.34 Krogager decomposition, RGB color space, pass 1, full azimuth angle 64

4.35 Krogager decomposition, CMY color space, pass 1, full azimuth angle 64

x



List of Tables
Table Page

2.1 Color code for different combinations of polarizations. . . . . . . . 15

3.1 Color code for linear decomposition. . . . . . . . . . . . . . . . . . 31

3.2 Color code for Pauli decomposition. . . . . . . . . . . . . . . . . . 35

3.3 Color code for Krogager Decomposition. . . . . . . . . . . . . . . . 41

xi



List of Symbols
Symbol Page

ψ Orientation Angle . . . . . . . . . . . . . . . . . . . . . . . . 6

χ Ellipticity Angle . . . . . . . . . . . . . . . . . . . . . . . . . 6

ψr Receiver Orientation Angle . . . . . . . . . . . . . . . . . . . 8

χr Receiver Ellipticity Angle . . . . . . . . . . . . . . . . . . . . 8

ψt Transmitter Orientation Angle . . . . . . . . . . . . . . . . . 8

χt Transmitter Ellipticity Angle . . . . . . . . . . . . . . . . . . 8

∗ Complex Conjugate . . . . . . . . . . . . . . . . . . . . . . . 8

⊗ Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . 8

Sxy Scattering Response when transmit y-polarized and receive x-

polarized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xii



List of Abbreviations
Abbreviation Page
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Performance of Scattering Matrix Decomposition and

Color Spaces for Synthetic Aperture Radar Imagery.

I. Introduction

1.1 Research Motivation

Synthetic aperture radar (SAR) is an active radio frequency (RF) imaging tech-

nique that utilizes signal processing to produce high quality images. SAR systems

gather information about a target area’s reflectivity when illuminated by an electro-

magnetic (EM) wave at a specific radio frequency and from a particular aspect angle.

Sequential observations of the target area, or scene, over varying aspect angles are

processed to produce an estimate of the scene’s reflectivity which is viewed similar

to a photographic image. EM waves propagate virtually unattenuated through most

atmospheric conditions enabling SAR to provide an all weather, day/night imaging

capability.

To deliver information in real time, it is very important to present the informa-

tion in a way that the system or operator can quickly, easily and accurately identify

important features. Synthetic Aperture Radar (SAR) has shown to be an efficient

technology for getting visual representation of a target or area of interest and the all

weather capability of SAR is an invaluable characteristic that makes this technology

useful at any time [27].

As the target for SAR is the ground clutter, SAR applications include cartogra-

phy, land use analysis, and oceanography in civil applications of remote sensing (RS).

Military applications include surveillance, reconnaissance, battle damage assessment,

ground target classification and navigation. SAR technology can generate imagery

with a wide range of resolution, but the typical products are monochrome images

which are estimates of the scalar quantity of reflectivity [13]. By using a system

capable of measuring the four combinations of polarization (HH, HV, VH and VV,
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where the first component as the transmitted polarization and the second component

as the received polarization), we can get four different views from the same scene and

combine them into a multi-colored image. With color intensity being proportional to

some combination of the polarizations, a trained operator can gain additional insight

beyond just spatial arrangement. Of course, the amount of added value is subjective

as each person views color differently.

Furthermore, advances in high performance computing (HPC) enable near-real

time processing, but when HPC is not available, one must make a trade-off between

SAR image resolution and processing time. So, one might ask: What are the trade-

offs between image resolution and processing time in consideration of how the human

operator interprets multi-color imagery? In other words, can multi-color imagery

make up for lost resolution? Hence, this thesis investigates the quality of multi-color

SAR imagery when applied to sparse SAR data.

Polarimetric SAR dates back to the 1940’s when Sinclair, Kennaugh and Huynen

introduced methods to use polarized radar echoes to characterize aircraft targets [16].

The capability of a polarimetric SAR system to obtain the four different polarization

channels give us four different views of the same area of interest or target. This

characteristic allow the exposition of many of the features when the four different

views are combined. At the same time, this characteristic allows the detection of

the polarimetric signature of a particular target scatterer which is a helpful tool for

target recognition. Several decomposition techniques of the target matrix have been

developed. For this thesis, the linear, the Pauli and the Krogager are analyzed using

signal processing tools available and using data from the “Gotcha Volumetric SAR

Data Set, Version 1.0”. This data set was prepared and provided by the United States

Air Force Research Laboratory (AFRL) [4].

The “Gotcha Volumetric SAR Data Set, Version 1.0” has been used to inves-

tigate 2-D and 3-D imaging of stationary targets from wideband, fully polarimetric

data. To capture the urban scene consisting of civilian vehicles and calibration tar-

2



gets, the SAR operated in the circular mode and completed 8 circular orbits around

the scene at incremented altitudes. The distributed data included phase history data,

auxiliary data, processed images, ground truth pictures and a collection summary

report making it an ideal set to investigate the scattering matrix decomposition and

multi-color processing.

The goal for this research is to highlight features that allow operators to quickly

identify targets of interest for a desired level of confidence. Hence, three popular

scattering matrix decomposition techniques are applied to two different color spaces

to determine the best combination for target feature extraction.

1.2 Research Scope and Assumptions

SAR imagery is widely used for a broad spectrum of applications. From cartog-

raphy, geology, oceanography, agriculture to a surveillance, reconnaissance and target

recognition. This research is focused in use imagery as a tool to extract features from

objects present in the scene in a way that is easy for an operator of any system with

SAR imagery to recognize objects of interest. In order to work with real data, the

“Gotcha Volumetric SAR Data Set, Version 1.0” is used to compute imagery with

information of the four polarization channels available in this data set. As described

in section 1.1, the “Gotcha Volumetric SAR Data Set, Version 1.0” is data from a

fully polarimetric SAR system and collected from a parking lot which contains some

calibration targets such as a top hat, a trihedral, a dihedral, and different types of

passenger cars. The method of collecting this data was by spotlight collection. The

platform made eight passes around the target.

The scope of this research is to compute three decomposition techniques used

in SAR polarimetry (linear, Pauli and Krogager), each of them in two different color

spaces (RGB and CMY), with the aim of comparing them and establishing a metric

that allows us to determine the best combination for an operator to see features more

efficiently and accurately. The metric proposed is the Crámer-Rao Lower Bound

3



and the SAR data set is the “Gotcha Volumetric SAR Data Set, Version 1.0”. The

assumptions are that color spaces are able to be compared in a mathematical sense

and that can be computed in a signal model that will depend on the decomposition

technique to be used. The data set is a sparse data set. The results will be provided

taking into account that the SAR system is not high resolution and that the extracted

information is not high quality.

1.3 Document Overview

This document details the polarimetric theory and methodology from a per-

formance point of view. Chapter II is an introduction to polarimetric SAR imaging

considering Polarimetric SAR fundamentals, Scattering matrix and describing some

airborne and space polarimetric SAR systems. Colorimetry is also introduced in this

chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for

this research. Next, Chapter III introduce the two decomposition techniques that are

considered on this research and the relationship of this technology and Colorimetry,

as well as a description of the Crámer-Rao Lower Bound that is considered as a way to

obtain a metric of performance between each decomposition technique. In chapter IV

the results of this research are discussed in order to present final results, conclusions

and contributions of this research in chapter V.

4



II. Synthetic Aperture Radar Imaging

2.1 Synthetic Aperture Radar.

SAR is perhaps one of the most efficient technologies for getting a visual repre-

sentation of a target or an area of interest. The all weather capability of SAR is an

invaluable characteristic that makes this technology useful at any moment. Today,

SAR applications drive continual system development that allows researchers to ex-

tract more features out of the measured data. Special SAR applications are forward

looking SAR, measurement of object height, foliage-penetration, ground mapping,

target recognition, and surveillance, to name a few.

2.2 Radar Imaging.

An image is probably the best way to deliver information to a decision making

machine or an operator. For the human being, vision is one of the primary and

perhaps the most important sensor. The eye collects the light reflected by objects in

the surrounding medium and transforms the energy into information for the human

being to decide how to interact with the environment. The invention of the Synthetic

Aperture Radar changed the way humans sense the environment because it provides

the same capability without light or a direct visual line-of-sight (LOS). The main

goal of SAR is to improve focusing by synthesizing a huge lens in what is called

synthetic aperture [19, 22, 24, 27]. In order to obtain an image of a particular area

or target, an airborne SAR operates in different modes. The more traditional SAR

modes are: Spotlight and Strip map. The Spotlight SAR mode utilizes a mechanical

or electronically steering of a physical radar antenna. The purpose of the beam

steering is to irradiate a finite target area centered in a particular point in the spatial

domain as the radar is moved along a straight line. This beam maintains the physical

radar radiation pattern in the same target area while the platform moves along the

synthetic aperture. In the Strip map SAR mode, the antenna maintains a fixed

radiation pattern throughout the data acquisition period. For such a data collection
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scheme, the illuminated cross-range area is varied from one pulse transmission to the

next. This mode is mainly used for reconnaissance or surveillance problems.

2.2.1 Synthetic Aperture Radar (SAR) Imaging. The target for SAR is

the ground clutter. Due to this characteristic, SAR applications include cartography,

land analysis and oceanography in the civilian side. This activity is known as Remote

Sensing (RS). In the military, surveillance, battle damage assessment, reconnaissance,

ground target classification and navigation are also performed by SAR systems. SAR

technology is applied from airborne and space platforms and can generate images with

a wide range of resolutions. What SAR produces is a monochrome image relative to a

measurement of the scene reflectivity. The all weather characteristic of SAR imaging

makes this technology an important and efficient tool with better performance than

optical imaging systems during inclement weather.

