
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-17-2010

Performance Evaluation of a Field Programmable
Gate Array-Based System for Detecting and
Tracking Peer-to-Peer Protocols on a Gigabit
Ethernet Network
Brennon D. Thomas

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer and Systems Architecture Commons, Digital Circuits Commons, and the
Digital Communications and Networking Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Thomas, Brennon D., "Performance Evaluation of a Field Programmable Gate Array-Based System for Detecting and Tracking Peer-to-
Peer Protocols on a Gigabit Ethernet Network" (2010). Theses and Dissertations. 1995.
https://scholar.afit.edu/etd/1995

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1995?utm_source=scholar.afit.edu%2Fetd%2F1995&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Performance Evaluation of a Field Programmable

Gate Array-Based System for Detecting and Tracking

Peer-to-Peer Protocols on a Gigabit Ethernet Network

THESIS

Brennon D. Thomas

AFIT/GCO/ENG/10-20

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCO/ENG/10-20

Performance Evaluation of a Field Programmable

Gate Array-Based System for Detecting and Tracking

Peer-to-Peer Protocols on a Gigabit Ethernet Network

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Brennon D. Thomas, BSEE

June 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/10-20

Abstract

Recent years have seen a massive increase in illegal, suspicious, and malicious

traffic traversing government and military computer networks. Some examples include

illegal file distribution and disclosure of sensitive information using the BitTorrent file

sharing protocol, criminals and terrorists using Voice over Internet Protocol (VoIP)

technologies to communicate, and foreign entities exfiltrating sensitive data from gov-

ernment, military, and Department of Defense contractor networks.

As a result of these growing threats, the TRacking and Analysis for Peer-to-

Peer (TRAPP) system was developed in 2008 to detect BitTorrent and VoIP traffic of

interest. The TRAPP system, designed on a Xilinx Virtex-II Pro Field Programmable

Gate Array (FPGA) proved valuable and effective in detecting traffic of interest on

a 100 Mbps network. Using concepts and technology developed for the TRAPP

system, the TRAPP-2 system is developed on a Xilinx ML510 FPGA. The goals of

this research are to evaluate the performance of the TRAPP-2 system as a solution

to detect and track malicious packets traversing a gigabit Ethernet network. The

TRAPP-2 system detects a BitTorrent, Session Initiation Protocol (SIP), or Domain

Name System (DNS) packet, extracts the payload, compares the data against a hash

list, and if the packet is suspicious, logs the entire packet for future analysis.

Results show that the TRAPP-2 system captures 95.56% of BitTorrent, 20.78%

of SIP INVITE, 37.11% of SIP BYE, and 91.89% of DNS packets of interest while un-

der a 93.7% network utilization (937 Mbps). For another experiment, the contraband

hash list size is increased from 1,000 to 131,072,000 unique items. The experiment

reveals that each doubling of the hash list size results in a mean increase of approx-

imately 16 central processing unit cycles. These results demonstrate the TRAPP-2

system’s ability to detect traffic of interest under a saturated network utilization while

maintaining large contraband hash lists.

iv

Acknowledgements

First and foremost, I would like to thank God for seeing me through this process

and for continuing to bless me in my life.

Many thanks to my advisor, Dr. Mullins, for his advice and insight while writing

and researching this thesis. I would also like to thank my committee members, Dr.

Mills and Dr. Peterson, for their support and suggestions.

I would not be where I am today if it was not for the love and guidance of my

parents. Thank you for raising me to be the man I am today.

Lastly, I want to thank my wife for her unending love, support, and understand-

ing throughout my time here at AFIT. None of this would have been possible without

you.

Brennon D. Thomas

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . x

List of Tables . xiii

List of Abbreviations . xv

I. Introduction . 1
1.1 Motivation . 1
1.2 Overview and Goals . 1
1.3 Thesis Layout . 2

II. Literature Review . 4
2.1 Illicit Traffic . 4

2.1.1 The BitTorrent Protocol 4
2.1.2 The Voice over Internet Protocol 7
2.1.3 The Domain Name System 10

2.2 Analyzing and Classifying Network Traffic 15

2.2.1 Port Matching Analysis 15

2.2.2 Payload Analysis 16

2.2.3 Behavioral Analysis 17

2.3 Network Traffic and Data Obfuscation Methods 18
2.3.1 Byte Padding 18

2.3.2 Ron’s Code 4 18
2.3.3 Virtual Private Network and Secure Shell Tunnels 19
2.3.4 Darknets . 20
2.3.5 The Onion Router Network 21

2.4 Current Methods for Detecting Illicit Traffic 21

2.4.1 Wireshark . 21
2.4.2 Snort . 22
2.4.3 Hi-Performance Protocol Identification Engine . 22

2.4.4 BitTorrent Monitoring System 23

2.4.5 Entropy-Based Malicious DNS detection 25

2.4.6 Cross Entropy-Based Malicious DNS detection . 26

2.4.7 Detecting DNS Tunnels Using Artificial Neural
Networks . 26

vi

Page

2.5 The Substitute Database Manager Hashing Function . . 27

2.6 The Tracking and Analysis for Peer-to-Peer System . . . 28

2.6.1 Capabilities . 29

2.6.2 Limitations . 29
2.7 Summary . 31

III. Methodology . 32

3.1 Goals and Hypotheses 32

3.2 Approach . 34

3.2.1 Hardware Modifications 34
3.2.2 Software Modifications 35
3.2.3 Algorithm . 36

3.3 System Boundaries . 38

3.4 System Services . 39

3.5 Workload . 40
3.5.1 Packet Workload Characteristics 41
3.5.2 BitTorrent Workload 42
3.5.3 SIP Workload 44
3.5.4 DNS Workload 49
3.5.5 Non-BitTorrent/SIP/DNS Workload 52

3.5.6 Network Load 53
3.6 Performance Metrics . 53

3.6.1 Packet Processing Time 54

3.6.2 Probability of Packet Intercept 54

3.6.3 Network Utilization 54
3.7 System Parameters . 56

3.8 Factors . 56
3.9 Evaluation Technique 58

3.9.1 Calculating Packet Processing Time 60

3.9.2 Calculating Probability of Packet Intercept . . . 60

3.10 Experimental Design . 61

3.10.1 Experiment 1 61

3.10.2 Experiment 2 61

3.10.3 Experiment 3 62

3.10.4 Experiment 4 62

3.11 Methodology Summary 62

vii

Page

IV. Results and Analysis . 64

4.1 Results and Analysis of Experiment 1 64

4.1.1 BitTorrent Packet Processing Time 65

4.1.2 SIP Packet Processing Time 66

4.1.3 DNS Packet Processing Time 67

4.1.4 Experiment 1 Analysis 68

4.2 Results and Analysis of Experiment 2 69

4.2.1 Experiment 2 Analysis 70

4.3 Results and Analysis of Experiment 3 71

4.3.1 BitTorrent Probability of Packet Intercept . . . 71

4.3.2 SIP INVITE Probability of Packet Intercept . . 72

4.3.3 SIP BYE Probability of Packet Intercept 74

4.3.4 DNS Probability of Packet Intercept 75

4.3.5 Experiment 3 Analysis 77

4.4 Results and Analysis of Experiment 4 78

4.4.1 Experiment 4 Analysis 81

4.5 Overall Analysis . 82

4.6 Summary . 83

V. Conclusions . 84
5.1 Conclusions of Research 84

5.1.1 Goal #1: Determine the packet processing times
for packets of interest 84

5.1.2 Goal #2: Determine the probability of packet in-
tercept under a flood of 400 packets of interest . 84

5.1.3 Goal #3: Determine the probability of packet in-
tercept under various network utilizations . . . 84

5.1.4 Goal #4: Determine how the hash list size affects
packet processing time 85

5.2 Significance of Research 85

5.3 Recommendations for Future Research 86

Appendix A. Experimental Data . 88

A.1 Results of Experiment 1 88

A.2 Results of Experiment 2 92

A.3 Results of Experiment 3 93

A.4 Results of Experiment 4 98

viii

Page

Appendix B. Pilot Test Data . 103

B.1 Results of Pilot Studies 103
B.1.1 BRAM versus SDRAM Memory Scheme 103

B.1.2 DNS Packet Detection 105
B.1.3 sdbm Hashing Times 106

B.1.4 Packet Size Transfer Times 108

Appendix C. Constructing the TRAPP-2 System Hardware 110

C.1 Hardware Description 110

C.1.1 Microprocessor 110

C.1.2 Synchronous Dynamic Random Access Memory 110

C.1.3 Block Random Access Memory 110

C.1.4 XPS Hard Ethernet Media Access Controller . . 110
C.1.5 RS232 Universal Asynchronous Receiver/Trans-

mitter . 111
C.1.6 XPS Timer . 111

C.2 Component Configuration 111

C.3 Converting from MII to RGMII v2.0 124

Bibliography . 128

Vita . 132

ix

List of Figures
Figure Page

2.1. The Session Initiation Protocol Process [Cis10]. 9

2.2. The Domain Name System Distributed Database [Moh09]. . . . 10

2.3. Establishing a Domain Name System Tunnel. 13

2.4. The BitTorrent Monitoring System Process [CCM+07]. 24

2.5. Entropy Changes In the Domain Name System External Query

Traffic [RKSM08]. 25

2.6. TRacking and Analysis for Peer-to-Peer System Flowchart [Sch09]. 30

3.1. Summary of Experiments for the TRacking and Analysis for

Peer-to-Peer 2 System. 33

3.2. Packet Data Flow in the TRacking and Analysis for Peer-to-Peer

2 System. 37

3.3. The TRacking and Analysis for Peer-to-Peer 2 System Under Test. 38

3.4. BitTorrent Packet Type Hierarchy for the TRacking and Analysis

for Peer-to-Peer 2 System. 42

3.5. Session Initiation Protocol Packet Type Hierarchy for the TRack-

ing and Analysis for Peer-to-Peer 2 System. 44

3.6. Domain Name System Packet Type Hierarchy for the TRacking

and Analysis for Peer-to-Peer 2 System. 50

3.7. Packet Creation and Experimental Hardware Configuration Setup

for the TRacking and Analysis for Peer-to-Peer 2 System. . . . 59

3.8. Experimental Setup for the TRacking and Analysis for Peer-to-

Peer 2 System. 60

4.1. Mean Packet Processing Times for the 12 Different Packet Types

for Experiment 1. 65

4.2. Mean Packet Processing Times for BitTorrent Packet Types for

Experiment 1. 66

4.3. Mean Packet Processing Times for Session Initiation Protocol

Packet Types for Experiment 1. 67

x

Figure Page

4.4. Mean Packet Processing Times for Domain Name System Packet

Types for Experiment 1. 68

4.5. Network Utilization and Probability of Packet Intercept vs Flood

of 1200 packets (400 packets x 3 replications) Worst-Case Sce-

nario Packets for Experiment 2. 70

4.6. Probability of Packet Intercept for BitTorrent Packets vs Various

Network Utilizations for Experiment 3. 72

4.7. Probability of Packet Intercept for Session Initiation Protocol

INVITE Packets vs Various Network Utilizations for Experiment

3. 74

4.8. Probability of Packet Intercept for Session Initiation Protocol

BYE Packets vs Various Network Utilizations for Experiment 3. 75

4.9. Probability of Packet Intercept for Domain Name System Packets

vs Various Network Utilizations for Experiment 3. 77

4.10. Mean Packet Processing Times vs 17 Different Hash List Sizes

for Experiment 4. 79

4.11. Mean Packet Processing Times vs Natural Log of 17 Different

Hash List Sizes for Experiment 4. 80

C.1. The Project Creation Options Window. 111

C.2. The Project Creation and Repository Selection Window. 112

C.3. The Base System Builder Design Selection Window. 113

C.4. The Board Selection Window. 114

C.5. The Processor Selection Window. 115

C.6. The Processor Configuration Window. 116

C.7. The Peripheral Configuration Window. 117

C.8. The Processor Cache Configuration Window. 118

C.9. The Application Selection Window. 119

C.10. The Summary Configuration Window. 120

C.11. The Configure Libraries and Drivers Window. 121

C.12. The Software Platform Settings Window. 122

xi

Figure Page

C.13. The Software Platform Settings OS and Lib Configuration Win-

dow. 123

xii

List of Tables
Table Page

2.1. Speed Comparisons of Symmetric Ciphers on a Pentium II [Sta06]. 19

3.1. BitTorrent Packet Weights for the TRacking and Analysis for

Peer-to-Peer 2 System. 43

3.2. Session Initiation Protocol INVITE Packet Weights for the TRack-

ing and Analysis for Peer-to-Peer 2 System. 45

3.3. Session Initiation Protocol BYE Packet Weights for the TRack-

ing and Analysis for Peer-to-Peer 2 System. 46

3.4. Domain Name System Packet Weights for the TRacking and

Analysis for Peer-to-Peer 2 System. 50

3.5. Network Utilizations Due to the Linux pktgen Utility Load in

the TRacking and Analysis for Peer-to-Peer 2 System. 53

3.6. Factor Levels for Experiments 1, 2, and 3, for the TRacking and

Analysis for Peer-to-Peer 2 System. 57

3.7. Factor Levels for Experiment 4 for the TRacking and Analysis

for Peer-to-Peer 2 System. 58

4.1. Sorted Mean Packet Processing Times for Experiment 1. 64

4.2. Sorted BitTorrent Mean Packet Processing Times for Experiment

1. 65

4.3. Sorted Session Initiation Protocol Mean Packet Processing Times

for Experiment 1. 66

4.4. Sorted Domain Name System Mean Packet Processing Times for

Experiment 1. 67

4.5. Probability of Packet Intercept for Flood of 1200 (400 packets x

3 replications) Worst-Case Scenario Packets for Experiment 2. . 69

4.6. Probability of Packet Intercept for BitTorrent Packets Under

Various Network Utilizations for Experiment 3. 71

4.7. Probability of Packet Intercept for Session Initiation Protocol

INVITE Packets Under Various Network Utilizations for Exper-

iment 3. 73

xiii

Table Page

4.8. Probability of Packet Intercept for Session Initiation Protocol

BYE Packets Under Various Network Utilizations for Experiment

3. 74

4.9. Probability of Packet Intercept for Domain Name System Packets

Under Various Network Utilizations for Experiment 3. 76

4.10. Mean Packet Processing Times for 17 Different Hash List Sizes

for Experiment 4. 78

4.11. Difference Between Mean Packet Processing Times for 17 Differ-

ent Hash List Sizes for Experiment 4. 81

A.1. CPU Cycle Data for Experiment 1. 89

A.2. CPU Cycle Data for Experiment 1 Continued. 90

A.3. CPU Cycle Data for Experiment 1 Continued. 91

A.4. Packets Captured for Experiment 2. 92

A.5. Packets Captured for Experiment 3, Utilization 1 (≈20.4%). . . 93

A.6. Packets Captured for Experiment 3, Utilization 2 (≈30.1%). . . 94

A.7. Packets Captured for Experiment 3, Utilization 3 (≈40.8%). . . 94

A.8. Packets Captured for Experiment 3, Utilization 4 (≈49.8%). . . 95

A.9. Packets Captured for Experiment 3, Utilization 5 (≈60.2%). . . 95

A.10. Packets Captured for Experiment 3, Utilization 6 (≈71.4%). . . 96

A.11. Packets Captured for Experiment 3, Utilization 7 (≈81.8%). . . 96

A.12. Packets Captured for Experiment 3, Utilization 8 (≈93.7%). . . 97

A.13. CPU Cycle Data for Experiment 4. 98

A.14. CPU Cycle Data for Experiment 4 Continued. 99

A.15. CPU Cycle Data for Experiment 4 Continued. 100

A.16. CPU Cycle Data for Experiment 4 Continued. 101

A.17. CPU Cycle Data for Experiment 4 Continued. 102

B.1. CPU Cycles Used to Process a SIP Packet. 104

B.2. CPU Cycles Used to Identify a DNS Packet. 105

B.3. CPU Cycles Used to sdbm hash a SIP Packet. 107

B.4. CPU Cycles Used to Copy Smallest versus Largest Packet. . . . 109

xiv

List of Abbreviations
Abbreviation Page

VoIP Voice over Internet Protocol 1

DNS Domain Name System . 1

TRAPP TRacking and Analysis for Peer-to-Peer 1

FPGA Field Programmable Gate Array 1

SIP Session Initiation Protocol 2

CPU Central Processing Unit 2

sdbm Substitute Database Manager 2

HTTP Hypertext Transfer Protocol 5

TCP Transmission Control Protocol 6

SHA-1 Secure Hash Algorithm 1 6

IP Internet Protocol . 8

URI Uniform Resource Identifier 9

UDP User Datagram Protocol 12

MD5 Message-Digest algorithm 5 15

VPN Virtual Private Network 18

SSH Secure Shell . 18

HiPPIE Hi-Performance Protocol Identification Engine 22

LAN Local Area Network . 29

SPAN Switched Port Analyzer 29

BRAM Block Random Access Memory 34

SDRAM Synchronous Dynamic Random Access Memory 35

SUT System Under Test . 38

CUT Component Under Test 38

BASH Bourne Again SHell . 55

xv

Performance Evaluation of a Field Programmable

Gate Array-Based System for Detecting and Tracking

Peer-to-Peer Protocols on a Gigabit Ethernet Network

I. Introduction

1.1 Motivation

Billions of packets traverse government and military networks every day. Often,

these packets have legitimate destinations. Unfortunately, the past few years

have seen a massive increase in illegal, suspicious, and malicious traffic. Some exam-

ples include BitTorrent illegal file distribution, suspects of interest using Voice over In-

ternet Protocol (VoIP) phones to conduct business, and Domain Name System (DNS)

data exfiltration. Recent stories include blueprints for Marine One being leaked by

a United States contractor using a BitTorrent file sharing program, the Mumbai ter-

rorists using VoIP phones to communicate, and Chinese hackers pilfering intellectual

property from Google and other United States companies [FOX09] [Kah08] [Wir10].

As a result of these growing threats, the TRacking and Analysis for Peer-to-

Peer (TRAPP) system was developed to detect BitTorrent and VoIP traffic of inter-

est [Sch09]. The system resides on a Xilinx Virtex-II Pro Field Programmable Gate

Array (FPGA). The first iteration prototype is limited in both processing speed and

by a 100 megabit Ethernet card, but still captures packets of interest with a “prob-

ability of intercept of at least 99.0%, using a 95% confidence interval and given an

89.6 Mbps network utilization” [Sch09]. These results prove the TRAPP system is a

viable tool worth expanding its capabilities to detect malicious network traffic.

1.2 Overview and Goals

This research extends the technology and concepts of the first TRAPP system by

implementing a more powerful FPGA and incorporating an additional protocol. The

1

focus of this research is create a second generation TRAPP system, named TRAPP-2,

that is designed on a Xilinx ML510 FPGA board with a faster processor and a gigabit

Ethernet controller [Xil09]. The original TRAPP system detects the BitTorrent and

Session Initiation Protocol (SIP) peer-to-peer protocols in real-time. For the TRAPP-

2 system, malicious Domain Name System (DNS) detection is added. Ultimately, the

research determines that the TRAPP-2 system is a feasible solution to detect and

track protocols of interest for law enforcement and intelligence agencies on gigabit

Ethernet networks.

The TRAPP-2 system meets four measurement goals. The first goal determines

the packet processing times for packets detected by the TRAPP-2 system. The second

goal determines the probability of packet intercept under a flood of packet-of-interest

traffic. The third goal determines the probability of packet intercept under various

network utilizations. The last goal determines how increasing the hash list size affects

the packet processing time. The two metrics used to measure performance are packet

processing time, measured in Central Processing Unit (CPU) cycles, and probability

of packet intercept.

1.3 Thesis Layout

Chapter 1 outlines the motivation, overview, and goals of the research. An

overview, background information, and related research on illicit traffic, network traf-

fic classification, network traffic obfuscation methods, current methods of detecting

malicious and illegal network traffic, the Substitute Database Manager (sdbm) hash-

ing function, and the TRAPP system are covered in Chapter 2. Chapter 3 explains the

method and experiments used to evaluate the performance of the TRAPP-2 system.

Chapter 4 presents the analysis and discussion of the results from the experiments.

The conclusions drawn from the research, real-world significance, and future research

areas are detailed in Chapter 5. Appendix A contains all of the experimental data.

Appendix B contains the pilot test data used to design and build the TRAPP-2 sys-

2

tem. Appendix C provides a hardware construction guide to build the TRAPP-2

system.

3

II. Literature Review

This chapter presents an overview, background information, and related research

on illicit traffic, network traffic classification, network traffic obfuscation meth-

ods, current methods of detecting malicious and illegal network traffic, the Substitute

Database Manager (sdbm) hashing function, and the TRacking and Analysis for Peer-

to-Peer (TRAPP) system. Section 2.1 provides a brief overview of the BitTorrent,

Voice over Internet Protocol (VoIP), and Domain Name System (DNS) protocols and

their illegitimate uses. The methods of classifying network traffic are detailed in Sec-

tion 2.2. Section 2.3 covers some of the obfuscation and evasion methods used to

hide network traffic and data. This allows for an exploration of the current methods

of detecting illicit traffic in Section 2.4. This is followed by an examination of the

sdbm hashing function in Section 2.5 and the current TRAPP system’s capabilities

and limitations in Section 2.6. The chapter is summarized in Section 2.7.

2.1 Illicit Traffic

The Internet has evolved from a small network of sparsely connected computers

to an expansive web of millions. The rapid access to information, knowledge, and

current events has been paralleled with a proliferation of illicit data and traffic. Bit-

Torrent, VoIP, and DNS are legitimate protocols and services; however, they can also

be used for illicit purposes. Some examples include the distribution of illegal files us-

ing BitTorrent, terrorists using VoIP for command and control during operations, and

hackers exploiting DNS to exfiltrate sensitive data from networks [Kah08] [Van09].

2.1.1 The BitTorrent Protocol. The BitTorrent protocol is the natural

evolution of file sharing protocols [Coh08]. The BitTorrent protocol was created by

Bram Cohen as an alternative to the centralized file sharing programs such as Napster

and Gnutella [Coh08].

The Napster file sharing program was created by Shawn Fanning to allow his

friends to share and distribute .mp3 music files [Tys08]. The popularity of Napster

4

exploded and became the preferred method of sharing legal and illegal music files

over the Internet. The Napster system relied on a central server, run by the Napster

organization, to point clients to the specific .mp3 music files requested. The server

acted as a mediator to set up the direct peer-to-peer connection between the file

downloader and the file uploader. The servers did not store or host any of the actual

.mp3 files being downloaded. It did not take long for record companies and prosecutors

to target Napster for the dissemination of copyrighted music. The central servers that

the Napster system relied on proved to be an easy target for the Recording Industry

Association of America and various music labels. Ultimately, the lawsuits forced

Napster to shut down in 2001 [Fel04].

As a result of the Napster shutdown, file sharing programs migrated toward a

decentralized approach. This eliminated the need for a centralized server and led to

the development of BitTorrent [Coh08]. In addition to a decentralized architecture,

the BitTorrent protocol implemented two new methods of downloading files. The first

method was to break the file into blocks of 256 kilobytes. This allowed downloaders

to accumulate different blocks, or parts of the file, and assemble them upon download

completion to create the entire file. As soon as a block was completely downloaded,

it was immediately uploaded to other peers seeking the file. To aid in the speed

of downloading, the BitTorrent protocol was designed to capitalize on the disparate

download versus upload speeds offered by Internet Service Providers (ISPs). The

downloader of a file was able to simultaneously download blocks of the file from

different uploaders. Since ISPs provided download speeds significantly greater than

upload speeds, a downloader could accumulate numerous smaller peer upload speeds

to match his download speed [Coh08]. Over time, the BitTorrent protocol has become

the preferred method of sharing files over the Internet due to its efficiency.

Currently, the BitTorrent protocol consists of two different protocols. The first

is the BitTorrent Tracker protocol which runs over the Hypertext Transfer Protocol

(HTTP). It communicates between clients and a tracker website to point clients to

5

the peers sharing the requested file. A tracker website maintains a dynamic database

of peers associated with a file [Coh08].

The second, and more relevant protocol for this research, is the peer wire pro-

tocol. The peer wire protocol runs over the Transmission Control Protocol (TCP)

and is used to exchange the file pieces specified in the file’s .torrent file. The peer

wire protocol relies on the Secure Hash Algorithm 1 (SHA-1) for file identification

and data block integrity verification [Coh08]. SHA-1, outlined in Request for Com-

ments (RFC) 3174, is a United States Government algorithm formally named as the

Federal Information Processing Standards Publication 180-1 (FIPS 180-1) [RFC01].

The algorithm is designed to take a variable-sized binary input less than 264 bits and

output a 160 bit message called a “message digest.”

The SHA-1 hash function is used to hash the information dictionary found in

the .torrent file. The digest represents a digital signature of the file and its contents to

prevent confusing different files with the same file name. According to the BitTorrent

Protocol Specifications, “The peer wire’s protocol consists of a handshake followed

by a never-ending stream of length-prefixed messages. The handshake starts with

character nineteen (decimal) followed by the string BitTorrent protocol” [Coh08].

The decimal nineteen followed by the string BitTorrent protocol is critical for

identifying BitTorrent packets in this research. The next piece of information is the

20 byte SHA-1 hash of the information dictionary [Coh08]. An example of a handshake

message is dissected below [Sch09].

The client sends handshakes to other peers to retrieve parts of the file:

<13>BitTorrent protocol<0000000000100001101C9D63211C3C570FFBA

DD49C5649D3FB4972732D5554313737302DF39FFDC774B56A4C5352C11C>

6

Line breaks and spaces are added to aid in readability:

<13>BitTorrent protocol

<00 00 00 00 00 10 00 01

10 1C 9D 63 21 1C 3C 57 0F FB AD D4 9C 56 49 D3 FB 49 72 73

2D 55 54 31 37 37 30 2D F3 9F FD C7 74 B5 6A 4C 53 52 C1 1C>

The first piece of information in the extracted handshake is the string length

of the protocol being used (0x13 in hexadecimal is 19 in decimal.) The second

piece is the protocol header, the ASCII string “BitTorrent protocol” which is 19

characters in length. The third portion consists of the reserved extension bytes

00 00 00 00 00 10 00 01. This is followed by the SHA-1 hash of the information

dictionary:

10 1C 9D 63 21 1C 3C 57 0F FB AD D4 9C 56 49 D3 FB 49 72 73

and finally the Peer Identification:

2D 55 54 31 37 37 30 2D F3 9F FD C7 74 B5 6A 4C 53 52 C1 1C

The BitTorrent protocol relies on the transfer of blocks of data that combine to

form the file being shared. As a result, these blocks are also run through SHA-1 to

ensure data integrity. The client performs a SHA-1 on each downloaded block and

compares it to the value in the .torrent file to verify the data integrity [Coh08].

2.1.2 The Voice over Internet Protocol. The Voice over Internet Protocol

(VoIP) is primarily used to make phone calls over the Internet [Sky09]. A person’s

voice is digitized, placed in a packet, and sent to the receiver on the other end. The

primary protocol used to setup, maintain, and tear down a VoIP call is the Session

Initiation Protocol.

2.1.2.1 The Session Initiation Protocol. The plan and protocol for the

Session Initiation Protocol (SIP) was submitted by Henning Schulzrinne of Columbia

University in 1999 [Ubi08]. The protocol, approved by the Internet Engineering

7

Task Force (IETF) as Request for Comments (RFC) 2543, centered on establish-

ing and controlling multiparty multimedia sessions [Ubi08]. The SIP protocol was

updated in IETF RFC 3261 and defined to be an application-layer control protocol

that can establish, modify, and terminate multimedia sessions such as Internet tele-

phony calls [RFC02]. The purpose of SIP is to assist in peer location in addition

to managing the connection once it is established. Applications such as interactive

gaming, media on demand, and voice, video, or web conferencing utilize the SIP pro-

tocol [Ubi08]. More importantly, SIP is currently used by VoIP providers Vonage and

Skype [Cis02] [Sky09].

