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Abstract

Reverse-engineering is a threat to U.S. Military technology; obfuscation protects

circuits and software programs by transforming them in a way that makes them harder

to reverse-engineer. The Random Program Model (RPM) proposed by Yasinsac and

McDonald hypothesizes that an obfuscated program is indistinguishable from one

with random structure and output.

One existing method for whitebox obfuscation based on the RPM consists of

randomly selecting subcircuits from a circuit and replacing these subcircuits with a

randomly selected, semantically equivalent replacement. This method enumerates all

possible replacement subcircuits that it could select, and randomly selects one. The

number of semantically equivalent subcircuits grows intractably for increasing circuit

size, making subcircuit replacement intractable.

To improve upon the efficiency and security of this implementation of the RPM,

this research identifies two alternative methods for generating semantically equiv-

alent circuit variants which leave the circuit’s internal structure pseudo-randomly

determined. In component fusion, random selection employed by the previously men-

tioned RPM implementation is replaced with a deterministic selection based upon

component identification, and random replacement is replaced with a deterministic

algorithm that generates canonical logic forms. Component fusion is demonstrated to

produce security and efficiency improvements over random subcircuit selection-and-

replacement, but is bounded by intractable growth of runtime and circuit replacement

size in relation to the number of inputs in the subcircuit selection. Component encryp-

tion seeks to alter the semantics of individual circuit components using an encoding

function, but preserves the overall circuit semantics by decoding signal values later in

the circuit.

iv



Experiments were conducted to examine the performance of component fusion

and component encryption against representative trials of subcircuit selection-and-

replacement and Boundary Blurring, two previously defined methods for circuit ob-

fuscation. Overall, results support the conclusion that both component fusion and

component encryption generate more secure variants than previous methods and that

these variants are more efficient in terms of required circuit delay and the power

and area required for their implementation. Component encryption is shown exper-

imentally to require shorter runtime than other methods offering similar protection,

showing increased usability.
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Deterministic, Efficient Variation of Circuit Components

to Improve Resistance to Reverse Engineering

I. Introduction

Computing technology in the form of circuits and software is used across the

entire Department of Defense (DoD). The DoD estimates its 2010 research and

development budget at almost 79 billion dollars, encompassing all of Research, Devel-

opment, Test, and Evaluation [21]. While this budget is not allocated specifically for

development of computing technologies, it represents a significant investment. Tech-

nologies developed through research and development are deployed across the United

States armed services and are used around the globe in the course of military op-

erations. The success of Joint operations often depends upon the coordinated use

of computing technologies across military branches in communications, intelligence

collection, weapons deployment, and protection and dissemination of sensitive infor-

mation.

Adversaries with the ability to understand the designs of technology belonging to

the United States can identify inherent flaws or weaknesses (e.g., software and network

vulnerabilities) which might be turned into an attack, manipulate the portions of

the system within their control (e.g., feeding intelligence to an intelligence collection

system), or clone the good qualities of the system to copy them. In one respect, if

parties representing threats to the United States are able to understand U.S. military

technology designs, a strategic advantage has been lost because some advantage lies

in possessing superior technology. In another respect, some critical information is

inherent to the design of systems themselves. DoD Directive 5200.39 describes some

information pertaining to systems as “Critical Program Information”:

. . . [information], technologies, or systems that, if compromised, would
degrade combat effectiveness, shorten the expected combat-effective life of
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the system, or significantly alter program direction. This includes classi-
fied military information or unclassified controlled information about such
programs, technologies, or systems.

1.1 Motivating Scenarios

Specifically, the United States Air Force is seeking protection mechanisms for

protecting hardware from adversaries. While raw data can be encrypted to protect

it against an eavesdropper (rendering it indistinguishable from random data), cir-

cuits and software, collectively referred to as programs, are limited by their nature:

a program must be able to perform a function and all of the information necessary

to compute that function must (traditionally) be available within the program. This

makes computing technology a weak link in information security - functional infor-

mation stored in hardware and software is vulnerable to static and dynamic analysis.

The scenarios below serve to motivate the development of software and circuit

protections in this thesis.

1.1.1 Reverse Engineering a Cryptographic RFID Tag. In a well-known

study presented at the Black Hat 2008 security conference, Nohl et al. [32] examined

the Mifare Classic RFID tag used in ticketing for access control in several large public

transportation systems because the chip is relatively inexpensive. The Oyster card

used in London by TranSys formerly used the Mifare chip [1], as did the SmartRider

card used in Australia [40].

Nohl et al. reverse-engineered the cipher implementation used in the Mifare

Classic RFID tag by dissolving the plastic card surrounding the tag using acetone and

mechanically polishing away successive layers of the RFID tag. Using a microscope,

Nohl et al. photographed individual layers of the chip. Since only about 70 different

gate implementations are used within the chip, templates for each gate type were

created and a template matcher identified additional instances of the type within the

chip.
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Focusing their efforts on reverse-engineering the cipher implementation, Nohl

et al. found that the cipher implementation consists of a 48-bit linear feedback shift

register. A brute-force attack to discover the key used by the card and reader was

estimated to take about 50 minutes, but cheaper attacks are also possible because of

weaknesses found in the cipher design. Nohl et al. reported that technology capable

of breaking 52-bit keys has been available since 1998. Because of the weaknesses that

Nohl et al. found in the Mifare Classic, TranSys made the decision to start using a

more robust Mifare RFID chip based upon the DES algorithm [1].

In essence, Nohl et al. have shown that merely implementing a circuit design in

silicon offers little protection for the physical circuit design. Without security protec-

tions, reverse-engineers will be able to easily recover the gate-level and transistor-level

schematics of circuitry.

1.1.2 Technology Cloning. In the private sector, a company may attempt to

reverse-engineer a competitor’s product in order to gain a competitive edge; Popular

Science reported that selling cloned versions of a product even before the real product

is sold is common overseas, and that cloned versions of the Apple iPhone and Amer-

ican automotive models are sold at reduced prices [25]. Outsourcing manufacturing

facilities to other nations has aggravated this problem of intellectual property theft

because in many instances it allows untrusted individuals access to the schematics for

constructing a product.

A study conducted by the House of Representatives in 1999 observed a foreign

nation which seeks to become technologically independent; in order to accomplish this,

scientists from this nation are pressured to reverse-engineer technology rather than

purchase it. In one instance, scientists reverse-engineered a high-performance U.S.

computer rather than spending a fraction of the cost to buy it. Reverse-engineering

products may incur significantly more expense than importing them, but this nation

appears willing to expend resources specifically in order to become less dependent

on foreign technology. In order to obtain access to more foreign technology, the
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study claims that this nation depicts itself as more technologically advanced than it

really is (making it seem less as though obtaining U.S. technology will improve their

capabilities) [41].

1.1.2.1 Hainan Island Incident. In light of foreign interest in copying

U.S. technology, there was considerable tension in April of 2001 when an EP-3E

surveillance aircraft collided with a Chinese aircraft and was forced to land on Hainan

Island because of damage. The EP-3E contained cryptological equipment, sensors,

and other sensitive computing equipment. While the crew of the EP-3E was able to

destroy some of the equipment, the Chinese retained possession of the plane for several

months. During that time, Chinese scientists were free to analyze the technology with

the end goal of reverse-engineering it [34,44]. The incident on Hainan Island serves to

motivate the protection of critical computing technologies; in the case that a foreign

entity ever obtains military technology belonging to the United States, the technology

should be protected to such a degree that analyzing it is as difficult as possible (or

hopefully impossible).

1.2 Scope

The primary focus of this thesis is on the problem of generating versions of com-

binational circuits which convey less information to an adversary about the circuit’s

purpose than the original circuit, i.e., the problem of generating variants which are

obfuscated. For background on existing circuit obfuscators, see Section 2.5.

This thesis is constructed to answer two questions. The primary research ques-

tion regards the feasibility of replacing random circuit obfuscators with deterministic

circuit obfuscators, and the second research question regards the capabilities of ran-

dom circuit obfuscators. Both questions are elaborated in the following sections.

1.2.1 Primary Goal: Construction of New Circuit Obfuscators. The primary

research question of this thesis is:
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1. Is it possible to construct efficient methods that generate securely obfuscated

versions of combinational logic circuits for the purpose of protecting software

and hardware systems?

This research question is significant for several reasons; firstly, though, because it

concerns the usability and quality of combinational logic obfuscators. If obfuscators

do not produce secure combinational logic variants, then there is no benefit to obfus-

cation. If obfuscators or the variants they produce are too inefficient to be used, then

the obfuscators are unusable. In total, there are three requirements which can be de-

rived from this research question to define the type of combinational logic obfuscators

that are sought:

1. Semantic Equivalence: New circuit variants must compute the same function

as the original circuit. This is also described as “functional correctness.”

2. Improved Security: New circuit variants should be more secure than the orig-

inal circuit. This means that the structural and internal functional information

of the original circuit should be protected.

3. Equal or Improved Efficiency: New circuit variants should be produced

efficiently, and the variants themselves should be efficient. For obfuscated circuit

variants, this means that the amount of power and area required to implement

the circuit should not increase significantly. For the obfuscators themselves,

efficiency means that usability should not be limited by runtime.

The research goals for this thesis were formulated from the research question,

and thus accomplishing the research goals requires the creation of the obfuscator

described by the research question. The primary goal of this research is to:

1. Develop new deterministic methods for whitebox obfuscation which are both

efficient and secure.

Accomplishing this research goal requires that new deterministic methods be created,

and that they demonstrably have the characteristics of the obfuscators in the research
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question. To demonstrate that deterministic obfuscators developed in this thesis meet

the requirements of the primary research question, this research attempts to achieve

the following sub-goals:

1. Semantics-Preserving Algorithms: Obfuscated circuits will be verificably

semantically equivalent to the original circuit.

2. Secure Variants: Obfuscated circuits will be more secure than the original

circuit. Security will be measured by:

• The elimination of functional information in the circuit. This will be mea-

sured by the percentage of common truth-table values produced by the

gates in both the obfuscated and the original circuits.

• The elimination of structural information in the circuit. This will be mea-

sured by the number of components in the original circuit which cannot be

detected in the obfuscated circuit.

3. Efficient Algorithms and Variants: Obfuscated circuits will be as efficient

or more efficient than the original circuit. This will be measured by

• The number of hierarchical levels in the obfuscated circuit, representing

the delay with which the circuit produces results.

• The number of gates in the obfuscated circuit, representing the area re-

quired to implement the circuit and the power required for using the cir-

cuit.

In addition, obfuscation algorithms will require less time for generating obfus-

cated circuits than previous algorithms. This will be measured by

• The amount of time required for the generation of obfuscated circuits.

To accomplish the primary research goal two new methods for obfuscation, com-

ponent fusion and component encryption, are presented in Sections and respectively.
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1.2.2 Secondary Goal: Evaluation of Preexisting Circuit Obfuscators. As

mentioned above, this research constructs new combinational logic obfuscators in the

light of two preexisting methods for generating obfuscated digital logic circuits. The

first, termed random subcircuit selection-and-replacement (SSR), consists of randomly

selecting gates from a logic circuit and replacing them with a random equivalent re-

placement [33]. Random SSR is unfortunately limited in efficiency by its requirement

on enumerating large circuit families in order to generate subcircuit replacements ran-

domly. In addition, the security of random subcircuit selection-and-replacement has

not yet been validated, and whether it implements the theoretical security model on

which it is based is still an open question. This research thus seeks to further clarify

the properties of a truly random circuit variant generator in relation to subcircuit

selection-and-replacement.

Thus the secondary research question, centered around the analysis of random

SSR, is formulated as follows.

2. Does the random subcircuit selection-and-replacement method successfully im-

plement the Random Program Model (RPM) for security, such that the security

provided by implementing the RPM is present in a random subcircuit selection-

and-replacement method?

This evaluation of random SSR is provided in Appendix B.1.

1.2.3 Assumptions. Several assumptions are made in the course of this re-

search to better describe the problem that this thesis is attempting to solve. Firstly,

the domain of this problem has been restricted to only combinational logic circuits.

Restricting the domain of this problem is necessary because all sequential circuits are

composed of combinational components; the problem of combinational logic obfus-

cation must be examined before the problem of sequential logic obfuscation can be

addressed. Defining the capabilities of an adversary is also helpful because it identi-

fies ways in which information can be leaked from a circuit. This research, secondly,

assumes that information is leaked by the existence of copies of known subcircuits
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within the circuit. An adversary will identify information gained by analysis of the

structure of the circuit, including that of the existence of individual components and

the ways in which they are related, and use this information to reconstruct the intent

of the circuit.

1.3 Organization

Chapter II will focus on providing background material for this thesis, including

digital logic concepts, concepts related to hardware and software security, program

transformation frameworks, and reverse-engineering. In Chapter III, two schemes

for deterministic white-box variation (component fusion and component encryption)

are proposed, and Chapter IV details how the implementations of these schemes are

evaluated according to their effectiveness in protecting circuit components. Chapter

V details the conclusions which can be drawn from the results and proposes future

work areas.

The appendices contain primarily reference material. Appendix B.1 describes

the methodology used in evaluating the strength of random subcircuit selection-and-

replacement, which is the second research goal. It does this by comparing random

subcircuit selection-and-replacement against an ideal system for circuit manipulation.

Appendix C contains pseudo-code for algorithms described in this thesis.

8



II. Background

This chapter serves to establish the importance of hardware and software obfusca-

tion, describe background concepts related to these areas, and describe previous

research into combinational circuit obfuscation systems. In following chapters, this

thesis will seek to make improvements to the circuit obfuscation framework described

in Section 2.5. A brief summary of this chapter is as follows.

Section 2.1 begins by discussing the relationship between hardware and software.

Because the hardware and software domains overlap, a holistic protection strategy

is sought. Further, because of the functional relationship between hardware and

software, advances in the protection of circuits can be applied to software protection.

Section 2.2 considers reverse-engineers: individuals who will attempt to recover

information about the intent of a system. This is examined in both the hardware

and software domains, and strategies for reverse-engineering hardware modules are

explored. Also, this section examines paradigms for program intent and paradigms

for the reverse-engineer’s ability to understand a program. Section 2.3 examines

previous research into formal theoretical models for circuit and software obfuscation,

and Section 2.4 examines the framework of Abstract Interpretation for modeling the

relationship between program syntax and program semantics, and for modeling the

domains that a reverse-engineer must consider in order to understand a program.

Section 2.5 provides background on previous efforts at implementing combinational

logic obfuscators and previous research into quantifying the security of combinational

circuit variants.

Lastly, Section 2.6 provides background into the alternative representation of

logic circuits as Binary Decision Diagrams.

2.1 Blurring the Distinction Between Hardware and Software

A traditional, conceptual divide has been drawn between the domains of hard-

ware and software, with the term hardware usually referring to logic circuit designs

manifested in physical technology and software referring to bit patterns that can be
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executed on hardware-based multiprocessors. However, with the emergence of recon-

figurable computing technologies such as Field Programmable Gate Arrays (FPGAs),

circuits are increasingly being implemented in a software-like manner.

Rather than manufacturing application specific integrated circuits (ASICs) to

perform specialized processing tasks such as video and audio processing, compression,

encryption, and other tasks, FPGAs are programmed to perform these tasks. Vahid

[42] has suggested that this allows task executions at speeds which are magnitudes

faster than similar implementations in register-transfer language on microprocessors,

but that the reconfigurable nature of FPGAs allows new algorithms to be implemented

without the additional cost in chip manufacturing associated with developing ASICs.

Vahid suggests that it is important to recognize that FPGAs are just another

platform for software, and that recognizing this fact will improve the design of embed-

ded systems which are traditionally implemented as software running on micropro-

cessors. Particularly, the only difference between traditional software and an FPGA

circuit design is the modeling domain - traditional software development in languages

such as C is temporally oriented, while circuit design is a spatially oriented form of

software development.

Kim and McDonald [23] build on this assumption, and describe how viewing

circuits as software should impact the way in which hardware and software protec-

tions are considered. Hardware protection is traditionally viewed as the task of pro-

viding successful anti-tamper measures, and software protection remains difficult to

define but is usually characterized in terms of watermarking, obfuscation, and tamper-

proofing as described by Collberg [10]. If Vahid is correct, then many software pro-

tection concepts should be adapted to the design of hardware because there will soon

cease to be a distinction between logic circuit designs for implementation in physical

hardware and logic circuit designs implemented as software on an FPGA. In other

words, every logic circuit design will be potentially software.
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Thus, rather than viewing the two as distinguished categories, logic circuit de-

signs and traditional software program code both being considered software) and

physical circuit designs should be considered under the category of computing tech-

nology. Techniques for protecting critical computing technology will require a new,

holistic strategy which integrates the protection of physical circuitry with the protec-

tion of non-physical software that is executed on it.

2.1.1 Modeling Software as Circuits. From a more theoretical viewpoint,

there are certain classes of functions which can be computed by both logic circuits

and software, and serve to further make circuits and software indistinguishable. Wee

gives one example of such a function (computing equality) in [46].

Any combinational circuit easily maps to a piece of software which computes

the same function; logic gates map directly to code instructions which compute the

same function, and gate outputs map to program variables. Translating software

structures to circuit structures is also possible for most programming constructs;

a limited subset of constructs is provided by VHDL (Very High-speed Integrated

Circuit Hardware Description Language), which is used widely for circuit design and

simulation. A larger set of programming constructs was mapped to circuitry by Wirth,

who defined methods for translating variable declarations, subroutines, and high-level

control statements directly into circuit structures and implemented an experimental

compiler targeting logic circuits [52].

Another mapping was proposed by Norman [33], who demonstrated that combi-

national logic circuits compose a small language, which can be represented in Backus-

Naur form using the grammar

B ::= true|false|(!B)|(B&B)|(B||B)|(E < E)

where B represents any Boolean expression and E represents any integer expression.

This logic grammar allows for all combinational logic to be mapped to some software
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program in a grammar which contains the same constructs. Further, sequential cir-

cuits may be decomposed into combinational components, where sequential circuits

retain state and memory through feedback in addition to performing computations,

allowing sequential circuits to also be represented, though not feasibly for large se-

quential circuits, in a Backus-Naur grammar.

2.2 Reverse-Engineering

Seminal works in the field of reverse-engineering were written to describe meth-

ods for recovering design from systems for which designs have been lost. Sometimes,

a system needs to be modified or repaired in the course of normal maintenance, but

the documentation of the system provides inadequate design information. To recover

the design, a brief phase of reverse-engineering must occur before maintenance can

occur.

One of the earliest references to reverse-engineering defines the reverse-engineering

process as “the act of creating a set of specifications for a piece of hardware by someone

other than the original designers, primarily based upon analyzing and dimensioning

a specimen or collection of specimens.” [38, page 244] A more general definition has

been given by Chikofsky and Cross [8, page 14]: “Reverse engineering is the process

of analyzing a subject system to . . . create representations of the system in another

form or at a higher level of abstraction.”

2.2.1 Traditional Software Reverse-Engineering. The process of compiling

a software executable typically consists of several steps which progressively transform

high-level code into assembly code for a particular processor architecture. As shown

in Figure 2.1, source code is parsed into a syntax tree, intermediate code is generated

and control flow is optimized, and assembly code is generated from intermediate code.

The last step in this process is the assembling of assembly code into machine code for

execution on a target architecture.
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Figure 2.1: The processes of software compilation and soft-
ware reverse-engineering. [27]

Linn and Debray [27] described the process of statically reverse-engineering exe-

cutable software programs as a combination of two steps; the first being the re-creation

of assembly code from machine code in a process termed disassembly, and the second

being the recreation of high-level source code from assembly code through decom-

pilation. Because of information lost in executable creation, source code recreated

through reverse-engineering attempts will never precisely recreate the original source

code, but recreated source code will better communicate to the reverse-engineer the

functionality of the software.

Dynamic software reverse-engineering through the use of software debuggers or

virtualization techniques is also possible. This provides reverse-engineers with the

ability to examine how a piece of software affects a running processor. By allowing

a reverse-engineer to control the execution of a piece of software, analysis of running

program states can be performed which cannot be performed in real-time. Commercial

reverse-engineering tools such as IDA Pro [19] and OllyDbg [53] (and many others)

exist for helping with these tasks.
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2.2.2 Traditional Hardware Reverse-Engineering.

2.2.2.1 Reverse-Engineering using Circuit Schematics. The ISCAS-

85 benchmark circuits are a set of 10 combinational logic circuits introduced at the

International Symposium of Circuits and Systems in 1985, consisting of circuits whose

functions and high-level designs were not published for confidentiality reasons and for

the purpose of allowing them to be used as random logic circuits for test purposes. In

1995, Hansen et al. [18] conducted a study in reverse-engineering in which the high-

level design for each of the benchmark circuits were recreated, and the functionality

of each circuit was described.