2.2.2 Polarimetric SAR. SAR polarimetry provides data about the polariza-

tion state of the returned signal for every resolution element or pixel, which comple-

ments the intensity information from the target return. SAR polarimetry is achieved

by measuring two orthogonally polarized waves. Typically for each transmission, the

radar simultaneously receives two orthogonally polarized waves. These waves can

be processed by range and azimuth correlation. The relative phases of the received

voltages are measured by using phase coherence of transmitted signals and coherent

addition on received signals [16,19,22,28].

2.2.2.1 Polarization State. The polarization state of an electromag-

netic wave can be illustrated using the polarization ellipse. In Figure 2.1, we observe

the projection of the electric field vector on to the x-y plane when traveling in z-

direction [16, 22]. We can also describe the polarization state of the wave by using

the two Stokes parameters ψ (orientation angle) and χ (ellipticity angle) [22, 23]. In

this case, right hand circular polarization is given by χ = −45o, left hand circular po-

larization is given by χ = +45o. The normalized Stokes vector of an electromagnetic
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Figure 2.1: Polarization Ellipse [22].

wave is given by:

S0 = 1.0

S1 = cos(2ψ) cos(2χ)

S2 = sin(2ψ) cos(2χ)

S3 = sin(2χ) (2.1)

The power, and thus the pixel intensity value can be calculated from the Stokes matrix

of the resolution element and the stokes vector for transmitter receiver polarizations:

Power = K[Sr]
T [M ][S1] (2.2)

where :

[Sr] = Stokes vector of the receiver;

[M ] = Stokes matrix of the resolution element;

[S1] = Stokes vector of the transmitter;

K = constant factor normalized to 1;
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With the stokes matrix defined, we can vary four parameters independently: the

receiver orientation ψr and ellipticity χr, and transmitter orientation ψt and ellipticity

χt. Due to these considerations, the power received and the pixel intensity value are

functions of four variables (ψr, χr, ψt, χt). From the information contained in the

Stokes matrix, we can code pixel intensity values with the combinations between

transmitter and receiver polarization, encoding the received power for each pixel as a

gray value.

2.2.3 Representation of Polarimetric SAR Data. In order to represent po-

larimetric SAR data, various scattering vectors will be presented. Alternative ways of

describing waves that span a range of frequencies are necessary. Considering that we

introduce the coherency vector and the Stokes vector. In addition to being useful for

multi-frequency waves, the stokes vector helps to the understanding of the Poincaré

sphere, by which the polarization of a single-frequency wave can be represented graph-

ically.

2.2.3.1 Coherency Vector. Consider a single frequency plane wave

traveling in the z direction of a right handed coordinate system. The coherency

vector of the wave is defined as:

J = E ⊗ E∗ (2.3)

where ∗ denotes the complex conjugate and ⊗ denotes the Kronecker product or direct

product, defined for two-element vectors by:

A⊗B =

 A1B

A2B

 =


A1B1

A1B2

A2B1

A2B2

 (2.4)
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2.2.3.2 The Stokes Vector. Considering that the elements of the co-

herency vector are complex values and that Stokes proposes four parameters to char-

acterize the amplitude and polarization of a wave, the parameters can be arranged in

a vector form, also known as Stokes vector G, which is a transform of the coherency

vector [9, 16, 22]:

G = QxJ (2.5)

where:

Q =


1 0 0 1

1 0 0 −1

0 1 1 0

0 j −j 0

 (2.6)

The elements of the Stokes vector are:

G0 = |Ex|2 + |Ey|2 (2.7)

G1 = |Ex|2 − |Ey|2 (2.8)

G2 = 2 |Ex| |Ey| cosφ (2.9)

G3 = 2 |Ex| |Ey| sinφ (2.10)

where φ is the phase difference between the y and x components of the wave. Am-

plitude and polarization of a wave can be described by the Stokes vector, where the

parameter Go gives the amplitude, |Ex| and |Ey| can be derived from G0 and G1 and

the phase φ can be determined from either G2 and G3. Further derivations can be

found in [22].

2.2.3.3 The Poincaré Sphere. According to [22], as shown on Figure

2.2, G1, G2 and G3 can be considered Cartesian coordinates of a point on a sphere

of radius G0 and 2ε and 2τ can be considered latitude and azimuth angles measured
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to the point. This interpretation is known as Poincaré Sphere and was introduced by

Poincaré. With this model, a single-frequency wave is described by a point on the

Poincaré sphere. There is a point of the sphere for every state of polarization and

vice-versa.

2.2.3.4 Special Points on the Poincaré Sphere. The point on the

Poincaré sphere corresponding to |Ex| = |Ey|, φ = π/2, G1 = G2 = 0, and G3 = G0

represents the north pole (+ z axis) of the Poincaré sphere and left-hand-circular

polarization. The point corresponding to|Ex| = |Ey|, φ = −π/2, G1 = G2 = 0,

and G3 = −G0 represents the south pole and right-handed-circular wave. For a left-

handed-elliptic wave, 0 < φ < π and G3 > 0. For this case all points are plotted in

the upper hemisphere.

For a right-handed-elliptic wave, π < φ < 2π and G3 > 0. For this case all points

are located in the lower hemisphere. For linear polarization, points are located at the

equator, at the−x-axis intersection with the sphere for linear left vertical polarization;

at the +x-axis intersection for linear horizontal. The +y-axis corresponds to linear

polarization with a tilt angle of π/4, and the −y-axis to linear polarization with a tilt

angle of −π/4.

2.2.4 Radar Polarimetry. This operating principle is based on the quasi-

simultaneous transmission of two linear orthogonal waves. Upon reception, the echoes

are received by two linear and orthogonal polarized antennas which have the same

phase reference. Assuming that at a given instant the radar transmits in the k̂inc

direction a pulse whose polarization Êinc1
0 is directed along the x̂-axis, the target

backscatters along the direction k̂s an electric field ~Es1
0 whose direction is unknown.

However two components of this scattered field, namely ẑ · ~Es1
0 and t̂ · ~Es1

0 , will be

collected on the two receiving polarizations directed along the ẑ and t̂ directions. A

moment later, a field described by the Jones vector Êinc2
0 oriented along the ŷ axis is

transmitted. Similarly, the components ẑ · ~Es2
0 and t̂ · ~Es2

0 are collected. The main

10



Figure 2.2: Poincaré Sphere [19,22].

constraint in polarimetric measurements comes from the need to transmit two phase-

locked waveforms with orthogonal polarizations. It requires to transmit interleaved

pulses, alternating polarization after each transmitted pulse (x̂, ŷ, x̂, ŷ, etc.). Each col-

lected echo requires the recording of two signals, each one associated with one of the

receiving polarizations. That means double polarization agility. If we want to main-

tain a performance for each channel similar to a single polarized radar with azimuth

sampling frequency fa, the polarimetric radar must operate at 2fa. As a consequence

of doubling both sampling frequency and reception modes, the volume of data gen-

erated per image pixel is increased by a factor of four. Another consequence is that

the radar’s swath width is reduced by a factor of two in order to protect the receiver

against range ambiguities. The antenna width is multiplied by a factor of two (and

thus so is its surface), while the total transmitted power may remain the same. In

conclusion, the polarimetry option involves multiplying the volume of data per image

pixel by four and halving the swath width, which are heavy constraints that tend

to argue against polarimetry. A compact polarimetric architecture can relieve these

intrinsic constraints.
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Figure 2.3: Principle of Radar Polarimetry [19].

2.2.5 The Scattering Matrix. The information stored in matrix form for

each pixel of a polarimetric SAR image is described by the scattering matrix [16,19]:

[
S
]

=

 Sxz Syz

Sxt Syt

 =

 ẑ · ~Es1
0 ẑ · ~Es2

0

t̂ · ~Es1
0 t̂ · ~Es2

0

 (2.11)

where S is the scattering matrix. The indices i and j of the complex coefficients Sij

indicate transmission modes (x or y) and reception modes (z or t). The polarization

basis of (x̂ or ŷ) and (ẑ or t̂) are oriented according to the Back Scattering Alignment

convention (BSA). The advantage of BSA is that (x̂,ŷ) and (ẑ,t̂) are identical in a

monostatic configuration of our polarization SAR system [19, 22]. Considering
[
S
]
,

the response of the target to any elliptical polarization of Jones vector t̂ · ~Einc
0 can be

computed immediately. t̂ · ~Einc
0 is indeed the linear combination of two waves with

linear orthogonal polarizations x̂ and ŷ [19]:

Êinc
0 =

(
x̂ · Êinc

0

)
· x̂+

(
ŷ · Êinc

0

)
· ŷ = Einc

0 · x̂+ Einc
0 · ŷ (2.12)
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from which, assuming the linearity of the measurement process described by Es
0z

Es
0t

 =

 Sxz Syz

Sxt Syt

 Einc
0x

Einc
0y

 (2.13)

Einc
0x and Einc

0y are the components of the incident field (i.e., the incident Jones vector)

Êinc
0 expressed in the transmission basis (x̂,ŷ); Es

0z et Es
0t are those of the scattered field

(i.e. the scattered Jones vector) ~Es
0x expressed in the reception basis (ẑ,t̂). Equation

(2.13) relates Jones vectors of the transmitted and scattered waves. In other words,

we are able to characterize the target by its ability to modify the polarization of the

illumination wave. For this research, a monostatic configuration for a SAR system is

considered, since the same antenna transmits and receives. As a result, we can say:

ẑ = x̂ t̂ = ŷ k̂rec = k̂inc = −k̂s (2.14)

where k̂rec is the wave vector of the receiving polarization. If the background media

is simple linear isotropic and homogeneous, the wave propagation between the radar

and the ground does not contribute the off-diagonal terms of S which simplifies to

the backscattering matrix [19]:

Syx = Sxy (2.15)

Considering Eq. 2.15, the backscattering matrix is a complex diagonal square matrix,

defined by three amplitude values and three phase values. If we factor out the absolute

phase Sxx the number of independent parameters is reduced to five, three amplitude

values and two phase difference values:

[
S
]

=

 Sxx Syx

Sxy Syy



= ejφxx

 |Sxx| |Sxy| ej(φxy−φxx)

|Sxy| ej(φxy−φxx) |Syy| ej(φyy−φxx)

 (2.16)
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Now we can apply the following substitutions, where x̂ is replaced by ĥ for horizontal

direction, and ŷ is replaced by v̂ for vertical direction, as follows:

Sxx = Shh, Syy = Svv, Sxy = Shv

2.2.6 Polarimetric SAR Implementation. The polarimetric SAR implemen-

tation used for this analysis is described as follows:

Using the linear polarization, the scattering vector kL can be written as:

kL =


Shh
√

2Shv

Svv

 (2.17)

where Sxy means the scattering response when a transmit electromagnetic wave is

y-polarized while the receive antenna is x-polarized. Using the Pauli matrix basis, we

have a coherent scattering vector described as kP :

kP =
1√
2


Shh + Svv

2Shv

Svv − Shh

 (2.18)

Using a circular polarization basis, we have a coherent scattering vector described as

kC :

kC =
1

2


Shh − Svv + 2iShv

Shh + Svv

Shh − Svv − 2iShv

 (2.19)
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Figure 2.4: Color wheel for interpreting of the interaction between the RGB colors
and polarization channels.

2.3 Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imag-

ing.

Multicolor SAR imagery can be created by encoding three different combinations

of transmitter and receiver polarization with any tristimulus color space (also known

as color model). This can be done by assigning each of the three color components to

a particular polarization channel. Using the RGB color space as an example, we can

use the following basic color-polarization code which the linear decomposition model,

which is the basic decomposition technique and considers to map a color vector with

a polarization channel as described in Table 2.1:

Table 2.1: Color code for different combinations of polarizations.
Polarization Color

VV green
HH red
HV blue

When the three channels are combined equally, that means that each channel has the

same value in a particular pixel, the resulting color will be a shade of gray. Otherwise,
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the color displayed will point to the dominant (or subordinate) channel or channels.

By watching the colors of the generated image, we can make some interpretation of

the scatterers present in the scene. For example, the absence of Red appears Cyan,

the absence of Green appears Magenta, the absence of Blue appears Yellow. By using

this relationship we can say a relatively strong HH scatterer will appear Red while a

relatively weak HH scattering will appear Cyan.

2.3.1 Colorimetry. According to [31], Colorimetry is a discipline of color

science that is mainly concerned with numerically describing the color of a physically

defined visual stimulus in a way that:

• the image it is been viewed by an observer with normal color vision;

• under same observing conditions;

• stimuli with the same specification look alike;

• stimuli that look alike have same specification;

• the quantities describing these specifications are continuous function of the phys-

ical parameters defining the spectral radiant power distribution of the stimulus.

This definition set a big number of conditions in order to determine or perform any

comparison between the same imagery with different color spaces. When we talk

about color technology, there are some facts that need to be considered. Today, color

technology is a very broad science that is growing and improving on a day by day

basis due to the technology and available high power computation. This facts lead

to a very dynamic field that is developed according to the objective for which it is

being adapted. The color space depends directly on the electronic color-device to be

used [12]. The color spaces used for this research were RGB as used in the television

industry and computer monitors and CMY as used in the printer industry.

These device-dependent color spaces were created for convenience of use, digital rep-

resentation and computation and are independent of the way that the observer can

sense this stimulus as a color format. This means that in the way that the informa-
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tion is intended to be delivered will depend directly in the capacity of the observer to

process that stimulus information through their own sensors, which, for the human

case are the eyes [12, 18,30,31].

Light is located in a narrow range of the electromagnetic waves and the fre-

quencies or wavelength are detectable by the human eye. Color describes a particular

characteristic of an object facilitating and simplifying object identification and ex-

traction of information from a scene. We must consider also that humans can discern

thousands of color shades and intensities, which is very relevant when the image anal-

ysis is performed by humans.

Within the electromagnetic spectrum of the light, different perceptions of colors can

be produced, for example a long wavelength produce the perception of red, while a

short wavelength produce the perception of violet. The process of color sensing is

produced by the physical stimulation of light detectors known as cones, in the human

retina [12,18]. The spectrum of colors produced by a prism is referred to as spectrally

pure or monochromatic and each of these colors are related to a particular wavelength.

This means that when we talk about a spectrally pure color, we are referring to a

single wavelength, but that can be produced by a combination of colors. For example,

an orange color is associated with a wavelength of λ = 600 nm. The same color can

be produced with a combination of two light beams, one being red with a wavelength

of λ = 700 nm, and another being yellow with a wavelength of λ = 580 nm, with no

orange component [12,18,30,31].

Color image processing is divided into two major areas [6,18,30]: full color and pseu-

docolor processing. In the first case, the images are acquired with a full-color sensor,

such as color camera or color scanner. In the second case, a color is assigned to a

particular monochrome intensity or range of intensities. For example, colored im-

ages of polarimetric SAR systems, where each channel or different combinations of

polarimetric channels represent the intensity values for a given color. In order to dis-

tinguish one color from another, three characteristics are used. These characteristics

are brightness, hue and saturation [6,18,31]. Brightness maps the achromatic notion
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of intensity. Hue is an attribute associated with the dominant wavelength in a mixture

of light waves. Hue represents a dominant color as perceived by an observer. Thus,

when we call an object red, orange or yellow, we are referring to its hue. Saturation

refers to the relative purity or the amount of white light mixed with a hue.

The combination of Hue and saturation is known as chromacity [6, 31], and there-

fore, a color may be characterized by its brightness and chromacity. The amounts

of red, green and blue needed to form any particular color are known as tristimulus

[6,18,30,31] values and are denoted, X, Y, and Z, respectively. A color is then defined

by its trichromacity coefficients, defined as [6, 18,30,31]:

x =
X

X + Y + Z
(2.20)

y =
Y

X + Y + Z
(2.21)

z =
Z

X + Y + Z
(2.22)

It is noted from these equations that

x+ y + z = 1 (2.23)

2.3.2 Color Image Processing on SAR Imagery. What we obtain after raw

data from a SAR system is processed is a graphical representation of the relation

between the strength of the signal received from a point scatter and the location of

that point scatter within the scene. For a fully polarimetric SAR system, four channels

with different scatter response from the same point scatter are collected. In order to

form a SAR image, the contribution of each polarization channel is of interest for the

observer, due to in this way, more features are revealed on the image. By assigning

a particular color to each polarization channel, we can identify its contribution for a

particular pixel, making it even easier for an analyst to identify a particular feature

or target of interest [16,19,22].
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2.3.2.1 Color Spaces. The purpose of a color space (also color space

or color system) is to facilitate the specification of colors in some standard, generally

accepted way. In essence, a color model is a specification of a coordinate system and

a subspace within that system where each color is represented by a single point.

Most color models in use today are oriented either toward hardware (such as for color

monitors and printers) or toward applications where color manipulation is a goal (such

as in the creation of color graphics for animation) [6, 18]. In terms of digital image

processing, the hardware-oriented models most commonly used in practice are the

RGB (red, green, blue) model for color monitors and a broad class of color video

cameras and CMY (cyan, magenta, yellow) and CMYK (cyan, magenta, yellow,

black) model for color printing [6].

Yellow
(1,1,0)

Red
(1,0,0)

Magenta
(1,0,1)

Blue
(0,0,1)

Cyan
(0,1,1)

Green
(0,1,0)

Black
(0,0,0)

White
(1,1,1)

R

B

G

Figure 2.5: The RGB cube representing the RGB color space with all color compo-
nents as a vector form [12].

2.3.2.2 RGB (Red Green Blue) Color Space. The RGB (Red, Green,

Blue) color model is very well known and widely used. This color space is defined in

terms of three vectors identified as Red, Green, and Blue which each having domain
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Figure 2.6: A graphic representation of the RGB color space is presented. The three
fundamental colors Red, Blue and Green are shown as well as the result of the addition
between them.

values of [0 − 255]: A tri-color mixture is considered additive because other colors

are formed by combining the primary colors: Red, Green and Blue. When the three

colors are combined with the highest value, the result is white. When the three colors

are combined with the lowest value, the color is black [7, 12, 33]. Figure 2.6 shows

RGB primary colors and their combinations.

2.3.2.3 CMY (Cyan Magenta Yellow) Color Space. The CMY, is

another well known color space, widely used in the color printing industry. This

color space is based in the secondary colors of light cyan, magenta, and yellow or

primary colors of pigments [6,12]. These are each represented as vectors with domain

values of [0%−100%]: Different colors can be created by superimposing three images;

one for cyan, one for magenta and one for yellow. The CMY color space is really a

combination of primary colors (Cyan, Magenta, Yellow) as a result of subtracting the

RGB color space from white light. The three components represent three reflection

filters that create an optical illusion based on light absorption [7, 29]. Figure 2.8

shows CMY primary colors and their combinations. For example, when a surface

coated with cyan pigment is illuminated with white light, no red light is reflected
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Figure 2.7: The CMY cube representing the CMY color space with all color compo-
nents as a vector form [12].

from the surface. That is, cyan subtracts red light from reflected white light, which

itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers and

copiers, require CMY data input or perform an RGB to CMY conversion internally

[12]. This conversion is performed using the simple operation


C

M

Y

 =


1

1

1

−

R

G

B

 (2.24)

Equation (2.24) demonstrates that light reflected from a surface coated with pure

cyan does not contain red (that is, C = 1 − R in the equation). Ideally, cyan, ma-

genta and yellow are sufficient to generate a wide range of colors by the subtractive

process, but if we mix the same quantity of the three colors, we should get black,

but in practice, a dark brown is generated. For this reason, a fourth real black ink is
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Figure 2.8: A graphic representation of the CMY color space. The three fundamental
colors: Cyan, Magenta and Yellow are shown as well as the result of the interaction
between them.

added in printing process to obtain true color, what is known as CYMK color space.

