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Abstract

Constrained optimal control problems for Small Unmanned Aircraft Systems (SUAS)

have long suffered from excessive computation times caused by a combination of con-

straint modeling techniques, the quality of the initial path solution provided to the

optimal control solver, and improperly defining the bounds on system state variables,

ultimately preventing implementation into real-time, on-board systems. In this re-

search, a new hybrid approach is examined for real-time path planning of SUAS.

During autonomous flight, a SUAS is tasked to traverse from one target region to a

second target region while avoiding hard constraints consisting of building structures

of an urban environment. Feasible path solutions are determined through highly

constrained spaces, investigating narrow corridors, visiting multiple waypoints, and

minimizing incursions to keep-out regions. These issues are addressed herein with a

new approach by triangulating the search space in two-dimensions, or using a tetra-

hedron discretization in three-dimensions to define a polygonal search corridor free

of constraints while alleviating the dependency of problem specific parameters by

translating the problem to barycentric coordinates. Within this connected simplex

construct, trajectories are solved using direct orthogonal collocation methods while

leveraging navigation mesh techniques developed for fast geometric path planning so-

lutions. To illustrate two-dimensional flight trajectories, sample results are applied to

flight through downtown Chicago at an altitude of 600 feet above ground level. The

three-dimensional problem is examined for feasibility by applying the methodology

to a small scale problem. Computation and objective times are reported to illustrate

the design implications for real-time optimal control systems, with results showing

86% reduction in computation time over traditional methods.
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SIMPLEX CONTROL METHODS FOR ROBUST CONVERGENCE OF SMALL

UNMANNED AIRCRAFT FLIGHT TRAJECTORIES IN THE CONSTRAINED

URBAN ENVIRONMENT

I. Introduction

In the last 25 years, the United States Air Force (USAF) has seen the roles and

responsibilities of Unmanned Aircraft Systems (UAS) continue to grow and be recog-

nized as critical assets across all levels of joint and multinational command [1]. Over

this time, UAS missions have been categorized into the dull, the dirty, and the danger-

ous missions as laid out in the Unmanned Systems Integrated Roadmap for fiscal year

2013 - 2038 [2]. The dull missions are defined as those mundane tasks that may need

to be repeated continuously, the dirty missions are those that interact with hazardous

materials, and the dangerous missions involve high risk activities that threaten the

integrity of the aircraft and its crew. Developing UAS that can meet these mission

needs creates a challenge for research and development to field unmanned systems

that are affordable, flexible, interoperable, integrated, technologically advanced, and

capable of providing decisive force on the battlefield.

The Joint Concepts of Operations (CONOPS) for Unmanned Aircraft Systems

describes the most advantageous quality of the UAS as the ability to significantly

reduce the risk to human life for repetitive or dangerous missions [1]. Further, due to

the early successes of autonomous UAS in military operations, a 2003 congressional

report [3] labeled the UAS as a transformational technology that could change the

way wars are fought and won. Now, UAS are recognized as critical assets across all

levels of joint and multinational command, and the demand for the capabilities they
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can provide today and into the future will continue to grow [1].

Over the past two decades, the documentation that governs the roles and respon-

sibilities of the UAS has continued to be refined. The CONOPS document defines the

tasks for which the UAS shall support military activities. These include target acqui-

sition/marking, delivery of onboard precision-guided ordnance, tactical assessment,

and battle damage assessment. The CONOPS further defines dynamic targeting sit-

uations where a UAS would augment Close Air Support (CAS), Strike Coordination

and Reconnaissance (SCAR), reconnaissance, air interdiction, and personal recovery

[1]. Each of these tasks may require different levels of autonomy. Further, the Deputy

Chief of Staff for Intelligence has advocated for automation in the Small Unmanned

Aircraft System (SUAS) Flight Plan 2016-2036 [4] stating that onboard automation is

meant to streamline systems, sensors, and analytical tasks essential for the exploita-

tion of actual intelligence to augment and enhance human capabilities.

Along with the documentation, history has shown the advancement in the roles

and responsibilities of the UAS. At the start of the modern era in 1995, the USAF first

flew the RQ-1 Predator, which was predominantly used for reconnaissance missions.

By 2002, the Desert Hawk become the first SUAS. The mission, defined by the needs

of the war-fighter, shifted from just reconnaissance to Intelligence, Surveillance, and

Reconnaissance (ISR) along with target recognition [4]. As additional aircraft joined

the fleet, the success of the SUAS in military operations illustrated the surprisingly

fast growth of the roles and responsibilities performed by unmanned aircraft. In a

2003 report to Congress, the roles of the SUAS continued to increase as the report

initiated the call for unmanned aircraft to team up with manned aircraft to carry out

military operations [3]. Manned Unmanned Teaming (MUM-T) has since become a

top objective in SUAS development moving into the future.
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1.1 Motivation

In the SUAS Flight Plan 2016-2036, the CONOPS describes the operations of

small, agile unmanned aircraft teaming up with manned aircraft to accomplish tactical

to strategic level mission objectives [4]. These missions are taken a step further in

the CONOPS from MUM-T to loyal wingman operations where the efficiencies of

the manned flight are augmented with a subordinate SUAS to increase the overall

capability of the flight operations. The document describes the Tactical Off-Board

Sensing (TOBS) concept for loyal wingman where a SUAS is teamed with a manned

aircraft for ISR or strike missions. Coordination between the two aircraft remain for

the duration of the mission, specifically as the SUAS explores the environment for

target data updates, thus reducing the burden and risk of life to the human operators

of the manned aircraft.

The Air Force Special Operations Command (AFSOC) is working with the Air

Force Research Laboratory (AFRL) to improve AFSOC’s targeting capabilities in

poor weather and other challenging conditions through TOBS. AFRL’s vision for

autonomy, science, and technology for the year 2020 is to obtain “intelligent machines

seamlessly integrated with humans - maximizing mission performance in complex and

contested environments” [5]. The Autonomy Science and Technology Strategy signed

in 2013 states four goals aimed to achieve this vision [5]. The third goal, “Ensure

operations in complex, contested environments” refers directly to the TOBS effort.

The TOBS problem is executed in two phases. In order to give a host aircraft

a better view of the battlefield, a SUAS is deployed to locate target coordinates at

a low altitude, possibly below weather or other obstructions. In the first phase, the

SUAS acts like a sensor for the host aircraft, remaining in the target region until

the operator engages on the target or dismisses the effort. The second phase consists

of the SUAS traveling from the initial target region to a second target region. The
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required flight path in this phase must be determined autonomously, with a real-time

solution while avoiding terrain, man-made constraints, and airspace keep-out regions.

AFSOC has stated their desire of the system as “a software driven autopilot...you tell

it where you want it to go and where you want it to orbit and then it goes there” [6].

The solution to the first phase of the TOBS problem was evaluated in Heidlauf’s

work [7] and continues to be developed at AFRL’s Power and Control’s Division.

AFRL’s interpretation of the second phase of the TOBS problem is to guarantee a

solution for the flight path beginning at the terminal state of phase one and concluding

at the second target location. Flight paths are to be determined in near real-time

using optimal control techniques.

There are two common challenges that prove to be problematic when using opti-

mal control software. First, the convergence to a solution is not always guaranteed.

Second, the time required to achieve a solution can vary greatly. Both of these issues

can be attributed to the problem formulation, the implementation of the constraints,

and the initial guess that is used to seed the Non-Linear Program (NLP) solver. To

overcome these issues, insight will be taken from developments in fast geometric path

planning algorithms where simplex discretization techniques are used to quickly find

feasible paths through constrained regions.

Initially, the two-dimensional environment will be explored for feasibility of the

solution method. The mission scenario will be restricted to a constant altitude and

path constraints will be specified. Fast geometric path planning techniques will be

used to discretize the domain and generate an initial path for the vehicle that will be

used to seed the optimal control solver in an attempt to improve the computational

speed and accuracy of the NLP. Expanding the scenario to three-dimensional space

is challenging as there is not a simplex discretization method that can immediately

be leveraged as in the two-dimensional case. Therefore, an analysis will be conducted
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to determine feasible methods to expand the problem domain using a triangulation

or tetrahedron technique, referred to as a Connected Simplex Corridor (CSC) in this

document, in order to acquire optimal path solutions through an urban environment.

1.2 Research Questions, Scope, and Tasks

The TOBS program is the program of record for this research and is defined with

a host aircraft and a subordinate aircraft. Throughout this work, the SUAS will

be defined as the subordinate aircraft either air or ground deployed and in constant

communication with the host aircraft. Throughout the duration of phase two, path

planning and control shall be completed onboard the SUAS with no guidance from

the host aircraft other than to inform the SUAS on target location and constraint

regions.

Research Questions.

Hypothesis: The existence of a feasible flight path through a constrained environ-

ment can be determined quickly and efficiently (in near real-time) with a hybrid method

combining optimal control direct orthogonal collocation methods with fast geometric

path planning techniques.

The research questions related to this hypothesis are:

1. How do you formulate the two-dimensional optimal control problem for optimal

trajectories in complex urban environments?

2. Can the computational speed and robustness of convergence to the two-dimensional

optimal control problem be improved by formulating the problem within a CSC

construct using fast geometric path planning techniques?

3. How do dynamic constraints and constant wind fields affect the flight path
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solution acquired from a simplex discretization?

4. How can the three-dimensional problem be formulated using simplex or poly-

hedronal discretization techniques?

Research Scope.

The work outlined in this research will commence at the terminal state of phase

one of the TOBS problem and will continue through the duration of phase two. Phase

two will terminate at a specified location for the second target or on a defined orbit

around the target.

The primary scope of this research will be limited to constrained trajectory op-

timization motivated by increasing computation speeds, accuracy, and convergence

rates of the optimal control software. Initially, the problem will be limited to two-

dimensional flight with constraints representing an urban setting. To provide a some-

what realistic scenario, constraints will be determined from image and building infor-

mation of a portion of downtown Chicago, USA. Methods and limitations to extend

the two-dimensional techniques to three dimensions will be explored. The TOBS

aircraft will be ground or air launched and assumed to have constant communication

with the host aircraft, however control and path generation must be accomplished on-

board the SUAS. The aircraft hardware and sensor packages will be consistent with

the phase one design and therefore is beyond the scope of this research.

Figure 1 describes a typical feedback control system for non-linear control. Given

a commanded input of aircraft Euler angles, position, and desired terminal position,

a smooth and achievable aircraft trajectory is generated in the open loop. The closed

loop control consists of controllers, vehicle dynamics, exterior disturbances such as

wind gusts, and sensor data. The feedforward controller generates a set of controls

based on the ideal set of dynamics. The errors that are associated with mis-modeled

6



Figure 1. Non-Linear Feedback Control

dynamics, exogenous inputs, and sensor noise are accounted for within the feedback

controller. In order for the feedback control to have full controllability, observers and

filters are incorporated into the feedback loop such that estimates of the full state

can be achieved [8]. The work herein presents methodologies for generating aircraft

trajectories, shown in the “Generate Trajectory” block in Figure 1, onboard the SUAS

in near real-time based on a priori knowledge of flight parameters and disturbances.

The strength and direction of wind fields and the motion of dynamic constraints are

assumed known such that path trajectories may be acquired in realistic environments.

Modeling the closed loop to maintain the control parameters along the desired path

while accounting for mis-modeled dynamics, exogenous inputs, and sensor noise is

outside the scope of this research.

The optimal control used to find the feasible path can be formulated and solved

using many different methods. This research will explore direct orthogonal colloca-

tion methods which have proven to be effective in computing real-time solutions to

optimal control problems [9]. Other methods such as Dynamic Programming (DP)

and heuristic search algorithms will be used to find feasible regions of the optimal

solution. Fast geometric path planning methods will be explored as a method for

discretization, allowing for a phased solution through a CSC.

Real-time solutions will be evaluated based on a comparison between different

7



models of the constrained environment. The actual time required to solve the flight

trajectory will be dependent on several factors such as the algorithm chosen, computer

processor speed, and memory allocation.

Research Tasks.

With the research objectives defined above, the following seven tasks will be ac-

complished.

1. Evaluate path planning constraint equations and the impact different formula-

tions have on the optimal control problem.

2. Identify a mission scenario and formulate the minimum time constrained opti-

mal control problem with polygonal static constraints in an urban environment.

3. Implement CSC techniques for optimal path planning to multiple waypoints

within a highly constrained urban environment.

4. Minimize incursions to keep-out regions incorporated into a constrained urban

environment while implementing CSC techniques.

5. Determine the effects of constant wind fields on the feasible flight paths acquired

with CSC methods in optimal control.

6. Explore contingency operations for dynamic path obstructions with CSC tech-

niques.

7. Examine the CSC methodology to extend the TOBS two-dimensional simplex

control problem to the third-dimension.
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1.3 Assumptions and Limitations

The assumptions and limitations made within the scope of this research are re-

quired to sufficiently bound the tasks such that they remain tractable within the

employed numerical techniques. The tools employed to acquire computationally effi-

cient algorithms for SUAS path trajectories provide a simplex search space found with

a greedy A* search algorithm. Therefore, this research focuses on determining feasible

solutions that satisfy the dynamic constraints consistently and efficiently as opposed

to the necessity of arriving at the global optimal trajectory for each simulation.

Dynamics and UAS Model.

The SUAS is modeled as a point mass and initially all external disturbance forces

on the vehicle will be excluded. As techniques are discovered that guarantee conver-

gence of the flight path trajectory, constant wind fields will be implemented to analyze

the affects on the feasible solution. This work will be accomplished in simulation only

within MATLABr on a personal computer.

For the two-dimensional tasks, the SUAS will be modeled with five states con-

sisting of the vehicle’s x-position, y-position, heading angle, heading angle rate, and

velocity. The control for the SUAS will consist of the change in heading angle rate

and acceleration. The three-dimensional problem will consist of a five state model

consisting of the vehicle’s x-position, y-position, z-position, heading angle, and pitch

angle. The control for the three-dimensional scenarios will consist of the heading

angle rate, pitch rate, and velocity. The SUAS performance specifications for ve-

hicle parameters was determined in coordination with AFRL such that a tractable

scenario could be developed. Currently there is not a specific vehicle designed for

this research, however, design characteristics will fall within a range from Group 1 to

Group 2 unmanned aircraft [1, 10].
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CONOPS.

For the TOBS mission, SUAS can be hand launched from a ground unit or air

launched from a tube located on the host aircraft. Depending on which technique

is employed it could drastically affect the size, weight, and performance characteris-

tics of the vehicle. This research effort will assume the vehicle is ground launched

and therefore could have an extensive flight time allowing the vehicle to travel large

distances between target region one and target region two. The constraints encoun-

tered will model an urban canyon applicable within the TOBS mission scenario with

realistic vehicle parameters and mission times, defined in Chapter IV.

1.4 Research Methodology

Two primary tools are used in this research. The first is a MATLABr based soft-

ware package for solving general purpose optimal control problems, GPOPS-II. This

is a general purpose optimal control software package that is used to solve nonlinear

optimal control problems using direct orthogonal collocation and Gaussian quadra-

ture methods [11]. Required input parameters to GPOPS-II will be standardized for

any TOBS mission and will be solved through a phased approach that is built from

a CSC technique.

The second tool is the Triplanner toolkit used in the two-dimensional scenarios.

With the Triplanner toolkit, a discretized simplex mesh is generated based on the

constraints in the environment, rather than the size of the space. For each simplex,

the vertex points provide coordinates for which any point within the simplex can

be determined using a barycentric coordinate system. Through the discretization

technique, the constraints become polygonal regions that can be eliminated from the

search space. Using fast geometric path planning algorithms, a feasible path can be

found consisting of a series of traversed simplexes, formed from either a triangular
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or tetrahedron mesh, creating a “search corridor”, or CSC. This CSC along with

the feasible path solution can be used to seed a NLP within an optimal control

solver such as GPOPS-II to determine the optimal path through the defined space.

When connecting multiple results from Triplanner, an interval is defined as one CSC

connecting two defined points. When accomplishing a path across multiple waypoints,

several intervals will be combined to determine the complete optimal solution.

Leveraging work performed in fast geometric path planning allows for feasible

path solutions that are in close proximity to the optimal solution. The geometric

path solutions alone are ideal for computer games and video software where a level

of realism is desired, however they are not intended for designing rate limited control

variables for air vehicle path planning and therefore including real vehicle dynamics

and control through optimal control software is a key component to the methodology.

Figure 2 describes the basic components of the algorithm required to implement

this methodology. The algorithm is initiated by defining mission specific parameters.

These include the initial and terminal points of the mission, the vertex points of the

domain space, the vertex points of each building constraint that must be avoided, and

the vehicle specific bounds on the SUAS state and control variables. These inputs are

given to a fast geometric path planner where the search space is discretized, a CSC is

selected, and an initial path solution is determined. Next, the data is conditioned to

formulate a complete guess vector for the time, states, and control. These vectors are

partitioned into each simplex of the CSC. The connectivity matrix is constructed to

provide the proper order of the channel, analytical calculations for the methodology,

and define state values across simplex bounds. This data is provided to the optimal

control solver GPOPS-II where a transformation is performed to the barycentric

coordinate system so that a phased approach can implemented in solving for the

optimal solution.
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Figure 2. Data Flow Chart

Through this fast discretization process, constraints will be eliminated, an initial

guess used to seed the NLP will be determined quickly, and the problem will be

formulated in GPOPS-II such that a feasible solution to the control problem can be

calculated for onboard solutions. Figure 3 illustrates the capabilities demonstrated

in this work.

Figure 3. SUAS Capabilities

The first two scenarios evaluated analyze the feasibility for the two and three-
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dimensional case, followed by waypoint tracking through narrow constraint corridors,

inclusion of keep-out regions, impact of a constant wind field, and contingency ma-

neuvers. Each of these simulations will be designed to provide feasible solutions that

are accurate and computationally efficient and demonstrate the SUAS capabilities.

1.5 Expected Contributions

The following specific contributions to the optimal control field are expected at

the completion of this work.

1. A defined methodology for solving highly constrained optimal control problems

for SUAS path planning by eliminating all hard keep-out constraints from the

NLPs domain and reducing problem specific parameter bounds to aircraft spec-

ifications.

2. A demonstration for handling exogenous inputs to the aircraft system, to include

constant wind fields and dynamic constraints. Wind fields will be incorporated

within the simplex construct while contingency maneuvers will be developed for

continuous operations should a CSC become obstructed.

3. Provide a foundation for optimal path solutions in three-dimensions by per-

forming a tetrahedron discretization of the domain, acquiring a feasible simplex

corridor, and implementing the methodology into the optimal control solver to

acquire optimal path solutions.

1.6 Document Outline

This dissertation document contains six chapters and six appendices. The first

chapter introduces the motivation, defines the research questions, scope, and tasks,
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sets a baseline for the assumptions and limitations, and outlines the expected contri-

butions. Figure 4 describes the topology of the work.

Figure 4. SUAS Optimal Control Topology & Chapter Layout

Chapter II provides an open literature review on previous methods and solution

techniques for solving constrained optimization problems. Chapter III describes the

methodology and techniques used for this research effort and defines the optimal

control problem for the two-dimensional and three-dimensional problems. Chapter

IV presents scenarios for constraint models, the two-dimensional problem through a

constrained map of downtown Chicago, USA, and a feasibility analysis extending the

two-dimensional problem to three dimensions. Chapter V presents four additional

scenarios providing variations to the required mission or utilized cost function. This

includes waypoint tracking, minimizing incursion to keep-out regions, a constant wind

analysis within the simplex construct, and contingency operations should flight path

corridor become obstructed. Finally Chapter VI provides a conclusion for the work

and a recommendation for future work within the CSC construct.
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II. Literature Review

2.1 Introduction

The optimal control problem for determining optimal flight trajectories for SUAS

path planning is one that presents many challenges. This chapter provides a literature

review covering three main topics in optimal control design for SUAS. The first section

addresses optimal control theory while examining the differences between indirect

and direct solution methods, the impact of modeling constraints on the search space,

and the effects the quality of an initial guess has on the solution. The second section

explores computer animation techniques and comes to an understanding of how search

algorithms are chosen and implemented to traverse autonomous agents through a field

of hard path constraints, often implemented within computer animation. Finally, the

third section examines techniques that may be able to bridge the gap to real-time

solutions by combining the fast convergence times of the geometric path planning

algorithms with the high fidelity solutions for complex dynamics associated with

optimal path planning for SUAS.

2.2 Optimal Control

Dating back to the mid 1980’s, direct collocation methods have been used to solve

the optimal control problem for unmanned vehicles. At the Air Force Institute of

Technology (AFIT), the application has covered a range of topics, including collision

avoidance [12], loyal wingman [13], hypersonics [14], missile avoidance [15], Air Force

range flight safety [16], and many more in the the aerospace field. In each of these

examples, computation speeds and convergence issues have prevented the algorithms

from being used for onboard, real-time operations. Optimal control solvers such

as GPOPS-II have increased the accuracy and computation speed for many optimal
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control problems, however there remains convergence issues that can arise and prevent

a solution from being determined. First, any gradient-based optimal control solver

requires an initial guess to the solution. This guess can have a great affect on the

optimal solution found, which may or may not be the global optimum. If a poor

guess is presented, the NLP solver may converge to a local minimum rather than a

global minimum, or worse, convergence may not be achieved and therefore a solution

may not be found. Second, constraints can be difficult to model since the NLP solver

requires that the obstacle be represented with a continuous and differentiable function.

Because of this, most obstacles described in the literature use circular or elliptical

shape functions to represent an obstacle. However, many constraints such as buildings

or mountains, have straight line edges which become more problematic to represent

without introducing error into the shape model. Third, using collocation points can

create a situation where the optimal path indirectly violates a hard constraint. If a

hard constraint is long and narrow or has a sharp corner, a solution using collocation

points could pass directly through the constraint, or cut the corner of the constraint

without adding a penalty to the objective function but clearly violating the constraint.

Finally, an optimal control solver requires the problem to be bounded in the domain

of the states, control, and time. This can be challenging for many problems as there is

uncertainty as to how large or how tight to make these bounds which can be directly

related to the computation time required for solving the problem.

One reason programs such as GPOPS-II are successful is because they take ad-

vantage of a sparse Jacobian matrix, built through quadrature and consisting of the

system dynamics, path constraints and boundary constraints [17]. Computation time

can be increased as the data required in the Jacobian matrix is minimized. By elimi-

nating constraints from the problem formulation, less data is required in the Jacobian

matrix and convergence times can be improved. These four issues have all contributed
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to the challenge of developing a robust, real-time optimal control solution.

The Optimal Control Problem.

The optimal control problem solutions satisfy differential equations subject to a

number of boundary and path constraints while minimizing (or maximizing) a per-

formance index. Due to the complexity of most optimal control problems, analytical

solutions cannot be obtained and therefore numerical methods are employed to find

a feasible solution. The two common methods studied in the literature to solve the

optimal control problem are indirect and direct methods. Both methods have been

documented extensively [18, 12, 19] and therefore only an overview will be covered in

this section. Each method begins by defining a set of differential equations that de-

scribe the dynamics of the system as a function of the state variables, x, the control,

u, and the time, t.

ẋ = f(x(t), u(t), t) (2.1)

The objective is to find an admissible control, u∗ that minimizes the performance

index defined as a summation of the terminal cost, Φ, plus the integrated cost, L,

described in Bolza form [20] as

J = Φ(x(to), t0, x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt. (2.2)

The objective function can be formulated to solve a multitude of problems. The

one that will be used predominantly in this work, and the most common, is simply

minimizing the time for the dynamics to propagate from the initial condition to the

17



terminal condition, describes as

J = (tf − t0) =

∫ tf

t0

1dt. (2.3)

A second example is to minimize the control effort required to propagate the dynam-

ics,

J =
1

2

∫ tf

t0

u(t)TRu(t)dt (2.4)

where R defines a positive-definite weighting matrix applied to the control vector. A

third example again minimizes the control effort while also minimizing the deviation

from a known or desired path, C,

J =
1

2

∫ tf

t0

[(x(t)− C(t))TQ(x(t)− C(t)) + u(t)TRu(t)]dt. (2.5)

Once again, R is a positive-definite weighting matrix applied to the control, Q is

defined as a positive semi-definite weighting matrix applied to the deviation of the

states from the desired path. The fourth example illustrates a cost function designed

to maintain a location near the origin with minimal control effort,

J =
1

2

∫ tf

t0

[x(t)TQx(t) + u(t)TRu(t)]dt. (2.6)

Finally, the last cost function example incorporates the φ term by minimizes the

distance to a final location of the state with minimal control effort,

J =
1

2
(x(tf )− xf )TSf (x(tf )− xf ) +

1

2

∫ tf

t0

u(t)TRu(t)dt, (2.7)

18



where Sf defines a positive semi-definite matrix applied to the final state and xf de-

fines the desired final location [21]. To define the boundary of the problem, constraints

are added for the initial and terminal states

ψ(x(t0), t0, x(tf ), tf ) = 0; (2.8)

while inequality path constraints may be included to eliminate regions of the solution

domain

CU ≤ g(x(t), u(t)) ≤ CL. (2.9)

Indirect Methods.

Indirect methods apply the calculus of variation to transform the optimal control

problem into a Hamiltonian Boundary-Value Problem (HBVP). The Hamiltonian

relates the optimal states and controls to the optimal co-states, p(t) described as

H(x(t), u(t), p(t), t) = L(x(t), u(t), t) + pT (t)f(x(t), u(t), t). (2.10)

By differentiating the Hamiltonian with respect to the states, controls, and co-states,

the first-order necessary conditions for optimality are formed [20].

ẋ∗(t) =
∂H
∂p

(x∗(t), u∗(t), p∗(t), t) (2.11)

ṗ∗(t) = −∂H
∂x

(x∗(t), u∗(t), p∗(t), t) (2.12)

0 =
∂H
∂u

(x∗(t), u∗(t), p∗(t), t) (2.13)

Solving the first-order necessary conditions results in a set of extremal trajectories.

The optimal control, u∗ is chosen as the trajectory which produces the lowest value
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evaluated by the performance index. Equation (2.11) and (2.12) relates the states

to the co-states while Equation (2.13) requires that the optimal control minimizes

the Hamiltonian. If constraints are included in the problem setup, slack variables are

used to translate the constrained problem to an unconstrained problem. In solving the

optimal control problem with the indirect method, the co-states are solved first and

the optimal control is determined through the co-states, in other words the optimal

control is determined “indirectly”. This method produces a highly accurate solution

and assures the first-order optimality conditions are satisfied.

Disadvantages to the indirect method include a small radii of convergence and the

requirement to analytically derive the HBVP. A good guess for the states, control

and co-states is required for convergence, which often becomes time consuming and

problematic, specifically for the co-states which have no obvious physical meaning to

the problem [22].

Direct Methods.

Many times the optimality conditions are difficult to formulate and determining

a realistic estimate for the co-states is not intuitive. To avoid these issues, direct

methods transcribe the infinite-dimensional optimal control problem into a finite op-

timal control problem with algebraic constraints, otherwise known as an NLP [23].

There have been many methods developed to transcribe the optimal control problem

into an NLP, including direct shooting methods [24], state and control parameteri-

zation methods [25], and direct orthogonal collocation methods [12, 18]. The focus

of this research will be on direct orthogonal collocation methods, also referred to as

psuedospectral methods in the Aerospace field of study [23].

When solving an optimal control problem with direct orthogonal collocation, the

continuous time optimal control problem is transcribed to a discretized nonlinear
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programming problem. This is accomplished with three main concepts; orthogonal

collocation, polynomial approximation, and Guassian quadrature [19]. For this re-

search, the continuous functions of the optimal control problem are approximated

with a finite dimensional Lagrange polynomial basis [26]. The state, x, is approxi-

mated at a set of collocation points described as

x(τ) ≈ x̃N(τ) =
n+1∑

i=1

xiLi(τ) (2.14)

where x̃N is the N point approximation of x(τ), xi represents the weighting function,

Li(τ) is the Lagrange polynomial basis

Li(τ) =
n∏

i=0
j 6=i

τ − τj
τi − τj

(2.15)

and τ represents an affine transformation of the time t on the interval from (−1, 1)

by

τ =
2t− (tf + t0)

tf − t0
. (2.16)

For this research Legendre-Gauss-Radau points will be implemented [19]. With the

problem discretized, Gaussian quadrature is used for differentiation or integration of

the state and control. This method is termed a global method as each collocation

point is solved simultaneously rather than other fixed interval methods such as a

three or five point formula method [27]. The error produced by this method can be

greatly reduced by choosing the collocation points appropriately with Legendre or

Chebyshev point placement to minimize the affects of Runge phenomenon.

One disadvantage of the direct method results from the discretization of the op-
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timal control problem producing several minima, leading to a solution that may be

far from the global optimum. To minimize this affect, an accurate prediction of the

state, control, and time are required to seed the NLP. The quality of the prediction

will have a direct affect on the feasibility of the solution, as there is no guarantee

of convergence to a global minima with direct methods. Many algorithms have been

proposed previously to produce an initial guess to the solution, including Dubins path

algorithms [28] and heuristics [29, 30] with computation time and accuracy being the

limiting factor for complete hybrid solutions.

2.3 Constrained Trajectory Optimization

Direct orthogonal collocation has quickly become a popular method for determin-

ing optimal trajectories of air breathing vehicles with mission constraints. Boundary

constraints are often placed on the geographical location for the aircraft’s starting

point and terminal point. The vehicle dynamics may contain constraints such as alti-

tude limitations and the vehicle control may be restricted by limiting factors such as

the max turning rate, velocity, or angle of attack. Path constraints can be imposed

to represent no-fly zones, infrastructure, or terrain. Each of these constraints are

mission specific and are required to be updated for each flight profile.

The complexity of the optimal control problem can grow exponentially when con-

straint models are incorporated. These models can range from simplistic shapes

representing circular or elliptical regions, to superquadrics, or even polygonal shapes

[28]. Each of these must be modeled as a path constraint in the optimal control

problem, reducing the sparsity of the Jacobian matrix and increasing the computa-

tional requirements. Further, these path constraints must be smooth differentiable

functions in order to quickly acquire the Jacobian and Hessian. This can be problem-

atic when designing algorithms to handle multiple constraints in a computationally
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efficient fashion.

Basic Shapes.

Many techniques have been employed to appropriately model path constraints in

two-dimensional space. One of the most commonly employed techniques is to simulate

a vehicle no-fly zone with a circular or spherical constraint function [31, 18, 14] of the

form

‖xk(t)− x̃n‖2 > rn. (2.17)

Here, the difference between the position states of the kth vehicle, xk and the center of

the nth no-fly zone, x̃n, must be greater than a defined radius of the nth zone, rn. These

functions are differentiable and smooth and therefore can be handled with relative ease

using an NLP solver such as Interior Point Optimizer (IPOPT) or Sparse Nonlinear

Optimizer (SNOPT). The drawback is that the constraint is restricted to circular or

spherical shapes. This may be adequate to represent a no-fly zone, however error will

be introduced for polygonal shapes representing city infrastructure or landscape that

require a more polygonal shaped constraint models.

Superquadrics.

Superquadrics have been used extensively in computer vision, computer graphics,

and robotics [32] and are commonly used to transition circular and elliptical shaped

constraint models to polygonal shapes. For two-dimensional shapes, the superellipse

centered at (0, 0) is a type of Leme curve which is defined as

F (x, y) =
(x
a

)m
+
(y
b

)m
(2.18)
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where any point on the SUAS trajectory is outside of the constraint when F > 1.

Variables a and b represent the semi-major and semi-minor axes of the superellipse

and m is a rational number defining the shape at the corners of the object as shown

in Figure 5.

Figure 5. A superellipse can change continuously from a star-shape through a circle to
a square shape in the limit (m → ∞) [32]

When solving problems with direct orthogonal collocation, the superquadric has

been used to include constraint shapes other than simple circular or elliptical regions.

Hurni, Lewis and Mohan used the superquadric in a constraint rich environment and

found success in convergence but at the cost of computation time [33, 34, 35]. Their

research has shown a sufficient number of shapes can be produced to adequately

represent an optimal control problem as shown in Figure 6.

The shapes, produced from Equation 2.18 with m = p, can be formulated into an

inequality constraint referred to as an inside-outside function as follows,

F (x(t), y(t)) =

(
x(t)− xc

a

)p
+

(
y(t)− yc

b

)p
− 1 > 0. (2.19)

Here, the position of the vehicle, (x(t),y(t)) is evaluated in the function at each col-

location point to assure the vehicle remains outside the constraint located at (xc, yc).

The NLP solver, whether it is an IP solver or a SQP solver, requires that the function
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Figure 6. Various Shapes with Varying Parameters of Equation [35]

used to model constraints be continuous and smooth. As the p parameter is increased,

the gradient of the function becomes excessively large at the corners and the function

itself can grow without bound resulting in a poorly scaled function. To minimize the

impacts this can have on an NLP solver, two common approaches are taken. The

natural log can be taken of both sides of the equation to scale the path constraint

and balance out the problem formulation [35]. Alternatively, the function can be

incorporated into a modified inside-outside function through a sigmoid function [36].

This method allows for a bounded, continuous, and differentiable function,

φ(F ) =
1

1 + e(s(F (x,y)−1))
. (2.20)

Here, s represents the stiffness parameter of the curve and F as defined in Equation

2.19. Figure 7 shows a straight line vehicle trajectory, annotated with the blue aster-

isks, through a constrained circular region located at (1, 1). The gray curves depict
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the stiffness of the function as s is varied from 0.1 to 10.

Figure 7. Stiffness Transition of Sigmoid Function

Incorporating this function as a path constraint, any functional value greater

than zero represents a position close to or inside the keep-out region dependent on

the stiffness parameter. The normalization of this function value can be handled

through the distributed weight values when included in a cost function. Smith utilized

sigmoid functions to model inequality constraints in the optimal control problem

designed to minimize deviation from a flight path while maintaining horizontal or

vertical separation from intruder aircraft [12]. Smith’s work defined a superquatric

superellipsoid around the primary aircraft, representing a safety buffer for intruding

vehicles. The work presented herein applies sigmoid functions in the two-dimensional

scenario to model aircraft keep-out regions and implements a stiffness value of s = 2,

illustrated by the solid black line in Figure 7.

The formulation in Equation 2.20 has been shown to be a feasible solution to

modeling two-dimensional constraints, however computation times have exceeded the

required values to run the algorithm for real-time operations. Hurni illustrates this

fact in his dissertation and increases computation speed by providing a previous

solutions guess to the NLP solver through a bootstrap method [34]. Although this
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is a common practice, the objective of this research is to solve both the initial guess

and the optimal path for real-time operations onboard the air vehicle.

In three-dimensions, superquadrics have been used in numerous applications to

model city streets or design aircraft components [32]. Smith used superquadric mod-

eling to represent odd-shaped probability regions for aircraft collision avoidance [12].

Similar to the two-dimension discussion, the rounded edges of a shape can be min-

imized and different shapes can be constructed by altering parameters in the basic

equation centered at (0, 0, 0) [37]

((
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

= 1 (2.21)

where constants a1, a2, and a3 set the widths and height of the superellipsoid and ε1

and ε2 vary the cross-section parallel and perpendicular to the x, y plane respectively.

Although superquadrics can begin to represent polygonal shapes, the additional com-

putation time and inconsistencies that result are not practible for onboard SUAS

computations.

Polygon Functions.

To further extend the constraint model, the ray-casting algorithm [38, 39], used

to determine if a point is inside an arbitrary polygon, returns a boolean variable, in

this case with True corresponding to a point outside a polygon, and False for a point

inside a polygon. To eliminate the discontinuity along the edges of the polygons, the

result of the ray-casting algorithm is then multiplied by the distance to the nearest

polygon.

Given a line, denoted as v, passing through the points (x1, y1) and (x2, y2), and

an arbitrary point denoted as p = (xp, yp), let n = (xn, yn) denote the point on line
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v nearest to the point p. The point n is computed as below.

u = (xp−x1)(x2−x1)+(yp−y1)(y2−y1)

(x2−x1)2+(y2−y1)2 (2.22)

xn = x1 + u(x2 − x1) (2.23)

yn = y1 + u(y2 − y1) (2.24)

If v is a line segment, u ∈ [0, 1]. Therefore if u < 0 according to Equation (2.22),

u = 0 and if u > 1, u = 1. The distance from p to n then gives the minimum distance

from p to v.

To compute the shortest distance to any edge in the environment, the above

procedure for finding the minimum distance to a segment is computed for all segments

of all polygons in the environment. The minimum distance for the environment, denv,

is set to an arbitrarily high value. Then, for each segment, the distance di is computed.

If di < denv, then denv = di. Since denv only computes the minimum distance to an

edge of a polygon in the environment, it is then multiplied by the ray-casting result,

computed in MATLABr using the inpolygon function. The result returns a value

of denv = 0 for all points that are inside a polygon, and denv > 0 for all points outside

a polygon.

Heuristic Methods.

Thus far, only indirect and direct methods have been discussed for optimal SUAS

trajectory path development. Another widely accepted method for numerical opti-

mal control is the use of heuristics [40]. Heuristics methods are initiated with a set of

possible solutions and use a stochastic search to adapt and iterate the initial solution

until an optimal solution is found [29]. Heuristic methods are search based methods

where the gradient of the problem is not used, therefore not requiring the problem to
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be differentiable as in the direct method. These methods provide two main advan-

tages over indirect and direct methods; the initial solutions are randomly determined

and therefore no initial guess of the solution is required and the stochastic search

leads to a global technique in which a global minimum is often found. However the

solution must be parameterized to a low number of variables, and may not be as

accurate as indirect or direct methods. Additionally, there is still no guarantee that

the solver will converge to the global minimum solution. Therefore, often these two

methods are used together, where the heuristic algorithm is used to generate an initial

guess for the gradient-based direct method [41]. In computer animation and robotics,

heuristic search techniques are used to find feasible solutions quickly through static,

re-planning, and anytime algorithms. Ferguson discusses the strengths and weakness

of these algorithms [30].

Each of these methods are based on the premise that the constraint is contained

inside the search space and the NLP solver must evaluate constraint equations to

assure a feasible solution can be attained. The following section leverages research

from the field of computer animation to eliminate the constraints from the search

space by performing a triangular discretization dependent on the constraint field

rather than the size of the search space.

2.4 Fast Geometric Path Planning

Direct orthogonal collocation methods are capable of meeting the computational

requirements for onboard SUAS operations if an adequate starting point of the states

are given to the NLP solver. When approaching the constant altitude SUAS problem,

comparisons can be made to path development of autonomous agents in the interactive

virtual world. Virtual worlds are populated with autonomous virtual humans, or

agents, where computed paths must take into account path length, time, and energy
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expended traversing the path [42].

The demand on the complexity of the virtual world combined with improved

graphic capability has encouraged new techniques for achieving intelligent navigation

for the next generation virtual agent simulation [43]. Given the speeds of which these

video games are played, path planning algorithms must perform efficiently under

limited time budgets to traverse the autonomous agent from one end of a building

to the other. Often greedy algorithms are chosen in which the first feasible path

that is found is continuously improved according to the characteristic dynamics and

a pre-determined threshold on computational time. The path available at the time

required is then implemented [44, 42]. This can often result in a sub-optimal path,

but in the virtual world of the gaming industry, the timeliness of the solution is more

heavily favored over the most optimal route.