Hansen et al. described the techniques they used in reverse-engineering the

functionality of the set of benchmark circuit designs. The principles they followed

offer a level of insight into the process that an attacker would use in uncovering the

functionality of a circuit:

1. Library modules - Common components such as multiplexors, decoders, adders,

and other mathematical functions often appear in circuit designs.

2. Repeated modules - Circuit designs often include particular modules repeated

many times. Regardless of whether the function of a repeated module is known,

this offers a visual indication to a reverse-engineer that that the subcircuit

computing that function is significant.

3. Expected global structures - After recognizing structures which are commonly

used, a reverse-engineer can search for other circuit structures, signals, or func-

tions which usually accompany these common structures.

4. Computed Functions - The logic function that a circuit computes can be con-

structed from individual components, offering insight into the particular math-

ematical function being computed.

5. Control Functions - Signals which are reused within a circuit are probably being

used as control logic.
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6. Bus structures - The signals produced as output by many repeated modules can

often be grouped into buses, and noting where these signals lead can help to

partition the circuit design.

7. Common names - In cases where names are available and included in the circuit

design, signal names or structure names (even non-descriptive ones) can be used

as identifiers. If a name is used more than once to refer to different structures,

then the structures are probably connected.

8. Black boxes - Grouping unknown functionality together into a ”black box” is

used to separate known functionality from unknown functionality.

2.2.2.2 Reverse-Engineering based on Side-Channel Attacks and Gray-

Box Attacks. Kim and McDonald [23] identify a set of attacks which provide

information to a reverse-engineer, even in the absence of circuit schematics. Run-

ning circuitry either leaks information in specific ways or can be attacked in ways

which provide information not available through examination of schematics (or in the

absence of available schematics):

1. Focused Ion Beams - This tool is similar to a scanning electron microscope,

but uses gallium ions instead of electrons. Using a FIB, it is possible to set

specific intermediate signals within a circuit to be a specific value (0 or 1). This

makes it possible to examine internal structure by holding particular signals

constant.

2. Optical Equipment - Optical probes rely on the interactions of photons with

silicon devices and allow circuit examination by looking at transistor states to

provide an adversary with the ability to observe a signal propagated by means

of applied input values.

3. Power Consumption - By observing the power usage across a circuit, an

attacker can gain insight into what signals are changing the most in the circuit.
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Particularly, if a circuit is being used to compute some mathematical function,

more power will be used in the area of the circuit dedicated to this function.

4. Timing Analysis - Timing attacks are the circuit version of software debug-

ging. In a timing attack, a reverse-engineer modifies the speed of the circuit

clock, either slowing it down to allow additional analysis or speeding it up to

achieve a desired effect.

5. Fault Injection - Primarily, fault injection is used to merely prevent the cor-

rect function of a circuit; however, it can aid reverse-engineering or aid in circuit

tampering. Using fault injection to prevent correct key selection in a crypto-

graphic circuit is one particular example of the way fault injection could be used

in circuit tampering.

This list is not exhaustive, but does serve to illustrate the threat of physical circuit

tampering. For more information concerning side-channel and gray box attacks on

circuitry, see [23].

2.2.3 Program Understanding. McDonald and Yasinsac [30] considered

a reverse-engineering adversary and reason about the goals of a reverse-engineer.

They considered that a reverse-engineer can achieve understanding of the intent of a

program (either a piece of circuitry or a piece of software) in the light of four different

paradigms:

1. Program understanding manifested by the ability to predict a program’s future

output.

2. Program understanding based upon comparing a program’s code segments to

those of code libraries whose function is known.

3. Program understanding manifested by the ability to gain any information at all

from a program’s structure.

4. Program understanding based upon information present in program code.
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McDonald and Yasinsac classify these four paradigms into two domains of program

understanding, black-box understanding and white-box understanding. These two do-

mains provide a basis for classifying the information which can be observed about a

program.

Definition 1. Black-Box Understanding/Obfuscation: Program P ← X,Y is

black-box understandable if and only if, given an arbitrarily large set of pairs IO =

(xi, yi) such that yi = P (xi) and yj an arbitrary element of Y with (xj, yj) not an

element of IO, an adversary can efficiently guess xj such that yj = P (xj) with greater

than negligible probability. Otherwise, we say P is black-box obfuscated. [30]

Definition 2. White-Box Understandable: The program p′n+1 is white box un-

derstandable if the probability is greater than or equal to 1
2
+ε (where ε is the negligible

error probability), that the adversary A is able to distinguish whether p′n+1 is either

E(pn+1) or is a random program PR. Therefore, the program encryption algorithm

E(p) provides white box obfuscation if and only if an adversary is able to distinguish

the encrypted program (p′n+1) from a random program (PR) with probability less than

or equal to 1
2

+ ε, where ε is the negligible error probability. [28]

These two concepts are combined to form intent protection:

Definition 3. Intent Protection: Program P is intent protected if and only if it

is protected against black-box and white box analysis.

In other words, a program P is understandable in the black-box sense if an

adversary can predict the input that will cause some arbitrary output with odds better

than random guessing. A black-box obfuscated program represents one in which an

adversary has no ability to predict I/O relationships. This does not necessarily mean

that the adversary cannot understand anything about P ; a black-box obfuscated

program may still leak information by its program structure.

McDonald and Yasinsac’s second, third, and fourth paradigms above describe

program understanding based in the white-box domain. A encrypted program P ′,

then, is white-box understandable if it can be distinguished from a randomly generated
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program of the same size with greater than negligible probability. Reasoning that an

encrypted program P should contain the random properties found in encrypted data,

McDonald and Yasinsac suggest that random selection of a program P ′ from the set

of all possible programs implementing the function of P guarantees the randomness of

P ’s structure and provides a baseline for measuring the entropy of program structure.

2.3 Obfuscation

Obfuscation is defined by Varnovsky et al. [43] to be “any efficient semantic-

preserving transformation of computer programs aimed at bringing a program into

such a form, which impedes the understanding of its algorithm and data structures or

prevents the extracting of some valuable information from the plaintext of a program.”

More generally, Barak et al. define an obfuscator to be “an efficient, probabilistic

‘compiler’ that takes as input a program or circuit P and produces a new program

O(P) that has the same functionality as P yet is ‘unintelligible’ in some sense.” [2]

2.3.1 Virtual Black Box Obfuscation. Barak et al. were able to produce

a seminal impossibility result in the field of obfuscation by demonstrating that con-

structing a Virtual Black Box (VBB) obfuscator is impossible. [2] According to the

definition of a VBB obfuscator, an obfuscator O must satisfy two conditions, with a

third condition defined by the domain:

• functionality: O(P ) must compute the same function as P

• “virtual black box” property: Anything that can be efficiently computed

from O(P ) can be efficiently computed given oracle access to P .

• polynomial slowdown: O(P ) must be at most polynomially slower than P .

In the domain of circuits C, this means that |O(C)| ≤ p(|C|) ; in the domain of

Turing Machines M , this means that the description length and running time

of O(M) are at most polynomially larger than those of M .
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To demonstrate the impossibility of building a VBB obfuscator, Barak et al. con-

structed a family of functions F which are unobfuscatable under the VBB model

because there exists a property π : F ← 0, 1 such that

(a.) Given any program that computes a function f ∈ F , the value π(f) can be

efficiently computed.

(b.) Given oracle access to a randomly selected function f ∈ F , no efficient algorithm

can compute π(f) much better than random guessing.

In other words, the obfuscation of functions in F is impossible because there is some

property which can be computed from F , but not from oracle access to F . Barak

et al. were able to first construct 2-Turing Machine and 2-Circuit functions within

F (showing that no 2-Turing Machine or 2-Circuit VBB obfuscator exists), and then

extend the result to show that no VBB Turing Machine or Circuit obfuscator exists.

Because of this impossibility proof, Barak et al. concluded that obfuscators, if they

exist, are only possible under definitions of obfuscation other than VBB.

2.3.2 Indistinguishability Obfuscation. Following an impossibility proof for

the VBB model, Barak et al. proposed an alternative definition of obfuscation to show

that some (weaker) definition for obfuscation could exist: indistinguishability obfus-

cation. The indistinguishability obfuscation model is identical to VBB obfuscation

model, with the exception that the VBB property is replaced with an indistinguisha-

bility property:

• indistinguishability: For any PPT A, there is a negligible function a such

that for any two circuits C1, C2 which compute the same function and are of the

same size k,

|Pr [A (O (C1))]− Pr [A (O (C2))]| ≤ a(k)

Restated, under indistinguishability obfuscation, if the Turing Machine A finds the

difference between O (C1) and O (C2) to be less than a (k) according to some metric,
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then the obfuscations are indistinguishable to A. This definition is weaker than the

VBB definition, but allows for the possibility that an obfuscator might exist. Under

VBB, an obfuscated circuit cannot leak any information at all that cannot be derived

from oracle access, but under indistinguishability obfuscation, an obfuscated circuit

can leak more than negligibly more information than any another circuit implementing

the same function would leak. Barak et al. proved that inefficient indistinguishability

obfuscators do in fact exist.

2.3.3 Best-Possible Obfuscation. Goldwasser and Rothblum identified a

problem with the Barak et al.’s definition for indistinguishability obfuscation: indis-

tinguishability obfuscation does not provide any guarantee that obfuscation prevents

the leakage of information. (It is possible that both of the two obfuscated variants

leak about the same amount of information, but that this amount is rather large.)

To improve upon this definition, Goldwasser and Rothblum proposed best-possible

obfuscation:

• Best-Possible Obfuscation: An algorithm O, which takes as input a circuit

in C and outputs a new circuit, is said to be a (computationally/statistical-

ly/perfectly) best-possible obfuscator for the family C if it has the preserving

functionality and polynomial slowdown properties as above, and also has the

following property (instead of the virtual black-box property).

– Computational/Statistical/Perfect Best-possible obfuscation: For

all large enough input lengths, for any polynomial size circuit adversary A,

there exists a polynomial size simulator circuit S such that for any circuit

C1 ∈ CN and for any circuit C2 ∈ CN that computes the same function as

C1 and such that |C1| = |C2|, the two distributions A (O (C1)) and S (C2)

are (respectively)computationally/statistically/perfectly indistinguishable.

Restated, a circuit obfuscated under best-possible obfuscation will leak only the in-

formation that can be leaked by all other circuits that compute the same function.
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This means that all circuits may theoretically be obfuscated under the definition of

best-possible obfuscation, but makes no claim about the feasibility of constructing

such an obfuscator.

2.3.4 Random Program Model. McDonald and Yasinsac [29] distinguish

obfuscation from program encryption. While obfuscation and program encryption

both seek to make a program more difficult to understand, program encryption takes

on some properties of traditional cryptographic ciphers. Cryptographic ciphers seek

to produce ciphertext which leaks no non-trivial information regarding the original

plaintext, and thus produce output which is indistinguishable from a stream of random

bits.

Given that encrypted data shares many of the characteristics of a random bit-

stream, McDonald and Yasinsac reason that a random program can be used to mea-

sure successful program encryption. If an encrypted program shares the characteris-

tics of an encrypted ciphertext, then that encrypted program should also resemble a

random bitstream. However, there are several other characteristics which a random

program must possibly also satisfy.

If a stream consists of random bits, then there is no guarantee that it consists

entirely of legal instructions from a particular instruction set architecture. Further,

there is no guarantee that a sequence of legal instructions will run successfully (and

not fail due to a runtime error). A random program must be legal both syntactically

and grammatically, not fail at runtime, and must be able to halt. Without being

syntactically and grammatically correct, a program will fail to compile; without being

fail-safe and able to halt, a program will not appear functionally correct.

According to McDonald and Yasinsac, a program producing encrypted output

(representing a semantic transformation applied to the program) which is pseudo-

random can be said to have Strong Black-box Security :

• Strong Black-box Security - Given program p′, which
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1. Implements program encryption algorithm E p′ = E(p)

2. Takes input x

3. Produces output y = p(x)

After knowing any I/O pairs (x1, p
′(x1)), (x2, p

′(x2)) . . . , (xn−1, p
′(xn−1)), (xn, p′(xn)),

an adversary that supplies any set of subsequent input xk, xx+1, xk+2, . . . cannot

predict in polynomial time either the correct outputs p′(xk), p
′(xk + 2), . . . of

the obfuscated program p’ or the correct outputs p(xk), p(xk+1), p(xk+q . . . of

the original program p.

In addition, McDonald and Yasinsac provide a white-box security requirement for the

RPM which is essentially based around the definition for White-box understandability

they provide in [30]. If a program or circuit is not White-box understandable, then

that program or circuit has a measure of White-box security.

2.3.5 Measuring Obfuscation. In [9], Collberg et al. designed a Java program

obfuscator which took as input a Java program and produced as output an equiva-

lent Java program containing opaque constructs in order to increase the difficulty

of reverse-engineering. The modified (but equivalent) Java program contained addi-

tional, irrelevant statements to hide the real control flow of the program, contained

object code sequences for which no high-level constructs exist, and modified exist-

ing control flow abstractions. To evaluate the quality of obfuscating transformations,

Collberg et al. described four qualities which describe obfuscating transformations in

the general sense:

• Potency: The amount of obscurity (or complexity, or unreadability) added to

the program. This definition is distinct from potency as defined by Cousot and

Cousot [12], but the two definitions are not mutually exclusive.

• Resilience: The difficulty of constructing an automatic deobfuscator to reverse

obfuscating transformations.
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• Stealth: The degree to which obfuscated code blends in with the rest of the

program.

• Cost: The amount of computational overhead added to the program.

Potency measures the benefit to program security gained by introducing obfuscation

into a program; cost represents the penalties incurred by introducing obfuscation (e.g.,

program runtime and executable size). Resilience indicates the difficulty of construct-

ing an automated tool to detect and remove obfuscation, while stealth indicates the

difficulty overall of detecting and removing obfuscation. A resilient construct might

not be stealthy if the construct is difficult to detect automatically, but a human could

easily discover it.

2.4 Abstract Interpretation

2.4.1 Design of Program Transformation Frameworks. AI [12] is a frame-

work for formalizing the correspondence between a program’s syntax and its semantics

at different layers of abstraction. Cousot and Cousot distinguish syntax and seman-

tics by reasoning that a program’s syntax (described by physical representations of

program code, such as source code and assembly code) is an abstraction of the pro-

gram’s semantics (which may consist of additional qualities such as the sequence of

values held by a variable during runtime or other properties of an actual program

execution).

Cousot and Cousot model layers of abstraction of a program’s semantics using

individual domains modeled as partially ordered sets.

• Concrete semantics describe a syntactically correct program P ∈ P and be-

long to a concrete domain D which is a partially ordered set po < D :v> when

ordered by the approximation ordering v formalizing a loss of information.

• Abstract semantics describe a safe/conservative approximation of the con-

crete semantics which belongs to an abstract domain D and is also a partially

ordered set po
〈
D : v〉

.
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• Abstraction is a Galois connection, a mapping between two partially ordered

sets, which indicates how entities in the concrete domain D correspond to entities

in the abstract domain.

• Concretization is also a Galois connection which describes how entities in the

abstract domain map to entities in the concrete domain.

Using the AI framework, Cousot and Cousot reason about transformations applied to

programs at varying levels of abstraction.

• Syntactic transformations t transform the syntax of a program.

• Semantic transformations transform the semantics of a program.

• Potency: A syntactic transformation t is potent if there is some semantic

property which t does not preserve.

• Correctness: A syntactic transformation t is correct if, at some level of ab-

straction, t preserves meaning.

While any syntactic transformation will transform the semantics of a program to some

degree, a correct syntactic transformation will preserve the operational semantics of

the program. Figure 2.2 shows a transformation t which transforms the semantics of

the program P but preserves observational semantics at an abstract level.

2.4.2 Code Obfuscation using Abstract Interpretation. Dalla Preda and

Giacobazzi use AI as a basis for modeling software obfuscation in the white-box

domain [13, 36, 37]. Obfuscation preserves the correct operation of software on some

level, but modifies its source. Because of this, Dalla Preda and Giacobazzi choose to

model a program obfuscator as a δ-obfuscator if it is a potent program transformation

τ : P→ P such that every program is equivalent to its obfuscated version with respect

to a particular observational semantics δ.

Based upon this model for obfuscation, Dalla Preda and Giacobazzi present

schemes for obfuscating program control flow [13] and for detecting opaque predicates

in program code [37].

24



Figure 2.2: Correctness of a syntactic transformation [12]

2.4.2.1 Opaque Predicate Detection. Opaque predicates are defined

to be predicates whose values are known prior to program execution, because the

program will always cause those predicates to evaluate to the same value. Dalla

Preda and Giacobazzi present several examples of opaque predicates; an if statement

in program code whose conditional will always evaluate to true or false (causing dead

code to exist in the program) or functions whose values will always retain a certain

property (for example, ∀x ∈ Z : n|f(x) - a function f always returns a multiple of n).

Opaque predicate insertion is one method for obfuscating program code because it is

thought that inserting opaque predicates makes it more difficult for a reverse-engineer

to analyze a program. The technique opaque predicate insertion was implemented in

2003 when Linn and Debray [27] proposed a method of this type based on opaque

predicate insertion for preventing static code analysis.

Dalla Preda and Giacobazzi specify an attacker who is able to break an opaque

predicate (that is, detect that the program construct is, in fact, opaque) by modeling

the abstract domain in which the opaque predicate resides. Once the level of abstrac-

tion of the attacker reaches the same level as that on which the opaque predicate is

opaque, the attacker is able to recognize the predicate’s opaqueness.
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While a particular attacker might be able to detect certain opaque predicates

but not others, Dalla Preda and Giacobazzi suggest that opaque predicates requiring

a level of abstraction different from that of the attacker could interact with predicates

that are within the domain of the attacker, preventing the attacker from identifying

the inserted opaque predicates. If opaque predicates were drawn from a large enough

set of domains, an attacker might be required to combine all domains used in the

program opaque predicates in order to break any single opaque predicate.

2.5 Circuit Obfuscation

2.5.1 Algorithms for White-box Obfuscation Using Randomized Subcircuit Se-

lection and Replacement. Norman [33] implemented a simplified white-box program

randomizer for obfuscating combinational logic circuits. This obfuscator models com-

binational logic circuits as directed acyclic graphs (DAGs) and attempts to satisfy the

white-box obfuscation requirement of the Random Program Model. An obfuscator

satisfying the requirements of the RPM should transform the white-box structure of

a circuit C into any other white-box implementation of C in a circuit family δi−o−g−Ω

with equal probability, and to accomplish this, the architecture described by Norman

enumerates all of the possible white-box implementations within δi−o−g−Ω. However,

Norman recognizes that as circuit size increases, the size of possible replacements

from the family δi−o−g−Ω grows too large to enumerate. While estimating the size

of semantically-equivalent circuit replacement families remains an open problem, Si-

monaire [39] provided empirical results which measure the size of circuit families with

given input/output and gate count.

In absence of a tractable method for circuit family enumeration, a different

method for replacing all of the gates within a circuit was developed, based around

SSR:

Definition 4. Subcircuit selection and replacement: Given a circuit C which

is to be white-box obfuscated, select a subcircuit, Csub. Retrieve a randomly chosen

circuit Crep from a library of circuits which contains a set of all circuits semantically
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Figure 2.3: The intent protection model: Obfuscation of a
subcircuit C by the selection of C, application of black-box
changes to produce the black-box behavior of C ′, and white-
box randomization to select from all circuits implementing the
function of C ′. [33]

equivalent to Csub. Finally, remove Csub from C and insert Crep in its place. As long

as Csub and Crep are semantically equivalent (and the order of inputs and outputs is

preserved), then semantic equivalence exists for C, all C ′
i, and C ′

n.

Norman notes that developing an algorithm which uses a library of all circuits

semantically equivalent to Csub would violate the polynomial slowdown property of the

RPM. To overcome this limitation, bounds are placed on the size of the circuits in the

library, and a given Crep is selected from among all size-bounded circuits semantically

equivalent to Csub.

2.5.1.1 CORGI. A Java-based tool named CORGI (Circuit Obfusca-

tion via Randomization of Graphs Iteratively) was developed as an implementation

of the white-box circuit randomizer Norman described. Several strategies for select-

ing subcircuits were developed, providing methods for random selection of individual

gates. Smart selection strategies were also developed that select subcircuits with
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Figure 2.4: The process flow of random subcircuit selection-
and-replacement.

given metrics (input size, output size, circuit size, gate basis, and/or truth table) or

subcircuits isomorphic to some other subcircuit.