Similarly, pure magenta does not reflect green, and pure yellow does not reflect blue.

Equation (2.24) also reveals that RGB values can be obtained easily from a set of

CMY values by subtracting the individual CMY values from 1. As indicated earlier,

in image processing, this color model is used in connection with generating hard copy

output, so the inverse operation from CMY to RGB generally is of little practical

interest.

2.4 Polarimetric Systems

Over the years, the development of space and airborne SAR systems for the

observation of the earth has experienced a rapid growth. A variety of SAR systems,

airborne and spaceborne, have provided researchers with high quality SAR data from

different locations and points of interest, providing multiple frequency and polariza-

tion observations for both military and civilian analysis [16,19].

The ENVISAT satellite, developed by European Space Agency (ESA), was launched

on March 2002, and was the first civilian satellite with dual-polarization advanced syn-

thetic aperture radar (ASAR) system operating in C-band. The first fully PolSAR
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satellite was the Advance land Observing Satellite (ALOS), a Earth-observation satel-

lite developed by the Japan Aerospace Exploration Agency (JAXA), Japan launched

in January 2006. This satellite includes an L-band polarimetric radar sensor (PAL-

SAR) used for environmental and hazard monitoring. TerraSAR-X developed by the

German Aerospace Center (DLR), EADS-Astrium and Infoterra GmbH was launched

in 2007 and carries a dual-polarimetric and high frequency X-band sensor and can be

operated in a quad-pol mode. Another polarimetric spaceborne sensor is RADARSAT-

2, developed by the Canadian Space Agency (CSA) and MacDonald, Dettwiler and

Associates Ltd. Industries (MDA), lunched successfully in December 2007 and was

designed to monitoring Canada’s icy waterways [16].

Now, we will describe some airborne polarimetric SAR systems. The AIRSAR was de-

signed and built by the Jet Propulsion Laboratory (NASA-JPL) in the early 80’s. This

L-band radar was flown on a NASA Ames Research Center CV-990 Airborne Labora-

tory. After an accident of this airborne platform, an upgraded radar polarimeter was

built at JPL and was known as AIRSAR, operated in the fully polarimetric modes

at P-band(0.45 GHZ), L-band(1.26 GHZ), and C-band(5.31 Ghz) bands simultane-

ously. AIRSAR also considered an along-track interferometer (ATI) and cross-track

interferometric (XTI) modes in L-band and C-band, respectively. AIRSAW first flew

in 1987 and conduct at least one flight campaign each year in US and international

missions also.

The Convair-580 C/X SAR system is an airborne SAR developed by the Canada Cen-

tre for Remote Sensing (CCRS) since 1974. The Convair-580 C/X SAR system is a

dual-frequency polarimetric SAR operating at C-band (5.30 GHz) and X-band (9.25

GHz). The primary mission of this SAR system is remote sensing research, including

developments of applications of RADARSAT data [16].

The EMISAR is a C-band(5.3 GHz), vertically polarized, airborne SAR . It was de-

veloped by the Technical University of Denmark (TUD), Electromagnetics Institute

(EMI) in 1989. In 1995, it was upgraded to a fully polarimetric capability and is flown

in a Gulfstream G3 aircraft of the Royal Danish Air Force. The primary mission of
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this SAR system is data acquisition for the research of the Danish Center for Remote

Sensing (DCRS).

There are several other polarimetric spaceborne and airborne SAR systems gather-

ing data for military and civilian purposes. For this reason, research on this area

is a necessity in order to process data and get high quality information from SAR

imagery [16,19,22].
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III. Decomposition Techniques on SAR Polarimetry and

Colorimetry applied to SAR Imagery.

Several developments have been made including methods like Van Zyl’s [14] which

decompose S in three types of dominant scattering mechanisms. This method, which

is similar to Freeman’s decomposition, is applicable for distributed targets such as

ocean and forested surfaces because Van Zyl’s and Freeman’s methods were used pri-

marily to denote the difference between rough flat surfaces such as the ocean, volume

scatterers such as forest, and dihedral corner reflections such as man-made objects

or natural features such as the intersection of a tree trunk and the ground. As pre-

sented in [26], the SAR community has been developing different techniques in order

to determine SAR signatures based upon characterization and statistical analysis of

measured data. This signature is highly dependent on the season, environmental con-

ditions and events. Much of the SAR polarimetric related research has been focused

on establishing an optimal orientation in order to maximize the signal-to-noise ratio.

In the case of the “Gotcha Volumetric SAR Data Set, Version 1.0” release [4], 2-

D and 3-D imaging of stationary targets from wideband, fully polarimetric data is

investigated. The SAR system operated in the circular mode and completed 8 circu-

lar orbits around the scene at incremented altitudes. The distributed data included

phase history data, auxiliary data, processed images, ground truth pictures and a

collection summary report making it an ideal set to investigate the scattering matrix

decomposition and multi-color processing. For this research, a sparse data is analyzed

using Pauli and Krogager decomposition techniques, combined with RGB and CMY

color spaces in order to determine the best combination of decomposition technique

and color space for feature extraction. In order to obtain a quantitative metric of

performance, the CRLB is established for comparing the different permutations [25].

The two decomposition techniques are presented in the following section.
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3.1 Decomposition techniques on SAR Polarimetry.

According to [16,19,22], SAR polarimetry provides data about the polarization

state of the returned electromagnetic energy (radar signal) for every resolution element

or pixel, which complements the intensity information contained in the scattering

matrix of the target return. Therefore, the author used SAR polarimetry to produce

a scattering matrix by transmitting two orthogonally polarized waves in which we have

called horizontal and vertical polarization. Each radar echo is also received on two

orthogonally polarized antennas giving a fully polarimetric set of data (HH, HV, VV,

VH). By correlating the signals in range and azimuth, the author measured the relative

phase differences of the received voltages and coherently add all returns to construct

a SAR image [16, 17]. Ultimately, information about the environment is obtained

through the study of the reflectivity function which reveals how the electromagnetic

waves interacted with the environment [16]. The generic equation for the scattering

matrix S is

S =
N∑
k=1

αkSk (3.1)

where αk is a complex weight for a particular scattering mechanism represented by

its scattering matrix Sk. Fully polarimetric systems normally provide four channels

described by the scattering matrix [22]:

Sk =

 Shh Svh

Shv Svv

 (3.2)

where the term Sxy represents the scattering vector due to x-polarization upon trans-

mit and y-polarization upon receive. Reciprocity of the cross-channels is normally

assumed, meaning Shv = Svh [16,19,22]. Due to this characteristic, the matrix S can

be represented by three channels, Shh, Svv, Svh or Shv.

The images in Figure 3.1 through Figure 3.8 were obtained from the “Gotcha

Volumetric SAR Data Set, Version 1.0”. Reciprocuty of polarization channels Shv

Svh is assumed, because both channels have practically the same contribution as
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Figure 3.1: SAR image from sparse “Gotcha Volumetric SAR Data Set, Version 1.0”
(one pass, one collection) for VV Polarization. This image was obtained by using a
polar format algorithm and has no further processing.

Figure 3.2: Representation of the energy scattered for each pixel of the SAR image
can be observed. This surface plot was obtained from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection) for VV polarization channel
and is the same data set used to obtain the SAR image in figure 3.1.
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Figure 3.3: SAR image from sparse “Gotcha Volumetric SAR Data Set, Version 1.0”
(one pass, one collection) for HH Polarization. This image was obtained by using a
polar format algorithm and has no further processing.

Figure 3.4: Representation of the energy scattered for each pixel of the SAR image
can be observed. This surface plot was obtained from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection) for HH polarization channel
and is the same data set used to obtain the SAR image in figure 3.3.
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Figure 3.5: SAR images from sparse “Gotcha Volumetric SAR Data Set, Version 1.0”
(one pass, one collection) for VH Polarization. This images where obtained by using
a polar format algorithm and has no further processing.

Figure 3.6: Representation of the energy scattered for each pixel of the SAR image
can be observed. This surface plot was obtained from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection) for VH polarization channel
and is the same data set used to obtain the SAR image in figure 3.5.
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Figure 3.7: SAR images from sparse “Gotcha Volumetric SAR Data Set, Version 1.0”
(one pass, one collection) for HV Polarization. This images where obtained by using
a polar format algorithm and has no further processing.

Figure 3.8: Representation of the energy scattered for each pixel of the SAR image
can be observed. This surface plot was obtained from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection) for HV polarization channel
and is the same data set used to obtain the SAR image in figure 3.7.
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observed on figures 3.5 through 3.8. As seen in equations (3.1) and (3.2), scattering

matrix is a linear combination of basis matrices corresponding to canonical scattering

mechanisms. For simplicity, the scattering matrix is treated as the characterization

of a single coherent scatter at each pixel. For this research, no external disturbances

due to background clutter or to time fluctuation of the target are assumed. In the

following, three common approaches to coherent decomposition (Pauli and Krogager)

are discussed.