2.5 Discretization Methods

Grid representations are a discretization of the space that allow for strict guaran-

tees on optimality and the completeness of a solution. One application is related to

computer animation and the path planning of autonomous agents [45]. The simplest

form of discretization is a uniform square grid. The performance and quality of the

solution are heavily dependent on the resolution of the grid, with fine resolutions

leading to increased computation time that are not feasible for real-time operations

[42]. Other methods include restricting path selections to specific roadmaps [46], cell

and portal graphs where the cells represent small search spaces and portals represent

doorways to other cells using a generalized Voronoi diagram [47], and simplex search

spaces where the domain is divided into triangular regions allowing for avoidance of

obstacles [48]. As each discretization method has advantages and disadvantages, this

research will focus on a simplex discretization method called Delaunay triangulation.
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Delaunay Triangulation.

Triangulations have been used for the purpose of computer navigation queries

due to their powerful representation of the structured environment. One of the main

advantages of triangulation over a uniform grid is that the triangular decomposition

of the space has O(n) cells, where n is the number of segments used to describe

the obstacles in the environment [49]. This allows for a discretization technique

that focuses on the complexity of the environment rather than the size of the space.

Delaunay triangulation is formed through the Dirichlet tessellation which is described

in detail in [50] and [51]. The result produces a set of triangles where no data point

will lie inside the circumcircle of any formed triangle. As a simple example, five points

are illustrated in Figure 8 below. The Dirichlet tessellation is synonymous with the

Voronoi diagram [52] and is shown with the dotted lines. Here the vertices of the

tessellation is equidistant to the corresponding triangular vertices. The Delaunay

triangulation is formed with perpendicular segments to the tessellation lines and is

illustrated with solid lines [51].

Figure 8. The Dirichlet Tessellation and Delaunay Triangulation [51]

The formal definition of a Delaunay triangulation can be found in [53] and is
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described as follows:

Definition. Let S be a set of points in the plane. A triangulation T is a Delaunay

triangulation of S if for each edge e of T there exists a circle C with the following

properties:

1. The endpoints of edge e are on the boundary of C.

2. No other vertex of S is in the interior of C.

The Delaunay triangulation may not always be unique [54]. Consider the case

where you have 4 points to form a square. The tessellation point is located at the

center of the square and therefore the Delaunay triangulation has two configurations,

both which are valid. The first divides the square from the top left to the bottom right

where the second divides the square from the top right to the bottom left. In this

case, either configuration may be chosen to form the triangulation. A more troubling

scenario is apparent when a constrained edge is required in the search space, forcing

the triangulation to be represented into a specific set, which may violate one of the

definitions given above. In this scenario, a constrained Delaunay triangulation must

be formed.

Constrained Delaunay Triangulation.

Often, fast geometric path planning algorithms discretize the search space with a

triangular mesh formed with a Constrained Delaunay Triangulation (CDT). A CDT

is a refinement of the Delaunay triangulation that forces a required segment as an

edge of the triangulation. The formal definition is described as follows [53]:

Definition. Let G be a straight-line constrained edge. A triangulation T is a

CDT of G if each edge of G is also an edge of T and for each remaining edge e of T

there exists a circle C with the following properties:
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1. The endpoints of edge e are on the boundary of C.

2. If any vertex v of G is in the interior of C then it cannot be “seen” from at

least one of the endpoints of e (i.e., if you draw the line segments from v to each

endpoint of e then at least one of the line segments crosses an edge of G).

The CDT is made of constrained edges and unconstrained edges. When determin-

ing an optimal path, the solution can cross an unconstrained edge, but must avoid all

constrained edges. Since the constrained edges are required, often formulation of the

CDT contains a vertex or an edge that does not satisfy the Delaunay triangulation

conditions, and therefore a CDT may not be equivalent to a Delaunay triangulation.

An example of the differences can be seen below in Figure 9.

Figure 9. A: Unconstrained Delaunay Triangulation; B: Constrained Edge Segments;
C: Constrained Delaunay Triangulation [53]

Here, Figure 9A shows a Delaunay triangulation without any constrained edges.

Figure 9B implements constrained edges into the field and Figure 9C illustrates the

CDT with the constrained edges included in the triangulation.

Using this technique, constraints can now be forced into the discretization of

the space. Applying these constraints to the SUAS path planning problem, these

boundaries illustrate hard constraint no-fly zones that represent polygonal constraint

shapes such as buildings, terrain, and restricted airspace.
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Path Search Algorithms.

Path planning algorithms have been designed to determine the best route from an

initial starting point to a goal location while satisfying conditions on constraints and

dynamics. In the field of optimal control, the dynamics of the agent must be satisfied

while obeying all constraints placed on the states, control, and path. In computer

animation, path planning focuses on determining the best route for the autonomous

agent while avoiding walls, furniture and other obstacles. Many algorithms have been

developed to accomplish autonomous agent path planning while placing an emphasis

on computational speed as solutions must be found quickly to give the appearance the

agent is in fact making real-time intelligent decisions as the video game progresses [55].

The following briefly outlines a few of the most used algorithms and the advantages

and disadvantages of each.

Dijkstra’s Search Algorithm.

Dijkstra’s search algorithm is an iterative procedure that repeatedly attempts to

improve an initial approximation of the path cost. It solves the dynamic programming

functional equation by the reaching method [56]. The algorithm is initiated with a

discretized space forming a collection of nodes defined by integers 1 through N . The

initial node, designated by the starting point, is given a function value f(1) = 0. The

first iteration than evaluates each connecting node based on the formula

vj = min{vj, vi + dij}. (2.25)

The node location is expanded outward for each iteration, updating the value of each

node in a tree-like fashion [35]. This procedure will set a value for each node in the

discretized space. Since each node was evaluated, the optimal path can be calculated
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between any two nodes in the domain. This algorithm takes advantage of Bellman’s

Principle of Optimality, stating the “optimal policy has the property that whatever

the initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first transition” [57].

Dijkstra’s algorithm searches the entire domain, allowing for a global optimal

solution upon completion. Additionally, in a stochastic environment, if the agent is

perturbed off the optimal path, the optimal path from the agent’s new location has

previously been calculated and can immediately be implemented. A consequence of

this algorithm is that the entire space must be searched, adding computation time

that the video game industry cannot afford.

Myers et al. executed the Dijkstra search algorithm to find minimum paths for

UAVs through polygon obstacles [58]. Their research focused on the two-dimensional

search with basic vehicle dynamics in a node-to-node search resulting in a Dubins path

model. They cite difficulties guaranteeing feasible paths while minimizing computa-

tional time and their algorithm only allows finite increments in the vehicle control for

heading with a constant speed. The Dijkstra search algorithm implemented in Myers’

research does not account for flight dynamics, and therefore a scenario could unfold

where the CSC through a constraint field is infeasible due to the flight limitations

(minimum turn radius) of the vehicle.

A* Search Algorithm.

The A* search algorithm gets its roots from Dynamic Programming and is an

extension to Dijkstra’s algorithm. Whereas the entire domain is searched with Dijk-

stra’s algorithm, an A* search is guided by a heuristic. It is considered an “informed

search” or “best-first search” as the algorithm searches the space until a solution is

found. Once a solution is found, the search continues to look for additional solutions
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with a lower cost value. If a lower cost is discovered, that solution replaces the pre-

vious solution. This process continues until the entire space has been searched or a

computational time limit has expired. If no time limits are imposed, the result of

the algorithm will be consistent with Dijkstra’s algorithm. However, in order to find

a solution in the quickest possible manner, time limitations are often placed on the

algorithm which may result in a sub-optimal path solution. In computer animation,

this is a trade-off in order to achieve the computational times required for video game

processes.

The A* algorithm is initiated in the same manner as the Dijkstra algorithm. The

initial node is given a cost value of f(1) = 0 and additional nodes are searched in a

tree like fashion. A heuristic is introduced and added to the cost function to give a

priority in the direction of the search. Often the Euclidean distance is used as the

heuristic and the overall cost function is

f(n) = g(n) + h(n) (2.26)

where g(n) is the cost evaluated at the current node and h(n) is a heuristic that

estimates the cheapest path from the current node to the endpoint [59]. At each

iteration, the A* algorithm must determine which nodes to expand by selecting the

path that minimizes the current cost, g(n) and the cost to go, h(n). In the case where

h(n) is set equal to 0, the result will be consistent with Dijkstra’s algorithm [60].

Disadvantages of the A* algorithm are related to the choice of heuristic which

must be chosen to underestimate the cost, thus giving a lower bound to the solution.

This may cause the algorithm to spend computation time discriminating between two

paths of equal remaining distances. Additionally, the result produces an optimistic

estimate of all possible solutions, resulting in a path that may be sub-optimal if the

algorithm is terminated after the goal node is first reached [59].
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RRT Search Algorithm.

Rapidly exploring Random Tree (RRT) algorithms first developed in the late

1990’s by Lavalle [61] and were designed to search non-convex spaces of high di-

mension by randomly building a space-filling tree. Specifically, they were built for

path planning with obstacles and differential constraints most commonly used for au-

tonomous robots. The algorithm consists of a tree of feasible trajectories by extending

branches toward randomly generated target points [62]. The search tends to advance

in large regions of unexplored space. The probability of the expansion of the existing

state is proportional to the size of the Voronoi regions, lending to large regions being

on the cusp of the search space. A significant feature of the RRT algorithm is that

it has been proven to be probabilistically complete, that is, the probability of finding

a complete path converges to one if a feasible path exists [62]. An illustration of the

RRT algorithm is given below in Figure 10.

Figure 10. RRT Expansion Example; Starting from the Center of a Square [61]

The disadvantage of this algorithm results from the randomly generated target

points used for the tree expansion. These points can become problematic when solving

the optimal control problem as points may be defined within an arc of minimum turn

radius. This creates points that require multiple turn maneuvers to achieve a desired

path and add to the computational time of the algorithm.

A hybrid solution for optimal control was developed by Aoude using an RRT

algorithm to develop an initial guess for an optimal control solution by pseudospectal
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methods [63]. The goal of his research was to develop real-time path planning for

multiple spacecraft reconfiguration maneuvers with various path constraints. His

results show the benefit of using an RRT algorithm as times were drastically reduced,

but did not reach a level required for onboard operations [64] and a consistency in

solution convergence was not achieved.

Triplanner Toolkit.

Marcello Kallmann has provided an extensive review of path development with

clearances in [65] and has developed the Triplanner toolkit algorithms designed to

determine the shortest path while accounting for minimum clearance distances to all

constraints [45]. Specifically, he focused on determining paths of shortest distances,

efficiency of computation time, and maintaining proper clearance from obstacles along

the calculated path. An overview of the development of the Triplanner algorithm is

discussed below. A more extensive review of the algorithm can be found in [65, 66].

First, let S define a set of n segments that form all the constrained edges in the

domain. The set of all endpoints of each segment then form the set P . A CDT, T ,

is then formed such that all segments of S are also segments of T and the Delaunay

criterion are upheld. Next, Kallmann performs a test to assure that a disk of radius

r can traverse through any given region. This enables an efficient computation of

paths with arbitrary clearances. If a local clearance test fails, a refinement of the

mesh is performed by redistributing the triangulation or adding a vertex point to

a straight line segment of the set S. This may result in a new set of constrained

edges, as a straight line segment could be subdivided into multiple sections. Once

the triangulation has passed the local clearance test, the final mesh is termed a Local

Clearance Triangulation (LCT).

A path through the LCT from a starting point p to a finish point q is defined
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as “free” if it does not cross a constrained edge. A free path will cross several un-

constrained edges resulting in a CSC formed of all traversed triangles. Using an A*

algorithm in a discretized space formed by the triangulation, a geometric solution for

the CSC is determined. The CSC formed by the A* search is dependent on the chosen

cost function and will result in a shortest path search defined by the cost metric. A

simplistic cost metric may consist of using the Euclidean distance between the cen-

troid of each triangle or instead using the midpoint of each unconstrained segment to

determine the best CSC. Kallmann settled on a cost function which begins the search

from the midpoint of each triangle, but enhanced the search through a reference point

connecting the point in the previously traversed edge to the final point q. If q is not

visible on the straight line path, the nearest vertex is used for the traversed point

while accounting for the radial offset distance form each vertex point.

After the CSC is determined, a funnel algorithm is used to find the shortest

path within the CSC. The funnel algorithm was developed by Lee and Preparata

and Chazelle [67, 68] as cited by [69]. The algorithm has been used to calculate

the shortest path under multiple applications; including path finding for autonomous

agents [70], querying visible points in large data sets to define shortest paths [71],

shortest paths for tethered robots [72] and robots in extreme terrain [73].

Given a CSC with a starting position p and final point q, the funnel algorithm

defines the entrance point of the simplex as the apex, a, and the starting point in

the funnel. Since the CSC has already been defined using the A* algorithm, the two

vertices connecting the next simplex can be defined as u and v, with the third vertex

w. If the straight line solution from a to w is feasible, a straight line path is chosen

from a to w as shown in Figure 11A. Maintaining a as the apex, the third vertex

of the next simplex is evaluated for the straight line path solution from a to w′ as

shown in Figure 11B. In the case where the straight line solution is not feasible, the
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vertex which is closest to the next point in the path is chosen as the new apex, a′

and the algorithm continues as shown in Figure 11C. Further detailed explanation of

the funnel algorithm can be found in [69]. To deal with the local clearance around

obstacles, Kallmann implemented a required circle constraint of radius r on each

included vertex as illustrated in Figure 11D [49].

Figure 11. Implementation of the Funnel Algorithm on a Simplex Corridor

The Triplanner toolkit performs a locally optimal search and is capable of achiev-

ing path solutions on the order of milliseconds for environments with 60K+ segments

[65]. Although there is no guarantee that the solution is the global optimal path,

the CSC found and searched is free of constraints allowing for solutions consisting of

straight line segments and minimum turn radius arcs.

Barycentric Coordinate Frame.

Often when dealing with simplex shapes, the barycentric coordinate frame is pre-

ferred over traditional Cartesian coordinates. A barycentric coordinate system defines

the location of a point within a simplex as a weighted measure to each of the ver-

tex points, also referred to as areal coordinates in the context of triangles [74]. The

barycentric coordinate system defines the side of the simplex as the axes, allowing for
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simple representations of lines, points, and perpendicular relationships [75].

To define the coordinate system, let r1, r2, ..., rn be n vertices of a complex

planar polygon Q. For the purposes of this research, when investigating problems in

R2, triangulation techniques will be used and therefore n = 3. Solving problems in

R3, tetrahedral techniques will be used and therefore n = 4. Any point, R, inside

polygon Q can be represented in barycentric coordinates defined with the vertices of

Q used as a basis as follows [76, 77, 78]:

R =
n∑

j=1

αjrj (2.27)

where α represents the barycentric weights, defined as a set of real coefficients whose

added sum equals unity,

n∑

j=1

αj = 1. (2.28)

To ensure that each point remains inside the polygon, Q,

0 ≤ αj ≤ 1 ∀j ∈ [1...n]. (2.29)

For the triangular relationship, n = 3, transformation from a barycentric coordi-

nate frame to a Cartesian coordinate frame can be easily performed through a linear

transformation of the coordinates represented as:

R = QA (2.30)

where R ∈ R2 defines the point location in the Cartesian coordinate frame, Q ∈ R2×n

represents the matrix of vertices in the polygon, and A ∈ Rn describes the weighting

matrix and the set of barycentric coordinates.
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2.6 Summary

Solutions to optimal flight trajectories for SUAS in constrained environments are

not new to the field of aeronautical optimal control. Constraints have been modeled

with several known techniques which each have their individual drawbacks. Even with

the development of direct orthogonal collocation methods, convergence times for these

problems have not approached the speeds required for real-time onboard operations

and there are no guarantees a simulation will converge under varying initial conditions

and dynamic constraints. The two biggest factors contributing to this problem are

the constraint models and the initial guess provided to the NLP solver.

The computer animation industry has developed a proven method for the two-

dimensional problem to quickly acquire feasible path solutions. It is proposed in

this research that by using triangulation techniques and heuristic search algorithms,

constraints can be eliminated from the problem formulation and a hybrid method

can be developed in which an initial guess can be acquired through CSC methods

and provided to the optimal control solver. In this way, through a phased approach,

feasible flight path trajectories that are suitable to the TOBS SUAS problem can be

acquired efficiently and accurately providing fast, reliable solutions to the constrained

optimal control flight path planning problem.
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III. Methodology

This chapter presents the methodology used to evaluate the problem presented in

Chapter I. The aircraft model is presented followed by an overview of the software

developed and used in this research. Next, the general optimal control problem and

its implementation into the optimal control software GPOPS-II is described. Finally,

the Triplanner toolkit algorithms are identified for use as the initial guess to the NLP

solver for the two-dimensional problem while new CSC methods are developed to

illustrate the feasibility of the three-dimensional problem.

3.1 Overview

To properly understand the optimal path solution of a SUAS, first the aircraft

system dynamics must be established, a solution tool must be chosen, and the pa-

rameters describing the domain, constraints, and limitations of the problem must

be defined. The required effort in properly setting these parameters depends on the

solution method chosen to solve the optimal path.

The objective of this research is to develop a solution method that produces a

feasible path while minimizing computation time to allow for real-time operations

for the TOBS mission. Oftentimes in optimal control solutions, the algorithms used

are designed to find the global optimal path. This can result in solutions that re-

quire problem specific input parameters and an initial guess for the solution that is

very close to the optimal solution, both of which can be computationally expensive

to acquire. Further, even with proper input parameters, there is no guarantee the

algorithm will converge to a feasible solution.
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3.2 Software

Multiple software packages are used to acquire solutions to the optimal control

problem throughout this research. The primary tool is the MATLABr based General

Purpose Pseudospectral Optimal Control Software-II (GPOPS-II). GPOPS-II is used

to solve multi-phase optimal control problems with a variable-order Gaussian quadra-

ture collocation method [79]. The program translates the continuous optimal control

problem into a sparse NLP. Based on a user defined accuracy, a mesh refinement

method is performed to determine the number of mesh intervals and the degree of the

approximating polynomial [80]. GPOPS-II is implemented in this research with an

hp-adaptive version of the Radau pseudospectral method. This method evaluates the

midpoint of each initially defined segment against the dynamics and path constraints

to determine if the collocation points should be increased or the mesh should be sub-

divided before a solution is returned [17]. For each simulation in this research, the

GPOPS-II settings remain consistent with only adjustments to the mesh refinement

tolerance. The standard settings include the derivative approximation set to either

“SparceCD” or “adigator”, the mesh method set to“hp-PattersonRao”, and the NLP

error tolerance set to 10−5.

All simulations are conducted with GPOPS-II in MATLABr version R2016b. All

results were solved on a 2016 iMac with 2.8GHz quad-core Intel i5 processor and 8GB

of 1867 MHz LPDDR3 memory.

The Triplanner toolkit developed by Kallmann was delivered to the Power and

Controls Division at the Air Force Research Laboratory (AFRL) in a collaboration

effort to extend the algorithm principles to SUAS control and optimization theory.

The Triplanner toolkit accepts constraint vertices as an input to the algorithm and

performs both an A* and funnel algorithm to search for a locally optimal solution

with a minimum clearance distance to any constraint for the two-dimensional problem.
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The program is written in C++ and compiled to run on a linux operating system.

AFRL has written a wrapper function in Python to call the Triplanner toolkit and

provide desired constraint vertices as an input while returning the CSC and path

solution as an output.

3.3 Triplanner Toolkit

Fast geometric path planning algorithms, such as the Triplanner toolkit, have been

designed to formulate path solutions in constrained, two-dimensional environments

on the order of milliseconds. The input for the search algorithm requires the vertex

of each constraint in the environment and the initial and final position. Figure 12A

shows building constraints as red polygons and a green and red asterisk respectively

for the initial and final position. A CDT is performed on the space and is refined with

a LCT in order to maximize potential simplex corridors. The simplex discretization is

shown in Figure 12B. Figure 12C evaluates the feasible space by including a constant

radius circle placed on each vertex point to account for the minimum turning radius

of the aircraft. Finally, an A* search algorithm is executed to determine a set of

simplexes that form a feasible CSC from the starting point to the final location.

This path defines a CSC that is free of constraints. The autonomous agent’s path is

determined with a funnel algorithm which excludes the interior of the constant radius

circles, resulting in a feasible flight path through the defined CSC. This assures that

there is enough clearance for the autonomous vehicle through any chosen CSC. The

path resembles a Dubins path solution as a series of straight line segments connecting

the tangent points of the appropriate circles. An example of this CSC and resulting

Dubins path is shown in Figure 12D.

The aircraft dynamics are accounted for by a radial offset distance from each

constrained edge equal to the SUAS minimum turn radius. The heading angle is
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Figure 12. Implementation of the Triplanner Toolkit. [Map data @2017 Google]

estimated as the angle difference between consecutive points on the path, while the

angle rates are determined with a three-point finite differencing method of the heading

angle vector. The velocity vector is estimated with a maximum value during straight

portions of the Dubins path and minimum values on the minimum radius turns. This

path solution will be used as an initial guess for the two-dimensional SUAS optimal

control problem in GPOPS-II to acquire the optimal path through the defined CSC.

3.4 Tetrahedron Discretization

Several challenges are presented when expanding the two-dimensional problem to

three-dimensional space. First, the Triplanner toolkit, used to discretize the two-
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dimensional space and provide an initial Dubins path solution, is not capable of

expanding to the third dimension in its current state. To apply the same concepts for

discretizing the space, a simple constraint map, shown in Figure 13, is constructed so

that a feasibility analysis can be performed and demonstrated.

Figure 13. Three Dimensional Constraint Map

Given the coordinates of the constraints and the size of the domain, the space is

partitioned laterally in the x-direction and longitudinally in the y-direction based on

the length and width of each constraint. The z-axis is partitioned for each independent

height level of the constraints. The simple constraints shown in Figure 13 result in

two partitions along the x and y-axis and a single partition along the z-axis. For

constraints modeled as rectangular prisms, this results in a cubed space. Any cube

that contains the same space as a constraint is eliminated from the discretized search

space.

In the two-dimensional space, a CDT was performed, providing a set of three-sided

simplexes. Expanding to three dimensions, four-sided simplexes, or tetrahedrons,

are required. To quickly form the simplex discretized space, five tetrahedrons are

incorporated into each cube of the discretized search space as shown in Figure 14.

By this method, two tetrahedrons occupy the top side of the cube, two tetrahedrons

occupy the bottom side of the cube, and a single tetrahedron is placed in the center
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of the cube. Each simplex cube is then populated into the discretized space in a

checkerboard-like fashion to assure the simplex edges line up on each connecting

cube. This results in a three-dimensional discretized space of four-sided simplexes as

shown in Figure 14.

Figure 14. Three Dimensional Discretization

With a discretized space defined, a search method is required to find a CSC

containing a feasible path solution from the initial starting point to the terminal

point. Similar to the two-dimensional approach, an A* algorithm is implemented

based on the equation

f(n) = g(n) + h(n). (3.1)

Here, g(n) represents the cost defined by the Euclidean distance from the mid-point

of the current simplex to the mid-point of each connecting simplex. The cost to

go, h(n), is defined by the Euclidean distance from the midpoint of the connecting

simplex to the terminal point of the scenario. The heuristic defined is adequate for

this simplified case, however, as the algorithm is developed with a more realistic con-

straint map, the fidelity of the heuristic implemented should be improved to include

flight characteristics of the SUAS. Comparing a Dynamic Programming (DP) search

algorithm to an A* approach with the same heuristic, the DP approach results in
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the complete search of the space. However, due to the simplicity and symmetry of

the constraint map, multiple paths of the same minimal cost exist. To eliminate the

subjectivity of choosing one of several paths with the same cost, the A* algorithm is

chosen to be implemented, where the first completed CSC identified is accepted.

The A* search algorithm provides a CSC that contains a geometric path solution

but may not be feasible due to vehicle dynamics and parameter rate limits. Cor-

rections are made to the resulting CSC to account for two cases where the path is

extended unnecessarily due to the constrained field. The first case addresses the sit-

uation in which the path re-enters a simplex that is already contained in the path

solution, resulting in an infinite loop, and therefore a restriction to enter a simplex

already contained in the CSC is enforced. In the second case, the CSC avoids a con-

straint by entering a set of simplexes congruent to the current CSC. In this case, the

congruent simplex corridors have three shared edges, extending the CSC length unnec-

essarily. These congruent corridors are eliminating, resulting in a minimal set. With

these corrections applied, a tetrahedron CSC is defined through the three-dimensional

discretized space, free of constraints.

3.5 Optimal Control Problem

The optimal control problem is solved with the direct method using the general

purpose optimal control solver GPOPS-II. Inputs are required to define the search

domain, accomplished with defined bounds on the state, control, and time vectors.

These parameter bounds are often problem specific and subjective in nature, further

complicating the problem set-up. Additionally, the optimal control problem must

be defined by the objective function, the dynamic constraints, the path constraints,

and the event constraints. Each of these inputs have an impact to the quality of the

solution returned as well as the time required to converge to a solution. Finally an
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initial guess of the states, control, and time is required to seed the NLP. The following

sections describe the methodology used to develop the values and functions for each

required input to the optimal control solver using a triangular (two-dimensional) or

tetrahedron (three-dimensional) formulation.

GPOPS-II Input Parameters.

When defining an optimal control problem in GPOPS-II, the search space is lim-

ited to a field defined by the upper and lower bounds placed on the system parameters.

These values include the upper and lower limits of the time, states, control, and path

constraints. Many times, these values are not intuitive and therefore large values are

chosen to assure the search space is not limited (which can cause scaling problems).

Additionally, these values are problem specific, requiring parameter adjustments each

time the domain of the problem is changed. If these values are not implemented ac-

curately, computation times and convergence issues can become problematic. By

discretizing the space with a simplex mesh, these parameters are simplified as the

bounds on the domain are limited to a single simplex. Each simplex is solved in

GPOPS-II as one phase of the complete solution. In the absence of outside forces,

such as wind, the max time limit for each phase becomes the length of the longest

simplex edge when solving the minimum time optimal control problem. The state

vectors of the SUAS are defined by the barycentric coordinates of the simplex which

always range from zero to one for points located inside the simplex and path con-

straints are eliminated as a result of the triangulation. Finally, the bounds on the

control are unchanged as they are vehicle dependent. This results in a standard set

of limits that are applied to each problem given a defined CSC through a simplex

mesh.

Once the system parameters are defined, the initial guess is the next factor af-
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fecting the optimal solution. Due to the gradient-based approach of the software,

the better the initial guess that is given to the NLP solver will result in a quicker

and more accurate convergence to a solution. The GPOPS-II software requires an

initial guess for the time, state, and control vectors. Other optimization software

also may require the co-state vector as well. This again can be a difficult task as the

co-state vector has no physical relationship to the optimal path. With respect to the

GPOPS-II software, providing an initial guess of the time, state and control is not a

simple feat. A minimum of two points are required for each of the vectors provided

in the initial guess and the accuracy of the solution presented directly impacts the

optimal solvers convergence rate.

Coordinate Transformation.

In order to simplify the optimal control solver input parameters, the problem is

expressed in the barycentric coordinate system. Given a tetrahedron shown in Figure

15, each vertex is defined in Cartesian coordinates as

Figure 15. Barycentric Coordinate Frame for a Tetrahedron

ri = (xi, yi, zi) ∀i ∈ [1...n] (3.2)
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where n is equal to the number of sides of the simplex. The solution is limited to

either the two-dimensional plane for which n = 3, or the three-dimensional plane

for which n = 4. The remainder of this section will focus on the three-dimensional

approach, where each point within the simplex can be represented as an ordered

quartet of real numbers, representing the weighted distribution to each vertex. Each

vertex is defined in barycentric coordinates as

q1 = (1,0,0,0) (3.3)

q2 = (0,1,0,0) (3.4)

q3 = (0,0,1,0) (3.5)

q4 = (0,0,0,1) (3.6)

while any point within the simplex is represented with the corresponding weights to

each vertex

A = (α1, α2, α3, α4). (3.7)

Given a set of barycentric weights, the Cartesian coordinates can be represented as

R =
n∑

i=1

αiri. (3.8)

Expanding Equation 3.8, the expression below represents the weights of the barycen-

tric coordinate frame in terms of the Cartesian coordinates,

αi = T−1(R− qN) ∀i ∈ [1...N − 1] (3.9)
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and representing the final weight αN in terms of the preceding weights, 1 : N − 1,

αN = 1−
N−1∑

i=1

αi (3.10)

where N is defined by the number of sides in the simplex and R−qN is a (N −1)×1

vector summation of the Cartesian coordinates. For the two dimensional problem, T

is a 2× 2 matrix representing the vertices of the triangle as

T2 =




x1 − x3 x2 − x3

y1 − y3 y2 − y3


 . (3.11)

Expanding to three dimensions, T is a 3× 3 matrix defined by

T3 =




x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4




(3.12)

where xi, yi define the vertex locations of each triangle or tetrahedron selected such

that the points are not collinear.

GPOPS-II Phased Solution.

GPOPS-II is described as a computational tool for solving multiple-phase optimal

control problems using variable-order Gaussian quadrature collocation methods [79].

Each phase is defined with a set of dynamic constraints, path constraints, integral

constraints, and parameter constraints. Phases are linked through event constraints,

or continuity constraints, that relate information at the start and terminal point

of each phase and allow for time, state, and control variables to be continuously

transitioned through each phase [81, 25].
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For this method, a solution through one simplex can be represented as one phase in

GPOPS-II. Formulating the optimal control problem through a simplex set provides

the basis for a trajectory solution that traverses through a corridor of simplexes

each represented as a single phase, linked together to determine the optimal solution

contained inside the defined search space. It is recognized here that the solution found

by this method is dependent on the CSC that is presented to the optimal solver. Due

to the properties of the A* search algorithm, this CSC may not provide the global

optimal solution, rather a local optimal solution may be determined.

The following defines the optimal control problem in terms of a phased approach.

Each simplex is represented in barycentric coordinates with appropriate dynamic con-

straints, path constraints, and parameter constraints. The number of phases required

is problem specific and defined after the space has been discretized into a simplex set.

The total number of phases in a solution is represented with the variable P .

SUAS Dynamics.

The optimal control problems defined in Chapter IV are developed to show the

feasibility, computation efficiency, and accuracy of the CSC approach for both the two-

dimension and three-dimensional problem. Chapter V extends the optimal control

aircraft model in order to accomplish more difficult mission objectives. In the two-

dimensional problem in Chapter IV, the dynamics of the aircraft are represented by

the position of the SUAS in the x(t), y(t) directions, the heading angle, θ(t), and

the heading angle rate, θ̇(t). The control for the aircraft is the change in heading

angle rate, θ̈. Chapter V expands the state vector to include velocity, v(t), and the

control vector to include acceleration, a(t). The two-dimensional SUAS dynamics are

described below as a relationship between the states and the controls for each phase
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(p):

ẋ(p)(t) = v(p)(t) cos(θ(p)(t)) ∀p ∈ [1...P ] (3.13)

ẏ(p)(t) = v(p)(t) sin(θ(p)(t)) ∀p ∈ [1...P ] (3.14)

For scenarios that expand the problem to the third dimension, the dynamics of the

aircraft are represented by the position of the SUAS in the x(t), y(t), z(t) directions,

the heading angle, θ(t), and the pitch angle, ψ(t). The control for the aircraft is the

change in heading angle rate, θ̇(t), the change in pitch rate, ψ̇(t), and the velocity,

v(t). The three-dimensional SUAS dynamics are described below as a relationship

between the states and the controls [82]

ẋ(p)(t) = v cos(ψ(t)) cos(θ(t)) ∀p ∈ [1...P ] (3.15)

ẏ(p)(t) = v cos(ψ(t)) sin(θ(t)) ∀p ∈ [1...P ] (3.16)

ż(p)(t) = v sin(θ(t)) ∀p ∈ [1...P ] (3.17)

A summary of the aircraft state and control model for each scenario evaluated is

shown in Table 1.

Table 1. Optimal Control Aircraft Models

Optimal Control States Control

α1 α2 α3 α4 θ θ̇ ψ v ψ̇ θ̇ θ̈ v a
CH. V: 2D X X X X X u
CH. V: 3D X X X X X X u1 u2 u3

CH. VI: ALL (2D) X X X X X X u1 u2

Objective Function.

For the feasibility analysis in both the two and three-dimensional scenarios, the

performance measure of each scenario is to minimize the flight time to traverse from
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an initial starting point to a specified final location through a series of building con-

straints and keep-out regions. This is accomplished by advancing through each CSC

in a multi-phased approach with the performance measure defined within each simplex

by

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (3.18)

and the complete objective formed by summing the flight time within each simplex

J =
P∑

i=1

J (p) (3.19)

where t0 and tf represent the initial and final time of each phase respectively.

Dynamic Constraints.

With the definition of the barycentric coordinate system and the SUAS dynamics,

the dynamic constraints of the optimal control problem can now be defined. The

desire is to solve the optimal control problem in a phased approach through a CSC

and therefore the dynamics are represented in terms of the barycentric coordinate

frame as

αi = fi(x, y). (3.20)

Further illustrated by expanding Equation 3.9 to provide the first two coordinates for

a simplex of three sides as follows:

α1 = (y2−y3)(x−x3)+(x3−x2)(y−y3)
det(T2)

(3.21)

α2 = (y3−y1)(x−x3)+(x1−x3)(y−y3)
det(T2)

(3.22)
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The sum of the weights must equal unity, therefore the third coordinate is expressed

as

α3 = 1− α2 − α1. (3.23)

Evaluating the gradient of fi defined in Equations 3.21 through 3.23,

α̇i = ∇fiẋ (3.24)

for

x =




x

y


 (3.25)

yields the dynamic equations with respect to the three-sided simplex. Substituting

the aircraft dynamics for the change in the Cartesian x and y positions defined in

Equations 3.13 through 3.14 provides the following system of equations

α̇
(p)
1 = (y2−y3)ẋ(p)+(x3−x2)ẏ(p)

det(T2)
∀p ∈ [1...P ] (3.26)

α̇
(p)
2 = (y3−y1)ẋ(p)+(x1−x3)ẏ(p)

det(T2)
∀p ∈ [1...P ] (3.27)

α̇
(p)
3 = (y1−y2)ẋ(p)+(x2−x1)ẏ(p)

det(T2)
∀p ∈ [1...P ]. (3.28)

The state vector for the two-dimensional problem in Chapter IV can now be repre-

sented as the barycentric coordinates, heading angle and heading angle rate of the

SUAS.

X =
(
α1, α2, α3, θ, θ̇

)T
(3.29)

57



Including velocity as a state with control on the acceleration and the change in heading

angle rate, the state vector for the two-dimensional problem in Chapter V becomes

X =
(
α1, α2, α3, θ, θ̇, v

)T
(3.30)

Characterizing a tetrahedron, the barycentric coordinates are expressed as a function

of the state variables

αi = fi(x, y, z), (3.31)

further defined as

α1 = (EI−FH)(x−x4)−(BI−CH)(y−y4)+(BF−CE)(z−z4)
det(T3)

(3.32)

α2 = −(DI−FG)(x−x4)+(AI−CG)(y−y4)−(AF−CD)(z−z4)
det(T3)

(3.33)

α3 = (DH−EG)(x−x4)−(AH−BG)(y−y4)+(AE−BD)(z−z4)
det(T3)

. (3.34)

where A through I is defined by the mapping of Equation 3.12

T3 =




A B C

D E F

G H I




=




x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4



. (3.35)

Again, the sum of the weights must equal unity, therefore the fourth coordinate is

expressed as

α4 = 1− α3 − α2 − α1. (3.36)
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Evaluating the gradient of fi defined in Equations 3.32 through 3.34 and 3.36,

α̇i = ∇fiẋ (3.37)

for

x =




x

y

z




(3.38)

yields the dynamic equations with respect to the tetrahedron resulting in

α̇
(p)
1 = (EI−FH)ẋ(p)−(BI−CH)ẏ(p)+(BF−CE)ż(p)

det(T3)
∀p ∈ [1...P ] (3.39)

α̇
(p)
2 = −(DI−FG)ẋ(p)+(AI−CG)ẏ(p)−(AF−CD)ż(p)

det(T3)
∀p ∈ [1...P ] (3.40)

α̇
(p)
3 = (DH−EG)ẋ(p)−(AH−BG)ẏ(p)+(AE−BD)ż(p)

det(T3)
∀p ∈ [1...P ] (3.41)

α̇
(p)
4 = −α̇(p)

1 − α̇(p)
2 − α̇(p)

3 ∀p ∈ [1...P ] (3.42)

where the change in the Cartesian x, y, and z positions are defined by the aircraft

dynamics in Equations 3.15 through 3.17. The state vector for the three-dimensional

problem can now be represented as the barycentric coordinates, heading angle, and

pitch angle of the SUAS.

X = (α1, α2, α3, α4, θ, ψ)T (3.43)

Path Constraints.

The equality path constraints for the TOBS problem are defined as the initial and

final state of the SUAS. The initial state of the SUAS for phase two of the TOBS

mission will be consistent with the final state of the phase one solution. The final
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state of the SUAS for phase two will terminate at a target location defined by the

user.

The inequality path constraints represent hard constraints in the optimal control

problem that cannot be violated. These constraints are formulated as

c
(p)
min ≤ cp(y(p), u(p), t(p)) ≤ c(p)

max ∀p ∈ [1...P ] (3.44)

where c is a function of the state, control, and time that influences the vehicle’s tra-

jectory. Often, these path constraints represent no-fly zones, terrain, or buildings.

Chapter IV will investigate methods to model these constraints while evaluating the

accuracy of the flight path and the computation time. The primary method dis-

cretizes the domain with a simplex mesh such that constraints can be represented

as polygons and isolated from the desired CSC upon which the path solution will be

found, effectively eliminating the constraint from the search domain of the NLP.

Integral Constraints.

Integral constraints are minimized in the cost function and represent soft con-

straints in the optimal control problem. They are formulated as inequalities defined

by

g
(p)
min ≤

∫ t
(p)
f

t
(p)
0

g(p)(y(p), u(p), t(p)) ≤ g(p)
max ∀p ∈ [1...P ]. (3.45)

These constraints can be used to minimize the incursion to keep-out regions, fuel

consumption, or the control authority of the SUAS. Chapter V evaluates a scenario

in which keep-out regions are placed along the CSC, requiring the SUAS to traverse

into the region while minimizing the incursions to the space.
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Event Constraints.

Event constraints in GPOPS-II, also referred to in literature as phase or continuity

constraints, are implemented to maintain a continuous transition of the state variables

between each phase and are expressed as

X
(p)
0 −X(p−1)

0 = 0 ∀p ∈ [2...P ] (3.46)

where X represents the state vector. Examining the two-dimensional case, this con-

dition requires that each vertex of a simplex be defined as the q1, q2, or q3 vertex.

As the path trajectory traverses across an edge, one of the weights (states 1-3) will

be zero as the weight associated with the opposing vertex has no contribution to the

location of the point. As the new phase begins, it is imperative that the states of the

next simplex match the states of the previous simplex. In other words, the opposite

vertex of the new simplex must accept the zero value and the associated weights for

the other vertices must match appropriately in the state vector. This is illustrated in

Figure 16.

Figure 16. Event Constraints through Notional Simplex Corridor

Extending this methodology to the third dimension, the path will transition from

one simplex to the next through a shared face. The three shared vertices on this

face can take a barycentric weight value between zero and one. However, the fourth
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vertex on each simplex must accept a zero value as it provides no weight to the path

position when located at a simplex transition boundary. Implementing these bounds

within the optimal control solver and defining the zero state for each phase increases

the computation speed by providing a required direction for the search.

Bounds.

The search space of the optimal solver is limited by the bounds applied to the state

variables, the control, and the mission time. Often, these bounds can be difficult to

determine. If they are set too large, convergence times can become excessive. If they

are set too small, there is a greater probability the solution will converge to a local

minimum instead of continuing to search for the global minimum. Additionally, if the

bounds are set too restrictive, the optimal solution may no longer be in the search

space and a feasible solution may not be found.