2.5.2 Removing Redundant Logic Pathways in Polymorphic Circuits. Ar-

tifacts of subcircuit selection-and-replacement often still exist following certain ob-

fuscation experiments. These artifacts are visible as small patterns which are easily

optimized (e.g., buffers, double inversion, or using 0/1 as inputs to AND or OR gates).

Kim [22] observed these patterns after analyzing obfuscated circuits produced by the

random select-2 replace-with-3 algorithm (2-3SSR), and sought to describe and imple-

ment methods for automatically minimizing these small logic patterns. In all, twelve

algorithms for identifying and reducing small logic patterns were created. These al-
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Figure 2.5: The process flow of random subcircuit selection

gorithms represent a minimizer that an adversary might use to simplify circuit logic,

and were added to the functionality of CORGI to

2.5.2.1 Other Work in Pattern-Based Reduction. The concept be-

hind Kim’s pattern-based logic reduction, local gate pattern optimization, has long

been a part of commercial circuit minimization algorithms. In 1981, Derringer et al.

described a logic optimization system based upon traditional compiler optimization

that identified and minimized local logic patterns [15]. In 1984, a more formalized

tool termed the Logic Synthesis System(LSS) was developed which utilized these tech-

niques [14]. Brayton et al. note when describing the ESPRSSO optimization algo-
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Figure 2.6: The process flow of random replacement.

rithm that two-level optimization is most useful when combined with this type of

local logic pattern reduction techniques [5]. The ESPRESSO two-level optimization

algorithm is more fully described in Section 3.3.2.1.

2.5.3 Ancestral Entropy. Williams [51] described a measurement for cir-

cuit obfuscation which attempted to describe changes in a circuit that occur during

iterations of subcircuit selection and replacement. This metric, termed ”ancestral en-

tropy,” was proposed to measure the uncertainty regarding the component to which

a particular gate in a circuit belongs, following variation applied by a subcircuit se-
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lection and replacement tool. Williams used the following definitions to describe the

concept of ancestral entropy:

Definition 5. Circuit: A directed, acyclic graph D(V, E) of inputs, logic gates

and outputs where 1) V is the set of nodes of the circuit where each node is ei-

ther an input with an assigned value or a gate with a corresponding Boolean function

f : {0, 1}x{0, 1} → {0, 1}, 2) E is the set of wires that connect nodes, 3) the gate set

G of a circuit is the set of all gate nodes within V , 4) inputs are nodes in the graph

with no fan-in and 5) outputs are distinguished nodes.

Definition 6. Component: Given a gate set G and an input set I of a circuit P

and an integer k > 1, where k is the number of components, a set C of components

{c1,...,ck} partitions G and I into k disjoint sets of inputs and/or gates.

Definition 7. Ancestry: Given m number of gates in a circuit, k number of defined

components in a circuit, and a tuple T = {t1, t2, ..., tk−1, tk} assigned to each gate gm

in a circuit, where t describes the composition of gm in terms of the nth component.

Definition 8. Ancestral Entropy: Let P = (pi, ..., pn) be a probability distribution

on the set of N = (1, ..., n) components in a circuit. The entropy of P is the function

H(P ) = −
∑
i∈N

pilog2(pi), where N is the number of components in a circuit and

pi is the probability of a gate being from a defined component i. Maximum ancestral

entropy, H(P )max, is achieved when pi = pi+1 = ... = pn−1 = pn. H(P )min is achieved

when pi = 1.

2.5.4 Circuit Family Size. Simonaire applied Walenstein et al.’s result [45]

in normalizing metamorphic malware to the problem of normalizing circuits obfus-

cated by the CORGI subcircuit selection and replacement engine. To do this, he

modeled possible subcircuit selection and replacements as a series of term-rewriting

system operations [39]. The rule set of term-rewriting operations was examined for

convergence, which would have indicated the existence of a perfect normalizer for

obfuscated circuits. However, the subcircuit selection and replacement rule set was

found to contain critical overlaps which prevented the rule set from converging.
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An important result produced by Simonaire was the empirical measurement of

the size of certain circuit families through enumeration. (These enumerated circuit

families were enumerated by input count, output count, and gate count, without

regard to the function computed by any particular circuit.) The circuit families

consisting of 1-input, 1-output, n-gate circuits (the δ1−1−n family) constructed from

a one-gate basis were found to be identical in size to corresponding integers in the

AT&T Research Labs series A000366. This correlation is one of the first theoretical

results quantifying the cost of circuit family enumeration.

The integer series A005439 (counting the number of Boolean functions of n

variables whose ROBDD (see Section 2.6) contains at least n branch nodes, one for

each variable) is equivalent to A000366 multiplied by 2n−1, and Simonaire’s empirical

count of circuit family constructed using a six-gate basis (AND, OR, NAND, NOR,

XOR, and XNOR) is equivalent to A000366 multiplied by 6n−1. This is because the

counting of possible BDD configurations correlates to the counting of gate families

based on only two possible gate identities. The first seven values of these three integer

series are shown in Table 2.1.

Table 2.1: Integer series corresponding to 1) the δ1−1−g circuit families, 2) the δ1−1−g

family with a 2-gate basis, and 3) the δ1−1−g family with a 6-gate basis
g 1 2 3 4 5 6 7

A000366 1 2 7 38 295 3098 42271
A005439 2 8 56 608 9440 198272 5410688

A000366 * 6n−1 6 72 1,512 49,248 2,293,920 144,540,288 11,833,174,656

2.5.5 Component Identification. Parham [35] described an attacker using an

algorithm described by White [48]. This algorithm was created for the purpose of iden-

tifying modules within the context of a larger circuit, and avoids the NP -completeness

problems associated with isomorphic subgraph identification [16] by focusing on the

more restricted problem of identifying gate clusters (connected subgraphs composed

of gates within a circuit) which satisfy three rules:
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1. Unique Enumeration - No subgraph is identified more than once.

2. Output only subcircuits - All vertices within identified subgraphs are fully

specified.

3. Output only contained subcircuits - All vertices within identified subgraphs

are fully contained.

Upon enumerating a subcircuit, this algorithm compares the subcircuit to a library

of known components to identify whether the candidate subcircuit has the same se-

mantics (matching input/output count and the same truth table) as some library

component. If the candidate matches a library component, then the library com-

ponent was identified inside the circuit. Parham’s implementation allowed for the

relaxing of the second and third rules to allow for the identification of subgraphs that

do not match White’s definition of a subcircuit. The effect of relaxing these rules has

not been experimentally verified.

The practical importance of this algorithm lies in its use to automate the in-

dividual tasks described by Hansen et al. [18] as necessary in the hardware reverse-

engineering process. Rather than forcing a reverse-engineer to visually search a circuit

schematic for components, this algorithm makes it possible to more efficiently and au-

tomatically identify library modules.

2.5.6 Boundary Blurring. Parham recognized that to defeat the component-

identification adversary, a circuit obfuscation system needed to modify the semantics

of circuit components. To do this, he developed two algorithms for logic modification

which he deterministically applied at component boundaries. These algorithms, which

Parham described as blurring algorithms, blur internal circuit logic. Definition 9

describes the blurring process.

Definition 9. n-level Blurring Algorithm (condensed):

1. A blurring algorithm selects a replacement gate grep.
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2. The gate type of grep is changed, and at n levels closer to the output of the

circuit, a recovery gate grec is selected.

3. New combinational logic is added to the circuit which computes the function

originally computed by the recovery gate grec. The new gate which computes the

function of grec is gnew.

4. grec is replaced in the circuit by gnew.

The two blurring algorithms developed by Parham are Multilevel blurrring and

Don’t-care blurring. (For a more detailed description of both algorithms see [35].)

These algorithms differ in the type of new combinational logic used to recover the

original function of the recovery gate. While Multilevel blurring only generates new

combinational logic using the original signals of the original and recovery gate, Don’t-

care blurring generates new logic which depends upon signals selected randomly from

other locations in the circuit.

Blurring algorithms become boundary blurring algorithms when used determin-

istically to blur the logic of a component boundary. In these cases, the replacement

and recovery gates are chosen to fall on either side of a component boundary. Parham

reported perfect success in using Don’t Care blurring to protect against component

identification. His success was due to the fact that Don’t-care blurring modifies num-

ber of inputs and the number of outputs of individual components in the circuit.

Because the component identification algorithm requires that a subcircuit s exist

with the same number of inputs and outputs as a known component c in order to

identify s as an instance of c, the component identification algorithm will fail when

the input or output count of a subcircuit has been modified.

2.6 Combinational logic represented as binary decision diagrams

Binary Decision Diagrams (BDDs) [24] are a type of directed acyclic graph

structure for representing and manipulating Boolean functions consisting of two sink
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nodes (representing the values of true and false) and many branch nodes, each with

two links pointing to other nodes. Branch nodes represent a single variable v, and

links emanating from branch nodes are high and low, respectively to indicate the

path that will be evaluated if v evaluates to true or false, respectively. Each branch

node n computes a truth table (described by Knuth as a string termed a bead) which

represents the sink node (true or false reached by every possible combination of

values that individual variables could evaluate to. One specific node, termed the root,

indicates a specific branch node whose bead computes the function of the BDD.

Variants BDDs include ordered BDDs (in which nodes from the root to the sink

follow some specific ordering based upon the variable they represent) and reduced

BDDs (in which nodes that compute the same bead are combined). Further, shared

BDDs allow for the possibility of multiple root nodes (that is, multiple functions

computed) that share common branch nodes.

2.7 Background Summary

Reverse-engineering is a field in which the intent, purpose, or design of a system

is recovered from the system itself, and a reverse-engineer seeks to achieve a level of

understanding about the system itself based upon the system’s behavior and internal

structure. Several definitions for program understanding have been presented, and

several positive and negative results in developing metrics for the field of program ob-

fuscation have been reviewed. Cousot and Cousot’s use of the abstract interpretation

framework in program understanding has been surveyed, as has Dalla Preda and Gia-

cobazzi’s method based upon abstract interpretation for detecting opaque predicates.

Lastly, results in circuit obfuscation have been reviewed. These included methods

for mapping software to circuits, the subcircuit selection and replacement framework

developed by Norman, metrics for evaluating circuit obfuscation, and the component

identification and boundary blurring tools developed by Parham.
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Using this background, the next chapter will seek to analyze the security offered

by the subcircuit selection and replacement method and will seek to improve the

security and efficiency of the algorithm proposed by Norman.
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III. Methodology

As noted in the first chapter, this research seeks to provide better static circuit

protection by proposing more secure and more efficient methods for white-box

circuit obfuscation in order to improve the obfuscation of individual circuit variants.

Better security and better efficiency are achieved by implementing deterministic meth-

ods that improve over the purely random methods designed to implement the Random

Program Model.

Chapter I established that this thesis seeks to provide security improvements in

two areas: functional and structural information hiding. Practically, these improve-

ments are measured using the metrics of signal hiding and component hiding. The

metric of signal hiding is first described in this thesis, and is detailed in Section 4.5;

the metric of component hiding was first described by Parham, and is detailed in Sec-

tion 2.5.5. Both new obfuscation algorithms described in this chapter were designed

to maximize component hiding, and the second obfuscation algorithm is designed to

deterministically achieve signal hiding.

The random SSR system mentioned in Chapter II suffers from limitations related

to the cost associated with enumeration and indexing of large, equivalent circuit

families in order to provide a theoretical measure of security. Parham’s work in [35]

is the first to propose a more efficient means for defeating component hiding than

random SSR. Both new algorithms in this thesis use a circuit synthesizer to achieve

faster generation times than random replacement used in the random SSR method.

A brief summary of this chapter is as follows:

Section 3.1 provides preliminary definitions for use in discussing random, deter-

ministic, and efficient algorithms. Also, this section seeks to clarify terminology used

by this thesis for describing characteristics of combinational logic circuits.

Section 3.3 proposes a new deterministic method for subcircuit selection-and-

replacement. This method, component fusion, deterministically selects subcircuits

which contain components. If none are available, then component fusion partitions
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the circuit into internally connected subcircuits for replacement. Subcircuits are then

forced to overlap by adding the predecessor gates of each subcircuit to the subcircuit

itself. Deterministic replacement is accomplished using a circuit synthesizer built

on top of the ESPRESSO two-level optimizer. This synthesizer randomly chooses

whether to implement a product-of-sums-based logic form or a sum-of-products-based

logic form, and also chooses one of four possible gate type configurations for circuit

variants.

While component fusion guarantees that subcircuits overlap, component fusion

does not provide a guarantee that the semantics of individual components will be pro-

tected. In order to provide this guarantee, Section 3.4 provides another deterministic

method for whitebox circuit obfuscation - component encryption. Component encryp-

tion performs semantics-changing operations on a circuit, but preserves the semantics

of the overall circuit. To protect component semantics a simple combinational logic

encryption scheme, Signal Value Permutation (SVP), is provided to deterministically

hide both the semantics of signals between components and the count of signals be-

tween components. SVP modifies the count and semantics of signals between internal

components by introducing encoding logic where signals are produced and decoding

logic where signals are used, effectively preserving the semantics of the circuit. Lastly,

component encryption synthesizes encoding and decoding logic into the original cir-

cuit components to prevent an adversary from discovering the encoding and decoding

logic.

The metrics used to evaluate component fusion and component encryption are

examined in Chapter IV, and results from the evaluation will be presented in that

chapter as well.

3.1 Definitions

For clarification, definitions are provided for key algorithm terms and key circuit

vocabulary. Section 3.1.1 provides algorithm definitions, and Section 3.1.2 provides

circuit definitions.
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3.1.1 Algorithm definitions. To better describe circuit generation algo-

rithms, the following terms are more precisely defined:

Definition 10. Random: A random algorithm returns an output value such that

every possible output value is equally statistically probable. [11]

Definition 11. Deterministic: An algorithm whose behavior can be completely

predicted from [its] input. [3]

Definition 12. Pseudorandom: A deterministic algorithm returning output values

that “look” statistically random. [11]

From the definitions above, almost all algorithm implementations on physical

systems can be classified as deterministic. If all inputs from the run of an algorithm

are held constant, that algorithm should produce the same output every time. Many

otherwise deterministic algorithms use random number generators implemented in

high-level computing languages as a means of introducing randomness into their result.

While producing as output sequences of numbers that appear random, most random

number generators are actually deterministic because they rely on an initial seed

value from which to generate a random number sequence; “random” numbers will be

reproduced if any given seed value is reused. According to the National Institute of

Standards and Technology (NIST), algorithms which use random numbers to produce

random output are not usually considered deterministic, but algorithms which use

numbers produced by a pseudo-random number generator may exhibit deterministic

behavior [3].

In this thesis, the primary distinction will be drawn between pseudo-random

algorithms (ones which would be completely random if given a source of randomly

generated values) and deterministic algorithms (ones whose behavior would not be

completely random even if given a source of randomly generated values). In other

words, pseudo-random algorithms would become random algorithms if they were

seeded with random values, and deterministic algorithms exhibit non-random prop-
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erties even though they may have randomized routines and even when seeded with

random seeds.

3.1.2 Circuit Definitions. For clarity, the following definitions are used in

this thesis to describe the domain of logic circuits. Several of the sources for this

thesis provide conflicting definitions for each of these terms, so defining these terms

is necessary to avoid confusion.

Definition 13. Circuit: A directed, acyclic graph D(V,E) of inputs, logic gates,

and outputs where 1) V describes a set of nodes (or vertices) representing logic gates

and 2) E represents the set of edges representing wires connecting the output of some

logic gate (or an input to the circuit) to the input of some other logic gate (or an

output of the circuit).

Definition 13 is essentially the same as that defined by Williams, [51] and cor-

responds to White’s definition of a circuit graph. [48]

Definition 14. Subcircuit: A subgraph of some circuit C.

Definition 14 is most similar to that implied by Norman and James, but conflicts

with the definition of a subcircuit provided by White. This definition is also similar

to Williams’ definition of a component.

Definition 15. Candidate Component: A specified subcircuit which is fully spec-

ified, fully contained, or both.

Definition 15 is used most often by Parham. This definition corresponds to

White’s definition of a subcircuit. The terms fully specified and fully contained are

described in more detail by White in [48].

Definition 16. Component: A subgraph with a specified input/output flow whose

semantics, i.e., truth-table input/output mappings, are known. In addition, there is

some notion of intent attached to a component, indicating some knowledge of the

higher-level purpose of a subgraph with those semantics.
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A component as defined by Definition 16 is one of the best descriptions of

what a reverse-engineer is searching for when attempting to identify the function

of a circuit, but has not yet been proposed. This definition is implied by Parham,

and conflicts with the definition of component provided by Williams. Several of the

features that Hansen et al. [18] used as aids during the reverse-engineering of the

ISCAS85 benchmark circuits (such as library modules or features present in the circuit

topology) can be reduced to special cases of the component identification problem.

3.2 Pseudorandom Methods for Circuit Variation

Norman [33] and James [20] designed the subcircuit selection and replacement

system for circuit transformation under the assumption that a random transformation

system would offer the best circuit protection, and derived this assumption from the

Random Program Model (RPM). The RPM [29] suggests that a program variant with

the best possible white-box security will be indistinguishable from a random program.

Applied to circuits, this would mean that a circuit variant will possess a randomized

circuit structure that is the most likely to be indistinguishable from a circuit generated

entirely at random. With the requirement that black-box properties be preserved, a

circuit P will be replaced with some other circuit implementing the same function as

P , as illustrated in Figure 3.1. Without the requirement that black-box properties

be preserved, P will be replaced with some other circuit implementing an encrypted

version of P (designated E(P )) and with randomized white-box structure.

The SSR system designed by Norman and James was intended to provide seman-

tics preserving white-box circuit randomization. However, the circuit transformation

system designed by Norman and James only approximates the generation of random

equivalent circuit variants. Because the implementation suggested by James requires

the enumeration of large subcircuit families, only very small replacement candidates

(size measured by logic gate count, and corresponding to similarly small selection

sizes) of a fixed size can be considered. Not all circuit implementations are reachable

by small logic gate selection and replacements of a fixed size, making circuit variation
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Figure 3.1: The Random Program Model: a semantics-
preserving transformation on P replaces P with any other circuit
in the family δP .

by SSR slightly deterministic. This hypothesis is examined in more depth in Section

B.1.

Furthermore, random selection offers no guarantee that all portions of a circuit

will be selected in any particular run of the variant generator, and random replacement

offers no guarantee that the replacement of a circuit will exhibit hiding properties. The

SSR described by Norman and James contains a strategy for randomizing individual

subcircuits during the iterative subcircuit selection-and-replacement process, but not

a strategy for obfuscating a complete circuit.

While the security of a random replacement can be argued by an appeal to

the RPM (i.e., a randomly generated equivalent circuit variant is as indistinguishable

from a randomly-generated circuit as possible), generating and querying replacement

libraries was empirically shown to be intractable by Simonaire [39]. Simonaire charac-

terized the growth of circuit families as hyper-exponential. In the absence of a method

for randomly choosing circuit variants without enumerating all possible candidates,

fully random replacement allowing potential replacement from any variant of a given

size may only be performed on candidates within a bounded size.

Prior to this research there has been no investigation of whether random subcir-

cuit selection-and-replacement actually achieves the security that the Random Pro-
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gram Model proposes. An elementary examination of the capabilities of random SSR

is provided in Appendix B.

Overall, the security and efficiency limitations of SSR motivate the construction

of the component fusion and component encryption methods in Sections 3.3 and 3.4,

respectively.

Figure 3.2: The Random Program Model: Program vari-
ant production through selection from all circuits in a family
δi−o−s−Ω [33].

3.3 Component Fusion

The first new method for obfuscating logic circuits, component fusion, improves

on both the efficiency and the measurable security offered by random subcircuit

selection-and-replacement by abandoning the requirement that all possible subcir-

cuits be considered for selection, and also by abandoning the requirement that all

possible replacements for a subcircuit be considered. Instead of random selection,

a component-identification-based method for deterministic selection is used. Com-

bined with a method for selecting portions of neighboring components, this selection

strategy yields security by redefining component boundaries.

Component-based selection selects subcircuits too large to replace with a fully

enumerated circuit library. To address this, a new, efficient method for subcircuit
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replacement is proposed. This replacement method obtains a normalized form of the

subcircuit, removing white-box structural information.