3.1.1 Linear Decomposition. The linear decomposition is the basic decom-

position technique, because it just considers the very same information obtained from

each polarization channel, without further processing. Under this scheme, the infor-

mation obtained from each channel will correspond directly to a vertical to vertical,

horizontal to horizontal or cross-polarized scatter.

The linear decomposition is defined as follows:

kl =


k1

k2

k3

 =


Shh
√

2Shv

Svv

 (3.3)

and it can be color-coded as indicated in Table 3.1

Table 3.1: Color code for linear decomposition.
Vector Mechanism Color

k1 Shh red

k2

√
2Svh green

k3 Svv blue

3.1.2 Pauli Decomposition. This decomposition uses Pauli matrices, for the

basis expansion of Sk as:

Sk =

 Shh Shv

Svh Svv


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Figure 3.9: A representation of the energy present for the k1 component (Shh) at each
pixel can be observed. The k1 component corresponds to a scatter of a horizontal
oriented target scattering. For this SAR image, the presence of objects present in the
scene that reflect the energy transmitted in horizontal polarization without changing
polarization state are highlighted.

=
a√
2

 1 0

0 1

+
b√
2

 1 0

0 −1

+
c√
2

 0 1

1 0

+
d√
2

 0 −j

j 0

 (3.4)

and a, b, c and d are all complex values and are given by

a =
Shh + Svv√

2
(3.5)

b =
Shh − Svv√

2
(3.6)

c =
Shv + Svh√

2
(3.7)

d = j
Shv − Svh√

2
(3.8)
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Figure 3.10: A representation of the energy present for the k2 component (Svh or Shv)
at each pixel can be observed. The k2 component corresponds to a cross-polarized
scatter. For this SAR image, the presence of objects present in the scene that backscat-
ter by changing polarization state are highlighted.

The application of the Pauli decomposition to deterministic targets may be considered

the coherent composition of four scattering mechanisms: the first being single scatter-

ing from a plane surface (single or odd-bounce scattering), the second and third being

diplane scattering (double or even-bounce scattering) from corners with a relative ori-

entation of 0◦ and 45◦, respectively, and the final element being all the antisymmetric

components of the scattering S matrix [16,22,24,28]. These interpretations are based

on consideration of the properties of the Pauli matrices when they undergo a change

of wave polarization basis. In the monostatic case, where Shv = Svh, the Pauli matrix

basis can be modified in its c and d terms as shown on equations (3.9) and (3.10):

c =
Shv + Svh√

2
= 2

Shv + Shv√
2

= 2
Svh + Svh√

2
= 2

Shv√
2

= 2
Svh√

2
(3.9)

d = j
Shv − Svh√

2
= j

Shv − Shv√
2

= j
Svh − Svh√

2
= j

0√
2

= 0 (3.10)
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Figure 3.11: A representation of the energy present for the k3 component (Svv) at
each pixel can be observed. The k3 component corresponds to a scatter of a vertical
oriented target scattering. For this SAR image, the presence of objects present in the
scene that reflect the energy transmitted in vertical polarization without changing
polarization state are highlighted.

Figure 3.12: SAR images using Linear decomposition from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection). This SAR image combine the
contribution of the three previous images in terms of energy present for each image
pixel.
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The final expression for the Pauli matrix basis, is described as a coherent scat-

tering vector kP as follows:

kP =


k1

k2

k3

 =
1√
2


Shh + Svv

2Shv

Svv − Shh

 (3.11)

Figure 3.16 describes the result of the Pauli decomposition on a SAR image from

the “Gotcha Volumetric SAR Data Set, Version 1.0”. The color was coded using

RGB color space as shown on Table 3.2. The k1 component corresponds to a scatter

of a sphere, a plate or a trihedral and is referred to a single-bounce or odd-bounce

scattering. The k2 component corresponds to the scattering mechanism of a diplane

oriented at 45 degrees. This last component is referred to a target that returns a

wave with polarization orthogonal to the incident wave, hence we can say that this

component represent volumetric scatters like the one produced by the forest canopy.

The k3 component represents the scattering mechanism of a dihedral oriented a 0

degrees and is referred to a double-bounce or even-bounce [16,19,22].

Table 3.2: Color code for Pauli decomposition.
Vector Mechanism Color

k1
1√
2
(Shh + Svv) red

k2
1√
2
(2Shv) green

k3
1√
2
(Svv − Shh) blue

3.1.3 Krogager Decomposition. In this case, a scattering matrix is decom-

posed into three coherent components which are interpreted as scattering from a

sphere, diplane, and helix targets under a change of rotation angle θ, as follows in the

scattering matrix in the linear polarization basis S(H,V ) [16, 19,22,24,28]:

S(H,V ) = ejφ
{
ejφSkSSsphere + kDSdiplane(θ) + kHShelix(θ)

}
(3.12)

35



Figure 3.13: Representation of the energy present for the k1 component (Shh+Svv) at
each pixel can be observed. The k1 component corresponds to a scatter of a sphere, a
plate or a trihedral and is referred to a single-bounce or odd-bounce scattering. For
this SAR image, the presence of man-made kind of objects present in the scene are
highlighted in the sense that the energy is strong for these structures.

Ssphere =

 1 0

0 1

 (3.13)

Sdiplane(θ) =

 cos 2θ sin 2θ

sin 2θ − cos 2θ

 (3.14)

Shelix(θ)
= e∓j2θ

 1 ±j

±j −1

 (3.15)

where kS, kD and kH correspond to the sphere, diplane, and helix contribution; θ is

the orientation angle and φ is the absolute phase.

The phase φS represents the displacement of the sphere relative to the diplane inside

the resolution cell. This circular polarization basis S(R,L) is related to the linear

polarization basis S(H,V ) by the following equations [10,14,32]:
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Figure 3.14: Representation of the energy present for the k2 component (2Shv) at each
pixel can be observed. The k2 component corresponds to the scattering mechanism
of a diplane oriented at 45 degrees. This last component is referred to a target that
returns a wave with polarization orthogonal to the incident wave, hence we can say
that this component represent volumetric scatters like the one produced by the forest
canopy. For this SAR image, volumetric scatter is evidenced in the scene.

Srr = jShv +
1

2
(Shh − Svv) (3.16)

Sll = jShv −
1

2
(Shh − Svv) (3.17)

Srl = Slr =
1

2
(Shh + Svv) (3.18)

Expressed in terms of the circular polarization basis S(R,L), the Krogager decomposi-

tion is now given by

S(R,L) =

 Srr Srl

Slr Sll



= ejφ

ejφSkS
 0 j

j 0

 t+ kD

 ej2θ 0

0 −e−j2θ

+ kH

 ej2θ 0

0 0

 (3.19)
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Figure 3.15: Representation of the energy present for the k3 component (Svv−Shh) at
each pixel can be observed. The k3 component represents the scattering mechanism
of a dihedral oriented a 0 degrees and is referred to a double-bounce or even-bounce.
For this SAR image, the lack of features that can provide double or even bounce is
observed.

Figure 3.16: SAR images using Pauli decomposition from sparse “Gotcha Volumetric
SAR Data Set, Version 1.0” (one pass, one collection). This SAR image combine the
contribution of the three previous images in terms of energy present for each image
pixel.

38



Figure 3.17: Representation of the energy present for the k1 component (jShv +
1
2

(Shh − Svv)) at each image pixel can be observed.

Figure 3.18: Representation of the energy present for the k2 component
(1

2
(Shh + Svv)) at each image pixel can be observed.

The elements Srr and Sll directly represent the diplane component. Due to this

condition, two cases of analysis must be made according to whether |Srr| is greater

or less than |Sll|:
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Figure 3.19: Representation of the energy present for the k3 component (jShv −
1
2

(Shh − Svv)) at each image pixel can be observed.

|Srr| ≥ |Sll| ⇒

{
k+
D=|Sll|

k+
H = |Srr| − |Sll|⇐ Left sense helix

|Srr| ≤ |Sll| ⇒

{
k−D=|Srr|

k−H = |Sll| − |Srr|⇐ Right sense helix

It is also important to note that the three Krogager decomposition parameters (kS,

kD, kH) are parameters independent of orientation, in other words, roll-invariant

parameters. This roll-invariant characteristic give a more stable characterization of a

target of interest.

The final expression for the Krogager matrix basis, is described as a coherent

scattering vector kC as follows:

kC =


k1

k2

k3

 =
1√
2


jShv + 1

2
(Shh − Svv)

1
2

(Shh + Svv)

jShv − 1
2

(Shh − Svv)

 (3.20)
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Figure 3.20: SAR images using Krogager decomposition from sparse “Gotcha Volu-
metric SAR Data Set, Version 1.0” (one pass, one collection).

Finally, the Krogager decomposition can be color-coded as shown on Table II:

Table 3.3: Color code for Krogager Decomposition.
Vector Mechanism Color

k1 jShv + 1
2

(Shh − Svv) red
k2

1
2

(Shh + Svv) green
k3 jShv − 1

2
(Shh − Svv) blue

3.1.4 Crámer-Rao Lower Bound. With today’s technology and scientific de-

velopment, tools to estimate or predict the performance of unknown parameters from

a set of measurements is a task that can save a lot of time, and effort. Crámer-Rao

Lower Bound (CRLB) is useful to calculate lower bounds to the variances of any esti-

mate of a set of parameters (also known as unbiased CRLB). With this technique, we

can determine, a priori, whether or not a desired estimation accuracy can be achieved

for a given measurement model. Using probability density function (PDF) of the

measurements as a function of the true parameter values, bounds can be calculated.
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An unbiased parameter estimate is not always possible or desirable (excessive noise

amplification in the unbiased parameters) [20].