By defining the problem with a simplex set in the barycentric coordinate system

and solving each simplex as a separate phase, the bounds become simplified and

strictly defined for each problem. The weights of the barycentric coordinates are

defined from 0 to 1, therefore the bounds on the position states become

0 ≤ αi ≤ 1 i = 1, 2, ...N, (3.47)

where N defines the number of edges in the simplex. The time vector is bounded

with an upper and lower limit in each phase. For the simplistic minimum time path

solution, the furthest distance the SUAS can travel through any simplex is equal to

the length of the longest edge, defined as edgemax. The max time bound is then

determined as the time required to fly along the longest edge at the minimum speed,

0 ≤ t ≤ ρ
edgemax
vmin

. (3.48)
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Here, ρ represents a scaling factor to allow for extended time in the presence of winds

or other disturbances, as accomplished in Chapter V.

The bounds on the remaining state and control parameters are specific to vehicle

characteristics and are set such that a tractable scenario can be accomplished.

Algorithm Development.

The flow chart in Figure 17 describes the series of algorithms required to achieve a

solution to the optimal control problem using simplex discretization. This flow chart

illustrates the hybrid method, combining the fast geometric path solutions attained

by Triplanner with direct orthogonal collocation methods for acquiring optimal path

solutions.

Figure 17. Algorithm Flow Chart

The Waypoints algorithm shown in the flow chart is initiated with the function

Define interval. Here, the number of waypoints in the path solution is defined along

with a matrix consisting of each waypoint location. The first and last waypoints of

the matrix consists of the starting location of the SUAS, thus requiring the vehicle

to return to its original location. An interval is defined as the path between each

waypoint location resulting in N + 1 intervals for N waypoints. For scenarios with
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only one terminal point, the vehicle will only fly one interval, from the start position

to the terminal waypoint.

The Format triplanner algorithm selects the start and end point for the current

interval, consisting of a set of phases, and initiates the Triplanner algorithm. The

output of Triplanner provides text files consisting of the constrained and uncon-

strained edges in the simplex mesh forming the CDT as well as the Dubins path

solution. Figure 18 shows the resulting geometric path consisting of constant radius

turns connected by straight line segments. The blue asterisks illustrate the results of

the Triplanner solution. Constrained edges are illustrated with solid red lines, while

unconstrained edges are solid gray lines. The path solution starts at the lower left

green asterisk and ends at the upper right red asterisk.

Figure 18. Triplanner Solution

With the resulting path from Triplanner, points are interpolated along the straight

line sections of the path solution. This is accomplished based on a predefined spacing

in the interpolate solution function. This provides a foundation for dividing the path

solution into each represented simplex and constructing a properly formatted initial
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guess for the optimal control solver.

The function search corridor performs three tasks. First, the interpolated path is

transformed to barycentric coordinates and the path is segmented into each simplex.

Second, a connectivity matrix is formed defining the order of simplexes that contain

the path solution. Here, the vertex points of each simplex are arranged such that the

common edge between consecutive simplexes can be identified. Finally, the connec-

tivity matrix is augmented with three columns defining the shared simplex edge along

the CSC, the determinant of matrix T2 found in Equation 3.11, and the time required

to traverse the longest edge of each simplex. Figure 19 shows the interpolated path

illustrated with blue asterisks and the CSC shown with black solid lines.

Figure 19. Triplanner Interpolated Path Solution

The final function block before entering the optimal solver, format guess, builds

the required vectors for an appropriate guess for the optimal control problem. The

heading is formulated using a three-point finite differencing scheme beginning with

the position vector of the interpolated path solution. Since the Triplanner results

in a Dubins path, the heading rate and change in heading rate are defined by the
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SUAS rate limits based on the heading angle. For scenarios where velocity is included

as a state, the velocity vector is formed with a maximum speed during straight line

portions of the path and minimum speed during the constant radius turns. This

allows for Triplanner to investigate a solution in a larger search domain as the slower

SUAS speeds result in a tighter turn radius allowing the vehicle to traverse through

highly constrained regions. The rate limited acceleration vector is then formed based

on the change in the velocity curve. These vectors are shown in Figure 20.

Figure 20. Initial State and Control Vectors

Each of these vectors are described in a three tier structure representing the defined

interval and phase of the solution. This process is repeated for each interval with the

structure being appended to the end of the previous interval. Once all target intervals

have been exhausted, the connectivity and guess structures are output to the optimal

control software.
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3.6 Summary

This section provided an overview of the proposed methodology used for this

research. The SUAS dynamics were defined for both the two and three-dimensional

problems and the general optimal control problem was developed. A methodology

was developed to eliminate subjective bounds on problem specific parameters and

path constraints were removed from the search domain by formulating the problem

within the construct of a simplex or tetrahedron discretization and transforming the

vehicle position to barycentric coordinates. The Triplanner toolkit algorithms were

described and will be used to seed the NLP solver when solving for two-dimensional

optimal path solutions while the discretization method for the three-dimensional case

was explored.
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IV. Constrained Optimization Approach

4.1 Overview

This chapter evaluates the methodologies presented in Chapters II and III. First,

three different types of constraint functions are modeled in the optimal control solver,

to include simple circular and elliptical shapes, ellipsoids, and polygon shapes. These

results are compared with simplex discretization methods upon which polygonal con-

straints are eliminated from the search field. Second, the simplex method is further

developed in a two-dimensional scenario to determine a feasible flight path of a single

SUAS traversing through a constrained environment in downtown Chicago. Finally,

the concepts of the two-dimensional problem are extended to three dimensions, where

a SUAS is required to fly around or over three rectangular prism constraints. Each

method presented is evaluated for accuracy of the solution and the computational

speed of the optimal solver, GPOPS-II.

4.2 Constraint Analysis Simulation Overview

To evaluate the presented constraint models, a two-dimensional optimal control

problem was developed. For each scenario in the constraint analysis, the initial and

final aircraft state values are defined as

(x0, y0, θ0) = (1, 0.5, free) (4.1)

(xf , yf , θf ) = (9, 9.5, free). (4.2)

Three constraints, which represent areas the SUAS can not traverse, such as buildings,

walls, terrain, or restricted air space are included. These constraints are modeled as

polygons inside the domain space.
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Six simulations were evaluated in total. The first three were performed without

triangulation and modeled the constraints with traditional methods of circular and

elliptical shapes, superquadrics, and polygon functions. The fourth method evaluates

a technique that discretized the space through a CDT and optimizes a path through a

CSC. The initial guess for this method is the path connecting consecutive midpoints

of each unconstrained edge in the CSC. The fifth method examines the path solution

from the Triplanner toolkit which provides a solution based on a heuristic search al-

gorithm. The final method combines Triplanner and GPOPS-II, using the Triplanner

solution as an initial guess for the optimal control solution in GPOPS-II. Each model

is compared with computation time, objective time, mesh tolerance, and initial guess

requirements.

The first simulation models the constraints with simple circular and elliptical

shapes where solutions can result in quick convergence to the optimal trajectory.

However, large errors will exist when representing polygons with these simple shapes.

Further, when solving with collocation methods such as GPOPS-II, collocation points

could jump through a constraint dependent on the spacing of the collocation points.

Figure 21A below illustrates a failed solution based on a poor guess. Although the

NLP solver reported an optimal solution, it is not a valid flight path around the

constrained environment. As the guess is improved in Figure 21B, an optimal solution

is found, however the path continues to violate the constraint as shown in Figure 21C.

In the second simulation, superquadrics are used to better represent polygonal

shapes such as squares or rectangles by increasing the power, m, in Equation 2.19.

Figure 22A below shows the same constraint field as the previous simulation, however

now the polynomial order of the constraint function has been raised to 100. A feasible

solution could only be found when the mesh tolerance was increased to 10−5 and a

perfect initial guess was given to the NLP solver.
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Figure 21. Simple Shape Constraint Functions; Illustrating Dependency of Quality
Initial Guess

Figure 22. Superquadric Constraint Functions; Illustrating Converged Solution for
Small Semi-major Axis with Quality Initial Guess

These constraint functions are more representative of polygonal shapes, however

the flight path still cuts the corner of the constraint as the collocation points round

the corner of each constrained edge as shown in Figure 22B. Further, the solution still

requires a perfect guess and computation time remains between 10 and 20 seconds.

The third simulation utilizes boolean function which allows for the modeling of

any polygonal shape. Solutions presented in GPOPS-II are feasible, but the required

computation time exceeded the limits for onboard operations. Additionally, as more
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constraints are added to the optimal control problem, the computational requirements

become unwieldy.

Ultimately, the convergence of a solution is highly dependent on the user settings of

GPOPS-II. The mesh tolerance can be increased to allow for tighter discretization of

the space and to include more collocation points, however, this increases computation

time and may result in convergence failure if the mesh is too tight for the given

problem. Additionally, the initial guess plays a significant role in the solution search

space. A poor initial guess may result in a local minimum solution rather than the

global solution. Further, the better the guess the solver receives, the quicker the

convergence to a solution. Finally, the shape of the constraints have an effect on

the feasibility of the solution as well. Collocation points may cut the corner of the

edge of a constraint or may even skip over the constraint if the collocation points are

not spaced properly. Each of these factors are problem specific and require different

dependencies on the GPOPS-II user settings. The next three simulations focus on

eliminating these constraints from the problem formulation while minimizing the

input requirements to achieve a feasible solution within computation times sufficient

for onboard operations.

The fourth simulation triangulates the space using the CDT function, delaunay,

in MATLABr. A CSC is selected with dynamic programming and an initial guess is

determined by connecting the midpoint of each unconstrained edge of the CSC. The

solution is shown in Figure 23.

In the left image, it can be seen that the optimal flight path determined through

the CSC does not violate any hard constraint. The right image illustrates the heading

rate control over the flight time of the simulation. The control can be further refined

to fully exhibit Pontryagin’s Minimum Principle by increasing the collocation points

and the mesh tolerance used in the simulation.
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Figure 23. CDT Path Solution & Control; Mid-point Guess

The fifth solution method utilizes the Triplanner toolkit developed by Kallmann.

The algorithm is built in C++ and accessed through a Python script run on a Linux

operating system.

The data required to initialize the Triplanner algorithm consists of the points of

each closed polygonal constraint, the initial and final starting points of the path, and

the offset distance required from each constrained edge. In order to achieve a feasible

path for a SUAS, the offset distance was set to the minimum turning radius of the

aircraft. The Triplanner algorithm returns a Dubins path solution with computation

time on the order of milli-seconds. The discretized solution that is returned is shown

in Figure 24.

Figure 24. Constraint Analysis Triplanner Toolkit Solution
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Here the Dubins path solution can be seen as a series of straight lines and constant

radius turns. Given the position coordinates, and a solution satisfying Pontryagin’s

Minimum Principle, the heading and heading rate can be determined for the two

dimensional case with simple SUAS dynamics with a three-point finite differencing

scheme.

The sixth simulation uses the Triplanner solution as the initial guess to the NLP

solver. The Triplanner toolkit returns the discretized path solution, the CDT, and

the CSC. Implementing this data into the triangulation method with GPOPS-II a

hybrid solution is formed for which the optimal solution is obtained and is presented

through the given CSC shown in Figure 25.

Figure 25. Hybrid Path Solution & Control

The solution is optimal given the requirement that the path must traverse through

each triangle of the CSC in the same order as the initial guess. Again there can be seen

some variance in the control due to the mesh tolerance setting of 10−2. These settings

allowed for a comparable number of collocation points to the other simulations.

4.3 Constraint Analysis Simulation Results

For each simulation model, the mesh tolerance, computation time, objective time,

collocation points, and the quality of the initial guess were recorded. The NLP solver

73



in each of these simulation was “SNOPT”. The results for each method are displayed

in Table 2.

Table 2. Constraint Analysis Simulation Results

Constraint Mesh Comp Time (s) Path Length (ft) Discretized Pts Guess
Simple Shapes 10−4 4.40 19.39 104 Good
Superellipse 10−5 21.34 20.12 211 Perfect
Polygons 10−5 9.96 20.68 159 Perfect
Triangulation 10−2 17.37 20.14 221 Poor
Triplanner N/A 2.7x10−3 22.6 377 N/A
Hybrid 10−2 2.91 20.12 221 Tripath

The Triplanner toolkit solution solved in 2.7 milli-seconds but also had the longest

path length, does not include vehicle dynamics, and does not directly return the

states and control of the vehicle, preventing the inclusion of more complex models.

The hybrid solution solved with the fastest convergence time in GPOPS-II at 2.91

seconds with a performance index equivalent to the other optimal control methods.

Although the path length is compared to the first three methods, the problems

that are solved differ by the way the constraints are formulated, resulting in a different

search space. Therefore, the path lengths should not be compared directly, but rather

used to assure each method is in close proximity to each other. The method solved

with simple shape constraints returned the smallest value for the path length, but

did not adequately model a polygon constraint. The remaining methods, modeling

constraints as polygons, each returned consistent values for the path length.

When designing constraints composed of rounded edges, the triangulation method

will require a polygon fit either to the interior or exterior of the rounded edge, de-

pendent on the type of constraint being modeled. Soft constraints can be modeled to

the interior of the rounded edge, allowing for the path to cut through small portions

of the constraint. Hard constraints should be modeled on the exterior of the rounded

edge where the model error will result in a longer path solution while eliminating the

constraint from the solution space entirely. In either case, modeling errors can be
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minimized by increasing the polygonal vertices used to model the constraint, however

each additional vertex requires additional phases in the optimal control problem.

4.4 Two-Dimensional Optimal Control

By discretizing the search space in a simplex mesh, a phased approach is taken in

the optimal control problem to extend the methodology to a more realistic and com-

plex scenario. The dynamics are formulated in Cartesian coordinates, representing

the position of the SUAS in the x(t), y(t) directions and the heading angle θ defined

as

ẋ(p)(t) = v cos(θ(p)(t)) ∀p ∈ [1...P ] (4.3)

ẏ(p)(t) = v sin(θ(p)(t)) ∀p ∈ [1...P ] (4.4)

where v represents the aircraft velocity which is held constant in this scenario at

30ft/s.

Optimal Control Problem.

Each triangle is solved as a single phase in GPOPS-II and each phase is connected

through event constraints. The dynamics constrain the path through each trian-

gle in barycentric coordinates. The optimal control problem formulation has been

consolidated as follows.

Minimize the cost functional

J =
P∑

p=1

J (p) (4.5)
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where

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (4.6)

subject to the dynamic constraints

α̇
(p)
1 (t) = (y2−y3)v cos(θ(p)(t))+(x3−x2)v sin(θ(p)(t))

det(T )
∀p ∈ [1...P ] (4.7)

α̇
(p)
1 (t) = (y3−y1)v cos(θ(p)(t))+(x1−x3)v sin(θ(p)(t))

det(T )
∀p ∈ [1...P ] (4.8)

α̇
(p)
3 (t) = −α̇(p)

1 (t)− α̇(p)
2 (t) ∀p ∈ [1...P ] (4.9)

with the control on the change in heading rate

u(p)(t) = θ̈(t) (4.10)

and the state vector defined with a five state model in barycentric coordinates as

X = (α1, α2, α3, θ, θ̇) (4.11)

with boundary conditions given as the initial and final constraints,

X(1)(t
(1)
0 ) = ((α1)0, (α2)0, (α3)0) (4.12)

X(P )(t
(P )
f ) = ((α1)f , (α2)f , (α3)f , ). (4.13)

Inequality path constraints representing bounds on the state, control and time are
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defined as

0 ≤ α
(p)
1 , α

(p)
2 , α

(p)
3 ≤ 1 (4.14)

|θ(p)| ≤ 180 deg (4.15)

|θ̇(p)| ≤ 25 deg/s (4.16)

|u(p)| ≤ 2 deg/s2 (4.17)

0 ≤ t(p) ≤ edge
(p)
max

v
, (4.18)

where edgemax represents the longest edge in the defined simplex. Equality path

constraints are implemented in a scenario to allow the SUAS to maintain a safe

distance from each constrained edge of the CSC,

(
r

(p)
1x − x(p)(t)

)2

+
(
r

(p)
1y − y(p)(t)

)2

− (δ)2 = 0 (4.19)
(
r

(p)
2x − x(p)(t)

)2

+
(
r

(p)
2y − y(p)(t)

)2

− (δ)2 = 0 (4.20)
(
r

(p)
3x − x(p)(t)

)2

+
(
r

(p)
3y − y(p)(t)

)2

− (δ)2 = 0 (4.21)

where ri represents the x and y coordinate of simplex vertices and δ defines the

minimum safety buffer between the SUAS and the building constraints defined by

the distance between each vertex point and the flight path. An alternative solution,

evaluated in a separate scenario, incorporates this safety buffer into the polygon

constraint itself to illustrate the benefits of eliminating path constraint functions from

the optimal control problem. Finally, event constraints are included to maintain a

continuous transition of the state variables between each phase,

X
(p)
o −X(p−1)

f = 0 ∀p ∈ [2...P ]. (4.22)
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4.5 Two-Dimensional Scenario

This two-dimensional scenario illustrates a solution for a single SUAS flying through

downtown Chicago with an altitude constraint of 600ft Above Ground Level (AGL).

The scenario is chosen to represent a challenging urban environment to verify the

functionality of the solution method. The search space is defined by a small region

of downtown Chicago measuring 5600ft by 2800ft. All structures within this region

that exceed 550ft AGL are modeled with a simplistic four-sided polygon. For this

scenario, the initial starting point for the SUAS is a parking garage located on the

south-west side of the city, while the final location is a monument located on the

north-east side of the city. The initial and final aircraft constraints are defined as

(x0, y0, θ0) = (200, 200, free) (4.23)

(xf , yf , θf ) = (4700, 2650, free). (4.24)

Within the defined search space, there are 37 buildings that exceed 550ft. Figure

26A shows the constraint map with the initial and final flight coordinates illustrated

with a green and red asterisk respectfully. Performing a CDT on the space, Figure

26B illustrates the discretized mesh defined by the constrained environment. Each

building taller than 550ft is represented on the map as a red, four sided polygon.

Utilizing the 2010 version of the Triplanner toolkit developed by Kallmann and his

team, the CSC is defined and a feasible flight path solution is determined. The data

required to initialize the Triplanner algorithm consists of the points of each closed

polygonal constraint, the initial and final starting points of the path, and the offset

distance required from each constrained edge. In order to achieve a feasible path for

a SUAS, the offset distance was set to the minimum turning radius of the aircraft

determined through the relationship between the aircraft’s velocity and turn rate as
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Figure 26. Downtown Chicago; 550ft AGL Constraint Map (A), Discretized Simplex
Mesh (B). [Map data @2017 Google]

follows,

r̃ =
v

θ̇min
(4.25)

for r̃ is the minimum turn radius, v is the velocity, and θ̇ is the turn rate. The

Triplanner algorithm returns a Dubins path solution with computation time on the

order of milli-seconds. The CSC and the path solution returned from the Triplanner

toolkit is shown in Figure 27.

The Triplanner solution is solved in 5.84 milliseconds, with a path length of

5490.9ft, however, the aircraft dynamics and control are not incorporated into the

Triplanner toolkit as the Dubins path solution is found through a discretized A*

search algorithm based on the geometric properties of the problem formulation. The

output of the Triplanner algorithm provides the triangulated mesh that includes all

the constrained and unconstrained edges as well as the discretized path solution. This

data is interpolated to provide a solution comprised of data points at 1ft spacing.

This minimal spacing is required to assure that data points exist in each simplex of
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Figure 27. Two-Dimensional Triplanner Toolkit Path Solution

the CSC.

Two simulations were executed to illustrate the necessity of providing a quality

guess to the optimal control software. For each simulation, the optimal control prob-

lem is solved in GPOPS-II under the same set-up parameters with only the initial

guess for the state vector, control, and time differing. The key GPOPS-II parameters

are listed below in Table 3.

Table 3. GPOPS-II User Settings, 2D Scenarios

GPOPS-II User Settings
Mesh Method hp-PattersonRao
Mesh Tolerance 10−2

NLP Solver SNOPT
Derivative Supplier AdiGator
Method RPM-differential
NLP Tolerance 10−3

Min Collocation Points 4
Max Collocation Points 10

Mesh Fraction 1
2

*ones(1,2)

Mesh Collocation Points 4*ones(1,4)

The minimum flight safety buffer, δ, preventing an aircraft from flying too close to
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a building is set to 15ft for each simulation. The path results for the first simulation

are shown in Figure 28.

Figure 28. Two-Dimensional Optimal Path Solution; Mid-Point Guess

The initial guess is illustrated with the dotted green line while the discretized

path solution is shown with the dark blue asterisks. An optimal solution through the

CSC was found with a computation time of 4.57 seconds. The heading angle and the

heading angle rate are the fourth and fifth states and are displayed in the top two

plots of Figure 29. The control is shown in the lower plot of Figure 29 with an initial

guess equal to the zero vector.

Evaluating these plots, the mid-point solution requires a heading change at the

start of each simplex. This requires excessive vehicle control inputs when compared

to the optimal solution. The second simulation provides an initial guess vector for

the state, control, and time as determined for each triangle through the Triplanner

toolkit solution and implemented in GPOPS-II as individual phases. The results are

shown in Figure 30.
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Figure 29. Two-Dimensional Optimal Path Solution & Control; Mid-Point Guess

Figure 30. Two-Dimensional Hybrid Path Solution

Again, the initial guess is illustrated with the dotted green line while the dis-

cretized path solution is shown with dark blue asterisks. An optimal solution through
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the CSC was found, however, given a quality initial guess to the path solution, the

computation time for the optimal control software decreased to 3.58 seconds. The

heading angle, heading angle rate, and control are shown in Figure 31 with the initial

guess resulting from the Triplanner toolkit solution shown with the green dotted line

and the dark blue solid line describing the optimal heading angle and control.

Figure 31. Two-Dimensional Hybrid Path Solution & Control

Here the angle requirements between the Triplanner solution and the optimal con-

trol solution have been minimized and when compared to the mid-point solution, the

Triplanner solution requires more control than the optimal solution but significantly

less than the mid-point solution.

4.6 Two-Dimensional Conculsions

The two simulations shown above were each solved with an NLP tolerance of

10−3. Through simulation, it was determined that decreasing the NLP tolerance to

a lower threshold significantly increased the computational time while improving the
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objective value by just a few tenths of a second. To further decrease the computational

time, the minimum flight safety buffer, defined in Equations 4.19 - 4.21, can be

removed from the optimal control equality constraints. This safety buffer can instead

be incorporated inside the polygon of the original building constraints resulting in

equivalent objective costs while reducing the computation time to 2.12 seconds. Table

4 shows the Triplanner only results for computational time and path length for each

set of constraints, one with (NLP Equality Constraints) and one without (In-Polygon

Model) the safety buffer.

Table 4. Triplanner Results

Building Safety Buffer Path Length (ft) Comp Time (ms)
NLP Equality Constraints 5398.9 4.94

In-Polygon Model 5490.9 5.84

Table 5 shows the computation time of GPOPS-II, objective time, and path length

for the optimal control solution. These results illustrate the significant differences in

computation time that can be attained by incorporating the Triplanner algorithm as

the initial guess to the NLP and maintaining the building safety buffer inside the

polygon building constraint model.

Table 5. Two-Dimensional Simulation Results

Building Safety Buffer Initial NLP Guess Comp Time (s) Obj Time (s) Path Length (ft)

NLP Equality Constraints Mid-Point 4.57 173.26 5210.8

NLP Equality Constraints Triplanner 3.58 173.63 5212.1

In-Polygon Model Mid-Point 3.84 174.32 5256.6

In-Polygon Model Triplanner 2.12 173.69 5240.9

Without a CSC, an initial guess to the NLP for this simulation would be difficult

to generate and path constraints would be challenging to model, resulting in an

optimal solution that would likely return a non-desired local minimum with excessive

84



computation times. Here it is shown the optimal control problem can be solved in

2.12 seconds with an objective cost of 173.69. This solution requires an initial guess

acquired from the Triplanner toolkit solution for the safety buffer modeled inside the

polygon constraint. The Triplanner solution alone solved in the fastest time at 5.84

milliseconds, with a path length of 5490.9ft. Although this solution is well within

the computational limits for onboard processing, it requires an additional 280 feet of

path length to accomplish the mission and the state and control parameters are not

explicitly returned.

4.7 Three-Dimensional Optimal Control Problem

A few challenges must be overcome to transition the two-dimensional concepts to

the third dimension. First, the Triplanner toolkit is a fast geometric path planner

built only for two-dimensional space. In order to extend the methodology to allow

for pitch control of the SUAS, the three-dimensional space must be discretized into

tetrahedrons. Currently, there is not software available to perform this discretization

quickly and efficiently and therefore a simple constraint model is used in this simu-

lation such that a feasibility analysis can be conducted. Once the simplex domain

is achieved, a CSC can be determined through an A* algorithm and path solution

can be developed for an initial seed to the NLP as described in Section 3.4. Transi-

tioning the dynamic equations for the optimal control problem within the barycentric

coordinate system is straightforward and is demonstrated in the following scenario.

Optimal Control Problem.

Similar to the two-dimensional approach, each tetrahedron in the defined CSC

is solved as a single phase in GPOPS-II and each phase is connected through event

constraints. The dynamics constrain the path through each tetrahedron in barycen-
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tric coordinates. The optimal control problem formulation has been consolidated as

follows.

Minimize the cost functional

J =
P∑

p=1

J (p) (4.26)

where

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (4.27)

subject to the dynamic constraints

α̇
(p)
1 = (EI−FH)ẋ(p)−(BI−CH)ẏ(p)+(BF−CE)ż(p)

det(T3)
∀p ∈ [1...P ] (4.28)

α̇
(p)
2 = −(DI−FG)ẋ(p)+(AI−CG)ẏ(p)−(AF−CD)ż(p)

det(T3)
∀p ∈ [1...P ] (4.29)

α̇
(p)
3 = (DH−EG)ẋ(p)−(AH−BG)ẏ(p)+(AE−BD)ż(p)

det(T3)
∀p ∈ [1...P ] (4.30)

α̇
(p)
4 = −α̇(p)

1 − α̇(p)
2 − α̇(p)

3 ∀p ∈ [1...P ]. (4.31)

where A through I is defined by the mapping

T =




A B C

D E F

G H I




=




x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4



. (4.32)

and the three-dimensional SUAS dynamics,

ẋ(p) = v cos(ψ) cos(θ) ∀p ∈ [1...P ] (4.33)

ẏ(p) = v cos(ψ) sin(θ) ∀p ∈ [1...P ] (4.34)

ż(p) = v sin(θ) ∀p ∈ [1...P ]. (4.35)
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The control is placed on rate of change of the pitch angle, heading angle, and velocity

u
(p)
1 (t) = ψ̇(p)(t) (4.36)

u
(p)
2 (t) = θ̇(p)(t) (4.37)

u
(p)
3 (t) = v(p) (4.38)

and the state vector defined as

X = (α1, α2, α3, α4, θ, ψ)T (4.39)

with boundary conditions given as the initial and final constraints,

X(1)(t
(1)
0 ) = ((α1)0, (α2)0, (α3)0, (α4)0, (θ)0, (ψ)0) (4.40)

X(P )(t
(P )
f ) = ((α1)f , (α2)f , (α3)f , (α4)f , (θ)f , (ψ)f ). (4.41)

Inequality path constraints representing bounds on the state, control and time are

defined as

0 ≤ α
(p)
1 , α

(p)
2 , α

(p)
3 , α

(p)
4 ≤ 1 (4.42)

|θ(p)| ≤ 180 deg (4.43)

|θ̇(p)| ≤ 25 deg/s (4.44)

|ψ(p)| ≤ 30 deg (4.45)

|ψ̇(p)| ≤ 10 deg/s (4.46)

10ft/s ≤ v(p)(t) ≤ 30ft/s (4.47)

0 ≤ t(p) ≤ edge
(p)
max

v
. (4.48)

Finally, event constraints are included to maintain a continuous transition of the state
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variables between each phase,

X
(p+1)
o −X(p)

f = 0 ∀p ∈ [1...P − 1]. (4.49)

The key GPOPS-II parameters are listed below in Table 6.

Table 6. GPOPS-II User Settings, 3D Scenarios

GPOPS-II User Settings
Mesh Method hp-PattersonRao
Mesh Tolerance 10−3

NLP Solver IPOPT
Derivative Supplier AdiGator
Method RPM-differential
NLP Tolerance 10−5

Min Collocation Points 4
Max Collocation Points 10

Mesh Fraction 1
2

*ones(1,2)

Mesh Collocation Points 4*ones(1,4)

4.8 Three-Dimensional Scenario

A simple three constraint model was developed to analyze the three-dimensional

scenario. In order to illustrate the effectiveness of the simplex approach, the scenario

is solved with previous methods in the literature in a single phase using superellipsoid

constraint functions and compared to the solution using a simplex discretization. For

the simplex method, a discretization of the space is performed and an A* search

algorithm determines the CSC. An initial guess for the path solution is determined

by connecting the centroid of each simplex through the CSC. A two-point finite

differencing scheme is implemented to acquire initial vectors for the heading and

pitch angle, while the heading rate and pitch rate are initiated with the zero vector

and the velocity is presented at a maximum value. In order to better compare the two

solutions in each formulation, this initial path solution was used to seed the NLP in

both the single phase and multiple phase scenarios. The building constraints consists
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of three connected polygons, representing a series of buildings along a street with the

middle constraint only half the height of the other two as shown in Figure 32.

Figure 32. Three-Dimensional Constraint Map

The aircraft begins at level flight flying parallel to the building constraints and

is required to climb over the center building and descend to a terminal point per-

pendicular to the original path. The initial and final aircraft constraints are defined

as

(x0, y0, z0, θ0, ψ0) = (0, 100, 50, 0, 0) (4.50)

(xf , yf , zf , θf , ψf ) = (290, 600, 50, π
2
, 0), (4.51)

where the initial and terminal location are illustrated with a green and red asterisk

respectfully, as shown in Figure 32.

Single Phase Formulation.

The first formulation illustrates a single phase solution. The problem is solved

using Cartesian coordinates with superellipsoid constraint functions implemented in

the optimal control solver to model each of the three buildings. The dynamics consist

of a five state model consisting of the Cartesian coordinates expressed in Equations
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3.15 to 3.17, the heading angle, θ, and the pitch angle, ψ. The control is implemented

on the change in heading angle, θ̇, the change in pitch angle, ψ̇, and the velocity. The

bounds on each of the first three states are consistent with the search domain space

and are defined as

0 ≤ x ≤ 500 (4.52)

0 ≤ y ≤ 600 (4.53)

0 ≤ z ≤ 300. (4.54)

The bounds on the remaining states and control parameters are consistent with those

defined in Equations 4.43 to 4.48.

The three building constraints are modeled with a superellipsoid function and

designed as an inequality path constraint defined as

((
xa − xc
a1

) 2
ε2

+

(
ya − yc
a2

) 2
ε2

) ε2
ε1

+

(
za − zc
a3

) 2
ε1 ≤ 1. (4.55)

Here, the a subscript on the Cartesian coordinates refers to the aircraft position, the

c subscript defines the center point of the superellipsoid, while the principle axis in

each direction is defined by ai. The curvature at the edges of the superellipsoid is

defined with the ε1 and ε2 term which represent cuboids when they take on values

less than one and greater than zero [37]. For this work, both ε1 and ε2 were set to

0.01. Figure 33 shows the superellipsoid shape.

Although the constraint shape looks polygonal, the edges are rounded ever so

slightly, creating a small error between the polygonal shape and the superellipsoid.

This error is characterized in the results. Finally, the natural log is taken on both

sides of Equation 4.55 to minimize the impact the large constraint values can have

on the computation time of the NLP solver.
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Figure 33. Three-Dimensional Superellipsoid Constraint Map

With the optimal control problem defined for a single phase, an optimal flight

path can be computed. Results for the state and control parameters are compared to

the results for a CSC solution and are shown in the subsequent sections.

Simplex Formulation.

The new proposed formulation demonstrates the CSC solution and is solved in

barycentric coordinates with a phased approach in the optimal control solver. The

space is discretized into a tetrahedron set and an A* search algorithm is implemented

based on a mid-point heuristic to determine the CSC as described in Section 3.4. The

defined CSC is shown in Figure 34.

The dashed red line indicates a path solution, connecting the mid-point of each

simplex of the CSC and is used to seed the NLP. Given this defined CSC, the optimal

path is computed with a phased approach as defined in the optimal control problem in

Section 4.4. These results are compared to the single phase solution in computational

time and accuracy.
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Figure 34. Three-Dimensional Simplex Search Corridor & Initial Guess

Three-Dimensional Results.

The initial path solution used to seed the NLP was determined by connecting the

centroid of each adjacent simplex in the defined CSC. In order to draw comparisons

between the two formulations, the same path solution was used to seed the NLP in

the single phase and multi-phase formulation. This initial path solution can be seen

in Figure 35 with the dashed red line. The green asterisks reflect the first scenario

in which the optimal solution is solved in one phase within the global domain of the

space and satisfies the superellipsoid constraint function. The blue asterisks reflect

the second scenario where the optimal solution is determined through each simplex

of the defined CSC.

Variation between the two paths can be seen as they climb over the center building

with the single phase solution taking a more direct route to the terminal point. The

angular state and control parameters are shown in Figure 36.
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Figure 35. Three-Dimensional Optimal Path Solution Comparison

The top plot in Figure 36 shows the heading angle. As expected with larger

tetrahedrons, the centroid solution used to seed the NLP has the most variation in

the heading and takes the longest time to complete the path. The single phase and

simplex solution only differ in the timing of the turn to fly over the center constraint.

The third plot defines the pitch angle with all three path solutions resembling the

same angular requirements, however, the computation time of the centroid solution

is significantly longer. The second and fourth plots describe the angle rates for the

heading and pitch respectively and resemble Pontryagin’s principles as expected given

the rate limitations on the control variables. Finally, the fifth plot shows the SUAS

maintains max speed throughout the simulation in each scenario, however this would

not be the case when tighter turn radii are required [83].

The computation and objective times of GPOPS-II are shown in Table 7 for

each of the two optimal paths. The objective times between the two scenarios only
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Figure 36. Three-Dimensional Optimal State & Control

Table 7. Three-Dimensional Simulation Results

Solution Type Comp Time (s) Obj Time (s)
Single Phase 45.47 22.631

Simplex Solution 5.21 22.77

differ by less than two-tenths of a second while the difference in computation time is

significant at over 40 seconds. The disparity in the objective time can be explained in

the difference of the constraint function models. Superquadrics were used in modeling

the constraints in the single phase solution. The small εi values increase the sharpness

of the constraint edges, but also increases the exponential power of the constraint

function. This creates large gradient values within the NLP resulting in a significant

increase in computation time. With these epsilon values implemented, there remains
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a small error in the shape of the superquadric when compared to the polygonal

constraint used in the simplex solution. Characterizing this error is accomplished by

reviewing Barr’s work for modeling the volume of a superellipsoid [84], defined in his

work as

VE = 2
3
a1a2a3ε1ε2β

(
ε1
2
, ε1

2

)
β
(
ε2,

ε2
2

)
(4.56)

where β represents the beta function and the ai terms represent the principal axes of

the superellipsoid in each direction. The difference between the polygon shape con-

straint and the superquadric is 1099.6ft3, which results in a 0.012% error. Although

this error is small, it is concentrated at the edges of the constraint. The rounded edge

of the superquadric function as well as the spacing of the collocation points allows for

a more direct flight path over the center constraint. However, the path violates the

constraint modeled as a polygon as the path skips over the corner of the constrained

edge. The SUAS path solution over the first edge of the center constraint can be seen

in the left side and top image in Figure 37.

Figure 37. Three-Dimensional Path & Constraint Comparison

The superquadric model is a good representation of a polygonal constraint, how-
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ever, to guarantee the true polygonal constraint is not violated, a subjective safety

buffer would have to be included into the superquadric model to assure a feasible flight

path. By determining a path through a defined CSC, the constraints are eliminated

from the domain of the problem and a feasible flight path is presented.

4.9 Three-Dimensional Conclusions

The significant difference between the two and three-dimensional approach for

flight through an urban environment is the lack of a readily available three-dimensional

discretization and geometric path planning solver. Extending the simplex discretiza-

tion to three-dimensions, while maintaining the characteristics of a constrained tri-

angulation, is a current research challenge. This work provided a methodology to

discretize the constrained domain using simple rectangular prism shapes. Addition-

ally, fast geometric path planners used in the two-dimensional analysis contain an

A* search algorithm as well as a funnel algorithm based on a heuristic that has been

tuned and developed for the specified path solution. The approach taken in the

three-dimensional scenario implements a straightforward A* search with a centroid

heuristic to attain a rudimentary path solution. Both the discretization and initial

path generation can be significantly improved to allow for more complex constraint

environments and a more accurate path solution to seed the NLP of the optimal

control solver.

Given a discretization of the space and an initial path solution, extending the

principles of the two-dimensional optimal control problem to three-dimensions is

straightforward under the CSC construct. Three-dimensional vehicle dynamics can

be implemented with barycentric coordinates and a path solution can be attained by

solving the path one simplex at a time and connecting each simplex solution through

path constraints in the optimal solver. The results attained in this work illustrate
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the benefits that can be achieved by formulating the problem with a CSC approach

resulting in strictly defined parameter bounds where the constraints imposed by the

urban infrastructure are eliminated from the search space of the NLP solver. Future

work developing efficient three-dimension discretization and geometric search algo-

rithms will further increase computational speed and accuracy and allow for rapid

solutions to more realistic scenarios.
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V. Variations to the Two-Dimensional Problem

5.1 Overview

Chapter V presents multiple variations to the two-dimensional constrained optimal

control problem. Chapter IV successfully demonstrated the simplex methodologies

for a realistic, two-dimensional scenario. In this chapter, speed control is added to the

optimal control problem to allow variation in the SUAS turn radius, which expands

the feasible search space of the domain. First, the SUAS is required to visit multiple

waypoints incorporated into the Chicago city map, significantly increasing the number

of phases in the problem and demonstrating the ability to reach narrow corridor

regions. Second, keep-out regions are implemented, demonstrating a scenario where

the aircraft is required to minimize incursion though undesirable airspace. Next,

constant wind fields are incorporated into the model to demonstrate the feasibility

and issues presented when exogenous inputs are included into the CSC construct.

Finally, contingency planning is evaluated for the scenario in which a simplex search

corridor becomes obstructed mid-way through a flight plan. Each of these scenarios

are evaluated with minimal changes to the optimal control problem and demonstrate

the flexibility and utility of the CSC method.