As Figure 3.3 shows, the concept behind component fusion is to avoid requiring

random iteration to move from a circuit to a good variant. The process will still use

iteration, but not as the progress metric for measuring obfuscation. The circuit P will

be efficiently replaced with a circuit P ′ from a set of circuits implementing the same

function as P , but with good function hiding properties. Component fusion will still

Figure 3.3: Using a deterministic method, replacements for
P come only from δGoodP , but the deterministic method can
produce only a subset of replacements in δGoodP .

involve subcircuit-selection-and-replacement, and will be based upon a deterministic

selection routine using component identification and deterministic replacement using

a minimizer to obtain the normal form of the selection. The algorithm for component

fusion is diagrammed in Figure 3.4

3.3.1 Deterministic Selection. The new algorithm for identifying subcircuit

selections is based upon identifying small subcircuits which require protection. These

may include either components identified by a component identifier, components al-

ready known to exist in the circuit, or arbitrary partitions of the circuit.

As shown in Figure 3.5, prior to running a variation routine the obfuscator will

search the circuit for any identifiable components using White’s component identi-

fication algorithm. If any can be identified, then these components will be the first
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Figure 3.4: The process flow of component fusion.

subcircuits selected for replacement. Identified components are placed in a queue to

be selected and replaced.

Next, the circuit variant generator identifies gates in the circuit that do not

yet belong to a component and partitions them into connected subcircuits with a

number of inputs small enough that the truth table can be enumerated in reasonable

time. Once the circuit is divided into subcircuits, the algorithm begins selection

and replacement. By partitioning the circuit into subcircuits prior to obfuscation,

the circuit obfuscation algorithm guarantees that every gate in the circuit will be

replaced, a first step towards ensuring that topology will be obfuscated.

Figure 3.6 depicts the selection process. During each run of the variation algo-

rithm, a subcircuit will be removed from the queue. All gates preceding this subcircuit

will be selected and added to the subcircuit. Then, the new subcircuit will be given
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Figure 3.5: The process flow for circuit partitioning in com-
ponent fusion.

to the replacement algorithm. By adding predecessor gates to each subcircuit prior

to replacement, deterministic selection ensures that selection-and replacement oper-

ations will overlap. This ensures that signals bordering components will be replaced

at some time during obfuscation, helping to prevent component identification.

3.3.2 Deterministic Replacement. The algorithm for producing circuit vari-

ants consists of coupling variation with a circuit normalizer. This algorithm is de-

picted in Figure 3.7. For this research, the ESPRESSO-II logic minimizer developed

by Berkeley [5] was chosen because both the ESPRESSO-II algorithm and original

ESPRESSO-II source code were available from Berkeley. Surveying known logic mini-

mization algorithms (such as Quine-McCluskey, PRESTO, OPTIMA, [6] or Latte [26])

was considered to be beyond the scope of this thesis because any other two-level logic

minimizer can easily replace ESPRESSO in the deterministic replacement strategy

described in this thesis, and most logic minimizers will exhibit performance benefits

on a similar order relative to circuit family enumeration.
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Figure 3.6: The process flow for subcircuit selection in com-
ponent fusion.

3.3.2.1 Espresso heuristic minimization . The Espresso algorithm

is designed to manipulate programmable logic array (PLA) representations of logic

circuits. A PLA is used to implement two-level combinational logic through adjacent

pairs of rectangular arrays of logic gates. PLAs are easily represented using a pair

of matrices, an input array and corresponding output array which specify the input

signals that cause certain circuit outputs. An example truth-table and minimized PLA

which describes the outputs of the ISCAS benchmark c17 logic circuit are shown in

Figure 3.8.

The Espresso algorithm is used without modification in deterministic replace-

ment. For background, eight core functions are used in the computation of the

Espresso algorithm: [5]
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Figure 3.7: Deterministic replacement through the use of cho-
sen minimized forms.

1. Complement (Compute the complement of the PLA and the don’t-care set, i.e.,

compute the off-set)

2. Expand (Expand each implicant into a prime and remove covered implicants.)

3. Essential Primes (Extract the essential primes and put them in the don’t-care

set).

4. Irredundant Cover (Find a minimal (optionally minimum) irredundant cover).

5. Reduce (Reduce each implicant to a minimum essential implicant).

6. Iterate 2,4, and 5 until no improvement.

7. Lastgasp (Try reduce, expand, and irredundant cover one last time using a

different strategy. If successful, continue the iteration).
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Figure 3.8: (From left to right) The unminimized PLA of the
c17 ISCAS-85 benchmark circuit and the Espresso minimized
PLA of the same circuit.

8. Makesparse (Include the essential primes back into the cover and make the PLA

structure as sparse as possible).

3.3.2.2 Variation of two-level forms. The PLAs returned by the

Espresso algorithm are natively in sum of products form (also described as disjunctive

normal form in Boolean algebra or OR-AND form in circuit form, indicating that the

implementation is an OR of ANDs). However, other normal forms are also achievable.

The same PLA may be implemented in product of sums form (conjunctive normal

form or AND-OR form) and compute the same function. In addition, variation can

be introduced by implementing circuits using NAND or NOR gates (by DeMorgan’s

theorem, OR-AND form is equivalent to NAND-NAND form, and AND-OR form is

equivalent to NOR-NOR form). Lastly, it is possible to implement the negation of

a function and invert the output, yielding an additional four variants. All in all,

there are eight possible variants derivable from two-level logic. The replacement al-

gorithm, Algorithm III.1, is diagrammed in Figure 3.9. Two-level optimizations of

the PLA form may implement functions using gates of each fundamental type, (AND,

OR, NAND, NOR) and these gates may have an arbitrary number of inputs. It is

uncommon to find a physical implementation of a nine-input AND gate, but it is
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Algorithm III.1 CHOOSE-CANONICAL-FORM(Boolean negate, Boolean sum-of-
products, Boolean apply-demorgans)

if !negate then {Implement function F}
if sum-of-products then {Implement sum-of-products form}

if apply-demorgans then
return NAND of NANDs form

else
return OR of ANDs form

end if
else {Implement product-of-sums form}

if apply-demorgans then
return NOR of NORs form

else
return AND of ORs form

end if
end if

else {Implement the negated function F’, and then invert it at each output.}
if sum-of-products then {Implement negated sum-of-products form}

if apply-demorgans then
return AND of NANDs form

else
return NOR of ANDs form

end if
else {Implement product-of-sums form}

if apply-demorgans then
return OR of NORs form

else
return NAND of ORs form

end if
end if

end if
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possible that a nine-input PLA would specify an implementation requiring such a

gate. Decomposing these gates to only require two gates (through application of the

circuit form of the associativity rule) may yield clusters of gates of the same type. An

example is shown in Figure 3.10. In the cases where more than two input gates are

used, this type of gate clustering would be less of a problem.

Figure 3.9: Deterministic replacement through the use of cho-
sen minimized forms.

51



Figure 3.10: Clustering of AND gates resulting from the de-
composition of an 8-input NAND gate.

3.4 Component Encryption

In considering the goals of a reverse-engineering adversary, several educated

assumptions are made about the strategies used by the adversary to recover the intent

of a circuit. These assumptions are based upon measures of information leakage.

What information will be leaked by a combinational logic circuit c? An adver-

sary can monitor the signals being used as input by c and the signals being produced

as output by c. Furthermore, it is assumed that the adversary will be able to apply

values to the inputs of c and will be able to monitor c’s outputs (i.e., the adversary

will be given oracle access to the c). This means that the adversary will be able to

perform black-box analysis on c. However, it is assumed that the number of inputs to

c will be large enough that enumerating the truth table of c will be infeasible. This

research will assume, as Parham assumed, that the infeasibility of black-box analysis

will drive an adversary to white-box means for identifying the intent of c.

What white-box information, then, will be leaked by a combinational logic cir-

cuit? Most combinational logic circuits c can be decomposed some number of smaller
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combinational subcircuits s1, s2, . . . sn used individually to compute functions because

their individual functions can be used to compute a larger function. Any subcircuit

si is said to have a particular semantics which defines its function, and the semantics

of si can be broken down into individual characteristics (the number of si’s inputs,

the number of si’s outputs, and si’s truth table). Further, subcircuits have topology

characteristics related to the manner in which they are implemented, including the

type and number of gates in the subcircuit, and how they are connected.

Some subcircuits are well-known in the computing industry because they com-

pute a function that is useful and are used frequently. These types of circuits have

been referred to in this research as components. Such subcircuits are often imple-

mented using the same gate structures. It is also possible that equivalent circuits

that compute the same functions will be used.

Parham reasons that the primary goal of a reverse-engineer will be component

identification. This is defined as (firstly) finding some subcircuit sident with the same

input/output flow as a known circuit sknown , and (secondly) validating that the

semantics of sknown and sident are equivalent. Once the reverse-engineering adversary

has done this, the next step will be to identify the intent of c from the relationships

between the subcircuits of c.

To summarize, it is assumed that an adversary driven to white-box analysis

will attempt to use information of any type available in the process of recovering

the intent of c, and that the ability to identify components and the communications

between them is the way that an attacker will be able to attain a higher-level abstrac-

tion of a circuit. For this reason, this research seeks to both modify the semantics

of individual components and to modify the signals that carry communications be-

tween the components, with the additional goal of modifying the internal structure of

components to prevent topology-based identification. Parham’s research on boundary

blurring techniques also had these goals. Parham succeeded in defeating a component

identification adversary based upon a component identification algorithm developed
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by White, [48] [50] but no framework existed prior to this research to evaluate the

security of components which cannot be identified using White’s algorithm.

A new, alternative component protection system will be termed Signal Value

Permutation (SVP). SVP is a simple encoding scheme which modifies the semantics

of components in a way that renders the semantics of individual components suffi-

ciently different to cause a component identification algorithm to fail, except in the

case of isolated components (described by Parham as case I components). Case I

components receive all of their inputs from the circuit inputs, and every output of a

Case I component is a circuit output.

SVP consists of five steps: Identifying signals which are common to a set of

components, generating a map for encoding these signals, applying the encoding to the

component truth tables, generating new components based upon the new component

truth tables, and connecting the new components together in a way that preserves

the original component communications.

In comparison, component fusion guarantees that the boundaries of identified

components will be contained within some replacement. However, at a fundamen-

tal level, component fusion is still a semantics-preserving selection-and-replacement

methodology, so after every selection-and-replacement, the input and output signals

of the selection contain the same semantics as before the replacement. Overlapping

replacements are the only way that a semantics-preserving selection-and-replacement

algorithm can hide all of the signals internal to a circuit. What component fusion

provides (that random subcircuit selection-and-replacement does not) is a guarantee

that every replacement will overlap.

Though overlapping selection-and-replacement operations is the only way that

all of the signals can be hidden, deterministically overlapping these operations does

not inherently provide a guarantee that a signal will be hidden. A poorly picked

replacement may still internally contain a signal that the original circuit contained.
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Signal Value Permutation aims to provide a better security guarantee, by pre-

serving the semantics of an original circuit, but purposefully changing the topology

and semantics of each identified component in the circuit to defeat component iden-

tification methods. The encoding function detailed in section 3.4.2) is applied to the

output of each component to encode the component’s output, and the decoding func-

tion detailed in Section 3.4.4 is applied to the input of each component to decode the

input.

Figure 3.11 illustrates the process of component encryption. Notional encryp-

tion and decryption functions are inserted on the signals between components A and

B, and then component A′, containing both the logic of A and Ek, is synthesized to

absorb the encryption logic. Similarly, the component B′, containing both the logic of

B and Dk, is synthesized to absorb the decryption logic. The new notional component

boundary between A′ and B′ carries an encrypted signal and has a different number

of signals than the original boundary.

Figure 3.11: Encryption of signals between components A and
B: (1) The original configuration, with signals from A feeding
B; (2) insertion of encryption and decryption functions, and (3)
synthesis to combine A with E and D with B.

55



3.4.1 Generating Signal Value Mappings for Encoding/Decoding. Figure

3.12 shows the generation of the mapping table which remaps all possible values of

the original 2 signals to new values in a set of 3 signals. This mapping table is

then used in the generation of encoding and decoding logic. There are many ways of

generating a mapping table of this sort; it is possible to map the original two signals

to a new set of three signals by generating a one-to-one mapping between the original

truth table rows and some of the the new truth table rows as shown in Figure 3.12

(a.), but this leaves some of the truth table rows of the new signals unused. If the

old signals are mapped to new signals in this manner, it would be possible to tell

by truth-table analysis that the new three signals will only ever carry four possible

values. See section 3.4.5 for more information on information leakage.

On the other hand, a one-to-many mapping is also possible. In this mapping,

there is a one-to-many relationship between the old and new signal values. In case

(a.), inputs that caused the the wires A and B to carry the value 11 will cause the

new wires A, B, and C to carry the value 000, but in case (b.), the inputs that cause

A and B to carry 11 will cause A, B, and C to carry a value which is either 000, 100,

or 101. Sections 3.4.2 and 3.4.4 describe in detail how this mapping is applied.

Figure 3.12: Mapping the possible values of two signals to the
possible values of three signals (a.) in a one-to-one manner and
(b.) in a one-to-many manner.
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3.4.2 Encoding Outputs. Applying encoding to the outputs of a component

is accomplished by replacing each occurrence of an output value with its counterpart

in the mapping table. It is possible that an output value may be mapped to more

than one new output value, as noted in the previous section. It should be noted that

it is possible that not all output values are produced by a given component, e.g. if

a component produces a constant value, because in that case only that constant will

be produced.

In the encryption scheme defined here, for every output value of the original

signals, a new output value is randomly chosen from the values that the original

output maps to, and this new output value replaces the original output value in the

truth table.

Figures 3.14 (a.) illustrates a one-to-two mapping used to hide the signal Out1

which is produced as output by a component and also used as input by a compo-

nent. The truth tables of both components are depicted in (b.). In (c.), two possible

encryptions of the output Out1 are depicted. Note that because there are only two

possible mappings for the Out1 value 0 but there are three occurrences of the value 0,

the replacement 00 is used twice. Similarly, note that two possible replacements are

possible for the value 1, but only one is used because the value 1 occurs only once in

the output Out1.

3.4.3 Input Decoding. In applying the decryption function to the truth

table of a circuit, the number of rows in the truth table is usually increased. The

decryption function modifies the truth table by identifying all inputs which produce a

certain output and creating rows in the truth table which equate the input values to

their corresponding output values. The modification of a truth table to incorporate

a decryption function is shown in Figure 3.14 part (c.) and the algorithm used to

accomplish this mapping is provided as Algorithm C.2. The mapping depicted in 3.14

(a.) is used to modify the input Out1 to create a truth table which produces correct

output from encrypted input.
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Figure 3.13: (1) The original components A and B, (2) com-
ponents A and B with encoding and decoding logic to replace
signal Out1, and (3) new components A’ and B’ which contain
the encoding and decoding logic, respectively. Note that trans-
formations (c.) and (d.), detailing the combination of compo-
nents with encoding and decoding logic, are depicted in more
detail in Figure 3.14

3.4.4 Identifying Signals for Encoding. Only signals between components

can be encrypted. This means that all of the signals s1, s2, . . . sn which are the output

of a single component and every component which takes s1, s2, . . . sn as input takes

all of s1, s2, . . . sn. If not all of the signals in a group are used by every component,

then the group of signals is reduced in size until every component that uses any of its

signals uses all of them. Once the group is of size 1, this is always true.

Figure 3.15 illustrates the encryption of a signal group - an encryption function is

used to encrypt the signals exiting component A. Note that in this case the decryption

function D which is absorbed into C is the same D which is absorbed into B. Figure

3.16 shows a different configuration in which there are two groups of signals exiting
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Figure 3.14: The mapping table (a.) is applied to the signal
Out1 (depicted as both an input and an output in (b.)). In
(c.), enccoding logicOut1 is an output which is encoded, and in
(d.) Out1 is an input which is decoded. Figure 3.13 graphically
depicts these operations.

component A which are encrypted separately, and the decryption functions for the

signals entering components B and C are different.

In order to preserve the semantics of the circuit boundary (but hide the signals

of individual components), no encryption function is applied to signals exiting the

circuit, and no decryption function is applied to inputs entering the circuit.

3.4.5 Attacks on Signal Value Permutation. Perhaps the most obvious

cryptanalytic attack on this component manipulation system would be to examine

the components closest to the inputs of the circuit boundary. If an attacker had

foreknowledge of what type of components to look for (including an input count and

the output function), he could attempt to identify these components by identifying
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Figure 3.15: In (1), B and C share inputs from A; in (2),
an encryption function is used to encrypt the output of A, and
the same D decrypts both B and C. In (3), the encryption and
decryption functions are synthesized into A, B, and C.

subcircuits with an input count equal to that of the component he is searching for.

However, the attacker must guess the way in which the encrypted output of the

component matches the original output of the component.

In addition to this, the attacker must guess the correct ordering of the compo-

nent inputs. The probability of selecting the mapping which is used to translate the

original circuit output to the new set of possible outputs, using only random guessing,

is easy to identify for encryption which uses a one-to-one map like the one shown in

Figure 3.12 (a.). A one-to-one mapping is simply a permutation of the input rows,

and the number of possible permutations of an i input truth table is

(
(2i)!

1

)
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Figure 3.16: In (1), B and C share different inputs from A.
In (2), different encryption and decryption functions are used to
protect signals between A and B and between A and C, and in
(3) these functions are synthesized into A, B, and C.

The number of possible one-to-many mappings, like the one shown in Figure 3.12

(b.), is much larger. Finding the number of one-to-many mappings (without respect

to the original signal value) is easily modeled as the problem of partitioning a set of n

elements (the new signal values) into m nonempty subsets. The series of the Stirling

numbers of the second kind computes the number of possible partitionings of this

type:

Sm
n =

1

m!

m∑

k=0

(−1)m−k


 m

k


 kn

To compute the number of possible ways that the new truth table can be parti-

tioned into 2sorig subsets (one for every row of the original truth table), every instance

of m in the formula for Stirling numbers is replaced by 2sorig , and every instance of n

is replaced by 2snew , where sorig ≤ snew, sorig represents the number of signals in the

original truth table, and snew represents the number of signals in the new truth table.
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Figure 3.17: An illustration of semantic preservation of inputs
and outputs that cross the circuit boundary. In (1), an input
to B and an output of A cross the circuit boundary. In (2),
these signals are preserved semantically, so (3) shows encrypted
components which still use some unencrypted input signals and
unencrypted output signals.

This yields the formula

Partitionings(sorig, snew) =
1

(2sorig)!

2sorig∑

k=0

(−1)2sorig−k


 2sorig

k


 k2sorig

There are 2sorig ! ways that the original truth table rows can be assigned to 2iorig

subsets, so the number of possible mappings is

Mappings(sorig, snew) = 2sorig ! ∗ Partitionings(sorig, snew) =

2sorig∑

k=0

(−1)2sorig−k


 2sorig

k


 k2sorig

62



Thus the number of ways to map the possible values on a set of sorig signals onto the set

of values that could appear on a set of snew signals is counted by Mappings(sorig, snew).

It is fairly easy to evaluate the correctness of this formula for the the number of

mappings of one signal onto two signals; 14 such mappings exist, each of which can

be easily generated by hand. However, there are 40824 mappings of two signals

onto three signals, and there are 86355926616960 mappings of three signals onto four

signals.

At this point, it becomes necessary to consider what an adversary would do if

no subcircuit with an input/output size matching that of a known component existed

in the circuit. If this occurred, the next logical step for an adversary would be to

find a component with input flow matching that of a known component (but with a

different output flow) and attempt to find a set of outputs as large as the number of

outputs on the known component for which all produced values are the same as those

of the known component, or perhaps the same as those of the known component,

but inverted. The adversary might try the same thing by finding a component whose

output flow matches that of the original but whose input flow is different, and see

whether applying a permuted set of signals or inverted signals on the inputs will

produce the original outputs values.

What this means is that there will be some mappings that will not effectively

prevent an adversary from identifying a component. These ‘bad’ mappings will be

mappings in which the original truth table is either present or is present with any

number of columns inverted. The number of possible ‘bad’ mappings can be seen by

examination. For every sorig-permutation of the snew columns, there is some mapping

which results in the old signal values being mapped to new signal values which contain

exactly the same values on sorig columns, and there are 2sorig mappings which contain

some combination of the old signals inverted (but contain the old signals nonetheless).

The number of bad mappings, then is
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Figure 3.18: A set of 2-to-3 signal mappings which all contain
the original component signals

BadMaps(snew, sorig) = 2sorig
snew!

(snew − sorig)!