2.1.2.2 VoIP Technical Specifications. Figure 2.1 is an illustration

of how a VoIP call is made using SIP. For clarification, Alice is calling Bob using a

Proxy Server that coordinates and routes requests between clients and servers. The

call also uses a Registrar/Location Server, which is a database of all the SIP clients

and SIP contact information within a network domain. Lastly, BYE and INVITE are

SIP specific request messages.

• Alice’s SIP client sends an INVITE request to her Proxy Server (1). Alice’s

Proxy Server notifies her that a call is being attempted (2). Alice’s Domain

Name System (DNS) server must perform a DNS lookup to determine the In-

ternet Protocol (IP) address of Bob’s domain (3,4).

• Alice’s Proxy Server sends the INVITE request to Bob’s Proxy Server (5). Bob’s

Proxy Server notifies Alice’s Proxy Server that a call is being attempted (6).

Bob’s Proxy Server must query the Registrar/Location Server to determine

Bob’s exact location and if he is currently signed on (7,8). Bob’s Proxy Server

forwards the INVITE message to Bob’s SIP client (9).

• Bob sends his ringing response back to Alice via the Proxy Servers (10,11,12).

If Bob is available, his SIP client sends an OK response to Alice via the Proxy

Servers (13,14,15).

8

• Alice receives Bob’s OK and sends an acknowledgment directly back to Bob to

confirm the call (16). The session is now established and data can be exchanged

via the Real-time Transport Protocol [Cis10].

Figure 2.1: The Session Initiation Protocol Process [Cis10].

The steps of interest are at the beginning and end of the SIP-based VoIP call,

particularly the session setup and tear down. During the setup of a SIP-based VoIP

call, the INVITE request is used to initiate a connection from one client to another.

The INVITE request contains the SIP Uniform Resource Identifier (URI). The URI is

the address of the client on the network and follows the same formatting convention as

an email address (user@host). In the SIP message, the SIP URI is concatenated to the

sip: identifier. Examples include sip:bob@example.com and sip:2001@10.1.1.1.

During the tear down of a SIP-based VoIP call, the BYE request messages are used to

9

terminate a SIP connection session. The BYE message also contains SIP URIs, which

can identify certain users or domain addresses. For the purpose of this research, the

INVITE and BYE SIP requests are examined in the SIP transaction because they

contain the URI of both the sender and receiver.

2.1.3 The Domain Name System. The Domain Name System (DNS) is

perhaps the most critical service for the Internet. DNS converts human-friendly host

addresses to computer readable Internet host addresses, much like a phone book. This

allows a user to remember google.com instead of the IP address 74.125.67.100. De-

spite the massive dependency on DNS, the security and vulnerabilities of the protocol

have recently come to light. A brief overview of how DNS works is followed by the

current methods of abusing the protocol, specifically DNS tunneling.

2.1.3.1 The Domain Name System Overview. DNS is a distributed

database that is indexed by domain names with the goal of decentralized adminis-

tration. The domain name is part of a path in an inverted tree that constitutes the

domain name space. As shown in Figure 2.2, the top of the inverted tree contains the

root, with various subdomains that branch off from it [AL01].

Figure 2.2: The Domain Name System Distributed Database [Moh09].

10

Each of the nodes, or domain names, contain a text label that is capped at 63

characters in length as opposed to the root which is a zero-length, or null, label. The

full domain name of a node starts from the node and follows the path up towards root,

adding each subsequent node to its name [AL01]. In the example from Figure 2.2,

this would be www.cs.colorado.edu.

2.1.3.2 Domain Name System and the Internet. DNS is implemented

on the Internet to create one of the most crucial infrastructure services. The Internet

domain name space consists of certain top level domains. Some of these top level

domains include .com, .edu, .mil, and .gov and are managed by the Internet Corpo-

ration for Assigned Names and Numbers (ICANN). With the knowledge of the top

level domains, it is easier to dissect and read domain names. The decentralized ad-

ministration of DNS is possible through delegation. Delegation allows domains and

subdomains to be broken up for ease of management [AL01]. The personnel who

run the .mil domain would rather delegate responsibility to the subdomains, such as

af.mil and navy.mil, than manage each of them.

A key component of a domain name space is the name server. Name servers

contain information pertaining to the domain name space, also called a zone. There

are two types of name servers: secondary master and primary master. The secondary

master for a zone name server polls the primary master server for zone data. The

primary master name server for a zone extracts the data for the zone from a local file,

called zone data files, which are also referred to as data files or database files. The zone

data files contain resource records describing the hosts and delegation subdomains in

the zone. These zone data files also contain entries called DNS resource records [AL01].

Each of the domains in a domain name space contains resource records that

contain data associated with the domain. Some of these records include A for address

record, NS for nameserver record, CNAME for canonical name record, and TXT for

text record [AL01].

11

Another key component of the domain name space is the resolver, which is

a client that accesses name servers when information is needed. An example is a

web browser trying to determine the IP address of google.com. The resolver’s three

tasks are to handle querying a name server, interpreting responses, and passing the

information to the requesting program [AL01].

The resolution process is important for name servers to retrieve data from the

domain name space for the resolvers. Name servers perform two functions in the

domain name space. The first is to resolve data within their own authoritative zones

(within their own organization’s network). The second function is resolve data for non-

authoritative zones in the domain name space (from another organization’s network).

The resolution of data by name servers is accomplished either recursively or iteratively.

In the recursive case, name servers pass the responsibility to more authoritative name

servers to resolve data. The iterative process requires a single name server to query

other name servers to try and get closer to the actual answer [AL01].

2.1.3.3 Abusing the Internet Domain Name System. The reliability,

speed, and dependence on DNS make it a critical service for the Internet. However,

the DNS protocol can be taken advantage of for nefarious purposes. One method of

abusing the protocol is DNS tunneling as first suggested in a 1998 Bugtraq posting by

Oskar Pearson [Pea98]. DNS tunneling is an abuse of DNS records to transfer non-

DNS data in and out of a network using the DNS protocol. Non-DNS data can include

files, botnet commands, and even segmented audio media [Van09]. DNS tunneling is

appealing because it is a covert channel and is operating system independent [Van09].

DNS tunneling contrasts with legitimate tunnels, such as Virtual Private Network

and Secure Shell, which are explained in Section 2.3.

The concept of the DNS tunnel is to use a DNS server, under control of a hacker,

as an external trusted server to tunnel information out of a protected network through

User Datagram Protocol (UDP) port 53. Since most protected networks permit DNS

traffic to exit, the requests are granted. The data are transmitted through the tunnel

12

by sending data to the hacker’s DNS server in the form of a query and getting data

back in the form of a response [Van09]. This can be done once to communicate with

a botnet or repeated thousands of times to exfiltrate files and data. The tunneled

data appears as the DNS request, [exfiltrated data].hacker.com, with the data

residing in the lowest level domain. The [exfiltrated data] is usually encoded in

Base32 or Base64 and would look more like 0adbEnPJygrGCgvGS.hacker.com if it

was viewed using a network protocol analyzer such as Wireshark. Since hacker.com

is under the hacker’s control, the DNS server interprets the request according to

the hacker’s desires. The hacker’s DNS server decodes the exfiltrated data and then

responds with data that is tunneled back to the compromised computer in the form

of a DNS response [Van09]. Figure 2.3 summarizes the process in five steps:

Figure 2.3: Establishing a Domain Name System Tunnel.

1. The victim’s computer performs a DNS request for

[exfiltrated data].hacker.com.

2. [exfiltrated data].hacker.com is not locally cached, so the victim asks the

Company X root DNS server if it can resolve the request.

3. Company X’s root DNS server cannot resolve the request, so it forwards it to

the DNS server under the hacker’s control at hacker.com.

13

4. The hacker sends back a DNS response which easily passes through a network

defense appliance since DNS is assumed to be trusted.

5. The victim receives the DNS response to exfiltrate more data, connect to a

botnet, etc.

The amount and type of data transferred through a DNS tunnel depends on the

DNS record being used. Some of the commonly abused DNS records to tunnel data

include:

• TXT: Text records permit free form data and can include spaces. Information

stored is encoded in Base64 allowing 220 bytes of data per record. TXT records

can contain any data in them as long as the length is less than 255 octets.

• CNAME: Canonical Name Records are alias records. They only allow the char-

acters A through Z, digits 0-9, and the hyphen.

• EDNS0: The Extension Mechanism for DNS record can be greater than the 512

byte UDP DNS maximum and carry a 1280 byte default payload.

• A and MX: Address and Mail records, respectively. They can be used as well,

but have more limitations and cannot store all types of data [Van09].

2.1.3.4 The OzymanDNS Domain Name System Tunneling Application.

OzymanDNS is a tunneling program used to tunnel all Internet traffic through DNS.

It accomplishes this by encapsulating Internet data as DNS traffic and sending it

through UDP port 53 instead of the traditional HTTP TCP port 80. It was developed

by the DNS security guru Dan Kaminsky. This program allows users to discreetly

send traffic through port 53 and the DNS protocol. Organizations and agencies rely

on DNS to provide domain name resolution and lookups for the network and users.

The ability for malicious users to transport possible data and traffic through a trusted

and overall innocuous port is a major threat. The OzymanDNS suite of perl scripts

is 32 kilobytes, making it a small and efficient exfiltration tool [Kam09].

14

2.1.3.5 The Iodine Domain Name System Tunneling Application.

Iodine is another program capable of tunneling Internet Protocol version 4 traffic

through DNS. Iodine offers more benefits over other DNS tunnel implementations.

Some of these benefits include portability between systems, a Message-Digest algo-

rithm 5 (MD5) challenge-response for login, and the use of the NULL type to allow

unencoded downstream data which allows up to a kilobyte of compressed payload

data. The single program can operate as a client or server depending on the options

specified by a user. Iodine supports, in decreasing bandwidth order, the use of NULL,

TXT, SRV, MX, CNAME and A records [Kry09]. For this research, the malicious

DNS packets used for testing are created using Iodine.

2.2 Analyzing and Classifying Network Traffic

Before the advent of Darknets and anonymizers like Tor (see Section 2.3), ana-

lyzing network traffic was relatively simple [BEPW02] [Tor09a]. The three methods

for analyzing network traffic are port matching, payload analysis, and transport-level

communication flow.

2.2.1 Port Matching Analysis. The most rudimentary, although sometimes

most effective, method of classifying network traffic is done by port matching analysis.

The transport level source and destination ports are extracted to reveal which ports

are being used. By comparing the ports to a known list of protocols, the traffic can

be classified quickly and efficiently.

Simple examples include the use of port 23 for telnet or port 80 for web servers.

Ports 23 and 80 are well known ports for their respective services, although they are

not bound to the ports. A protocol of interest in this research, DNS, runs over both

TCP and UDP port 53. Identifying traffic on UDP port 53 will be critical in detecting

DNS exfiltration attempts.

The primary problem with port matching is that some applications are not

anchored to a port or port range. For example, the BitTorrent protocol is not anchored

15

to a single port. BitTorrent users have the option to manually assign a port number

to use or allow the client program to randomly assign one. Malicious insiders could

potentially run BitTorrent through port 80, a port open on most enterprise networks

for web traffic [Gon05]. Only a detailed packet inspection would reveal the true

nature of the traffic. Research shows up to 70% of Internet traffic is unidentifiable

strictly based on port, underlining the futility in identifying traffic solely based on

port matching [MW06].

2.2.2 Payload Analysis. The next step in classifying network traffic can

be done by analyzing the payload. The payload of packets contains certain byte

strings signifying the use of a certain application or protocol. Sen et al. developed an

approach to identify peer-to-peer protocols based on application-level signatures. The

protocols researched were Gnutella, eDonkey, DirectConnect, Kazaa, and BitTorrent.

With the BitTorrent protocol, there is no signaling traffic between the client server

and tracker server. Sen, et al. identified BitTorrent traffic by the distinct BitTorrent

handshake message [SSW04]. The BitTorrent handshake message has the following

format:

<0x13><BitTorrent Protocol>

The BitTorrent 20-byte signature is at a fixed location in the payload making its

identification accurate [SSW04]. This makes payload analysis an attractive method

for detecting BitTorrent traffic because of the unique signature. Additionally, Sen,

et al. found a virtual 0% false positive and 10% false negative detection rate for

identifying the peer-to-peer traffic [SSW04].

Payload analysis is effective in identifying BitTorrent payloads that have not

been obfuscated. The simple technique of byte padding can render these payload-

based analyzers useless, unless they are modified to search through the entire payload

for the specific string. Network traffic and payload obfuscation methods are discussed

in Section 2.3.

16

2.2.3 Behavioral Analysis. The last method of classifying network traffic

is to examine it at the transport layer. Karagiannis, et al. developed a systematic

method of identifying peer-to-peer traffic flows at the transport layer while relegating

the accuracy of the previously discussed port matching and payload analysis meth-

ods [KBFC04]. Their methodology focuses on two metrics when analyzing packet

headers to detect peer-to-peer traffic flows. The first metric is to observe source-

destination IP pairs that are using both TCP and UDP transfers, a common mark of

peer-to-peer protocols. However, other applications also use TCP/UDP pairs, such as

DNS, Network Basic Input/Output System (NetBIOS), Internet Relay Chat (IRC),

and gaming applications, so those application layer protocols are ignored [KBFC04].

The second metric is observing connection characteristics of {IP, port} pairs.

When a host joins a peer-to-peer network, it consults its starting host cache for the

IP address of other peers or servers. After a connection is established between the

host and another peer, the host advertises its IP address and port number to receive

connections. It is essentially the host’s identification in the peer-to-peer network.

When twenty different peers decide to connect to the host, the traffic will reveal

twenty distinct IP addresses with twenty distinct source ports all connected to the

host. The equality of distinct IP addresses and ports (e.g., 20 distinct IP addresses

with 20 unique ports) signifies a probable peer-to-peer connection [KBFC04].

Behavioral Analysis is effective in quickly identifying traffic based on the 5-

tuple {source IP, source port, destination IP, destination port, transport layer pro-

tocol} across a network backbone. It can also be used to identify new peer-to-peer

applications or protocols that have been modified. There are several drawbacks with

this heuristic for detecting peer-to-peer traffic. First, the method cannot detect the

specific peer-to-peer protocol or the payload being transferred. Furthermore, the Bit-

Torrent protocol is not one of the six peer-to-peer protocols analyzed that relies on

TCP/UDP pairs. Secondly, the 95% peer-to-peer flow detection rate, coupled with

the 8% to 12% false positive rate, makes it an effective, but not guaranteed, method

of detecting peer-to-peer traffic [KBFC04].

17

2.3 Network Traffic and Data Obfuscation Methods

In certain cases it is important to encrypt data and traffic for security reasons,

such as online credit card transactions or when sending confidential emails. It is

also important in some cases for journalists, whistleblowers, and citizens of repressed

regimes to retain anonymity. However, the same methods of encrypting, obfuscating,

and anonymizing data can be used for illicit purposes. These methods include byte

padding, Ron’s Code 4 (RC4) encryption, Virtual Private Network (VPN) tunnels,

and Secure Shell (SSH) tunnels, darknets, and the Tor network.

2.3.1 Byte Padding. Byte padding is the most primitive obfuscation method

used to hide payloads in network traffic. When byte padding is used, a series of

random characters is prepended to the payload to trick elementary packet analyzers

(see Section 2.2.2). The packet analyzer will identify the payload as encrypted or

unknown since it does not match any known payload signatures.

Although byte padding is a cheap and easy method of obfuscating data, it suffers

two major weaknesses. The first is that the payload is still readable within the packet,

it is simply in a different location. Smart analyzers can sequentially search for the

byte string in the payload, but this takes more time. The second problem is that

only the payload is obfuscated and not the entire conversation. This allows network

flow-based algorithms to identify the network protocol being used.

2.3.2 Ron’s Code 4. The Ron’s Code 4 (RC4) algorithm was invented by

Ronald Rivest from RSA Security in 1987 [Riv09] [Sta06]. RC4 is a variable key-size

stream cipher that relies on single byte operations [RSA09]. The cipher performs

quickly in software and has been implemented in Secure Socket Layer protocol com-

munication, Lotus Notes, Oracle Secure SQL, and in the Wired Equivalent Privacy

security for IEEE 802.11 [Tec09]. Another use of the RC4 cipher is in payload ob-

fuscation of BitTorrent packets. The cipher can perform faster than other symmetric

18

stream ciphers as seen in Table 2.1. The table categorizes different ciphers, the key

length, and the speed of the encryption cipher in Mbps.

Table 2.1: Speed Comparisons of Symmetric Ciphers on a Pentium II [Sta06].

Cipher Key Length Speed (Mbps)

DES 56 9

3DES 168 3

RC2 variable 0.9

RC4 variable 45

2.3.3 Virtual Private Network and Secure Shell Tunnels. One method of

obfuscating network data and the traffic is to use a tunnel. Tunnels allow one protocol

to be transferred over another protocol. Common tunneling applications include VPN

and SSH. Gebski et al. assert the difficulty in identifying the underlying protocols

because the entire packet is scrambled and encrypted, as are any useful fields in the

TCP/IP header [GPW06].

In the VPN and SSH obfuscation methods, an encrypted tunnel is established

between the downloader and uploader. Network data and traffic are transmitted only

after the tunnel has been established. The network data and traffic are encapsulated

with an SSH or VPN header, thus encrypting the entire network conversation instead

of just the payload. Analyzers of the network traffic will only be able to identify the

source and destination IP addresses, approximate packet size, and timing of the traf-

fic [GPW06]. Despite the limited information leaked by VPN and SSH connections,

Gebski et al. correctly identified encapsulated BitTorrent traffic 90.5% of the time

using bipartite graphs of outgoing-incoming node pairs [GPW06]. This discovery was

supported when Wright et al. were able to accurately track the flows of encrypted

tunnels carrying a single application protocol [WMM06]. It should be noted that both

of these methods of inferring the underlying traffic are still unable to conclude what

the packets contain.

19

2.3.4 Darknets. An even more clandestine form of file sharing and commu-

nication is rising in the form of Darknets. Biddle et al. of Microsoft first addressed the

rise of content distribution and peer-to-peer networks in their 2002 paper entitled “The

Darknet and the Future of Content Distribution.” They concluded that Darknet-

based peer-to-peer file sharing technologies were growing in convenience, bandwidth,

and efficiency and would not likely encounter technical impediments [BEPW02].

The definition of a Darknet has evolved from any public peer-to-peer network,

such as BitTorrent, Usenet, and Gnutella, to any network that is friend-to-friend ori-

ented. These Darknets, as opposed to the public Lightnets, are based on a “members

only” camaraderie and trust between members. Darknets are, in the truest sense,

nearly impossible to find. However, there is software available to the public to es-

tablish Darknets [Fil07]. Two of the most popular Darknet software applications are

Freenet and WASTE. The availability of public software to join and establish private

Darknets makes it difficult to detect illicit file transfers and possible private VoIP

connections.

2.3.4.1 Freenet. Freenet is a software application allowing users to

publish and retrieve information without the fear of being censored [Fre09]. Freenet

can be described as an “Internet within an Internet” that relies on encrypted commu-

nication between other nodes. Users contribute to the Freenet project by providing

bandwidth for routing and a piece of their hard drive, called the data store, to hold

encrypted data. The user is oblivious to the content being stored in the data store,

thus making it difficult for prosecution of possession of illegal or copyrighted mate-

rial. The data is automatically added and deleted based on the popularity of certain

content and the needs of Freenet [Fre09].

2.3.4.2 WASTE. WASTE is a software application and protocol that

caters to smaller groups of 10-50 nodes. It provides an anonymous, secure, and

encrypted collaboration tool to share ideas and data [WAS09]. WASTE implements

a decentralized distributed architecture for nodes to create a partial mesh network.

20

Security features include link-level encryption using Blowfish and RSA public keys for

authentication. This application allows trusted users to securely trade possibly illicit

or illegal files with each other [WAS09].

2.3.5 The Onion Router Network. The last method of obfuscating and

hiding network traffic data is The Onion Router (Tor) network. Tor is the most

popular and “good intentioned” anonymizer allowing users to maintain privacy and

security on the public Internet through numerous layers. The benefits of Tor include

security and privacy by using a distributed network of relays to bounce traffic. It is

supposed to prevent monitoring and the revealing of your physical location [Tor09a].

These indirect and random data pathways make it difficult for sophisticated traffic

analysis to take place.

Tor could technically be considered a Darknet, but the intentions and goals

of the project seem to separate it from the negative connotations associated with

Darknets. Some government entities use Tor as well. The United States Navy uses Tor

for open source intelligence gathering and law enforcement uses Tor to anonymously

survey web sites [Tor09b]. The technical aspects of Tor are similar to Freenet and

WASTE, in which users can voluntarily route traffic throughout the network.

Tor differs from VPNs and other encrypted tunnels in that it is not susceptible

to timing and communication analysis. Despite the best intentions of the Tor network,

illicit file sharers can still use it to transfer illegal material.

2.4 Current Methods for Detecting Illicit Traffic

There are many methods currently available to detect illicit traffic. This sections

covers the simpler, software-based solutions such as using Snort rules and progresses

towards the more intelligent solutions that utilize artificial intelligence.

2.4.1 Wireshark. Wireshark is one of the most popular network protocol

analyzers. It is the standard for analyzing traffic and simple network troubleshooting.

21

It runs as a software application on a system and requires a network card that can

be set to promiscuous mode. Wireshark will display all of the incoming and outgoing

packets on an interface, but allows the user to filter the results by protocol, IP address,

or port number, to name a few. The advantages of Wireshark are that it is free,

reliable, and easy to use on a small scale. The disadvantages of Wireshark include

operating at the application layer and the inability to perform complex traffic analysis

[Wir09].

2.4.2 Snort. Snort is an open source intrusion detection and prevention

system designed to be implemented in software. It is a rule-based application that

can perform real-time traffic analysis and packet logging on IP networks. Snort is

capable of protocol analysis, content searching and matching, and attack detection

by relying on a flexible rule set used to describe the handling of certain traffic. Snort

has three modes of operation: packet sniffer, packet logger, or a complete Intrusion

Prevention System [Sno10]. Snort is a powerful and highly-regarded Intrusion Pre-

vention System for providing network security. However, Snort has two shortfalls.

First, Snort must be installed and run on a dedicated and powerful computer because

of the processor-intensive rules. Large rule sets can deteriorate the performance of

Snort if it is processing all inbound and outbound traffic. This scenario could lead to

possible missed critical BitTorrent, SIP, or DNS packets. Secondly, since Snort and

the Snort rules are open source, the code can be analyzed to determine how to avoid

detection [Sno10].

2.4.3 Hi-Performance Protocol Identification Engine. The Hi-Performance

Protocol Identification Engine (HiPPIE) is another software-based protocol analyzer.

It differs from Wireshark in that it attempts to analyze traffic and protocols heuris-

tically. Some of the more impressive features include Session Prediction Support and

Tunneled Protocol Tracking. The Session Prediction Support has the ability to pre-

dict upcoming protocol sessions. The Tunneled Protocol Tracking feature identifies

the internal protocol being used with a tunneling protocol [HiP09b].

22

The HiPPIE advertises three main functionalities [HiP09a]. The main function-

alities include:

1. Passive traffic analyzer: HiPPIE must be installed in the kernel of a Linux

system and configured to push traffic to a single-sourced bridge interface.

2. Inline Protocol/Packet Filter: This method entails establishing a Linux system

with HiPPIE as either an in-line bridge or routing device that forces traffic

through using integrated Netfilter or IPTables to filter traffic. It also allows

network administrators to tag or limit certain types of traffic based on HiPPIE’s

recognition capabilities.

3. Plug-in to a third party system: This option, although not completed, allows

administrators to pass traffic from a traffic sniffing application, such as tcpdump,

to be analyzed by HiPPIE.

The downside of the HiPPIE system is that it does not perform payload inspec-

tion, only protocol analysis [HiP09b]. Payload inspection consists of examining the

contents of a packet. Protocol Analysis only inspects the headers to determine what

protocol is being transmitted.

2.4.4 BitTorrent Monitoring System. Another method of detecting and

tracking illicit files is the BitTorrent Monitoring (BTM) system, created by Chow,

et al. The BTM is an automatic, rule-based software application to monitor, record,

and analyze BitTorrent traffic [CCM+07]. Figure 2.4 illustrates how the BTM system

works. The BTM is divided into two different modules, the Torrent Searcher and

Torrent Analyzer.

23

Figure 2.4: The BitTorrent Monitoring System Process [CCM+07].

The Torrent Searcher is a passive reconnaissance function to collect torrents of

interest. The BTM commences by searching public forums and web sites for torrent

files and exploring the various hyperlinks. This depth-first search continues until a

predefined level has been reached. Each torrent file and webpage containing prede-

fined keywords of interest are downloaded and archived to the local investigator’s

computer [CCM+07].

The Torrent Analyzer is the interactive portion of the BTM since it commu-

nicates with trackers to retrieve the list of peers sharing the file. Responses from

the trackers and peers are recorded by the BTM for future analysis. The BTM

has a real-time attributed-based rule engine to flag specific tracker or peer informa-

tion [CCM+07].

The fundamentals of the BTM system are sound, but there are several con-

cerns to consider. First, the scope of the system is limited due to the immense vol-

ume of torrent files on the Internet. Two of the larger tracker sites, piratebay.org

and isohunt.com, contain approximately 1.8 million and 1.7 million torrents, respec-

tively [Bay09] [ISO09]. Secondly, the fluctuating list of peers associated with a torrent

24

changes by the minute, making the BTM system less than ideal for associating specific

IPs with a file [CCM+07].

2.4.5 Entropy-Based Malicious DNS detection. As mentioned earlier, the

DNS protocol can be abused to exfiltrate data or be used as a command and con-

trol channel for botnets. Typically, DNS traffic is minimal between clients (DNS

resolvers) and servers (DNS servers). Romana et al. performed an entropy study of

external DNS query traffic to the university network’s top domain server. Any peak

in the entropy was assumed to be associated with spam botnet activity [RKSM08].

Figure 2.5 illustrates the entropy changes in source IP addresses and the DNS query

contents-based parameters.

Figure 2.5: Entropy Changes In the Domain Name System External Query Traf-
fic [RKSM08].

The drastic changes in entropy, denoted as the spikes, were hypothesized to

be botnets used to communicate, exfiltrate data, or perform other malicious mis-

25

sions. Botnet infection was verified on the computers after performing forensic anal-

ysis [RKSM08].

2.4.6 Cross Entropy-Based Malicious DNS detection. Karasaridis et al. de-

veloped a DNS Tunneling Attack Detector (TUNAD) to detect suspicious DNS packet

size anomalies in real-time [KMHH06]. Outlying packet sizes are usually indicative

of malicious tunneling over DNS. Their approach is as follows:

1. Separate DNS packets into three types and calculate the frequency
of non-conforming UDP DNS packet sizes:

• Requests: source port, sport>1023 and destination port, dport=53.
The size cannot exceed 300 bytes.

• Response: source port, sport=53 and destination port, dport>1023.
These are normally less than 512 bytes.

• Unknown: Response or request certainty is unknown, with sport=53
and dport=53. These are normally less than 512 bytes.

2. Measure the exact packet size using single packet flow records.

3. Calculate hourly packet size histograms for each circuit and packet
type.

4. Use a Cross Entropy-based anomaly detector on the packet size his-
tograms.

The algorithm then computes the Cross Entropy, Self Entropy, and Relative

Entropy to detect anomalies. The algorithm was successful in detecting a change in

Relative Entropy of packet sizes on September 30, 2003 before reports surfaced about

the Sinit Trojan that used port 53. This method of calculating changes from a relative

baseline is important in detecting suspicious DNS traffic [KMHH06].