5.2 Optimal Control Problem

For each scenario evaluated in this chapter, the objectives, parameters, rates,

limits, and bounds of the optimal control problem are defined below. Small changes

are necessary dependent on the specific scenario which is detailed in the appropriate

section.
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The objective is to minimize the time of flight through the scenario, defined as

J =
P∑

p=1

J (p) (5.1)

where

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ]. (5.2)

The state dynamics include

α̇
(p)
1 (t) = (y2−y3)v(t) cos θ(t)+(x3−x2)v(t) sin θ(t)

det(T )
(5.3)

α̇
(p)
2 (t) = (y3−y1)v(t) cos θ(t)+(x1−x3)v(t) sin θ(t)

det(T )
(5.4)

α̇
(p)
3 (t) = −α̇(p)

1 (t)− α̇(p)
2 (t) (5.5)

∀p ∈ [1...P ], resulting in the state vector

X = (α1, α2, α3, θ, θ̇,v). (5.6)

The control for the SUAS is on the change in heading rate and acceleration resulting

in

u
(p)
1 (t) = θ̈(p)(t) (5.7)

u
(p)
2 (t) = a(p)(t) (5.8)

Bounds are applied on the states, control, and time to limit the search domain of the

NLP solver. The bounds on the first three position states are enforced with the start
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and end location of each interval

[α1, α2, α3](1) = start position (5.9)

[α1, α2, α3](P ) = end position (5.10)

with the phases for the first three states bounded by

0 ≤ α
(p)
1 , α

(p)
2 , α

(p)
3 ≤ 1 (5.11)

∀p ∈ [2...P − 1]. The bounds for the remaining states, control, and time within each

phase are enforced as

|θ(p)| ≤ π (5.12)

|θ̇(p)| ≤ 25 deg/s (5.13)

|γ(p)| ≤ 5 deg/s2 (5.14)

10 ft/s ≤ v(p) ≤ 30 ft/s (5.15)

|a(p)| ≤ 2 deg/s2 (5.16)

0 ≤ t(p) ≤ ρ edge
(p)
max

v
(5.17)

∀p ∈ [1...P ] and where edgemax represents the longest edge in the defined simplex and

ρ is a scaling factor to allow for additional time spent in a simplex due to exegonous

inputs or keep-out regions.

Finally, the event constraints required for the continuous transition of the state

and control across each phase boundary are defined by

X
(p)
o −X(p−1)

f = 0 ∀p ∈ [2...P ]. (5.18)
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5.3 Waypoint Following

Waypoint Scenario Development.

The scenario presented considers the two-dimensional flight of a SUAS through

an urban environment modeled in downtown Chicago, USA. Buildings that reach an

altitude greater than 550 AGL are modeled as polygonal constraints. Given a starting

location, the aircraft is required to fly over three separate waypoints before returning

to the start location. This results in a four interval solution. For the work herein,

the required start and waypoint locations are defined as

start = [200, 200]ft (5.19)

waypoint1 = [1825, 1700]ft (5.20)

waypoint2 = [2370, 2355]ft (5.21)

waypoint3 = [3650, 1215]ft. (5.22)

The aircraft is required to maintain an altitude of 600 feet AGL while avoiding

all building constraints. The Triplanner algorithm is initiated with the start and

end location for each interval as well as the minimum turn radius, R, defined by the

vehicles minimum velocity and turn rate limit.

R =
vmin

θ̇max
(5.23)

The SUAS maintains control on the change in heading rate and acceleration, thus

allowing varying rate turns and the potential to maximize the search domain. The

waypoints were chosen to illustrate the vehicle control and provide for a challenging

optimal control problem. The first waypoint is located on the front doorstep of

the associated building, requiring the SUAS to fly adjacent to the constrained edge
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followed by a sharp turn to the north of the city. The second waypoint monitors

the center of an intersection surrounded by four constraints on each corner. Finally,

the third waypoint is located at a metro station designed to extend the four interval

problem through a large number of simplexes. Each waypoint is shown with a black

dot in Figure 38.

Figure 38. Multiple Waypoint Constraint Map. [Map Data @2017 Google]

When the SUAS is required to visit multiple waypoints, the Triplanner algorithm

can be used to generate an initial guess for each interval, defined as the path between

consecutive waypoints. Within each interval, a phased approach is used where each

simplex represents an individual phase. As a new interval is introduced, the first

phase will be identical to the last phase of the previous interval. This process is

shown below in Figure 39 with δi defining the current interval.

As the path solution terminates at a waypoint, represented at phase P in interval

δi, the following interval begins its path at the same waypoint in the same phase, now

designated as phase 1 in interval δi+1. The overlap of this phase is essential to assure

a continuous transition of the optimal control problem. The interval structure for the

bounds, mesh, initial guess, and events are then combined into a single structure with
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Figure 39. Multiple Waypoint Interval Development

the number of phases, Pt, equal to the sum of the phases in each waypoint interval

defined by

pt = [pδ1 ; pδ2 ; . . . ; pδ∆ ] (5.24)

∀p ∈ [1...P ] and pt ∈ [1...Pt].

To assure each waypoint is visited within a single optimal control problem, a

continuous transition of the states is required at each interval. An event constraint

is added to the optimal control problem defined in Section 5.2 defined by

X
(δ)
o −X(δ−1)

f = 0 ∀δ ∈ [2...∆] (5.25)

where δ represents the current interval and ∆ defines the total number of intervals in

the solution.

Finally, the objective of this optimal control problem is to solve the minimum

flight path over all phases subject to the dynamic constraints defined in Equations

5.3-5.5, parameter bounds of Equations 5.9-5.17, and event constraints of Equations

5.18 and 5.25. The cost function of Section 5.2 is replaced with one which accounts
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for flight across all intervals defined as

J =
Pt∑

pt=1

J (pt) (5.26)

where

J (pt) =

∫ t
(pt)
f

t
(pt)
0

dt ∀pt ∈ [1...Pt]. (5.27)

(5.28)

Waypoint Scenario Results.

The Triplanner algorithm is used to determine four individual path solutions, rep-

resenting each defined interval. Figure 40 shows the connected four interval solution

and the defined CSC.

Figure 40. Multiple Waypoint Triplanner Solution

This geometric path solution is shown with the dashed green line and avoids the

polygonal path constraints with a radial distance calculated from the minimum flight

speed as defined in Equation 5.23. The path contained within each interval results in
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a sub-optimal Dubins path solution as the minimum radius turns are not optimally

located due to the constraint field and the formulation of the Triplanner algorithm.

Additionally, the heading rate limits are not upheld at the waypoint locations resulting

in a discontinuity in the vehicle heading angle. The CSC for each interval is shown

with the black outlined polygons and are completely maintained outside of all path

constraints. This provides a CSC for the optimal control solver free of all building

constraints. The affects of Triplanner’s greedy A* search algorithm can be seen in

the second interval as the path chosen requires two turns around the last building

constraint before the second waypoint vice a shorter path containing only one turn.

The optimal solution will be determined within this CSC and therefore may not be

the global optimal solution. The optimal CSC could be determined by increasing the

search time of the A* algorithm, but at the cost of computation time. Table 8 shows

the number of phases and computation time for each of the intervals of the Triplanner

solution.

Table 8. Triplanner Interval Solutions

Interval Phases Computation Time (ms)
1 17 7.37
2 15 5.96
3 18 4.78
4 23 6.89

The combined path results in 73 phases. The path solution for Triplanner is non-

smooth at each waypoint and therefore the path length is not recorded as it cannot

be directly compared to the optimal solution.

The initial guess for the optimal control solver can now be formed by combining

the Triplanner solutions of the four intervals into appropriately formatted structures.

Figure 41 shows the optimal path contained within the defined CSC.

The optimal path is color coded with blue and dark green asterisks to illustrate the
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Figure 41. Multiple Waypoint Hybrid Solution

different intervals of the problem. The transition between intervals is continuous and

rate limited according to the limitation of the problem state and control variables and

enforced through the event constraints of the optimal control problem described in

Equations 5.18 and 5.25. The path solution is optimized over the Dubins path result

from Triplanner as the turn points are moved to an optimal location around the

building constraints allowing for a more direct path to the next waypoint. The final

path solution is comprised of 73 phases with an objective time of 290.51 seconds.

The required computation time for the optimal solution in GPOPS-II was 117.45

seconds on a PC. This time was extended significantly due to the discontinuities in

the Triplanner solution as well as the extended number of required phases. The state

vectors for the heading, heading rate, and velocity as well as the control vectors are

shown in Figure 42.

The initial guess, formed from the result of the Triplanner solution, is shown with

the dashed green line while the optimal state and control vectors are shown with the

solid blue lines. Evaluating the heading angle in the first plot, the discontinuities

in the Triplanner heading angle can be seen at each waypoint, located at 74, 116,
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Figure 42. Multiple Waypoint Hybrid Solution State & Control

and 177 seconds respectively. The optimal heading rate resembles the turn points of

the Triplanner solution, but is solved slightly faster than the initial guess provided.

The second plot of Figure 42 shows the heading rate. The initial guess provided

maximum rate turns based on the Dubins path solution of Triplanner. The optimal

heading rate was limited on the vehicles turns due to the rate-limited control vector

shown in the third plot. Finally, the velocity and acceleration vectors are shown in

plots four and five respectively. The control on the vehicle’s acceleration is illustrated

in the velocity vector as the vehicle is required to slow down in order to satisfy turn

rate limits designed at the second waypoint.

Waypoint Scenario Conclusions.

The fast computation times of these geometric solutions provide a foundation for

achieving real-time, onboard operations with optimal control software. The Triplan-

ner algorithm successfully provided a discretized triangular mesh, a CSC free of path
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constraints, and an initial solution for the SUAS position states. However, since

Triplanner provides a point to point solution, the intervals were solved individually

creating a discontinuity in the heading angle of the estimated solution. This creates

the requirement for optimal control software as the 2010 version of the Triplanner

algorithm does not account for initial or final heading angle constraints or rate lim-

ited control inputs. The initial path solution was evaluated and heading angle rates,

velocity, and acceleration vectors were established. These vectors were implemented

in the optimal control solver, GPOPS-II for calculation of the optimal path within

the desired CSC.

By defining the problem in barycentric coordinates, implementation of the Tri-

planner solution as the initial guess was accomplished through a phased approach

where each simplex represented a single phase of the optimal solution. A continuous

transition of the states and control were accomplished through event constraints, al-

lowing the optimal solution to continuously transition from one interval to the next

across each waypoint. Further, the challenging urban environment presented tight

corridors between building constraints where the vehicle was required to slow its air-

speed in order to reduce the minimum turning radius required to achieve the desired

path. By providing control to the vehicle’s acceleration, minimal speed deviations

were realized and a continuous minimum time solution was achieved over four in-

tervals containing three waypoints. The computation times for the optimal control

problem exceeded the limits for real-time operations, but the simulation presented

provides a foundation for future work where computational times could be drastically

reduced by smoothing the discontinuities of the Triplanner solution through a low-

pass filter or determining the appropriate limits for a series of finite-horizon optimal

control problems combined to meet the same objective posed herein.
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5.4 Aircraft Keep-Out Regions

Keep-Out Region Scenario Development.

Consider a city map representing an urban environment, where an aircraft is

required to maintain constant altitude and fly from an initial position to a terminal

point. As before, this scenario is represented with a constraint map of downtown

Chicago, USA. The SUAS is required to maintain an altitude of 600 ft AGL. Each

building that exceeds 550 ft AGL is modeled as a constraint that must be avoided.

Keep-out regions representing minimal flight zones are included along the West river

and down State Street. These zones must be avoided when possible. Figure 43

illustrates the constraint map for the intended scenario as well as the triangulated

mesh over the domain.

Figure 43. Keep-Out Region Constraint Map. [Map Data @2017 Google]

The initial starting position and the target location are shown with the green

and red asterisk respectively. The depicted red polygons outline building constraints

that must be avoided while the grey keep-out regions are modeled as circular regions

upon which the SUAS must minimize incursions. The left column of keep-out regions

have a separation between them, allowing the aircraft to fully avoid the flight zones if

they reside completely inside the defined CSC. The right column of keep-out regions
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maintain a small overlap, requiring flight through the zones at a minimum incursion

level, dependent on the CSC boundaries. Other locations and sizes for keep-out

regions may require the aircraft to fly through the center of the undesirable airspace.

If a keep-out region is unavoidable, an analysis on the threat should be conducted and

portions of the threat region should be modeled as a hard constraint and removed

from the search space if warrented.

With the dynamics and parameter bounds defined previously in Section 5.2, the

newly defined objective function is designed for minimum time of flight, while includ-

ing penalties for incursions into the keep-out regions. The cost associated with the

minimum time flight through each phase is represented as

J
(p)
minT =

∫ t(p)f

t
(p)
0

dt ∀p ∈ [1...P ]. (5.29)

The penalty for the keep-out regions, Fi(x, y) is defined with a sigmoid function,

φ(F ), and minimizes the keep-out incursions at each collocation point as follows

φi(Fi) = 1
1+e(si(Fi(x,y)−1) , (5.30)

for

Fi(x, y) =
(

(x(p)(t)−Kxi)
ai

)2

+
(

(y(p)(t)−Kyi)
bi

)2

(5.31)

where Kxi and Kyi define the keep-out center point and ai and bi define the semi-

major and semi-minor axes. This yields a cost function, minimizing the incursion to

keep-out regions, defined as

J
(p)
minE =

∫ t(p)f

t
(p)
0

φ
(p)
i (Fi)dt ∀p ∈ [1...P − 1] (5.32)
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The complete objective function is a summation of the minimum time cost and min-

imum incursion to keep-out regions.

J =
P∑

p=1

βJ
(p)
minT +

P−1∑

p=1

(1− β)J
(p)
minE (5.33)

Here, β defines the weighting on the components of the cost such that the cost function

influences the desired flight path.

Keep-Out Region Scenario Results.

The initial guess used to seed the NLP is determined using the Triplanner al-

gorithm. The output of Triplanner, shown in Figure 44, consists of a Dubins path

solution contained inside a CSC shown as a series of black simplexes.

Figure 44. Keep-Out Region Triplanner Solution

All building constraints are contained outside of the CSC thus eliminating path

constraints from the problem formulation. The initial path found by Triplanner is

illustrated with the green dashed line and does not account for keep-out regions but

maintains a clearance from each building equal to the minimum turning radius of the

SUAS. Note that only the simplexes in the CSC, as well as the sigmoid functions

modeling the keep-out regions, are presented to the NLP solver so that a computa-
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tionally efficient search can be performed for the optimal solution within the defined

CSC.

Figure 45 shows the resultant optimal control solution given the initial guess from

Figure 44 and the user settings defined in Table 3.

Figure 45. Keep-Out Region Hybrid Solution

The collocated points of the optimal path through the CSC are shown with the

blue asterisks. The first keep-out region is fully avoided since the region is located

completely within the CSC. The second keep-out region extends beyond both bound-

aries of the CSC and therefore the path is dependent on the weighted cost function,

set to β = 0.7 in this work. The optimal path chosen avoids the keep-out region up to

the limit of the CSC. Due to the barycentric problem formulation, the search space

is restricted to the bounds of the current simplex and therefore must remain inside

the defined CSC and incur a penalty to the cost function when inside the keep-out

region. If this incursion exceeds a mission threat level, the keep-out region should be

modeled as a hard building constraint and removed from the search space.

The vehicle heading and heading rate vectors are shown in the top two plots of

Figure 46. The third plot shows the integrated value of the cost function of Equation

5.32 evaluated over each phase. Finally, the remaining three plots show the change
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in heading rate, velocity, and acceleration respectively.

Figure 46. Keep-Out Region Hybrid Solution State & Control

The deviation in the heading for the first keep-out region can be seen in the

heading vector between 20 - 40 seconds into the flight. The lower heading value at

the 70 second mark illustrates the benefits gained from the optimal solution over the

Dubins path solution. The second keep-out region is illustrated at the 105 second

mark of the first plot. The integrated value of the sigmoid function on the third

plot shows the impact the two keep-out regions have on the optimal control solution.

The integrated values are referenced in each phase rather than by flight time as

the cost associated with the sigmoid function corresponds to individually defined

simplexes and the time associated with each simplex is not consistent, as the size

of the simplexes are dependent on the discretized mesh and therefore not equally
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spaced. The first keep-out region only slightly affected the cost function as seen in

phase six and seven. The second keep-out region is shown to have a greater affect

on the cost function, as the region is unavoidable, shown in phases thirty-one and

thirty-three. The value of the constraint portion of this cost can be adjusted through

the stiffness parameter of the sigmoid function described previously. With a value of

s = 2, a smooth, differential function is evaluated, but impacts to the cost function

can be seen when the vehicle approaches a close proximity to the region, while not

necessarily entering the region. Finally, through the weight parameter of the total

cost function, β, the impact of entering a keep-out region can be adjusted.

Keep-Out Region Conclusions.

The Triplanner algorithm is a computationally efficient algorithm that provides a

quality guess and a defined CSC to the NLP solver allowing for the avoidance of hard

constraints. In designing the optimal control problem, constraints must be evaluated

to determine if they consist of a flight region for which incursions can be minimized,

or if it is a constraint that must be avoided completely. If the constraint must be

completely avoided, the Triplanner algorithm’s triangulated mesh will remove the

constraint from the search field, limiting the problem’s domain. Multiple constraints,

combined with the minimum turning radius of the SUAS, could result in Triplanner

failing to return a feasible path solution. If however, constraints are modeled as keep-

out regions where the SUAS must minimize time spent in a flight zone, the constraint

should be modeled in the optimal control problem rather than the Triplanner algo-

rithm. By modeling the constraint in the cost function, tuning parameters can be

used for varying levels of incursions within the keep-out region based on the defined

CSC and the risk of designing an over-constrained problem is reduced.

The sigmoid function was shown to be a viable option for modeling constraints
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in the optimal control cost function within the construct of a CSC. These functions

are appropriate for gradient-based optimization software as they provide smooth,

bounded, and differentiable functions. The final cost function was a weighted sum,

distributing the cost over flight time and time within keep-out regions. These weights,

along with the stiffness parameter of the sigmoid function can be tuned to achieve

desired results based on the level of incursion permitted within the keep-out regions.

Ultimately, a discretized simplex mesh was used to provide a foundation for op-

timal control solutions. When paired with direct orthogonal collocation methods

for optimal control, both hard constraints, such as buildings and terrain, as well as

keep-out regions, such as unavoidable flight zones, can be modeled and optimal path

solutions can be attained.

5.5 Wind Analysis

Wind Analysis Algorithm Development.

This section demonstrates the implementation of a constant wind field into the

simplex model. Although a constant wind field may not be realistic in the urban

environment, this scenario illustrates the feasibility of the approach, outlines a few of

the issues that arise when incorporating wind parameters, and sets a foundation for

future work modeling dynamic wind fields. Further, as stated in Chapter I, all wind

fields for this scenario are constant and assumed to be know a priori. This work is

accomplished in the open loop without regard to feedback on system parameters and

therefore yields the flight path feasibility based on the expected wind environment.

The wind field is added to the dynamics of the aircraft and then embedded into the

barycentric coordinates of the simplex structure. The resulting dynamic equations

replace Equations 5.3 and 5.4 in the previously defined optimal control problem and
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become

α̇
(p)
1 (t) = (y2−y3)v(t)[cos θ(t)−βcosχ]+(x3−x2)v(t)[sin θ(t)−βsinχ]

det(T )
(5.34)

α̇
(p)
2 (t) = (y3−y1)v(t)[cos θ(t)−βcosχ]+(x1−x3)v(t)[sin θ(t)−βsinχ]

det(T )
(5.35)

where β defines the wind magnitude and χ defines the wind direction. The wind

direction is defined by a westerly wind when χ = 0. All remaining state, controls,

bounds and objectives of the optimal control problem defined in Section 5.2 remain

unchanged.

Wind Analysis Scenarios Results.

Two scenarios were developed to illustrate the inclusion of constant wind parame-

ters within the simplex construct for the optimal control problem. For each scenario,

the SUAS is required to minimize time from an initial starting point to a final point,

defined as

start = [200, 200]ft (5.36)

finish = [4700, 2650]ft. (5.37)

The first scenario varies the wind magnitude from β = 0 to β = 8ft/s. The direction

of the wind is held constant at χ = 90o. Figure 47 shows the path for each defined

magnitude of the wind. The highlighted region in this figure illustrates a portion of

the CSC where the heading angle is required to change significantly through the path.

Here, the increased difficulty for the NLP solver can be seen as the aircraft encounters

increasingly larger magnitudes of wind coming from the south. Limitations on the

path development exist first because of the constrained CSC path and second because

of the NLP’s dependency on the initial seed provided to the NLP solver. Within the

116



Figure 47. Min Time Flight with Varying Wind Magnitude

simplex construct, as the path traverses around a vertex point, there are simplex

regions that are only occupied by the path for very short durations as the path only

crosses the vertex point. Therefore, the mission time and collocation points in this

phase of the optimal control problem are minimal in the initial seed and impact

the resulting NLP solution. In Figure 47, the aircraft’s path is extended along the

boundary edge of the simplex as the wind magnitude is increased. This is a result of

both of these limitations. Figure 48 describes the heading and heading rate for each

of these paths. Here the turning points for the vehicle are dispersed in accordance

with the wind magnitude.

The second scenario held the magnitude of the wind constant at β = 7ft/s while

the direction of the wind was varied over 360 degrees in 45 degree increments. Figure

49 shows the path for each defined magnitude of the wind. Again, the limitations

from the previous scenario are shown as the path can be seen aligning to the edge of

simplex as the wind becomes more northerly. Figure 50 describes the heading and

heading rate for each of these paths in the second scenario. The turn points can be
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Figure 48. Varying Wind Magnitude, State Trajectories

Figure 49. Min Time of Flight with Varying Wind Direction

seen to vary based on the wind direction, with the darker lines representing easterly

winds and the lighter lines representing winds from the west.
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Figure 50. Varying Wind Direction, State Trajectories

Wind Analysis Conclusions.

These two scenarios successfully showed the simplex flight path with constant

winds incorporated into the dynamics while varying magnitude and direction. How-

ever, with the aircraft’s max speed of 30ft/s, the NLP solver had difficulties converg-

ing on a solution for wind fields greater than 8ft/s. This is a result of the flight path

being restricted to the defined CSC, where narrow corridors weave between building

constraints restricting flexibility in the path. Additionally, the feasibility of the sce-

nario is limited, as a realistic wind environment in the urban setting would consist

of head and tail winds through building corridors and possible wind shear at street

intersections. Future work for this scenario consists of the implementation of dynamic

wind fields while also providing multiple CSCs defined by the turning radius of the

vehicle within the Triplanner algorithm. Providing different CSCs from the initial

point to the terminal point would allow for more flexibility in the chosen path and

increase the opportunity for convergence in extreme wind conditions.
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5.6 Contingency Planning

There may be times within a flight mission when dynamic constraints or mission

priorities require the SUAS to change a flight plan mid-way through a defined scenario.

This may be the result of an unpredictable movement of a population center or

convoy that is undesirable to fly over, or intelligence has changed the initial targeting

information. As the vehicle proceeds through a set of simplexes, it would now be

required to generate and re-route to a newly defined CSC. In reference to the two-

dimensional problem scenarios and in the extreme case, the aircraft is restricted

between two building constraints in the urban environment with a minimum width of

two times the minimum turning radius as defined by the Triplanner algorithm. Given

this minimum constraint, a set of three minimum radius turns can be accomplished to

reverse the SUAS direction within the current CSC. This set of maneuvers are shown

in Figure 51. Here, the solid red lines define the minimum width of a CSC, δ defines

Figure 51. Contingency Algorithm Development

the off-set distance of the current SUAS position to the center of the CSC, and R the
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minimum turning radius based on the vehicles minimum speed. The vertical start

distance of the vehicle can then be defined with these two parameters as

L̄ =
√

4R2 − (δ +R)2 (5.38)

where L is defined as a unique case when the SUAS is in the center of the CSC,

requiring δ = 0. The minimum look-ahead distance required to make the maneuver

is simply L̄+R.

In order to minimize the required area to perform the maneuver while accom-

plishing the task in minimum time, a set of three minimum radius turns can be

determined in closed-form solution, producing the radial distance and time required

for each segment of the maneuver.

Contingency Operation Algorithm Development.

The contingency algorithm starts with the vehicle parallel to the left CSC bound-

ary defined by position (x0, y0). The center of the circles are comprised of the param-

eters shown in Figure 51 and defined as

C1 = (x0 +R, y0) (5.39)

C2 = (x0 − δ, y0 + L̄) (5.40)

C3 = (x0 − (δ +R), y0 − (L− L̄)). (5.41)

Each of the three circular paths can be described with

(x− Cx)2 + (y − Cy)2 +R2 = 0. (5.42)
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Equating each of the two connecting circles, the coordinate position of the tangent

points can be determined given the input of Ci and R. Knowing the initial point

of the aircraft, (x0, y0), the distance traveled on each of the circular paths can be

determined by

S = R(θ2 − θ1) (5.43)

for θ is equal to the angular distance between consecutive tangent points, beginning

with the start location (x0, y0). The algorithm requires the final position of the aircraft

to be parallel to the initial starting vector, which results in a quarter turn on the final

circular path, given this scenario development. With the minimum velocity of the

aircraft, v, the flight time spent on each arc is determined by

t =
S

v
. (5.44)

With the equation and parameters presented, a closed-form solution for the contin-

gency maneuver can be attained.

Contingency Operation Results.

The analytical solution provides a path that contains the tangent point coordinates

and the time spent on each arc. The position coordinates and heading angles in-

between each tangent point can be interpolated on each circular region. This generic

path solution is shown in Figure 52 and illustrates the solution with a small off-set

distance, δ to the CSC center line. Like Triplanner, this solution is a geometric path

solution which does not consider rate limits on the state and control parameters.

Therefore, this solution is used to seed the NLP of the optimal control solver. Given

the optimal control problem defined in in Section 5.2, Figure 53 shows the contingency
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Figure 52. Contingency Algorithm Analytical Results

path solution. In this scenario, the black asterisks indicates the original flight path

Figure 53. Contingency Algorithm Optimal Path Solution

of the SUAS. The transition to the blue asterisks shows the path of the contingency

operation. The implementation of this solution requires the minimum look-ahead

distance of L̄+R, plus the required time to calculate the maneuver. The solution for

the contingency operation was accomplished in 0.96 seconds with an objective time
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of 15.6 seconds. The objective time is significant as this is the time available for the

aircraft to receive additional mission information and calculate the subsequent CSC

and flight path. The control parameters for the maneuver are shown in Figure 54.

Here, the contingency operation can be seen to begin at the 3.5 second mark with

Figure 54. Contingency Algorithm Optimal Control Demonstration

the analytical path solution shown in green. The first plot shows the heading as the

vehicle traverses around each of the three arcs. The second plot shows the heading

rate and illustrates the implementation of the rate limits shown in third plot. Finally,

the last two plots show the velocity and acceleration remaining constant throughout

the operation so that a minimum radius turn can be achieved.

Contingency Operation Conclusions.

The simplex methodology for optimal path planning in highly constrained envi-

ronments has proven to be a valid, efficient, and accurate method for determining
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optimal path solutions. The scenario outlined in this section provides the ability to

re-route the aircraft mid-way through a two-dimensional mission, should the current

CSC become obstructed. The contingency operation is guaranteed from Triplanner,

as the CSC is constructed to have a minimum width of two times the minimum turn

radius of the vehicle. As long as the minimum path distance to the obstruction is

provided, a contingency operation can be performed.

5.7 Summary

This section provided four variations to the two-dimensional CSC optimal control

problem. These variations covered multiple waypoint analysis, implementation of soft

keep-out zones, incorporation of wind parameters, and contingency operations should

a CSC become closed off. These solutions provide standard scenarios and a breadth of

capability that can be accomplished within the CSC construct and further illustrates

the capability of the solution methodology. These results provide an optimistic view

as more complex mission scenarios and different cost functions are implemented, fast

and accurate solutions can be attained.
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VI. Conclusions and Recommendations

6.1 Conclusions

This chapter presents the conclusions, contributions to the field of aeronautical

engineering optimization theory for path planning, and recognizes potential areas

for future research. The objective of this work was to define a feasible flight path

through a constrained environment, quickly and efficiently, with a hybrid method

combining optimal control direct orthogonal collocation methods with fast geometric

path planning techniques. This objective was successfully accomplished by answering

the following four questions:

1. How do you formulate the two-dimensional optimal control problem

for optimal trajectories in complex urban environments? The work

herein evaluated the formulation of constraint functions for modeling a real-

istic constrained environment. An analysis was conducted to compare simple

circular and elliptical shapes, superquadrics, and polygonal functions. Each of

these methods resulted in an increased burden on the NLP as more constraints

are applied to the field, thus increasing computation time and reducing the

probability of convergence. Simplex techniques were evaluated to remove the

constraints from the domain and restrict the solution space to a set of con-

necting simplexes. This work formulates the minimum time optimal control

problem with a phased approach in the barycentric coordinate frame, resulting

in the optimal path solution through a defined CSC.

2. Can the computational speed and robustness of convergence to the

two-dimensional optimal control problem be improved by formulat-

ing the problem within a CSC construct using fast geometric path
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planning techniques? This work evaluated the two-dimensional optimal con-

trol problem with four different scenarios. First, a simple constraint field was

implemented and results were shown for six different methods of solving the con-

strained optimal control problem. Results indicated the most computationally

efficient algorithm formulated the problem within a CSC structure while using

fast geometric path planning tools to seed the NLP. Convergence rates were

increased by transitioning to the barycentric coordinate frame, thus eliminating

problem specific parameter bounds. The remaining three scenarios increased

the constraint field to 37 polygonal constraints resembling building structures.

These scenarios demonstrated the CSC methodology, provided multiple way-

point solutions, and minimized incursion to keep-out regions. Evaluating the

multiple waypoint scenario, discontinuities in the planning algorithm were ad-

dressed in the optimal control problem and moving the vehicle control from

velocity to acceleration reduced the vehicles turning radius and allowed the air-

craft to reach waypoints in tightly constraints regions of the Chicago map. In

the keep-out region scenario, sigmoid functions were incorporated to allow for

minimal incursions to unavoidable constraints, allowing for flexibility in design-

ing constraint maps for vehicle path planning. Results showed the implication

of including minimum flight regions within the CSC construct where the regions

can only be completely avoided if it lies entirely within the CSC boundaries. By

implementing the CSC method with these scenarios, solutions were attained to

problems that previously could not be evaluated with optimal control solvers.

3. How do dynamic constraints and constant wind fields affect the flight

path solution acquired from a simplex discretization? The work herein

demonstrated simplex discretization techniques decrease computation time while

providing accurate solutions to the two-dimensional optimal control problem for
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path planning. However, since the solution is restricted to the defined CSC, dy-

namic constraints or mission requirements may result in that CSC becoming

obstructed or closed off. Therefore, a contingency flight path was developed

allowing for a turn around maneuver to be completed within the CSC. Dur-

ing this maneuver, time is available to generate a new CSC and flight path

based on the updated mission requirements. Additionally, a constant wind field

was successfully incorporated into the CSC construct of the control problem to

demonstrate the path planning capability based on a priori knowledge of the

wind fields.

4. How can the three-dimensional problem be formulated using simplex

discretization techniques? The final scenario evaluated in this work demon-

strated the extension of the two-dimensions problem to the third dimension.

Path planning through a simple constrained environment was evaluated using

superquadric constraint functions as well as tetrahedron discretization tech-

niques to eliminate the constraints from the search field. The optimal control

problem for the CSC method was formulated with control on the SUAS angle

rates and velocity. With a simplistic constraint field, this formulation was more

than adequate. However, as more realistic constraints are added to the scenario,

extending the control to the vehicle’s acceleration should be implemented in or-

der reduce the turn angles and allow for navigation in tight corridor regions.

Comparing the CSC method with superquadratic constraints, the CSC method

once again proved to be superior in computation time and accuracy. However,

extending the problem to three dimensions requires a CSC comprised of tetra-

hedrons. This discretization was accomplished in this work for simple polygonal

constraint shapes as a proof-of-concept, however as more complex constraints

are implemented into the field, this discretization may become problematic.
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Collectively, methodologies were developed to provide fast, accurate solutions to

the constrained optimal control problem, closing the gap to real-time, onboard path

planning operations. Solutions can now be attained regardless of the number of con-

straints in the domain and independent of problem specific parameter bounds within

the optimal control solver. The Triplanner algorithm provided both the feasibility of

a path solution as well as a path solution itself, allowing for optimal solutions to be

generated quickly and accurately. The work presented provided a wide range of sce-

narios, demonstrating the robustness of the methodology for solving optimal control

problems for SUAS path planning.

6.2 Contributions

This research provided the following contributions to the field of optimal control

path planning for SUAS:

1. Referring to Figure 2 in Chapter I, algorithms were developed and implemented

to accomplish the work herein. A geometric path planner was developed for

the three-dimensional scenario, defining a tetrahedral discretized space, a CSC,

and in initial path solution. All data conditioning algorithms were developed

to formulate the CSC connectivity matrix and generate a properly formatted

initial guess. Within the optimal control solver GPOPS-II, algorithms were

developed to translate the problem to barycentric coordinates and to build

appropriate data structures within a phased approach through the defined CSC.

These algorithms were essential to methodology and developed for solutions to

a wide range of constrained optimal control problems.

2. Constraint modeling was shown to be too computationally expensive for real-

time optimal control problems through highly constrained fields. Therefore
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defined methods demonstrated solving highly constrained optimal control prob-

lems for SUAS path planning by eliminating all hard keep-out constraints from

the NLP’s domain and reducing problem specific parameter bounds to aircraft

specifications.

3. Demonstrated the methodology for the inclusion of multiple waypoints, mini-

mizing incursions to keep-out regions, incorporating constant wind fields and

provided contingency path solutions within the CSC.

4. Provided a foundation for SUAS optimal path solutions in three-dimensions by

performing a tetrahedron discretization of the search domain, acquiring a feasi-

ble CSC, and implementing the simplex methodology into the optimal control

solver.

6.3 Potential Future Research

1. A multitude of different scenarios could be developed with varying cost functions

to accomplish different mission objectives. This could include the requirement

that an aircraft arrives at a desired location within a CSC at a specified time.

Aircraft deconfliction could be considered to assure that two aircraft do not

occupy the same simplex of the CSC at the same time. Or finally, consider

multiple aircraft scenarios upon which all vehicles must converge onto the same

target at the same specified time.

2. Each scenario solved in this work minimized the time of flight from the start

position to the terminal point. In the urban environment, this may involve

several max rate turns which can diminish the battery life of the SUAS and

reduce the mission flight time. It would be beneficial to examine scenarios upon

which the heading rate and throttle control are minimized, thus maximizing the
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battery life of the vehicle. To accomplish this, different CSCs would need to

be evaluated within the optimal control problem. Within the two-dimensional

approach, Triplanner yields results based on the minimum turning rate of the

vehicle. This turn rate can be varied over the range of the vehicles velocity to

acquire different path solutions. Figure 55 illustrates the different path solution

based on the vehicles speed.

Figure 55. Triplanner Multiple Path Solutions. [Map Data @2017 Google]
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Six figures are shown starting with the constraint map. Each subsequent figure

increases the speed of the vehicle through the values of 10ft/s, 16ft/s, 24ft/s,

30ft/s, and 40ft/s. Each speed produces a different path solution that can be

evaluated based on the desired cost function within the optimal control solver.

3. This work uses the 2010 version of the Triplanner toolkit. This package is a

fast geometric path planner that does not consider heading requirements at the

initial and terminal point. A 2014 version of Triplanner is used under contract

with AFRL and is recommended for future work, although an open-source,

government owned version is the preferred end state. The 2014 version of the

toolkit allows for initial and final heading constraints and is more robust to

adding and removing large number of constraints quickly within the software

package.

4. For scenarios involving multiple waypoints, exclusion to keep-out regions, or

constant wind fields, computation times may be excessive. To reduce these com-

putation times, an analysis should be completed to format the optimal control

problem within the construct of a finite horizon or modern predictive control,

evaluating the best approach to solve portions of the larger problem. Within the

simplex discretization method, these smaller optimal control problems should

solve very quickly in a consecutive manner.

5. The SUAS parameters used in this body of work were not tied to a specific air-

craft, rather generic parameters were used to show the feasibility of the concept.

The logical next step is to define an aircraft for flight testing and tune the algo-

rithm to the characteristics of the specified vehicle. Preparing for a flight test,

one should consider safety of flight issues with the constraints. Since the path

planning algorithm does not include any safety buffer between the aircraft and
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the building constraints, this safety buffer needs to be incorporated into the con-

straint design. Flight testing can be accomplishment with the two-dimensional

algorithm or the three-dimensional algorithm.

For the two-dimensional test, two realistic options exist. The first is to fly a way-

point path defined with the output of Triplanner. This requires waypoints to be

extracted from the Triplanner algorithm and spaced appropriately as Triplanner

only gives the the first and last point on the straight sections of the Dubins path

and points defined by a degree off-set on the minimum radius turns. This path

would be a Dubins path, but would not be the optimal path within the CSC.

It would however, give a realistic solution in a highly constrained environment.

The second option would be to fly the heading rate vector and velocity vector

output from the optimal control solver. Flying the control vectors lends to a

more realistic implementation of flight testing the optimal flight path.

The three-dimensional flight test would need to be simplified significantly as the

current algorithm can only handle rectangular prism constraints. Additionally,

unlike in Triplanner, there are no guarantees for feasibility in the CSC. This

must be considered in choosing the domain space. Further, the seed to the

NLP for the three-dimensional algorithm is a midpoint solution between each

consecutive simplex. This provides a very poor flight path and would not be

recommended for a waypoint flight test. Therefore, it is recommended to fly

the control vectors from the output of the optimal solver or waypoints acquired

from the optimal solution.

6. Following a successful flight test, the code for the algorithm should be combined

for seamless transitions between the software packages. It is recommended to

run the algorithm on a Linux based operating system. There are four packages

that need to be re-coded and seamlessly combined. The first is a script to pick
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points off a constraint map to load the constrained field. This script should

also contain all vehicle specific parameters and the start and final destination.

The first script needs to call the geometric path planner, which would require

minimal alterations to the code used herein. Third, a script needs to incorporate

the output of the geometric path planner and format the data for the optimal

control problem. This code has been written in MATLABr and would just need

transferred to a more suitable language. Finally, it is desired to call the NLP

solver directly. Therefore, a script is required to build the parameter bounds,

format the initial guess, and set up the input parameters for the NLP solver, to

include the gradient and hessian of the dynamic functions. Once completed, this

code will further close the gap to an operational, real-time system for optimal

path planning.

7. Extending the algorithm to three-dimensional space could be accomplished with

two different algorithms. The first would extend the concepts defined in this

body of work, flying the aircraft through a tetrahedral CSC. This process would

require increased fidelity in discretizing the space while providing guarantees to

flight feasibility similar to the funnel algorithm in the two-dimensional approach.

The second option for the algorithm is to consider a multi-level, two-dimensional

flight path. Understanding and implementing a procedure to mesh the two-

dimensional altitude levels will be challenging, but may be a more realistic

approach for implementing a three-dimensional solution in the near-term.

6.4 Summary

The body of work herein has shown a successful methodology for acquiring fast

and accurate solutions to the constrained optimal control path planning problem. By

formulating the problem within a simplex mesh, parameter bounds were simplified
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and the optimal control problem was solved in a phased approach with direct or-

thogonal collocated methods. Geometric path planning algorithms proved to be an

efficient and accurate method for seeding the NLP, further decreasing computational

time. Although this work does not provide a beginning to end solution for MUM-T

operations, it does provide a foundation for a fast, accurate, and reliable solutions.

Collectively, these algorithms begin to close the gap for real-time onboard SUAS

path planning. Further, this work provides a methodology for MUM-T operations,

where a SUAS can operate with minimal command from host aircraft and successfully

accomplish the desired mission.
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Appendix A. Presentations

Appendices B through G contain a conference or journal paper published as part

of this work. Additionally, many presentations were given at local conferences or

within the AFIT and local community. A list of all presentations under this research

are included here.