The Crámer-Rao Lower Bound will be used as a metric of comparison between com-

bination of both, decomposition methods and color spaces. In the parameter es-

timate problems of signals embedded in noise, the bias and the variance of the

estimate error are particularly significant in evaluating the estimator performance.

The CRLB will tell us how difficult it is to estimate a parameter based in a par-

ticular data model [3, 8, 11, 21]. The CRLB bound of the error correlation matrix

E

[(
Φ̂− Φ

)(
Φ̂− Φ

)T]
is given by [8, 25]:

MSE (Φ) ≥
∂E
[
φ̂
]

∂Φ
J−1 (Φ)

∂E
[
φ̂
]

∂Φ

T

+
(
E
[
Φ̂
]
− Φ

)(
E
[
Φ̂
]
− Φ

)T
(3.21)

where the matrix J (Φ) is referred to as the Fisher Information Matrix (FIM), and

E
[
Φ̂
]
−Φ represents the bias estimator. The MSE (Φ) is the error correlation matrix

since the diagonal terms of E

[(
Φ̂− Φ

)(
Φ̂− Φ

)T]
represent the MSE. where Φ̂

represents our vector of unknown parameters and Φ represents our vector of known

parameters.

Considering that the purpose of this research is to give a quantitative reason

of why one decomposition technique is more efficient than the other one in the sense

that will be more easy for an operator to extract the important feature of a target

present on a particular scene, the author propose to use the CRLB as a measure of

performance of how well a set of data can be estimated.

If the aim is to estimate one or a set of parameters Φ, an estimator Φ̂(y1, y2, ..., yN)

must be created. This estimator is a function of theN observations y(t1), y(t1), ..., y(tN).

The N observations are random variables, making the estimator a random variable

as well. The mean and the variance of Φ̂ gives a measure of how good an estimate of

the estimator Φ̂ is. For this research, the known parameter Φ for each decomposition
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technique is described as follows:

Φlinear =


A1

A2

A3


linear

=


Shh
√

2Shv

Svv

 (3.22)

Φpauli =


A1

A2

A3


pauli

=
1√
2


Shh + Svv

2Shv

Svv − Shh

 (3.23)

ΦKrogager =


A1

A2

A3


Krogager

=
1

2


Shh − Svv + 2iShv

Shh + Svv

Shh − Svv − 2iShv

 (3.24)

and the estimators for each decomposition are in the form described as follows

Φ̂linear =


Â1

Â2

Â3


linear

(3.25)

Φ̂pauli =


Â1

Â2

Â3


pauli

(3.26)

Φ̂Krogager =


Â1

Â2

Â3


Krogager

(3.27)
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Since we are trying to estimate a vector of parameters which correspond to the three

components for each decomposition, the estimator is described as follows

Φ = [A1, A2, A3]
T (3.28)

where A1, A2, A3, corresponds to the complex value of each image pixel of the three

decomposition components at which a color vector will be assigned.

The best situation is when the estimator is unbiased, at the same time that is desirable

for the variance of the estimator E(Φ̂− Φ)2 to be as small as possible. This method

will establish a lower bound on the variance of any estimator, setting a limit on the

accuracy that can be achieved.

The CRLB for an estimation of a parameter vector is

J−1([A1, A2, A3]) (3.29)

where Equation 3.29 is the Fisher Information Matrix (FIM). The diagonal of this

matrix contains the CRLB for each parameter. The FIM contains the derivatives

with respect to the components of the parameter vector of the log-likelihood, l for the

probability density function.
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IV. Performance Limits for Colored SAR Imagery and

feature Extraction

4.1 Data Set Description.

The data set used for this research is the “Gotcha Volumetric SAR Data Set,

Version 1.0”. The data set was publicly released by the Air Force Research Labo-

ratory as a Challenge Problem to the SAR community interested in 2D/3D imaging

of stationary targets. The data set was produced by a fully polarimetric SAR sys-

tem mounted in an airborne platform and has a center frequency of 9.6 GHz with

a bandwidth of 640 MHz. The data consists of eight circular passes at a different

elevation angles, collecting data at each angle of the 360o for every pass. The data is

in a Matlab format (*.mat files) and each file contains the phase history collected for

each azimuth angle of each pass considering the four different polarization.

The MATLAB data structure contains the k-space data, frequencies, range to the

scene center, x, y, z coordinate antenna locations, elevation and azimuth angle in

degrees. The target area is a parking lot with different models of passenger car, a

case tractor, a forklift and different calibration targets such a large top hat reflector,

dihedral and trihedral reflectors [1, 5].

4.2 Processing Raw SAR Data for Image Formation.

The algorithm used to generate the data and images from the Gotcha data set

for a scattering matrix decomposition analysis were obtained using an algorithm on

MATLAB programming software.

4.2.1 Polarimetric Image Formation. The Gotcha data set was collected

by flying around the target in circles. Under this scenario, the data processing and

the algorithm were developed considering a spotlight mode SAR. For this research,

the Polar Format Algorithm (PFA) was used to transform the raw data, which is in

the spatial frequency (k-space) domain, to an (spatial image) domain. This is, the

information of complex values of amplitude and phase in the k-space is transformed
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Figure 4.1: The Gotcha data set contains 8 passes at different altitudes. Each pass
considers 360o for the four polarization channels. Each azimuth angle contains fre-
quency history with the detail of range cells and pulses.

Vehicle Center

Figure 4.2: Target area for Gotcha data collection. Different types of passenger cars
can be observed as well as a forklift and a case tractor. Calibration targets are
not shown in this photo. (Photo from Gotcha data set documentation released by
AFRL.) [1].
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into an intensity value for each pixel on the resulting image [11,22] as shown on Figure

4.4.

4.2.1.1 Polar Format Algorithm (PFA). The PFA map the samples in

the frequency domain to the spatial frequency domain. In the reconstruction process,

the samples in spatial domain are interpolated from its available polar samples by

using two one-dimensional interpolation by each dimension in order to obtain the data

in a rectangular format. Once in a rectangular format, a two-dimensional windowing

process is used to get rid of the side lobes influence. Finally, a Inverse Fourier Trasform

is performed to obtain our complex image as shown on Figure 4.3 [11,19,28].

Polar-to-
Rectangular 

interpolation
2D Window IDFT

Polar Format
Spectral Data

P’(Ku , KR)

Rectangular
Format

Spectral Data

Range/Cross-
Range Image

ρ’(u , R)

Ku

KR

2D
Window

IDFT

Interp.
Ku Dim

Interp.
KR Dim

Figure 4.3: Block Diagram of PFA process [24].

4.2.1.2 Data Processing for Polarimetric Analysis. Once the data is in

the image domain, an image can be formed by using the data from each polarization

channel. At this point, the intensity information for each image pixel is available. Due

to the random nature and the different shapes present in the target, the characteristics

of the return are different for each polarization channel. For this reason, the data
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.

.

.

Pass 8

Figure 4.4: Graphic description of the process of computing a SAR image from raw
Gotcha data. The eight passes are shown, as well as the imagery that can be obtained
from each azimuth angle and polarization channel.

must be scaled and normalized. In order to scale the data, a Dynamic Range (DR)

process is used. This process is performed by extracting the mean value considering

the maximum and minimum amplitude value, considering the data from the three

polarization channels. The mean value will be used as the central value of the DR

and the data considered for each polarimetric channel is the data within the range

plus and minus half the value of the total DR from this mean value. By using this

process, the contribution from each polarization channel is assured. At this point

we have an image for each polarization channel with information of intensity for each

image pixel. Once we have the data scaled and normalized for each decomposition

channel, we use the different decomposition techniques, as described in chapter III

to build our image in a format of tristimulus values for each pixel. This means that

each image pixel had the contribution of three different intensity values, one for each

layer as shown on Figure 4.5. These values are obtained from the mathematical

relationship between channels that are dictated for each decomposition technique as
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Figure 4.5: Graphic description of a decomposed SAR image by the three components
of a particular decomposition technique represented by the vector Xi.

was described in chapter III. A color vector is assigned for each layer of the resulting

colored SAR image. For the case of RGB Color Space, the red color vector is assigned

to the first layer, Green is assigned to the second layer and Blue is assigned to the

third layer [23]. In the case of the (mth, nth) pixel, this will combine the intensity

contribution displaying a color which will be the resulting combined color from the

three intensity values.

4.2.2 SAR imagery Obtained from Gotcha Data Set. By using the data set

described in section 4.1 and the algorithm described in section 4.2. Several sets of

images using all eight passes were computed. These images consider two color spaces,

RGB and CMY and the results are shown on the set of images from Figure 4.6 to

Figure 4.29. Further comments on these figures are made at the end of this section.
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Figure 4.6: This is a SAR image using linear decomposition, obtained computing the
SAR raw data from pass1, azimuth angle number one and RGB color space.

Figure 4.7: This is the same SAR image on Figure 4.6 but computed for CMY color
space. The process of compute the CMY color space image is by subtracting the RGB
values of Figure 4.6 from one.
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Figure 4.8: This is a SAR image using Pauli decomposition, obtained computing the
SAR raw data from pass1, azimuth angle number one and RGB color space.

Figure 4.9: This is the same SAR image on Figure 4.8 but computed for CMY color
space. The process of compute the CMY color space image is by subtracting the RGB
values of Figure 4.8 from one.
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Figure 4.10: This is a SAR image using Krogager decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number one and RGB color space.

Figure 4.11: This is the same SAR image on Figure 4.10 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.10 from one.
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Figure 4.12: This is a SAR image using linear decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 60 and RGB color space.