2.4.7 Detecting DNS Tunnels Using Artificial Neural Networks. In 2009,

jhind presented research on detecting DNS tunnels using artificial intelligence called

dnsTTrap [jhi10]. The algorithm relies on Artificial Neural Networks. The algorithm,

also called supervised learning, works as follows:

1. Receive inputs (number of packets to domain, average length of packets to

domain, average number of distinct characters in the lowest level domain)

26

2. Give them values (assign weights)

3. Adapt decisions until inputs match training data (set thresholds)

The goal was to examine the entropy of the data contained in the lowest level

domain. The reasoning is that if data is being exfiltrated by the lowest level domain,

the content of each lowest level domain will be entropic. Each lowest level domain

is assigned a numerical value, allowing comparison between other lowest level do-

mains. For example, the domains mail.example.com and mail2.example.com will

have minimal entropy between them. However, the domains, 4ryf76df.hacker.com

and 73bfdd7r.hacker.com will have greater entropy and can be classified as a possi-

ble DNS tunnel. The last step is to train the neural net using data controlled by the

user. False negatives are added to the training list and the system is retrained [jhi10].

The system managed to detect DNS tunnels created by the DNS tunneling ap-

plications Iodine, OzymanDNS, and tcp2dns. However, the system lacks real-time

detection since it only works against previously captured tcpdump files. In addition,

the system only analyzes the lowest level domain, instead of the entire domain. DNS

tunneling applications can be modified to transfer data at different levels of the do-

main, such as exfiltrated_data.mail.example.com

to mail.exfiltrated_data.example.com [jhi10].

2.5 The Substitute Database Manager Hashing Function

A new feature of the TRAPP-2 system is the implementation of a hashing func-

tion used in the Substitute Database Manager (sdbm) library. The hashing function

converts arbitrary-length strings into eight-byte hashes. The arbitrary-length strings

in this case are SIP URIs and DNS domains. The sdbm hashing function is selected

over more proven hashing functions such as SHA-1 and MD5 because it is quick and

easy to implement. Further justification of the feature can be found in Section 3.2.2.

In December 1990, Ozan Yigit released the sdbm library into the public do-

main as an alternative to the original Database Manager (dbm) database engine, and

27

subsequent New Database Manager (ndbm) database engine, developed by AT&T in

1979 [Yig10b] [SY91]. The sdbm library is a clone of the ndbm library and parallels

the functionality. However, the sdbm library relies on the simple hashing algorithm

found below, implemented in the C programming language [Yig10a].

static unsigned long sdbm(unsigned char *str){

unsigned long hash = 0;

int c;

while (c = *str++)

hash = c + (hash << 6) + (hash << 16) - hash;

return hash;

}

According to the creator, Ozan Yigit, sdbm “was found to do well in scrambling

bits, causing better distribution of the keys and fewer splits. It also happens to be a

good general hashing function with good distribution” [Yig10a]. The hashing func-

tion’s speed (See Appendix B), eight-byte hashes, and easy software implementation

made it an ideal hashing function for the TRAPP-2 system. While using the hashing

function, one drawback occasionally noted is the minimal avalanche effect in which

changing a DNS domain by one bit (e.g., from 123.com to 124.com) changes the hash

by one bit. Another possible drawback is the number of collisions between hashes.

This, however, is not investigated since the assumption is that an administrator will

review the packets and their hashed domains.

2.6 The Tracking and Analysis for Peer-to-Peer System

A FPGA-based packet analyzer was developed in 2008 to detect peer-to-peer

protocols traversing a network. The TRAPP system was built specifically to detect

BitTorrent and VoIP traffic. The TRAPP system was created as an alternative to

current illegal file detection techniques such as software packet sniffers and the Bit-

Torrent Monitoring System. A discussion of these various techniques can be found

in Section 2.4. The current TRAPP system is built on a Xilinx Virtex-II Pro FPGA

board. The TRAPP system, capabilities, and limitations are expanded to better

understand the state of the system [Sch09].

28

2.6.1 Capabilities. The TRAPP system is designed to operate at the gate-

way between the Internet and a government local area network (LAN). It is not placed

in-line with traffic entering or exiting the local network, so if the TRAPP system fails,

the network will still remain viable. Instead, it is placed on the Switched Port Ana-

lyzer (SPAN) port of a switch. The switch is configured to send packets to the correct

destination in addition to the SPAN port. This makes the TRAPP system virtually

invisible and undetectable to both normal and malicious users. The TRAPP system

extracts the BitTorrent file hash or SIP URI and compares it against a list of known

contraband file hashes or SIP identifiers. The detection of the contraband files and

SIP identifiers is done in real-time. Figure 2.6 is a flowchart overview of how the sys-

tem works [Sch09]. The TRAPP system analyzes every packet flowing through the

network switch, looking for a BitTorrent or SIP signature. If the packet has a Bit-

Torrent or SIP signature, the hash or SIP URI are extracted, respectively. A binary

search is performed on the extracted hash against a blacklist of BitTorrent hashes or

SIP URIs. If a match is found, the packet is logged, else it is dropped [Sch09].

2.6.2 Limitations. There are several limitations with the TRAPP system.

These limitations include the hardware, contraband file list size, SIP URI extraction,

and lack of malicious DNS traffic detection [Sch09].

The first limitation of the TRAPP system is the hardware. The hardware com-

ponents of interest on the Xilinx Virtex-II Pro FPGA board are the 100 megabit

Ethernet card and 300 MHz processor [Xil08], which are suitable for smaller LANs

with less traffic to compare against the contraband list. In reality, the size of govern-

ment networks, traffic, and bandwidth requirements justify faster hardware.

Another drawback of the TRAPP system is the size of the contraband list. The

TRAPP system relies on 64 KB of memory to store the blacklist of BitTorrent file

hashes and SIP identifiers. The size of the list is limited to 1000 entries [Sch09]. This

size is appropriate for a first iteration proof-of-concept system, but in reality, the list

size needs to be much larger.

29

Figure 2.6: TRacking and Analysis for Peer-to-Peer System Flowchart [Sch09].

The third limitation is how TRAPP deals with processing SIP packets. The

TRAPP system only extracts the first 12 bytes of a SIP URI. For example, if the SIP

URI is 2001@10.1.1.50, the TRAPP system extracts 2001@10.1.1. and compares it

against the list of interest [Sch09]. Although feasible, this logic is not realistic. This

limitation is elaborated on in Section 3.2.2.

30

Lastly, the TRAPP system is unable to detect illicit DNS traffic. Hackers and

malicious users abuse the DNS protocol to transfer data and information, in addition

to communicating with botnets [Sch09].

2.7 Summary

This chapter discusses the illicit traffic and protocols of interest for this research,

specifically BitTorrent, VoIP, and DNS. The traditional methods of classifying net-

work traffic such as port matching are examined. This is followed by exploring the

current methods of obfuscating and encrypting network data and traffic. The current

methods of identifying and detecting these types of traffic, both clear and encrypted,

are also summarized. The details of the sdbm hashing function are also expanded.

Finally, a review of the TRAPP system’s capabilities and limitations are detailed.

31

III. Methodology

This chapter explains the methods used to evaluate the performance of the

TRAPP-2 system. The two metrics measured are packet processing time and

the probability of packet intercept. The first section details the Goals and Hypotheses.

Section 3.2 outlines the Approach, and Section 3.3 outlines the System Boundaries.

The System Workloads are defined in Section 3.5, followed by Performance Metrics

in Section 3.6, System Parameters in Section 3.7, and Factors in Section 3.8. The

last three sections include the Evaluation Technique in Section 3.9, the Experimental

Design in Section 3.10, and the Summary in Section 3.11.

3.1 Goals and Hypotheses

The objective of this research is to test and evaluate the performance of the

TRAPP-2 system that detects packets of interest traversing a gigabit Ethernet net-

work. The packets of interest include BitTorrent handshake packets with file hashes

of interest, SIP Uniform Resource Identifiers (URI) of interest, and suspicious DNS

traffic. The TRAPP-2 system detects these transmissions, classifies the traffic, ex-

tracts the payload (and sdbm hashes it for SIP/DNS domains), compares the hash

against a list, and records the transmission information.

The goals of this research are to:

1. Determine the packet processing times for packets of interest.

2. Determine the probability of packet intercept under a flood of packets of interest.

3. Determine the probability of packet intercept under various network utilizations.

4. Determine how increasing the hash list size affects the packet processing time.

32

The hypotheses of this research are:

1. The TRAPP-2 system can process every type of packet under 35,000 CPU

cycles.

2. The TRAPP-2 system can detect over 50% of packets of interest flooded into

the system.

3. The TRAPP-2 system can detect and process BitTorrent and DNS packets with

at least a 90% probability of packet intercept under a 90% network utilization.

Furthermore, it is hypothesized that the TRAPP-2 system can detect and pro-

cess SIP INVITE and SIP BYE packets with at least a 19% probability of packet

intercept under a 90% network utilization.

4. The TRAPP-2 system’s mean packet processing time will increase by no more

than 50 CPU cycles each time the hash list size is doubled.

Four experiments are conducted to determine if the TRAPP-2 system meets

the goals and hypotheses. Figure 3.1 summarizes the experiments, metrics, and goals

used to evaluate the performance of the TRAPP-2 system.

Figure 3.1: Summary of Experiments for the TRacking and Analysis for Peer-to-
Peer 2 System.

33

3.2 Approach

The TRAPP-2 system is developed on the Xilinx ML510 FPGA. The reason for

developing the TRAPP-2 system on an FPGA board is similar to the original TRAPP

system, henceforth referred to as “TRAPP-1” in this research. The system’s simplicity

and speed is maximized by allowing the software application to directly access the

Ethernet controller buffers [Sch09]. In addition, hardware components can easily be

added with minimum overhead. Some elements and functions from the TRAPP-1

system are used for the TRAPP-2 system, but a majority of the code is rewritten

to function with the updated FPGA hardware and research goals. Although both

systems work similarly, major hardware and software changes are required to achieve

proper functionality in the TRAPP-2 system. A review of the TRAPP-1 system can

be found in Section 2.6.

3.2.1 Hardware Modifications. The major hardware modification between

the TRAPP-1 and TRAPP-2 systems is the Ethernet controller. The TRAPP-1

system relies on the EthernetLite core peripheral, which has an upper limit of 100

Mbps. For the TRAPP-2 system, a Trimode Ethernet Media Access Controller is

used to receive Ethernet frames at 1000 Mbps. An accompanying First-In-First-Out

32,768-byte buffer stores Ethernet frames until they can be processed. As a result,

the TRAPP-2 system is not strictly linked to a clock like the TRAPP-1 system.

The second hardware modification is the memory location of the hash list and

log file. The hash list, separate for each of the three protocols, contains a sorted list

of hashes used to determine if a BitTorrent, SIP, or DNS packet hash is of interest.

The log file contains all of the packets of interest detected by the TRAPP-2 system.

The TRAPP-1 system relies on two sets of 64 KB Block Random Access Memory

(BRAM) to separately store the hash list and log file. The maximum amount of

BRAM available on the TRAPP-2 system’s FPGA is 128 KB per block. This severely

limits the maximum hash list size, which is explored in Experiment 4. As a result,

the BRAM architecture is abandoned in favor of a 512 MB Synchronous Dynamic

34

Random Access Memory (SDRAM) scheme for the TRAPP-2 system. SDRAM is

used to store the hash list and log file together. Pilot tests reveal an average increase

of 777 CPU cycles in packet processing time for the SDRAM scheme. However, the

4096-fold gain in physical memory address space at the cost of 777 CPU cycles is

acceptable. This memory configuration is also more realistic for future configurations

that will rely on larger hash lists. The pilot test data for memory access times can

be found in Appendix B. Hardware construction details for TRAPP-2 can be found

in Appendix C.

3.2.2 Software Modifications. The first software modification adds code to

detect the DNS protocol. Pilot tests reveal that the DNS detection logic requires an

average of 23 CPU cycles. The DNS detection logic results in 1.37% (23/1672) of the

total packet processing time for the packet with the smallest packet processing time

(DNS-OFF-SMALL, which is explained in Section 3.5). The pilot test data for the

DNS packet detection logic can be found in Appendix B.

The second software modification involves the processing of SIP and DNS pack-

ets. The TRAPP-1 system only extracts the first 12 bytes of a SIP URI. For example,

if the SIP URI is 2001@10.1.1.50, the TRAPP-1 system extracts 2001@10.1.1. and

compares it against the list of interest. Although feasible, this logic is not realistic

because SIP usernames, 2001 in this case, can easily be changed. The TRAPP-2 sys-

tem does not extract the SIP username, 2001, in the example. The second problem

is in how the TRAPP-1 system addresses SIP URI domains, or everything after the @

symbol. The TRAPP-1 system algorithm assumes the domain is only seven charac-

ters long. As an improvement, the TRAPP-2 system extracts the entire domain and

is not limited by the domain length.

The final software modification involves hashing SIP and DNS domains. For the

hash lists of interest, a uniform hash length is required for proper binary searching

of the hash list. The variable-length domains of both SIP and DNS do not allow

for a uniform hash list. As a result, the sdbm hash is implemented to convert the

35

variable length SIP and DNS domains into a four-byte hash. More details about the

sdbm hash can be found in Section 2.5. Pilot tests reveal that an average of 86 CPU

cycles are required to sdbm hash a six character domain and 1,195 CPU cycles are

required to sdbm hash a 212 character domain name. This 86 - 1,195 CPU cycle

increase in packet processing time is acceptable to create uniform hash identifiers for

the variable-length SIP and DNS domains. The pilot test data for the sdbm hashing

times can be found in Appendix B.

3.2.3 Algorithm. Figure 3.2 illustrates the TRAPP-2 algorithm which in-

cludes the following steps:

1. Detect packet

2. Determine if BitTorrent, SIP, or DNS packet

3. If BitTorrent/SIP/DNS packet, extract the payload; else, discard the packet

4. If SIP or DNS, sdbm hash the domains

5. Compare the hash against the hash list

6. If a match is found (BitTorrent or SIP), log the packet; else, drop the packet

7. If a match is not found (DNS), log the packet; else, drop the packet

For BitTorrent packets, the system detects a BitTorrent handshake packet, ex-

tracts the first four bytes of the 20-byte SHA-1 hash, compares the hash against a

blacklist containing the first four bytes of suspicious hashes, and logs it if the hash is

on the blacklist. A BitTorrent packet is defined as a TCP packet with the first four

bytes of the payload being 0x13426974 (“<13>Bit”).

For SIP packets, the system detects a SIP INVITE or BYE packet, extracts the

entire domain from both the To: and From: portion of the SIP URI, sdbm hashes both

the To: and From: domains to create two unique hashes, compares the hashes against

a blacklist containing the suspicious hashes (each four bytes in length), and logs it if

either the To: or From: hashes are on the blacklist. A SIP INVITE packet is defined

36

as a UDP packet with the first four bytes of the UDP payload being “INVI”. A SIP

BYE packet is defined as a UDP packet with the first four bytes of the UDP payload

being “BYE ”. It is possible for a SIP packet to have the To: and From: domains be

the same. This occurs if both sender and receiver are communicating through the

same SIP proxy server. Refer to Section 2.1.2 for more information about the SIP

packet.

Figure 3.2: Packet Data Flow in the TRacking and Analysis for Peer-to-Peer 2
System.

37

For DNS packets, the system detects a DNS request, extracts the entire domain,

sdbm hashes the domain to create a four-byte unique hash, compares the hash against

a whitelist of approved domain hashes, and logs it if it is not on the DNS whitelist.

A DNS request is defined as a UDP packet with a destination port of 53. DNS zone

transfers, performed over TCP port 53, are not included because they are not capable

of exfiltrating data.

3.3 System Boundaries

The System Under Test (SUT) for this research is the TRAPP-2 system. The

SUT block diagram is illustrated in Figure 3.3. The SUT components include:

TRAPP-2 software, FPGA and board, PowerPC Processor, System Timer, Ether-

net Controller, two 512 MB SDRAM modules, and a serial RS232 controller. The

Component Under Test (CUT) is the TRAPP-2 software.

The workload parameters include the type of BitTorrent, SIP, DNS, and non-

BitTorrent/SIP/DNS packet, as well as a network load. The single system parameter

is the hash list size. The metrics include the packet processing time and the probability

of packet intercept.

Figure 3.3: The TRacking and Analysis for Peer-to-Peer 2 System Under Test.

38

3.4 System Services

The TRAPP-2 system assists network administrators, law enforcement officials,

and intelligence agencies in detecting and tracking traffic of interest. The system

resides between a local area network and the Internet gateway and receives all the

traffic flowing through the gateway. Figure 3.2 illustrates the functionality of the

TRAPP-2 system.

The system is successful when the following steps are all completed:

1. A BitTorrent handshake packet, a SIP INVITE or BYE packet, or a DNS request

is detected.

2. The respective file info hash, SIP URIs, or DNS domain are extracted.

3. (SIP/DNS only) The domain is sdbm hashed.

4. The hash is compared against separate lists of interest for BitTorrent, SIP, and

DNS packets.

5. If a match is found for the BitTorrent and SIP packets, the packet contents

are written to a Wireshark-compatible log file. For DNS, if the DNS hash is

not found on the DNS hash whitelist, the packet is written to a Wireshark-

compatible log file.

A system service failure occurs when:

1. The system does not detect a packet of interest when one is present.

2. A packet of interest is detected but the file info hash, SIP URIs, or DNS domain

are not extracted.

3. The packet information is not written to the log file.

As with the TRAPP-1 system, false positives are not considered. The assump-

tion is that an administrator will review the contents of the log file to validate the

packets of interest [Sch09]. For BitTorrent, SIP, and DNS, a 4-byte hash is compared

against the hash list resulting in a probability of collision of 1 in 4,294,967,296 (232).

39

The TRAPP-2 system can be configured to compare larger hashes to decrease false

positives and the probability of collision.

3.5 Workload

The workload for the TRAPP-2 SUT consists of BitTorrent/SIP/DNS packets, a

non-BitTorrent/SIP/DNS packet, and a network load. To reduce the number of packet

type factors, specific packets are selected for the BitTorrent/SIP/DNS workload. Each

protocol has a worst- and best-case packet for packets of interest, and only a worst-

case packet for uninteresting packets. This allows a range of packet processing times

to be established by using the extremes for each protocol.

Additionally, it is important to generate packets on the network that are Bit-

Torrent, SIP, or DNS packets, but not of interest. These packets ensure that the

system detects the three protocols, but the hash is not of interest. For uninteresting

packets, only the worst-case scenario packet is selected.

For each of the protocols, a weighted system is used to select the worst- and best-

case scenarios for each packet type. Certain characteristics of each packet determine

the effectiveness of the TRAPP-2 system. Packets acquire points for having certain

characteristics. For each type of protocol, the packets with the least amount of points

(best-case) and most amount of points (worst-case) are used. The points are further

explained under each characteristic. The characteristics used for packet selection

include:

1. Hash is on/off the hash list

2. The location of the hash on the hash list

3. (SIP/DNS only) The size of the packet in bytes

4. (SIP/DNS only) The length of the domain required to sdbm hash

40

3.5.1 Packet Workload Characteristics.

3.5.1.1 Hash Is On/Off the Hash List. If a BitTorrent or SIP packet

has a hash on the blacklist, then it must be logged, which requires additional CPU

cycles. If a DNS packet does not have a hash on the whitelist, then it must be logged,

which requires additional CPU cycles. For the weighted system, a packet gets 1 point

for having a hash on the hash list (for BitTorrent and SIP) or 1 point for having a

hash off the hash list (for DNS).

3.5.1.2 Location of Hash on the Hash List. The location of the hash

on the hash list affects the number of CPU cycles used by the binary search algorithm.

If the hash is in the middle of the list, the binary search algorithm finds it on the first

try, thus requiring the fewest CPU cycles. If the hash is at the end of the list, or off

the list, the algorithm requires the most comparisons, and thus more CPU cycles, to

locate the hash. For the weighted system, a packet gets 1 point if its hash is at worst

possible location on the hash list (for BitTorrent and SIP) or 1 point if it is off the

list (for DNS).

3.5.1.3 SIP/DNS Only: Size of the Packet. Since the TRAPP-2

system must copy the entire packet into a software buffer, the size of the packet affects

how quickly this is accomplished. Pilot tests reveal that 67-byte packets averaged 999

CPU cycles and 1500-byte packets averaged 18,112 CPU cycles. Thus, the size of the

packet impacts the amount of CPU cycles required to process it. For the weighted

system, a packet gets 1 point for being the largest. BitTorrent handshake packets

do not exceed 122 bytes so only one packet size is used. The pilot test data for the

packet size transfer times can be found in Appendix B.

3.5.1.4 SIP/DNS Only: Length of Domain. Since the sdbm hashing

function is utilized in the TRAPP-2 system, the domain length of SIP URIs and DNS

requests affect the number of CPU cycles required to generate the four-byte hash.

41

Refer to Section 3.2.2 for the specific numbers. For the weighted system, a SIP/DNS

packet gets 1 point if it has the largest possible domain.

3.5.2 BitTorrent Workload. The different possible types of BitTorrent pack-

ets are illustrated in Figure 3.4. The hierarchy is read from left to right. One type of

packet, for example, is a BitTorrent packet with a hash on the hash list, with a hash

located in the worst hash list location. This can be abbreviated as BT-ON-WORST.

Unlike SIP or DNS packets, the size of the BitTorrent handshake packet does not

exceed 122 bytes, so the packet size characteristic is eliminated. See Section 2.1.1 for

more details about the contents of the BitTorrent handshake packet.

Figure 3.4: BitTorrent Packet Type Hierarchy for the TRacking and Analysis for
Peer-to-Peer 2 System.

Using the weighted packet system, the scores for each type of BitTorrent packet

are in Table 3.1, with the selected BitTorrent workload packets in bold. In the case

of BitTorrent packets on the list, the best-case scenario packet is the BT-ON-BEST,

with a score of 1. The worst-case scenario packet is the BT-ON-WORST, with a score

of 2. For BitTorrent packets not on the list, the worst-case scenario packet is BT-

OFF with a score of 0. So, in the case of BitTorrent packets, all three combinations

of BitTorrent packets are used.

42

Table 3.1: BitTorrent Packet Weights for the TRacking and Analysis for Peer-to-
Peer 2 System.

Protocol On/Off Hash List Best/Worst Hash Location Total

BT ON 1 BEST 0 1

ON 1 WORST 1 2

OFF 0 - 0 0

BOLD = Selected BitTorrent Workload Packet

To summarize, the three types of BitTorrent packets used are:

1. BT-ON-BEST: A 122-byte BitTorrent packet with a hash on the hash list at

the best location (middle of the hash list).

2. BT-ON-WORST: A 122-byte BitTorrent packet with a hash on the hash list at

the worst location (beginning of the hash list).

3. BT-OFF: A 122-byte BitTorrent packet with a hash not on the hash list.

3.5.2.1 BitTorrent Workload Packets. Three types of BitTorrent pack-

ets are used. The contents of BT-ON-BEST:

00 1c 23 18 d9 db 00 1c 23 0f 6e c9 08 00 45 00 ..#.....#.n...E.

00 6c 0c 1a 40 00 80 06 6b 1e c0 a8 01 02 c0 a8 .l..@...k.......

01 01 04 64 e8 84 65 63 a1 48 4c 7d 0b 05 50 18 ...d..ec.HL}..P.

ff ff 7e 9d 00 00 13 42 69 74 54 6f 72 72 65 6e ..~....BitTorren

74 20 70 72 6f 74 6f 63 6f 6c 00 00 00 00 00 10 t protocol......

00 05 68 37 67 65 b8 c6 60 98 5b df 3c 30 cd bf ..h7ge..‘.[.<0..

e5 7d fd 36 76 13 2d 55 54 32 30 30 30 2d 00 46 .}.6v.-UT2000-.F

6c e5 aa e6 bc 6a d0 02 58 95 l....j..X.

The contents of BT-ON-WORST:

00 1c 23 18 d9 db 00 1c 23 0f 6e c9 08 00 45 00 ..#.....#.n...E.

00 6c 0c 1a 40 00 80 06 6b 1e c0 a8 01 02 c0 a8 .l..@...k.......

01 01 04 64 e8 84 65 63 a1 48 4c 7d 0b 05 50 18 ...d..ec.HL}..P.

ff ff b7 9d 00 00 13 42 69 74 54 6f 72 72 65 6eBitTorren

74 20 70 72 6f 74 6f 63 6f 6c 00 00 00 00 00 10 t protocol......

00 05 30 30 66 6c b8 c6 60 98 5b df 3c 30 cd bf ..00fl..‘.[.<0..

e5 7d fd 36 76 13 2d 55 54 32 30 30 30 2d 00 46 .}.6v.-UT2000-.F

6c e5 aa e6 bc 6a d0 02 58 95 l....j..X.

43

The contents of BT-OFF:

00 1c 23 18 d9 db 00 1c 23 0f 6e c9 08 00 45 00 ..#.....#.n...E.

00 6c 0c 1a 40 00 80 06 6b 1e c0 a8 01 02 c0 a8 .l..@...k.......

01 01 04 64 e8 84 65 63 a1 48 4c 7d 0b 05 50 18 ...d..ec.HL}..P.

ff ff b4 fa 00 00 13 42 69 74 54 6f 72 72 65 6eBitTorren

74 20 70 72 6f 74 6f 63 6f 6c 00 00 00 00 00 10 t protocol......

00 05 d0 66 c8 d8 b8 c6 60 98 5b df 3c 30 cd bf ...f....‘.[.<0..

e5 7d fd 36 76 13 2d 55 54 32 30 30 30 2d 00 46 .}.6v.-UT2000-.F

6c e5 aa e6 bc 6a d0 02 58 95 l....j..X.

3.5.3 SIP Workload. The different SIP packet type combinations are illus-

trated in Figure 3.5. The hierarchy is read from left to right. One type of packet,

for example, is a SIP INVITE packet with a hash on the hash list, small in byte

size, with a hash located in the best hash list location. This can be abbreviated as

SIP-INVITE-ON-SMALL-BEST.

Figure 3.5: Session Initiation Protocol Packet Type Hierarchy for the TRacking
and Analysis for Peer-to-Peer 2 System.

44

Using the weighted packet system, the scores for each type of SIP INVITE

packet are in Table 3.2, with the selected SIP INVITE workload packets in bold.

In the case of SIP INVITE packets on the list, the best-case scenario packet is the

SIP-INVITE-ON-SMALL-BEST, with a score of 1. The worst-case scenario for a SIP

INVITE packet is the SIP-INVITE-ON-LARGE-WORST, with a score of 3. For SIP

INVITE packets not on the list, the worst-case scenario packet is the SIP-INVITE-

OFF-LARGE with a score of 1.

Table 3.2: Session Initiation Protocol INVITE Packet Weights for the TRacking
and Analysis for Peer-to-Peer 2 System.

Protocol INV/BYE On/Off Packet Size Best/Worst Total

Hash List Hash Location

SIP INV ON 1 SMALL 0 BEST 0 1

INV ON 1 SMALL 0 WORST 1 2

INV ON 1 LARGE 1 BEST 0 2

INV ON 1 LARGE 1 WORST 1 3

INV OFF 0 SMALL 0 - - 0

INV OFF 0 LARGE 1 - - 1

BOLD = Selected SIP INVITE Workload Packet

As a reminder, the TRAPP-2 system is looking for both SIP INVITE and SIP

BYE packets. Using the weighted packet system for SIP BYE packets, the scores for

each type are in Table 3.3, with the selected SIP BYE workload packets in bold. The

best-case scenario for SIP BYE packets is the SIP-BYE-ON-SMALL-BEST, with a

score of 1. The worst-case scenario for SIP BYE packets is the SIP-BYE-ON-LARGE-

WORST, with a score of 3. The SIP BYE packet with a URI not on the list (OFF)

is omitted for two reasons. The first is that from the viewpoint of the TRAPP-2

software, the packets are the same. Secondly, the SIP INVITE will take longer to

process because of the larger packet size and thus represents the worst-case between

the two.

45

Table 3.3: Session Initiation Protocol BYE Packet Weights for the TRacking and
Analysis for Peer-to-Peer 2 System.