1. ASME Dayton Engineering Science Symposium, November 2016. “Pas-

sive Techniques for Target Localization using Trajectory Optimization”

2. AIAA Sponsored Lunch and Learn, December 2016. “SUAS Optimal Con-

trol using Triangulated Mesh”

3. AIAA Dayton & Cincinnati Aerospace Science Symposium, March

2017. “Simplex Methods for Optimal Control of Unmanned Aircraft Flight Tra-

jectories”

4. AFIT Controls & Optimization Brown Bag, August 2017. “Simplex Con-

trol Methods for Convergence of Small Unmanned Aircraft Flight Trajectories”

5. ASME Dynamic Systems Controls Conference, October 2017. “Simplex

Methods for Optimal Control of Unmanned Aircraft Flight Trajectories”

6. ASME Dayton Engineering Science Symposium, October 2017. “Opti-

mal Path Planning for SUAS Waypoint Following in Urban Environments”

7. AIAA SciTech Information Systems Conference, January 2018. “Simplex

Optimal Control Methods for Urban Environment Path Planning”

8. AIAA Dayton & Cincinnati Aerospace Science Symposium, February

2018. “Optimal Path Planning for SUAS Target Observation through Con-

strained Urban Environments using Simplex Methods”
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9. IEEE Big Sky Aerospace Conference, March 2018. “Optimal Path Plan-

ning for SUAS Waypoint Following in Urban Environments”

10. AFRL/RW Controls & Optimization Outreach, March 2018. “USAF

Optimal Control Applications”

11. AIAA American Controls Conference, June 2018. “Optimal Path Plan-

ning for SUAS Target Observation through Constrained Urban Environments

using Simplex Methods”
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Appendix B. Dynamic Systems Controls Conference 2017

Appendix B contains the first paper published in this research effort. This work

contains the constraint analysis and feasibility approach to the optimal control path

planning problem, providing the foundation for the core research. It was published

and presented at the ASME Dynamic Systems Controls Conference in Tysons Corner,

Virginia, October 2017.
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ABSTRACT
The feasibility of using a constrained Delaunay triangula-

tion method for determining optimal flight trajectories of un-
manned air vehicles in a constrained environment is explored.
Current methods for developing optimal flight trajectories have
yet to achieve computational times that allow for real-time im-
plementation. The proposed method alleviates the dependency
of problem specific parameters while eliminating constraints on
the Non-Linear Program. Given an input of obstacles with n ver-
tices, a constrained Delaunay triangulation is performed on the
space. Converting the vertices of the triangulation to barycen-
tric coordinates on a phased approach defines the state bounds
and max time for each phase. With two-dimensional aircraft dy-
namics, direct orthogonal collocation methods are performed to
compute the optimal flight trajectory. Results illustrate computa-
tional times and feasibility of Small Unmanned Aircraft System
flight trajectories through polygon constraints.

INTRODUCTION
In the discipline of optimization and control, path planning

techniques have been used over a wide range of applications to
find optimal flight trajectories through constrained environments.
These path constraints may consist of terrain, infrastructure, or
no-fly zones that must be avoided for the safety of the aircraft
or the concealment of the air mission. Often, Small Unmanned
Aerial Systems (SUAS) are teamed with manned aircraft to min-

∗This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States. Approved for public release; distribution is unlimited.

imize the dangers the aircrew may encounter due to these con-
straints [1]. In the case of target localization, a host aircraft can
remain at a safe altitude while a SUAS is deployed into a threat
region to acquire and verify target coordinates. Once the ini-
tial target coordinates have been verified, the SUAS is required
to determine a feasible path to a second target region. The au-
tonomous localization of the target has been studied in [2] and
this paper focuses on the autonomous path development from
the initial target region to the second target region through a con-
strained field.

In previous work studying constrained optimal flight trajec-
tories [3–7], significant issues have been illustrated that prevent
the algorithm from reaching computation speeds required for on-
board operations. For numerical solutions, an initial guess must
be provided to the Non-Linear Program (NLP) solver and prob-
lem specific parameters must be estimated before a solution can
be determined. The accuracy of these inputs will affect both the
computational speed and the convergence to an optimal solution.
This paper focuses on increasing computational speed and guar-
anteeing convergence by eliminating constraints from the search
space through triangulation and performing a coordinate trans-
formation to standardize the input parameters to the NLP solver.

OPTIMAL CONTROL
Due to the complexity of most optimal control problems,

analytical solutions cannot be obtained and therefore numerical
methods are employed to reach feasible solutions. Two com-
mon numerical approaches are described as the indirect method
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and the direct method. Indirect methods apply the calculus of
variation to transform the optimal control problem into a Hamil-
tonian Boundary-Value Problem (HBVP). This method produces
a highly accurate solution and assures the first-order optimality
conditions are solved. However some disadvantages include a
small radii of convergence and the requirement to analytically de-
rive the HBVP. A good guess for the states, control and co-states
is required for convergence, which often becomes time consum-
ing and problematic, specifically for the co-states which have no
obvious physical meaning to the problem [8].

To avoid these issues, direct methods transcribe the infinite-
dimensional optimal control problem into a finite optimal control
problem with algebraic constraints, otherwise known as an NLP
[9]. There have been many methods developed to transcribe the
optimal control problem into an NLP, including direct shooting
methods [10], state and control parameterization methods [11],
and direct orthogonal collocation methods [3, 12]. The focus of
this research will be on direct orthogonal collocation methods,
also referred to as psuedospectral methods in the Aerospace field
of study [9].

When solving an optimal control problem with direct or-
thogonal collocation, the continuous time optimal control prob-
lem is transcribed to a discretized nonlinear programming prob-
lem. This is accomplished with three main concepts; orthogonal
collocation, polynomial approximation, and Guassian quadra-
ture [13]. For this research, the continuous functions of the opti-
mal control problem are approximated with a finite dimensional
Lagrange polynomial basis [14]. The state x is approximated at
a set of collocation points described as

x̃(τ)≈ x̃N(τ) =
n+1

∑
i+1

xiLi(τ) (1)

where xi represents the weight function, Li(τ) is the Lagrange
polynomial basis

Li(τ) =
n

∏
i=0
j 6=i

τ− τ j

τi− τ j
(2)

and τ represents an affine transformation of the time t on the
interval from (−1,1).With the problem discretized, Gaussian
quadrature is used for differentiation or integration of the state
and control. The error produced by this method can be greatly
reduced by choosing the collocation points appropriately with
Legendre or Chebyshev point placement to minimize the affects
of Runge phenomenon.

CONSTRAINT MODELS
Many techniques have been employed to appropriately

model path constraints in two-dimensional space. One of the
most commonly employed techniques is to simulate a vehicle no-
fly zone with circular or spherical constraint function [5, 12, 16]
of the form

‖xk(t)− x̃n‖2
2 > rn. (3)

Here, the difference between the position states of the kth ve-
hicle, xk and the center of the no-fly zone, x̃ must be greater
than a defined radius, rn. These functions are differentiable and
smooth and therefore can be handled with relative ease with an
NLP solver such as IPOPT or SNOPT. The drawback is that
the constraint is restricted to circular or spherical shapes. This
may be adequate to represent a no-fly zone, however error will
be introduced for polygon shapes representing city infrastructure
or landscape that require square or rectangular shaped constraint
models.

To minimize this error, superquadrics, have been used exten-
sively in computer vision, computer graphics, and robotics [17].
The superellipse is a type of Leme curve which is defined as

(xc

a

)m
+
(yc

b

)m
> 1 (4)

where the semi-major and semi-minor axes are defined by a and
b, xc and yc represent the center point of the object, and m is a ra-
tional number defining the curvature of the object. When solving
problems with direct orthogonal collocation, the superquadric
has been used to include constraint shapes other than simple
circles or ellipsoids. Hurni, Lewis and Mohan used the su-
perquadric in a constraint rich environment and found success
in convergence but at the cost of computation time [18–20].

Additionally, polygon shaped constraints can be evaluated
with ray-casting to determine if the collocation point is inside
the constraint or in a feasible region in the search space [21, 22].
The polygons are described by a vector connecting each vertex
to form a closed region. Unlike the superquadric, any polygon
shape can be modeled with this method. The ray-casting algo-
rithm returns both a Boolean variable to obtain a smooth con-
straint and the distance to the nearest polygon edge. This method
is computationally expensive and can quickly become unsolvable
in optimal control software as more constraints are added to the
optimal control problem. Further, the derivative of the constraint
function becomes steep at the constraint boundaries which can
result in undesirable and non-optimal path solutions. The ro-
bustness of the algorithm to consistently converge to a solution
is problematic as well, and computation times required for real-
time operations are not feasible with this method.
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Each of these methods are based on the premise that the con-
straint is contained inside the search space and the NLP solver
must evaluate constraint equations to assure a feasible solution
can be attained. The following section leverages research from
the field of computer animation to eliminate the constraints from
the search space by performing a triangular discretization de-
pendent on the constraint field rather than the size of the search
space.

COMPUTER ANIMATION
Direct orthogonal collocation methods discussed previously

are capable of meeting the computational requirements if an ad-
equate starting point of the states are given to the NLP solver.
When approaching the constant altitude SUAS problem, compar-
isons can be made to path development of autonomous agents in
the interactive virtual world. Virtual worlds are populated with
autonomous virtual humans, or agents, where computed paths
must take into account path length, time, and energy expended
traversing the path [23].

The demand on the complexity of the virtual world com-
bined with improved graphic capability has encouraged new
techniques for achieving intelligent navigation for the next gen-
eration virtual agent simulation [24]. Given the speeds of which
these video games are played, path planning algorithms must per-
form efficiently under limited time budgets to traverse the au-
tonomous agent from one end of a building to the other. Of-
ten greedy algorithms are chosen in which the first feasible path
that is found is continuously improved according to the charac-
terestic dynamics and a pre-determined threshold on computa-
tional time. The path available at the time required is then imple-
mented [23, 25]. This can often result in a sub-optimal path, but
in the virtual world of the gaming industry, the timeliness of the
solution is more heavily favored over the most optimal route.

CONSTRAINED DELAUNAY TRIANGULATION
A Constrained Delaunay Triangulation(CDT) is a refine-

ment of the Delaunay triangulation that forces a required seg-
ment as an edge of the triangulation. The formal definition can
be found in [26] and is described as follows:

Definition. Let G be a straight-line constrained edge. A
triangulation T is a CDT of G if each edge of G is also an edge
of T and for each remaining edge e of T there exists a circle C
with the following properties:

1. The endpoints of edge e are on the boundary of C.
2. If any vertex v of G is in the interior of C then it cannot be

“seen” from at least one of the endpoints of e (i.e., if you
draw the line segments from v to each endpoint of e then at
least one of the line segments crosses an edge of G).

The CDT is made of constrained edges and unconstrained
edges. When determining an optimal path, the solution can cross
an unconstrained edge, but must avoid all constrained edges.
Since the constrained edges are required, often formulation of
the CDT contains a vertex or an edge that does not satisfy the
Delaunay triangulation conditions, and therefore a CDT may not
be equivalent to a Delaunay triangulation. An example of the
differences can be seen below in Figure 1.
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FIGURE 1. A: Unconstrained Delaunay Triangulation; B: Con-
strained Edge Segments; C: Constrained Delaunay Triangulation [26]

Here, Figure 1A shows a Delaunay triangulation without any
constrained edges. Figure 1B implements a constrained edge into
the field and Figure 1C illustrates the CDT with the constrained
edges included in the triangulation.

Using this technique, constraints can now be forced into the
discretization of the space. In computer animation, these con-
straints represent walls in buildings, tables, chairs, and other
common structures autonomous agents are required to navigate
around. Applying these constraints to the SUAS path planning
problem, these boundaries illustrate hard constraint no-fly zones
that are represented with polygonal shapes such as buildings, ter-
rain, and restricted airspace.

TRIANGULATION-BASED PATH DEVELOPMENT
Path planning algorithms have been designed to determine

the best route from an initial starting point to a goal location
while satisfying conditions on constraints and dynamics. In the
field of optimal control, the dynamics of the agent must be sat-
isfied while obeying all constraints placed on the states, control,
and path. In computer animation, path planning focuses on de-
termining the best route for the autonomous agent while avoiding
walls, furniture and other obstacles. Many algorithms have been
developed to accomplish autonomous agent path planning with
an emphasis on computational speed. Path solutions must be
found quickly to give the appearance the agent is in fact making
real-time intelligent decisions as the video game progresses [27].
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A* Search Algorithm
The A* search algorithm gets its roots from Dynamic Pro-

gramming and is an extension to Dijkstra’s algorithm. The entire
domain is searched with Dijkstra’s algorithm, where as an A*
search is guided by a heuristic. It is considered an “informed
search” or “best-first search” as the algorithm searches the space
until a solution is found. This solution may be sub-optimal and
therefore the algorithm will continue to search the space, updat-
ing the solution if a lower performance index is found. Often a
time limit is imposed on the algorithm and sub-optimal paths are
accepted in order to find a solution in the quickest possible man-
ner. In computer animation, this is a trade-off in order to achieve
the computational times required for computer animation.

The initial node for the A* algorithm is given a cost value of
f (1) = 0 and additional nodes, n, are searched in a tree like fash-
ion. A heuristic is introduced and added to the cost function to
give a priority in the direction of the search. Often the Euclidean
distance is used as the heuristic and the overall cost function is

f (n) = g(n)+h(n) (5)

where g(n) is the cost evaluated at the current node and h(n) is a
heuristic that estimates the cheapest path from the current node
to the endpoint [28]. At each iteration, the A* algorithm must
determine which nodes to expand by selecting the path that min-
imizes the current cost, g(n) and the cost to go, h(n). In the case
where h(n) is set equal to 0, the result will be consistent with Di-
jkstra’s algorithm [29]. The A* search algorithm is demonstrated
herein through the search results of the Tripath toolkit.

Tripath Toolkit
Marcello Kallmann has provided an extensive review of path

development with clearances in [30] and has toolkit algorithms
designed to determine the shortest path while accounting for
minimum clearance distances to all constraints [31]. Specifically,
he focused on determining paths of shortest distances, efficiency
of computation time, and maintaining proper clearance from ob-
stacles along the calculated path. These algorithms have been
implemented in the Tripath toolkit1. An overview of the devel-
opment of the Tripath algorithm is discussed below. A more ex-
tensive review of the algorithm can be found in [30, 32].

First, let S define a set of n segments that form all the con-
strained edges in the domain. The set of all endpoints of each
segment then form the set P. A constrained Delaunay triangu-
lation, T , is then formed such that all segments of S are also
segments of T and the Delaunay criterion are upheld. Next, Kall-
mann performs a test to assure that a disk of radius r can traverse
through any given region. This enables an efficient computation
of paths with arbitrary clearances. If a local clearance test fails,

1http://graphics.ucmerced.edu/software/Tripath/

a refinement of the mesh is performed by redistributing the tri-
angulation or adding a vertex point to a straight line segment of
the set S. This may result in a new set of constrained edges, as a
straight line segment could be subdivided into multiple sections.
Once the triangulation has passed the local clearance test, the
final mesh is termed a “Local Clearance Triangulation (LCT)”.

A path through the LCT from a starting point p to a fin-
ish point q is defined as “free” if it does not cross a constrained
edge. A free path will cross several unconstrained edges result-
ing in a “channel” formed of all traversed triangles. Using an
A* algorithm in a discretized space formed by the triangulation,
a geometric solution for the channel is determined. The chan-
nel formed by the A* search is dependent on the chosen cost
function and will result in a shortest path search defined by the
cost metric. A simplistic cost metric may consist of using the
centroid of each triangle or instead using the midpoint of each
unconstrained segment to determine the best channel. Kallmann
settled on a cost function which begins the search from the mid-
point of each triangle, but enhanced the search through a refer-
ence point connecting the point in the previously traversed edge
to the final point q. If q is not visible on the straight line path, the
nearest vertex is used for the traversed point while accounting for
the radial offset distance form each vertex point.

After the channel is determined, a funnel algorithm is used
to find the shortest path within the channel. The funnel algo-
rithm was developed by Lee and Preparata, and Chazelle [33,34]
as cited by [35]. The algorithm has been used to calculate the
shortest path under multiple applications; including path find-
ing for autonomous agents [36], querying visible points in large
data sets to define shortest paths [37], shortest paths for tethered
robots [38] and robots in extreme terrain [39].

Given a corridor with a starting position p and final point
q, the funnel algorithm defines the entrance point of the simplex
as the apex, a, and the starting point in the funnel. Since the
corridor has already been defined using the A* algorithm, the
two vertices connecting the next simplex can be defined as u and
v, with the third vertex w. If the straight line solution from a to
w is feasible, a straight line path is chosen from a to w as shown
in Figure 2A. Maintaining a as the apex, the third vertex of the
next simplex is evaluated for the straight line path solution from
a to w′as shown in Figure 2B. In the case where the straight line
solution is not feasible, the vertex closest to the next point in the
path is chosen as the new apex, a′ and the algorithm continues as
shown in Figure 2C. Further detailed explanation of the funnel
algorithm can be found in [35]. To account for the local clearance
around obstacles, a circular constraint with radius r is imposed
on each vertex as illustrated in Figure 2D [40].

The Tripath toolkit performs a locally optimal search and is
capable of achieving path solutions on the order of milliseconds
for environments with 60K+ segments [30]. Although there is no
guarantee that the solution is the global optimal path, the simplex
corridor found and searched is free of constraints allowing for

4



FIGURE 2. Implementation of the Funnel Algorithm on a Simplex
Corridor

solutions consisting of straight line segments and max turn radius
arcs.

Barycentric Coordinate Frame
Often when dealing with simplex shapes, the barycentric

coordinate frame is preferred over traditional Cartesian coordi-
nates. A barycentric coordinate system defines the location of a
point within a simplex as a weighted measure to each of the ver-
tex points, also referred to as areal coordinates in the context of
triangles [41]. The barycentric coordinate system defines the side
of the simplex as the axes, allowing for simple representations of
lines, points, and perpendicular relationships [42].

To define the coordinate system, let q1, q2, ..., qn be n ver-
tices of a complex planar polygon G in R2 for n ≥ 3. For the
purposes of this research, when investigating problems in R2, tri-
angulation techniques will be utilized and therefore n = 3. Any
point, P, inside polygon G can be represented in barycentric co-
ordinates defined with the vertices of G used as a basis as fol-
lows [43–45]:

P =
n

∑
j=1

α jpj (6)

where α represents the weights, defined as a set of real coeffi-
cients whose added sum equals unity.

n

∑
j=1

α j = 1. (7)

To ensure that each point remains inside the polygon, G,

α j > 0 ∀ j ∈ [1...n]. (8)

For the triangular relationship, n = 3, transformation from a
barycentric coordinate frame to a Cartesian coordinate frame can

be easily performed through a linear transformation of the coor-
dinates represented as:

P = QA (9)

where P ∈ R2 defines the point location in the Cartesian coordi-
nate frame, Q ∈ R2×n represents the matrix of vertices in poly-
gon G, and A ∈ Rn describes the weight matrix and the set of
barycentric coordinates.

Coordinate Transformation
In order to simplify the optimal control solver input param-

eters, the problem is expressed in the barycentric coordinate sys-
tem. Given a simplex shown in Figure 3, each vertex is defined
in Cartesian coordinates as

FIGURE 3. Barycentric Coordinate Frame

pi = (xi,yi) ∀i ∈ [1...n] (10)

where n is equal to the number of sides of the simplex. The so-
lution is limited to the constant altitude, two-dimensional plane
and therefore n = 3. Each point within the simplex can be rep-
resented as an ordered triple of real numbers, representing the
weighted distribution to each vertex. Each vertex is defined in
barycentric coordinates as:

q1 = (1,0,0) (11)
q2 = (0,1,0) (12)
q3 = (0,0,1) (13)

while any point within the simplex is represented with the corre-
sponding weights to each vertex

A = (α1,α2,α3). (14)
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Given a set of barycentric weights, the Cartesian coordinates can
be represented as

P =
n

∑
i=1

αipi. (15)

Expanding Equation 15 and representing the final weight α3 in
terms of the first two weights, the expression below represents
the weights of the barycentric coordinate frame in terms of the
Cartesian coordinates,

[
α1
α2

]
= T−1(P−q3) (16)

α3 = 1−α1−α2 (17)

where T is a 2×2 matrix representing the vertices of the triangle
as

T =

(
x1− x3 x2− x3
y1− y3 y2− y3

)
, (18)

and P−q3 is a 2×1 vector summation of the Cartesian coordi-
nates. Expanding Equation 16 gives the barycentric weights in
terms of the vertex coordinates and the point location within the
triangle.

α1 =
(y2−y3)(x−x3)+(x3−x2)(y−y3)

det(T ) (19)

α2 =
(y3−y1)(x−x3)+(x1−x3)(y−y3)

det(T ) (20)

α3 = 1−α1−α2 (21)

Differentiating the weights with respect to the x and y position
gives the following set of dynamic equations

α̇1 =
(y2−y3)ẋ+(x3−x2)ẏ

det(T ) (22)

α̇1 =
(y3−y1)ẋ+(x1−x3)ẏ

det(T ) (23)

α̇3 =−α̇1− α̇2. (24)

SOLUTION METHODOLOGY
GPOPS-II is described as a computational tool for solving

multiple-phase optimal control problems using variable-order
Gaussian quadrature collocation methods [46]. Each phase is
defined with a set of dynamic constraints, path constraints, in-
tegral constraints, and parameter constraints. Phases are linked
through event constraints that relate information at the start and

terminal point of each phase and allow for independent variables
to be continuously transitioned through each phase [11, 47].

For this method, a solution through one simplex can be rep-
resented as one phase in GPOPS-II. Formulating the optimal con-
trol problem through a constrained Delaunay triangulation pro-
vides the basis for a trajectory solution that traverses through a
corridor of simplexes (as described in the previous section) each
represented as a single phase, linked together to determine the
optimal solution. It is recognized here that the solution found by
this method is dependent on the simplex corridor that is presented
to the optimal solver. This corridor may not provide the global
optimal solution, rather a locally optimal solution may be deter-
mined. Therefore, this paper focuses on determining a feasible
solution consistently and efficiently as opposed to the necessity
of arriving at the global optimal trajectory for every simulation.
It will however provide an admissible solution satisfying the dy-
namic constraints.

The following sections define the optimal control problem
in terms of a phased approach. Each simplex will be repre-
sented in barycentric coordinates with appropriate dynamic con-
straints, path constraints, and parameter constraints. The number
of phases required to be solved is problem specific and defined
after the space has been discretized into a CDT. The optimal con-
trol solver will search for a path through a simplex corridor that
is defined prior to initiating the optimal control problem. The
number of solution phases is represented with the variable P.

SUAS Dynamics
The dynamics of the aircraft are formulated with a three state

model, representing the position of the SUAS in the x(t), y(t) di-
rections and the heading angle, θ(t). The control for the aircraft
is the heading angle rate, γ . The SUAS dynamics are described
below as a relationship between the states and the controls

ẋ(p) = (v)cos(θ) ∀p ∈ [1...P] (25)
ẏ(p) = (v)sin(θ) ∀p ∈ [1...P] (26)

θ̇ (p) = γ ∀p ∈ [1...P] (27)

where v represents the aircraft velocity which is held constant in
this work.

Optimal Control Problem
By discretizing the search space with a CDT, a phased ap-

proach is taken in the optimal control problem. Each triangle
is solved as a single phase in GPOPS-II and each phase is con-
nected through event constraints. The dynamics constrain the
path through each triangle in barycentric coordinates. Combin-
ing the described steps, the optimal control problem formulation
has been consolidated as follows.
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Minimize the cost functional

J =
∫ t(p)

f

t(p)
0

dt ∀p ∈ [1...P] (28)

(29)

subject to the dynamic constraints

α̇(p)
1 = (y2−y3)(v)cosθ+(x3−x2)(v)sinθ

det(T ) ∀p ∈ [1...P] (30)

α̇(p)
1 = (y3−y1)(v)cosθ+(x1−x3)(v)sinθ

det(T ) ∀p ∈ [1...P] (31)

α̇(p)
3 =−α̇(p)

1 − α̇(p)
2 ∀p ∈ [1...P] (32)

θ̇ (p) = γ ∀p ∈ [1...P] (33)

with the control

u(p) = γ (34)

and the state vector defined as

X = (α1,α2,α3,θ) (35)

with boundary conditions given as the initial and final constraints

X (1)(t(1)0 ) = ((α1)0,(α2)0,(α3)0,(θ)0) (36)

X (P)(t(P)f ) = ((α1) f ,(α2) f ,(α3) f ,(θ) f ) (37)

and path constraints

0≤ α(p)
1 ≤ 1 (38)

0≤ α(p)
2 ≤ 1 (39)

0≤ α(p)
3 ≤ 1. (40)

SIMULATION
To verify the presented methodology, a two-dimensional

three constraint optimal control problem was developed. For
each scenario, the initial and final aircraft locations are defined
as

(x0,y0,θ0) = (1,0.5, f ree) (41)
(x f ,y f ,θ f ) = (9,9.5, f ree). (42)

Four constraints which represent areas the SUAS can not
traverse, such as buildings, walls, terrain, or restricted air space
are included. These constraints are modeled as polygons as

[
x
y

]

1
=

[
0 10 10 0
0 0 10 10

]
(43)

[
x
y

]

2
=

[
2.5 3 3 2.5
0 0 7 7

]
(44)

[
x
y

]

3
=

[
4.25 5.25 5.25 4.25
4.5 4.5 5.5 5.5

]
(45)

[
x
y

]

4
=

[
6.5 7 7 6.5
3 3 10 10

]
. (46)

Six simulations were evaluated in total. The first three were
performed without triangulation and modeled the constraints
with traditional methods of circles, ellipsoids, superquadrics, and
polygon functions. The fourth method evaluates a technique
that discretized the space through a CDT and optimizes a path
through a corridor of defined simplexes. The initial guess for
this method is the path connecting consecutive midpoints of each
unconstrained edge in the search corridor. The fifth method ex-
amines the path solution from the Tripath toolkit which provides
a solution based on a heuristic search algorithm. The final hybrid
method combines the previous two, using the Tripath solution
as an initial guess for the optimal control solution in GPOPS-II.
Each model is compared with computation time, objective time,
mesh tolerance, and initial guess requirements.

The first simulation models the constraints with simple
shapes such as circles and ellipsoids where solutions can result in
quick convergence to the optimal trajectory. However, the polyg-
onal shape constraint requirement cannot be met and large errors
will exist for a circular shape representing a polygon. Further,
when solving with collocation methods such as GPOPS-II, col-
location points will jump through a constraint dependent on the
spacing of the collocation points. Figure 4A below illustrates a
failed solution based on a poor guess. As the guess is improved
in Figure 4B, an optimal solution is found, however the path vi-
olates the constraint as shown in Figure 4C.

In the second simulation, the superquadric can better repre-
sent polygonal shapes such as squares or rectangles by increas-
ing the power, m, in Equation 4. Figure 5A below shows the
same constraint field as the previous simulation, however now
the polynomial order of the constraint function has been raised
to 100. A feasible solution could only be found when the mesh
tolerance was increased to 10−5 and a perfect initial guess was
given to the NLP solver.

These constraint functions are more representative of polyg-
onal shapes, however the flight path still cuts the corner of the
constraint as the collocation points round the corner of each con-
strained edge as shown in Figure 5B. Further, the solution still
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FIGURE 4. Simple shape constraint functions, illustrating converged
solution for small semi-major axis

FIGURE 5. Superquadric constraint functions, illustrating converged
solution for small semi-major axis with poor initial guess

requires a perfect guess and computation time remains between
10 and 20 seconds.

The third simulation utilizes point in polygon test function
which allows for the modeling of any polygonal shape. Solutions
presented in GPOPS-II are feasible, but the required computation
time exceeded the limits for on-board operations. Additionally,
as more constraints are added to the optimal control problem, the
computational requirements become unyieldy.

Ultimately, the convergence of a solution is highly depen-
dent on the user settings of GPOPS-II. The mesh tolerance can
be increased to allow for tighter discretization of the space and
to include more collocation points, however, this increases com-
putation time and may result in convergence failure if the mesh
is too tight for the given problem. Additionally, the initial guess
plays a significant role in the solution search space. A poor ini-
tial guess may result in a local minimum solution rather than the
global solution. Further, the better the guess the solver receives,
the quicker the convergence to a solution. Finally, the shape of
the constraints have an effect on the feasibility of the solution
as well. Collocation points may cut the corner of the edge of a
constraint or may even skip over the constraint if the collocation
points are not spaced properly. Each of these factors are prob-
lem specific and require different dependencies on the GPOPS-II
user settings. The next three simulations focus on eliminating
these constraints from the problem formulation and minimizing

the input requirements to achieve a feasible solution within com-
putation times sufficient for on-board operations.

The fourth simulation triangulates the space using the con-
strained Delaunay triangulation function, delaunay, in Matlabr.
A search corridor is selected with dynamic programming and an
initial guess is determined by connecting the midpoint of each
unconstrained edge of the search space. The solution is shown in
Figure 6.

FIGURE 6. Constrained Delaunay Triangulation Solution

In the left image, it can be seen that optimal flight path de-
termined through the simplex corridor does not violate any hard
constraint. The right image illustrates the heading rate control
over the flight time of the simulation. The control can be fur-
ther refined to fully exhibit Pontryagin’s Minimum Principle by
increasing the collocation points and the mesh tolerance used in
the simulation.

The fifth solution method utilizes the Tripath toolkit devel-
oped by Kallmann. The algorithm is built in C++ and accessed
through a Python script run on a Linux operating system.

The data required to initialize the Tripath algorithm consists
of the points of each closed polygonal constraint, the initial and
final starting points of the path, and the offset distance required
from each constrained edge. In order to achieve a feasible path
for a SUAS, the offset distance was set to the minimum turn-
ing radius of the aircraft. The Tripath algorithm returns a Du-
bin’s path solution with computation time on the order of milli-
seconds. The discretized solution that is returned is shown in
Figure 7.

Here the Dubins path solution can be seen as a series of
straight lines and constant radius turns. Given the position co-
ordinates, and a solution satisfying Pontryagins Minimum Prin-
ciple, the heading and heading rate can be determined for the two
dimensional case with simple SUAS dynamics.

The sixth simulation uses the Tripath solution as the initial
guess to the NLP solver. The Tripath toolkit returns the dis-
cretized path solution, the constrained Delaunay triangulation,
and the search corridor. Implementing this data into the trian-
gulation method with GPOPS-II, an optimal solution is obtained

8
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FIGURE 7. Tripath Toolkit Solution

and is presented through the given search corridor shown in Fig-
ure 8.

FIGURE 8. Hybrid Solution

The solution is optimal given the requirement that the path
must traverse through each triangle of the search corridor in the
same order as the initial guess. Again there can be seen some
variance in the control due to the mesh tolerance setting of 10−2.
This allowed for a comparable number of collocation points to
the other simulations.

RESULTS
For each simulation model, the mesh tolerance, computa-

tion time, objective time, collocation points, and the quality of
the initial guess were recorded. The NLP solver in each of these
simulation was “SNOPT”. The results for each method are dis-
played in Table 1.

The Tripath toolkit solution is solved in 2.7 milli-seconds
but also has the highest cost, does not include vehicle dynamics,
and does not directly return the states and control of the vehicle,
preventing the inclusion of more complex models. The hybrid
solution solved with the fastest convergence time in GPOPS-II
at 2.93 seconds with a performance index equivalent to the other
optimal control methods.

Although the objective cost is compared to the first three
methods, the problems that are solved differ by the way the

TABLE 1. Table of simulation results (using SNOPT)
Constraint Mesh Comp Time (s) Obj Time (s) Col Pts Guess

Simple Shapes 10−4 4.40 19.39 104 Good

Superellipse 10−5 21.34 20.12 211 Perfect

Polygons 10−5 9.96 20.68 159 Perfect

Triangulation 10−2 17.37 20.14 221 Poor

Tripath N/A 2.7x10−3 22.6 377 N/A

Hybrid 10−2 2.91 20.12 221 Tripath

constraints are formulated, resulting in a different search space.
Therefore, the objective functions should not be compared di-
rectly, but rather used to assure each method is in close proximity
to each other. The method solved with simple shape constraints
returned the smallest value for the objective function, but did not
adequately model a polygon constraint. The remaining methods,
modeling constraints as polygons, each returned consistent val-
ues for the objective function.

In the case where constraints are composed of rounded
edges, the triangulation method will require a polygon fit either
to the interior or exterior of the rounded edge, dependent on the
type of constraint being modeled. Soft constraints can be mod-
eled to the interior of the rounded edge, allowing for the path
to cut through small portions of the constraint. Hard constraints
should be modeled on the exterior of the rounded edge where the
model error will result in a longer path solution while eliminat-
ing the constraint from the solution space entirely. In either case,
modeling errors can be minimized by increasing the vertices used
to model the constraint, however each additional vertex requires
additional phases in the optimal control problem. Further in-
vestigation is required to understand the impacts of large-phased
problems.

CONCLUSION
The hybrid simplex method for optimal control was shown

to be an efficient method for solving the minimum time SUAS
optimal control problem through environments with arbitrary
polygonal obstacles posed herein. By discretizing the space
based on the constraints, a minimal number of triangles (phases)
are required in the optimal control solution. Additionally, the
path constraints are removed from the problem formulation in
GPOPS-II and the transformation to the barycentric coordinate
system standardizes the problem setup. The Tripath algorithm
only requires the vertex points of each constraint, allowing the
problem to be formulated and solved efficiently and with mini-
mal information. From the analysis of the two-dimensional prob-
lem, computation times can reach levels feasible for on-board
operations and therefore further evaluation of this methodology
should be investigated to explore 6-DOF vehicle models and
three-dimensional space.
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Appendix C. SciTech Information Systems Conference 2018

Appendix C contains the second paper published in this research effort. This

work contains the feasibility approach for the simplex optimal control problem in the

constrained urban environment of downtown Chicago, USA. It was published and

presented at the AIAA SciTech Information Systems Conference, Orlando, Florida,

in January 2018.
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The work herein develops a feasible path solution through an urban environment for a
small unmanned aerial vehicle with direct orthogonal collocation methods while leverag-
ing navigation mesh techniques used in fast geometric path planners. Constrained optimal
control problems for Small Unmanned Aircraft Systems (SUAS) have long suffered from ex-
cessive computation times caused by a combination of constraint modeling techniques and
the quality of the initial path solution provided to the optimal control solver, ultimately
preventing implementation into real-time, onboard systems. These issues are addressed
herein by triangulating the search space to define a polygonal search corridor free of con-
straints while alleviating the dependency of defining problem specific parameters in the
optimal control software. Utilizing algorithms developed for path planning of autonomous
agents for computer animation, a search corridor is defined and an initial path solution
is determined to initiate the optimal control problem. Results are applied to illustrate
two-dimensional flight trajectories through downtown Chicago at an altitude of 550 feet
Above Ground Level (AGL). Objective and computation times are reported to illustrate
the feasibility of constructing and implementing the optimal control problem for onboard,
real-time operations.

Nomenclature

α Barycentric weights
Q Matrix of polygon points
A Matrix of barycentric weights
q Simplex vertices in barycentric coordinates
δ Building offset distance
r Simplex vertices in Cartesian coordinates
R Simplex interior point Cartesian coordinates
x Position along the x-axis (ft)
y Position along the y-axis (ft)
ẋ Velocity in the x-axis (ft/s)
ẏ Velocity in the y-axis (ft/s)
v UAS airspeed (ft/s)
θ UAS heading angle (rad)

θ̇ UAS heading angle rate (rad/s)
r̃ Minimum turn radius (ft)
X State vector
J Cost functional
P Total number of phases
u Control vector
Superscript
p Phase number
Subscript
0 Initial
f Final
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I. Introduction

In the discipline of optimization and control, path planning techniques have been used over a wide range
of applications to find optimal flight trajectories through constrained environments. These path constraints
may consist of terrain, infrastructure, or no-fly zones that must be avoided for the safety of the aircraft or the
concealment of the air mission. Often, Small Unmanned Aerial Systems (SUAS) are teamed with manned
aircraft to minimize the dangers the aircrew may encounter due to the constraints.1 In the case of target
localization, a host aircraft can remain at a safe altitude while a SUAS is deployed into a threat region to
acquire and verify target coordinates. Once the initial target coordinates have been verified, the SUAS is
required to determine a feasible path to a second target region. The autonomous localization of the target
has been studied previously2 while this paper focuses on the autonomous path development from the initial
target region to the second target region through a constrained field.

In previous work studying constrained optimal flight trajectories,3–7 significant issues have been illus-
trated that prevent the algorithm from reaching computation speeds required for real-time, onboard opera-
tions. For numerical solutions, an initial guess must be provided to the Non-Linear Program (NLP) solver
and problem specific parameters must be estimated before a solution can be determined. The accuracy of
these inputs will affect both the computational speed and the convergence to an optimal solution. This
paper focuses on increasing computational speed of the optimal control solver and demonstrating conver-
gence by eliminating constraints from the search space through triangulation and performing a coordinate
transformation to standardize the input parameters to the NLP solver.

II. Background

II.A. Optimal Control

Due to the complexity of most optimal control problems, analytical solutions cannot be obtained and there-
fore numerical methods are employed to reach feasible solutions. Two common numerical approaches are
described as the indirect method and the direct method. Indirect methods apply the calculus of variation to
transform the optimal control problem into a Hamiltonian Boundary-Value Problem (HBVP). This method
produces a highly accurate solution and assures the first-order optimality conditions are solved. However
some disadvantages include a small radii of convergence and the requirement to analytically derive the
HBVP. A good guess for the states, control and co-states is required for convergence, which often becomes
time consuming and problematic, specifically for the co-states which often have no obvious physical meaning
to the problem.8

To avoid these issues, direct methods transcribe the infinite-dimensional optimal control problem into a
finite optimal control problem with algebraic constraints, otherwise known as an NLP.9 Methods developed to
transcribe the optimal control problem include direct shooting methods,10 state and control parameterization
methods,11 and direct orthogonal collocation methods.3,12 The focus of this research is on direct orthogonal
collocation methods, also referred to as pseudospectral methods in the Aerospace field of study.9

When solving an optimal control problem with direct orthogonal collocation, the continuous time optimal
control problem is transcribed to a discretized nonlinear programming problem. This is accomplished with
three main concepts; orthogonal collocation, polynomial approximation, and Guassian quadrature.13 For this
research, the continuous functions of the optimal control problem are approximated with a finite dimensional
Lagrange polynomial basis.14 The state x is approximated at a set of collocation points described as

x̃(τ) ≈ x̃N (τ) =

n+1∑

i=1

xiLi(τ) (1)

where xi represents the weight function, Li(τ) is the Lagrange polynomial basis and τ represents an affine
transformation of the time t on the interval from (−1, 1).

With the problem discretized, Gaussian quadrature is used for differentiation or integration of the state
and control. This method is termed a global method as each collocation point is solved simultaneously
rather than other fixed interval methods such as a 3 or 5 point formula method.15 The error produced
by this method can be greatly reduced by choosing the collocation points appropriately with Legendre or
Chebyshev point placement to minimize the affects of Runge phenomenon.
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II.B. Constraint Models

When defining the optimal control problem, many techniques have been employed to appropriately model
path constraints in two-dimensional space. One of the most commonly employed techniques is to simulate a
vehicle no-fly zone with circular or spherical constraint function5,12,16 of the form

‖x(t)− x̃‖2 > rn. (2)

Here, the difference between the position states of the vehicle, x(t) and the center of the no fly-zone, x̃
must be greater than a defined radius, rn. These functions are differentiable and smooth and therefore
can be handled with relative ease with an NLP solver such as IPOPT or SNOPT. The drawback is that
the constraint is restricted to circular or spherical shapes which may not adequately represent the true
constrained environment.