If any of these bad mappings were applied, an adversary would have an advantage

because the signals of the original component would still produced by the circuit.

Several examples of a bad mapping between two signals and three signals are shown

in Figure 3.18. In each mapping, it can be clearly shown that the original signals are

always equivalent to some signal in the new signal set, and in a combinational circuit,

these signals would be easily identifiable as the original outputs of a component.

Avoiding these mappings is expensive, depending upon the number of old and

new signals. Because generation of mappings is random, new mappings can be gen-

erated efficiently given a source of randomness, even though the number of mappings

increases intractably on the number of signals in the mapping. However, the number

of bad mappings grows exponentially on the number of old signals and factorially

on the number of new signals, and each bad mapping must be checked for individ-

ually. If an 8-bit bus were encrypted into 9 bits, then the number of permutations

would be (28 ∗ 9!) = 92897280 permutations. (To put this into perspective, there

are 1.6005 ∗ 101214 possible encodings of all 8-bit values into all 9-bit values.) In the

example of the 8-signal to 9-signal mapping, work required by the mapping generator
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is 92897280 checks for bad mappings, but the adversary must consider a space of

1.6005 ∗ 101214 possible encodings.

Storing mappings so that they can be applied to all components which use the

original signals requires space that increases on the order of the size of the table of

new signal values (it increases with respect to 2snew). The number of mappings will

increase linearly with the number of component outputs whose signals do not exit the

circuit.

3.4.5.1 Switching Activity. Circuits utilizing encryption of signals

between components will still be vulnerable to side-channel analysis. Because of the

use of one-to-many mappings, it is possible that the switching activity of component

outputs could be observed. If a certain set of inputs was observed to switch very often,

information could be gleaned about the importance of the component. On average,

though, encrypting outputs in the manner described in this section will increase the

amount of switching behavior because a circuit which produces the same output for

different input combinations has the potential to change if the inputs change. In

Figure 3.14 part (c.), the signals X and Y can carry either 00 or 11 when the signal

Out1 would originally have only carried 0 for the inputs 00, 01, and 10.

In practice, not all of possible output values are produced by any given circuit.

For example, a 4-bit multiplier circuit multiplies two 4-bit numbers together and

produces a product of eight bits. This circuit will not produce as output any prime

number greater than four bits, and there are 48 such primes. Out of 256 possible

outputs, 48 will be unused. An 4-bit adder, on the other hand, does produce all

possible outputs. In these cases, it will be possible for an adversary to tell that some

signal value is repeated within the set of possible signals.

Another example is an eight-input one-output AND gate, which produces the

value 0 for 255 possible input combinations, and produces the value 1 for a single

input combination. If the single output of an 8-input AND gate was mapped to two

signals, there could be 1, 2, or 3 replacements for the value 0. If the value 0 has only
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one possible replacement, then the new component will still produce the same value

for 255 input combinations. This will leak a large amount of information. For an

8-input AND gate, the output 0 having three possible replacements is the ideal case

because it will most reduce the amount of repetition in the possible output values.

It should be noted that if a mapping maps the original value of a set of outputs

to multiple new values, a new method for adding inputs to a component is possible.

As long as the new inputs only cause variation between values which the mapping

designates as equivalent, it is possible to add inputs into components (either from

some other random signal in the circuit or even a state machine which regularly

produces pseudo-random output) which will serve to increase the switching activity

of the component’s outputs.

3.4.6 Conclusions Regarding Signal Value Permutation. In conclusion, a

new methodology has been proposed for protecting signals between components inside

of a circuit which would offer an increase in the difficulty of intent recovery. While

the class of insecure SVP grows intractably, the number of possible ways that a

set of signals can be protected also grows intractably, and to a much greater degree.

Non-semantics-preserving operations applied to circuit components will serve to make

component identification more difficult because part of the information necessary for

the computation of a component’s function will now be held by that component’s

successor components.

3.5 Summary

In summary, in this chapter two new, clearly deterministic methods have been

proposed, and these methods are named component fusion and component encryption.

Component fusion involves partitioning the circuit into components and taking mea-

sures to hide these components. Initial selections consist of limited-size components

already known to exist in the circuit (thus measurably hiding known whitebox in-

formation), and later selections merely guarantee uniform selection-and-replacement
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across the circuit. Replacements consist of random normal forms which can be gen-

erated efficiently and placed into the circuit. Chapter 4 will focus on the results of

implementing this deterministic method and applying it to several test cases.

Also, a method named component encryption has been proposed. This method

deterministically protects signals between components using a component signal en-

cryption scheme to hide the outputs of certain components. This scheme, named

Signal Value Permutation, offers measurable security by potentially changing both

the number of signals between components and the semantics of the gates produc-

ing these signals. In Chapter IV, both component fusion and component encryption

are measured against previous white-box circuit obfuscation algorithms in terms of

security and efficiency.
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IV. Evaluation of Component Fusion and Component

Encryption

The previous chapter described two new methods for whitebox circuit obfusca-

tion, component fusion and component encryption; this chapter establishes their

validity and describes the characteristics of previously existing obfuscation methods

in relation to component fusion and component encryption.

This thesis attempts to accomplish two goals; part of the first research goal

(description of new methods for circuit obfuscation) is met in Chapter III, but the

new methods described in Chapter III must be validated. That is accomplished in

this chapter. The second goal (evaluation of subcircuit selection-and-replacement) is

relegated to Appendix B.

This chapter validates that the first goal has been accomplished by describing

the metrics necessary to evaluate the security and efficiency of random circuit variants

produced by the component fusion and component encryption algorithms, and by then

evaluating the validity of both algorithms according to their performance in efficiently

and securely obfuscating three test circuits. A brief summary of the chapter is as

follows:

Section 4.3 describes the variables used to control each obfuscation algorithm,

and Section 4.1 describes the metrics (both desirable and undesirable) which are

measured in the circuit variants. Section 4.2 describes the three test circuits used to

test all of the obfuscation algorithms, and Section 4.4 presents raw results for each

test circuit.

Lastly, Sections 4.5 through 4.9.5 examine the reasons why the results produced

by experiments in this thesis exhibit certain properties related to security and effi-

ciency.

Following this chapter, conclusions will be drawn from the results in this chapter

to determine the success of the research presented in this thesis, and these conclusions

will be used to identify future research areas.
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4.1 Evaluation

Component fusion and component encryption were benchmarked against Parham’s

Boundary Blurring algorithm and against random subcircuit selection-and-replacement.

This was done to highlight the differences in security and efficiency of each method.

Firstly, each method was examined to ensure that obfuscated circuits are se-

mantically equivalent to the original circuit.

Secondly, each method was examined with regard to security:

• Internal signal existence: Do the original internal signals of the circuit exist

anywhere? If they do (at some location other than the circuit inputs or outputs),

then it is possible that these signals indicate a component boundary or a portion

of the original circuit which contains its original semantics. This metric is

acquired by analyzing the truth-table value of every gate in the circuit variant

and comparing each truth-table to the truth-tables of the gates in the original

circuit. Examining internal signals is only possible for circuits with a reasonably

small number of inputs. Section 4.3.5 examines this concept in more depth.

• Boundary hiding: Do the original component boundaries exist? Is there some

structure with the original input-output flow which computes the function of

one of the original components? If these boundaries do not exist, then what

would be required to identify the new boundaries? This metric was analyzed

using the component identification tool.

Lastly, each method was examined with regard to efficiency:

• Level Count/Circuit Delay: Has the depth of the circuit increased? By how

much? As noted in Chapter I, this metric represents the increased or decreased

circuit delay of an obfuscated circuit.

• Gate Count/Power and Area Requirements: Has the number of gates

in the circuit increased? By how much? As noted in Chapter I, this metric
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represents the increased or decreased power and physical area required for an

obfuscated circuit

• Algorithm Runtime: How long does each method take to complete? As noted

in Chapter I, this metric represents the cost to a circuit designer in securing a

circuit design.

For reference, all runtimes provided in this thesis were measured on quad-core Intel

Xeon processors running at 3.00 GHz with 3.14 or 4 GB of RAM. Minor processing

steps involved in preparing data (such as component identification and reduction)

were performed off-line on other computers.

4.2 Test cases

Three test cases were chosen to compare the characteristics of circuit variants

produced by subcircuit selection-and-replacement to variants produced by implemen-

tations of deterministic SSR and component SVP. These circuits represent two differ-

ent domains of circuits which would benefit from protection, and the variants provide

a wide sampling of the effects produced by each algorithm.

4.2.0.1 c264: 4-bit multiplier. The c264 circuit is a scaled-down ver-

sion of the c6288 16-bit multiplier circuit which is easier to view because of its smaller

size. (For more information on the significance of the c6288 circuit, see section 4.2.2.)

This circuit multiplies two four-bit numbers, and is composed of 132 gates with 12

major functional blocks (4 half-adder cells and 8 full-adder cells). This circuit better

depicts the structure in the c6288 circuit, and serves as another test case which is

likely whose protection scales to the protection of c6288.

4.2.1 Polymorphic Circuitry.

4.2.1.1 Background. Cady [7] describes a key-based system for com-

pletely protecting the identities of logic gates within a circuit. Reasoning that all
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Figure 4.1: The 4-bit multiplier represented using circuit logic
gates

Figure 4.2: A graph-based representation of the 4-bit multi-
plier circuit.
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the functions of all two-input logic gates can be specified using a truth table with

4 rows, Cady proposes the use of 4-to-1 multiplexors (which are 6-input, 1-output

components) as replacements for 2-input logic gates.

Definition 17. Polymorphic Gate: A multiplexor used to implement an n-input

logic function, having n select lines, 2n inputs, and one output, and whose logic func-

tion is specified by the truth table applied to the 2n multiplexor inputs. The elementary

logic function computed by a polymorphic gate is entirely dependent on the inputs to

the multiplexor.

Polymorphic gate structures can be used as part of a more comprehensive dy-

namic black-box protection using dynamic input reordering. Cady describes a poly-

morphic switching network which connects its input signals to its output signals based

upon the value applied on a control line. Figure 4.3 shows Cady’s intended use of

a linear feedback shift register (LFSR) to change the values applied to each of the

switching networks, thus causing the black-box semantics of the circuit component

to change dynamically. If the inputs to a circuit component come from a component

whose outputs are being dynamically reordered using the same LFSR sequence, then

dynamic encryption has been been provided to the circuit.

4.2.1.2 Circuit composition. A circuit composed of polymorphic gates

will be constructed at least partly using multiplexors. Individual logic gates are re-

placed by multiplexor components, and these multiplexors are fed by keys that define

their logic function. Because multiplexors have a well-defined semantics, identifying

subcircuits with the semantics of a multiplexor is easy. To make the process even

more easy, the X-Hot Input Analysis technique described by Porter can easily be

extended to apply to multiplexor components. An attack on the polymorphic gate

component (assuming that an adversary has knowledge of the structure of a poly-

morphic gate) would be similar in many ways to the work on reverse-engineering the

ISCAS-85 benchmarks, in which identifying well-known components was helpful in

reconstructing higher-level functionality.
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Figure 4.3: A Linear Feedback Shift Register (LFSR) used to
control keys of polymorphic gates [7]
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Multiplexors may either be constructed optimally from gate logic, or constructed

from smaller optimally implemented multiplexors arranged in a tree structure. If mul-

tiplexors are constructed from smaller multiplexors, there is an even better chance

that a reverse engineer will identify some component because two types of compo-

nents will exist, the smaller multiplexor and the larger multiplexor (and the smaller

multiplexor will exist inside the larger).

4.2.1.3 Test circuit. The test circuit (depicted in Figure 4.4)implemented

for this test case is a single full-adder similar to the one that Cady used to create

the 32-bit full adder used in his experimentation. Unlike Cady’s full-adder (depicted

in Figure 4.5, the full-adder used in this thesis provides only a two-bit key to each

multiplexor. A fully polymorphic gate would have a four-bit key (unlike the imple-

mentations in either this thesis or Cady’s), and a fully polymorphic circuit would

have a key for every gate (unlike the implementation of the full-adder in either this

thesis or Cady’s). If the full-adder circuit used as a test case in this thesis were fully

polymorphic, it would have 23 inputs (four inputs for each of the five gates in the

full-adder, and 3 for the inputs to the circuit).

Figure 4.4: A test full-adder composed of polymorphic gates.

However, in this thesis the test circuit provides each gate with only the signals 0

and 1. Cady similarly limits the capability of the polymorphic gate by tying together
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Figure 4.5: A full-adder circuit composed entirely of polymor-
phic gates [7]

the two middle inputs. (providing each gate with three signals instead of four) Figure

4.6 shows an AND gate, an OR gate, and an XOR gate constructed in this fashion.

The concept of polymorphism is still used - if the key is changed, the circuit semantics

change.

4.2.2 ISCAS Benchmark 6288: 16-bit multiplier.

4.2.2.1 Background. The ISCAS-85 circuits [18] are a set of industrial

circuit designs whose designs were not published, both for confidentiality reasons

and for the purpose of providing a random set of logic circuit designs to be used as

benchmarks.

However, Hansen et al. were able to reverse-engineer this set of benchmarks

to reveal the function of each of the benchmark circuits. While Hansen et al.’s work

is significant because it is a case of reverse engineering, the ISCAS-85 circuits are
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Figure 4.6: (a.) A polymorphic AND gate, (b.) a polymorphic
OR gate, and (c.) a polymorphic XOR gate.
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primarily useful as a set of benchmark circuits (which is the original purpose of the

ISCAS-85 circuits).

4.2.2.2 Circuit composition. The c6288 circuit is a 16-bit by 16-bit

multiplier circuit with 32 inputs and 32 outputs and containing 2,406 gates. Hansen

et al. note that c6288 is a 124-level circuit composed of 240 major functional blocks,

which are both full- and half-adder cells. This circuit presents an ideal scenario

for a deterministic circuit variant generator because it contains a large number of

small modules which are individually easily minimized. Given advances in computing

technology, it is possible that a c6288 circuit (or any 32-bit circuit) could be completely

synthesized (which would perfectly protect all internal circuit structure of c6288), but

examining the feasibility of completely minimizing benchmarks was outside the scope

of this research.

Like the polymorphic-gate circuit proposed by Cady, c6288 consists of a large

number of identical modules. Unlike the polymorphic gate structure, however, mod-

ules in c6288 are largely all connected in the same manner. Because of the number of

functional blocks in the circuit exceeds the number of possible component variants,

it is still possible that an adversary might be able to visually identify the location

of components but not be able to easily identify the original component boundaries

(that is, the white-box obfuscation algorithm will provide measurable security, but

won’t provide topological randomness). Using Collberg et al.’s terminology, [9] it is

possible that the obfuscation algorithm will be resilient but not potent.

The version of c6288 used in this experimentation was a variant of the original

c6288 in which the entire c6288 circuit was first decomposed entirely into NOR gates.

This did not affect the identification of the full-adder or half-adder components in

any way (both components were identifiable in the circuit), but it did affect the gate

constitution and size of the circuit. Unlike the original c6288, the nor-decomposed
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c6288 has 2928 gates and 125 levels, the result of decomposing each AND gate into

Figure 4.7 shows a graph representation of the gates in the c6288-nor circuit.

Figure 4.7: A graph-based representation of the c6288 ISCAS
benchmark circuit.

4.3 Experimental Setup

4.3.1 Random Subcircuit Selection-and-Replacement. As a benchmark, the

random subcircuit selection-and-replacement implementation developed by Norman

and James was run on each of the benchmark circuits to provide reference statistics

about the performance of SSR algorithms in terms of efficiency and security prop-

erties. This tool was implemented in the Java programming language and uses the

JGraphT library to represent circuits; this tool was described in Section 2.5.1.1. For

optimum results, the settings that have produced the best results in previous research
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Figure 4.8: Gate- and graph-based representations of the half-
adder component.

Figure 4.9: Gate-and graph-based representations of a full-
adder component.
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efforts were used. This research examines four different selection strategies. Because

Williams noted that the RandomTwoGates selection strategy seemed to perform as

well or better than other algorithms at increasing ancestral entropy, the variants used

in this experimentation were generated using two different strategies used in different

experiments:

1. Select two gates randomly.

2. Select three gates randomly.

Six options govern the choosing of random replacements, and broadly eliminate

or include categories of random circuits. A seventh option allows a choice of the gate

basis for replacement. A seventh option allows a limitation of the gate types chosen;

this research assumes that all replacements should consist of two-input logic functions

from the set of AND, OR, NAND, NOR, XOR, and XNOR gates. [20]

1. RedundantGates - Allow gates identical to one another in the replacement

circuit?

2. AllowConstants - Allow access to the constants 0 and 1 in the replacement

circuit?

3. DoubleInputs - Allow gates with both inputs coming from the same signal?

4. SymmetricGates - Allow symmetric gates? That is, should replacement fam-

ilies consider a gate with inputs (X1, X2) different from a gate with inputs (X2,

X1)?

5. SimpleOutputs - Don’t allow gates in the replacement that aren’t used in the

computation of the outputs?

6. ExactCount - Only allow replacements that are exactly the size requested? (If

false, allow smaller gate counts in the replacement).

In his analysis of CORGI variants, Kim observed that the configuration FFFTTT

(false, false, false, true, true, true, with respect to the six options above) provided
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less redundancy than the other option settings that he had considered. [22] For this

reason, the FFFTTT configuration was chosen for SSR experiments in this research.

Table 4.1 shows the SSR variants which were analyzed in this thesis.

Table 4.1: Subcircuit Selection-and-replacment trials
Selection
Strategy

Selection
Size

Replacement
Size

Iteration
Count

Circuits

Random
Gates

2 3 500 All

1000 All
2000 All
3000 All

4 500 All
1000 All

3 4 0 c264
25 c264
50 c264
100 c264

Related
Gates

4 500 c264/polymorphic

1000 c264/polymorphic
2000 c264/polymorphic
3000 c264/polymorphic

4.3.1.1 Pattern-based reduction. Kim developed a pattern-based logic

reducer for the minimization of circuit variants, and used this reducer to make observa-

tions about the resilience of variants produced by subcircuit selection-and-replacement.

[22] This reducer was applied to all circuit variants generated by SSR routines, and

was also applied to all circuit variants generated by algorithms developed in this

thesis. The optimum pattern reduction order identified by Kim was used in all cases.

4.3.2 Deterministic selection-and-replacement. Deterministic SSR occurs in

rounds, and during each round the entire circuit is replaced. To accomplish complete

circuit replacement, DSSR relies on two methods of deterministically identifying sub-

circuit selections: (a.) component identification and (b.) circuit partitioning. In the

first round, component identification is used to determine subcircuits which must be
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replaced; then, any gates which remain in the circuit are partitioned into subcircuits.

All subcircuits are placed in a queue for replacement. Each round is made up of

many iterations; during an iteration, a subcircuit is removed from the queue. All of

the predecessor gates (if there are any) to that subcircuit are added to the subcircuit,

and then the subcircuit is replaced. Control variables for deterministic SSR are (a.)

the number of rounds of SSR the circuit undergoes, (b.) the size of the subcircuit

partitioning, and (c.) the algorithm used to generate replacements.

Because the algorithm used for circuit minimization in this research is a two-

level minimizer, replacements often contain a decomposed version of a two-level PLA

form with decomposed versions of larger gates (this problem is depicted in Figure 3.10.

For anything other than a small circuit selection, the replacement circuit increases

the size of the overall circuit. The consequences for this are that some circuit variants

become unmanageably large after even a small number of rounds. Table 4.2 shows

that only one round of variation was executed on c6288, but two rounds were executed

on c264 and three rounds were executed on the small polymorphic fulladder circuit.

Table 4.2: Trials of the deterministic subcircuit selection-and-replacement algo-
rithm.

Circuit Components Rounds Trials
Polymorphic full-adder 5 3 3
c264 (4-bit multiplier) 12 2 3

c6288 240 1 3

4.3.3 Component Encryption. Like component fusion, component encryp-

tion completely covers a circuit. However, component encryption does not protect

anything other than identified components. This means that only one iteration of

component encryption is possible unless a component is discovered to still be in the

circuit. The controllable variables for component encryption are (a.) the number of

signals by which to increase the connections between any two components (that is,

the number of signals that the signal mapping function increases by) and (b.) the

algorithm used to generate replacements. In the test implementation, component
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encryption identifies the connections between individual components and increases

the number of signals by either 1 or 2; component encryption chooses to increase

the number of signals in a connection by 1 with a 2
3

probability and by 2 with a 1
3

probability. It would also be possible to choose not to increase the number of signals

(which would be equivalent to merely permuting the possible truth-table values of the

signals of the connection between components), but this thesis focused on schemes

for modifying the number of signals between components.