Protocol INV/BYE On/Off Packet Size Best/Worst Total

Hash List Hash Location

SIP BYE ON 1 SMALL 0 BEST 0 1

BYE ON 1 SMALL 0 WORST 1 2

BYE ON 1 LARGE 1 BEST 0 2

BYE ON 1 LARGE 1 WORST 1 3

BOLD = Selected SIP BYE Workload Packet

To summarize, the five types of SIP packets used are:

1. SIP-INVITE-ON-SMALL-BEST: A 932-byte SIP INVITE packet with a hash

on the hash list at the best location.

2. SIP-INVITE-ON-LARGE-WORST: A 1500-byte SIP INVITE packet with a

hash on the hash list at the worst location.

3. SIP-INVITE-OFF-LARGE: A 1500-byte SIP INVITE packet with a hash not

on the hash list.

4. SIP-BYE-ON-SMALL-BEST: A 479-byte SIP BYE packet with a hash on the

hash list at the best location.

5. SIP-BYE-ON-LARGE-WORST: A 1040-byte SIP BYE packet with a hash on

the hash list at the worst location.

3.5.3.1 SIP Workload Packets. Five types of SIP packets are used.

The length of the domain affects the size of the SIP packet. For small packets, the

domain 192.168.3.110 is used. For large packets, the artificially created domain

below is used:

abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefgh

ijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnop

qrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwx

yz.com.localhost

46

The contents of SIP-INVITE-ON-SMALL-BEST:

INVITE sip:2000@192.168.3.110 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.3:39966;branch=z9hG4bK-d8754z-

be20982fbb7fb76f-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:2001@192.168.1.3:39966>

To: "2000"<sip:2000@192.168.3.110>

From: "Beta"<sip:2001@192.168.3.110>;tag=5c4c0451

Call-ID: MGIwNTdiMDI5NzU2YzhmMDEzYzMxMzU2Y2QzOWRhODQ.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY,

MESSAGE, SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1104o stamp 56125

Content-Length: 360

The contents of SIP-INVITE-ON-LARGE-WORST:

INVITE sip:2001@abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvw

xyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefgh

ijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrst

uvwxyz.com.localhost SIP/2.0

Via: SIP/2.0/UDP 192.168.1.2:57538;branch=z9hG4bK-d8754z-

a160be13fe074026-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:2000@192.168.1.2:57538>

To: "2001"<sip:2001@abcdefghijklmnopqrstuvwxyz.abcdefghijklmno

pqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvw

xyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcd

efghijklmnopqrstuvwxyz.com.localhost>

From: "Alpha"<sip:2000@abcdefghijklmnopqrstuvwxyz.abcdefghijkl

mnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrst

uvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.a

bcdefghijklmnopqrstuvwxyz.com.localhost>;tag=8356d139

Call-ID: M2UwNmQ3MDVlNjc0MzA5ODE4ZmFlMWU2ZmU2MzhiMWI.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,

SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1104o stamp 56125

Content-Length: 360

47

The contents of SIP-INVITE-OFF-LARGE (note that 1234 replaced abcd for

the first four characters of the domain):

INVITE sip:2001@1234efghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvw

xyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefgh

ijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrst

uvwxyz.com.localhost SIP/2.0

Via: SIP/2.0/UDP 192.168.1.2:57538;branch=z9hG4bK-d8754z-

a160be13fe074026-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:2000@192.168.1.2:57538>

To: "2001"<sip:2001@1234efghijklmnopqrstuvwxyz.abcdefghijklmno

pqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvw

xyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcd

efghijklmnopqrstuvwxyz.com.localhost>

From: "Alpha"<sip:2000@1234efghijklmnopqrstuvwxyz.abcdefghijkl

mnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrst

uvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.a

bcdefghijklmnopqrstuvwxyz.com.localhost>;tag=8356d139

Call-ID: M2UwNmQ3MDVlNjc0MzA5ODE4ZmFlMWU2ZmU2MzhiMWI.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,

SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1104o stamp 56125

Content-Length: 360

The contents of SIP-BYE-ON-SMALL-BEST:

BYE sip:2001@192.168.1.3:39966 SIP/2.0

Via: SIP/2.0/UDP 192.168.3.110:5060;branch=z9hG4bK14b4f667;rport

Max-Forwards: 70

From: "2000"<sip:2000@192.168.3.110>;tag=as758a70a9

To: "Beta"<sip:2001@192.168.3.110>;tag=5c4c0451

Call-ID: MGIwNTdiMDI5NzU2YzhmMDEzYzMxMzU2Y2QzOWRhODQ.

CSeq: 102 BYE

User-Agent: Asterisk PBX 1.6.0.10-FONCORE-r40

X-Asterisk-HangupCause: Normal Clearing

X-Asterisk-HangupCauseCode: 16

Content-Length: 0

48

The contents of SIP-BYE-ON-LARGE-WORST:

BYE sip:2001@192.168.1.5 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.2:57538;branch=z9hG4bK-d8754z-

014fc825e962763e-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:2000@192.168.1.2:57538>

To: "2001"<sip:2001@abcdefghijklmnopqrstuvwxyz.abcdefghijklmno

pqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvw

xyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcd

efghijklmnopqrstuvwxyz.com.localhost>;tag=as22d800eb

From: "Alpha"<sip:2000@abcdefghijklmnopqrstuvwxyz.abcdefghijkl

mnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrst

uvwxyz.abcdefghijklmnopqrstuvwxyz.abcdefghijklmnopqrstuvwxyz.a

bcdefghijklmnopqrstuvwxyz.com.localhost>;tag=8356d139

Call-ID: M2UwNmQ3MDVlNjc0MzA5ODE4ZmFlMWU2ZmU2MzhiMWI.

CSeq: 3 BYE

User-Agent: X-Lite release 1104o stamp 56125

Authorization: Digest username="2000",realm="asterisk",nonce="669dc6aa",

uri="sip:2001@192.168.1.5",response="91d3092c48e35c3275c4f2f47e57336d",

algorithm=MD5

Reason: SIP;description="User Hung Up"

Content-Length: 0

3.5.4 DNS Workload. The different possible types of DNS packets are

illustrated in Figure 3.6. The hierarchy is read from left to right. One type of packet,

for example, is a DNS packet with a hash on the whitelist, large in byte size, with

a hash located in the worst location. This can be abbreviated as DNS-ON-LARGE-

WORST.

49

Figure 3.6: Domain Name System Packet Type Hierarchy for the TRacking and
Analysis for Peer-to-Peer 2 System.

Using the weighted packet system, the scores for each type of DNS packet are

in Table 3.4, with the selected DNS workload packets in bold. For DNS packets

with hashes not on the whitelist (the ones of interest), the best-case scenario is the

DNS-OFF-SMALL packet, with a score of 1. The worst-case scenario packet is the

DNS-OFF-LARGE packet, with a score of 2. For valid DNS domains on the whitelist,

the worst-case scenario is the DNS-ON-LARGE-WORST packet, with a score of 2.

Table 3.4: Domain Name System Packet Weights for the TRacking and Analysis
for Peer-to-Peer 2 System.

Protocol On/Off hash list Packet Size Best/Worst hash location Total

DNS OFF 1 SMALL 0 - 1 1

OFF 1 LARGE 1 - 1 2

ON 0 SMALL 0 BEST 0 0

ON 0 SMALL 0 WORST 1 1

ON 0 LARGE 1 BEST 0 1

ON 0 LARGE 1 WORST 1 2

BOLD = Selected DNS Workload Packet

50

To summarize, the three types of DNS packets used are:

1. DNS-OFF-SMALL: A 67-byte DNS request packet with a hash not on the hash

list

2. DNS-OFF-LARGE: A 190-byte DNS request packet not on the hash list. The

packet is generated using Iodine [Kry09], a DNS exfiltration tool. The authen-

ticity of the malicious packet is selected over a larger actual byte size, which

can be achieved by increasing the domain length.

3. DNS-ON-LARGE-WORST: A 190-byte DNS request packet with a hash on the

hash list in the worst location

3.5.4.1 DNS Workload Packets. Three types of DNS packets are used.

The contents of DNS-OFF-SMALL:

00 0f 1f 69 b9 87 00 1e ec f2 99 ca 08 00 45 00 ...i..........E.

00 35 39 3c 40 00 40 11 e9 18 0a 01 02 5c 0a 01 .59<@.@......\..

02 06 c2 a3 00 35 00 21 64 cd d7 ff 01 00 00 015.!d.......

00 00 00 00 00 00 03 63 6e 6e 03 63 6f 6d 00 00cnn.com..

01 00 01 ...

The contents of DNS-OFF-LARGE:

00 1f 3b 81 3f b7 00 0c 41 78 26 63 08 00 45 00 ..;.?...Ax&c..E.

00 b0 e4 8d 40 00 7d 11 8c 56 47 40 91 da d9 d9@.}..VG@....

d9 64 11 5c 00 35 00 9c 4d 09 02 8b 01 00 00 01 .d.\.5..M.......

00 00 00 00 00 01 3d 30 61 64 62 45 6e 50 4a 79=0adbEnPJy

67 72 47 43 67 76 47 53 68 4e 73 5a 43 64 71 57 grGCgvGShNsZCdqW

70 48 70 43 69 2d 61 61 58 6d 71 6d 32 69 57 4d pHpCi-aaXmqm2iWM

6d 41 57 6d 69 47 57 6a 63 79 4c 50 35 73 4d 50 mAWmiGWjcyLP5sMP

77 44 4b 7a 1b 4d 78 4e 34 6f 42 4c 66 58 71 77 wDKz.MxN4oBLfXqw

66 7a 45 75 4c 50 78 64 48 71 68 5a 5a 72 6c 56 fzEuLPxdHqhZZrlV

08 72 65 73 65 61 72 63 68 10 72 61 6e 64 6f 6d .research.random

68 61 63 6b 65 72 73 69 74 65 03 63 6f 6d 00 00 hackersite.com..

0a 00 01 00 00 29 10 00 00 00 80 00 00 00)........

51

The contents of DNS-ON-LARGE-WORST:

00 1f 3b 81 3f b7 00 0c 41 78 26 63 08 00 45 00 ..;.?...Ax&c..E.

00 b0 e4 8d 40 00 7d 11 8c 56 47 40 91 da d9 d9@.}..VG@....

d9 64 11 5c 00 35 00 9c d0 f5 02 8b 01 00 00 01 .d.\.5..........

00 00 00 00 00 01 03 70 69 63 74 75 72 65 73 2epictures.

6d 61 69 6c 62 6f 78 2e 66 75 74 75 72 65 74 65 mailbox.futurete

63 68 6e 6f 6c 6f 67 79 64 65 73 69 67 6e 2e 74 chnologydesign.t

65 63 68 6e 69 63 61 6c 64 65 74 61 69 6c 73 67 echnicaldetailsg

72 6f 75 70 2e 73 75 70 70 6f 72 74 62 72 61 6e roup.supportbran

63 68 2e 65 6e 67 69 6e 65 65 72 69 6e 67 64 69 ch.engineeringdi

76 69 73 69 6f 6e 2e 73 75 70 65 72 6c 6f 6e 67 vision.superlong

63 6f 6d 70 61 6e 79 6e 61 6d 65 2e 63 6f 6d 00 companyname.com.

00 0a 00 01 00 00 29 10 00 00 00 80 00 00).......

3.5.5 Non-BitTorrent/SIP/DNS Workload. The non-BitTorrent/SIP/DNS

packet used is an HTTP packet. Its signature does not match that of a BitTorrent,

SIP, or DNS packet. The HTTP packet is 389 bytes in size. The average size packet of

an hour-long Wireshark network capture from a lab network with multiple computers

accessing the Internet is 389 bytes. The contents of the HTTP packet:

00 1e 4f f2 7f 8d 00 0b fd 0d 26 a1 08 00 45 00 ..O.......&...E.

01 77 cf 35 00 00 30 06 34 1e 4a 7d 2f 65 0a 01 .w.5..0.4.J}/e..

02 4b 00 50 09 6c 3c 00 d4 25 f2 b4 eb 98 50 18 .K.P.l<..%....P.

e6 a0 e9 9f 00 00 48 54 54 50 2f 31 2e 31 20 32HTTP/1.1 2

30 30 20 4f 4b 0d 0a 43 6f 6e 74 65 6e 74 2d 54 00 OK..Content-T

79 70 65 3a 20 74 65 78 74 2f 6a 61 76 61 73 63 ype: text/javasc

72 69 70 74 3b 20 63 68 61 72 73 65 74 3d 75 74 ript; charset=ut

66 2d 38 0d 0a 44 61 74 65 3a 20 54 68 75 2c 20 f-8..Date: Thu,

32 30 20 41 75 67 20 32 30 30 39 20 31 33 3a 31 20 Aug 2009 13:1

30 3a 31 34 20 47 4d 54 0d 0a 45 78 70 69 72 65 0:14 GMT..Expire

73 3a 20 54 68 75 2c 20 32 30 20 41 75 67 20 32 s: Thu, 20 Aug 2

30 30 39 20 31 34 3a 31 30 3a 31 34 20 47 4d 54 009 14:10:14 GMT

0d 0a 43 61 63 68 65 2d 43 6f 6e 74 72 6f 6c 3a ..Cache-Control:

20 70 75 62 6c 69 63 2c 20 6d 61 78 2d 61 67 65 public, max-age

3d 33 36 30 30 0d 0a 43 6f 6e 74 65 6e 74 2d 45 =3600..Content-E

6e 63 6f 64 69 6e 67 3a 20 67 7a 69 70 0d 0a 53 ncoding: gzip..S

65 72 76 65 72 3a 20 41 75 74 6f 2d 43 6f 6d 70 erver: Auto-Comp

6c 65 74 69 6f 6e 20 53 65 72 76 65 72 0d 0a 43 letion Server..C

6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 38 ontent-Length: 8

52

30 0d 0a 0d 0a 1f 8b 08 00 00 00 00 00 02 ff 2b 0..............+

cf cc 4b c9 2f d7 4b cf cf 4f cf 49 d5 4b 4c d6 ..K./.K..O.I.KL.

cb d0 88 56 ca c9 2c 4b 2d cb 4c 2d 57 28 4a 4d ...V..,K-.L-W(JM

4c d1 cd cf cb a9 54 28 2b 86 70 ca 8b 32 4b 52 L.....T(+.p..2KR

15 ca 72 cb 13 8b 94 74 a2 63 63 35 01 a4 14 cf ..r....t.cc5....

db 41 00 00 00 .A...

3.5.6 Network Load. For Experiment 3, a network load consisting of non-

BitTorrent/SIP/DNS traffic is added to the system using the Linux pktgen util-

ity [Fou10]. By adding the load, the resulting minimum network utilization is ap-

proximately 20% and is increased at 10% intervals up to the maximum acheivable

rate of 93.7% (equivalent to 937 Mbps). Table 3.5 summarizes the different network

utilizations achieved as a result of adding the Linux pktgen utility load. In Experi-

ment 3, the network utilization is measured using variables within the Linux pktgen

utility, described in Section 3.6.3.2.

Table 3.5: Network Utilizations Due to the Linux pktgen Utility Load in the TRack-
ing and Analysis for Peer-to-Peer 2 System.

Mbps Network Utilization %

(Mbps/1000)

204 20.4%

301 30.1%

408 40.8%

498 49.8%

602 60.2%

714 71.4%

818 81.8%

937 93.7%

3.6 Performance Metrics

The two performance metrics used to evaluate the effectiveness of the TRAPP-

2 system are packet processing time and the probability of packet intercept. This

section also describes how the Network Utilization is measured for the experiments.

53

3.6.1 Packet Processing Time. The first metric is the packet processing

time, which measures the CPU cycles used to process packets. The PowerPC’s System

Timer timestamp function is used for this. The packet processing time begins when

a packet arrives in the Ethernet controller. Packet processing time ends immediately

after processing of the packet has completed. This metric is important because packet

processing time must be minimized to check every packet traversing the network.

Measuring the packet processing time also gives insight into how the TRAPP-2 system

responds to different packet type characteristics (Experiment 1) and hash list sizes

(Experiment 4).

3.6.2 Probability of Packet Intercept. The second metric is the probability

of packet intercept. This is calculated by determining if a packet of interest is cap-

tured and successfully recorded to the log file. When measuring the probability of

packet intercept, the network utilization of the system is also measured. Experiment

2 measures the probability of packet intercept while flooding the TRAPP-2 system

with protocol-under-test (BitTorrent, SIP, or DNS) traffic. The Linux utility, tcpre-

play, is used to send a previously captured .pcap file containing 400 packets of interest

as quickly as possible [Tcp10]. Experiment 3 measures the probability of packet in-

tercept of packets of interest while adding a non-BitTorrent/SIP/DNS traffic load to

the TRAPP-2 system. The load is generated using the Linux pktgen utility.

3.6.3 Network Utilization. The network utilization is the total amount

of traffic entering the TRAPP-2 system. For Experiment 1 and Experiment 4, the

network utilization is limited to single packets injected into the system, and is thus

virtually zero. For Experiment 2, the network utilization varies with the type of

protocol-under-test packet being flooded into the system. In Experiment 2, the net-

work utilization is measured using Wireshark. For Experiment 3, the network utiliza-

tion varies with the type of load generated by the Linux pktgen utility. In Experiment

3, the network utilization is measured using variables within the Linux pktgen utility.

54

3.6.3.1 Measuring Network Utilization Using Wireshark. For Exper-

iment 2, the load is measured using the Wireshark laptop connected to the gigabit

switch’s other Switched Port Analyzer (SPAN) port. When each test has concluded,

the network utilization is measured by selecting the Statistics -> Summary menu

option and recording the Avg. MBit/sec from the Displayed column. This is as-

sumed to be the minimum network utilization.

3.6.3.2 Measuring the Network Utilization Using the Linux pktgen Utility

Variables. For Experiment 3, the Linux pktgen utility generates packets faster than

Wireshark can process. In response to Wireshark’s shortfall, an alternative method to

measure the network utilization is necessary. To accomplish this, two variables must

be determined to calculate the network utilization rate of megabits per second. The

first is the number of bits generated on the network and the second is the amount of

time elapsed to send those bits.

The Linux pktgen utility is a Bourne Again SHell (BASH) script that runs in a

terminal. The Linux pktgen utility allows configuration of the packet size, number of

packets, and delay. The number of packets and packet size remain static, at 6,000,000

packets and 1,500 bytes, respectively. The delay variable is modified to achieve the

different network utilization percentages.

A timestamp function within the BASH scripting language is used to record the

number of nanoseconds since January 1, 1970. This timestamp function is taken right

before the Linux pktgen utility begins and immediately after completion. As a result,

the total amount of time required to send the 6,000,000 packets is known. Since both

variables are known, the megabits per second network utilization can be calculated

using the formula:

Network Utilization =
Packets × Packet Size (Bytes) × (1MB

220B
) × 8 Bits

Byte

Elapsed T ime

55

Where Packets is 6,000,000, Packet Size is 1,500 and Elapsed Time is measured

using the BASH timestamp function. A delay variable within the Linux pktgen util-

ity BASH script is modified to throttle this rate to achieve the decreased network

utilizations.

3.7 System Parameters

The single TRAPP-2 system parameter is the hash list size. For Experiments

1, 2, and 3, a hash list size of 1000 is used. For Experiment 4, the hash list size is

doubled from 2,000 up to 131,072,000 unique hash items. This results in 17 different

hash list sizes. The hash list with 131,072,000 items is 500 MB in size, which is 97.65%

of the available SDRAM memory. 100% of the memory is not used because the same

memory space is used to store the log file.

The TRAPP-2 workload parameters include:

1. BitTorrent Packet Types: There are three types of BitTorrent packet types.

They include BT-ON-BEST, BT-ON-WORST, and BT-OFF.

2. SIP Packet Types: There are five types of SIP packet types. They include SIP-

INVITE-ON-SMALL-BEST, SIP-INVITE-ON-LARGE-WORST,

SIP-INVITE-OFF-LARGE, SIP-BYE-ON-SMALL-BEST, and SIP-BYE-ON-

LARGE-WORST.

3. DNS Packet Types: There are three types of DNS packet types. They include

DNS-OFF-SMALL, DNS-OFF-LARGE, and DNS-ON-LARGE-WORST.

4. Non-BitTorrent/SIP/DNS Packet: This is the 389-byte HTTP packet.

5. Network Load: The additional network traffic added to the system using the

Linux pktgen utility. An additional traffic load is only added in Experiment 3.

3.8 Factors

For Experiments 1, 2, and 3, the TRAPP-2 software is loaded onto the FPGA

board. The FPGA’s Ethernet controller is configured to run at 1000 Mbps, and the

56

list of interest size is 1000 entries. Experiment 1 calculates the packet processing time

of BitTorrent, SIP, DNS, and non-BitTorrent/SIP/DNS (the HTTP packet) packets.

Experiment 2 determines the probability of packet intercept for a flood (400 packets)

of protocol-under-test (BitTorrent, SIP, or DNS) traffic. The four packets selected

are the worst-case for BitTorrent, SIP INVITE, SIP BYE, and DNS. Realistically,

the TRAPP-2 system will not see the same packet sent as quickly as possible, but

the purpose of the experiment is to stress the system. Experiment 3 determines the

probability of packet intercept under the addition of eight different network loads.

Table 3.6 summarizes the factor levels for Experiments 1, 2, and 3.

Table 3.6: Factor Levels for Experiments 1, 2, and 3, for the TRacking and Analysis
for Peer-to-Peer 2 System.

Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Packet Type Non BT ON BT ON BT OFF SIP INV ON SIP INV ON

BT/SIP/DNS WORST BEST SMALL BEST LARGE WORST

Approximate

Network Load None 20% 30% 40% 50% 60%

Level 7 Level 8 Level 9 Level 10 Level 11 Level 12

SIP INV SIP BYE ON SIP BYE ON DNS OFF DNS OFF DNS ON

OFF LARGE SMALL BEST LARGE WORST SMALL LARGE LARGE WORST

70% 80% 93%

Experiment 4 tests how increasing the hash list size affects the packet processing

time. The line speed of 1000 Mbps remains the same and the TRAPP-2 software

is unchanged. Only large DNS packets not on the whitelist are used (DNS-OFF-

LARGE). This ensures that the binary search algorithm is exhausted and that the

packet is logged as suspicious. Table 3.7 summarizes the factor levels for Experiment

4.

57

Table 3.7: Factor Levels for Experiment 4 for the TRacking and Analysis for Peer-
to-Peer 2 System.

Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

DNS Hash List Size 2,000 4,000 8,000 16,000 32,000 64,000

Level 7 Level 8 Level 9 Level 10 Level 11 Level 12

128,000 256,000 512,000 1,024,000 2,048,000 4,096,000

Level 13 Level 14 Level 15 Level 16 Level 17

8,192,000 16,384,000 32,768,000 65,536,000 131,072,000

3.9 Evaluation Technique

Direct measurement is selected as the evaluation technique for the experiments

because the TRAPP-2 system is a real and physical system. The experimental hard-

ware configuration setup is on the right side of Figure 3.7. The same network is used

to create the packets of interest. The packet creation configuration is on the left side

of Figure 3.7. The packet creation laptops are disconnected from the network prior

to conducting the experiments.

The experimental configuration consists of the following hardware:

• 1 Cisco gigabit 24-port switch (model WS-C3560G-24PS-S). The switch is con-

figured with 22 standard ports and 2 SPAN ports.

• 1 Xilinx Virtex-5 FPGA (model FXT ML510), the SUT, connected to one of

the switch’s SPAN ports.

• 1 Dell Latitude D630 laptop loaded with the Windows’s XP Service Pack 3

Operating System. It contains Wireshark 1.0.5 [Wir09], connected to the other

switch’s SPAN port, acting as the control packet sniffer. This laptop is also

used to program the FPGA via Universal Serial Bus and provide Standard

Input/Output for the FPGA through a RS232 interface.

58

• 1 Dell Latitude D630 laptop loaded with Backtrack 4 [RE10] and the tcpreplay

utility, version 3.4.3 [Tcp10], to inject packets into the network.

• 1 Dell Latitude D630 loaded with the Ubuntu Desktop 9.10 Operating Sys-

tem. This laptop contains the Linux pktgen utility to create different network

utilizations on the network.

Figure 3.7: Packet Creation and Experimental Hardware Configuration Setup for
the TRacking and Analysis for Peer-to-Peer 2 System.

The packet creation configuration consists of the following hardware:

• 2 Dell Latitude D630 laptops loaded with the Window’s XP Service Pack 3 Op-

erating System. They both contain uTorrent 2.0 [uTo10] and X-Lite 3.0 [Cou10],

BitTorrent and VoIP clients, respectively.

• 1 Dell Latitude D630 laptop loaded with trixbox 2.8.0.3 [Tri10], based on Cen-

tOS release 5.4, acting as the SIP proxy and registrar server for the X-Lite VoIP

clients.

• 1 Dell Inspiron 640m laptop loaded with Ubuntu Server 9.10 used as a DNS

server. The DNS server is required to create SIP packets that contain large

59

domain names. This server is not used for any of the malicious DNS packet

creation. The malicious DNS packets are created using Iodine [Kry09].

The actual experimental setup is shown in Figure 3.8.

Figure 3.8: Experimental Setup for the TRacking and Analysis for Peer-to-Peer 2
System.

3.9.1 Calculating Packet Processing Time. For Experiment 1 and Experi-

ment 4, a series of 50 packets is sent from the Backtrack laptop using the tcpreplay

utility. Using 50 packets allows for sufficiently small confidence intervals to compare

the results. For each of the three replications, a series of 50 packets is sent and the

number of CPU cycles required to process the packet is recorded. Prior to sending

the 50 packets, five packets are sent to the system to “warm up” the board by caching

the data and instructions used by the processor. No additional network utilization is

injected into the system.

3.9.2 Calculating Probability of Packet Intercept. For Experiment 2, a series

of 400 packets is sent as fast as possible from the Backtrack laptop using the tcpreplay

utility. For each of the three replications, a series of 400 protocol-under-test packets is

flooded into the TRAPP-2 system and the number of packets intercepted is recorded.

To stress the system and provide a sufficiently small confidence interval, 400 packets

is selected. Prior to sending the 400 packets, five packets are sent to the system to

60

“warm up” the board by caching the data and instructions used by the processor.

No additional network load is injected into the system. The network utilization is

measured using Wireshark.

For Experiment 3, a series of 300 packets, sent at 200 ms intervals, is sent from

the Backtrack laptop using the tcpreplay utility. Injecting the packets at 200 ms

intervals allows for the result of each trial (captured or not captured) to be inde-

pendent. The sample size of 300 packets produces a good binomial distribution with

small confidence intervals. For each of the three replications, a series of 300 packets

is sent into the TRAPP-2 system and the number of packets captured is recorded.

Prior to sending the 300 packets, five packets are sent to the system to “warm up” the

board by caching the data and instructions used by the processor. Additionally, prior

to injecting the 300 packets, the Linux pktgen utility is activated to add the various

network loads to the system. The network utilization is measured using variables

within the Linux pktgen utility. For Experiment 2 and Experiment 3, Wireshark is

used as the probability of packet intercept control.

3.10 Experimental Design

3.10.1 Experiment 1. Experiment 1 is a partial factorial design and calcu-

lates the packet processing time for 12 packet types and consists of 1800 trials (12

packet types x 50 packets x 3 replications). For packet processing time, a one-variable

t-test is used to determine the mean packet processing time in CPU cycles, the stan-

dard deviation, the standard error of the mean, and a 95% confidence interval for the

mean.

3.10.2 Experiment 2. Experiment 2 is a partial factorial design and calcu-

lates the probability of packet intercept for the four worst-case scenario packets: BT-

ON-WORST, SIP-INVITE-ON-LARGE-WORST, SIP-BYE-ON-LARGE-WORST, and

DNS-OFF-LARGE. Depending on the type of packet being investigated, the network

utilization consists of either all-BitTorrent, all-SIP, or all-DNS packets that are on the

61

list. The test consists of 4800 trials (4 packet types x 400 packets x 3 replications).