Figure 4.13: This is the same SAR image on Figure 4.12 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.12 from one.
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Figure 4.14: This is a SAR image using Pauli decomposition, obtained computing the
SAR raw data from pass1, azimuth angle number 60 and RGB color space.

Figure 4.15: This is the same SAR image on Figure 4.14 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.14 from one.
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Figure 4.16: This is a SAR image using Krogager decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 60 and RGB color space.

Figure 4.17: This is the same SAR image on Figure 4.16 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.16 from one.
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Figure 4.18: This is a SAR image using linear decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 150 and RGB color space.

Figure 4.19: This is the same SAR image on Figure 4.18 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.18 from one.
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Figure 4.20: This is a SAR image using Pauli decomposition, obtained computing the
SAR raw data from pass1, azimuth angle number 150 and RGB color space.

Figure 4.21: This is the same SAR image on Figure 4.20 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.20 from one.
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Figure 4.22: This is a SAR image using Krogager decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 150 and RGB color space.

Figure 4.23: This is the same SAR image on Figure 4.22 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.22 from one.
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Figure 4.24: This is a SAR image using linear decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 320 and RGB color space.

Figure 4.25: This is the same SAR image on Figure 4.24 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.24 from one.
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Figure 4.26: This is a SAR image using Pauli decomposition, obtained computing the
SAR raw data from pass1, azimuth angle number 320 and RGB color space.

Figure 4.27: This is the same SAR image on Figure 4.26 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.26 from one.
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Figure 4.28: This is a SAR image using Krogager decomposition, obtained computing
the SAR raw data from pass1, azimuth angle number 320 and RGB color space.

Figure 4.29: This is the same SAR image on Figure 4.28 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.28 from one.

In the case of linear decomposition and RGB color space for all the azimuth

angles observed, as shown on Figures 4.6, 4.12, 4.18 and 4.24, the road can be easily
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Figure 4.30: This is a SAR image using Linear decomposition, obtained computing
the SAR raw data from pass1, full azimuth (360o) and RGB color space.

Figure 4.31: This is the same SAR image on Figure 4.30 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.30 from one.
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Figure 4.32: This is a SAR image using Pauli decomposition, obtained computing the
SAR raw data from pass1, full azimuth (360o) and RGB color space.

Figure 4.33: This is the same SAR image on Figure 4.32 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.32 from one.
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Figure 4.34: This is a SAR image using Krogager decomposition, obtained computing
the SAR raw data from pass1, full azimuth (360o) and RGB color space.

Figure 4.35: This is the same SAR image on Figure 4.34 but computed for CMY
color space. The process of compute the CMY color space image is by subtracting
the RGB values of Figure 4.34 from one.
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noted and differentiated from the rest of the terrain, which, for this case represents

the contribution of the cross-polarized scatter. The man-made objects present in the

scene are denoted with color nearest to white, due to the contribution of Shh and

Svv and Shv or Svh polarization channels. In other words, each polarization channel

contributed with a high value for intensity, giving to each pixel a high contribution

for each RGB color. Due to the additive nature of RGB color space, the resulting

pixels shows up as a near to a white color for those elements.

In the case of linear decomposition and CMY color space for all the azimuth

angles observed, as shown on Figures 4.7, 4.13, 4.19 and 4.25, the man-made objects

present in this scene are displayed with darker color tones, due to the way that CMY

color space were created, which is basically the complement of the RGB color space.

The darker colors do not allow to an average observer like the author to distinguish

sharper shapes of man-made objects as a result of the contribution of Shh and Svv

polarization channels.

In the case of Pauli decomposition and RGB color space for all the azimuth

angles observed, as shown on Figures 4.8, 4.14, 4.20 and 4.26, the road color tones

are not noted as easily as the one in the linear decomposition SAR image still can

be differentiated from the rest of the terrain, which, for this case represents the

contribution of the cross-polarized scatter. The man-made objects present in the

scene show intensity values higher than the ones from the linear decomposition [16,

19, 22] and according to an average observer, the man-made objects have sharper

shapes than the linear decomposition technique. This is due to the algebraic way

that the contribution of Shh and Svv polarization channels are related in the Pauli

decomposition.

In the case of Pauli decomposition and CMY color space for all the azimuth

angles observed, as shown on Figures 4.9, 4.15, 4.21 and 4.27, the scene in general is

displayed with darker color tones, due to the way that CMY color space were created,

and the effect that this color space has over the image is the same as the one in the
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linear decomposition, degrading the perception of the shapes of man-made objects

present in the scene.

In the case of Krogager decomposition and RGB color space for all the azimuth

angles observed, as shown on Figures 4.10, 4.16, 4.22 and 4.28, the contrast between

the road and the rest of the scene is much better, making it easier to recognize the road

than in the other two decomposition techniques. The man-made objects present in

the scene are not as sharp and clear as those from the linear decomposition and Pauli

decomposition, this is due to the Krogager decomposition was created to highlight

circular scatter present in the scene [2,15,16,19,22], which is not the main contribution

of main made objects that are dominated by linear scatter.

In the case of Krogager decomposition and CMY color space for all the azimuth

angles observed, as shown on Figures 4.11, 4.17, 4.23 and 4.29, the scene in general is

displayed with darker color tones, due to the way that CMY color space were created,

and the effect that this color space has over the image is the same as the one in the

linear and Pauli decomposition, degrading the perception of the shapes of man-made

objects present in the scene.

In general for all the azimuth angles observed, the effect of the change of color

space from RGB to CMY color space for the three decomposition techniques is prac-

tically the same, from a perception point of view. This is CMY color space makes

SAR imagery looks darker in general, making it harder to extract features for an

average observer. This is due to the way that color space was computed, as explained

in section 2.3.2.3.

In Figures 4.30 through 4.34 we can observe the result of adding all the contri-

bution from all the azimuth angle for the Linear, Pauli and Krogager decomposition

using RGB and CMY color spaces. The differences of features displayed for each

decomposition can be observed.
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V. Conclusion

5.1 Research Summary

This research provides a compilation SAR polarimetric fundamentals and shows

how multi-color imagery can be constructed using raw SAR data. Three decomposi-

tion techniques (linear, Pauli, Krogager) and their relationship with color spaces for

SAR multi-color imagery were considered. The effects of using these three scatter-

ing matrix decomposition techniques and two different color spaces (RGB and CMY)

are shown when constructing multi-color SAR imagery from sparse data, i.e. low

resolution data. Examples of SAR images based on linear, Pauli and Krogager de-

compositions were presented.

According to [12], for an electronic imaging device, there are some desirable char-

acteristics for color spaces. One of them is that the color space needs to be device

independent, with coordinates that are measurable and related to the standard ob-

server. These characteristics are clearly opposite to the hypothesis that originates

this research which considers device-dependent color spaces. Color spaces like RGB

and CMY were generally designed for specific devices, e.g. computer monitors and

television are RGB-based and color printers are CMY-based. Is necessary to say that,

during the simulation process, the only way to compute a SAR image in a CMY color

space was by subtracting the RGB vector value from one. In color language, this

means subtracting RGB from white to obtain the equivalent color in the CMY color

space. In this case, the resultant format remains RGB and the image can be displayed

using a monitor in the RGB color space.

Considering that one of the research objectives was to establish a performance metric

for comparing between combinations of decomposition technique and color space, a

deep literature review was conducted in color science and the way that humans sense

color stimulus. After considering all information obtained from this literature review,

the following conclusions were made;

• Since this research was oriented to determine how different comobination of

color space and decomposition technique could improve feature extraction for
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an observer or analyst, performance depends directly upon the observer since

every human senses and interprets color stimuli differently;

• Sensing a particular color depends not only on the way the color is stimulating

the sensor, which for the human case is the eye, but also on the environment,

available light and contrast at which the color is being displayed;

• If all the electronic devices on which the image is to be displayed are not cal-

ibrated and not working under the same conditions, the image perception can

be different, stimulating the sensor differently, and hence obtaining a different

interpretation of information from the same image;

• RGB color space is an additive space where different colors are obtained by

adding the fundamental colors of Red, Green and Blue with different inten-

sity weights, with the white color obtained by adding all three colors at their

maximum value;

• CMY color space is a subtractive color space where the different colors are

obtained by absorbing the reflections, i.e., when Cyan and Magenta colorants

are mixed, cyan absorbs the red reflection of the magenta and magenta absorbs

the green reflection of cyan. This leaves blue as the only non-absorbing region.

• When color spaces are used to construct multi-color SAR images, each color is

mapped to one of the three layers that form part of the decomposed SAR image.

The intensity for that color in a particular pixel at each layer is given by the

addition of the contribution of the three layers in the respective pixels.

• The intensity value of each SAR image pixel is independent of the color space

used in SAR imagery.

• Considering that there is not a mathematical definition for RGB and CMY color

spaces that can be used to compare them from a performance point-of-view,

the only performance that could be analyzed was variation in decomposition

technique.
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• Decomposition techniques were created to extract different features and high-

light different elements in a scene from the electromagnetic point-of-view.

Considering all factors described above, there was one method used to quanti-

tatively determines performance of the three decompositions. The method was based

on estimating shift values of a pixel image in the vertical and horizontal coordinates

based upon the features present in each image. Even though both images look sim-

ilarly, each of them were generated in order to show different characteristics of the

same scene.