Superquadrics have been used extensively in computer vision, computer graphics, and robotics17 to extend
circular constraints to shapes resembling squares and rectangles. The superellipse is a type of Leme curve
which is defined as

(xc
a

)m
+
(yc
b

)m
= 1 (3)

where the semi-major and semi-minor axes are defined by a and b, xc and yc represent the center point
of the object, and m is a rational number defining the curvature of the object. When solving problems
with direct orthogonal collocation, the superquadric has been used to include constraint regions other than
simple geometric shapes. Hurni, Lewis and Mohan used the superquadric in a constraint rich environment
and found success in convergence but at the cost of computation time.18–20

To further extend the constraint model, the ray-casting algorithm, used to determine if a point is inside
an arbitrary polygon, returns a boolean variable, in this case with True corresponding to a point outside
a polygon, and False for a point inside a polygon. To eliminate the discontinuity along the edges of the
polygons, the result of the ray-casting algorithm is then multiplied by the distance to the nearest polygon.

Given a line, denoted as v, passing through the points (x1, y1) and (x2, y2), and an arbitrary point
denoted as p = (xp, yp), let n = (xn, yn) denote the point on line v nearest to the point p. The point n is
computed as below.

u =
(xp−x1)(x2−x1)+(yp−y1)(y2−y1)

(x2−x1)2+(y2−y1)2 (4)

xn = x1 + u(x2 − x1) (5)

yn = y1 + u(y2 − y1) (6)

If v is a line segment, u ∈ [0, 1]. Therefore if u < 0 according to Eq. (4), u = 0 and if u > 1, u = 1. The
distance from p to n then gives the minimum distance from p to v.

To compute the shortest distance to any edge in the environment, the above procedure for finding the
minimum distance to a segment is computed for all segments of all polygons in the environment. The
minimum distance for the environment, denv, is set to an arbitrarily high value. Then, for each segment, the
distance di is computed. If di < denv, then denv = di. Since denv only computes the minimum distance to an
edge of a polygon in the environment, it is then multiplied by the ray-casting result, computed in MATLAB
using the inpolygon function. The result returns a value of denv = 0 for all points that are inside a polygon,
and denv > 0 for all points outside a polygon.

Each of these methods are based on the premise that the constraint is contained inside the search
space and the NLP solver must evaluate constraint equations to assure a feasible solution can be attained.
Previous work has shown the comparison and limitations of each of these methods.21 The following section
leverages research from the field of computer animation to eliminate the constraints from the search space
by performing a triangular discretization dependent on the constraint field rather than the size of the search
space.

II.C. Fast Geometric Path Planning

Direct orthogonal collocation methods are capable of meeting the computational requirements for onboard
SUAS operations if an adequate starting point of the states are given to the NLP solver. When approaching
the constant altitude SUAS problem, comparisons can be made to path development of autonomous agents
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in the interactive virtual world. Virtual worlds are populated with autonomous virtual humans, or agents,
where computed paths must take into account path length, time, and energy expended traversing the path.22

The demand on the complexity of the virtual world combined with improved graphic capability has
encouraged new techniques for achieving intelligent navigation for the next generation virtual agent simu-
lation.23 Given the speeds of which these video games are played, path planning algorithms must perform
efficiently under limited time budgets to traverse the autonomous agent from one end of a building to the
other. Often greedy algorithms are chosen in which the first feasible path that is found is continuously
improved according to the characteristic dynamics and a pre-determined threshold on computational time.
The path available at the time required is then implemented.22,24 This can often result in a sub-optimal
path, but in the virtual world of the gaming industry, the timeliness of the solution is more heavily favored
over the most optimal route.

II.D. Constrained Deluanay Triangulation

Often, fast geometric path planning algorithms discretize the search space with a triangular mesh formed
with a Constrained Delaunay Triangulation (CDT). A CDT is a refinement of the Delaunay triangulation
that forces a required segment as an edge of the triangulation. The formal definition is described as follows:25

Definition. Let G be a straight-line constrained edge. A triangulation T is a CDT of G if each edge of G
is also an edge of T and for each remaining edge e of T there exists a circle C with the following properties:

1. The endpoints of edge e are on the boundary of C.

2. If any vertex v of G is in the interior of C then it cannot be “seen” from at least one of the endpoints of
e (i.e., if you draw the line segments from v to each endpoint of e then at least one of the line segments
crosses an edge of G).

The CDT is made of constrained edges and unconstrained edges. When determining an optimal path,
the solution can cross an unconstrained edge, but must avoid all constrained edges. Since the constrained
edges are required, often formulation of the CDT contains a vertex or an edge that does not satisfy the
Delaunay triangulation conditions, and therefore a CDT may not be equivalent to a Delaunay triangulation.
An example of the differences can be seen below in Figure 1.

0 2 4

0

1

2

3

4

5
DT

0 2 4

0

1

2

3

4

5
Constrained Edges

0 2 4

0

1

2

3

4

5
CDT

Figure 1. Left: Unconstrained Delaunay Triangulation; Middle: Constrained Edge Segments; Right: Constrained
Delaunay Triangulation25

Here, the left image of Figure 1 shows a Delaunay triangulation given a set a points in the search field.
The middle image displays a four sided polygon representing a path constraint such as a building or no fly
zone. The right image illustrates the CDT with the constrained edges included in the triangulation.

Using this technique, constraints can be forced into the discretization of the space. In computer animation,
these constraints represent walls in buildings, tables, chairs, and other common structures autonomous
agents are required to navigate around. Applying these constraints to the SUAS path planning problem,
these boundaries illustrate hard constraint no-fly zones that are represented with polygonal shapes such as
buildings, terrain, and restricted airspace.

III. Triangulation-Based Path Development

Path planning algorithms have been designed to determine the best route from an initial starting point
to a goal location while satisfying conditions on constraints and dynamics. In the field of optimal control,
the dynamics of the agent must be satisfied while obeying all constraints placed on the states, control, and
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path. In computer animation, path planning focuses on determining the best route for the autonomous agent
while avoiding walls, furniture and other obstacles. Many algorithms have been developed to accomplish
autonomous agent path planning while placing an emphasis on computational speed as solutions must be
found quickly to give the appearance the agent is in fact making real-time intelligent decisions as the video
game progresses.26

III.A. A* Search Algorithm

The A* search algorithm gets its roots from Dynamic Programming and is an extension to Dijkstra’s al-
gorithm. The entire domain is searched with Dijkstra’s algorithm, whereas in an A* search is guided by a
heuristic. It is considered an “informed search” or “best-first search” as the algorithm searches the space
until a solution is found. This solution may be sub-optimal and therefore the algorithm will continue to
search the space, updating the solution if a lower performance index is found. Often a time limit is imposed
on the algorithm and sub-optimal paths are accepted in order to find a solution in the quickest possible
manner. In computer animation, this is a trade-off in order to achieve the computational times required for
simulation.

The initial node for the A* algorithm is given a cost value of f(1) = 0 and additional nodes, (n), are
searched in a tree like fashion. A heuristic is introduced and added to the cost function to give a priority
in the direction of the search. Often the Euclidean distance is used as the heuristic and the overall cost
function is

f(n) = g(n) + h(n) (7)

where g(n) is the cost evaluated at the current node and h(n) is a heuristic that estimates the cheapest path
from the current node to the endpoint.27 At each iteration, the A* algorithm must determine which nodes
to expand by selecting the path that minimizes the current cost, g(n) and the cost to go, h(n). In the case
where h(n) is set equal to 0, the result will be consistent with Dijkstra’s algorithm.28

Disadvantages of the A* algorithm are related to the choice of heuristic which must be chosen to un-
derestimate the cost, thus giving a lower bound to the solution. This may cause the algorithm to spend
computation time discriminating between two paths of equal remaining distances. Additionally, the result
produces an optimistic estimate of all possible solutions, resulting in a path that may be sub-optimal if the
algorithm is terminated after the goal node is first reached.27

III.B. Local Clearance Triangulation

Marcello Kallmann has provided an extensive review of path development with clearances29 and developed
the Triplanner toolkit algorithms designed to determine the shortest path while accounting for minimum
clearance distances to all constraints.30 Specifically, he focused on determining paths of shortest distances,
efficiency of computation time, and maintaining proper clearance from obstacles along the calculated path.
An overview of the development of the 2010 Triplanner algorithm used herein is discussed below while a
more extensive review of the algorithm can be found in Kallmann’s work.29,31

First, let S define a set of n segments that form all the constrained edges in the domain. The set of all
endpoints of each segment forms an n×2 matrix P . A CDT, T , is then formed such that all segments of S are
also segments of T and the Delaunay criterion are upheld. Next, to account for the width of the autonomous
agent, Kallmann performs a test to assure that a disk of radius r can traverse through any given region. This
enables an efficient computation of paths with arbitrary clearances. To assure the accuracy of the results, a
local clearance test is conducted to guarantee a solution will be contained in a path with a minimum radius
of 2r. If the test fails, a refinement of the mesh is performed by redistributing the triangulation or adding
a vertex point to a straight line segment of the set S. This may result in a new set of constrained edges, as
a straight line segment could be subdivided into multiple sections. Once the triangulation has passed the
local clearance test, the final mesh is termed a “Local Clearance Triangulation (LCT)”.

A path through the LCT from a starting point p to a finish point q is defined as “free” if it does not
cross a constrained edge. A free path will cross several unconstrained edges resulting in a “channel” formed
of all traversed triangles. Using an A* search algorithm in a discretized space formed by the triangulation, a
geometric solution for the channel is determined. The channel formed by the A* search is dependent on the
chosen cost function and will result in a shortest path search defined by the cost metric. A simplistic cost
metric may consist of using the centroid of each triangle or instead using the midpoint of each unconstrained
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segment to determine the best channel. Kallmann settled on a cost function which begins the search from
the midpoint of each triangle, but enhanced the search through a reference point connecting the point in the
previously traversed edge to the final point q. If q is not visible on the straight line path, the nearest vertex
is used for the traversed point while accounting for the radial offset distance form each vertex point.

After the channel is determined, a funnel algorithm is used to find the shortest path within the channel.
The funnel algorithm was developed by Lee and Preparata, and Chazelle32,33 as cited by Hershberger.34 The
algorithm has been used to calculate the shortest path under multiple applications; including path finding
for autonomous agents,35 querying visible points in large data sets to define shortest paths,36 shortest paths
for tethered robots37 and robots in extreme terrain.38

Given a corridor with a starting position p and final point q, the funnel algorithm defines the entrance
point of the simplex as the apex, a, and the starting point in the funnel. Since the corridor has already been
defined using the A* algorithm, the two vertices connecting the next simplex can be defined as u and v, with
the third vertex w. If the straight line solution from a to w is feasible, a straight line path is chosen from
a to w as shown in Figure 2A. Maintaining a as the apex, the third vertex of the next simplex is evaluated
for the straight line path solution from a to w′as shown in Figure 2B. In the case where the straight line
solution is not feasible, the vertex closest to the next point in the path is chosen as the new apex, a′ and
the algorithm continues as shown in Figure 2C. Further detailed explanation of the funnel algorithm can be
found in Hershberger’s work.34 To deal with the local clearance around obstacles, Kallmann implemented a
required circular constraint of radius r on each included vertex as illustrated in Figure 2D.39

Figure 2. Implementation of the Funnel Algorithm on a Simplex Corridor40

The Triplanner toolkit performs a locally optimal search and is capable of achieving path solutions on
the order of milliseconds for environments with 60K+ segments.29 Although there is no guarantee that the
solution is the global optimal path, the simplex corridor found and searched is free of constraints allowing
for solutions consisting of straight line segments and max turn radius arcs.

III.C. Barycentric Coordinate Frame

Often when dealing with simplex shapes, the barycentric coordinate frame is preferred over traditional
Cartesian coordinates. A barycentric coordinate system defines the location of a point within a simplex
as a weighted measure to each of the vertex points, also referred to as areal coordinates in the context of
triangles.41 The barycentric coordinate system defines the side of the simplex as the axes, allowing for simple
representations of lines, points, and perpendicular relationships.42

To define the coordinate system, let r1, r2, ..., rn be n vertices of a complex planar polygon Q in R2 for
n ≥ 3. For the purposes of this research, when investigating problems in R2, triangulation techniques will be
utilized and therefore n = 3. Any point, R, inside polygon Q can be represented in barycentric coordinates
defined with the vertices of Q used as a basis as follows:43–45

R =
n∑

j=1

αjrj (8)

where α represents the barycentric weights, defined as a set of real coefficients whose added sum equals unity,

n∑

j=1

αj = 1. (9)
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To ensure that each point remains inside the polygon, Q,

αj ≥ 0 ∀j ∈ [1...n]. (10)

For the triangular relationship, n = 3, transformation from a barycentric coordinate frame to a Cartesian
coordinate frame can be easily performed through a linear transformation of the coordinates represented as:

R = QA (11)

where R ∈ R2 defines the point location in the Cartesian coordinate frame, Q ∈ R2×n represents the matrix
of vertices in the polygon, and A ∈ Rn describes the weight matrix and the set of barycentric coordinates.

III.D. Coordinate Transformation

In order to simplify the optimal control solver input parameters, the problem is expressed in the barycentric
coordinate system. Given a simplex shown in Figure 3, each vertex is defined in Cartesian coordinates as

Figure 3. Barycentric Coordinate Frame

ri = (xi, yi) ∀i ∈ [1...n] (12)

where n is equal to the number of sides of the simplex. The solution is limited to the constant altitude,
two-dimensional plane and therefore n = 3. Each point within the simplex can be represented as an ordered
triple of real numbers, representing the weighted distribution to each vertex. Each vertex is defined in
barycentric coordinates as:

q1 = (1,0,0) (13)

q2 = (0,1,0) (14)

q3 = (0,0,1) (15)

while any point within the simplex is represented with the corresponding weights to each vertex

A = (α1, α2, α3). (16)

Expanding Equation 8 and representing the final weight α3 in terms of the first two weights, the weights of
the barycentric coordinate frame are expressed in terms of the Cartesian coordinates,

[
α1

α2

]
= T−1(R− r3) (17)

α3 = 1− α1 − α2 (18)

where T is a 2x2 matrix representing the vertices of the triangle as

T =

(
x1 − x3 x2 − x3

y1 − y3 y2 − y3

)
, (19)

and R − r3 is a 2x1 vector summation of the Cartesian coordinates. Expanding Equation 17 gives the
barycentric weights in terms of the vertex coordinates and the point location within the triangle.

α1 = (y2−y3)(x−x3)+(x3−x2)(y−y3)
det(T ) (20)

α2 = (y3−y1)(x−x3)+(x1−x3)(y−y3)
det(T ) (21)

α3 = 1− α1 − α2 (22)
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Differentiating the weights with respect to the x and y position gives the following set of dynamic equations

α̇1 = (y2−y3)ẋ+(x3−x2)ẏ
det(T ) (23)

α̇1 = (y3−y1)ẋ+(x1−x3)ẏ
det(T ) (24)

α̇3 = −α̇1 − α̇2. (25)

IV. Solution Methodology

Fast geometric path planning algorithms, such as the Triplanner toolkit, have been designed to formulate
path solutions in constrained, two-dimensional environments on the order of milliseconds. The resulting
Dubins path solution provides a feasible flight path through a chosen search corridor. The aircraft dynamics
are accounted for by a radial offset distance from each constrained edge equal to the SUAS turn radius. The
heading angle is determined by the angle difference of consecutive points while the heading rate and control
are each derived with a two-point finite differencing method of the heading angle vector. To evaluate the
optimality of the Triplanner path solution and its viability for use in SUAS control software, the problem is
translated to the optimal control software, GPOPS-II where a comparison can be made to the optimal flight
path, heading angle, heading rate, and control.

GPOPS-II is described as a computational tool for solving multiple-phase optimal control problems using
variable-order Gaussian quadrature collocation methods.46 Each phase is defined with a set of dynamic, path,
integral, and parameter constraints. Phases are linked through event constraints that relate information at
the start and terminal point of each phase and allow for independent variables to be continuously transitioned
through each phase.11,47

With this program, a solution through one simplex can be represented as one phase in GPOPS-II.
Formulating the optimal control problem through a CDT provides the basis for a trajectory solution that
traverses through a corridor of simplexes (as described in the previous section) each represented as a single
phase, linked together through event constraints to determine the optimal solution. It is recognized here
that the solution found by this method is dependent on the simplex corridor that is presented to the optimal
solver from the Triplanner algorithm. This corridor may not provide the global optimal solution, rather a
locally optimal solution which provides an admissible set satisfying the dynamic constraints. Supplying this
corridor to the NLP solver, the simplex vertices are ordered in such a manner that the shared vertices of
consecutive triangles are properly indexed to assure the state vector is properly read into the optimal control
software, GPOPS-II. As the path trajectory traverses across a simplex edge, one of the weights (states 1−3)
will be zero as the weight associated with the opposing vertex has no contribution to the location of the
point. As the new phase begins, it is imperative that the states of the next simplex match the states of
the previous. In other words, the opposite vertex of the new simplex must accept the zero value and the
associated weights for the other two vertices must match appropriately in the state vector. This is illustrated
in Figure 4.

Figure 4. Simplex Phased Solution for Optimal Control

The following sections define the optimal control problem in terms of a phased approach. Each simplex
will be represented in barycentric coordinates with appropriate dynamic constraints, path constraints, and
parameter constraints. The number of phases required to be solved is problem specific and defined after the
space has been discretized into a CDT. The optimal control solver will search for a path through a simplex
corridor that is defined prior to initiating the optimal control problem. The total number of solution phases
is represented with the variable P .
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IV.A. SUAS Dynamics

The dynamics of the aircraft are formulated with a four state model, representing the position of the SUAS
in the x(t), y(t) directions, the heading angle, θ(t), and the heading rate, θ̇(t). The control for the aircraft
is the derivative of the heading angle rate, θ̈(t). The SUAS dynamics are described below as a relationship
between the states and the controls

ẋ(p)(t) = (v)cos(θ(p)(t)) ∀p ∈ [1...P ] (26)

ẏ(p)(t) = (v)sin(θ(p)(t)) ∀p ∈ [1...P ] (27)

θ̇(p)(t) = γ(t) ∀p ∈ [1...P ] (28)

θ̈(p)(t) = u(t) ∀p ∈ [1...P ] (29)

where v represents the aircraft velocity which is held constant in this work at 30ft/s.

IV.B. Optimal Control Problem

By discretizing the search space with a CDT, a phased approach is taken in the optimal control problem.
Each triangle is solved as a single phase in GPOPS-II and each phase is connected through event constraints.
The dynamics constrain the path through each triangle in barycentric coordinates. Combining the described
steps, the optimal control problem formulation has been consolidated as follows.

Minimize the cost functional

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (30)

J =

P∑

p=1

J (p) (31)

subject to the dynamic constraints

α̇
(p)
1 (t) = (y2−y3)(v)cos(θ(p)(t))+(x3−x2)(v)sin(θ(p)(t))

det(T ) ∀p ∈ [1...P ] (32)

α̇
(p)
1 (t) = (y3−y1)(v)cos(θ(p)(t))+(x1−x3)(v)sin(θ(p)(t))

det(T ) ∀p ∈ [1...P ] (33)

α̇
(p)
3 (t) = −α̇(p)

1 (t)− α̇(p)
2 (t) ∀p ∈ [1...P ] (34)

θ̇(p)(t) = γ(t) ∀p ∈ [1...P ] (35)

θ̈(p)(t) = u(t) ∀p ∈ [1...P ] (36)

with the control

u(p)(t) = θ̈(t) (37)

and the state vector defined as

X = (α1, α2, α3, θ, θ̇) (38)

with boundary conditions given as the initial and final constraints,

X(1)(t
(1)
0 ) = ((α1)0, (α2)0, (α3)0, (θ)0, (θ̇)0) (39)

X(P )(t
(P )
f ) = ((α1)f , (α2)f , (α3)f , (θ)f , (θ̇)f ). (40)

Inequality path constraints representing bounds on the state, control and time are defined as

0 ≤ α(p)
1 ≤ 1 (41)

0 ≤ α(p)
2 ≤ 1 (42)

0 ≤ α(p)
3 ≤ 1 (43)

|θ(p)| ≤ 180 deg (44)

|θ̇(p)| ≤ 25 deg/s (45)

|u(p)| ≤ 1 deg/s2 (46)

0 ≤ t(p) ≤ edge(p)max

v , (47)
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where edgemax represents the longest edge in the defined simplex. Equality path constraints are implemented
to allow the SUAS to maintain a safe distance from each constrained edge of the simplex corridor,

(
r

(p)
1x − x(p)(t)

)2

+
(
r

(p)
1y − y(p)(t)

)2

− (δ)
2

= 0 (48)

(
r

(p)
2x − x(p)(t)

)2

+
(
r

(p)
2y − y(p)(t)

)2

− (δ)
2

= 0 (49)

(
r

(p)
3x − x(p)(t)

)2

+
(
r

(p)
3y − y(p)(t)

)2

− (δ)
2

= 0 (50)

where ri represents the x and y coordinate of simplex vertices and δ defines the minimum safety buffer
between the SUAS and the building constraints defined by the distance between each vertex point and the
flight path. Finally, event constraints are included to maintain a continuous transition of the state variables
between each phase,

X
(p+1)
o −X(p)

f = 0 ∀p ∈ [1...P − 1]. (51)

IV.C. Initial Guess to the NLP

To achieve computation times within the limits for onboard SUAS operations, a good initial guess is required
for the NLP solver. The methodology presented discretizes the search space into a triangular mesh and a
search corridor of connected simplexes defines the search space, free of constraints. This allows for an
estimate of the optimal path for the first simulation to be comprised of a path solution that connects the
midpoint of each unconstrained edge of the search corridor. The heading is initiated with a constant vector
made up of the angles between the initial and final locations while the heading rate and the control are
initiated with the zero vector. Finally, the time vector is estimated through each phase as the length of the
longest simplex edge divided by the vehicle airspeed.

The output of the Triplanner toolkit solution consists of a discretized path solution within the defined
search corridor that provides an initial guess to the second simulation. This path consists of straight line
segments made up of the two end points connected to sections of constant radius turns. These points are
interpolated to assure data points are available in each defined simplex. The barycentric coordinates are
calculated for each simplex from the interpolated discretized path. The heading angle, θ, is determined by the
angle between consecutive Cartesian coordinates of the path. The heading rate and control are calculated
with a right point finite differencing method initiated with the heading angle vector. Both the heading
rate and control are rate limited to be consistent with those used in the optimal control problem found
in Equations 45 and 46. Finally, the time vector is calculated as the running summation of the Euclidean
distance between each consecutive points divided by the speed of the aircraft.

V. Results

This section illustrates a solution for a single SUAS flying through downtown Chicago with an altitude
constraint of 600ft AGL. The scenario is chosen to represent a challenging urban environment to verify the
functionality of the solution method. The search space is defined by a small region of downtown Chicago
measuring 5600ft by 2800ft. All structures within this region that exceed 550ft AGL are modeled with a
simplistic four-sided polygon. For this scenario, the initial starting point for the SUAS is a parking garage
located on the south-west side of the city, while the final location is a monument located on the north-east
side of the city. The initial and final aircraft constraints are defined as

(x0, y0, θ0) = (200, 200, free) (52)

(xf , yf , θf ) = (4700, 2650, free). (53)

Within the defined search space, there are 37 buildings that exceed 550ft. Figure 5A shows the constraint
map with the initial and final flight coordinates illustrated with a green and red asterisk respectfully. Perform-
ing a CDT on the space, Figure 5B illustrates the discretized mesh defined by the constrained environment.
Each building taller than 550ft is represented on the map as a red, four sided polygon.

Utilizing the 2010 version of the Triplanner toolkit developed by Kallmann and his team, the search
corridor is defined and a feasible flight path solution is determined. The algorithm is built in C++ and
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Figure 5. Downtown Chicago; Constraint Map (A), Discretized Mesh (B). Map data @2017 Google

accessed through a Python script run in a Linux operating environment. The data required to initialize the
Triplanner algorithm consists of the points of each closed polygonal constraint, the initial and final starting
points of the path, and the offset distance required from each constrained edge. In order to achieve a feasible
path for a SUAS, the offset distance was set to the minimum turning radius of the aircraft determined
through the relationship between the aircraft’s velocity and turn rate as follows,

r̃ =
v

θ̇min
(54)

for r̃ is the minimum turn radius, v is the velocity, and ω is the turn rate. The Triplanner algorithm returns
a Dubins path solution with computation time on the order of milli-seconds. The search corridor and the
path solution returned from the Triplanner toolkit is shown in Figure 6.
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Figure 6. Triplanner Toolkit Solution. Map data @2017 Google
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The Triplanner solution is solved in 5.84 milliseconds, with an objective cost of 177.8, however, the
aircraft dynamics and control are not incorporated into the Triplanner toolkit as the Dubins path solution
is found through a discretized A* search algorithm. The output of the Triplanner algorithm provides the
triangulated mesh that includes all the constrained and unconstrained edges as well as the discretized path
solution. This data is interpolated to provide a solution comprised of data points at 1ft spacing.

Two simulations were executed to illustrate the necessity of providing a quality guess to the optimal
control software. For each simulation, the optimal control problem is solved in GPOPS-II under the same
set up parameters with only the initial guess for the state vector, control, and time differing. The key
GPOPS-II parameters are listed below in Table 1.

Table 1. GPOPS-II User Settings

GPOPS-II User Settings

Mesh Method hp-PattersonRao

Mesh Tolerance 10−2

NLP Solver SNOPT

Derivative Supplier AdiGator

Method RPM-differential

NLP Tolerance 10−3

Min Collocation Points 4

Max Collocation Points 10

Mesh Fraction 1
2 *ones(1,2)

Mesh Collocation Points 4*ones(1,4)

The minimum flight safety buffer, preventing an aircraft from flying to close to a building, δ, is set to
15ft for each simulation. The path results for the first simulation are shown in Figure 7. The initial guess
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Figure 7. Optimal Solution with Simplex Mid-Point Guess. Map data @2017 Google

is illustrated with the dotted red line while the discretized path solution is shown with the blue asterisks.
An optimal solution through the search corridor was found with a computation time of 4.57 seconds. The
heading angle and the heading angle rate are the fourth and fifth states and are displayed in the top two plots
of Figure 8. The control is shown in the lower plot of Figure 8 with an initial guess equal to the zero vector.
Evaluating these plots, the mid-point solution requires a heading change at the start of each simplex. This
requires excessive vehicle control inputs when compared to the the optimal solution. The second simulation
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Figure 8. Mid-Point Guess Theta and Control Solution

provides an initial guess vector for the state, control, and time as determined for each triangle through the
Triplanner toolkit solution and implemented in GPOPS-II as individual phases. The results are shown below
in Figure 9. Again, the initial guess is illustrated with the dotted red line while the discretized path solution
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Figure 9. Hybrid Solution. Map data @2017 Google

is shown with blue asterisks. An optimal solution through the search corridor was found, however, given a
quality initial guess to the path solution, the computation time for the optimal control software decreased to
3.58 seconds. The heading angle, heading angle rate, and control are shown in Figure 10 with the initial guess
resulting from the Triplanner toolkit solution shown with the red dotted line and the blue solid line describing
the optimal heading angle and control. Here the angle requirements between the Triplanner solution and the
optimal control solution have been minimized and when compared to the mid-point solution, the Triplanner
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Figure 10. Hybrid Theta and Control Solution.

solution requires more control than the optimal solution but significantly less than the mid-point solution.
The two simulations shown above were each solved with an NLP tolerance of 10−3. Through simulation,

it was determined that decreasing the NLP tolerance to a lower threshold significantly increased the compu-
tational time while improving the objective value by just a few tenths of a second. To further decrease the
computational time, the minimum flight safety buffer, defined in Equations 48 - 50, can be removed from
the optimal control equality constraints. This safety buffer can instead be incorporated inside the polygon
of the original building constraints resulting in equivalent objective costs while reducing the computation
time to 2.23 seconds. Table 2 shows the significant differences in computation time that can be attained by
incorporating the Triplanner algorithm as the initial guess to the NLP and maintaining the building safety
buffer inside the polygon building constraint model.

Table 2. Table of simulation results (using SNOPT)

Initial NLP Guess Comp Time (s) Obj Time (s) Building Safety Buffer

Mid-Point 4.57 173.26 NLP Equality Constraints

Triplanner 3.58 173.63 NLP Equality Constraints

Mid-Point 3.84 174.32 In-Polygon Model

Triplanner 2.12 173.69 In-Polygon Model

Without a triangulated mesh, an initial guess to the NLP for this simulation would be difficult to generate
and path constraints would be challenging to model, resulting in an optimal solution that would likely return
a local minimum with excessive computation times. Here it is shown the optimal control problem can be
solved in 2.12 seconds with an objective cost of 173.69. This solution requires an initial guess acquired from
the Triplanner toolkit solution for the safety buffer modeled inside the polygon constraint. The Triplanner
solution alone solved in the fastest time at 5.84 milliseconds, with an objective cost of 181.8. Although
this solution is well within the computational limits for on-baord processing, it requires an additional eight
seconds of flight time to accomplish the mission and the state and control parameters are not explicitly
returned. By solving the optimal control problem in GPOPS-II, the total mission time of 173.92 seconds
is the fastest solution producing both the control parameter and the state values at each collocation point.
Future work will include higher fidelity aircraft dynamics while incorporating exterior disturbances, both of
which have proven difficult to account for with estimation techniques, thus further validating the need for
optimal control software.
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VI. Conclusion

The goal of this SUAS optimal control problem was to develop a flight path through a constrained
environment within the computational limits for onboard, real-time flight operations. By combining optimal
control methods with path planning techniques from the field of computer animation, the search space defined
in the optimal control problem has been significantly reduced and path constraints have been eliminated
resulting in a smaller Jacobian matrix and reducing the required gradient set required for defining an optimal
solution. Computation times have been achieved within the desired limits for a matlab based approach
consisting of a solution defined by a series of simplexes forming a search corridor. The optimality of the
solution is dependent on this search corridor as defined with heuristic search techniques. Although there
is no guarantee the globally optimal solution will be contained within the chosen corridor, the framework
presented allows for a feasible solution to be attained quickly, with common input parameters, increasing
the robustness of the optimal control software.

In traditional methods for optimal control, constraints must be modeled with differentiable functions
such that gradient-based solvers can find optimal solutions outside of path constraints. Often, it becomes
challenging to adequately represent a constrained field and the additional function evaluation result in
increased computational time. By discretizing the search space with a triangulated mesh, constraints are
eliminated from the search space and computation times can be greatly reduced bridging the gap between
optimal control solvers and onboard, real-time solution.
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Appendix D. Journal of Aeronautics & Aerospace
Engineering

Appendix D contains the third paper published in this research effort. This work

explores simplex channels through narrow corridors of the urban map of Chicago,

USA. Acceleration control allows for the vehicle to achieve a smaller turning radius

and therefore a more direct path to the terminal position. This paper was published

in the Journal of Aeronautics and Aerospace Engineering.
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Introduction
The Department of Defense (DoD) has continued to recognize 

Small Unmanned Aircraft Systems (SUAS) as critical assets and the 
demand on their capabilities continues to grow.  They are ideally suited 
for the dangerous or repetitive missions that otherwise require human 
involvement [1].   Incorporating SUAS into the battlefield will streamline 
systems, sensors, and analytical tasks while significantly reducing 
the risk to human life [2].  Across the DoD and civilian industry, 
the demand for unmanned capabilities has become paramount.  
Specifically, Manned Unmanned Teaming (MUM-T) is one role SUAS 
perform that augment and enhance human capabilities with a desired 
goal to ensure operations in complex and contested environments 
[3].  Manned aircraft flying through terrain and over urban canyons 
can experience ground threats that significantly reduce their ability to 
accomplish the mission.  By teaming with SUAS, the manned aircraft 
can maintain a safe distance from the threat environment while 
relying on SUAS to augment the mission through system sensors.  
This scenario becomes ideal if the SUAS can autonomously navigate 
through a constrained environment from one area of interest to the 
next without the requirement for human interface.

Optimal control techniques are evaluated herein to determine 
feasible flight paths for autonomous SUAS through a highly 
constrained environment.  Three common challenges are addressed 
herein that become problematic when using optimal control software.  
First, convergence to a solution is not always guaranteed.  Second, 
the computation time required to achieve a solution can vary greatly.  
Third, constraint modeling and implementation can significantly affect 
the computation speed and convergence of the problem.  Each of 
these issues can be attributed to the problem formulation, constraint 
implementation, and the initial guess provided to the NLP solver.  
Further, system parameters must be bounded appropriately to ensure 
the space is adequately searched, increasing the number of parameters 
the user is required to input.  

To overcome these issues, insight will be taken from developments 
in the field of computer animation where Constrained Delaunay 
Triangulation (CDT) techniques are used to eliminate constraints 
from the search field and input parameters are generalized through 

a transformation to barycentric coordinates in a multi-phased 
approach.  Computer animation path planning algorithms have 
become computationally efficient and perform effectively in moving 
autonomous agents through simulated environments.  However, 
these algorithms are often restricted to the two-dimensional plane 
with limited control on the agent.  Combining these path trajectories 
with the increased capabilities of optimal control software allows for 
efficient, feasible, multi-control solution for autonomous SUAS flight.

Background
Numerical solutions to optimal control problems are often solved 

with indirect or direct methods.  Indirect methods use the calculus of 
variation to form the Hamiltonian, resulting in a two-point boundary 
value problem.  The optimal solution is determined by solving the 
first-order optimality conditions while minimizing the Hamiltonian 
with respect to the control.  With this method, a good approximation 
is required for the states, co-states, control and time.  However, 
the optimality conditions can often be difficult to formulate and 
determining a realistic estimate of the co-states is not intuitive. 

Alternatively, direct methods transcribe the infinite-dimensional 
optimal control problem into a finite-dimensional optimal control 
problem with algebraic constraints, also known as a Nonlinear 
Programming (NLP) problem [4].  Solutions are acquired using 
orthogonal collocation methods, polynomial approximation of the 
state, and numerical integration through Gaussian quadrature.  The 
state, X, is approximated at a set of collocation points described as
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Abstract
This paper identifies feasible fight paths for Small Unmanned Aircraft Systems in a highly constrained environment.  

Optimal control software has long been used for vehicle path planning and has proven most successful when an 
adequate initial guess is presented flight to an optimal control solver. Leveragingfast geometric planning techniques, 
a large search space is discretized into a set of simplexes where a Dubins path solution is generated and contained 
in a polygonal search corridor free of path constraints.  Direct optimal control methods are then used to determine 
the optimal flight path through the newly defined search corridor.  Two scenarios are evaluated. The first is limited to 
heading rate control only, requiring the air vehicle to maintain constant speed.  The second allows for velocity control 
which permits slower speeds, reducing the vehicles minimum turn radius and increasing the search domain.  Results 
illustrate the benefits gained when including speed control to path planning algorithms by comparing trajectory and 
convergence times, resulting in a reliable, hybrid solution method to the SUAS constrained optimal control problem.  
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First, let G consist of a planar straight-line graph with S defining a 
set of n segments that form all the constrained edges in the domain.  A 
CDT, T, is then formed such that all segments of S are also segments 
of T and the constrained Delaunay criterion defined below are upheld. 

For each unconstrained edge e of T, there exists a circle C such that

1.	 The endpoints of edge e are on the boundary of C

2.	 If any vertex v of G is in the interior of C then it cannot be “seen” 
from at least one of the endpoints of e [12].

Figure 1 illustrates the CDT for a single polygonal constraint.

With this technique, constraints can effectively be forced in the 
discretization of the space.  In computer animation, these constraints 
represent walls, furniture, and other common obstacles an autonomous 
agent must avoid when traversing through a space.  To account for the 
width of the autonomous agent, a test is performed to assure a disk 
of radius r can traverse through any given region without crossing a 
constrained edge.  This allows for an efficient computation of paths of 
arbitrary clearance.  To assure the accuracy of the feasible paths, a local 
clearance test is performed to verify a path solution with minimum 
radius of 2r.  In the event a path corridor is restricted, a refinement of 
the mesh is attempted by redistributing the triangulation or adding a 
vertex point to a straight line segment of the set S.  The final triangulated 
mesh is then termed a “Local Clearance Triangulation (LCT)”.

A path through the LCT is defined as a “free” path if it traverses 
from an initial point p to a final point q without crossing a constrained 
edge.  A free path will cross several unconstrained edges resulting in 
a “channel” of connected simplexes formed of all traversed triangles.  
A path solution through this channel is determined with a “funnel” 
algorithm developed by Lee and Preparata, and Chazelle [13,14] as cited 
by Hershberger [15].  The funnel algorithm has been demonstrated 
under multiple applications, including path finding for autonomous 
agents [16], querying visible points in large data sets to define shortest 
paths [17], shortest paths for tethered robots [18], and robots in extreme 
terrain [19].

Given a corridor defined by a series of triangles, the funnel algorithm 
determines the shortest path from an initial point p to a final point q, 
subject to a defined clearance from each simplex edge.  The apex of the 
first triangle is defined as a, with the remaining two vertex points on 
the shared triangle edge defined as u and v.  The remaining vertex of 
the second triangle is defined as w.  If the straight line path from a to w 
is feasible, that path is stored as shown in Figure 2A.  Maintaining a as 
the apex, the straight line path from a to the following triangle vertex 
point, w’ is evaluated for feasibility and stored if accepted, as shown 
in Figure 2B.  This process continues until a straight line solution fails 
upon which the vertex providing the shortest distance to the next point 
in the path is chosen as the new apex, a’ and the algorithm continues 
as shown in Figure 2C.  A detailed description of the funnel algorithm 
can be found in Hershberger’s work [15]. Finally, in order to account 
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and τ represents an affine transformation of the time t on the interval 
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This method is termed global as each collocation point is solved 
simultaneously rather than other fixed interval methods such as a 3 or 5 
point formula method [5].  

One disadvantage of the direct method results from the discretization 
of the optimal control problem producing several minima, leading to a 
solution that may be far from the optimal.  To minimize this affect, an 
accurate prediction of the solution, control, and time are required to 
assure feasible results as there is no guarantee of convergence to a global 
minimum with direct methods.  Many algorithms have been proposed 
previously to acquire an initial guess to the solution, including Dubins 
path algorithms [6] and heuristics [7,8] with computation time and 
accuracy being the limiting factor for complete hybrid solutions.  The 
research herein examines the effectiveness of using computationally 
efficient path planning algorithms from the field of computer animation 
to seed the NLP used in the optimal control software for SUAS path 
trajectories in constrained environments.   

Methodology
To properly formulate the SUAS path planning optimal control 

problem, all state and control variables must be defined and properly 
bounded and an initial guess to the path solution, control, and time must 
be formulated.  Often, determining realistic bounds on the states, control, 
and time can be challenging.  Bounds that are set too loose can result in 
high computation times while setting bounds too tightly can limit the 
solution search space.  Further, solution accuracy and computation 
times are greatly dependent on the quality of the initial guess used to 
seed the NLP.  To minimize the impacts of these issues, the optimal 
control problem is formulated in a phased approach.  The search space 
is discretized into a CDT and translated into barycentric coordinates, 
providing standardized bounds on the system states.  Path planning 
algorithms designed for computer animation are used to achieve feasible 
path solutions and are formulated to provide a quality initial guess for 
the states, control, and time in the optimal control problem.

Triplanner  Toolkit
An extensive review of path planning through environments with 

clearances and algorithms developed to determine shortest paths while 
providing a minimum clearance to all constraints are provided by 
Kallmann [9,10]. These algorithms focus on computational efficiency 
while also providing a framework for dynamic addition and removal 
of constraints. They have been implemented in the 2010 version of 
the Triplanner toolkit1. An overview of the relevant algorithms from 
the Triplanner  toolkit is given below; a more extensive review of the 
algorithm can be found by Kallmann, M [9,11].