For the probability of packet intercept, a one-proportion confidence interval analysis

is performed on the binomial variable to determine the probability of packet intercept

and a 95% confidence interval for the proportion.

3.10.3 Experiment 3. Experiment 3 is a partial factorial design and cal-

culates the probability of packet intercept for the same four worst-case scenario

packet types: BT-ON-WORST, SIP-INVITE-ON-LARGE-WORST, SIP-BYE-ON-

LARGE-WORST, and DNS-OFF-LARGE. However, the packets are injected into

the system at 200 ms intervals. Experiment 3 is performed under eight different non-

BitTorrent/SIP/DNS network utilizations, generated using the Linux pktgen utility,

and consists of 28,800 trials (4 packet types x 300 packets x 8 utilizations x 3 repli-

cations). For the probability of packet intercept, a one-proportion confidence interval

analysis is performed on the binomial variable to determine the probability of packet

intercept and a 95% confidence interval for the proportion.

3.10.4 Experiment 4. Experiment 4 is a partial factorial design and calcu-

lates the packet processing time for the DNS-OFF-LARGE packet. This packet is

used because it is the worst-case DNS packet. With the worst-case DNS packet, the

entire hash list must be searched. Experiment 4 consists of 2,550 trials (17 list sizes

x 1 packet type x 50 packets x 3 replications). For packet processing time, a one-

variable t-test is used to determine the mean packet processing time in CPU cycles,

the standard deviation, the standard error of the mean, and a 95% confidence interval

for the mean.

3.11 Methodology Summary

This section explains the experimental methods used to evaluate the perfor-

mance of the TRAPP-2 system under different workloads and network utilizations.

The performance is measured by calculating the packet processing time and the prob-

ability of packet intercept. Four partial factorial experiments are conducted with the

62

TRAPP-2 system. Experiment 1 determines the packet processing times for pack-

ets of interest. Experiment 2 determines the probability of packet intercept under a

flood of 400 packets of interest. Experiment 3 determines the probability of packet

intercept under various network utilizations generated using the Linux pktgen utility.

Lastly, Experiment 4 determines how increasing the hash list size affects the packet

processing time.

63

IV. Results and Analysis

This chapter presents the results and analysis of the four experiments. Section 4.1

details the results and analysis from Experiment 1. Section 4.2 details the

results and analysis from Experiment 2. Section 4.3 details the results and analysis

from Experiment 3. Section 4.4 presents the results and analysis from Experiment

4. An overall analysis is provided in Section 4.5, and the chapter is summarized in

Section 4.6.

4.1 Results and Analysis of Experiment 1

Table 4.1 summarizes the results of a one-variable t-test using 12 different packet

types. The table contains the number of packets sent, mean number of CPU cycles

required to process the packet, the standard deviation, the standard error of the mean,

and the 95% confidence interval for the mean. The data is sorted based on the mean

CPU cycles (packet processing time).

Table 4.1: Sorted Mean Packet Processing Times for Experiment 1.
Packet Packets Mean Stand. Standard Confidence

Type Sent CPU Dev. Error of Interval

Cycles the Mean (95%)

DNS OFF SMALL 150 1671.83 53.33 4.35 (1663.22, 1680.43)

BT OFF 150 1973.00 0.00 0.00 (1973.00, 1973.00)

BT ON BEST 150 2085.72 52.03 4.25 (2077.33, 2094.11)

BT ON WORST 150 2217.39 50.83 4.15 (2209.19, 2225.59)

Non BT/SIP/DNS 150 4985.00 0.00 0.00 (4985.00, 4985.00)

DNS ON LARGE WORST 150 5172.00 0.00 0.00 (5172.00, 5172.00)

DNS OFF LARGE 150 5539.47 57.02 4.66 (5530.27, 5548.67)

SIP BYE ON SMALL BEST 150 8580.32 55.68 4.55 (8571.34, 8589.30)

SIP INV ON SMALL BEST 150 15283.0 545.8 44.6 (15195.0, 15371.1)

SIP BYE ON LARGE WORST 150 26071.6 655.6 53.5 (25965.9, 26177.4)

SIP INV OFF LARGE 150 31092.0 0.0 0.0 (31092.0, 31092.0)

SIP INV ON LARGE WORST 150 34226.6 879.8 71.8 (34084.6, 34368.5)

Figure 4.1 plots the sorted mean packet processing times for each of the 12

different packet types from Table 4.1. The range of mean packet processing time is

64

1,671.83 to 34,226.6 CPU cycles. DNS and BitTorrent packets tend to be on the lower

end, while all SIP packets are on the higher end of the range.

Figure 4.1: Mean Packet Processing Times for the 12 Different Packet Types for
Experiment 1.

4.1.1 BitTorrent Packet Processing Time. Table 4.2 highlights the BitTor-

rent packet processing time values from Experiment 1. Figure 4.2 plots the sorted

mean CPU cycles (packet processing time) and the 95% confidence intervals for the

BitTorrent packets. By using the worst- and best-case scenario BitTorrent packets, a

range of 2085.72 - 2,217.39 is established for all BitTorrent packets of interest.

Table 4.2: Sorted BitTorrent Mean Packet Processing Times for Experiment 1.
Packet Packets Mean Stand. Standard Confidence

Type Sent CPU Dev. Error of Interval

Cycles the Mean (95%)

BT OFF 150 1973.00 0.00 0.00 (1973.00, 1973.00)

BT ON BEST 150 2085.72 52.03 4.25 (2077.33, 2094.11)

BT ON WORST 150 2217.39 50.83 4.15 (2209.19, 2225.59)

65

Figure 4.2: Mean Packet Processing Times for BitTorrent Packet Types for Exper-
iment 1.

4.1.2 SIP Packet Processing Time. Table 4.3 highlights the SIP packet

processing time values from Experiment 1. Figure 4.3 plots the sorted mean CPU

cycles (packet processing time) and 95% confidence intervals for the SIP packets. By

using the worst- and best-case scenario for SIP INVITE packets, a range of 15,283.0 -

34,226.6 is established for all SIP INVITE packets of interest. By using the worst- and

best-case scenario for SIP BYE packets, a range of 8,580.32 - 26,071.6 is established

for all SIP BYE packets of interest.

Table 4.3: Sorted Session Initiation Protocol Mean Packet Processing Times for
Experiment 1.

Packet Packets Mean Stand. Standard Confidence

Type Sent CPU Dev. Error of Interval

Cycles the Mean (95%)

SIP BYE ON SMALL BEST 150 8580.32 55.68 4.55 (8571.34, 8589.30)

SIP INV ON SMALL BEST 150 15283.0 545.8 44.6 (15195.0, 15371.1)

SIP BYE ON LARGE WORST 150 26071.6 655.6 53.5 (25965.9, 26177.4)

SIP INV OFF LARGE 150 31092.0 0.0 0.0 (31092.0, 31092.0)

SIP INV ON LARGE WORST 150 34226.6 879.8 71.8 (34084.6, 34368.5)

66

Figure 4.3: Mean Packet Processing Times for Session Initiation Protocol Packet
Types for Experiment 1.

4.1.3 DNS Packet Processing Time. Table 4.4 highlights the DNS packet

processing time values from Experiment 1. Figure 4.4 plots the sorted mean CPU

cycles (packet processing time) and 95% confidence intervals for the DNS packets.

By using the worst- and best-case scenario for DNS packets, a range of 1,671.83 -

5,539.47 is established for all DNS packets of interest.

Table 4.4: Sorted Domain Name System Mean Packet Processing Times for Exper-
iment 1.

Packet Packets Mean Stand. Standard Confidence

Type Sent CPU Dev. Error of Interval

Cycles the Mean (95%)

DNS OFF SMALL 150 1671.83 53.33 4.35 (1663.22, 1680.43)

DNS ON LARGE WORST 150 5172.00 0.00 0.00 (5172.00, 5172.00)

DNS OFF LARGE 150 5539.47 57.02 4.66 (5530.27, 5548.67)

67

Figure 4.4: Mean Packet Processing Times for Domain Name System Packet Types
for Experiment 1.

4.1.4 Experiment 1 Analysis. BitTorrent and DNS packets require the

least amount of packet processing time. This is due to the small byte size of the

packets. The packet size transfer pilot test, mentioned in Section 3.5.1.3, reveals that

transferring the packet from the Ethernet buffer to a software buffer takes significantly

longer for larger packets.

All five types of SIP packets require the most packet processing time. This

is due to the larger byte size and processing required of SIP packets compared to

BitTorrent and DNS. First, the TRAPP-2 system must copy the entire packet into a

software buffer, so the larger SIP packets take longer to transfer. Secondly, the SIP

packet payload must be searched for the To: and From: SIP URIs because they are

not at a fixed location in the payload. Furthermore, once the To: and From: SIP

URIs are extracted, they both must be separately sdbm hashed and searched against

the hash list.

68

SIP BYE packets have a smaller packet processing time than SIP INVITE pack-

ets when the other packet characteristics (on/off hash list, and hash location) are

equal. The disparity results because of the intrinsic larger packet size (approximately

375 bytes) of SIP INVITE packets over SIP BYE packets.

4.2 Results and Analysis of Experiment 2

Table 4.5 summarizes the results of flooding the TRAPP-2 system with 400

single protocol-of-interest packets. The protocol of interest is the worst-case scenario

packet for BitTorrent, SIP, and DNS. However, SIP INVITE and SIP BYE packets are

tested separately even though they fall under the same protocol. As a comparison,

the number of packets captured by Wireshark is also presented for each workload.

The table also contains the measured network utilization, the probability of packet

intercept, and the 95% confidence interval for the probability of packet intercept. The

data is sorted based on the network utilization measured using Wireshark.

Table 4.5: Probability of Packet Intercept for Flood of 1200 (400 packets x 3 repli-
cations) Worst-Case Scenario Packets for Experiment 2.

Workload Network Packets Packets Prob. of Confidence

Utilization% Captured Sent Packet Interval

(Events) (Trials) Intercept (95%)

BT (TRAPP-2) 15.46 1200 1200 1.0000 (0.9975, 1.0000)

BT (Wireshark) 15.46 1200 1200 1.0000 (0.9975, 1.0000)

DNS (TRAPP-2) 23.82 1039 1200 0.8658 (0.8452, 0.8846)

DNS (Wireshark) 23.82 1200 1200 1.0000 (0.9975, 1.0000)

SIP BYE (TRAPP-2) 94.75 264 1200 0.2200 (0.1969, 0.2445)

SIP BYE (Wireshark) 94.75 1200 1200 1.0000 (0.9975, 1.0000)

SIP INV (TRAPP-2) 99.48 239 1200 0.1992 (0.1769, 0.2229)

SIP INV (Wireshark) 99.48 1200 1200 1.0000 (0.9975, 1.0000)

Figure 4.5 plots the results from Table 4.5. For BitTorrent packets, both the

TRAPP-2 system and Wireshark intercept 100% of the 1200 packets (400 packets x

3 replications). However, the network utilization measured during the test is only

15.46%. This is due to BitTorrent relying on TCP, which uses reliable data transfer

69

and exponential backoff mechanisms to throttle the throughput. For DNS packets,

the TRAPP-2 system captures 86.58% of the 1200 packets, while Wireshark captures

100%. The network utilization measured during the test is 23.82%. Although DNS

relies on UDP, allowing packets to be sent faster than TCP, the smaller size of the

packets results in a smaller network utilization. For SIP BYE packets, the TRAPP-2

system captures 22.00% of the 1200 packets while Wireshark captures 100% of the

packets. The network utilization measured during the test is 94.75%. The larger SIP

BYE packet byte size and reliance on UDP results in an increased network utilization.

For the final packet, SIP INVITE, the TRAPP-2 system captures 19.92% of the 1200

packets, while Wireshark again captures 100% of the packets. The 1500-byte SIP

packet transferred over UDP results in the highest network utilization of 99.48%.

Figure 4.5: Network Utilization and Probability of Packet Intercept vs Flood of 1200
packets (400 packets x 3 replications) Worst-Case Scenario Packets for Experiment 2.

4.2.1 Experiment 2 Analysis. Wireshark outperforms the TRAPP-2 system

in capturing a flood of 400 packets for DNS, SIP BYE, and SIP INVITE packet

types. This is due to the fact that Wireshark does not perform any processing on

the packets. As for the TRAPP-2 system, it must process 400 of the worst-case

70

scenario packets back-to-back. The results are expected since DNS, SIP BYE, and

SIP INVITE packets require more CPU cycles to process than BitTorrent packets as

revealed in Experiment 1. Both the TRAPP-2 system and Wireshark capture 100%

of BitTorrent packets, however, the network utilization is only 15.46%. Although

Wireshark outperforms the TRAPP-2 system for three of the four packets, this type

of traffic is unrealistic in a real world network. For all four of these types of packets,

the same packet would not typically be sent back-to-back as fast as possible.

4.3 Results and Analysis of Experiment 3

4.3.1 BitTorrent Probability of Packet Intercept. Table 4.6 presents the

results for the BitTorrent packet under eight different network utilizations. As a

reminder, the network utilizations are generated by adding a load using the Linux

pktgen utility. The packet selected for the test is BT-ON-WORST, the worst-case

scenario BitTorrent packet. As a result of selecting the BT-ON-WORST packet, the

data in Table 4.6 is assumed to be the worst-case scenario for a BitTorrent packet

with a hash on a hash list size of 1000. The probability of packet intercept is the

percentage of 900 packets (300 packets x 3 replications) captured.

Table 4.6: Probability of Packet Intercept for BitTorrent Packets Under Various
Network Utilizations for Experiment 3.

Utilization % Prob. of Packet Confidence Prob. of Packet Confidence

Intercept Interval Intercept Interval

(TRAPP-2) (95%) (Wireshark) (95%)

20.4% 1.0000 (0.9967, 1.0000) 0.9589 (0.9437, 0.9708)

30.1% 0.9733 (0.9605, 0.9828) 0.7167 (0.6859, 0.7459)

40.8% 0.9667 (0.9527, 0.9773) 0.4122 (0.3798, 0.4451)

49.8% 0.9711 (0.9579, 0.9810) 0.3733 (0.3416, 0.4058)

60.2% 0.9578 (0.9425, 0.9699) 0.2556 (0.2273, 0.2853)

71.4% 0.9456 (0.9286, 0.9594) 0.2356 (0.2081, 0.2646)

81.8% 0.9578 (0.9425, 0.9699) 0.2089 (0.1827, 0.2369)

93.7% 0.9556 (0.9399, 0.9680) 0.1722 (0.1481, 0.1985)

71

Figure 4.6 shows a plot of the probability of packet intercept for both the

TRAPP-2 system and Wireshark as the network utilization is increased. The TRAPP-

2 system has a higher probability of packet intercept for every network utilization

level. For the 20.4% network utilization, TRAPP-2 captures 100% of BitTorrent

packets and Wireshark captures 95.89%. Figure 4.6 reveals the approximate and

slight linear decrease in probability of packet intercept for the TRAPP-2 system, as

opposed to the exponential decrease by Wireshark, when the network utilization is

increased. This is further emphasized by the fact that the TRAPP-2 system man-

ages to capture 95.56% of BitTorrent packets at the maximum network utilization

of 93.7%. In contrast, Wireshark only captures 17.22% of BitTorrent packets at the

maximum network utilization.

Figure 4.6: Probability of Packet Intercept for BitTorrent Packets vs Various Net-
work Utilizations for Experiment 3.

4.3.2 SIP INVITE Probability of Packet Intercept. Table 4.7 presents the

results for the SIP INVITE packet under eight different network utilizations. The

packet selected for the test is SIP-INVITE-ON-LARGE-WORST, the worst-case sce-

nario SIP INVITE packet. As a result of selecting the SIP-INVITE-ON-LARGE-

WORST packet, the data in Table 4.7 is assumed to be the worst-case scenario for a

72

SIP INVITE packet with a hash on a hash list size of 1000. The probability of packet

intercept is the percentage of 900 packets (300 packets x 3 replications) captured.

Table 4.7: Probability of Packet Intercept for Session Initiation Protocol INVITE
Packets Under Various Network Utilizations for Experiment 3.

Utilization % Prob. of Packet Confidence Prob. of Packet Confidence

Intercept Interval Intercept Interval

(TRAPP-2) (95%) (Wireshark) (95%)

20.4% 1.0000 (0.9967, 1.0000) 0.9600 (0.9450, 0.9718)

30.1% 0.4256 (0.3929, 0.4586) 0.6867 (0.6552, 0.7168)

40.8% 0.3144 (0.2842, 0.3459) 0.4467 (0.4138, 0.4798)

49.8% 0.2733 (0.2444, 0.3037) 0.3478 (0.3166, 0.3799)

60.2% 0.2778 (0.2487, 0.3082) 0.2589 (0.2305, 0.2888)

71.4% 0.2522 (0.2241, 0.2819) 0.2256 (0.1986, 0.2542)

81.8% 0.2322 (0.2049, 0.2612) 0.2200 (0.1933, 0.2485)

93.7% 0.2078 (0.1817, 0.2357) 0.1633 (0.1397, 0.1891)

Figure 4.7 shows a plot of the probability of packet intercept for both the

TRAPP-2 system and Wireshark as the network utilization is increased. For the 20.4%

network utilization, TRAPP-2 captures 100% of SIP INVITE packets and Wireshark

captures 96.00%. The TRAPP-2 system has a higher probability of packet intercept

for the 20.4% network utilization, drops below Wireshark in the 30.1% - 49.8% range,

then exceeds Wireshark for the remaining network utilizations. Figure 4.7 reveals

the approximate exponential decrease in probability of packet intercept for both the

TRAPP-2 system and Wireshark when the network utilization is increased.

73

Figure 4.7: Probability of Packet Intercept for Session Initiation Protocol INVITE
Packets vs Various Network Utilizations for Experiment 3.

4.3.3 SIP BYE Probability of Packet Intercept. Table 4.8 presents the

results for the SIP BYE packet under eight different network utilizations. The packet

selected for the test is SIP-BYE-ON-LARGE-WORST, the worst-case scenario SIP

BYE packet. As a result of selecting the SIP-BYE-ON-LARGE-WORST packet, the

data in Table 4.8 is assumed to be the worst-case scenario for a SIP BYE packet

with a hash on a hash list size of 1000. The probability of packet intercept is the

percentage of 900 packets (300 packets x 3 replications) captured.

Table 4.8: Probability of Packet Intercept for Session Initiation Protocol BYE
Packets Under Various Network Utilizations for Experiment 3.

Utilization % Prob. of Packet Confidence Prob. of Packet Confidence

Intercept Interval Intercept Interval

(TRAPP-2) (95%) (Wireshark) (95%)

20.4% 1.0000 (0.9967, 1.0000) 0.9633 (0.9488, 0.9746)

30.1% 0.6344 (0.6020, 0.6659) 0.6778 (0.6461, 0.7082)

40.8% 0.5189 (0.4856, 0.5519) 0.4200 (0.3875, 0.4530)

49.8% 0.4600 (0.4270, 0.4932) 0.3078 (0.2777, 0.3390)

60.2% 0.5167 (0.4834, 0.5497) 0.3111 (0.2809, 0.3424)

71.4% 0.4711 (0.4380, 0.5043) 0.2556 (0.2273, 0.2853)

81.8% 0.4544 (0.4215, 0.4876) 0.1989 (0.1732, 0.2264)

93.7% 0.3711 (0.3394, 0.4036) 0.1589 (0.1355, 0.1844)

74

Figure 4.8 shows a plot of the probability of packet intercept for both the

TRAPP-2 system and Wireshark as the network utilization is increased. For the

20.4% network utilization, TRAPP-2 captures 100% of SIP BYE packets and Wire-

shark captures 96.33%. The TRAPP-2 system has a higher probability of packet inter-

cept for the 20.4% network utilization, drops below Wireshark at 30.1%, then exceeds

Wireshark for the remaining network utilizations. Figure 4.8 reveals the approximate

exponential decrease in probability of packet intercept for both the TRAPP-2 system

and Wireshark when the network utilization is increased. For both the TRAPP-2

system and Wireshark, a small bump in the probability of packet intercept is visible

at the 60.2% network utilization. The reason for the bump appearing in both the

TRAPP-2 system and Wireshark results is unknown.

Figure 4.8: Probability of Packet Intercept for Session Initiation Protocol BYE
Packets vs Various Network Utilizations for Experiment 3.

4.3.4 DNS Probability of Packet Intercept. Table 4.9 presents the results

for the DNS packet under eight different network utilizations. The packet selected

for the test is DNS-OFF-LARGE, the worst-case scenario DNS packet. As a result

of selecting the DNS-OFF-LARGE packet, the data in Table 4.9 is assumed to be

the worst-case scenario for a DNS packet with a hash off a hash list size of 1000.

75

The probability of packet intercept is the percentage of 900 packets (300 packets x 3

replications) captured.

Table 4.9: Probability of Packet Intercept for Domain Name System Packets Under
Various Network Utilizations for Experiment 3.

Utilization % Prob. of Packet Confidence Prob. of Packet Confidence

Intercept Interval Intercept Interval

(TRAPP-2) (95%) (Wireshark) (95%)

20.4% 1.0000 (0.9967, 1.0000) 0.9567 (0.9412, 0.9690)

30.1% 0.9789 (0.9672, 0.9872) 0.6544 (0.6223, 0.6855)

40.8% 0.9644 (0.9501, 0.9755) 0.4500 (0.4171, 0.4831)

49.8% 0.9611 (0.9463, 0.9727) 0.3556 (0.3242, 0.3878)

60.2% 0.9100 (0.8893, 0.9278) 0.3144 (0.2842, 0.3459)

71.4% 0.9200 (0.9003, 0.9368) 0.2289 (0.2018, 0.2577)

81.8% 0.8911 (0.8689, 0.9107) 0.2500 (0.2220, 0.2796)

93.7% 0.9189 (0.8990, 0.9358) 0.1800 (0.1554, 0.2066)

Figure 4.9 shows a plot of the probability of packet intercept for both the

TRAPP-2 system and Wireshark as the network utilization is increased. The TRAPP-

2 system has a higher probability of packet intercept for every network utilization level.

For the 20.4% network utilization, TRAPP-2 captures 100% of SIP BYE packets and

Wireshark captures 95.67%. Figure 4.9 reveals the approximate and slight linear de-

crease in probability of packet intercept for the TRAPP-2 system, as opposed to the

exponential decrease by Wireshark, when the network utilization is increased. This is

further emphasized by the fact that the TRAPP-2 system manages to capture 91.89%

of DNS packets at the maximum network utilization of 93.7%. In contrast, Wireshark

only captures 18.00% of DNS packets at the maximum network utilization.

76

Figure 4.9: Probability of Packet Intercept for Domain Name System Packets vs
Various Network Utilizations for Experiment 3.

4.3.5 Experiment 3 Analysis. The TRAPP-2 system significantly outper-

forms Wireshark in capturing BitTorrent and DNS packets. The TRAPP-2 system

captures 95.56% of BitTorrent and 91.89% of DNS packets under a 93.7% network

utilization. Wireshark captures 17.22% of BitTorrent and 18.00% of DNS packets

under the same 93.7% network utilization. As a reminder, the packets selected for

this test are the worst-case scenario packets.

The TRAPP-2 system and Wireshark return similar performances for SIP IN-

VITE packets. However, the TRAPP-2 system captures 20.78% of packets compared

to Wireshark’s 16.33% under a 93.7% network utilization. The TRAPP-2 system and

Wireshark return similar performances for SIP BYE packets at the 20.4% and 30.1%

network utilization. After that, the TRAPP-2 system outperforms Wireshark. Un-

der a 93.7% network utilization, the TRAPP-2 system captures 37.11% of SIP BYE

packets compared to 15.89% by Wireshark. The TRAPP-2 system has a smaller prob-

ability of packet intercept for SIP INVITE and SIP BYE packets due to the larger

packet size and packet processing time.

In general, the probability of packet intercept for Wireshark, regardless of packet

type, follows the same exponential decrease as the network utilization is increased.

77

The probability of packet intercept for the TRAPP-2 system depends on the type of

packet being captured. For the TRAPP-2 system, the smaller BitTorrent and DNS

packets outperform the larger SIP INVITE and SIP BYE packets at higher network

utilizations.

4.4 Results and Analysis of Experiment 4

Table 4.10 summarizes the results of a one-variable t-test using 17 different hash

list sizes. The packet selected for this test is the DNS-OFF-LARGE, the worst-case

scenario DNS packet. The packet is selected because the entire hash list search is

exhausted. The table contains the number of packets sent, mean number of CPU

cycles required to process the DNS packet, the standard deviation, the standard error

of the mean, and the 95% confidence interval for the mean.

Table 4.10: Mean Packet Processing Times for 17 Different Hash List Sizes for
Experiment 4.

Hash List Packets Mean Standard Standard Error Confidence

Items Sent CPU Cycles Deviation of the Mean Interval (95%)

2,000 150 5683.87 66.14 5.40 (5673.19, 5694.54)

4,000 150 5697.71 60.08 4.91 (5688.01, 5707.40)

8,000 150 5707.06 56.62 4.62 (5697.93, 5716.19)

16,000 150 5723.72 55.12 4.50 (5714.83, 5732.61)

32,000 150 5739.69 52.16 4.26 (5731.27, 5748.10)

64,000 150 5756.57 60.68 4.95 (5746.78, 5766.36)

128,000 150 5780.12 55.10 4.50 (5771.23, 5789.01)

256,000 150 5799.23 60.81 4.97 (5789.42, 5809.04)

512,000 150 5814.21 66.36 5.42 (5803.50, 5824.91)

1,024,000 150 5830.26 77.46 6.32 (5817.76, 5842.76)

2,048,000 150 5848.29 70.11 5.72 (5836.98, 5859.61)

4,096,000 150 5867.69 73.64 6.01 (5855.81, 5879.57)

8,192,000 150 5886.57 80.20 6.55 (5873.63, 5899.51)

16,384,000 150 5901.64 81.78 6.68 (5888.45, 5914.83)

32,768,000 150 5918.90 84.62 6.91 (5905.25, 5932.55)

65,536,000 150 5931.99 52.17 4.26 (5923.58, 5940.41)

131,072,000 150 5938.81 39.85 3.25 (5932.38, 5945.24)

78

Figure 4.10 shows a plot of the mean packet processing time as the hash list

size is increased. The smallest hash list size is 2,000 and is doubled up to 131,072,000

unique hash items on the hash list. The doubling of the hash list size results in

a logarithmic plot for the mean packet processing times. Note that the difference

between mean packet processing times for the hash list size of 2,000 and 131,072,000

is approximately only 255 CPU cycles.

Figure 4.10: Mean Packet Processing Times vs 17 Different Hash List Sizes for
Experiment 4.

To verify the logarithmic nature of the mean packet processing times as the hash

list size is doubled, a separate plot is required. Figure 4.11 plots the mean packet

processing times against the natural log of the hash list sizes. The linearity of the

plot asserts the logarithmic nature of doubling the hash list size.

79

Figure 4.11: Mean Packet Processing Times vs Natural Log of 17 Different Hash
List Sizes for Experiment 4.

Table 4.11 displays the mean packet processing times and the difference between

them. For example, the hash list size of 4,000 takes an average of 13.84 more CPU

cycles than the hash list size of 2,000. The range is from 6.22 - 23.55 CPU cycles and

the overall average difference between the means is 15.93 CPU cycles. This results

in the average addition of 15.93 CPU cycles to the overall packet processing time for

each doubling of the hash list size.

80

Table 4.11: Difference Between Mean Packet Processing Times for 17 Different
Hash List Sizes for Experiment 4.