4.3.4 Verification of Variant Correctness. To verify that circuit variants

are in fact semantically identical to the original circuit, the outputs of the c264 4-

bit multiplier and the polymorphic full-adder circuit variants were verified against

the outputs of the original c264 and polymorphic full-adder circuits. (c6288 was not

verified in this manner because its input count of 32 made the size of output truth-

table comparisons intractably large.)

The output ordering of a circuit is not reliably preserved by the circuit variants

produced by the component encryption implementation used for this thesis (but the

input ordering is preserved, and circuit variants produce signals with semantically

equivalent output), so the algorithm for verifying semantic equivalence checks that

the circuit variant contains every one of the original outputs. The worst case runtime

for this equivalence check is O(n2), where the variable n is the number of outputs.

Every c264 4-bit multiplier circuit variant and polymorphic fulladder variant

produced by the component fusion and component encryption routines was verified

to be semantically equivalent to the original c264 and polymorphic full-adder (respec-

tively) though the outputs of circuits produced by the component encryption routine

were ordered differently due to the generation process.

4.3.5 Identifying Common signals. The word signal is used to refer to some

gate output with a designated truth-table value. An illustration of this concept is

provided in Figure 4.10, which illustrates the signals on every wire in a full-adder
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circuit. Essentially, the re-appearance of wire’s truth tables and their inversions in

circuit variants can be used to indicate how much of a circuit is identical to the original.

Figure 4.15 shows the relative number of signals preserved by each algorithm.

Signal analysis is significant because it represents the amount of information

that an adversary would be able to find out through side-channel analysis. If the

original circuit signals are present in the variant, then the adversary searching for the

side-channel characteristics (switching activity, for example) of those signals will be

able to find them in the circuit.

Figure 4.10: Example signals in a full-adder circuit.

4.3.6 Identifying Boundaries using Component Identification. The compo-

nent identification tool implemented by Parham was used to identify the components

in each of the Parham’s benchmark circuits, demonstrating that each of the bench-

marks contains components which can be identified automatically using White’s al-

gorithm. [35] [48]. This tool was used (with some modifications) to identify the

components in each of the test case circuits in this thesis. The results of running
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component identification on these circuits is shown in Table 4.3. As the table shows,

each of the 240 full- and half-adder cells were identified in the c6288 circuit, each of

the 12 full- and half-adder cells were identified in the c264 circuit, and each of the

2-input 1-output multiplexors (3-input 1-output components) and each of the 4-input

1-output multiplexors (6-input, 1-output components) was identified. Identification of

the 4-1 multiplexors required specifying the polymorphic AND, OR, and XOR gates

individually as components (For example, to identify both of the XOR gates in the

circuit, the semantics of a polymorphic XOR gate were placed in the module library;

to identify both of the AND gates, the semantics of a polymorphic AND gate were

placed in the module library. If a polymorphic gate as specified by Cady had been

used, then only one polymorphic gate definition would have been needed.).

Table 4.3: Components in each test case circuit
Circuit Component Type Components Identified

c264 Full-adder 8
Half-adder 4

Polymorphic Full-adder 2-1 Multiplexor 15
Polymorphic AND 2
Polymorphic OR 1

Polymorphic XOR 2
c6288 Full-adder 224

Half-adder 16

4.4 Results

As described in Section 4.3, each of four algorithms was executed on three test

circuits for varying trial counts. Tables 4.4, 4.5, and 4.6 provide reference summary

statistics for each test circuit, and a single diagram of the c264 variant is shown

to illustrate the variant at the terminations of the select-2 replace-3 SSR algorithm

(Figure 4.11), the Level 3 Don’t Care boundary blurring algorithm (Figure 4.12), the

component fusion algorithm(Figure 4.13), and the component encryption algorithm

(Figure 4.14). An analysis of the metrics from each of these trials begins in Section

4.8.
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4.5 Security Analysis: Internal Signal Hiding

4.5.1 Subcircuit selection-and-replacement. Because SSR involves small se-

lections and replacements, many times SSR does not effectively hide internal circuit

signals. This is certainly the case for select-2, replace-with-3 SSR.

Select-2, replace-with-4 does better; 1000 iterations of this algorithm succeeded

at providing signal hiding in both the c264 4-bit multiplier and the polymorphic

full-adder circuit.

4.5.2 Boundary Blurring. Signal analysis reveals a unique property of Don’t

Care boundary blurring: in all of the trials performed in this research, boundary

blurring preserves all of the signals in the original circuit by including them in the

variant. This is one of the worst possible results. Likely, this result is produced

because the boundary blurring algorithm is set up in such a way that it preserves all

of the original circuit signals.

4.5.3 Component Fusion and Component Encryption. Component Fusion

and component encryption produce similar results when analyzed for preserved sig-

nals. Neither method preserves all signals, and neither method completely hides all

signals. It is possible that some signals could be completely hidden (barring their ap-

pearance on the circuit output boundary), but this is probably statistically unlikely.

4.6 Security Analysis: Component Hiding

Boundary hiding is measured by the presence of components with the same

number of inputs and outputs and the same semantics as the components in the orig-

inal circuit. The component identification tool implemented by Parham in [35] uses

the Order Limited Focused Enumeration Algorithm created by White in [49]. White

reports that the worst-case performance of this algorithm is O(2c), where c represents

the upper bound on the size of the subcircuits which can be enumerated. White also

indicates that portions of the algorithm have worst-case performance O(n3) increasing
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Figure 4.11: Select-2, Replace-3: c264 after 3000 obfusca-
tion rounds and pattern-based reduction. Note that several full-
adder components are entirely preserved.
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Figure 4.12: Boundary Blurring: 4-bit multiplier after a level-
3 blur has been applied to all boundaries. Note that the number
of circuit levels have increased, but the graph largely maintains
its shape. 91



Figure 4.13: Component Fusion: 4-bit multiplier after one
round of replacing all gates. Note the characteristic binary tree
structure produced by the synthesis tool which increases the
circuit width.
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Figure 4.14: Component Encryption: 4-bit multiplier after
signal value permutation. Note the characteristic binary tree
structure produced by the synthesis tool which increases the
circuit width.
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Figure 4.15: Signal Hiding: signals hidden after variant gen-
eration trials.

on the number of circuit gates n. Because of this, running component identification on

circuit variants with gate counts greater than 15,000 was not attempted. Figures 4.16,

4.17, and 4.18 depict the percentage of components of each type that were hidden.

4.6.0.1 Subcircuit Selection-and-replacement. As seen in Tables 4.4

through 4.6, there were no cases where select-2, replace-3 SSR hid a component.

In each case, it appears that reduction removed all added patterns and allowed the

identification of some subcircuit.

The select-2 replace-4 algorithm did better. Successive iterations of select-2

replace-4 SSR were observed to hide some components. However, this experiment

does not allow reasoning over whether additional iteration would ever completely

hide all components.

4.6.1 Boundary Blurring. The boundary blurring algorithm successfully

hid all of the components in each test circuit. This is expected because the bound-

ary blurring algorithm was built for the express purpose of preventing component

identification, and Parham documented its success at doing this.
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Figure 4.16: Component hiding in c264 across five different
algorithms.

Figure 4.17: Component hiding in the polymorphic full-adder
circuit across five different algorithms
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Figure 4.18: Component hiding in the c6288 circuit across
four algorithms

4.6.2 Component Fusion. Component Fusion succeeds at hiding full-adder

and half-adder components in the c264 circuit. However, it does not always succeed

at hiding 4-in 1-out multiplexors. Most interesting is the fact that in the second and

third passes through the polymorphic full-adder, components matching the semantics

of a 2-in 1-out multiplexor seem to appear in the circuit variants. Of similar note is

that, after 1000 iterations of select-2 replace-4 SSR, 25 2-in 1-out multiplexors are

identified, even though there were only 15 in the original circuit, and a single 4-in,

1-out multiplexor was identified. This means that identifying 2-in, 1-out multiplexors

will be difficult for an adversary because many cutsets with the semantics of this

component will exist in the circuit.

4.6.3 Component Encryption. No components are identified in the the

polymorphic full-adder circuit, and no full-adders are identified in the 4-bit multiplier.

A half-adder was identified in the c264 4-bit multiplier circuit in two of three trials.

There are four half-adder components in the 4-bit multiplier, and these are located at

the input and output boundaries of the circuit. If a ’bad’ signal mapping is used to

permute the signals between components, it is plausible that a component with inputs

unchanged and a bad output mapping would be identified. This can be prevented
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if mappings are checked for ’badness’ when they are generated. (See Section 3.4.5

for information on bad signal mappings.) If a system is in place to check maps for

’badness,’ then it can reasonably be expected that no component with an internal

boundary will be identified.

Note that under the component encryption scheme, only the known components

are encrypted. Therefore, it is possible that there will be gates in the circuit which

are not replaced. This means that if the component identifier used in the component

encryption tool does not identify a component, that component will not be protected

- it will be easily identified by an adversarial component identifier. It was computa-

tionally infeasible to perform component identification on the c6288 circuit because

variants produced by this algorithm contained, on average, more than 15,000 gates.

When run on the largest variant of 42856 gates, the component identifier was halted

after 96 hours without completing the enumeration of a single circuit family size. It

was about 50% complete with an attempt to semantically identify a subcircuit with

9 inputs and 5 outputs, which in worst case would require more than 43,500,000

comparisons using Parham’s algorithm.

4.7 Efficiency Analysis: Levels increase

As a side characteristic of an increased gate count, the number of levels of the

circuit will generally also increase. Increase in the number of hierarchical circuit levels

is notable both because it is a characteristic of circuit topology and also because it

is a measure of the physical gate delay - the amount of time between application of

inputs to a circuit and the updating of the circuit output values is directly related

to the number of levels in the circuit. Figure 4.19 shows the relative level count of

variants produced by each algorithm.

4.7.1 SSR. The number of levels in variants produced by the random select-

2, replace-with-3 algorithm showed an increase for both the c264 4-bit multiplier and

the Polymorphic full-adder circuits. However, in the single trial of select-2, replace-3
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Figure 4.19: Level Count (Circuit Delay): Relative increase
in number of levels of variant generation trials.

on the NOR-decomposed c6288 circuit, the number of levels decreased because most

of the variation introduced into the c6288 circuit was reduced out by Kim’s pattern-

reduction tool.

In the random select-2, replace-with-4 test cases, the number of levels increased

dramatically, growing faster than any other algorithm. This is because Kim’s pattern-

reduction tool does not reduce patterns introduced by this algorithm.

4.7.2 Boundary Blurring. Boundary blurring algorithms showed a modest

increase in level count. This is likely due to the logic gates which are added to the

circuit to replace the ’recovery gate.’ As with gate size, level count is most affected in

circuits which have a high ratio of boundary gates to total gates. Boundary blurring,

when executed to hide the boundaries of the 2-1 multiplexors (4-gate components)

increased the number of levels to 340.76% of the original count; when executed to

hide the boundaries of full and half-adders (9-gate components) increased the number

of levels to 173.82% of the original (for c264) and 198.88% (for c6288)

4.7.3 Component Fusion and Component Encryption. Component fusion

and component encryption (SVP) both show modest level increases. Using the above

example of a worst-case component for minimization, it is expected that the level
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count of a component will have O(log2(icomp) + icomp) complexity, where icomp repre-

sents the expected number of inputs to each component. This is due to the of the

binary-tree structure used for decomposing gates with greater than two inputs; the

depth of a binary tree increases respective to the number of nodes n it contains with

O(log2(n)) complexity. (More precisely, in the worst case, one notional level of the

component will contain log2(icomp) levels (the result of decomposing PLA gates with

icomp inputs), and one notional level will have icomp − 1 levels, (the result of decom-

posing PLA gates with 2icomp/2 inputs), and one level will be used for providing the

inverted forms of every input signal. This value is computed as

log2icomp + icomp − 1 + 1

The number of levels by which each variant produced by these algorithms increases

is less predictable than with other algorithms because the increase depends upon the

way in which the original circuit components were implemented (which may have been

optimal, but might not have been).

A rough estimate of the worst-case expected level count of c6288, then, is the

depth of c6288 in terms of components (31 component-levels) multiplied by the ex-

pected depth of each component. The average level count for each of 5 c6288 variants

Table 4.7: Upper-bound on level count for the c6288 variants produced by the
execution of component encryption

Expected Inputs Expected levels
1 component 5.56 8.16

c6288 (31 components deep) 252.96

was 198 levels, and the most extreme c6288 variant produced by the component en-

cryption algorithm contained 242 levels. This is less than the upper bound predicted

in Table 4.7.
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4.8 Efficiency Analysis: Size increase

Size increase is primarily a metric related to the efficiency of the final circuit

variant. For the core trials, Figure 4.20 depicts the relative gate count increase across

all four algorithms and the c264 and polymorphic full-adder test cases. Figure 4.21

depicts the gate count increase for the c6288 circuit across all four algorithms.

Figure 4.20: Gate Count: Relative size increase of variant
generation trials.

Figure 4.21: Gate Count (Power and Area Requirement): Rel-
ative size increase of variant generation trials for c6288.

4.8.0.1 SSR. Fundamentally, it is easy calculate how many gates are

added to a circuit by random subcircuit selection and replacement; if 2 gates are
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selected and replaced with 4 gates, then it is expected that the circuit size would

increase by two gates. However, when there are occasions when random selection

aborts rather than choosing a selection due to unsuccessful attempts at identifying

a large enough set of random gates; these instances are considered in the iteration

count.

In addition, upon algorithm completion, Kim’s pattern reduction technique is

used. This reduces circuit size if the SSR algorithm was biased towards introducing

patterns that Kim’s pattern reduction technique could find. Pattern reduction was

constructed to target patterns introduced by the select-2, replace-with-3 algorithm.

These techniques perform poorly at reducing patterns introduced by select-2, replace-

with-4, as shown by the results from the test cases involving this algorithm. Thus,

executing a select-2, replace-with-4 algorithm on each circuit causes near-linear growth

on the number of iterations of SSR used, while executing a select-2, replace-with-3

algorithm on each circuit causes much less circuit growth. Notably, because the c6288

circuit used in this research was first decomposed into NOR gates, executing a select-

2, replace-with-3 algorithm on this c6288 circuit reduced the circuit back almost into

its original size of 2406 gates.

4.8.0.2 Boundary Blurring. It is expected that boundary blurring will

increase circuit size because the algorithm adds additional logic to each circuit to

hide the boundary. This is exhibited in every test case. Across the three test circuits,

boundary blurring increased circuit size to 315.22% of its original size. As circuit size

increased across the test circuits, percent gate increase became smaller. It is unknown

exactly what caused this, but it is likely due to the relationship between the original

circuit size and the original number of boundary gates; the number of boundary gates

is determined by the number of input and output gates of each component in the

circuit.

For this reason, it makes a difference what size component is used; in the case of

the polymorphic full-adder circuit, 4-1 mulitiplexors are composed of 2-1 multiplexors.
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There are 5 4-1 multiplexors in the circuit, but these can be decomposed into 15 2-1

multiplexors. To provide the boundary blurring algorithm with the largest number

of boundaries, the boundaries of the 2-1 multiplexors were blurred.

4.8.0.3 Component Fusion and Component Encryption. Large size

increase is noted in the variants produced by the component fusion and the com-

ponent encryption algorithms. These algorithms both use the ESPRESSO engine

to generate minimal forms. Component fusion uses the ESPRESSO engine to gen-

erate replacements deterministically, and the component encryption engine uses the

ESPRESSO engine to generate a circuit which implements a new truth table with

encoder/decoder logic applied to it. Because both routines described in this work

uses a two-level minimizer, results are optimized for use in a PLA, but not for imple-

mentation using two-input gates. To use two-input gates, every gate specified by the

two-level solution is decomposed into a binary tree of two-input gates.

For small subcircuits, the two-level minimizer does produce more minimal sub-

circuit implementations. However, beyond a certain threshold this minimizer consis-

tently produces implementations which are larger than the original subcircuit. Both

product-of-sums (POS) implementations and sum-of-products (SOP) implementa-

tions will cause subcircuit gate count to increase by the same magnitude, and this

magnitude is capped by the number of minterms(or maxterms, in a POS circuit im-

plementation) in the truth table of the subcircuit.

After ESPRESSO returns a minimized PLA to either routine, a circuit is gen-

erated to implement that minimized PLA. The first level of the new two-level cir-

cuit consists of all of the minterms(maxterms) which are used by the outputs of the

subcircuit. The ESPRESSO algorithm allows the signals that produce individual

minterms(maxterms) to be reused, so no minterm(maxterm) will ever be generated

twice in the same subcircuit. It is, however, possible that in the worst case all of the

minterms in a subcircuit’s truth table could be produced as signals. If the subcircuit

has n inputs and produces 2 outputs where one output is an XOR function on n
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signals and the other output is an XNOR function on n signals, then there will be

2n first-level gates and two second-level gates. This is shown for a n = 3 inputs in

Figure 4.22.

If all of the gates in the circuit are decomposed into 2-input gates, then each

n−input gate will be decomposed into n− 1 gates. (This decomposition is shown in

Figure 3.10). This means that for the worst case, shown above, for i inputs and o

outputs there will be 2i ∗ (i−1) gates on the first level. For this worst case to happen,

every output gate must depend upon minterms which are not redundant; redundant

terms will be factored out. The maximum sets of irredundant minterms(maxterms),

of which the XOR and XNOR functions consist, are half the size of the number of

subcircuit truth-table rows. This means that in the very worst case, there will be

2i ∗ (i− 1) + 2i−1 ∗ o gates (with i inverters) in a subcircuit replacement.

Figure 4.22: The worst-case gate size for deterministic re-
placement.
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4.8.0.4 c6288. As will be noted in a later section, the c6288 circuit

variants generated by encrypting each internal circuit component are too large to

tractably execute the component identification algorithm on them. The expected

number (mean number) of inputs and outputs for individual components in a c6288

variant are depicted in Table 4.8.

Table 4.8: Expected inputs and outputs for each component in the c6288 circuit
Count Original

Inputs
Original
Outputs

Expected
Inputs

Expected
Outputs

13 2 2 2 4.66
14 3 2 4.33 4.66
14 3 2 5.66 3.33
13 3 2 7 3.33
1 2 2 2 4.66
1 2 2 2 3.33
1 3 2 5.66 2
1 2 2 4.66 3.33
182 3 2 5.66 4.66
Expected
Overall

2.93 2 5.56 4.488

Using the formula for calculating component gate count that is listed above,

an expected worst-case figure for the number of gates in the c6288 circuit variant

produced by the component encryption algorithm is provided in Table 4.9. This

would be the case in which the output of every component is the XOR function. The

mean gate counts of c6288 variants produced by component fusion and component

encryption, (25606.33 and 26275.67, respectively) are both significantly lower than

this worst-case estimate. The largest c6288 variant produced, consisting of 42856

gates, is the closest to this estimate that any of the variants came.

4.9 Efficiency Analysis: Algorithm Runtime

Algorithm runtime is a characteristic of circuit variant generation, and not a

characteristic of the variant itself. This metric represents the amount of work required
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to protect a circuit using an algorithm. Figure 4.23 shows a comparison of the trial

runtimes of each algorithm.

4.9.1 Subcircuit Selection-and-replacement. Random subcircuit selection-

and-replacement requires time for (1.) selecting a subcircuit, and (2.) selecting a

replacement. Time required for random subcircuit selection is usually small because

it effectively only involves removal of the subcircuit gates. Replacement, however,

requires querying a library of subcircuit replacements in order to retrieve a semanti-

cally equivalent subcircuit. It is unknown how to predict the number of semantically

equivalent subcircuits there are for a particular circuit, but it is possible to predict

the number of possible subcircuits that there are of a given size; the growth of this

number was characterized by Simonaire to be hyper-factorial [39]. For the c264 cir-

cuit in Table 4.4, note that for an equivalent number of iterations (1000 iterations),

select-2 replace-3 requires about one-eighth the runtime of the select-2 replace-4 algo-

rithm. In a separate experiment, a single trial of select-3 replace-4 was attempted on

c264. 100 iterations of this algorithm required 81718 seconds, more than 336 times

the 243 seconds required for 500 iterations of select-2 replace-3 obfuscation. It is pre-

Table 4.9: Expected worst-case gate count for components in the c6288 circuit
(Execution of component encryption)

Count Expected Size Expected inverters
13 13.32 2
14 113.83 4.33
14 319.80 5.66
13 981.12 7
1 13.32 2
1 10.66 2
1 286.18 5.66
1 134.62 4.66

182 353.432 5.66
Weighted Average per component: 293.72 5.42

All components: 70493.75 1301.3
Other non-component gates: 241 0
Expected total gate count: 70734.75 1301.3
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Figure 4.23: Runtime: Relative times required for variant
generation trials. *Minimum measurement was 1 second.

dicted that algorithms with selection-and-replacement at sizes greater than select-3,

replace-4 would require even longer to execute.