1http://graphics.ucmerced.edu/software/Triplanner /

Figure 1: CDT of polygonal constraint.
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for local clearances around obstacles, a circular constraint of radius r is 
imposed on each vertex point as illustrated in Figure 2D [11].

The Triplanner  toolkit utilizes an A* search algorithm to provide 
a locally optimal search, defining a Dubins path solution contained 
in a series of triangles.  It is capable of achieving path solutions on 
the order of milliseconds for environments with 60K+ segments [9].  
This path solution can be translated to the SUAS problem by setting 
the radial clearance distance of each vertex equal to the turning radius 
of the SUAS, therefore providing a feasible path to seed the NLP.  
Although there is no guarantee that the defined search corridor will 
contain a global solution, it will guarantee a feasible flight path that is 
free of constraints when exogenous inputs are excluded.  Currently, 
the Triplanner  algorithm results only produce a path solution without 
influence of control parameters or rate limits.  Although the algorithm is 
computationally efficient, additional work is required to produce SUAS 
flight trajectories while fully exploiting vehicle control parameters 
throughout the problem domain. 

Coordinate Transformation
With a feasible path solution acquired to seed the NLP, the parameter 

bounds on the states, control, and time of the optimal control problem 
can be simplified with a translation from the Cartesian coordinate 
frame to the barycentric coordinate frame.  Often, when dealing with 
simplex shapes, the barycentric coordinate frame is preferred in which 
the location of a point within a simplex shape is defined as a weighted 
measure to each of the vertices, also referred to as areal coordinates 
when restricted to the two-dimensional simplex [20].

Defining the coordinate system in 2 , let r1, r2, and r3 be vertices 
of a simplex G.  Any point, R, inside simplex G can be represented in 
terms of the vertices of G and the barycentric weights, used as a basis as 
follows [21-23]: 

1

α
=

= ∑ j j
j

r
n

R 	                                                                                               (4)

where α represents a set of real coefficients, defining the barycentric 
weights whose sum equals unity and r defines the vertex points in 
Cartesian coordinates.  Requiring the weights to be positive semi-
definite ensures the point is maintained inside simplex Q, 

[ ]0 1,2,3α ≥ ∀ ∈j   j .	                                                                                (5)

The simplex parameters illustrating Cartesian coordinates in R and 
barycentric coordinates in A is shown in Figure 3.

For the two-dimensional triangular relationship, transformation 
from a barycentric coordinate frame to a Cartesian coordinate form can 
be accomplished through the linear transformation

=R QA 					                   (6)

where 2∈R   defines the point location inside the simplex in Cartesian 
coordinates, 2∈ xnQ defines the vertex matrix of simplex G comprised 
of vertex points [ ]1,2,3∀ ∈jq   j , and ∈nA  defines the barycentric weight 
matrix.  Expanding Equation 3 and solving for the first two barycentric 
coordinates yields 
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where T is a 2x2 matrix comprised of the vertex points of simplex Q,
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and third barycentric weight, α3, is expressed in terms of the first two 
calculated weights to sum to unity.

Expanding Equation 4 yields the barycentric weights in terms of 
both the interior point location and the vertex points of the simplex.
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3 1 21α α α= − − 	                                                                     (11)

Differentiating the weights with respect to the x and y position 
allows for the propagation of dynamic state equations through an 
individual simplex.   
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3 1 2α α α= − −   	                                                                                           (14)

Evaluating the determinant of matrix T, singularities will become 
problematic only if the vertex points of the simplex become collinear.  
By defining the discretization of the search space to hold the properties 
of a CDT, singularities in the dynamics will be avoided.

Optimal Control Problem Setup
The optimal control problem is formulated in the General Purpose 

Optimal Control Software (GPOPS-II) and implemented in MATLAB.  
GPOPS-II is a computation tool for solving multiple-phase optimal 
control problems using variable-order Gaussian quadrature collocation 
methods with an adaptive mesh refinement [24].  The user is required 
to input parameter bounds on the initial, intermediate, and final states, 
as well as the time vector, control, and any additional path constraints 
presented in the scenario.  

By discretizing the problem’s search space with a CDT, the path 
through each individual simplex can be represented in GPOPS-II as 
a single phase, each with a specified set of dynamics, constraints, and 

Figure 2: Triplanner  path development.

 
Figure 3: Barycentric coordinate frame.
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bounds.  The solution acquired from the Triplanner  toolkit provides 
both the initial guess of the path solution as well as the simplex structure 
to effectively formulate the optimal control problem in GPOPS-II.  

The output of the Triplanner  algorithm yields three text files 
containing the path solution, the CDT, and the defined search corridor.  
The discretized path solution contains the endpoints of each straight 
line path and equally spaced points of constant radius on each turn.  
To properly formulate the initial guess, the solution, CDT, and the 
search corridor are translated to barycentric coordinates and the path is 
interpolated and subdivided into each simplex equating to the optimal 
control phases.  As the path trajectory traverses across a simplex edge, 
the vertex points from the current phase to the next must transition 
such that the barycentric weights appropriately reflect the active vertex 
points.  This process is illustrated in Figure 4.  

Here it can be seen that as the path solution approaches a simplex 
edge, the state corresponding to the opposite vertex has no contribution 
to the location of the point and therefore accepts a zero value.  Care 
must be taken to assure the state vector accurately represents the 
corresponding weight values as the path transitions across the simplex 
boundaries.

The aircraft dynamics for this problem are derived in the two-
dimensional plane, representing constant altitude flight.  They are 
formulated with a five state model describing the SUAS position in the 

( ) ( ),x t y t  directions, the heading angle, ( )θ t , the heading rate,   ( )θ t , 
and the velocity v(t). The control, u(t), is implemented on the derivative 
of both the heading rate,   ( )θ t , and the velocity,   ( )v t .

( ) ( ) ( ) ( ) ( )( ) [ ]1θ= ∀ ∈ … p px t v cos t  p P 	                                   (15)

( ) ( ) ( ) ( ) ( )( ) [ ]1θ= ∀ ∈ … p py t v sin t  p P 	                                    (16)

( ) ( ) ( ) [ ]1= ∀ ∈ … pθ t θ t   p P 	                                                       (17)

( ) ( ) ( ) [ ]1 1θ = ∀ ∈ … p t u  t   p P 	                                                        (18)

( ) ( ) ( ) [ ]2 1= ∀ ∈ … pv t u t   p P 	                                                         (19)

Here, v represents the velocity, p represents the current phase, and 
P defines the total number of phases in the solution, consistent with the 
number of simplexes in the defined search corridor.

In order to fully transform the SUAS state vector into the barycentric 
coordinate system, Equations 15-16 are substituted into Equations 12-
13 to form the final set of dynamic equations, [ ]1∀ ∈ … p P .
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( ) ( ) ( ) ( ) ( ) ( )3 1 2α α α= − −  p p pt t t 			                (22)

( ) ( ) ( )θ θ=  p t t 	                                                                                             (23)

 ( ) ( ) ( )= p t ψ tθ 	                                                                                          (24)

( ) ( ) ( )= pv t a t 	                                                                                            (25)

The control is implemented on the derivative of the velocity and 
heading rate,

 ( ) ( ) ( ) ( )=   
pu t ψ t  a t  				                       (26)

The state vector is defined with six states, represented as

 1 2 3, , , , , =  
X α  α  α  θ  θ v 	                                                                      (27)

Subject to these dynamic constraints, the objective for each scenario 
herein is to minimize the cost functional

( )

( )

( )

= ∫
p

f

p
i

t
p

t

J dt 	                                                                                             (28)

( )= ∑ pJ J 	                                                                                             (29)

given the initial and final boundary constraints describe as 

 ( ) ( )( ) ( ) ( ) ( )[ ]11
1 2 30 0 0 0, ,=t α  α  αX 	                                                       (30)

 ( ) ( )( ) ( ) ( ) ( )[ ]1 2 3, ,=P
f f f ft α  α  αPX 	                                  (31)

where the heading, heading rate, and velocity are free variables in the 
initial and final state.  Further, inequality constraints are implemented 
to maintain the search space within each simplex and provide bounds 
to the state, control and time defined as

( )
10 1α≤ ≤p 	                                                                                             (32)
( )
30 1α≤ ≤p 	                                                                                               (33)
( )
30 1α≤ ≤p 	                                                                                               (34)

( )θ π≤p 	                                                                                             (35)

( ) 25 /θ ≤ p  deg s 	                                                                      (36)

( ) 2
1 1 /≤pu  deg s 	                                                                        (37)

( ) 2
2 2 /≤pu  ft s 	                                                                                                (38)

( )
( )

0 ≤ ≤
p

p maxlt
v

	                                                                                             (39)

where maxl  describes the longest edge of the current simplex.  The 
bound on the fourth and fifth state were chosen to represent a general 
group 1 SUAS [1].  The bound on the heading rate control was chosen 
such that the   θ  vector represented an appropriate set of dynamics to 
implement in an aircraft control system.

Finally, event constraints are implemented to assure a continuously 
smooth transition of the state variables as the path traverses through 
each phase, described asFigure 4: Simplex phased solution.
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( ) ( ) [ ]1
0 0 2 .−− = ∀ ∈ …p p

fX  X   p P 	                                                          (40)

Scenarios
Two scenarios were evaluated to illustrate the savings in the 

objective cost when solving for constrained path trajectories with the 
optimal control software, GPOPS-II.  In each scenario presented, all 
polygon constraints are convex, however the approach can be applied 
to arbitrary polygons.  The first scenario considered an aircraft flying 
at max speed with control limited to only the change in heading rate.  
This reduces the previously defined state matrix in Equation 27 to a five 
state model defined as

1 2 3 =  
X     λ λ λ θ θ 	                                                                               (41)

while the control, previously defined in Equation 26, is reduced to
( ) ( ) ( )=   

pu t t  ψ .	                                                                             (42)

The Triplanner  solution was determined with a maximum radial 
off-set distance defined by the vehicles bank angle limit when flying at 
max speed.  The path results, along with the CDT discretization, were 
used as inputs to seed the NLP of the optimal control software.

The second scenario is constructed to illustrate the advantages 
of path planning when allowing for speed control on an air vehicle.  
Again, the Triplanner  algorithm is used to determine an initial path 
solution and CDT discretization.  In contrast to the first scenario, the 
radial off-set distance is now defined using the minimum allowable air 
speed of the SUAS.  This reduces the minimum turn radius and may 
increase the feasible search space of the problem.  The optimal control 
problem consists of the six state, two control model defined previously.

For both scenarios, the SUAS is required to fly through a pre-
defined area of downtown Chicago, USA, measuring 5600 x 2800 ft.  
The altitude of the SUAS is restricted to 600 ft AGL and therefore all 
structures exceeding a height of 550 ft are modeled as path constraints 
that must be avoided.  The initial and final locations of the path are 
defined as

( ) ( ), 200,200=i ix y  	                                                                              (43)

( ) ( ), 2630,2650=f fx y  .	                                                                         (44)

The final location of the scenario was chosen such that the most 
direct path would require the SUAS to navigate through narrow 
building corridors requiring minimum radius turns thus illustrating 
the search domain of the problem.  

The initial guess of the path trajectory supplied to the NLP solver 
is acquired through the Triplanner  algorithm as described previously.  
The initial guess of the heading vector is determined by the angle 
between consecutive Cartesian coordinates of the Triplanner  solution.  
The heading rate and control are calculated with a right point finite 
differencing method initiated with the heading angle vector.  Each of 
these vectors are rate limited to remain consistent with those used in the 
optimal control problem as in Equations 36 and 37.  The initial guess 
for the velocity vector is formulated with maximum speed on straight 
sections of the path and minimum speed on the minimum radius turns 
while the acceleration vector is initiated with the zero vector.  The time 
vector is approximated through each phase as the running summation 
of the Euclidean distance between consecutive points divided by the 
vehicle airspeed.

The constraint map is shown in Figure 5 with each building 
exceeding 550 ft described with a red enclosed polygon.  Building 

heights were estimated in order to construct a formidable optimal 
control problem.  The initial and final path locations are shown with 
green and red asterisks respectively.

The GPOPS-II user settings defined for each scenario are described 
as shown in Table 1.

Minimum Time Scenario with Max Speed
The optimal control problem for the first scenario is as described 

previously with the objective being to fly from the initial point to 
the final point in the shortest amount of time. Often, with minimum 
time SUAS problems, the path solution is flown at maximum speed, 
therefore this problem only allows a single control defined as the 
change of heading rate of the vehicle.   

Scenario #1: Triplanner  solution

The Triplanner  algorithm is solved and implemented as the initial 
guess to the NLP.  It is initiated with the polygonal constraints, the 
initial and final location of the path solution, and a defined off-set 
distance from each constraint.  To assure a feasible flight path solution, 
the radial off-set distance is determined through the relationship 
between the vehicles velocity and turn rate as follows,

=R v
ω

	                                                                                            (45)

for R is the minimum turn radius, v is the velocity, and ω is the turn 
rate.  For this scenario, the max velocity was set to 30 ft/s with a turn 
rate of 25 deg/s yielding a turn radius of 68 ft.  The resulting search 
corridor and path solution are shown in Figure 6.

The Triplanner  solution is solved in 4.07 milliseconds on a PC 
resulting with an objective time of 134 seconds.  Here the constraint 

 
Figure 5: Chicago constraint map.  Map Data @2017 Google.

GPOPS-II User Settings
Mesh Method hp-Patterson Rao

Mesh Tolerance 10-2

NLP Solver SNOPT
Method RPM-differential

Derivative Supplier AdiGator
Derivative Level First
NLP Tolerance 10-3

Min Collocation Points 4
Max Collocation Points 10

Mesh Fraction 0.5* ones (1, 2)
Mesh Collocation Points 4* ones (1, 2)

Table 1: GPOPS user defined settings.
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off-set distance is shown on each polygonal vertex with blue circles.  
Due to the narrow corridors defined between buildings, and the 
maximum required off-set distance, the only feasible path solution 
requires the SUAS to fly around the constraints as shown in the black 
outlined simplex search corridor.  The path solution is shown as a 
Dubins path made of up straight line sections and max radius turns.  
However, this path is not optimal due to the placement of the circular 
off-set constraints placed on the vertex of each polygonal constraint.  
This allows for improvement to be seen in the objective function when 
solved with an NLP.  

Scenario #1: GPOPS-II solution

The path result for the optimal solution through the defined search 
corridor is shown in Figure 7. 

The optimal solution is solved in 2.12 seconds with an objective 
of 129.9 seconds.  The Triplanner  solution used to seed the NLP 
solver, SNOPT, is shown with the red dashed line while the discretized 
optimal solution is shown with the blue asterisks. A small improvement 
in the objective is seen over the Triplanner  results but at the cost of 
computation time.  

Figure 8 describes the heading, heading rate, and control respectively.  
The initial guess formulated from the Triplanner  results can be seen with 
the red lines while the optimal solution is shown in blue. 

Here, the difference in the two solutions is shown as the Dubins 
Triplanner  solution requires max radius turns at each vertex along the 
path while the optimal control solution can blend the solution through 
the constrained field.  

Although there are benefits to the optimal control solution, 
justification for using the optimal control software cannot be made at 
this point given the computation time required to achieve a solution 
with only minimal improvement to the objective. 

Minimum Time Scenario with Speed Control
The optimal control problem for the second scenario consists of the 

six state, two control model as described previously in Equations 20-39.

Scenario #2: Triplanner  solution

The Triplanner  solution is again initiated with the polygonal 
constraints, the initial and final location of the path solution, and a 
defined off-set distance from each constraint.  With the velocity now 
being a state, the SUAS has the ability to reduce speed in order to 
achieve a smaller turn radius and therefore navigate through narrow 
city corridors.  However, within the constraints of the 2010 Triplanner  
toolkit, the turn radius cannot be varied during a simulation.  This 
limits the Triplanner  algorithm to solve for a solution using the 
minimum speed turn radius calculated from Equation 40, yielding 
a minimum turn radius of 22.9 ft at the SUAS speed of 10 ft/s.  The 
Triplanner  results are shown below in Figure 9.

Similar to the first scenario, the Triplanner  solution resulted in 
just 6.1 milliseconds, but at an objective time of 364 seconds which is 
significantly increased due to the minimum speed restriction.  Again 
the constraint off-set distance is shown with blue circles around each 

 
Figure 6: Max radius Triplanner  solution.  Map Data @2017 Google.“

 
Figure 7: Sim #1 GPOPS-II Solution.  Map Data @2017 Google.

 
Figure 8: Sim #1 GPOPS-II states and control.

 
Figure 9: Min radius Triplanner  solution.  Map Data @2017 Google.
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vertex of the search corridor and the path solution is shown with the 
solid red line.  Under minimum speed, the search corridor provides a 
feasible search space that is a more direct route to the finish location.  
Although the distance traveled is significantly decreased, the objective 
time for the Triplanner solution is too long to consider this a viable 
solution in itself.

Scenario #2: GPOPS-II solution
The Triplanner  solution will again be used as the initial guess to 

seed the NLP solver SNOPT. Due to the increased objective time of 
the minimum turn radius Triplanner  solution, the input vectors are 
scaled in time to represent a maximum speed solution during straight 
sections of the path and a minimum speed solution during the constant 
radius turns.

Implementing the optimal control problem as described previously, 

 
Figure 10: Sim #2 GPOPS-II solution.  Map Data @2017 Google.

 
Figure 11: Sim #2 GPOPS-II states and control.

but now incorporating control on the SUAS acceleration, the optimal 
solution through the defined search corridor is shown in Figure 10. 

The optimal solution is solved in 2.86 seconds with an objective of 
120.4 seconds.  Here the Triplanner  solution, post processed for speed 
control, is shown with the red dashed line while the optimal solution 
is shown with the blue asterisk.  The computation times are similar 
to those found in the first GPOPS-II simulation, however, by allowing 
control on the SUAS speed, objective times can be significantly reduced, 
allowing the vehicle to traverse a more direct path to the target location.  

Figure 11 describes the heading, heading rate, heading rate control, 
velocity, and acceleration control respectively.  The initial guess 
formulated from the Triplanner  results can be seen with the red lines 
while the optimal solution is shown in blue. 

Similar to the first solution, the Dubins path solution resulting 
from Triplanner  can be seen in the top subfigure but here it is acquired 
with minimum radius turns.  By formulating the problem with 
optimal control software, the turn points in the path can be optimized 
through the constraints.  Further, the 4th subfigure shows the velocity 
is maintained at max speed for the optimal solution, thus providing a 
feasible path solution that is direct to the target location and flown at 
maximum speed. Table 1 summarizes the simulation results.

Conclusions
This work demonstrated a solution technique to solve feasible 

path solutions for SUAS through a highly constrained environment.  
Leveraging computationally efficient algorithms developed for 
computer animation, a CDT was performed on the search space and 
a Dubins path solution was determined through a simplex search 
corridor, free of all path constraints.  The defined search corridor, 
dependent on the user supplied radius off-set distance set in the 
Triplanner  algorithm, defines the domain of the optimal control 
solutions space.  By initiating Triplanner  with a SUAS maximum 
speed turn radius, path results are restricted to wide simplex corridors, 
excluding many routes on the interior of the domain.  Although these 
solutions are flown at maximum speed, the path is often highly sub-
optimal.  On the contrary, by initiating the Triplanner  algorithm 
with the SUAS minimum speed, the defined off-set radius is reduced 
and path corridors through the interior of the city are included in the 
solution space.  These solutions provide more direct routes to the final 
location, however, the flight time required to accomplish the path is 
excessive at minimum speeds.  

Optimal control software is utilized to blend the two Triplanner  
results by allowing for control on the SUAS acceleration, enabling 
the aircraft to optimize the speed profile while determining a path 
solution through a more direct route on the interior of the city.  Using 
the minimum SUAS turn radius to initiate the Triplanner  algorithm, 
a Dubins path solution is acquired and used as the initial guess for the 
NLP.  This result alone is sub-optimal as the Triplanner  algorithm 
places the minimum turn radius path constraints on each vertex of 
the search corridor, defining the Dubins path.  The optimal control 
software is able to improve on the Triplanner  solution by flying a more 
direct path while maintaining maximum flight speed, improving the 
objective function by over 8% on the most direct route. 

Speed control in previous path planning algorithms for minimum 
time objectives, are often not included due to the complexities inherent 
to the design.  This effort has demonstrated the benefit speed control can 
have in determining efficient flight trajectories in highly constrained 
domains. Ultimately, by including acceleration control on the SUAS, 

Control Solution 
Method NLP Seed Objective Time 

(sec)
Computation 

Time
ψ Triplanner N/A 134 4.07 ms
ψ GPOPS-II Triplanner 129.9 2.12 s

a, ψ Triplanner N/A 364 10.4 ms
a, ψ GPOPS-II Triplanner 120.4 2.9 s

Table 2: Simulation results.
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computational efficiencies and trajectory solutions, provided by the 
Triplanner  algorithm, can be exploited with optimal control software 
to produce accurate and efficient path results in minimum time.  
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Appendix E. Aerospace Conference 2018

Appendix E contains the fourth paper published in this research effort. The work

explores the ability to connect multiple waypoints within the simplex structure of an

optimal control problem for path planning. This paper was published and presented

at the IEEE 2018 Aerospace Conference, Big Sky, Montana, in March 2018.
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Abstract—In this research, Small Unmanned Aircraft Systems
(SUAS) are used to determine feasible flight paths to multiple
waypoints within an urban environment. Direct orthogonal
collocation methods are used while leveraging navigation mesh
techniques developed for fast geometric path planning solutions.
Waypoints are included throughout a constrained city map to
illustrate feasible flight paths through tightly constrained path
corridors. The two-dimensional solution is achieved with a
multi-phase approach defined through a discretized simplex
mesh with aircraft control on acceleration and the change in the
vehicle’s heading rate. Constrained optimal control problems
for SUAS have long suffered from excessive computation times
caused by a combination of constraint modeling techniques
and the quality of the initial path solution provided to the
optimal control solver, ultimately preventing implementation
into real-time, on-board systems. These issues are addressed
herein with a new approach by triangulating the search space
to define a polygonal search corridor free of constraints while
alleviating the dependency of problem specific parameters by
translating the problem to barycentric coordinates. Utilizing
algorithms developed for geometric path planning, the initial
path solution is comprised of four path intervals connected at
each waypoint. These path intervals provide a constraint free
search corridor defining a search domain for the optimal control
software. Results are applied to illustrate two-dimensional flight
trajectories through downtown Chicago at an altitude of 550 feet
Above Ground Level (AGL). Computation and objective times
are reported to illustrate the design implications for real-time
optimal control systems.
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1. INTRODUCTION
Path planning algorithms have become essential to the de-
velopment of autonomous navigation across a wide range of
applications. In agricultural development, air and ground
vehicles are used to autonomously collect sensor data to
be used in the prediction of crop growth [1], underwater
vehicles are used to explore resources or landmarks below
the surface of the water [2], and the Department of De-

U.S. Government work not protected by U.S. copyright

fense uses autonomous vehicles in a multitude of capacities
ranging from transports to target recognition [3]. Each of
these applications can be formulated into an optimal control
problem to minimize the objective of a desired cost. When
including path constraints and additional waypoints into the
problem formulation, another layer of realism is added but
also increases the complexity of the algorithm.

Often, the path planning problem requires intermediate way-
points to be visited by the vehicle before arriving at the
final destination. Many times this results in the traveling
salesman approach where a cost function is developed to
determine the appropriate order and frequency the waypoints
should be visited. Previous work has shown optimized paths
constructed to maximize the collection of data from wireless
sensor nodes [4] as well as paths designed through energy
fields to maximize the vehicle endurance [5]. These problems
are often focused on optimizing the waypoints visited rather
than the path to the waypoints or the deconfliction of a large
number of path constraints.

The work herein does not evaluate the order or frequency a
waypoint is visited, rather determines the optimal minimum
time path between a series of selected waypoints through
a highly constrained field. By discretizating the problem
domain into a triangulated mesh, polygonal constraints are
eliminated from the search space and the optimal control
problem is reduced to a search channel free of constraints.
Translating the problem to barycentric coordinates reduces
the problem specific parameter bounds and thus minimizes
the required inputs in the problem formulation. Previous
work has shown the benefits of using a triangulated mesh over
traditional formulations of the constrained optimal control
problem [6] and has illustrated the technique in a realistic
constrained field [7],[8].

2. PATH PLANNING
Optimal Control

Direct methods for optimal control path planning transcribe
the continuous time optimal control problem into a finite di-
mensional problem, also known as a Nonlinear Programming
(NLP) problem [9]. Algebraic constraints are formulated to
limit the search space and provide bounds to the state and
control vectors. The solution is acquired using orthogonal
collocation methods, defining the the state vector with an
orthogonal polynomial while numerical integration and dif-
ferentiation are calculated through Guassian quadrature. This
method is termed a global method as each collocation point
is solved simultaneously with zero error and a solution can
be achieved with a minimal number of collocation points.
Results may however be suboptimal, as several local minima
can exists in nonlinear, non-convex problems.
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To increase the opportunity for an optimal control solver to
achieve a global optimal solution, an accurate prediction of
the state, control, and time should be used as an initial guess
to the solver. Determining an accurate guess that can be
formulated with computation efficiency can be challenging.
Past work has utilized Dubins paths models [10], Particle
Swarm Optimizations (PSO) [11], and boot strap methods
within the solver [12] to seed the optimization routine. Each
of these methods provide advantages and disadvantages, but
they all become exponentially more complex as the number
of path constraints are increased within the search domain.
The work herein will use geometric path planning algorithms
as an initial guess to the optimal control solver. These al-
gorithms have been successful in eliminating polygonal path
constraints from the search space by discretizing the space
with a triangulated mesh and forming a polygonal search
channel containing the approximated solution.

Fast Geometric Path Planning

When considering path planning for video game virtual
worlds, autonomous agents are required to traverse through
simulated environments while avoiding all obstacles. The
final path result must be computationally efficient while
taking into account path length, time, and energy expended
to produce a realistic simulation operated in a real-time
environment [13]. The resulting geometric path solution
is determined with consideration for an autonomous agents
width and body movements such that constrained edges are
not violated. However, when comparing this method to
path planning for Small Unmanned Aircraft Systems (SUAS),
control rates and limits are not considered, providing a neces-
sity for optimal control software.

An extensive review of fast geometric path planning with
clearances is given in [14]. Algorithms to determine short-
est paths while providing a minimum clearance to all con-
straints are provided in [15]. These algorithms focus on
providing reliable, computationally efficient path solutions
and provide a framework for dynamically removing or adding
constraint regions within a triangulated mesh formed from a
Constrained Delaunay Triangulation (CDT). The work herein
implements these algorithms in the 2010 version of the Tri-
planner toolkit2. A more extensive review of the algorithm
can be found in [14], [16].

3. METHODOLOGY
To properly formulate the SUAS path panning optimal con-
trol problem, all state and control variables must be defined
and properly bounded and an initial guess to the path solution,
control, and time are required. The Triplanner algorithm is
capable of solving geometric path solution while avoiding
60K+ constraints with computational times on the order of
milliseconds [14]. This provides a fast geometric solution to
be used as the initial guess to the optimal control solver. In
order to most efficiently implement the Triplanner solution as
the initial guess, a transformation to barycentric coordinates
is required and a phased approached is formulated within the
construct of the CDT.

2http://graphics.ucmerced.edu/software/tripath/

Coordinate Transformation

Given a set of barycentric weights [17], αi, the Cartesian
coordinates can be represented as

R =
3∑

i=1

αiri (1)

where R defines the location inside the simplex and ri de-
scribes each vertex point. Expanding Equation 1 and repre-
senting the final weight α3 in terms of the first two weights,
the expression below represents the weights of the barycentric
coordinate frame in terms of the Cartesian coordinates,

[
α1
α2

]
= T−1(R− r3) (2)

α3 = 1− α1 − α2 (3)

where T is a 2 × 2 matrix representing the vertices of the
triangle as

T =

(
x1 − x3 x2 − x3
y1 − y3 y2 − y3

)
, (4)

and R − r3 is a 2 × 1 vector summation of the Cartesian
coordinates. Expanding Equation 2 gives the barycentric
weights in terms of the vertex coordinates and the point
location within the triangle.

α1 = (y2−y3)(x−x3)+(x3−x2)(y−y3)
det(T ) (5)

α2 = (y3−y1)(x−x3)+(x1−x3)(y−y3)
det(T ) (6)

α3 = 1− α1 − α2 (7)

Vehicle Dynamics

Within the construct of a triangulated mesh, the optimal con-
trol problem is formulated into a phased approach. Each sim-
plex that is traversed is represented as a single phase p, and
each phase is connected through event constraints equating
the states, control and time at each phase boundary. The total
number of phases is represented as P . The simplex corridor
is defined through the results of the Triplanner algorithm and
account for phases 1...P . The SUAS is described with two-
dimensional dynamics in a three-state model defined as

ẋ = (v)cos(θ) (8)
ẏ = (v)sin(θ) (9)

θ̇ = θ. (10)

Transforming the coordinates into a barycentric coordinate
frame and taking the derivative of the weight equations with
respect to the x and y coordinates, a new set of dynamic
equations can be defined to propagate the state variables
through each simplex. This results in an equivalent set of
dynamics, previously described in Equations 8 - 10, now
defined through barycentric weights as

α̇
(p)
1 = (y2−y3)(v)cosθ+(x3−x2)(v)sinθ

det(T ) (11)

α̇
(p)
2 = (y3−y1)(v)cosθ+(x1−x3)(v)sinθ

det(T ) (12)

α̇
(p)
3 = −α̇(p)

1 − α̇
(p)
2 (13)

θ̇(p)(t) = θ(t) (14)

∀p ∈ [1...P ]. With the dynamics described in terms of a
weighted measure to each simplex vertex, a phased solution
can be constructed.
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Waypoint Intervals

When the SUAS is required to visit multiple waypoints,
Triplanner can be used to generate an initial guess for each
interval, defined as the path between consecutive waypoints.
Within each interval, a phased approach is used where each
simplex represents an individual phase. As a new interval is
introduced, the first phase will be identical to the last phase of
the previous interval. This process is shown below in Figure
1 with δi defining the current interval.

Figure 1. Waypoint Intervals

As the path solution terminates at a waypoint, represented at
phase P in interval δi, the following interval begins its path
at the same waypoint in the same phase, now designated as
phase 1 in interval δi+1. The overlap of this phase is essen-
tial to assure a continuous transition of the optimal control
problem where the waypoint locations are enforced through
initial and final state constraints. This process is continued for
all intervals with ∆ representing the total number of intervals
in the problem solution.

Optimal Control Solver

The optimal control problem presented is solved in the Gen-
eral Purpose Optimal Control Software (GPOPS-II) [18]. The
key set-up parameters for the solver are listed in Table 1.

Table 1. GPOPS-II User Settings

GPOPS-II User Settings
Mesh Method hp-PattersonRao
Mesh Tolerance 1

2
∗ 10−2

NLP Solver SNOPT
Derivative Supplier Adigator
Method RPM-differential
NLP Tolerance 10−5

Min Collocation Points 4
Max Collocation Points 10
Mesh Fraction 1

4
*ones(1,4)

Mesh Collocation Points 4*ones(1,4)

4. ALGORITHM DEVELOPMENT
The flow chart in Figure 2 describes the series of algorithms
required to achieve a solution to the multiple waypoint op-
timal control problem. This flow chart illustrates the hybrid
method, combining the fast geometric path solutions attained
by Triplanner with direct orthogonal collocation methods for
acquiring optimal path solutions.

Geometric Planner

The Waypoints algorithm described in the flow chart is ini-
tiated with the function Define interval. Here, the number
of waypoints in the path solution is defined along with a
matrix consisting of each waypoint location. The first and
last waypoints of the matrix consists of the starting location

Figure 2. Algorithm Flow Chart

of the SUAS, thus requiring the vehicle to return to its
original location. An interval is defined as the path between
each waypoint location resulting in N + 1 intervals for N
waypoints.

The Format triplanner algorithm selects the start and end
point for the current interval and initiates the Triplanner algo-
rithm. The output of Triplanner provides text files consisting
of the constrained and unconstrained edges in the simplex
mesh forming the CDT as well as the Dubins path solution.
Figure 3 shows the resulting geometric path consisting of
constant radius turns connected by straight line segments.
The blue asterisks illustrate the results of the Triplanner
solution. Constrained edges are illustrated with solid red
lines, while unconstrained edges are solid gray lines. The
path solution starts at the lower left green asterisk and ends at
the upper right red asterisk.

Figure 3. Triplanner Solution

With the resulting path from Triplanner, points are interpo-
lated along the straight line sections of the path solution.
This is accomplished based on a predefined spacing in the
interpolate solution function. This provides a foundation for
dividing the path solution into each represented simplex and
constructing a properly formatted initial guess for the optimal
control solver.

The function search channel performs three tasks. First, the
interpolated path is transformed to barycentric coordinates
and the path is segmented into each simplex. Second, a
connectivity matrix is formed defining the order of simplexes
that contain the path solution. Here, the vertex points
of each simplex are arranged such that the common edge
between consecutive simplexes can be identified. Finally,
the connectivity matrix is augmented with three columns
defining the shared simplex edge along the search corridor,
the determinant of matrix T found in Equation 4, and the time
required to traverse the longest edge of each simplex. Figure
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4 shows the interpolated path illustrated with blue asterisks
and the search channel shown with black solid lines.

Figure 4. Interpolated Path Solution

The final function block before entering the optimal solver,
formate guess, builds the required vectors for an appropriate
guess for the optimal control problem. The heading is formu-
lated using a three-point finite differencing scheme beginning
with the position vector of the interpolated path solution.
Since the Triplanner results in a Dubins path, the heading
rate and change in heading rate are defined by the SUAS
rate limits based on the heading angle. The velocity vector is
formed with a maximum speed during straight line portions of
the path and minimum speed during the constant radius turns.
This allows for Triplanner to investigate a solution in a larger
search domain as the slower SUAS speeds result in a tighter
turn radius allowing the vehicle to traverse through highly
constrained regions. The rate limited acceleration vector is
then formed based on the change in the velocity curve. These
vectors are shown in Figure 5.

Figure 5. Initial State and Control Vectors

Each of these vectors are described in a three tier structure
representing the defined interval and phase of the solution.
This process is repeated for each interval with the structure
being appended to the end of the previous interval. Once
all target intervals have been exhausted, the connectivity and
guess structures are output to the optimal control software.

Optimal Control Problem

The optimal control problem is initialized by first establishing
the start and end locations of the current interval and building

three structures for input to the NLP solver. The first structure
defines the bounds on the states, control, and time. The
state vector represents the position in barycentric coordinates,
heading angle, heading angle rate, and the SUAS velocity
defined by the dynamic equations

α̇
(p)
1 (t) = (y2−y3)(v(t))cosθ(t)+(x3−x2)(v(t))sinθ(t)

det(T ) (15)

α̇
(p)
2 (t) = (y3−y1)(v(t))cosθ(t)+(x1−x3)(v(t))sinθ(t)

det(T ) (16)

α̇
(p)
3 (t) = −α̇(p)

1 (t)− α̇(p)
2 (t) (17)

θ̇(p)(t) = θ(p)(t) (18)

θ̈(p)(t) = γ(p)(t) (19)

v̇(p)(t) = a(p)(t) (20)

∀p ∈ [1...P ], resulting in the state vector

X = (α1, α2, α3, θ, θ̇,v). (21)

The control for the SUAS is on the change in heading rate and
acceleration resulting in the control vector

u = (γ,a). (22)

Bounds are applied on the states, control, and time to limit
the search domain of the NLP solver. The bounds on the
first three position states are enforced with the start and end
location of each interval

[α1, α2, α3](1) = start position (23)

[α1, α2, α3](P ) = end position (24)

with the intermediate phases for the first three states bounded
by

0 ≤ α(p)
1 ≤ 1 (25)

0 ≤ α(p)
2 ≤ 1 (26)

0 ≤ α(p)
3 ≤ 1 (27)

∀p ∈ [2...P − 1] within each interval. The bounds for the
remaining states, control, and time within each interval are
enforced as

|θ(p)| ≤ π (28)

|θ̇(p)| ≤ 25 deg/s (29)

|γ(p)| ≤ 5 deg/s2 (30)

10 ft/s ≤ v(p) ≤ 30 ft/s (31)

|a(p)| ≤ 2 deg/s2 (32)

0 ≤ t(p) ≤ edge(p)
max

v (33)

∀p ∈ [1...P ] and where edgemax represents the longest edge
in the defined simplex.

The second structure defined for each interval enforces the
first mesh along with the number of collection points used
per mesh interval within each phase. For this work, these
values remain consistent across each waypoint interval and
each phase and are defined previously in Table 1.

The third structure builds the event constraints required for
the continuous transition of the state and control across each
phase boundary within the current interval defined by

X
(p)
o −X(p−1)

f = 0 ∀p ∈ [2...P ]. (34)
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Since the initial guess is evaluated individually for each
interval, a discontinuity could exist in the Triplanner solution
at each waypoint. To eliminate this discontinuity in the
optimal solution, an event constraint between each interval
must be established to assure a continuous transition of the
states. The requirement to maintain the position location
between intervals is enforced in Equations 23-24, with the
remaining states enforced in the event constraint here

Xo(4 : 6)(δ) −Xf (4 : 6)(δ−1) = 0 ∀δ ∈ [2...∆] (35)

where δ represents the current interval and ∆ defines the total
number of intervals in the solution.

This process is repeated until all waypoint intervals have been
exhausted. The interval structure for the bounds, mesh, initial
guess, and events are then combined into a single structure
with the number of phases, Pt, equal to the sum of the phases
in each waypoint interval defined by

pt = [pδ1 ; pδ2 ; . . . ; pδ∆ ] (36)

∀p ∈ [1...P ] and pt ∈ [1...Pt].

Finally, the objective of this optimal control problem is to
solve the minimum flight path over all phases subject to the
dynamic constraints defined in Equations 15-20, parameter
bounds of Equations 23-33, and event constraints of Equa-
tions 34-35. The cost function is defined as

J (pt) =
∫ t(pt)

f

t
(pt)
0

dt ∀pt ∈ [1...Pt] (37)

J =

Pt∑

pt=1

J (pt). (38)

5. SCENARIO
As in [7] and [8], the scenario presented considers the two-
dimensional flight of a SUAS through an urban environment
modeled in downtown Chicago, USA. Buildings that reach an
altitude greater than 550 feet Above Ground Level (AGL) are
modeled as polygonal constraints. Given a starting location,
the aircraft is required to fly over three separate waypoints
before returning to the start location. This results in a four
interval solution. For the work herein, the required start and
waypoint locations are defined as

start = [200, 200]ft (39)
waypoint1 = [1825, 1700]ft (40)
waypoint2 = [2370, 2355]ft (41)
waypoint3 = [3650, 1215]ft. (42)

Figure 6 shows the building constraints as red polygons, and
the start and waypoint locations as the black asterisks.

The aircraft is required to maintain an altitude of 600 feet
AGL while avoiding all building constraints. The Triplanner
algorithm is initiated with the start and end location for each
interval as well as the minimum turn radius,R, defined by the
vehicles minimum velocity and turn rate limit.