Hash List Mean Difference

Items CPU Cycles Between Means

2,000 5683.87 -

4,000 5697.71 13.84

8,000 5707.06 9.35

16,000 5723.72 16.66

32,000 5739.69 15.97

64,000 5756.57 16.88

128,000 5780.12 23.55

256,000 5799.23 19.11

512,000 5814.21 14.98

1,024,000 5830.26 16.05

2,048,000 5848.29 18.03

4,096,000 5867.69 19.40

8,192,000 5886.57 18.88

16,384,000 5901.64 15.07

32,768,000 5918.90 17.26

65,536,000 5931.99 13.09

131,072,000 5938.81 6.82

Average Difference 15.93

Between Means

4.4.1 Experiment 4 Analysis. Doubling the hash list size results in an

average mean increase of 15.93 CPU cycles for the DNS packet. The four-byte sdbm

hash contains eight hexadecimal values, e.g., 1F7B032A. Thus, there are a total of

4,294,967,296 (168) unique hashes for a four-byte hash. The maximum hash list

size of 131,072,000 unique items for the TRAPP-2 system equates to 3.05% of the

total number of hashes due to the 512 MB memory limit. If a system of 4,294,967,296

unique hashes is desired, then 16 GB of storage is required. The number 4,294,967,296

can be achieved by doubling the max list size of 131,072,000 approximately five more

times. With a mean of approximately 16 additional CPU cycles per doubling of the

hashlist, 4,294,967,296 unique hash items can be searched in additional 5 x 16 =

80 CPU cycles. This assumes the hash list is sorted to cater to the binary search

81

algorithm. These results are encouraging for future research that will rely on larger

hash list sizes.

4.5 Overall Analysis

The results from Experiment 1 assist in understanding the results of Experi-

ment 3. The smaller packet processing times for BitTorrent and DNS packets allows

the TRAPP-2 system to capture them with a probability of packet intercept greater

than 90% under the maximum network utilization of 93.7%. Both the SIP INVITE

and SIP BYE packets take longer to process and, as result, are captured at a signifi-

cantly lower probability of packet intercept under the same 93.7% network utilization.

As a reminder, the worst-case scenario packets are selected for Experiment 3 so the

probabililty of packet intercept represents the minimum probablibilty of packet inter-

cept. Higher probabilities of packet intercept can be achieved with packets that have

more favorable packet characteristics. Overall, the probability of packet intercept for

Wireshark is markedly lower than the TRAPP-2 system under the various network

utilizations of Experiment 3. The default buffer size for Wireshark, which is used for

this research, is 1 MB. This is significantly greater than the 32 KB First-In-First-Out

buffer used in conjunction with the FPGA’s Ethernet controller. Perhaps increasing

the buffer size in Wireshark can produce more favorable results, but the fact still

remains that the TRAPP-2 system’s buffer is smaller and outperforms Wireshark.

Experiment 2 reveals that Wireshark outperforms the TRAPP-2 system when

there is no additional network utilization added and 400 packets flood the system. It

appears Wireshark is capable of handling a small flood of packets of interest more

efficiently than the TRAPP-2 system. This is likely due to the large 1 MB buffer and

lack of packet processing required by Wireshark.

The results from Experiment 4 reveal that doubling the hash list size increases

the packet processing time only slightly (an average of 0.27%). Although the worst-

case scenario DNS packet is selected for the test, the experiment essentially measures

the speed of the binary search algorithm and is independent of the type of packet hash

82

being processed. Therefore, the results can be extended and expected of BitTorrent

and SIP packet hashes as well. The binary search algorithm is chosen for simplicity.

Implementing other data structures and algorithms could result in faster hash lookups.

4.6 Summary

This chapter presents the results and analysis from the four experiments mea-

suring packet processing time and probability of packet intercept. Statistical analysis

of the data’s packet processing time and probability of packet intercept is performed.

An overall analysis and discussion is presented at the end. The most relevant re-

sults show that the TRAPP-2 system captures 95.56% of BitTorrent, 20.78% of SIP

INVITE, 37.11% of SIP BYE, and 91.89% of DNS worst-case scenario packets of in-

terest while under a 93.7% network utilization. Additionally, Experiment 4 reveals

that each doubling of the hash list size results in a mean increase of approximately

16 CPU cycles.

83

V. Conclusions

This chapter summarizes the overall goals and conclusions of the research. Sec-

tion 5.1 summarizes the results and whether the goals and hypotheses are met.

The significance of the research is presented in Section 5.2. Lastly, Section 5.3 provides

recommendations to expand and progress the research of the TRAPP-2 system.

5.1 Conclusions of Research

5.1.1 Goal #1: Determine the packet processing times for packets of interest.

The first goal is to determine the packet processing times for packets of interest. The

TRAPP-2 system must be able to process packets as quickly as possible. Experiment

1 reveals BitTorrent and DNS packets require the fewest CPU cycles and both types of

SIP packets require the most. The TRAPP-2 system can process all types of packets

under 35,000 CPU cycles, thus meeting the goal and proving the hypothesis.

5.1.2 Goal #2: Determine the probability of packet intercept under a flood of

400 packets of interest. The second goal of this research is to determine the prob-

ability of packet intercept for a flood of 400 packets of interest. Experiment 2 reveals

that the TRAPP-2 system captures 100% of BitTorrent, 86.58% of DNS, 22.00% of

SIP BYE, and 19.92% of SIP INVITE packets when 400 packets are sent as fast as

possible, thus meeting the research goal. However, the measured network utilizations

vary significantly depending on the type of packet being sent. The TRAPP-2 system

fails to capture over 50% of the SIP BYE and SIP INVITE packets, thus failing to

meet the hypothesis. This type of traffic is unrealistic and is simply meant to stress

the TRAPP-2 system.

5.1.3 Goal #3: Determine the probability of packet intercept under various

network utilizations. The third goal of this research is to determine the probability

of packet intercept for packets of interest under various network utilizations. Experi-

ment 3 reveals that the TRAPP-2 system captures, with 95% confidence, 95.56% of

BitTorrent, 20.78% of SIP INVITE, 37.11% of SIP BYE, and 91.89% of DNS packets

84

of interest under a 93.7% network utilization. The packets selected for the experi-

ment are the worst-case scenario, so the reported probability of packet intercept is

the minimum. The 93.7% network utilization is equal to 937 megabits per second.

These results exceed the hypothesized values and meet the research goal.

5.1.4 Goal #4: Determine how the hash list size affects packet processing time.

The fourth goal of this research is to determine how increasing the hash list size

affects the packet processing time. The original hash list size of 1,000 unique items is

doubled 17 times to generate a hash list with 131,072,000 unique items. Experiment 4

reveals how each doubling of the hash list exposes the logarithmic nature of the packet

processing time versus the number of hash list items. The mean packet processing

time increases an average of 15.93 CPU cycles per doubling of the hash list size. This

value is less than the hypothesized value of 50, thus meeting the goal and proving the

hypothesis.

5.2 Significance of Research

This research allows the military and government agencies to detect and track

malicious BitTorrent, SIP, and DNS traffic traversing networks at gigabit speeds using

large hash lists. The experiments selected measure the packet processing time and

probability of packet intercept for the TRAPP-2 system under various conditions. The

results and analysis conclude that the TRAPP-2 system is capable of detecting and

tracking traffic of interest on a gigabit Ethernet network. This research also reveals

how increasing the hash list size affects the packet processing time for DNS packets.

Although DNS is the only protocol tested, the results apply equally to BitTorrent file

hashes and SIP URI domains. This allows for larger lists of known illegal BitTorrent

file hashes or SIP URIs of interest to be used on the TRAPP-2 system.

The TRAPP-2 system is attractive to network administrators because it is a

passive solution. The FPGA design allows for quick implementation onto a local area

network, assuming there is a gateway switch with a SPAN port. In addition, if the

85

TRAPP-2 system fails, it cannot disrupt or interfere with network traffic because it

is not installed in-line with other network appliances.

For BitTorrent traffic, the TRAPP-2 system aids law enforcement in the fight

against illegal file distribution. TRAPP-2 can identify the parties participating in an

illegal file transfer. The TRAPP-2 system can also be used to identify the accidental or

intentional disclosure of sensitive documents from military and government networks

through BitTorrent file sharing programs. The system provides proof in the form of

the logged packet which contains the hash of the file being transmitted and the IP

addresses of the computers participating.

The proliferation of Internet phones and VoIP has made tracking persons of

interest difficult. The TRAPP-2 system aids law enforcement and intelligence agencies

in identifying social networks and cells of criminals, terrorists, and other people of

interest using VoIP technologies. By detecting SIP URI domains of interest, maps of

players and organizational hierarchies can be derived to aid investigators.

Lastly, the TRAPP-2 system aids network administrators in detecting poten-

tial data exfiltration via malicious DNS traffic. By establishing a DNS whitelist of

approved domains, network administrators can use the TRAPP-2 system to identify

potential abuses of DNS. The TRAPP-2 system logs the packet, and more impor-

tantly, the IP addresses of the computers communicating. This can help investigators

in identifying compromised computers and the external IP addresses establishing the

unauthorized communication channels.

5.3 Recommendations for Future Research

The first suggestion for future research is to expand the hardware capabilities of

the ML510 FPGA. The board contains an additional PowerPC processor and gigabit

Ethernet controller that are not used in this research. Additional processing, func-

tions, and algorithm work can be offloaded to the second processor. Additionally, the

second processor can be used to hash the SIP URIs and DNS domains using a better

86

hashing algorithm than sdbm. The second gigabit Ethernet controller can be used as

a backup or out-of-band administrative Ethernet controller.

Secondly, future research can focus on using a proven hashing algorithm such

as SHA-1 or the Message-Digest algorithm 5 (MD5). For this research, the sdbm

hashing algorithm is selected because of its speed and simplicity. Shortfalls such as a

minimal avalanche effect and potential collisions are not considered. The algorithm

processing can reside on a separate dedicated processor as mentioned above.

BitTorrent, SIP, and DNS are not the only protocols that can be abused or

have malicious intent. Another suggestion is to investigate the Internet Relay Chat

protocol used for botnet command and control. The Hypertext Transfer Protocol is

another popular tunneling protocol because of its reliance on TCP port 80, which is

open in most organizations. The TRAPP-2 system can easily be adapted to other

protocols that can be abused by modifying the signature detection logic.

Lastly, detecting encrypted and obfuscated network traffic is another area of

future research. This research assumes that the BitTorrent, SIP, and DNS traffic is

not encrypted or obfuscated. Research efforts can focus on decrypting traffic on the

fly, perhaps using the other processor to accomplish this, while still maintaining the

system’s speed.

87

Appendix A. Experimental Data

This Appendix contains the raw data collected for the experiments. Section A.1

contains the data from Experiment 1. Section A.2 contains the data from

Experiment 2. Section A.3 contains the data from Experiment 3. Section A.4 contains

the data from Experiment 4.

A.1 Results of Experiment 1

88

Table A.1: CPU Cycle Data for Experiment 1.
Non BT/SIP/DNS BT ON WORST BT ON BEST BT OFF

Packet Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3

1 4985 4985 4985 2305 2205 2181 2213 2051 2049 1973 1973 1973

2 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

3 4985 4985 4985 2307 2321 2181 2175 2153 2049 1973 1973 1973

4 4985 4985 4985 2275 2184 2181 2143 2052 2049 1973 1973 1973

5 4985 4985 4985 2185 2279 2181 2053 2147 2049 1973 1973 1973

6 4985 4985 4985 2275 2303 2181 2143 2171 2049 1973 1973 1973

7 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

8 4985 4985 4985 2185 2275 2181 2053 2143 2049 1973 1973 1973

9 4985 4985 4985 2285 2183 2181 2153 2051 2049 1973 1973 1973

10 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

11 4985 4985 4985 2287 2285 2181 2155 2153 2049 1973 1973 1973

12 4985 4985 4985 2275 2184 2181 2143 2052 2049 1973 1973 1973

13 4985 4985 4985 2185 2287 2181 2053 2155 2049 1973 1973 1973

14 4985 4985 4985 2275 2303 2181 2143 2187 2049 1973 1973 1973

15 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

16 4985 4985 4985 2185 2303 2181 2053 2171 2049 1973 1973 1973

17 4985 4985 4985 2285 2183 2181 2153 2051 2049 1973 1973 1973

18 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

19 4985 4985 4985 2279 2305 2181 2147 2173 2049 1973 1973 1973

20 4985 4985 4985 2303 2184 2181 2171 2052 2049 1973 1973 1973

21 4985 4985 4985 2185 2307 2181 2053 2175 2049 1973 1973 1973

22 4985 4985 4985 2283 2303 2181 2151 2171 2049 1973 1973 1973

23 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

24 4985 4985 4985 2185 2267 2181 2053 2135 2049 1973 1973 1973

25 4985 4985 4985 2285 2183 2181 2153 2051 2049 1973 1973 1973

26 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

27 4985 4985 4985 2307 2277 2181 2175 2145 2049 1973 1973 1973

28 4985 4985 4985 2303 2184 2181 2171 2052 2049 1973 1973 1973

29 4985 4985 4985 2185 2271 2181 2053 2139 2049 1973 1973 1973

30 4985 4985 4985 2303 2255 2181 2171 2123 2049 1973 1973 1973

31 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

32 4985 4985 4985 2185 2295 2181 2053 2163 2049 1973 1973 1973

33 4985 4985 4985 2277 2183 2181 2209 2051 2049 1973 1973 1973

34 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

35 4985 4985 4985 2307 2337 2181 2175 2137 2049 1973 1973 1973

36 4985 4985 4985 2295 2184 2181 2151 2052 2049 1973 1973 1973

37 4985 4985 4985 2185 2271 2181 2053 2139 2049 1973 1973 1973

38 4985 4985 4985 2275 2267 2181 2143 2135 2049 1973 1973 1973

39 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

40 4985 4985 4985 2185 2283 2181 2053 2219 2049 1973 1973 1973

41 4985 4985 4985 2277 2183 2181 2145 2051 2049 1973 1973 1973

42 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

43 4985 4985 4985 2307 2232 2181 2175 2100 2049 1973 1973 1973

44 4985 4985 4985 2303 2184 2181 2171 2052 2049 1973 1973 1973

45 4985 4985 4985 2185 2287 2181 2053 2155 2049 1973 1973 1973

46 4985 4985 4985 2283 2283 2181 2151 2151 2049 1973 1973 1973

47 4985 4985 4985 2183 2185 2181 2051 2053 2049 1973 1973 1973

48 4985 4985 4985 2185 2283 2181 2053 2151 2049 1973 1973 1973

49 4985 4985 4985 2305 2183 2181 2173 2051 2049 1973 1973 1973

50 4985 4985 4985 2184 2185 2181 2052 2053 2049 1973 1973 1973

89

Table A.2: CPU Cycle Data for Experiment 1 Continued.
SIP INV ON LARGE WORST SIP INV ON SMALL BEST SIP INV OFF LARGE SIP BYE ON LARGE WORST

Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3

33240 32776 32802 14823 14735 14761 31092 31092 31092 25615 25347 25388

33191 32809 32815 14929 14815 14797 31092 31092 31092 25448 25374 25347

33257 32896 32872 14769 14822 14812 31092 31092 31092 25579 25347 25347

33341 32779 32800 14859 14769 14734 31092 31092 31092 25496 25347 25388

33071 32856 32830 14863 14783 14804 31092 31092 31092 25529 25347 25347

33292 32857 32863 14757 14758 14776 31092 31092 31092 25553 25370 25388

33041 32780 32820 14970 14774 14774 31092 31092 31092 25545 25347 25383

33034 32847 32856 14848 14782 14806 31092 31092 31092 25613 25380 25347

32938 32832 32812 14734 14761 14755 31092 31092 31092 25629 25347 25392

33046 32805 32801 14825 14807 14786 31092 31092 31092 25553 25380 25376

33620 32825 32858 14858 14783 14822 31092 31092 31092 25629 25376 25347

33527 32800 32779 14857 14734 14769 31092 31092 31092 25649 25384 25376

34028 32862 32862 14857 14820 14824 31092 31092 31092 25448 25347 25388

34629 32907 32897 14838 14761 14734 31092 31092 31092 25468 25374 25368

34350 32816 32812 14836 14760 14766 31092 31092 31092 25496 25368 25347

35319 35268 35304 14768 14816 14808 31092 31092 31092 25462 25370 25380

36279 36194 36194 14770 14735 14735 31092 31092 31092 25615 25376 25396

34572 34571 34597 14805 14851 14867 31092 31092 31092 25735 25374 25347

34632 34647 34665 14797 14808 14822 31092 31092 31092 25735 25368 25384

34646 34596 34572 14867 14734 14734 31092 31092 31092 25551 25347 25347

34624 34632 34634 15022 14810 14783 31092 31092 31092 26238 25384 25388

34537 34706 34666 14928 14734 14775 31092 31092 31092 26540 25347 25388

34590 34600 34596 14862 14734 14734 31092 31092 31092 26528 25368 25384

34597 34655 34627 15103 14782 14802 31092 31092 31092 26276 25347 25347

34647 34590 34522 15726 14771 14735 31092 31092 31092 26935 26311 26307

34596 34567 34597 15882 14823 14819 31092 31092 31092 28288 28600 28534

34658 34641 34641 15662 14835 14835 31092 31092 31092 26566 26508 26534

34574 34534 34490 15735 14769 14734 31092 31092 31092 26566 26510 26508

34438 34620 34618 15181 16279 16155 31092 31092 31092 26608 26566 26540

34653 34670 34696 17071 16833 16879 31092 31092 31092 26582 26550 26508

34594 34596 34596 15828 15752 15726 31092 31092 31092 26558 26576 26576

34597 34601 34627 15803 15828 15832 31092 31092 31092 26568 26576 26510

34605 34390 34390 15726 15728 15728 31092 31092 31092 26546 26602 26566

34582 34597 34597 15804 15831 15873 31092 31092 31092 26540 26604 26534

34510 34397 34365 15688 15799 15799 31092 31092 31092 26540 26576 26470

35495 35555 35679 15831 15753 15729 31092 31092 31092 26580 26508 26600

34452 35158 35202 15847 15812 15840 31092 31092 31092 26542 26508 26552

35971 35872 35890 15753 15753 15727 31092 31092 31092 26566 26552 26508

34590 34596 34596 15828 15752 15726 31092 31092 31092 26500 26534 26508

34597 34627 34603 15727 15802 15830 31092 31092 31092 26608 26508 26566

34665 34590 34594 15752 15752 15726 31092 31092 31092 26590 26534 26534

34596 34597 34597 15802 15831 15805 31092 31092 31092 26542 26550 26508

34632 34665 34639 15688 15799 15835 31092 31092 31092 26502 26508 26550

34670 34610 34596 15831 15727 15727 31092 31092 31092 26526 26536 26534

34532 34620 34632 15825 15844 15802 31092 31092 31092 26618 26550 26508

34627 34676 34670 15753 15759 15769 31092 31092 31092 26634 26444 26486

34566 34598 34600 15828 15726 15760 31092 31092 31092 26608 26508 26508

34507 34563 34495 15727 15828 15828 31092 31092 31092 26560 26508 26534

34649 34642 34664 15728 15726 15752 31092 31092 31092 26478 26602 26508

34572 34597 34597 15738 15807 15807 31092 31092 31092 26636 26594 26508

90

Table A.3: CPU Cycle Data for Experiment 1 Continued.
SIP BYE ON SMALL BEST DNS ON LARGE WORST DNS OFF SMALL DNS OFF LARGE

Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3 Rep. 1 Rep 2 Rep 3

8522 8623 8623 5172 5172 5172 1635 1635 1635 5504 5566 5492

8624 8522 8522 5172 5172 5172 1757 1757 1635 5606 5604 5492

8528 8658 8662 5172 5172 5172 1635 1761 1635 5504 5690 5492

8638 8522 8522 5172 5172 5172 1729 1635 1635 5626 5560 5492

8522 8623 8623 5172 5172 5172 1733 1759 1635 5504 5582 5492

8644 8522 8522 5172 5172 5172 1635 1635 1635 5626 5560 5492

8544 8623 8658 5172 5172 5172 1759 1635 1635 5504 5698 5492

8644 8522 8522 5172 5172 5172 1635 1729 1635 5598 5504 5492

8522 8623 8623 5172 5172 5172 1635 1635 1635 5504 5582 5492

8616 8522 8522 5172 5172 5172 1757 1729 1635 5626 5504 5492

8560 8623 8623 5172 5172 5172 1635 1761 1635 5504 5582 5492

8624 8522 8522 5172 5172 5172 1729 1635 1635 5598 5504 5492

8546 8623 8658 5172 5172 5172 1741 1739 1635 5504 5582 5492

8644 8522 8522 5172 5172 5172 1635 1635 1635 5626 5504 5492

8522 8623 8623 5172 5172 5172 1823 1635 1635 5504 5582 5492

8644 8522 8522 5172 5172 5172 1635 1729 1635 5626 5556 5492

8522 8623 8648 5172 5172 5172 1635 1635 1635 5504 5582 5492

8616 8556 8522 5172 5172 5172 1737 1757 1635 5598 5560 5492

8522 8623 8623 5172 5172 5172 1635 1733 1635 5504 5582 5492

8616 8522 8522 5172 5172 5172 1737 1635 1635 5626 5571 5492

8522 8623 8623 5172 5172 5172 1761 1731 1635 5504 5606 5492

8616 8522 8544 5172 5172 5172 1635 1635 1635 5626 5609 5492

8522 8623 8623 5172 5172 5172 1759 1635 1635 5504 5778 5492

8664 8522 8538 5172 5172 5172 1635 1757 1635 5658 5504 5492

8546 8623 8644 5172 5172 5172 1635 1635 1635 5504 5663 5492

8632 8522 8522 5172 5172 5172 1729 1729 1635 5626 5504 5492

8522 8678 8639 5172 5172 5172 1635 1741 1635 5504 5582 5492

8660 8522 8562 5172 5172 5172 1757 1635 1635 5598 5608 5492

8522 8623 8623 5172 5172 5172 1733 1739 1635 5504 5582 5492

8644 8522 8522 5172 5172 5172 1635 1635 1635 5598 5504 5492

8522 8650 8650 5172 5172 5172 1731 1635 1635 5504 5582 5492

8644 8522 8552 5172 5172 5172 1635 1757 1635 5598 5504 5492

8522 8650 8623 5172 5172 5172 1635 1635 1635 5504 5582 5492

8616 8522 8522 5172 5172 5172 1737 1729 1635 5626 5504 5492

8522 8623 8623 5172 5172 5172 1635 1733 1635 5504 5582 5492

8652 8522 8522 5172 5172 5172 1757 1635 1635 5606 5504 5492

8522 8623 8623 5172 5172 5172 1733 1739 1635 5504 5582 5492

8644 8522 8562 5172 5172 5172 1635 1635 1635 5598 5504 5492

8522 8623 8623 5172 5172 5172 1731 1635 1635 5504 5582 5492

8608 8522 8548 5172 5172 5172 1635 1729 1635 5626 5504 5492

8522 8656 8648 5172 5172 5172 1635 1635 1635 5533 5582 5492

8624 8522 8522 5172 5172 5172 1737 1737 1635 5598 5504 5492

8522 8662 8623 5172 5172 5172 1635 1733 1635 5504 5582 5492

8624 8522 8522 5172 5172 5172 1757 1635 1635 5626 5504 5492

8522 8623 8623 5172 5172 5172 1801 1759 1635 5504 5582 5492

8624 8554 8522 5172 5172 5172 1635 1635 1635 5598 5504 5492

8522 8662 8662 5172 5172 5172 1759 1635 1635 5504 5582 5492

8624 8522 8522 5172 5172 5172 1635 1729 1635 5598 5504 5492

8522 8711 8623 5172 5172 5172 1635 1635 1635 5541 5582 5492

8571 8554 8522 5172 5172 5172 1737 1757 1635 5626 5541 5492

91

A.2 Results of Experiment 2

Table A.4: Packets Captured for Experiment 2.
Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 400 400 400 1200 1200

Wireshark 400 400 400 1200 1200

Average

Load (Mbps) 156.664 153.579 153.449 154.564

% of Max 15.67% 15.36% 15.34% 15.46%

SIP INVITE ON LARGE WORST 79 80 80 239 1200

Wireshark 400 400 400 1200 1200

Average

Load (Mbps) 994.402 997.901 992.099 994.801

% of Max 99.44% 99.79% 99.21% 99.48%

SIP BYE ON LARGE WORST 88 88 88 264 1200

Wireshark 400 400 400 1200 1200

Average

Load (Mbps) 944.62 952.483 945.451 947.518

% of Max 94.46% 95.25% 94.55% 94.75%

DNS OFF LARGE 343 348 348 1039 1200

Wireshark 400 400 400 1200 1200

Average

Load (Mbps) 242.339 243.776 228.405 238.173

% of Max 24.23% 24.38% 22.84% 23.82%

92

A.3 Results of Experiment 3

Table A.5: Packets Captured for Experiment 3, Utilization 1 (≈20.4%).
Utilization 1 (≈20.4%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 300 300 300 900 900

Wireshark 286 288 289 863 900

Average

Utilization (Mbps) 204 204 204 204

% of Max 20.40% 20.40% 20.40% 20.40%

SIP INVITE ON LARGE WORST 300 300 300 900 900

Wireshark 290 284 290 864 900

Average

Utilization (Mbps) 204 204 204 204

% of Max 20.40% 20.40% 20.40% 20.40%

SIP BYE ON LARGE WORST 300 300 300 900 900

Wireshark 296 285 286 867 900

Average

Utilization (Mbps) 204 204 204 204

% of Max 20.40% 20.40% 20.40% 20.40%

DNS OFF LARGE 300 300 300 900 900

Wireshark 295 284 282 861 900

Average

Utilization (Mbps) 204 204 204 204

% of Max 20.40% 20.40% 20.40% 20.40%

93

Table A.6: Packets Captured for Experiment 3, Utilization 2 (≈30.1%).
Utilization 2 (≈30.10%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 290 293 293 876 900

Wireshark 210 216 219 645 900

Average

Utilization (Mbps) 301 301 301 301

% of Max 30.10% 30.10% 30.10% 30.10%

SIP INVITE ON LARGE WORST 136 128 119 383 900

Wireshark 209 208 201 618 900

Average

Utilization (Mbps) 301 301 301 301

% of Max 30.10% 30.10% 30.10% 30.10%

SIP BYE ON LARGE WORST 192 190 189 571 900

Wireshark 187 216 207 610 900

Average

Utilization (Mbps) 301 301 301 301

% of Max 30.10% 30.10% 30.10% 30.10%

DNS OFF LARGE 294 294 293 881 900

Wireshark 182 184 223 589 900

Average

Utilization (Mbps) 301 301 301 301

% of Max 30.10% 30.10% 30.10% 30.10%

Table A.7: Packets Captured for Experiment 3, Utilization 3 (≈40.8%).
Utilization 3 (≈40.8%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 290 297 283 870 900

Wireshark 124 137 110 371 900

Average

Utilization (Mbps) 408 408 408 408

% of Max 40.80% 40.80% 40.80% 40.80%

SIP INVITE ON LARGE WORST 88 98 97 283 900

Wireshark 152 136 114 402 900

Average

Utilization (Mbps) 408 408 408 408

% of Max 40.80% 40.80% 40.80% 40.80%

SIP BYE ON LARGE WORST 156 158 153 467 900

Wireshark 123 131 124 378 900

Average

Utilization (Mbps) 408 408 408 408

% of Max 40.80% 40.80% 40.80% 40.80%

DNS OFF LARGE 287 292 289 868 900

Wireshark 138 140 127 405 900

Average

Utilization (Mbps) 408 408 408 408

% of Max 40.80% 40.80% 40.80% 40.80%

94

Table A.8: Packets Captured for Experiment 3, Utilization 4 (≈49.8%).
Utilization 4 (≈49.8%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 292 292 290 874 900