4.9.2 Boundary Blurring. Boundary blurring exhibited significantly shorter

runtime than subcircuit selection-and-replacement in these trials, but the runtime of

SSR is dependent upon the number of iterations chosen (an experiment variable) while

the runtime of boundary blurring algorithms is dependent solely upon the number of

boundaries in a test circuit (a constant). For the c264 circuit, select-2, replace-3 SSR

took 262 times as long as boundary blurring, and select-2, replace-4 took 2061 times

as long.

The execution of boundary blurring in these trials had a runtime that increased

approximately linearly (in these test results) with relation to gate count. Despite this

correlation, the runtime of boundary blurring most likely dependent upon the number

of component boundaries in the circuit, which increases at about the same rate as the

number of gates in these test circuits. If more test cases were run, it is likely that

boundary blurring algorithms would exhibit runtime linearly related to the number
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of boundaries available to blur (and that the number of boundaries would increase on

the same order as the number of gates if component size remained constant).

4.9.3 Component Fusion. Component fusion required only a small runtime

for the polymorphic full-adder circuit (60 gates), but runtime increased with seemingly

exponential growth, increasing runtime 1688 times when executed on c6288 while

gate count increased relatively by only 48.8 times. In fact, component fusion required

longer to execute on the c6288 circuit than 3000 iterations of select-2, replace-3 SSR

did. This is likely due to overhead in the graph library used for implementation

because the component fusion algorithm requires a workload in the worst case which

is related linearly to the number of components in the circuit and the number of gates

not in a component.

4.9.4 Component Encryption. Component encryption required the smallest

runtime of all obfuscation algorithms tested. This is probably because the primary

graph operation required was insertion and connection of gates, and few large queries

on the graph data structure were required. All components were extracted from the

circuit, encrypted, and then all components were inserted into the new circuit in

succession and reconnected.

4.9.5 Summary of Circuit Algorithm Analysis. To summarize, component

encryption consistently ran in shorter time than any other algorithm, and component

fusion ran faster than subcircuit selection-and-replacement, but only for small circuits.

Component encryption and component fusion tend to produce large circuit vari-

ants due to inefficiencies in the circuit synthesis algorithm, which is a modified two-

level synthesis algorithm. Variants of c6288 produced by these algorithms consistently

contain more gates than variants produced by other algorithms, making component

identification difficult.

Boundary blurring and select-2 replace-with-4 SSR consistently add more lev-

els to circuit variants than either component fusion or component encryption do,
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despite component fusion (CF) and component encryption (CE) algorithms adding

more gates to circuit variants. This means that, on average, variants produced by CF

and CE will exhibit less overall circuit delay but will require more power and area for

implementation than variants produced by Boundary blurring and SSR.

Boundary blurring prevents component identification in every trial where com-

ponent identification could be performed on the circuit variant. CF and CE tend to

do this as well, improving 37% over select-2 replace-4 SSR, but CF seems to introduce

gate patterns that cause 2-1 multiplexors to be identified in the circuit; the imple-

mentation of CE does not prevent bad mappings, so occasionally components on the

input boundary are identified.

Lastly, signal analysis reveals that CF and CE outperform boundary blurring in

creating variants that hide the internal signals of circuits. Both algorithms provide at

least 48% signal hiding over all three test cases. This has implications for preventing

both structural analysis and side-channel analysis.

4.10 Chapter Summary

This chapter has presented metrics for evaluating circuit variant generation

algorithms which measure the efficiency and security properties of circuit variants.

Then, this research described experimental setup for examining four circuit variant

generators using three test circuits composed of known components for the purpose

of measuring the effects of each algorithm on circuits with internal components.

One circuit variant generator proposed by this thesis (component encryption)

consistently outperformed all other generators in terms of required runtime. Both new

circuit generators will likely produce variants with larger gate counts than the other

generators once the size of internal circuit components passes a certain threshold, but

produce variants with smaller level counts than boundary blurring variants and select-

2 replace-4 variants. Variants produced by deterministic selection-and-replacement

occasionally contain multiplexor definitions which were not originally in the circuit,

108



which is bad from the adversary’s viewpoint if it suggests that there are components

in the circuit that were not originally there.

Overall, there is evidence to support the hypothesis that component encryption

is more efficient (in terms of generation time and level count) and more secure in terms

of signal hiding than almost all other algorithms. If this algorithm were modified to

filter out bad signal mappings, it would most likely also be more secure in terms of

component hiding than boundary blurring is.

The next chapter will provide conclusions from this thesis and present sugges-

tions for future work.
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V. Conclusions and Future Work

In summary, this thesis has examined questions regarding the security properties

of random circuit variant generation and the feasibility of deterministic circuit

variant generation. Section 5.1 provides conclusions drawn from this research effort

and Section 5.2 examines future research opportunities that stem from this thesis.

5.1 Conclusions

In conclusion, this thesis had two goals, one primary and one secondary. These

goals, respectively, were to:

1. Describe more efficient, more secure methods for whitebox circuit obfuscation

and metrics for characterizing the increased efficiency and security of the vari-

ants which these methods produce, and analyze the methods described in this

thesis to evaluate whether the new methods provide security and efficiency im-

provements over previously described circuit obfuscation methods.

2. Examine whether subcircuit selection-and-replacement achieves the security that

a Random Program Model obfuscator would ideally achieve.

5.1.1 Construction of a secure, efficient method for generating logic circuit

variants. The first goal (construction of a method for creating combinational logic

circuit variants) was met by constructing two deterministic methods for circuit vari-

ant generation, one of which (component encryption) was efficient and deterministic.

Component encryption performs non-semantics-preserving circuit transformations on

circuitry but preserves the semantics of the circuit overall. Component fusion adheres

to the model of subcircuit selection and replacement but does so in a non-random

way. Both methods serve as useful case studies in the use of deterministic rather than

random circuit generation.

Accomplishing the first goal required analyzing the security and efficiency prop-

erties of both new methods for variant generation. Metrics were described for the

purpose of examining the generation of the variants in this thesis. In describing
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new methods for generation of circuit variants and describing metrics for measuring

security and efficiency, the first research goal was met.

5.1.2 Analysis of circuit variant generation methods. To summarize, new

obfuscation methods for circuit protection were developed in this thesis. Security

metrics analyzed were

1. Signal Hiding: Both algorithms hide a significant number of internal circuit

signals, which improves over both the select-2 replace-3 and the Don’t-Care

boundary blurring algorithm.

2. Component Hiding: Both component fusion and component encryption hide

most circuit components. The component identifier identifies spurious (and

possibly incompletely hidden) 2-1 and 4-1 multiplexors in variants produced by

component fusion, and component encryption has the potential to incompletely

hide a component due to the use of a bad mapping.

Efficiency metrics analyzed were

1. Relative circuit delay in terms of level count: Both component fusion

and component encryption are more efficient in terms of circuit delay than

other existing obfuscation methods offering comparable security.

2. Relative power and area requirements in terms of gate count: Both

component encryption and component fusion do not increase efficiency in terms

of gate count. However, this may be acceptable given the benefit of increased

security that both methods provide.

3. Relative algorithm runtime: The runtime of component encryption improves

over the runtime of all other algorithms tested. Component fusion also runs

quickly for small circuits.

In analyzing the circuit variant generation methods, the first goal was met. This

confirms that the methods created as the first research goal were in fact more secure

and more efficient.
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5.1.3 Examining the properties of SSR against those of an ideal random circuit

variant generator. In Appendix B, this thesis has also examined the possibility that

random subcircuit-selection-and-replacement could transform a circuit into any other

possible equivalent circuit. A complete set of operations, BAIC, was identified and

could transform a circuit into any other equivalent circuit, but current experimental

models for SSR do not provide completeness because certain operations necessary for

completion are not provided by random SSR. In performing this examination, the

secondary goal of this thesis was met.

It can thus be concluded that because research goals were successfully achieved,

all major research goals were successfully accomplished.

5.1.4 Contributions. This thesis has built upon the subcircuit selection and

replacement obfuscation method developed by Norman and James, and evaluates the

boundary blurring technique developed by Parham. This research was not the first

to use deterministic methodologies to protect circuits; Parham’s boundary blurring

technique deterministically targeted internal circuit information and deterministically

protected this internal information using boundary blurring. As shown in Figure 5.1,

the research documented in this thesis is the first to propose semantics-changing

obfuscation as a technique, however. Further, this research is the first to identify the

separation of deterministic methodologies from random methodologies. Both of the

future goals of this research effort are expanded upon in Section 5.2.

5.2 Future research areas

5.2.1 Design and construction of a more robust component encryption algo-

rithm. There are at least two ways in which the component encryption algorithm

could be made more secure. The first proposed method for improving the strength

of component encryption, filtering insecure mappings, fixes a known weakness. The

second proposed method introduces reliance on external signals to increase switch-
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ing activity. Using additional randomness will help to improve the strength of an

otherwise purely combinational encryption algorithm.

5.2.1.1 Filtering of insecure mappings. The component encryption al-

gorithm implemented in this thesis allows any randomly generated mapping to change

the signal values that travel between components. However, many of these mappings

allow the original component to be identified because its outputs contain the signals of

the original component. An improved component encryption algorithm would check

for insecure signal mappings and would not use these mappings to protect component

signals.
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5.2.1.2 Use of external signals to facilitate switching activity. Occa-

sionally, a mapping function f will map a signal value v onto several new signal values

v′1, v
′
2, . . . vn, but v is never produced or v is used fewer than n times in the original

component truth table. To help with the case where a value is used fewer than n

times in the original truth table, a signal external to the component component could

be used to randomly change v between values that the decoder circuit implementing

Df will decode correctly. This would increase the switching activity between internal

components and would serve to further alter the semantics of each component.

5.2.2 Design and construction of a more robust component ID algorithm.

The component encryption algorithm described in this thesis synthesizes components

which use any randomly generated mapping, even ones which have been identified as

insecure. However, the component ID tool developed by Parham is not constructed

to identify encrypted components, or even insecurely encrypted ones. A useful mod-

ification to this tool would enable it to identify candidate components whose input

and output count have been altered.

This tool could use a set of predefined decoder functions to examine combina-

tions of component outputs which could have been insecurely encoded. The decoder

functions could include all one-to-one or one-to-two signal mappings, as both sets of

mappings are easily enumerable.

Overall, by implementing such a tool, a significant advance will be made in

knowledge regarding the capabilities of a component identification adversary.

5.2.3 Implementation of better circuit minimization algorithms. Variants

produced by the component fusion and component encryption algorithms in this thesis

suffer from the overhead of implementing subcircuit replacements generated by a two-

level minimizer using two-input gates. A two-level minimizer produces subcircuits

with gates taking possibly any number of inputs (e.g, a two-level minimizer could

produce a solution using a 15-input AND gate, even there is no gate of that type)
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because a two-level minimizer targets a PLA implementation. If a better multiple-

output optimizer were available for research use, the gate count of the components

produced using both the component fusion and component encryption methods would

be dramatically reduced.

5.2.4 Design and construction of a circuit variant distance measurement.

One of the significant contributions of this thesis was the use of BAIC in evaluating

the capabilities of a system for random circuit generation. Section B.4.10 proposes the

use of these identities to measure the distance between circuit variants, but this idea

is not developed. Future work in this area could consist of designing and implement-

ing a system for determining the distance between equivalent variants. Because an

automatic distance measurement would require finding a path of identities that prove

the equivalence of two variants, background research in automated theorem provers

using a language like Prolog would probably be useful.

5.2.5 Better visualization of circuit security metrics. An automated tool

for visualizing the characteristics of circuit variants in relation to the original circuit

would make the design of circuit variant generators much easier. Such a tool could

have the following features:

1. The ability to display circuits using traditional logic gate symbols.

2. The ability to visualize the identification of components in a circuit variant.

3. The ability to visually compare identical signals in two circuits.

4. A system for tracking manipulations between circuit versions.
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Appendix A. Algorithm Benchmarks

This section contains the results of three experiments which are not mentioned

in the main body of this thesis. The experiments are:

1. Running select-3-gates, replace-with-4-gates subcircuit selection-and-replacement

on the c264 4-bit multiplier. The results of this experiment are shown in Table

A.1.

2. Running select-3-connected-gates, replace-with-4-gates subcircuit selection-and-

replacement on the c264 4-bit multiplier. The results of this experiment are

shown in Table A.2.

3. Running select-3-connected-gates, replace-with-4-gates subcircuit selection-and-

replacement on the polymorphic full-adder circuit. The results of this experi-

ment are shown in Table A.3.

Table A.1: Metrics of select-3, replace-with-4 replacement on the c264 circuit (1
trial)

Metrics/Iterations 25 50 100
Original gates 124.0 124.0 124.0

Gates in variant 128.0 135.0 139.0
Gates increase 4.0 11.0 15.0

Unreplaced Gates 71.0 43.0 30.0
Inputs 8.0 8.0 8.0

Outputs 8.0 8.0 8.0
Original level count 34.0 34.0 34.0

New level count 34.0 35.0 35.0
Levels increase 0.0 1.0 1.0

Unique original signals in new 124.0 124.0 124.0
Unique original signals inverted in new 20.0 25.0 25.0
New signals copied from original signals 127.0 129.0 132.0

New signals copied from inverted original signals 22.0 27.0 28.0
Signals preserved 100.0% 100.0% 100.0%

New gates producing original signals 99.21% 95.55% 94.96%
Full-adders identified (≤ 15 gates) 5 3 2
Half-adders identified (≤ 15 gates) 4 2 2

Runtime (s) 17411 34150 81718
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Table A.2: Metrics of select-connected-3, replace-with-4 replacement on the c264
circuit(1 trial)

Metrics/Iterations 500 1000
Original gates 124.0 124.0

Gates in variant 426.0 747.0
Gates increase 302.0 623.0

Unreplaced Gates 16.0 13.0
Inputs 8.0 8.0

Outputs 8.0 8.0
Original level count 34.0 34.0

New level count 168.0 276.0
Levels increase 134.0 242.0

Unique original signals in new 116.0 86.0
Unique original signals inverted in new 68.0 65.0
New signals copied from original signals 225.0 278.0

New signals copied from inverted original signals 148.0 221.0
Signals preserved 93.54% 69.35%

New gates producing original signals 52.81% 37.21%
Full-adders identified (≤ 15 gates) 0 0
Half-adders identified (≤ 15 gates) 0 0

Runtime (s) 49377 98566
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Table A.3: Metrics of select-connected-3, replace-with-4 replacement on a polymor-
phic full-adder(1 trial)

Metrics/Iterations 500 1000
Original gates 60.0 60.0

Gates in variant 383.0 720.0
Gates increase 323.0 660.0

Unreplaced Gates 2.0 2.0
Inputs 9.0 9.0

Outputs 2.0 2.0
Original level count 13.0 13.0

New level count 100.0 266.0
Levels increase 87.0 253.0

Unique original signals in new 51.0 49.0
Unique original signals inverted in new 46.0 50.0
New signals copied from original signals 76.0 119.0

New signals copied from inverted original signals 82.0 116.0
Signals preserved 85.0% 81.66%

New gates producing original signals 19.84% 16.52%
2-in multiplexors identified (≤ 16 gates) 15 24
4-in multiplexors identified (≤ 16 gates) 1 0

Runtime (s) 33636 56941
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Appendix B. Analysis of Subcircuit Selection-and-Replacement

This appendix examines whether subcircuit-selection-and-replacement implements

the Random Program Model by comparing its capabilities to those of a system based

upon Boolean algebra laws. This system is actually capable of transforming a circuit

into any logically equivalent circuit. Further, applications of identities in this sys-

tem could allow for a metric of distance to be used measuring an empirical distance

between logically equivalent circuit variants.

B.1 Identifying the limits of bounded-size SSR

Current implementations of SSR fail to allow larger than a bounded size space

of possible replacements due to the infeasibility of enumerating replacement libraries.

Under the Random Program Model, measurable white-box security is derived from

pure randomness; every P’ is an equally probable replacement for P. While conceptu-

ally perfect randomness can be achieved on the level of selection/replacement, there

has not yet been any proof that selection/replacement has the ability to transform any

circuit P into any possible replacement P’, assuming that the selection size is not the

size of the entire circuit. Furthermore, there is no existing metric to describe whether

additional selection/replacement operations provide additional security. Because of

this, we seek metrics to help answer the following questions:

• Can subcircuit selection/replacement be used to transform any size P into any

other equivalent P’?

• If not, then what limitations does selection/replacement impose on this trans-

formation?

• Regardless of the answer to the first two questions, what measurable distance

does a selection/replacement move P’ from the original P?
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B.2 Desirable characteristics of logic systems

The first question, regarding the capabilities of the SSR transformation system,

can be restated using concepts already well-defined in mathematical logic. The Oxford

Dictionary of Philosophy [4] defines two terms which describe desirable characteristics

of logic systems. These are soundness and completeness :

Definition 18. Interpretation: Informally, an interpretation of a logical system

assigns meaning to formulas and their elements.

Definition 19. Soundness: Informally, a notion of validity (a formula is valid if

it is true in all interpretations).

Definition 20. Completeness: Informally, a notion of semantic consequence (a

formula is a semantic consequence of a set of formulae if it is true in all interpretations

in which they are true.)

From these definitions, the following informal definitions for soundness and com-

pleteness of an algebra are derived:

Definition 21. Sound algebras: An algebra is sound if the identities that equate

an expression with any other expression preserve the semantics of the expression.

Definition 22. Complete algebras: An algebra is complete if it can be shown that

any two semantically equivalent expressions are actually equivalent using identities.

(Or, every valid equality can be derived using the axioms of the algebra. [31])

Soundness is significant because it indicates that any application of identities

will not influence the semantics of an expression. Completeness is significant because

it indicates that any two semantically equivalent expressions can be demonstrated to

be equivalent. This is significant because, since Boolean algebra identities are both

sound and complete [31], 1) applying Boolean algebra identities will always yield

other semantically equivalent expressions, and 2) there is some sequence of Boolean

algebra identities which can be used to transform one Boolean algebra expression into
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Figure B.1: In a sound algebra, an application of identities
will always yield an equivalent expression.

Figure B.2: In a complete algebra, any two equivalent expres-
sions can be demonstrated equivalent using identities (and an
expression can be transformed into any equivalent expression
using identities).
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any other equivalent expression. The concepts of soundness and completeness are

illustrated in Figures B.1 and B.2.

Proving the soundness and completeness of subcircuit selection-and-replacement

would establish that it is possible to use SSR to obtain from a circuit P any other

equivalent circuit P . If, on the other hand, SSR is not sound and complete, then SSR

cannot be used to implement the Random Program Model.

B.3 The Soundness and Completeness of Boolean Algebra

As a first step in identifying whether SSR is sound and complete, we examine

the soundness and completeness of Boolean algebra, which can be used to express any

Boolean Function. For reference, Wolfram MathWorld uses the following identities to

define a Boolean algebra: [47]

1. The two operations on a Boolean algebra B, AND and OR, satisfy the three

properties

• Idempotence - A ∗ A = A + A = A

• Commutativity - A ∗B = B ∗ A ; A + B = B + A

• Associativity - A ∗ (B ∗ C) = (A ∗ B) ∗ C = A ∗ B ∗ C ; A + (B + C) =

(A + B) + C = A + B + C

2. The AND and OR operations satisfy the absorption law:

• Absorption: A ∗ (A + B) = A + (A ∗B) = A

3. The AND and OR operations are mutually distributive:

• Distributivity - A ∗ (B + C) = (A ∗ B) + (A ∗ C); A + (B ∗ C) =

(A + B) ∗ (A + C)

4. 0 and 1 - Universal bounds (0 or the empty set) and I (1 or the universal set)

must exist, s.t.

• 0 ∗ A = 0
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• 0 + A = A

• 1 ∗ A = A

• 1 + A = 1

5. Complementation - A unary operation (the NOT operator or the ′ operator)

must exist, s.t.