5.2 Contributions.

• At the beginning of this research, AFIT has no tools and experience on com-

puting Multi-Color polarimetric SAR imagery. With this thesis, a tool for com-

puting Multi-Color Polarimetric SAR imagery is available as a Matlab Code for

Masters or PhD researchers that can take this research to the next level;

• The thesis as a written document compiles the fundamentals on SAR Polarime-

try, Color Spaces and Multi-Color SAR imagery that will give to future re-

searchers on this area a good starting point for further research;

• The Gotcha data set was released as a Challenge to the SAR community in

order to explore the 3-dimensional SAR imaging problem. This thesis explore

a different angle of the Gotcha data set being the first research to approach

the data set to build Multi-Color polarimetric imagery. Hence, this thesis could

complement the 3-dimensional approach in order to improve feature extraction

or target recognition capabilities using polarimetric SAR.

5.3 Suggestions for Further Research.

This research can be used as a tutorial for polarimetric SAR imaging, since the

fundamentals of SAR polarimetry are discussed in detail in Chapter II. During the

development of this research, polarimetric SAR, scattering matrix decomposition and
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graphical representation were explained as well as the relationship with the RGB and

CMY color spaces in Chapter III. Now days, there is a great variety of color spaces

and new methods for computing color in electronic devices. These could be further

analyzed in order to identify color space or a method for improving the way that SAR

polarimetry data is displayed to operators. In this way, feature extraction can be

made in a more efficient and accurate way.

Two specific decomposition techniques were explored, and there is a great variety

available for the SAR community to analyze. This might be a good opportunity to

expand the analysis made under this research.

The code to compute multicolor polarimetric SAR imagery was under constant devel-

opment. During the later stages of this research, a Dynamic Range normalization was

performed in order to improve the quality of the imagery obtained. After considering

different approaches to this problem, it become evident that, as the center value of

the dynamic range varies, differences occured in the features presented for each image.

This highlight that different types of scatterers, i.g., volumetric or man-made, might

be used as a discriminator if the feature of interest are known a-priori.

70



Bibliography

1. GOTCHA 2D/3D Imaging Challenge Problem AFRL/SNAS. Technical report,
Air Force Research Laboratory, United States Air Force, 2007.

2. Alberga, V., E. Krogager, M. Chandra, and G. Wanielik. “Potential of Coher-
ent Decompositions in SAR Polarimetry and Interferometry”. Geoscience and
Remote Sensing Symposium, 2004.IGARSS’04. Proceedings.2004 IEEE Interna-
tional, volume 3, 1792–1795 vol.3. Sept. 2004.

3. Boerner, W.-M. and H. berall. Radar Target Imaging. Springer’Verlag, Berlin
Heidelberg, 1994.

4. Curtis H. Casteel, Jr., LeRoy A. Gorham, Michael J. Minardi, Steven M. Scar-
borough, Kiranmai D. Naidu, and Uttam K. Majumder. “A challenge problem for
2D/3D imaging of targets from a volumetric data set in an urban environment”.
volume 6568, 65680D. SPIE, 2007.

5. Ertin, E., C. D. Austin, S. Sharma, R. L. Moses, and L. C. Potter. “GOTCHA
experience report: three-dimensional SAR imaging with complete circular aper-
tures”. Algorithms for Synthetic Aperture Radar Imagery XIV. Edited by Zelnio,
Edmund G.; Garber, Frederick D.. Proceedings of the SPIE, Volume 6568, pp.
656802 (2007)., volume 6568 of Presented at the Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference. April 2007.

6. Gonzalez, Rafael C. and Richard E. Woods. Digital Image Processing. Pearson
Prentice Hall, Upper Saddle River, NJ, 2008.

7. Hunt, R.W.G. “Application of a Model of Color Appearance to Practical Prob-
lems in Imaging”. volume 90. January 2002.

8. H.V.Poor. Introduction of Signal Detection and Estimation, 3rd Edition. Springer,
New York, NY, 1994.

9. Ibarra, C., O. Kegege, Junfei Li, and H. Foltz. “Radar Polarimetry for Target
Discrimination”. Region 5 Technical Conference, 2007 IEEE. 2007.

10. Inglada, J., J.-C. Souyris, C. Henry, and C. Tyson. “Incoherent SAR Polarimetric
Analysis over Point Targets”. volume 3, 246–249. April 2006.

11. Jakowatz, Charles V., Daniel E. Wahl, Paul H. Eichel, Dennis C. Ghiglia, and
Paul A. Thompson. Spotlight-mode Synthetic Aperture Radar: A Signal Process-
ing Approach. Kluwer Academic Publishers, Boston MA, 1996.

12. Kang, Henry R. Color Technology for Electronic Imaging Devices. SPIE Optical
Engineering Press, Bellingham, Washington, 1996.

13. Karim E. Mattar, Chen Liu and Ramin Sabry. Polarimetric SAR Interferome-
try:Investigation using EC CV-580 SAR data. Technical report, Canada Center
for Remote Sensing, 2005.

71



14. Kim, Yunjin and J. Van Zyl. “Overview of Polarimetric Interferometry”.
Aerospace Conference Proceedings, 2000 IEEE, volume 3, 231–236 vol.3. 2000.

15. Krogager, Ernst. “Advances of Techniques for Utilizing Polarimetric Features of
Radar Targets”. 2004 Target Identification and Recognition Using RF Systems
Symposium. 2006.

16. Lee, Jong-Sen and Eric Pottier. Polarimetric Radar Imaging. CRC Press, Boca
Raton, FL, 2009.

17. Ltd., Intermap Technologies. Fundamental of Remote Sensing. Technical report,
Canada Center for Remote Sensing, 2005.

18. Malacara, Daniel. Color Vision and Colorimetry: Theory and Applications. SPIE
Press, Bellingham, WA, 2002.

19. Massonnet, Didier and Jean-Claude Suyris. Imaging with Synthetic Aperture
Radar. EPFL Press, Boca Raton, FL, 2008.

20. Matson, Charles and Alim Haji. “Biased Cramer-Rao lower bound calculations
for inequality-constrained estimators”. AFRL-DE-PS-JA-2007-1011, Air Force
Research Laboratory, September 2006.

21. Minkoff, John. Signal Processing Fundamentals and Applications for Communi-
cations and Sensing Systems. Artech House Inc., Norwood, MA, 2002.

22. Mott, Harold. Polarimetric Radar. John Wiley & Sons, Inc., Hoboken NJ, 2007.

23. Reck, M. and G. Schreier. “Fourier Series Representation of SAR Polari-
metric Scattering Signatures”. Geoscience and Remote Sensing Symposium,
1990.IGARSS’90.’Remote Sensing Science for the Nineties’.,10th Annual Inter-
national. 1990.

24. Richards, Mark A. Fundamentals of Radar Signal Processing. McGraw-Hill,
Hoboken NJ, 2005.

25. Robinson, D. and P. Milanfar. “Fundamental Performance Limits in Image Reg-
istration”. volume 13, 1185–1199. Sept. 2004.

26. Sadjadi, F. “Improved Target Classification using Optimum Polarimetric SAR
Signatures”. Aerospace and Electronic Systems, IEEE Transactions on, 38(1):38–
49, Jan 2002.

27. Skolnik, Merrill I. Introduction to Radar Systems. McGraw Hill, Boston MA,
2001.

28. Soumekh, Mehrdad. Synthetic Aperture Radar Signal Processing with MATLAB
Algorithms. John Wiley & Sons, Inc., New York NY, 1999.

29. Tkalcic, M. and J.F. Tasic. “Color Spaces: Perceptual, Historical and Applica-
tional Background”. volume 1, 304–308 vol.1. Sept 2003.

72



30. Valberg, Arne. Light Vision Color. John Wiley & Sons Ltd,, West Sussex,
England, 2005.

31. Wyszecky, Gunter and W.S.Stiles. Color Science:Concepts and Methods, Quanti-
tative Data and Formulae, Second Edition. John Wiley & Sons, Inc., New York,
NY, 1982.

32. Xie, Hua, L.E. Pierce, and F.T. Ulaby. “Mutual information based registration
of SAR images”. Geoscience and Remote Sensing Symposium, 2003.IGARSS’03.
Proceedings.2003 IEEE International. 2003.

33. Zheng, Li, Jianqing Zhang, and Yuejun Luo. “Color Matching in Colour Remote
Sensing Image”. volume 3, 303–306. June 2006.

73



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2010 Master’s Thesis September 2008 – March 2010

Performance of Scattering Matrix Decomposition and Color Spaces for
Synthetic Aperture Radar Imagery.

09EN135

Arriagada, Manuel E., Captain, Chilean Air Force

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765 DSN: 785-3636

AFIT/GE/ENG/10-03

Mr Tom Lewis, Gotcha Systems Engineer
937.255.6427 x4347, thomas.lewis3@wpafb.af.mil
RF Systems & Analysis Branch, Sensors Directorate, Air Force Research
Laboratory
Bldg 620, 2241 Avionics Circle, Wright-Patterson Air Force Base, OH 45433

AFRL/RYRR

APPROVAL FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Polarization decomposition techniques are applied to the polarization-dependent data to form colorful imagery that is
easy for a human to interpret. Yet, the presumption is that the SAR system operates with maximum bandwidth
requiring extensive processing for near- or real-time application. In this thesis, the author investigates the differences
between the choices of color space when processing sparse SAR data with three scattering matrix decompositions (linear,
Pauli and Krogager) to determine the best combination for accurate feature extraction. Hence, SAR imagery was
computed for the combination of decomposition techniques and color spaces. This set of SAR imagery allows the reader
to have an abstract idea of the differences between the combination of decomposition techniques and color spaces.

SAR, Polarimetric SAR, Color Spaces.

U U U UU 88

Major Michael A. Saville (ENG)

(937) 255-3636 x4719 - Michael.Saville@afit.edu


	Air Force Institute of Technology
	AFIT Scholar
	3-10-2010

	Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery
	Manuel E. Arriagada
	Recommended Citation


	tmp.1559317231.pdf.KTFUd