Wireshark 106 111 119 336 900

Average

Utilization (Mbps) 498 498 498 498

% of Max 49.80% 49.80% 49.80% 49.80%

SIP INVITE ON LARGE WORST 91 77 78 246 900

Wireshark 89 112 112 313 900

Average

Utilization (Mbps) 498 498 498 498

% of Max 49.80% 49.80% 49.80% 49.80%

SIP BYE ON LARGE WORST 145 143 126 414 900

Wireshark 91 91 95 277 900

Average

Utilization (Mbps) 498 498 498 498

% of Max 49.80% 49.80% 49.80% 49.80%

DNS OFF LARGE 292 287 286 865 900

Wireshark 129 95 96 320 900

Average

Utilization (Mbps) 498 498 498 498

% of Max 49.80% 49.80% 49.80% 49.80%

Table A.9: Packets Captured for Experiment 3, Utilization 5 (≈60.2%).
Utilization 5 (≈60.2%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 285 286 291 862 900

Wireshark 74 80 76 230 900

Average

Utilization (Mbps) 602 602 602 602

% of Max 60.20% 60.20% 60.20% 60.20%

SIP INVITE ON LARGE WORST 97 79 74 250 900

Wireshark 77 81 75 233 900

Average

Utilization (Mbps) 602 602 602 602

% of Max 60.20% 60.20% 60.20% 60.20%

SIP BYE ON LARGE WORST 166 144 155 465 900

Wireshark 97 103 80 280 900

Average

Utilization (Mbps) 602 602 602 602

% of Max 60.20% 60.20% 60.20% 60.20%

DNS OFF LARGE 266 278 275 819 900

Wireshark 89 95 99 283 900

Average

Utilization (Mbps) 602 602 602 602

% of Max 60.20% 60.20% 60.20% 60.20%

95

Table A.10: Packets Captured for Experiment 3, Utilization 6 (≈71.4%).
Utilization 6 (≈71.4%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 285 278 288 851 900

Wireshark 77 76 59 212 900

Average

Utilization (Mbps) 714 714 714 714

% of Max 71.40% 71.40% 71.40% 71.40%

SIP INVITE ON LARGE WORST 75 76 76 227 900

Wireshark 67 63 73 203 900

Average

Utilization (Mbps) 714 714 714 714

% of Max 71.40% 71.40% 71.40% 71.40%

SIP BYE ON LARGE WORST 146 136 142 424 900

Wireshark 85 71 74 230 900

Average

Utilization (Mbps) 714 714 714 714

% of Max 71.40% 71.40% 71.40% 71.40%

DNS OFF LARGE 279 270 279 828 900

Wireshark 71 69 66 206 900

Average

Utilization (Mbps) 714 714 714 714

% of Max 71.40% 71.40% 71.40% 71.40%

Table A.11: Packets Captured for Experiment 3, Utilization 7 (≈81.8%).
Utilization 7 (≈81.8%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 284 286 292 862 900

Wireshark 72 59 57 188 900

Average

Utilization (Mbps) 818 818 818 818

% of Max 81.80% 81.80% 81.80% 81.80%

SIP INVITE ON LARGE WORST 63 64 82 209 900

Wireshark 56 77 65 198 900

Average

Utilization (Mbps) 818 818 818 818

% of Max 81.80% 81.80% 81.80% 81.80%

SIP BYE ON LARGE WORST 152 144 113 409 900

Wireshark 73 56 50 179 900

Average

Utilization (Mbps) 818 818 818 818

% of Max 81.80% 81.80% 81.80% 81.80%

DNS OFF LARGE 268 265 269 802 900

Wireshark 75 79 71 225 900

Average

Utilization (Mbps) 818 818 818 818

% of Max 81.80% 81.80% 81.80% 81.80%

96

Table A.12: Packets Captured for Experiment 3, Utilization 8 (≈93.7%).
Utilization 8 (Max ≈ 93.7%)

Packet Type Packets Captured (Events) Total Packets Captured Packets Sent (Trials)

Rep. 1 Rep. 2 Rep. 3

BT ON WORST 287 289 284 860 900

Wireshark 54 48 53 155 900

Average

Utilization (Mbps) 937 937 937 937

% of Max 93.70% 93.70% 93.70% 93.70%

SIP INVITE ON LARGE WORST 72 58 57 187 900

Wireshark 53 53 41 147 900

Average

Utilization (Mbps) 937 937 937 937

% of Max 93.70% 93.70% 93.70% 93.70%

SIP BYE ON LARGE WORST 117 106 111 334 900

Wireshark 53 46 44 143 900

Average

Utilization (Mbps) 937 937 937 937

% of Max 93.70% 93.70% 93.70% 93.70%

DNS OFF LARGE 273 275 279 827 900

Wireshark 53 59 50 162 900

Average

Utilization (Mbps) 937 937 937 937

% of Max 93.70% 93.70% 93.70% 93.70%

97

A.4 Results of Experiment 4

Table A.13: CPU Cycle Data for Experiment 4.
List Size 2,000 4,000 8,000 16,000

Packet Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

1 5646 5759 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

2 5748 5646 5636 5764 5738 5650 5754 5743 5666 5770 5754 5682

3 5646 5722 5636 5662 5662 5650 5678 5678 5666 5743 5742 5682

4 5748 5729 5636 5764 5775 5650 5743 5754 5666 5759 5770 5682

5 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

6 5768 5646 5636 5764 5738 5650 5754 5791 5666 5743 5770 5682

7 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

8 5768 5646 5636 5764 5738 5650 5738 5738 5666 5770 5770 5682

9 5646 5722 5636 5662 5675 5650 5678 5678 5666 5694 5694 5682

10 5744 5646 5636 5764 5790 5650 5738 5756 5666 5743 5759 5682

11 5646 5722 5636 5662 5662 5650 5717 5678 5666 5694 5694 5682

12 5740 5646 5636 5764 5738 5650 5754 5754 5666 5770 5759 5682

13 5679 5722 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

14 5803 5646 5636 5764 5738 5650 5771 5754 5666 5759 5824 5682

15 5691 5722 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

16 5768 5698 5636 5776 5738 5650 5754 5779 5666 5743 5811 5682

17 5646 5735 5636 5662 5714 5650 5678 5678 5666 5694 5694 5682

18 5768 5646 5636 5764 5738 5650 5754 5816 5666 5823 5840 5682

19 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5745 5682

20 5740 5646 5636 5764 5738 5650 5754 5754 5666 5743 5807 5682

21 5646 5722 5636 5662 5662 5650 5678 5742 5666 5694 5694 5682

22 5740 5646 5636 5764 5738 5650 5754 5878 5666 5754 5770 5682

23 5646 5780 5636 5662 5662 5650 5678 5678 5666 5694 5746 5682

24 5748 5646 5636 5764 5738 5650 5743 5775 5666 5759 5902 5682

25 5646 5930 5636 5662 5662 5650 5678 5678 5666 5694 5787 5682

26 5748 5646 5636 5764 5738 5650 5743 5846 5666 5770 5796 5682

27 5646 5722 5636 5662 5890 5650 5678 5726 5666 5694 5726 5682

28 5768 5846 5636 5764 5935 5650 5793 5754 5666 5743 6023 5682

29 5646 5814 5636 5699 5879 5650 5678 5698 5666 5694 5694 5682

30 5748 5698 5636 5764 5856 5650 5818 6006 5666 5770 5946 5682

31 5646 5706 5636 5662 5775 5650 5678 5678 5666 5694 5694 5682

32 5740 5790 5636 5764 5738 5650 5754 5806 5666 5827 5770 5682

33 5646 6090 5636 5662 5662 5650 5678 5823 5666 5694 5694 5682

34 5768 5646 5636 5764 5894 5650 5727 5966 5666 5809 5770 5682

35 5646 5722 5636 5693 5662 5650 5678 5678 5666 5694 5775 5682

36 5768 5646 5636 5764 5738 5650 5754 5754 5666 5759 5770 5682

37 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5735 5682

38 5773 5646 5636 5764 5799 5650 5754 5754 5666 5759 5819 5682

39 5646 5792 5636 5662 5714 5650 5678 5678 5666 5694 5694 5682

40 5748 5646 5636 5764 5738 5650 5743 5754 5666 5816 5770 5682

41 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5694 5682

42 5768 5646 5636 5801 5738 5650 5743 5754 5666 5770 5783 5682

43 5646 5748 5636 5662 5675 5650 5678 5678 5666 5694 5694 5682

44 5768 5703 5636 5764 5738 5650 5727 5754 5666 5770 5770 5682

45 5646 5722 5636 5662 5679 5650 5678 5678 5666 5694 5694 5682

46 5748 5646 5636 5784 5738 5650 5743 5754 5666 5759 5780 5682

47 5646 5722 5636 5662 5662 5650 5678 5678 5666 5694 5731 5682

48 5740 5646 5636 5764 5738 5650 5754 5754 5666 5743 5770 5682

49 5646 5722 5636 5705 5662 5650 5678 5678 5666 5694 5694 5682

50 5740 5646 5636 5764 5738 5650 5777 5754 5666 5770 5770 5682

98

Table A.14: CPU Cycle Data for Experiment 4 Continued.
32,000 64,000 128,000 256,000

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

5710 5710 5698 5775 5726 5714 5742 5783 5738 5766 5766 5754

5786 5775 5698 5802 5791 5714 5815 5814 5738 5835 5835 5754

5710 5758 5698 5726 5741 5717 5742 5750 5738 5766 5766 5754

5775 5775 5698 5819 5863 5718 5826 5814 5738 5869 5887 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5823 5754

5775 5775 5698 5791 5802 5714 5815 5830 5738 5835 5846 5754

5710 5710 5698 5733 5726 5714 5742 5750 5738 5766 5766 5754

5828 5775 5698 5791 5802 5714 5803 5819 5738 5819 5835 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5766 5754

5759 5828 5698 5835 5837 5714 5826 5817 5738 5846 5846 5754

5733 5710 5698 5726 5726 5714 5742 5802 5738 5811 5766 5754

5794 5786 5698 5845 5791 5714 5815 5830 5738 5835 5835 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5766 5754

5791 5775 5698 5791 5791 5714 5826 5914 5738 5846 5835 5754

5710 5710 5698 5726 5726 5714 5742 5818 5738 5766 5766 5754

5775 5775 5698 5791 5791 5714 5815 5904 5738 5835 5846 5754

5710 5810 5698 5726 5726 5714 5742 5839 5738 5766 5801 5754

5786 5795 5698 5791 5791 5714 5826 5927 5738 5819 5835 5754

5710 5710 5698 5726 5778 5714 5742 5854 5738 5766 5818 5754

5786 5823 5698 5791 5811 5714 5815 5830 5738 5846 5835 5754

5710 5710 5698 5726 5882 5714 5742 6046 5738 5766 5934 5754

5775 5796 5698 5791 5797 5714 5826 5922 5738 5846 5914 5754

5710 5762 5698 5726 5726 5714 5742 5834 5738 5766 5890 5754

5835 5882 5698 5802 5886 5714 5815 5856 5738 5835 5846 5754

5710 5810 5698 5726 5890 5714 5742 5818 5738 5823 5905 5757

5775 5920 5698 5791 5855 5714 5826 5962 5738 5835 6179 5754

5710 5846 5698 5726 5726 5714 5742 5750 5738 5766 5766 5754

5775 5796 5698 5775 6202 5714 5815 5882 5738 5819 6062 5754

5717 5882 5698 5773 5778 5714 5742 5750 5738 5766 5818 5754

5775 5972 5698 5802 5802 5714 5826 5839 5738 5846 5995 5754

5710 5710 5698 5726 5990 5714 5742 5750 5738 5766 5862 5754

5811 5850 5698 5791 5791 5714 5826 5830 5738 5846 5835 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5818 5754

5775 5786 5698 5791 5825 5714 5826 5845 5738 5846 5846 5754

5710 5710 5698 5726 5726 5714 5742 5799 5738 5766 5766 5754

5786 5786 5698 5786 5802 5714 5815 5830 5738 5819 5846 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5766 5754

5775 5786 5698 5786 5802 5714 5826 5830 5738 5830 5846 5754

5710 5749 5698 5726 5726 5714 5742 5783 5738 5766 5766 5754

5786 5786 5698 5802 5802 5714 5826 5830 5738 5846 5883 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5803 5766 5754

5823 5786 5698 5806 5802 5714 5866 5872 5738 5846 5846 5754

5710 5710 5698 5726 5765 5714 5742 5750 5738 5766 5766 5754

5786 5786 5698 5791 5802 5714 5826 5830 5738 5846 5846 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5807 5754

5811 5786 5698 5802 5802 5714 5841 5830 5738 5819 5846 5754

5710 5710 5698 5726 5726 5714 5742 5750 5738 5766 5766 5754

5775 5786 5698 5802 5802 5714 5826 5830 5738 5899 5846 5754

5710 5710 5698 5726 5749 5714 5742 5750 5738 5766 5766 5754

5786 5786 5698 5802 5802 5714 5857 5830 5738 5846 5846 5754

99

Table A.15: CPU Cycle Data for Experiment 4 Continued.
512,000 1,024,000 2,048,000 4,096,000

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

5782 5782 5770 5798 5798 5786 5851 5814 5802 5834 5834 5822

5847 5851 5770 5878 5867 5786 5894 5954 5802 5914 5909 5822

5782 5782 5770 5798 5798 5786 5855 5814 5802 5834 5834 5822

5847 5914 5770 5867 5919 5786 5883 5878 5802 5903 5951 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5847 5862 5770 5867 5878 5786 5883 5878 5802 5903 5887 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5831 5885 5770 5851 5878 5786 5867 5894 5802 5887 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 6534 5822

5893 5862 5770 5878 5867 5786 5894 5883 5802 5914 5941 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5882 5822

5847 5851 5770 5878 5878 5786 5883 5883 5802 5903 5898 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5847 5851 5770 5867 5867 5786 5894 5935 5802 5914 5966 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5847 5851 5770 5867 5919 5786 5894 5950 5802 5914 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5902 5822

5842 5862 5770 5867 5867 5786 5878 6033 5802 5887 6022 5822

5782 5886 5770 5798 5854 5786 5814 6414 5802 5834 5938 5822

5858 5885 5770 5867 5878 5786 5929 5883 5802 5914 5914 5822

5782 5834 5770 5798 6462 5786 5814 5866 5802 5834 5886 5822

5858 5919 5770 5867 5919 5786 5894 5894 5802 5914 6055 5822

5782 6315 5770 5798 5798 5786 5814 5942 5802 5834 5918 5822

5847 5914 5770 5878 5930 5786 5883 5894 5802 5903 5940 5822

5782 5874 5770 5798 5902 5786 5814 5886 5802 5834 5902 5822

5847 5851 5770 5867 5867 5786 5894 5972 5802 5914 6010 5822

5782 5782 5770 5798 5798 5786 5814 5962 5802 5834 5834 5822

5847 6078 5770 5851 6282 5786 5883 6018 5802 5887 5966 5822

5782 5843 5770 5798 5850 5786 5814 5814 5802 5834 5834 5822

5858 6011 5770 5927 5878 5786 5894 6047 5802 5914 5914 5822

5782 5878 5770 5798 5850 5786 5814 5914 5802 5834 5834 5822

5858 5862 5770 5878 5878 5786 5894 5883 5802 5914 5951 5822

5782 5834 5770 5798 5798 5786 5814 5866 5802 5834 5834 5822

5842 5911 5770 5867 5878 5786 5894 5894 5802 5914 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5842 5899 5770 5862 5931 5786 5919 5894 5802 5903 5914 5822

5782 5782 5770 5811 5798 5786 5814 5814 5802 5834 5834 5822

5858 5916 5770 5862 5878 5786 5894 5894 5802 5914 5967 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5863 5822

5892 5862 5770 5896 5878 5786 5894 5894 5802 5914 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5858 5862 5770 5878 5878 5786 5904 5894 5802 5914 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5858 5862 5770 5867 5878 5786 5894 5894 5802 5914 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5858 5862 5770 5878 5928 5786 5883 5894 5802 5903 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5865 5881 5822

5858 5862 5770 5878 5878 5786 5883 5894 5802 5903 5914 5822

5782 5782 5770 5798 5798 5786 5814 5814 5802 5834 5834 5822

5847 5862 5770 5878 5878 5786 5883 5894 5802 5914 5914 5822

100

Table A.16: CPU Cycle Data for Experiment 4 Continued.
8,192,000 16,384,000 32,768,000 65,536,000

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

5850 5902 5839 5866 5866 5854 5882 6746 5870 5902 5954 5890

5930 5919 5838 5946 5935 5854 6003 5951 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5919 5919 5838 5935 6679 5854 5951 5951 5870 5982 6022 5890

5850 5881 5838 5866 5866 5854 5882 5919 5870 5902 5902 5890

5919 6643 5838 5935 5935 5854 5951 5951 5870 5971 6124 5890

5850 5850 5838 5866 5866 5854 5882 5891 5870 5902 5902 5890

5903 5932 5838 5919 5946 5854 5935 6004 5870 5971 5974 5890

5850 5930 5838 5866 5918 5854 5882 5938 5870 5902 5954 5890

5930 5914 5838 5946 5943 5854 5962 5946 5870 5971 5963 5890

5850 5902 5838 5866 5918 5854 5882 5990 5870 5902 6120 5890

5919 5914 5838 5961 5930 5854 5951 5946 5870 5971 5963 5890

5850 5850 5838 5866 5871 5854 5882 5882 5870 5902 5902 5890

5930 5982 5838 5946 5998 5854 5962 6014 5870 5982 6000 5890

5850 5850 5838 5915 5866 5854 5882 5882 5870 5902 5970 5890

5930 5987 5838 5946 5946 5854 5962 5962 5870 5982 6027 5890

5850 5918 5838 5866 5934 5854 5882 5954 5870 5902 5902 5890

5963 6038 5838 5935 6054 5854 5999 6074 5870 5971 6092 5980

5850 5954 5838 5911 5970 5854 5882 5986 5870 5902 5902 5890

5988 5993 5838 5935 5946 5854 5951 5962 5870 5982 6158 5890

5850 5902 5838 5866 5918 5854 5882 5934 5870 5902 5902 5890

5952 6022 5838 5946 6106 5854 5962 6080 5870 5982 6004 5890

5850 5997 5838 5866 6014 5854 5921 5966 5870 5902 5958 5890

5919 5956 5838 5935 5972 5854 5951 5988 5870 5971 5974 5890

5850 5918 5838 5866 5934 5854 5882 5954 5870 5902 5902 5890

5930 6026 5838 5984 6042 5854 5962 6062 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5930 5982 5838 5919 5998 5854 6002 6014 5870 5971 6009 5890

5850 5850 5838 5866 5903 5854 5882 5882 5870 5959 5902 5890

5930 5930 5838 5983 5946 5854 5962 5962 5870 5993 5974 5890

5850 5887 5838 5866 5866 5854 5882 5931 5870 5902 5902 5890

5930 5930 5838 5946 5946 5854 5962 5962 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5930 5930 5838 5946 5946 5854 5962 6011 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5919 5930 5838 5935 5946 5854 5951 5962 5870 5982 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5930 5967 5838 5930 5946 5854 5983 5962 5870 5982 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5930 5930 5838 5946 5957 5854 5962 5962 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5943 5890

5930 5930 5838 5946 5946 5854 5962 5962 5870 5982 5974 5890

5850 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5953 5930 5838 5946 5946 5854 5962 6011 5870 6031 5974 5890

5907 5850 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5953 5930 5838 5978 5946 5854 5951 5962 5870 5971 5974 5890

5850 5887 5838 5866 5866 5854 5882 5882 5870 5902 5902 5890

5919 5930 5838 5967 6008 5854 5951 5962 5870 5971 5974 5890

5850 5850 5838 5866 5866 5854 5882 5923 5870 5902 5902 5890

5919 5930 5838 5946 5946 5854 5951 5962 5870 5971 6016 5996

101

Table A.17: CPU Cycle Data for Experiment 4 Continued.
131,072,000

Rep 1 Rep 2 Rep 3

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5999 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

6051 5971 5906

5918 5918 5906

6004 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5987 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5943 5918 5906

5998 5971 5906

5918 5918 5906

6063 6070 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5986 5906

5951 5918 5906

5998 5971 5906

5918 5918 5906

5998 5994 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 5971 5906

5918 5918 5906

5998 6005 5906

102

Appendix B. Pilot Test Data

This appendix contains the pilot test data used to make decisions in designing

the TRAPP-2 system. Section B.1.1 investigates the BRAM versus SDRAM

memory scheme processing times. Section B.1.2 determines the additional CPU cycles

required to detect DNS packets. Section B.1.3 compares the number of CPU cycles

required to sdbm hash the smallest and largest SIP/DNS domains. Section B.1.4

compares the number of CPU cycles required to copy the smallest and largest packet

sizes into a software buffer.

B.1 Results of Pilot Studies

B.1.1 BRAM versus SDRAM Memory Scheme. Table B.1 contains the

number of CPU cycles required to process a SIP packet for the BRAM and SDRAM

memory configurations. For each configuration, 50 packets are sent to the apparatus

and the number of CPU cycles required to process the packet are recorded in the table.

The SDRAM memory scheme averages 16,076 CPU cycles, and the BRAM memory

scheme averages 15,299 CPU cycles. The average difference between the memory

schemes is 777 CPU cycles. The design decision is to accept the average increase of

777 CPU cycles for the larger addressable memory range, thus the SDRAM memory

scheme is selected.

103

Table B.1: CPU Cycles Used to Process a SIP Packet.
Packet BRAM SDRAM

1 19554 21119

2 15304 16037

3 15227 15949

4 15367 15979

5 15272 15910

6 15296 16007

7 15259 15959

8 15354 15989

9 15320 15978

10 15324 15921

11 15147 16012

12 15321 16019

13 15337 15911

14 15274 15915

15 15196 15977

16 15397 15958

17 15275 15933

18 15242 15973

19 15256 16025

20 15361 15992

21 15117 16019

22 15158 15911

23 14876 16009

24 14989 15938

25 15289 15979

26 15406 16065

27 15409 15911

28 15402 15943

29 15179 15910

30 14770 15917

31 14789 16005

32 14854 16005

33 15441 15938

34 15334 15984

35 15705 16013

36 15947 15955

37 15120 15989

38 15056 15988

39 15057 16019

40 15111 15929

41 15120 15921

42 15044 15992

43 15057 15961

44 15111 15981

45 15120 16021

46 15056 15968

47 15057 16019

48 15111 15959

49 15121 15985

50 15041 16025

Average 15,299 16,076

104

B.1.2 DNS Packet Detection. Table B.2 contains the number of cycles

required to identify a DNS packet. 50 packets are sent to the TRAPP-2 system, and

the number of CPU cycles required to identify a DNS packet is recorded in the table.

The system averages 23 CPU cycles to identify a DNS packet.

Table B.2: CPU Cycles Used to Identify a DNS Packet.
Packet CPU Cycles

1 23

2 23

3 23

4 23

5 23

6 23

7 23

8 23

9 23

10 23

11 23

12 23

13 23

14 23

15 23

16 23

17 23

18 23

19 23

20 23

21 23

22 23

23 23

24 23

25 23

26 23

27 23

28 23

29 23

30 23

31 23

32 23

33 23

34 23

35 23

36 23

37 23

38 23

39 23

40 23

41 23

42 23

43 23

44 23

45 23

46 23

47 23

48 23

49 23

50 23

Average 23

105

B.1.3 sdbm Hashing Times. Table B.3 contains the number of CPU cycles

required to process the smallest and largest SIP domain address. 50 packets with

a six-character domain and 50 packets with a 212-character domain are sent to the

TRAPP-2 system; the number of CPU cycles required to process the packets are

recorded in the table. The system averages 86 CPU cycles to sdbm hash a six-

character domain and 1195 to sdbm hash a 212-character domain.

106

Table B.3: CPU Cycles Used to sdbm hash a SIP Packet.
Packet Small Domain Large Domain

1 86 1195

2 86 1195

3 86 1195

4 86 1195

5 86 1195

6 86 1195

7 86 1195

8 86 1195

9 86 1195

10 86 1195

11 86 1195

12 86 1195

13 86 1195

14 86 1195

15 86 1195

16 86 1195

17 86 1195

18 86 1195

19 86 1195

20 86 1195

21 86 1195

22 86 1195

23 86 1195

24 86 1195

25 86 1195

26 86 1195

27 86 1195

28 86 1195

29 86 1195

30 86 1195

31 86 1195

32 86 1195

33 86 1195

34 86 1195

35 86 1195

36 86 1195

37 86 1195

38 86 1195

39 86 1195

40 86 1195

41 86 1195

42 86 1195

43 86 1195

44 86 1195

45 86 1195

46 86 1195

47 86 1195

48 86 1195

49 86 1195

50 86 1195

Average 86 1195

107

B.1.4 Packet Size Transfer Times. Table B.4 below contains the number of

CPU cycles required to transfer a packet from the TRAPP-2 system into the software

buffer. 50 packets with a size of 67 bytes and 50 packets with a size of 1,500 bytes

are sent to the TRAPP-2 system; the number of CPU cycles required to process the

packets are recorded in the table. The system averages 999 CPU cycles to transfer a

67 byte packet and 18,112 CPU cycles to transfer a 1,500 byte packet.

108

Table B.4: CPU Cycles Used to Copy Smallest versus Largest Packet.
Packet 67-Byte Packet 1500-Byte Packet

1 999 18112

2 999 18112

3 999 18112

4 999 18112

5 999 18112

6 999 18112

7 999 18112

8 999 18112

9 999 18112

10 999 18112

11 999 18112

12 999 18112

13 999 18112

14 999 18112

15 999 18112

16 999 18112

17 999 18112

18 999 18112

19 999 18112

20 999 18112

21 999 18112

22 999 18112

23 999 18112

24 999 18112

25 999 18112

26 999 18112

27 999 18112

28 999 18112

29 999 18112

30 999 18112

31 999 18112

32 999 18112

33 999 18112

34 999 18112

35 999 18112

36 999 18112

37 999 18112

38 999 18112

39 999 18112

40 999 18112

41 999 18112

42 999 18112

43 999 18112

44 999 18112

45 999 18112

46 999 18112

47 999 18112

48 999 18112

49 999 18112

50 999 18112

Average 999 18112

109

Appendix C. Constructing the TRAPP-2 System Hardware

This appendix contains the step-by-step guide to constructing the hardware por-

tion of the TRAPP-2 system. Section C.1 provides a description of the hard-

ware used in the TRAPP-2 system. Section C.2 covers the steps used to construct the

TRAPP-2 system using the Base System Builder in Xilinx Platform Studio, version

11.4. Section C.3 details the required software modifications in the hardware files to

convert the Ethernet controller from 100 Mbps (Media Independent Interface) to 1000

Mbps (Reduced Gigabit Media Independent Interface v2.0).

C.1 Hardware Description

C.1.1 Microprocessor. The on-chip PowerPC 440 processor is used in the

TRAPP-2 system. The processor executes the software application.

C.1.2 Synchronous Dynamic Random Access Memory. Two 512 MB SDRAM

modules are used for the TRAPP-2 system. The first module is formated as Xilinx

Memory File System to temporarily store the hash file before the hashes are trans-

ferred to the second SDRAM module. The second module does not have a file system

and contains the actual hashes for the hash list. The second module also stores the

log file during sniffing. At the completion of sniffing, the log file is transferred to the

first SDRAM module so it can be downloaded from the FPGA board.

C.1.3 Block Random Access Memory. For this implementation, one 128-

kilobyte BRAM is used. The BRAM block contains the bootup software code, data

and instruction memory, as well as the stack and heap.

C.1.4 XPS Hard Ethernet Media Access Controller. This is the board’s

Ethernet connection. The Ethernet controller is set to promiscuous mode to receive

all packets traversing the network. The Ethernet controller is configured as a RGMII

v2.0, capable of operating at 1000 Mbps. More details on programing the Ethernet

controller to operate as a RGMII interface can be found in Section C.3.

110

C.1.5 RS232 Universal Asynchronous Receiver/Transmitter. The RS232

interface serves two purposes. The first is to output general information about board

initialization and operational status as well as detect user input to stop sniffing. The

second purpose is to upload hash files to the board and download the Wireshark-

compatible log file. This is accomplished with the xmodem protocol through the

TeraTerm Virtual Terminal program [Ter09].