• A ∗ A′ = 0

• A + A′ = 1

• Involution - (A′)′ = A [17]

Ninomiya and Mukaidono demonstrated the completeness of this algebra with a subset

of these identities [31] , as did Huntington [47]. Because Boolean algebra is complete,

these identities can be used to prove the equivalence of any Boolean expression with

any other equivalent Boolean expression. An additional identity (which can be derived

from Boolean algebra identities) known as DeMorgan’s theorem is also commonly used

to simplify Boolean algebra. DeMorgan’s Theorem states that

• (A + B)′ = A′B′

• (AB)′ = A′ + B′

Functions expressed in the form of Boolean algebra can be transformed into other

equivalent expressions through the repeated application of Boolean algebra identities.

One common use of identities is to reduce Boolean algebra expressions to a minimal

or normal form. Certain identities form the definition of a Boolean algebra itself;

other identities are derived from the core ones.

Theorem 1. Boolean Algebra identities as a transformation system: Using

identities from Boolean algebra, any Boolean algebra expression can be transformed

into any other equivalent Boolean algebra expression using Boolean algebra identities.

Proof: All Boolean algebra expressions implementing the same function can be

transformed into an arbitrary normal form (for example, disjunctive normal form)
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through repeated application of Boolean identities. Imagine that there exist two

Boolean expressions F ′ and F ′′ implementing the same function F , and a canonical

Boolean expression Fdnf also implementing F . There exists a sequence of Boolean

algebra identities S that transform F ′ into Fdnf , and there exist a sequence of Boolean

algebra identities T that transform F ′′ into Fdnf . Because all Boolean algebra identi-

ties are equivalences, the sequence T will also transform Fdnf into F ′′. Composing S

with T results in a sequence of transformations that transform F ′ into F ′′.

This theorem is an additional demonstration of the completeness of Boolean

algebra. If identities can transform an expression into some normal form, then iden-

tities can transform that expression into any other equivalent expression. Soundness

of Boolean algebra can be demonstrated because the system of Boolean algebra iden-

tities are all axioms or derived from axioms, which define the domain of Boolean

algebra. That is, no application of Boolean algebra identities can yield an expression

not equivalent to the original because equivalence is defined using Boolean algebra

identities. This means transformations based on identities will be sound.

B.3.1 Extending Soundness and Completeness to Digital Logic Circuits. The

soundness of Boolean algebra identities have thus been demonstrated. Knowing that

subcircuit selection-and-replacement operations are both sound and complete would

be useful because this would give credence to the assumption made by Norman that

SSR possesses the ability to transform a circuit into any other possible circuit. Figure

B.3 provides an illustration of the transformations that a sound and complete SSR

system would apply to a circuit - these random transformations would always yield

a semantically equivalent circuit, and these transformations could possibly transform

P into any other variant P ′. For this reason, we seek to map the soundness and

completeness of Boolean algebra identities onto the domain of digital logic circuitry.

It is possible that some implementations of SSR are sound and complete, but not

others. If this is the case, then we seek to discover which implementations of SSR

satisfy soundness and completeness and which do not.
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Figure B.3: An ideal circuit manipulator allows incremental
manipulations which allow P to be transformed into any circuit
in δP .

B.3.2 Mapping Boolean algebra syntax trees to Digital Logic Circuits. In

the field of digital logic, the computation of a circuit output is described as a function

of the circuit inputs using many functional representations. Functions are described

using truth tables (which list the outputs for particular combinations of input values),

Karnaugh maps (which map the space of possible output values), Binary Decision Di-

agrams (with related forms like OBDD, ROBDD, etc.), Boolean algebra expressions,

and others.

The parsing of most languages yields a syntax tree such as the one in Figure

B.4. This structure can be mapped one-to-one back to the language expression from

which it came. Boolean algebra expressions can be similarly parsed into a syntax tree

using rules described in Backus-Naur form, as Norman described. [33]

With one operation (defined here as the MERGE operation), a parse tree can

be mapped onto a graph structure that directly translates to a one-input digital logic

circuit composed of gates with two inputs.

Definition 23. MERGE: The MERGE operation takes as input two nodes or logic

gates A and B whose semantics are used in the computation of C and D, respectively,

and which, upon evaluation, are semantically equivalent. MERGE produces as output
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Figure B.4: Syntax trees for expressions computing outputs
22 and 23 of the ISCAS-85 benchmark c17 circuit.

a single node or logic gate E whose value is used in the computation of both C and

D.

Figure B.5: Complementary operations MERGE and CLONE
on an AND gate.

To map the parse tree to this intermediate structure, MERGE is applied to

all variables with the same name used in multiple places in the parse tree. After

applying MERGE, the resulting intermediate structure has the same operator nodes

as the parse tree, but only one node representing each variable. Figure B.6 shows the

result when the MERGE operation is applied to the Boolean algebra syntax tree in

Figure B.4.
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Figure B.6: Syntax trees for outputs 22 and 23 of the c17
circuit from Figure B.4 after the MERGE operation is applied
to variable nodes.
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This intermediate structure can be mapped directly to a digital logic circuit by

translating every operator node to a two-input gate which computes the same function

and mapping every variable node to a circuit input.

The inverse of the MERGE operation is the CLONE operation:

Definition 24. CLONE: The CLONE operation takes as input a single node or

logic gate E whose value is used in the computation of both C and D and outputs two

nodes or logic gates A and B, both semantically equivalent, whose values are used in

the computation of C and D, respectively.

The CLONE operation is useful because it allows any combinational logic circuit

to be mapped to a parse tree with no values used in more than one computation (in

the circuit domain, no logic gates with multiple fanout).

Both CLONE and MERGE are sound because they preserve the semantics of

the digital logic circuit in which they operate (they merely reduce or introduce signals

which have the same semantics). A graphical depiction of both rules is provided in

Figure B.5.

It can thus be seen that

1. A syntax tree can be mapped to a digital logic circuit with two-input gates.

2. A digital logic circuit can be mapped to a Boolean expression syntax tree

through repeated applications of the CLONE operation.

B.3.3 A Proof of Completeness of Boolean Algebra Identities and MERGE/-

CLONE.

Hypothesis 1. Completeness of Boolean Algebra Identities and MERGE/CLONE

There thus exists a family of transformations, including Boolean algebra identities and

the MERGE/CLONE operations whose repeated application allows the transformation

of a digital logic circuit into all other possible digital logic circuits implementing the

same function.
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Proof: Figure B.7 shows this method for demonstrating equivalences. Using

the operation CLONE, a circuit can be transformed into a circuit directly mappable

to a collection of parse trees (one for every output) with no signals reused. This

circuit can map directly back to a collection of Boolean equations. This collection of

Boolean equations can then be transformed through Boolean algebra identities into

some arbitrary normal form of those equations.

The operation CLONE is reversible by MERGE, and all Boolean identities are

also reversible; thus the sequence of operations which transforms a digital circuit into

a collection of canonical Boolean algebra expressions can also be used to transform

the canonical Boolean algebra expressions into all digital logic circuits implementing

the same functions.

For two equivalent circuits P and Q, P can be transformed into a collection

of equations, which can be transformed into a collection of normal forms S. Q can

be transformed into a collection of equations, which can also be transformed into

a collection of normal forms T identical to S (that is, T is S). Because all of the

operations used to transform Q were reversible, P can be transformed S = T , which

can be transformed into any equivalent Q, proving completeness.

Figure B.7: MERGE/CLONE and Boolean Algebra Identi-
ties, together, are complete.

B.3.3.1 Digital Circuit Manipulations derived from Boolean Algebra Iden-

tities. Hypothesis 1 describes the fact that digital circuits can be transformed into
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any other, equivalent digital circuits by making use of the Boolean algebra domain.

However, all Boolean algebra identities and the MERGE/CLONE operations have

equivalents in the circuit domain which make any mapping to forms outside of the

circuit domain unnecessary. This means that a complete set of identities exists within

the circuit domain. These identities will be referred to as Boolean Algebra Identities

applied to Circuits (BAIC). One good example of a BAIC transformation is a circuit-

equivalent form of the law of idempotence. Figure B.8 shows an example of applying

idempotence to the circuit which computes the Sum signal in a full-adder circuit. In

all three of the variants shown in Figure B.8 an AND gate takes the same signal twice

as input. However, because signals can be shared within a digital logic circuit, circuit

idempotence has the potential to introduce cloned signals (signals on which the same

value is computed). If we attempt to apply idempotence by inserting an AND or OR

gate that takes as input the same signal, the gates used to compute the source input

can be cloned to an arbitrary (and not necessarily uniform) depth.

Figure B.8: A circuit computing the Sum function and three
applications of the idempotent rule on its output signal.

Another example of possible transformations described by Hypothesis 1 is the

application of Associativity to circuits. In the circuit domain, this rule is best de-

scribed as an equivalence of various configurations of the same gate type. Figure B.9
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illustrates a set of circuits which can be demonstrated equivalent by applying the As-

sociativity rule to a 4-input AND gate. Other possible rules are illustrated in Figures

Figure B.9: A 4-input AND gate and six other circuits equiva-
lent by the Associative rule.

B.10 - B.13.

Figure B.10: The circuit implementing (W + X) * (Y + Z)
transformed through repeated applications of the Distributive
rule.
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Figure B.11: Circuits illustrating identities involving the 0
and 1 values.

Figure B.12: Two circuits generating constant 1 and 0 sig-
nals (respectively), two circuits generating the same two signals
(but demonstrating identities of complementation), and a circuit
demonstrating the involution property (X ′)′ = X.

Figure B.13: A 4-input AND gate and six other circuits equiv-
alent by the Associative rule.
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B.4 Relating Digital Circuit Manipulation to Subcircuit Selection and

Replacement

What the previous section describes is a set of circuit equivalences which, if

applied, could demonstrate the equivalence of any two equivalent circuit. In Boolean

Algebra, several identities are necessary in order to maintain completeness. If these

BAIC equivalences are analogous to Boolean algebra identities, then certain identities

are likely required to maintain completeness of BAIC identities, as well. Here it is

assumed that the BAIC versions of all identities described by Wolfram Research are

necessary, and that MERGE/CLONE are necessary.

Each BAIC equivalence requires the selection of a minimum number of gates for

its most fundamental application. The numbers required for these equivalences are

described in sections B.4.1 through B.4.9.

B.4.1 BAIC Idempotence rule. The minimal form of this rule only requires

one-gate selection and two-gate replacement. The inserted gate with redundant inputs

will accept as input the output of the single selected gate, so there will be at least

two gates in the subcircuit replacement.

B.4.2 BAIC Commutative rule. The minimal form of this rule only requires

one gate selection and one-gate replacement. The replaced gate will be exactly the

same as the selected gate, but with reordered inputs.

B.4.3 BAIC Associativity rule. The minimal form of this rule requires at

least 2-gate selection and one-gate replacement. For this identity to be applied fully,

both 2-gate selection with one-gate replacement and one-gate replacement with 2-gate

selection must be allowed.

B.4.4 BAIC Absorption rule. The minimal form of this rule requires at

least 2-gate selection with 4-gate replacement, and vice versa in order to maintain

both possible transformations of the identity.
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B.4.5 BAIC Distributive law. The minimal form of this rule requires at

least 2-gate selection with 3-gate replacement, and vice versa in order to maintain

both possible transformations of the identity.

B.4.6 BAIC Manipulations Involving GND and VDD. Here, it is recognized

that a certain, minimum number of gates will be required to generate a signal that

will always be 0 or 1. An AND gate coupled with an inverter can generate such a

signal, as shown in Figure B.12. Note that Gate propagation delay will often cause

the output to momentarily shift when the input changes, but this is logically true.

However, the signal used by the AND/inverter pair can be any signal at all. This

means that, to fully generate the possible identities involving 0 and 1, replacements

involving 1) signals not even in the circuit, 2) the GND and VDD signals, or 3) any

arbitrarily sized function using inputs within the circuit are all possible. While the

SSR method defined by Norman and James does include the use of constant 0 and

constant 1 signals as mentioned in Section 4.3, this is disallowed in most experimen-

tation. Bounded-size replacements cap the size of any arbitrarily sized function used

by the XOR/inverter pair to compute 1 or 0, so regardless of how large a replace-

ment the selection/replacement algorithm allows, there will always be some function

FGigantic which requires more gates to specify which is impossible for the bounded-size

replacement algorithm to generate. No smaller set of operations will be able generate

FGigantic because a smaller set of operations will preserve the semantics of the FFeasible

function which is within the range of the selection/replacement algorithm, rather than

manipulating the semantics of FFeasible into FGigantic.

B.4.7 BAIC Complementation. One BAIC identity involving complementa-

tion (the Involution law) is possible to approximate by inserting or removing double

inversion from a circuit. This is possible using one-gate selection and 2-gate re-

placement, e.g., a NOT-NAND pair is equivalent to an AND gate, or using one-gate

selection and 3-gate replacement, e.g., a NOT-NOT-AND is equivalent to an AND

gate.
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Other identities fall under the limit described in Section B.4.6. For example,

to generate an always-1 signal, any function can be ORed with its complement. The

generation of any arbitrary-sized function to use as a replacement is bounded by the

replacement size.

B.4.8 BAIC DeMorgan’s Law. This law requires a selection size which

encompasses a gate and all of the gates that generate its inputs (for a 2-input gate,

this means 3-gate selection) and an identical replacement size.

B.4.9 BAIC MERGE/CLONE. CLONE requires a 1-gate selection with

2-gate replacement, or (for MERGE) a 2-gate selection with a 1-gate replacement.

B.4.10 Empirically Evaluating the Distance Between P and P’. If it is pos-

sible to use individual circuit manipulations to transform a circuit P into any possible

variant, P ′, then any possible selection/replacement operation can be approximated

as a sequence of circuit manipulations. In fact, there are probably many unique se-

quences of selection/replacement circuit operations which can be used to transform

P into P ′. One open question about circuit randomization using SSR is whether

additional circuit variation (through additional SSR iterations) will further protect a

circuit. By one reasoning, additional variation makes identification of the precise se-

quence of variations more difficult. However, additional variation does not necessarily

increase the empirical ‘distance’ between circuit variants.

A metric to measure the distance between equivalent circuit variants could be

created from the number of identities used to transform both P and P ′ into a normal

form. In the case of digital logic circuits, the number of BAIC identities required

to transform a P into a functionally equivalent P ′ can provide a sort of distance

measurement.

For example, the two circuits shown in Figure B.14 are both random circuits

which have four inputs and implement the same function. They can be demonstrated
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equivalent through application of rules to transform them into disjunctive normal

form.

Figure B.14: A 4-input AND gate and six other circuits equiv-
alent by the Associative rule.

Regardless of the number of transformations used to transform P into P ′, the

empirical distance between the two circuits, measured by the combined number of

individual identities required to transform both circuits into a normal form, will be the

same. If security is measured by the distance between two circuits and all equivalent

P are a maximum distance away from the normal form, then at some point, iterative

variation which preserves the size of P will provide diminishing security and eventually

provide no benefit at all.

To summarize, the number of iterations required to transform P into P ′ is not

a valid measurement of effort required to transform one into the other because the

metric for distance between P and P ′ exists independently of individual effort.

B.5 Conclusions regarding subcircuit selection/replacement

By comparing SSR to a form of canonical digital circuit manipulation, it has

been demonstrated that there are several classes of circuits equivalent to any given P

which a constant-size selection or constant-size replacement method cannot transform

a circuit P into. Figure B.15 illustrates this concept. While a circuit P can be

possibly transformed into a subset of the circuits equivalent to P using Random SSR,

and a Random SSR method will likely provide some security inherent to randomizing

circuit structure, random constant-size selection with constant-size replacement does

not provide the security of replacing P with a truly random P ′. Furthermore, it

is hypothesized that additional random variation is not guaranteed to increase the
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empirical distance between the original circuit P and the final circuit variant P ′.

This means that existing, bounded methods for subcircuit selection and replacement

do not implement the Random Program Model, and iterative random variations do

not necessarily increase the randomness of a circuit.

There exists an SSR algorithm which is able to transform a circuit into any

possible semantically equivalent circuit, but a constant-size-selection, constant-size-

replacement implementation of SSR does not allow this type of transformation, even

over many iterations. Further, a procedure has been posed (but not empirically

demonstrated) to measure the distance between two circuit variants using the number

of identities required to transform both into a normal form. Using this procedure as

a distance measure, a hypothesis has been made (but not empirically demonstrated)

that increasing the number of variant iterations between the original circuit and the

final variant does not necessarily increase the distance between the original circuit

and the final variant. If this hypothesis is correct, then random variation will yield

diminishing security benefit (measured by distance from the original circuit) after

some number of iterations.

Figure B.15: Subcircuit selection and replacement performs
incremental manipulations which allow P to be transformed into
a subset of δP .
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Appendix C. Algorithms

This section contains three algorithms which are used in applying Signal Value Per-

mutation to circuit components by manipulating their truth tables. Algorithm C.1

describes manipulating circuit truth table output rows, Algorithm C.2 describes ma-

nipulating circuit truth table input rows, and Algorithm C.3 describes the grouping

of signals between components that connect the same components together.

Algorithm C.1 GET-REMAPPED-OUTPUT(boolean [ ][ ] tt.outputrows,
boolean[ ][ ] tt.inputrows, mappings m)
The objects tt and remapped tt are both truth tables with i inputs and 2i rows of
input and output values. The number of inputs is the same in both truth tables, but
in remapped tt the number of outputs changes.
row, new row, original value and new value are strings of binary values for con-
venience.
Mappings contain a list of outputindices (the indices of the outputs it remaps) and
a hash mapping a string of binary values to an array of strings of binary values. The
hash is accessed using the getReplacementList() method.

remapped tt ← boolean [tt.outputrows.size] []
for all i = 0 to tt.outputrows.size do
{
}row ← tt.outputrows [i]

5: new row ← ””
{}
for all mapping in m do

original value ← ””
new value ← ””

10: for all index in m.outputindices do
original value ← originalvalue.row[index]

end for
replacement list ← m.getReplacementList(original value)
replacement index ← Random(0, replacement list.size− 1)

15: new value ← replacement list [replacement index]
new row ← newrow.new value

end for
remapped tt.inputrows [i] ← tt.inputrows [i]
remapped tt.outputrows [i] ← new row

20: end for

139



Algorithm C.2 GET-REMAPPED-INPUT(boolean[ ][ ] tt.outputrows, boolean[
][ ] tt.inputrows, mappings m, Component c)
tt and remapped tt both begin as truth tables with i inputs and 2i rows of input
and output values. The number of outputs is the same in both truth tables, but in
remapped tt the number of inputs changes, and this causes the number of rows to
change.
Mappings contain a list of lists of inputindices (the indices of the inputs it remaps,
each list indexed by the particular component it is remapping) and a hash mapping
a string of binary values to an array of strings of binary values. The hash is ac-
cessed using the getReplacementList() method. In addition, mappings contain values
oldsignals and newsignals which indicate the number of signals that the mapping
takes in as input and the number of signals contained in all replacement values.

remapped tt ← boolean[ ][ ]
for all mapping in m do

new no inputs ← remapped tt.noInputs + (mapping.newsignals −
mapping.oldsignals)
expandedtt.input rows ← boolean[new no inputs][2n̂ew no inputs]
expandedtt.output rows ← boolean[tt.no outputs][2n̂ew no inputs]
last assignedrow ← 0
for all i = 0 to remapped tt.inputrows.size do

row ← tt.inputrows[i]
equivalent rows ← boolean[][]
original value ← ””
for all j = 0 to m.inputindices[c.id].size do

original value = row[m.inputindices[c.id][j]]
end forequivalent rows = mapping.getReplacementList(original value)
for all j = 0 to equivalent rows.size do

expanded tt.inputrows[last assignedrow] ← equivalent rows[j]
expanded tt.outputrows[last assignedrow] ← tt.outputrows[i]
last assigned row ← last assigned row + 1

end for
end for
remapped tt ← expanded tt

end for
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Algorithm C.3 GET-SIGNAL-GROUPINGS(Component c)

remaining outputs ← c.outputs
{}output is an array of arrays of outputs.
output groupings ← output[][]
while !remaining outputs.isEmpty() do

next output ← remaining outputs[0]
remaining outputs.remove[0]
{Find the component which uses the signal from next output and the largest
number of other signals from c.}
minfedcomp ← ∅
minconnections ← −1
output set = ∅
for all fedcomp in c.getOutputComponents() do

count = 0
running output set = ∅
for all predecessorGate in fedComp.getPredecessorGates() do

if c.containsGate(predecessorGate) then
count = count + 1
running output set.add(predecessorGate)

end if
end for
if count < minconnections||minconnections == −1 then

minconnections = count
minfedcomp = fedcomp
output set = running output set

end if
end for
output groupings.add(ouput set)

end while
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