C.1.6 XPS Timer. The timer is used to take timestamps for calculating

the packet processing time, measured in CPU cycles. Only one of the two available

timers is used.

C.2 Component Configuration

This section provides a step-by-step guide to construct the TRAPP-2 system

using the Base System Builder in Xilinx Platform Studio, version 11.4.

1. To begin Open Xilinx Platform Studio, Click on File, then New Project. A

window will appear like the one in Figure C.1.

Figure C.1: The Project Creation Options Window.

111

2. Name the project file, as seen in Figure C.2. Click “OK” to continue.

Figure C.2: The Project Creation and Repository Selection Window.

112

3. Select the “I would like to create a new design” radio button as seen in Fig-

ure C.3. Click “Next” to continue.

Figure C.3: The Base System Builder Design Selection Window.

113

4. Select the “I would like to create a system for the following development board”

radio button. Choose “Xilinx” for the Board Vendor, “Virtex 5 ML510 Evalu-

ation Platform” for the Board Name, and “C” for the Board Revision, as seen

in Figure C.4. Click “Next” to continue.

Figure C.4: The Board Selection Window.

114

5. Select the “Single-Processor System” radio button as seen in Figure C.5. Click

“Next” to continue.

Figure C.5: The Processor Selection Window.

115

6. Select the “PowerPC” for the Processor Type, “400.00” for Processor Clock

Frequency, and “100.00” for the Bus Clock Frequency, as seen in Figure C.6.

Click “Next” to continue.

Figure C.6: The Processor Configuration Window.

116

7. Add the following peripherals, ensuring to change certain options (shown in

parenthesis) from the dropdown menus, as seen in Figure C.7. The peripherals

include:

• DDR2 SDRAM DIMM0

• DDR2 SDRAM DIMM1

• Hard Ethernet MAC

• RS232 Uart 1 (Set Baud Rate to 115200)

• xps bram if cntlr 0 (Set Size to 128 KB)

• xps timer 0

Click “Next” to continue.

Figure C.7: The Peripheral Configuration Window.

117

8. Check every box for enabling the Data and Instruction caches for the processor,

as seen in Figure C.8. Click “Next” to continue.

Figure C.8: The Processor Cache Configuration Window.

118

9. The Memory and Peripheral Test Applications are optional, but highly recom-

mended to ensure the board is functioning properly. Select xps bram if cntlr 0

as the location to store the test applications, as seen in Figure C.9. Click “Next”

to continue.

Figure C.9: The Application Selection Window.

119

10. This window summarizes the system being built, as seen in Figure C.10. Click

“Finish” to continue.

Figure C.10: The Summary Configuration Window.

120

11. After completing the Base System Builder, a window pops up asking about

additional configuration settings. Select the “Configure drivers and libraries

(Software Platform)” radio button, as seen in Figure C.11. Click “OK” to

continue.

Figure C.11: The Configure Libraries and Drivers Window.

121

12. Highlight “Software Platform” in the left side column. Place a check in the

“xilmfs” checkbox, as seen in Figure C.12. Click “OK” to continue.

Figure C.12: The Software Platform Settings Window.

122

13. Highlight “OS and Lib Configuration” in the left side column. Change the

following options: numbytes (100,000,000), base address = 0x0 (this is the base

address of the SDRAM that holds the Xilinx Memory File System), init type

(MFSINIT NEW), need utils (true), as seen in Figure C.13. Click “OK” to

continue. Ensure these values are accurately reflected in the .mss file.

Figure C.13: The Software Platform Settings OS and Lib Configuration Window.

123

C.3 Converting from MII to RGMII v2.0

This section details the software modifications in the hardware files to convert

the Ethernet controller from 100 Mbps (MII) to 1000 Mbps (RGMII v2.0).

1. Configure HARD ETHERNET MAC IP

C_NUM_IDELAYCTRL=1

C_IDELAYCTRL_LOC=NOT_SET

Physical Interface Type = RGMII V2.0

RX FIFO Depth of TEMAC0 = 32768B

2. In the .mhs file, make the following modifications.

Remove all MII* from external ports and add the following lines:

PORT Hard_Ethernet_MAC_RGMII_TXD_0_pin = Hard_Ethernet_MAC_RGMII_TXD_0, DIR = O, VEC = [3:0]

PORT Hard_Ethernet_MAC_RGMII_TXC_0_pin = Hard_Ethernet_MAC_RGMII_TXC_0, DIR = O

PORT Hard_Ethernet_MAC_RGMII_TX_CTL_0_pin = Hard_Ethernet_MAC_RGMII_TX_CTL_0, DIR = O

PORT Hard_Ethernet_MAC_RGMII_RXD_0_pin = Hard_Ethernet_MAC_RGMII_RXD_0, DIR = I, VEC = [3:0]

PORT Hard_Ethernet_MAC_RGMII_RX_CTL_0_pin = Hard_Ethernet_MAC_RGMII_RX_CTL_0, DIR = I

PORT Hard_Ethernet_MAC_RGMII_RXC_0_pin = Hard_Ethernet_MAC_RGMII_RXC_0, DIR = I

In the xps ll temac section of the .mhs file, PORT REFCLK must be connected

to a 200MHz clock. The name may be different between designs.

Add:

PORT GTX_CLK_0 = clk_125mhz

PORT REFCLK = clk_200_0000MHzPLL0

PORT RGMII_RXD_0 = Hard_Ethernet_MAC_RGMII_RXD_0

PORT RGMII_RX_CTL_0 = Hard_Ethernet_MAC_RGMII_RX_CTL_0

PORT RGMII_RXC_0 = Hard_Ethernet_MAC_RGMII_RXC_0

PORT RGMII_TXC_0 = Hard_Ethernet_MAC_RGMII_TXC_0

PORT RGMII_TX_CTL_0 = Hard_Ethernet_MAC_RGMII_TX_CTL_0

PORT RGMII_TXD_0 = Hard_Ethernet_MAC_RGMII_TXD_0

In the clock generator section, a 125MHz clock must be added. The number

of the clock depends on the number of other clocks in your design. Since four

clocks already existed, the new one is C CLKOUT5.

124

Add:

PARAMETER C_CLKOUT5_FREQ = 125000000

PARAMETER C_CLKOUT5_PHASE = 0

PARAMETER C_CLKOUT5_GROUP = NONE

PARAMETER C_CLKOUT5_BUF = TRUE

PORT CLKOUT5 = clk_125mhz

3. In the .ucf file, make the following modifications.

Remove:

Net fpga_0_Hard_Ethernet_MAC_MII_TXD_0_pin<3> LOC=AN31 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_TXD_0_pin<2> LOC=AR32 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_TXD_0_pin<1> LOC=AP32 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_TXD_0_pin<0> LOC=AR33 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_TX_EN_0_pin LOC=AP31 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_TX_ER_0_pin LOC=AT31 | IOSTANDARD = LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net fpga_0_Hard_Ethernet_MAC_MII_RXD_0_pin<3> LOC=AM33 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RXD_0_pin<2> LOC=AK33 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RXD_0_pin<1> LOC=AJ33 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RXD_0_pin<0> LOC=AJ32 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RX_DV_0_pin LOC=AN33 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RX_ER_0_pin LOC=AP33 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_RX_CLK_0_pin LOC=J17 | IOSTANDARD = LVCMOS25;

Net fpga_0_Hard_Ethernet_MAC_MII_TX_CLK_0_pin LOC=M26 | IOSTANDARD = LVCMOS25;

Add:

Net Hard_Ethernet_MAC_RGMII_TXD_0_pin<3> LOC = AN31 | IOSTANDARD=LVCMOS25 | SLEW=FAST

| DRIVE = 24;

Net Hard_Ethernet_MAC_RGMII_TXD_0_pin<2> LOC = AR32 | IOSTANDARD=LVCMOS25 | SLEW=FAST

| DRIVE = 24;

Net Hard_Ethernet_MAC_RGMII_TXD_0_pin<1> LOC = AP32 | IOSTANDARD=LVCMOS25 | SLEW=FAST

| DRIVE = 24;

Net Hard_Ethernet_MAC_RGMII_TXD_0_pin<0> LOC = AR33 | IOSTANDARD=LVCMOS25 | SLEW=FAST

| DRIVE = 24;

Net Hard_Ethernet_MAC_RGMII_TX_CTL_0_pin LOC = AP31 | IOSTANDARD=LVCMOS25 | SLEW=FAST

125

| DRIVE = 24;

Net Hard_Ethernet_MAC_RGMII_TXC_0_pin LOC = AM31 | IOSTANDARD =LVCMOS25 | SLEW = FAST

| DRIVE = 6;

Net Hard_Ethernet_MAC_RGMII_RXD_0_pin<3> LOC = AM33 | IOSTANDARD=LVCMOS25;

Net Hard_Ethernet_MAC_RGMII_RXD_0_pin<2> LOC = AK33 | IOSTANDARD=LVCMOS25;

Net Hard_Ethernet_MAC_RGMII_RXD_0_pin<1> LOC = AJ33 | IOSTANDARD=LVCMOS25;

Net Hard_Ethernet_MAC_RGMII_RXD_0_pin<0> LOC = AJ32 | IOSTANDARD=LVCMOS25;

Net Hard_Ethernet_MAC_RGMII_RX_CTL_0_pin LOC = AN33 | IOSTANDARD=LVCMOS25;

Net Hard_Ethernet_MAC_RGMII_RXC_0_pin LOC=J17 | IOSTANDARD=LVCMOS25;

Remove:

Hard_Ethernet_MAC

NET "*Hard_Ethernet_MAC/LlinkTemac0_CLK*" TNM_NET = "LLCLK0";

#name of signal connected to TEMAC LlinkTemac0_CLK input

NET "*Hard_Ethernet_MAC/SPLB_Clk*" TNM_NET = "PLBCLK";

#name of signal connected to TEMAC SPLB_Clk input

EMAC0 TX Client Clock

NET "*Hard_Ethernet_MAC/TxClientClk_0" TNM_NET = "clk_client_tx0";

TIMEGRP "mii_client_clk_tx0" = "clk_client_tx0";

TIMESPEC "TS_mii_client_clk_tx0" = PERIOD "mii_client_clk_tx0"

7500 ps HIGH 50 %;

EMAC0 RX Client Clock

NET "*Hard_Ethernet_MAC/RxClientClk_0" TNM_NET = "clk_client_rx0";

TIMEGRP "mii_client_clk_rx0" = "clk_client_rx0";

TIMESPEC "TS_gmii_client_clk_rx0" = PERIOD "gmii_client_clk_rx0" 7500 ps HIGH 50 %;

EMAC0 RX PHY Clock

NET "*Hard_Ethernet_MAC/MII_RX_CLK_0*" TNM_NET = "phy_clk_rx0";

TIMEGRP "mii_clk_phy_rx0" = "phy_clk_rx0";

TIMESPEC "TS_mii_clk_phy_rx0" = PERIOD "mii_clk_phy_rx0" 40000 ps HIGH 50 %;

EMAC0 TX MII 10/100 PHY Clock

NET "*Hard_Ethernet_MAC/MII_TX_CLK_0*" TNM_NET = "clk_mii_tx_clk0";

TIMESPEC "TS_mii_tx_clk0" = PERIOD "clk_mii_tx_clk0" 40000 ps HIGH 50 %;

MII Receiver Constraints: place flip-flops in IOB

INST "*mii0*RXD_TO_MAC*" IOB = TRUE;

INST "*mii0*RX_DV_TO_MAC" IOB = TRUE;

INST "*mii0*RX_ER_TO_MAC" IOB = TRUE;

PHY spec: 10ns setup time, 10ns hold time

Assumes equal length board traces

NET "fpga_0_Hard_Ethernet_MAC_MII_RXD_0_pin(?)" TNM = "mii_rx_0";

NET "fpga_0_Hard_Ethernet_MAC_MII_RX_DV_0_pin" TNM = "mii_rx_0";

NET "fpga_0_Hard_Ethernet_MAC_MII_RX_ER_0_pin" TNM = "mii_rx_0";

TIMEGRP "mii_rx_0" OFFSET = IN 10 ns VALID 20 ns BEFORE

"fpga_0_Hard_Ethernet_MAC_MII_RX_CLK_0_pin";

MII Transmiter Constraints: place flip-flops in IOB

INST "*mii0*MII_TXD_?" IOB = TRUE;

INST "*mii0*MII_TX_EN" IOB = TRUE;

INST "*mii0*MII_TX_ER" IOB = TRUE;

TIMESPEC TS_PLB_2_TXPHY0 = FROM PLBCLK TO clk_phy_tx0 40000 ps DATAPATHONLY; #constant

value based on Ethernet clock

TIMESPEC TS_RXPHY0_2_PLB = FROM phy_clk_rx0 TO PLBCLK 10000 ps DATAPATHONLY; #varies

126

based on period of PLB clock

TIMESPEC "TS_LL_CLK0_2_RX_CLIENT_CLK0" = FROM LLCLK0 TO clk_client_rx0 8000 ps

DATAPATHONLY; #constant value based on Ethernet clock

TIMESPEC "TS_LL_CLK0_2_TX_CLIENT_CLK0" = FROM LLCLK0 TO clk_client_tx0 8000 ps

DATAPATHONLY; #constant value based on Ethernet clock

TIMESPEC "TS_RX_CLIENT_CLK0_2_LL_CLK0" = FROM clk_client_rx0 TO LLCLK0 10000 ps

DATAPATHONLY; #varies based on period of LocalLink clock

TIMESPEC "TS_TX_CLIENT_CLK0_2_LL_CLK0" = FROM clk_client_tx0 TO LLCLK0 10000 ps

DATAPATHONLY; #varies based on period of LocalLink clock

net "*/hrst*" TIG;

Add:

Hard_Ethernet_MAC

EMAC0 TX Client Clock

NET "*/RGMII_TX_CTL_0*" TNM_NET = "clk_client_tx0";

TIMEGRP "rgmii_client_clk_tx0" = "clk_client_tx0";

TIMESPEC "TS_rgmii_client_clk_tx0" = PERIOD "rgmii_client_clk_tx0" 7800 ps HIGH 50 %;

EMAC0 RX Client Clock

NET "*/RGMII_RX_CTL_0*" TNM_NET = "clk_client_rx0";

TIMEGRP "rgmii_client_clk_rx0" = "clk_client_rx0";

TIMESPEC "TS_rgmii_client_clk_rx0" = PERIOD "rgmii_client_clk_rx0" 7800 ps HIGH 50 %;

EMAC0 TX PHY Clock

NET "*/RGMII_TXC_0*" TNM_NET = "clk_phy_tx0";

TIMEGRP "rgmii_phy_clk_tx0" = "clk_phy_tx0";

TIMESPEC "TS_rgmii_phy_clk_tx0" = PERIOD "rgmii_phy_clk_tx0" 7800 ps HIGH 50 %;

EMAC0 RX PHY Clock

NET "*/RGMII_RXC_0" TNM_NET = "clk_phy_rx0";

TIMEGRP "rgmii_clk_phy_rx0" = "clk_phy_rx0";

TIMESPEC "TS_rgmii_clk_phy_rx0" = PERIOD "rgmii_clk_phy_rx0" 7800 ps HIGH 50 %;

Set the IDELAY values on the data inputs.

Please modify to suit your design.

INST "*rgmii0?rgmii_rx_ctl_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii0?rgmii_rx_d0_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii0?rgmii_rx_d1_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii0?rgmii_rx_d2_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii0?rgmii_rx_d3_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii_rxc0_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii0?rgmii_rx_ctl_delay" IDELAY_VALUE = 25;

INST "*rgmii0?rgmii_rx_d0_delay" IDELAY_VALUE = 25;

INST "*rgmii0?rgmii_rx_d1_delay" IDELAY_VALUE = 25;

INST "*rgmii0?rgmii_rx_d2_delay" IDELAY_VALUE = 25;

INST "*rgmii0?rgmii_rx_d3_delay" IDELAY_VALUE = 25;

INST "*rgmii_rxc0_delay" IDELAY_VALUE = 0;

NET "*/LlinkTemac0_CLK*" TNM_NET = "LLCLK";

TIMESPEC "TS_LL_CLK0_2_RX_CLIENT_CLK0" = FROM LLCLK0 TO clk_client_rx0 8000 ps DATAPATHONLY;

TIMESPEC "TS_LL_CLK0_2_TX_CLIENT_CLK0" = FROM LLCLK0 TO clk_client_tx0 8000 ps DATAPATHONLY;

TIMESPEC "TS_RX_CLIENT_CLK0_2_LL_CLK0" = FROM clk_client_rx0 TO LLCLK0 8000 ps DATAPATHONLY;

TIMESPEC "TS_TX_CLIENT_CLK0_2_LL_CLK0" = FROM clk_client_tx0 TO LLCLK0 8000 ps DATAPATHONLY;

127

Bibliography

AL01. Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly, fourth edition,
2001.

Bay09. Pirate Bay. Home Page, May 2009. http://thepiratebay.org.

BEPW02. P. Biddle, P. England, M. Peinado, and B Willman. The Darknet and
the Future of Content Distribution. Proceedings of the 2002 ACM
Workshop on Digital Rights Management, 2002.

CCM+07. K. P. Chow, K. Y. Cheng, L. Y. Man, Pierre K. Y. Lai, Lucas C. K. Hui,
C. F. Chong, K. H. Pun, W. W. Tsang, H. W. Chan, and S. M. Yiu.
BTM - An Automated Rule-Based BT Monitoring System for Piracy
Detection. Proceedings of the Second International Conference on
Internet Monitoring and Protection, page 2, 2007.

Cis02. Cisco. Cisco Introduces New SIP-enabled Voice over IP Solutions, March
2002. http://newsroom.cisco.com/dlls/prod 031102.html.

Cis10. Cisco. SIP Successful Call Setup, Apr 2010.
http://www.cisco.com/web/about/ac123/ac147/images/ipj/ipj 6-
1/session initiation 2.gif.

Coh08. Bram Cohen. The BitTorrent Protocol Specification, February 2008.
http://www.bittorrent.org/beps/bep 0003.html.

Cou10. CounterPath. X-Lite welcomes you to the world of softphones!, February
2010. http://www.counterpath.com/x-lite.html.

Fel04. Geoff Fellows. Peer-to-peer Networking Issues-An Overview. Digital
Investigation, pages 3–6, February 2004.

Fil07. FileShareFreak. Darknets (Private Internet & File Sharing), December
2007. http://filesharefreak.com/2007/12/16/darknets-private-internet-
file-sharing/.

Fou10. The Linux Foundation. pktgen, March 2010.
http://www.linuxfoundation.org/collaborate/workgroups/networking/pktgen.

FOX09. FOXNews. Report: Marine One Information Found on Computer in
Iran, Mar 2009. http://www.foxnews.com/politics/2009/03/01/report-
marine-information-iran/.

Fre09. Freenet. What is Freenet?, May 2009.
http://freenetproject.org/whatis.html.

Gon05. Yiming Gong. Identifying P2P Users Using Traffic Analysis, July 2005.
http://www.securityfocus.com/infocus/1843.

128

GPW06. Matthew Gebski, Alex Penev, and Raymond Wong. Protocol
Identification of Encrypted Network Traffic. Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence, pages
957–960, December 2006.

HiP09a. HiPPIE. About HiPPIE, May 2009. http://hippie.oofle.com/about.

HiP09b. HiPPIE. HiPPIE Features, May 2009. http://hippie.oofle.com/features.

ISO09. ISOHunt. Home Page, May 2009. http://isohunt.com.

jhi10. jhind. Welcome to the home of the meanypants projects, April 2010.
http://www.meanypants.com/meanypants/CatchingDNStunnelsWithAI-
1.pdf?attredirects=0&d=1.

Kah08. Jeremy Kahn. Mumbai Terrorists Relied on New Technology for Attacks,
December 2008.
http://www.nytimes.com/2008/12/09/world/asia/09mumbai.html? r=1.

Kam09. Dan Kaminsky. OzymanDNS 0.1, May 2009.
http://www.doxpara.com/ozymandns src 0.1.tgz.

KBFC04. Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy.
Transport Layer Identification of P2P Traffic. Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, pages 121–134,
2004.

KMHH06. A. Karasaridis, K. Meier-Hellstern, and D. Hoeflin. Detection of DNS
Anomalies using Flow Data Analysis. Global Telecommunications
Conference, pages ”1–6”), 2006.

Kry09. Kryo. Iodine by Kryo, July 2009. http://code.kryo.se/iodine/.

Moh09. Tor Mohling. DNS Slides, May 2009.
http://bio3d.colorado.edu/∼tor/sadocs/dns/dns.html.

MW06. Alok Madhukar and Carey Williamson. A Longitudinal Study of P2P
Traffic Classification. Proceedings of the 14th IEEE International
Symposium on Modeling, Analysis, and Simulation, pages 179–188,
September 2006.

Pea98. Oskar Pearson. DNS Tunnel - Through Bastion Hosts, April 1998.
http://archives.neohapsis.com/archives/bugtraq/1998 2/0079.html.

RE10. Remote-Exploit. BackTrack, Feb 2010.
http://www.backtrack-linux.org/downloads/.

RFC01. RFC 3174 - US Secure Hash Algorithm 1 (SHA1), September 2001.
http://www.faqs.org/rfcs/rfc3174.html.

RFC02. RFC 3261 - SIP: Session Initiation Protocol, June 2002.
http://www.faqs.org/rfcs/rfc3261.html.

129

Riv09. Ronald L. Rivest. Frequently Asked Questions, May 2009.
http://people.csail.mit.edu/rivest/faq.html.

RKSM08. D.A.L. Romana, S. Kubota, K. Sugitani, and Y. Musashi. DNS Based
Spam Bots Detection in a University. First International Conference on
Intelligent Networks and Intelligent Systems, pages ”205–208”), 2008.

RSA09. RSA. What is RC4?, May 2009.
http://www.rsa.com/rsalabs/node.asp?id=2250.

Sch09. Karl Schrader. An FPGA-Based System for Tracking Digital
Information Transmitted Via Peer-to-Peer Protocols. Air Force Institute
of Technology, March 2009.

Sky09. Skype. VoIP Explained, May 2009.
http://www.skype.com/help/guides/voip/.

Sno10. Snort. Snort FAQ, April 2010. http://www.snort.org/snort/faq/.

SSW04. Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate,
Scalable In-Network Identification of P2P Traffic Using Application
Signatures. Proceedings of the 13th International Conference on World
Wide Web, pages 512–521, May 2004.

Sta06. William Stallings. Cryptography and Network Security: Principles and
Practice. Prentice Hall, fourth edition, 2006.

SY91. Margo Seltzer and Ozan Yigit. A New Hashing Package for UNIX.
Proceedings of the 1991 Winter Usenix, pages 1–6, 1991.

Tcp10. Tcpreplay. Welcome to Tcpreplay, April 2010.
http://tcpreplay.synfin.net/.

Tec09. VOCAL Technologies. RC4 Encryption Algorithm, May 2009.
http://www.vocal.com/cryptography/rc4.html.

Ter09. T. Teranishi. Tera Term Home Page, September 2009.
http://hp.vector.co.jp/authors/VA002416/teraterm.html.

Tor09a. Tor. Tor: Anonymity Online, May 2009. http://www.torproject.org/.

Tor09b. Tor. Tor: Overview, May 2009.
http://www.torproject.org/overview.html.en.

Tri10. Trixbox. Downloads, Feb 2010. http://www.trixbox.org/downloads.

Tys08. Jeff Tyson. How the Old Napster Worked, June 2008.
http://computer.howstuffworks.com/napster2.htm.

Ubi08. Ubiquity. Understanding SIP, July 2008.
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$File/
Ubiquity SIP Overview.pdf.

130

uTo10. uTorrent. uTorrent - The Lightweight and Efficient BitTorrent Client,
Feb 2010. http://www.utorrent.com/.

Van09. Martin VanHorenbeeck. DNS Tunneling, May 2009.
http://www.daemon.be/maarten/dnstunnel.html.

WAS09. WASTE. Overview, May 2009. http://waste.sourceforge.net/.

Wir09. Wireshark. Wireshark Network Protocol Analyzer, May 2009.
http://www.wireshark.org/.

Wir10. Wired. Google Hack Attack Was Ultra Sophisticated, New Details Show,
January 2010.
http://www.wired.com/threatlevel/2010/01/operation-aurora/.

WMM06. Charles Wright, Fabian Monrose, and Gerald Masson. On Inferring
Application Protocol Behaviors in Encrypted Network Traffic. The
Journal of Machine Learning Research, 7:2745–2769, December 2006.

Xil08. Xilinx. Xilinx University Program Virtex-II Pro Development System,
June 2008. http://www.xilinx.com/products/devkits/XUPV2P.htm.

Xil09. Xilinx. Virtex-5 Family Overview, February 2009.
http://www.xilinx.com/support/documentation/data sheets/ds100.pdf.

Yig10a. Ozan Yigit. Hash Functions, April 2010.
http://www.cse.yorku.ca/∼oz/hash.html.

Yig10b. Ozan Yigit. sdbm - Substitute DBM or Berkeley ndbm for Every
UN*X[1] Made Simple, April 2010.
http://cpansearch.perl.org/src/JESSE/perl-5.12.0-
RC5/ext/SDBM File/sdbm/README.

131

Vita

Before attending the Air Force Institute of Technology, Brennon Thomas previously

spent three years on active duty as an Air Force Communications Officer at the

former Air Force Communications Agency (currently the Air Force Network

Integration Center) at Scott Air Force Base, Illinois. He received a Bachelor of

Science degree in Electrical Engineering from Rensselaer Polytechnic Institute in

2005. He also commissioned through the Air Force Reserve Officer Training Corps

program at Rensselaer Polytechnic Institute in 2005.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

132

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

17–06–2010 Master’s Thesis Sept 2008 — June 2010

Performance Evaluation of a Field Programmable Gate Array-Based
System for Detecting and Tracking Peer-to-Peer Protocols on a Gigabit

Ethernet Network

N/A

Brennon D. Thomas

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCO/ENG/10-20

688th Information Operations Wing
Attn: Mr. Robert J. Kaufman
102 Hall Boulevard, Suite 345
San Antonio, TX 78243
DSN 969–5114; robert.kaufman@us.af.mil

688th Information Operations Wing

Approval for public release; distribution is unlimited.

The TRacking and Analysis for Peer-to-Peer 2 (TRAPP-2) system is developed on a Xilinx ML510 FPGA. The goals of
this research are to evaluate the performance of the TRAPP-2 system as a solution to detect and track malicious packets
traversing a gigabit Ethernet network. The TRAPP-2 system detects a BitTorrent, Session Initiation Protocol (SIP), or
Domain Name System (DNS) packet, extracts the payload, compares the data against a hash list, and if the packet is
suspicious, logs the entire packet for future analysis. Results show that the TRAPP-2 system captures 95.56% of
BitTorrent, 20.78% of SIP INVITE, 37.11% of SIP BYE, and 91.89% of DNS packets of interest while under a 93.7%
network utilization (937 Mbps). For another experiment, the contraband hash list size is increased from 1,000 to
131,072,000 unique items. The experiment reveals that each doubling of the hash list size results in a mean increase of
approximately 16 central processing unit cycles. These results demonstrate the TRAPP-2 system’s ability to detect
traffic of interest under a saturated network utilization while maintaining large contraband hash lists.

FPGA, gigabit, BitTorrent, SIP, VoIP, DNS, peer-to-peer

U U U UU 149

Dr. Barry E. Mullins

(937) 255–3636 x7979; barry.mullins@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-17-2010

	Performance Evaluation of a Field Programmable Gate Array-Based System for Detecting and Tracking Peer-to-Peer Protocols on a Gigabit Ethernet Network
	Brennon D. Thomas
	Recommended Citation

	C:/Documents and Settings/user/Desktop/Thomas Thesis/AFIT.dvi