R = vmin

θ̇max
(43)

The SUAS maintains control on the change in heading rate
and acceleration, thus allowing varying rate turns and the

Figure 6. Constraint Map. Map Data @2017 Google

potential to maximize the search domain. The waypoints
were chosen to illustrate the vehicle control and provide for
a challenging optimal control problem. The first waypoint
is located on the front doorstep of the associated building,
requiring the SUAS to fly adjacent to the constrained edge
followed by a sharp turn to the north of the city. The second
waypoint monitors the center of an intersection surrounded
by four constraints on each corner. Finally, the third waypoint
is located at a metro station designed to extend the four
interval problem through a large number of simplexes.

6. RESULTS
The Triplanner algorithm is used to determine four individual
path solutions, representing each defined interval. Figure 7
shows the connected four interval solution and the defined
polygonal search channel.

Figure 7. Triplanner Solution. Map Data @2017 Google

This geometric path solution is shown with the solid red
line and avoids the polygonal path constraints with a radial
distance calculated from the minimum flight speed as defined
in Equation 43. The path contained within each interval

5



results in a sub-optimal Dubins path solution as the minimum
radius turns are not optimally located due to the constrained
field and the formulation of the Triplanner algorithm. Addi-
tionally, the heading rate limits are not upheld at the waypoint
locations resulting in a discontinuity in the vehicle heading
angle. The search channel for each interval is shown with
the black outlined polygons and are completely maintained
outside of all path constraints. This provides a search domain
for the optimal control solver free of all building constraints.
Table 2 shows the number of phases, flight time, and compu-
tation time for each of the intervals of the Triplanner solution.

Table 2. Triplanner Interval Solutions

Interval Phases Flight Time (s) Computation Time (ms)
1 17 74.16 7.37
2 15 41.84 5.96
3 18 61 4.78
4 23 123.6 6.89

The combined path results in 73 phases with a total flight time
of 300.6 seconds.

The initial guess for the optimal control solver can now be
formed by combining the Triplanner solutions of the four
intervals into appropriately formatted structures. Figure 8
shows the optimal path contained within the defined search
channel.

Figure 8. GPOPS-II Optimal Solution. Map Data
@2017 Google

The optimal path is color coded with blue and green asterisks
to illustrate the different intervals of the problem. The
transition between intervals is continuous and rate limited
according to the limitation of the problem parameters and
enforced through the event constraints of the optimal control
problem described in Equations 34 and 35. The path solution
is optimized over the Dubins path result from Triplanner as
the turn points are moved to an optimal location around the
building constraints allowing for a more direct path to next
waypoint. The final path solution is comprised of 73 phases
with an objective time of 290.51 seconds, a 10 second im-
provement from the initial guess. The required computation
time for the optimal solution was 117.45 seconds on a PC.

The state vectors for the heading, heading rate, and velocity

as well as the control vectors are shown in Figure 9.

Figure 9. Optimal State and Control Vectors

The initial guess, formed from the result of the Triplanner
solution, is shown with the dashed red line while the optimal
state and control vectors are shown with the solid blue lines.
Evaluating the heading angle in the first chart, the disconti-
nuities in the Triplanner heading angle can be seen at each
waypoint, located at 74, 116, and 177 seconds respectively.
The optimal heading rate resembles the turn points of the
Triplanner solution, but is solved slightly faster than the
initial guess provided. The second chart of Figure 9 shows the
heading rate. The initial guess provided maximum rate turns
based on the Dubins path solution of Triplanner. The optimal
heading rate was limited on the vehicles turns due to the rate-
limited control vector shown in the third chart. Finally, the
velocity and acceleration vectors are shown in charts four and
five respectively. The control on the vehicles acceleration is
illustrated in the velocity vector as the vehicle is required
to slow down in order to complete turning requirements
designed at the second waypoint.

7. CONCLUSIONS
The fast computation times of these geometric solutions pro-
vide a foundation for achieving real-time, onboard operations
with optimal control software. The Triplanner algorithm
successfully provided a triangular mesh, a search channel
free of path constraints, and an initial solution for the SUAS
position states. However, since Triplanner provides a point to
point solution, the intervals were solved individually creating
a discontinuity in the heading angle of the estimated solution.
This creates the requirement for optimal control software as
the 2010 version of the Triplanner algorithm does not account
for initial or final heading angle constraints or rate limited
control inputs. The initial path solution was evaluated and
heading angle rates, velocity, and acceleration vectors were
established. These vectors were implemented in the optimal
control solver, GPOPS-II for calculation of the optimal path
within the desired polygonal search channel.
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By defining the problem in barycentric coordinates, imple-
mentation of the Triplanner solution as the initial guess was
accomplished through a phased approach where each simplex
represented a single phase of the optimal solution. A contin-
uous transition of the states and control were accomplished
through event constraints, allowing the optimal solution to
continuously transition from one interval to the next across
each waypoint. Further, the challenging urban environment
presented tight corridors between building constraints where
the vehicle was required to slow its airspeed in order to reduce
the minimum turning radius required to achieve the desired
path. By providing control to the vehicle’s acceleration,
minimal speed deviations were realized and a continuous
minimum time solution was achieved over four intervals
containing three waypoints. The computation times for the
optimal control problem exceeded the limits for real-time
operations, but the simulation presented provides a founda-
tion for future work where computational times could be
drastically reduced by determining the appropriate limits for
a series of finite-horizon optimal control problems combined
to meet the same objective posed herein.
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Optimal Path Planning for SUAS Target Observation through
Constrained Urban Environments using Simplex Methods

Michael D. Zollars1, Richard G. Cobb2, and David J. Grymin3

Abstract— The work herein determines the optimal flight
path for a Small Unmanned Aircraft System through a con-
strained urban environment while minimizing the flight through
keep-out regions and ending on a defined orbit around a
target of interest. Direct orthogonal collocation methods are
combined with fast geometric path planning techniques where
a triangulated mesh is used to produce a hybrid control
routine resulting in optimal flight paths through a defined
triangulated channel. Physical constraints are eliminated from
the non-linear program search space, while keep-out regions
are modeled within the objective function of the optimal control
problem and avoided according to a weighted distribution of
the objective components. A scenario is presented for a SUAS to
advance at constant altitude through city building constraints
while minimizing time in unavoidable keep-out regions. The
path terminates outside the triangulated channel on an orbit,
encircling the target location. Results illustrate path constraints
designed in the objective functional within the construct of a
triangulated mesh and the implications that result.

I. INTRODUCTION

Small Unmanned Aircraft Systems (SUAS) have played
a major role in mission contributions across the Department
of Defense (DoD). Their impact continues to be recognized
as their role transitions from remote piloted operations and
waypoint following to autonomous navigation. Manned Un-
manned Teaming (MUM-T) has become a research priority
with goals set to demonstrate effective humane-machine
interactions while increasing the trust of autonomous mis-
sions [1]. These SUAS, performing autonomously, have the
potential to utilize sensor packages in close proximity to
areas of interest and provide reliable data to manned aircraft
located at a safe off-set distance.

Within the construct of autonomous flight path planning,
direct orthogonal collocation methods have significantly in-
creased computation efficiencies when an adequate initial
guess is used to seed the Nonlinear Programming (NLP)
solver and parameter bounds are accurately represented [2],
[3], [4], [5]. Leveraging computer animation algorithms,
the optimal control problem can be formulated within a
triangulated mesh utilizing a barycentric coordinate system,
thus standardizing parameter bounds within each simplex.
Further, the triangulated mesh eliminates nonlinear path
constraints from the search space and generate a Dubins

1Michael D. Zollars is a PhD Candidate in the Department of Aeronautics
and Astronautics, Air Force Institute of Technology, Wright-Patterson AFB,
OH, 45433

2Richard G. Cobb is a Professor of Aeronautics and Astronautics, Air
Force Institute of Technology, Wright-Patterson AFB, OH, 45433

3David J. Grymin is a Controls Science Engineer at the Control Sci-
ence Center of Excellence, Air Vehicles Directorate, Air Force Research
Laboratory, Wright-Patterson Air Force Base, OH 45433

path solution through a triangulated channel, producing
an adequate solution for seeding the NLP. Previous work
has shown the difficulties in efficiently modeling a large
number of constraints within the NLP while illustrating
the effectiveness of providing the solver an initial guess
posed through a triangulated mesh [6]. Additional work
has illustrated the effectiveness and efficiencies gained by
removing constraints from the search domain of the optimal
control control problem by applying a simplex structure [7],
[8].

The scenario presented in this work addresses the case
where a path constraint cannot be completely avoided and
therefore the objective function must account for minimizing
the time spent in the keep-out region. Further, the vehicle is
required to end on a path coincident to a final desired orbit
with a heading vector perpendicular to the target location.
The terminal phase of the scenario requires transition from
barycentric coordinates to the feasible regions in global
Cartesian coordinates to allow for an optimal trajectory to
the final orbit which may pass through multiple simplexes.

II. BACKGROUND

A. Direct Orthogonal Collocation
Many methods have been developed to transcribe an

infinite-dimensional optimal control problem into a finite
optimal control problem, or NLP. A few of these include
shooting methods [9], state and control parameterization
methods [10], and direct orthogonal collocation methods
[2], [11]. Direct orthogonal collocation methods are accom-
plished by first approximating the continuous functions of the
optimal control problem with a finite dimensional Lagrange
polynomial basis where the state vector is approximated at
a set of collocated points described as

x̃(τ) ≈ x̃N (τ) =

n+1∑

i=1

xiLi(τ). (1)

Here, xi represents the weight function, Li(τ) is the La-
grange polynomial basis described as

Li(τ) =
n∏

i=0
j 6=i

τ − τj
τi − τj

(2)

and τ represents an affine transformation of the time t
on the interval from (−1, 1). The desire is to determine
the solution at each collocated point while including the
initial point in the mesh, defined as Legendre-Gauss-Radau
points. Differentiation or integration of the state and con-
trol is then calculated through Gaussian quadrature. This



method is termed global as each collocation point is solved
simultaneously. However, in order to fully take advantage
of the efficiencies of Lagrange polynomials and Gaussian
quadrature, a quality guess of the states, control and time
must be provided to allow for efficient convergence of the
optimal control problem.

B. Constraint Models
The complexity of the optimal control problem can

grow exponentially when constraint models are incorporated.
These models can range from simplistic shapes represent-
ing circular or elliptical regions, to superquadrics, or even
polygonal shapes [6]. Each of these must be modeled as
a path constraint in the optimal control problem, reduc-
ing the sparsity of the Jacobian matrix and increasing the
computational requirements. Further, these path constraints
must be smooth differentiable functions in order to quickly
acquire the Jacobian and Hessian. This can be problematic
when designing algorithms to handle multiple constraints in
a timely fashion.

For problems where the constraints must be included in the
optimal control problem, previous work [2], [12] has shown
the benefits of combining superellipse shapes with sigmoid
functions. The superellipse is defined by

F (x, y) =
(x
a

)N
+
(y
b

)M
(3)

where any point on the SUAS trajectory is outside of the
constraint when F > 1. Variables a and b represent the semi-
major and semi-minor axes of the superellipse and N ≥ 2,
M ≥ 2 are even numbers representing the curvature of the
shape. These shapes are beneficial in the flexibility to model
general constraint structures, however, as N and M are
increased, the gradient of the function becomes excessively
large at the corners and the function itself can grow without
bound. To minimize the impacts this can have on an NLP
solver, the function is incorporated into a modified inside-
outside function through a sigmoid function [12]. This allows
for a bounded, continuous, and differentiable function.

φ(F ) =
1

1 + e(s(F (x,y)−1)) (4)

Here, s represents the stiffness parameter of the curve. Figure
1 shows a straight line vehicle trajectory, annotated with
the blue asterisks, through a constrained circular region.
The gray curves depict the stiffness of the function as s is
varied from 0.1 to 10. Incorporating this function as a path
constraint, any functional value greater than zero represents
a position close to or inside the keep-out region dependent
on the stiffness parameter. The normalization of this function
value can be handled through the distributed weight values
when included in a cost function. This work implements a
stiffness value of s = 2, illustrated by the solid black line in
Figure 1.

C. Virtual Environments
When considering the constrained, constant altitude SUAS

flight trajectory problem, parallels can be made to path plan-
ning techniques used in computer animation. Virtual worlds

Fig. 1. Stiffness Transition of Sigmoid Function

are populated with autonomous agents that are required to
traverse through simulated environments while avoiding all
obstacles. The final result must be computationally efficient
while taking into account path length, time, and energy
expended to produce a realistic simulation operated in a real-
time environment [13].

An extensive review of path planning though virtual en-
vironments with clearances is given in [14]. Algorithms to
determine shortest paths while providing a minimum clear-
ance to all constraints are provided in [15]. These algorithms
focus on providing reliable, computationally efficient path
solutions and provide a framework for dynamically removing
or adding constraint regions. The work herein implements
these algorithms in the 2010 version of the Triplanner
toolkit1. A more extensive review of the algorithm can be
found in [14], [16].

III. METHODOLOGY

A. Initial Path Solution

The Triplanner algorithm is initiated with the start and
final coordinates, the polygonal constraints, and the required
clearance distance from each constraint. To equate the au-
tonomous agent to a SUAS in the two-dimensional plane,
the clearance distance is set to the minimum turning radius
of the aircraft, computed based on a bank angle limitation
at constant speed. The output of the Triplanner algorithm
consists of all the constrained and unconstrained edges, a
defined simplex channel free of constraints, and a Dubins
path solution contained within the simplex channel in global
Cartesian coordinates.

The Triplanner algorithm can navigate through over 60K
constraints on the order of milliseconds [14], however, limi-
tations to the algorithm do exist. First, Triplanner is strictly
a path planning algorithm without regard for limitations on
system parameters and control. Second, keep-out regions
that are unavoidable cannot be handled with the Triplanner
algorithm as the triangulated mesh eliminates all constraints
from the search space. Finally, Triplanner provides a point to
point solution and does not satisfy the terminal requirement

1http://graphics.ucmerced.edu/software/tripath/



to optimally end the path on a non-deterministic point of
the desired orbit around the target. These issues must be
overcome before the initial guess is provided to the NLP.

The initial guess for the state solution, time, and control
through a triangulated mesh is extensively covered in previ-
ous work [7]. To assure the desired orbit radius around the
target remains in feasible space, a line intersection algorithm
is used to first determine the distance from the target location
to the closest constrained edge, providing an upper bound to
the orbit radius. This is determined by finding the perpendic-
ular distance from the target point to each constrained line
segment. Constructing Bourke’s algorithm [17], the slope, λ,
of the perpendicular line segment is defined as

λ = (xt−x1)(x2−x1)+(yt−y1)(y2−y1)
‖(x2,y2)−(x1,y1)‖22

(5)

where (xt, yt) defines the target location and (x1, y1),
(x2, y2) define the vertex points of the constrained edge. A
line equation is used to determine the point of intersection
between the perpendicular line and the constrained line
vector,

x3 = x1 + λ(x2 − x1) (6)
y3 = y1 + λ(y2 − y1). (7)

The shortest distance from the target point to the constrained
edge, ζk is then defined by

ζk = min(‖(xt, yt)− (xi, yi)‖2)∀i ∈ [1, 2, 3]. (8)

Evaluating Equation 8 for each constrained edge, the maxi-
mum orbit radius for the SUAS is defined by the minimum
distance to the closest constrained edge in the domain,

Rmax = min(ζk)∀k ∈ [1...C] (9)

where C defines the total number of constrained edges. This
process is shown in Figure 2 for a single constrained edge.

Fig. 2. Maximum Orbit Radius

Finally, the Rmax value is checked against the required
orbit radius, Rt, to assure the SUAS remains in an uncon-
strained, feasible airspace while accomplishing its mission.
The final orbit radius is then used to determine the inter-
section of simplexes, which are removed from the search
channel. This allows for the NLP solver to converge to
an optimal solution without the requirement of traversing
through a specific simplex.

The initial guess from the final simplex phase through the
orbit consists of a straight line solution to the intersection
of the orbit radius. This line is determined by defining the
unit vector from the final position of the last simplex of the
Triplanner solution to the target point. A line intersection
algorithm is then used to find the transition point from the
straight line path to a circular orbit based on the length of
the target radius and the vehicles minimum turning radius.

B. Optimal Control Problem

Within the construct of a triangulated mesh, the optimal
control problem is formulated into a phased approach. Each
simplex that is traversed is represented as a single phase
p, and each phase is connected through event constraints
equating the states, control and time at each boundary. The
total number of phases is represented as P . The simplex
corridor is defined through the results of the Triplanner
algorithm and account for phases 1 : N − 1. The final phase
is evaluated in global coordinates to allow for left or right
turn orbits of varying radius around the target. The SUAS is
defined with 2-dimensional dynamics in a three-state model
defined as

ẋ(t) = (v)cos(θ(t)) (10)
ẏ(t) = (v)sin(θ(t)) (11)

θ̇(t) = γ(t). (12)

Here, the velocity, v, is held constant at 30ft/sec through
the entirety of this work. The state vector is defined as

X̃ = (x, y, θ) (13)

with control

u = γ. (14)

Transforming the coordinates into a barycentric coordinate
frame and taking the derivative of the weight equations with
respect to the x and y coordinates, a new set of dynamic
equations can be defined to propagate the state variables
through each simplex. This results in an equivalent set of
dynamics defined through the barycentric weights, previously
described in [6] as

α̇
(p)
1 (t) = (y2−y3)(v)(cosθ(t))+(x3−x2)(v)(sinθ(t))

det(T ) (15)

α̇
(p)
2 (t) = (y3−y1)(v)(cosθ(t))+(x1−x3)(v)(sinθ(t))

det(T ) (16)

α̇
(p)
3 (t) = −α̇(p)

1 (t)− α̇(p)
2 (t) (17)

θ̇(p)(t) = γ(t) (18)

∀p ∈ [1...P − 1], with the control consistent with (14), and
the new state vector defined as

X = (α1, α2, α3, θ). (19)

With the dynamics described in terms of a weighted measure
to each simplex vertex, a phased solution can be constructed
where each simplex represents a single phase in the optimal
control problem.

By transforming the problem to the barycentric coordinate
frame, parameter bounds on the state can be generalized



for each phase by taking advantage of the coordinate frame
properties defined as

0 ≤ α(p)
1 ≤ 1 (20)

0 ≤ α(p)
2 ≤ 1 (21)

0 ≤ α(p)
3 ≤ 1. (22)

Parameter bounds on the heading, control, and time are given
as

|θ(p)| ≤ 180 deg (23)
|u(p)| ≤ 25 deg/s (24)

0 ≤ t(p) ≤ (ρ)edge(p)max

v , (25)

where edgemax represents the longest edge in the defined
simplex and ρ > 1 defines a weighting to increase the
time bound to allow for curved solutions through a simplex,
accounting for potential flight through keep-out regions.
Bounds for the final phase are determined by the maximum
and minimum values of the final simplex edge and the orbit
around the target.

Finally, event constraints are imposed to maintain a con-
tinuous transition of the state variables through each simplex,

X
(p)
o −X(p−1)

f = 0 ∀p ∈ [2...P ]. (26)

The final phase requires the vehicle to end on a constant
radius orbit around the target. This phase takes place outside
of the triangulated search channel requiring the implemented
dynamics to be in global Cartesian coordinates represented
in Equations 10, 11, and 12 with control as the heading rate,
γ. The event constraint relating phase P − 1 to P must be
equated through a transformation of the coordinate states of
the P − 1 phase as follows,

x
(P−1)
f = α

(P−1)
1f x1 + α

(P−1)
2f x2 + α

(P−1)
3f x3 (27)

y
(P−1)
f = α

(P−1)
1f y1 + α

(P−1)
2f y2 + α

(P−1)
3f y3, (28)

where xi and yi represent the simplex vertex locations. This
results in the event constraint

X̃
(P )
o − X̃(P−1)

f = 0. (29)

This constraint bridges the state and control of the final
simplex edge to the final phase. To account for the terminal
condition, a final event constraint is added to implement the
tangency condition to the final orbit. The tangency condition
is defined for the final x and y positions as

x̃f = xt +Rtcos(θf + µπ2 ) (30)
ỹf = yt +Rtsin(θf + µπ2 ), (31)

where x̃f and ỹf represent a vehicle position coincident
and perpendicular to the desired final orbit of center xt, yt
with radius Rt while µ ∈ [−1, 1] implements a clockwise
or counter-clockwise orbit dependent on the vehicles sensor
location. The final event constraint is applied to the first two
states described as

x̃f − xPf = 0 (32)

ỹf − yPf = 0. (33)

With the dynamics and parameter bounds defined, the
objective function is designed for minimum time of flight,
while including penalties for the keep-out zones. The cost
associated with the minimum time flight through each phase
is represented as

J
(p)
minT =

∫ t(p)f

t
(p)
0

dt ∀p ∈ [1...P ]. (34)

The penalty for the keep keep-out regions, Fi(x, y) is defined
with a sigmoid function, φ(F ), and minimizes the keep-out
incursions at each collocation point as follows

Fi(x, y) =
(x(p)(t)−Kxi)

2

ai
+ (y(p)(t)−Kyi)2

bi
(35)

φi(Fi) =
1

1+e(si(Fi(x,y)−1) , (36)

where Kxi and Kyi define the keep-out center point and
ai and bi define the semi-major and semi-minor axis. This
yields a cost function, minimizing the incursion onto keep-
out regions, defined as

J
(p)
minE =

∫ t(p)f

t
(p)
0

φ
(p)
i (Fi)dt ∀p ∈ [1...P − 1] (37)

The complete objective function is a summation of the
minimum time cost and minimum incursion to keep-out
regions.

J =
P∑

p=1

β1J
(p)
minT +

P−1∑

p=1

β2J
(p)
minE (38)

Here, βi defines the weight values that sum to unity and
distribute the cost proportionally, such that the components
of the cost function influence the desired flight path.

With the cost function defined, integral bounds are imple-
mented within the optimal control problem as follows,

0 ≤ JminE ≤ 50. (39)

The optimal control problem is solved using the General
Purpose Optimization Psuedospectral Software (GPOPS-II).
The parameters used in the simulation are shown in Table I.

TABLE I
GPOPS-II USER SETTINGS

GPOPS-II User Settings
Mesh Method hp-PattersonRao
Mesh Tolerance 10−2

NLP Solver SNOPT
Derivative Supplier SparseCD
Method RPM-differential
NLP Tolerance 10−5

Min Collocation Points 4
Max Collocation Points 10
Mesh Fraction 1

2 *ones(1,2)
Mesh collocation Points 4*(1,4)

IV. SCENARIO

Consider a city map representing an urban environment,
where an aircraft is required to maintain constant altitude and
fly from an initial position to a final region, culminating on an
orbit around a target of interest. This scenario is represented



with a constraint map of downtown Chicago, USA. The
SUAS is required to maintain an altitude of 600 ft Above
Ground Level (AGL). Each building that exceeds 550 ft AGL
is modeled as a constraint that must be avoided. Keep-out
regions representing minimal flight zones are included along
the West river and down State Street. These zones must be
avoided when possible. Finally, the SUAS is required to end
the flight path on a circular orbit of the target. Figure 3
illustrates the constraint map for the intended scenario as well
as the triangulated mesh over the domain. The initial starting

Fig. 3. Downtown Chicago Constraint Map. Map Data @2017 Google

position and the target location are shown with the green and
red asterisk respectively. The depicted red polygons outline
building constraints that must be avoided while the blue
keep-out regions are modeled as circular regions upon which
the SUAS must minimize incursions. The left column of
keep-out regions have a separation between them, allowing
the aircraft to fully avoid the minimal flight zones if they
reside completely inside the triangulated search channel. The
right column of keep-out regions maintain a small overlap,
requiring flight through the zones at a minimum incursion
level, dependent on the triangulated search channel. The
circle around the target point, located at (4440ft, 2640ft)
represents the desired orbit for the SUAS at Rt = 100 ft.

V. RESULTS

The initial guess used to seed the NLP is determined using
the Triplanner algorithm. The output of Triplanner, shown in
Figure 4, consists of a Dubins path solution contained inside
a triangulated search channel shown as a series of black
simplexes. All building constraints are contained outside of
the search channel thus eliminating path constraints from
the problem formulation. The initial path guess found by
Triplanner is illustrated with the red dashed line and does
not account for keep out regions but maintains a clearance
from each building equal to the minimum turning radius
of the SUAS. Only the simplexes in this search channel
are presented to the NLP solver so that a computationally
efficient search can be performed for the optimal solution
within the defined channel.

Fig. 4. Tripath Solution ansd Search Corridor. Map Data @2017 Google

Figure 5 shows the resultant optimal control solution given
the initial guess from Figure 4 and the user settings defined
in Table I. The collocated points of the optimal path through

Fig. 5. Optimal GPOPS-II Solution. Map Data @2017 Google

the triangulated search channel are shown with the blue
asterisks. The first keep-out region is fully avoided since the
region is located completely within the simplex corridor. The
second keep-out region extends beyond both boundaries of
the simplex channel and therefore the path is dependent on
the weighted cost function. The optimal path chosen avoids
the keep-out region up to the limit of the triangulated search
channel. The final terminal condition is achieved with the
SUAS ending on an orbit around the final target.

The vehicle heading and control vectors are shown in the
top two plots of Figure 6. The third plot shows the integrated
value of the cost function of Equation 37 evaluated over each
phase. The deviation in the heading for the first keep-out
region can be seen in the heading vector between 20 - 40
seconds into the flight. The lower heading value at the 70
second mark illustrates the benefits gained from the optimal
solution over the Dubins path solution. The second keep-
out region is illustrated at the 105 second mark of the first
plot and the final phase can be seen as a min radius to a



Fig. 6. Optimal Solution Control

tangent location on the final orbit, shown at 160 seconds
into the simulation. The integrated values of the third plot
show two keep-out regions of which the first only slightly
affected the cost function. This value can be adjusted through
the stiffness parameter of the sigmoid function described
previously. With a value of s = 2, a smooth, differential
function is evaluated, but impacts to the cost function can
be seen when the vehicle approaches a close proximity to
the region, while not necessarily entering the region. The
second keep-out region is shown to have a greater affect on
the cost function, as the region is unavoidable.

VI. CONCLUSIONS

The Triplanner algorithm is a computationally efficient
algorithm that provides a quality guess and a defined simplex
search channel to the NLP solver allowing for the avoidance
of hard constraints. In designing the optimal control problem,
constraints must be evaluated to determine if they consist
of a flight region for which incursions can be minimized,
or if it is a constraint that must be avoided completely. If
the constraint must be completely avoided, the Triplanner
algorithms triangulated mesh will remove the constraint from
the search field, limiting the problem’s domain. Multiple
constraints, combined with the minimum turning radius of
the SUAS, could result in Triplanner failing to return a
feasible path solution. If however, constraints are modeled
as keep-out regions where the SUAS must minimize time
spent in a flight zone, the constraint is to be modeled in the
optimal control problem rather than the Triplanner algorithm.
By modeling the constraint in the cost function, tuning
parameters can be used for varying levels of incursions
within the keep-out region based on the defined triangulated
search channel.

The sigmoid function was shown to be a viable option
for modeling constraints in the optimal control cost function
within the construct of a triangulated mesh. These functions
are appropriate for gradient-based optimization software as
they provide smooth, bounded, and differentiable functions.
The final cost function was a weighted sum, distributing the

cost over flight time and time within keep-out regions. These
weights, along with the stiffness parameter of the sigmoid
function can be tuned to achieve desired results based on
the level of incursion permitted within the keep-out regions.

Ultimately, a discretized simplex mesh was used to provide
a foundation for optimal control solutions. When paired with
direct orthogonal collocation methods for optimal control,
both hard constraints, such as buildings and terrain, as well
as keep-out regions, such as unavoidable flight zones, can be
modeled and optimal path solutions can be attained.
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Small Unmanned Aircraft Systems have grown in autonomy and capability and continue to compliment Department of Defense
mission objectives. Teaming unmanned aircraft with manned vehicles can expand mission profiles and reduce risk to human life.
To fully leverage unmanned systems, vehicles must be efficient and autonomous in path planning development. The work herein
explores direct orthogonal collocation optimal control techniques combined with fast geometric path planning algorithms to reduce
computation time and increase solution accuracy for SUAS path planning missions. Previous work in the two-dimensional plane
demonstrated a methodology to provide optimal flight paths through defined simplex corridors and simplified the optimal control
parameter bounds by formulating the problem in the barycentric coordinate system. These methodologies are extended in this paper
for three-dimensional flight and solved with two different formulations for flight in an urban environment. The first formulation
solves the constrained optimal control problem using a single phase while modeling the building constraints with superquadric
functions. The second formulation implements the simplex methodology, eliminating polygonal constraints from the search domain,
and solving the optimal path in a multiple phase approach. Results illustrate the benefits gained in computation time and accuracy
when implementing simplex methods into the optimal control design and provide a foundation for closing the gap to real-time,
onboard operations for unmanned vehicle path planning.

Keywords: Optimal Control; Path Planning; Unmanned Vehicles.

1. Introduction

Small Unmanned Aircraft Systems (SUAS) have been in-
tegrated into the mission capabilities of the Department of
Defense (DoD) and have been recognized as a critical as-
set in the force structure as they provide a capability that
reduces the risk to human life in dangerous or repetitive
missions.1 By continuing to further incorporate SUAS into
mission planning on the battlefield, SUAS systems, sensors,
and analytical tasks will be streamlined and human interac-
tion to the mission can be conducted safely.2 The demand
for unmanned aircraft capabilities has become paramount
across the DoD and civilian industries. Specifically, Manned
Unmanned Teaming (MUM-T) is a capability that allows
the manned aircraft to monitor and perform mission objec-
tives while close interactions with complex and contested
environments are augmented and enhanced with SUAS to
ensure operational success.3 Considering the urban environ-
ment, manned aircraft can experience threats from ground
operations that significantly reduce their ability to accom-

plish the mission. In teaming with SUAS, the manned
aircraft can maintain a safe operating distance while un-
manned aircraft can expand the operating envelope of the
mission through system sensors. This work focuses on tran-
sitioning the SUAS from an initial mission location to a
secondary mission location which requires travel though a
constrained urban environment without interaction or con-
trol from the manned aircraft.

Optimal control techniques are used to develop these
flight trajectories through highly constrained environ-
ments. The common challenges that exist in producing
real-time onboard flight trajectories are addressed herein.
First, convergence to a solution is not guaranteed and the
computation times required to achieve a solution can vary
greatly based on the problem setup. Second, the method
upon which the constrained environment is modeled and
implemented can significantly effect the computation speed
and solution convergence. These issues can be attributed to
the problem formulation, the implementation of the con-
straints, and the initial guess (seed) provided to the NLP

∗PhD Candidate, Department of Aeronautics and Astronautics, 2950 Hobson Way, Lt. Colonel, USAF.
†Controls Science System Center of Excellence, Wright-Patterson AFB, OH, 45433.
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solver. Further, system parameters must be bounded ap-
propriately to ensure the space is adequately searched and
results in a feasible solution. This includes bounds on the
search domain and mission time which can often be arbi-
trary values affecting the computation ability of the NLP
solver.

To overcome these issues, an expansion of a two-
dimensional approach is taken where fast geometric path
planning algorithms are used in conjunction with the
barycentric coordinate system to solve for optimal paths
through a series of simplexes.4,5 First, the space is dis-
cretized into a set of tetrahedrons based on the constrained
urban environment and heuristic search algorithms are used
to determine efficient simplex corridors from the initial
point to the specific terminal location, free of any dynamic
vehicle constraints. The proposed solution integrates the
simplex search corridor with optimal control algorithms
and allows for efficient, feasible, and multi-control solutions
through a phased approach in the optimal control solver.

2. Background

Numerical solutions to optimal control problems are often
solved using indirect or direct methods. Indirect methods
use the calculus of variation to form the Hamiltonian, re-
sulting in a two-point boundary value problem. The opti-
mal solution is determined by solving the first-order opti-
mality conditions while minimizing the Hamiltonian with
respect to the control. With this method, a good approx-
imation is required for the states, co-states, control and
time. However, the optimality conditions can often be dif-
ficult to obtain and determining a realistic estimate of the
co-states is not intuitive.

Alternatively, direct methods transcribe the infinite-
dimensional optimal control problem into a finite-
dimensional optimal control problem with algebraic con-
straints, also known as a Nonlinear Programming (NLP)
problem.6 Solutions are acquired using orthogonal colloca-
tion methods, polynomial approximation of the state, and
numerical integration through Gaussian quadrature. The
state, x, is approximated at a set of collocation points de-
scribed as

x(τ) ≈ x̃N (τ) =

n+1∑

i=1

xiLi(τ) (1)

where x̃N is the N point approximation of x(τ), xi repre-
sents the weight function, Li(τ) is the Lagrange polynomial
basis

Li(τ) =
n∏

i=0
j 6=i

τ − τj
τi − τj

(2)

and τ represents an affine transformation of the time t on
the interval from (−1, 1) by

τ =
2t− (tf + t0)

tf − t0
. (3)

For this research the Legendre-Gauss-Radau points will be
implemented.7 This method is termed global as each col-
location point is solved simultaneously rather than other
fixed interval methods such as a 3 or 5 point formula
method.8

One disadvantage of the direct method results from
the discretization of the optimal control problem produc-
ing several minima, leading to a solution that may be far
from the global optimum. To minimize this affect, an accu-
rate prediction of the state, control, and time are required
to seed the NLP. The quality of the prediction will have
a direct affect on the feasibility of the solution, as there is
no guarantee of convergence to a global minima with direct
methods. Many algorithms have been proposed previously
to produce an initial guess to the solution, including Dubins
path algorithms9 and heuristics10,11 with computation time
and accuracy being the limiting factor for complete hybrid
solutions.

Implementing physical building constraints into the
path planning optimal control problem has proven to be
costly in both accuracy and computation time.5 Previous
work has shown different methods for implementing con-
straints in the optimal control problem. Constraint func-
tions can be modeled into the problem domain and the
optimal control problem can be solved with differentiable
path constraint functions such as superquadric ellipsoids,
defined as superellipsoids. Superellipsoids have been used
in numerous applications to represent three-dimensional
shapes, such as modeling city streets or designing aircraft
components.12 Smith used superquadric modeling to rep-
resent odd-shaped probability regions for aircraft collision
avoidance.13 This method for modeling constraint functions
allows for the designer to shape the edges of the constraint
by altering parameters in the base equation cenetered at
(0, 0, 0),14

((
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

= 1 (4)

where constants a1, a2, and a3 set the widths and height
of the superellipsoid and ε1 and ε2 vary the cross-section
parallel and perpendicular to the x, y plane respectively.
Although superellipsoids can begin to represent polygo-
nal shapes as εi approaches zero, the additional compu-
tation time and inconsistencies that result are not prac-
ticle for on-board SUAS computations. Alternatively, the
research herein examines the effectiveness of using compu-
tationally efficient path planning algorithms leveraged from
a two-dimensional approach where fast geometric search
techniques are used to seed the NLP in solving the op-
timal control problem to acquire SUAS path trajectories
in constrained environments. The proposed method dis-
cretizes the search space into a simplex set and eliminates
constraints from the defined search corridor containing the
path solution. Building upon fast geometric path planning
algorithms in two-dimensions,15 previous work has demon-
strated the simplex methodology for optimal control path
planning in highly constrained urban environments.4,16
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Path planning algorithms in three-dimensions have in-
cluded Dubins path trajectories, A*, and Rapidly explor-
ing Random Tree (RRT) search algorithms.17 These algo-
rithms have provided geometric path solutions through sim-
ple constrained environments, implementing minimum turn
radius commands to determine feasible flight paths while
constraints are avoided by implementing a series of min-
imum radius turns, or simply increasing the vehicle turn
radius.18 Although path solutions were attained and the
effectiveness of the A* algorithm was demonstrated, these
methodologies rely on a geometric path solution without
consideration for optimality or rate limited vehicle control
parameters such as aircraft angle rates or speed control.

3. Methodology

Several challenges are presented when expanding the
methodologies of the two-dimensional problem to three-
dimensional space. First, the discretization algorithm used
in the two-dimensional space and the resulting Dubins path
solution, is not capable of expanding to the third dimen-
sion in its current state. To apply the same concepts for
discretizing the space, a simple constraint map, shown in
Figure 1, is constructed so that a feasibility analysis can be
performed and demonstrated.

Fig. 1. Three-Dimensional Constraint Map

3.1. Discretization of the Domain

Given the coordinates of the constraints and the size of the
domain, the space is partitioned laterally in the x-direction
and longitudinally in the y-direction based on the length
and width of each constraint. The z-axis is partitioned for
each independent height level of the constraints. The simple
constraints shown in Figure 1 result in two partitions along
the x and y-axis and a single partition along the z-axis. For
constraints modeled as rectangular prisms, this results in a
cubed space. Any cube that contains the same space as a
constraint is eliminated from the discretized search space.

In the two-dimensional problem, a Constrained Delau-
nay Triangulation (CDT) was performed, providing a set of

three-sided simplexes. Expanding to three dimensions, four-
sided simplexes, or tetrahedrons, are required. To quickly
form the simplex discretized space, five tetrahedrons are
incorporated into each cube as shown in Figure 2. By this
method, two tetrahedrons occupy the top side of the cube,
two tetrahedrons occupy the bottom side of the cube, and
a single tetrahedron is placed in the center of the cube.
Each simplex cube is then populated into the discretized
space in a checkerboard-like fashion to assure the simplex
edges line up on each connecting cube. This results in a
three-dimensional discretized space of four-sided simplexes
as shown in Figure 2.

Fig. 2. Three-Dimensional Discretization

With a discretized space defined, a search method is
required to find a simplex corridor containing a feasible
path solution from the initial starting point to the termi-
nal point. Similar to the two-dimensional approach, an A*
algorithm is implemented based on the equation

f(n) = g(n) + h(n). (5)

Here, g(n) represents the cost defined by the Euclidean
distance from the mid-point of the current simplex to the
mid-point of each connecting simplex. The cost to go, h(n),
is defined by the Euclidean distance from the midpoint of
the connecting simplex to the terminal point of the sce-
nario. The heuristic defined is adequate for this simplified
case, however, as the algorithm is developed with a more
realistic constraint map, the fidelity of the heuristic imple-
mented should be improved to include flight characteristics
of the SUAS. Comparing a Dynamic Programming (DP)
search algorithm to an A* approach with the same heuris-
tic, the DP approach results in the complete search of the
space. However, due to the simplicity and symmetry of the
constraint map, multiple paths of the same minimal cost
exist. To eliminate the subjectivity of choosing one of sev-
eral paths with the same cost, the A* algorithm is chosen to
be implemented, where the first completed search corridor
identified is accepted.

The A* search algorithm provides a simplex corridor
that contains a geometric path solution but may not be
feasible due to vehicle dynamics and parameter rate limits.
Corrections are made to the resulting corridor to account
for cases where the path is extended unnecessarily due to
the constrained field. The first case adresses the situation
in which the path re-enters a simplex that is already con-
tained in the path solution, resulting in an infinite loop, and
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therefore a restriction to enter a simplex already contained
in the simplex corridor is enforced. Second, the search cor-
ridor avoids a constraint by entering a set of simplexes con-
gruent to the current corridor. In this case, the congruent
simplex corridors have three shared edges, extending the
corridor length unnecessarily. These congruent corridors are
eliminating, resulting in a minimal set. With these correc-
tions applied, a tetrahedron corridor is defined through the
three-dimensional discretized space, free of constraints.

3.2. Algorithm Development

For each of the formulations posed herein, the optimal con-
trol problem is solved with the direct method using the gen-
eral purpose optimal control solver GPOPS-II. Inputs are
required to define the search domain, accomplished with de-
fined bounds on the state, control, and time vectors. These
parameter bounds are often problem specific and subjective
in nature, further complicating the problem set-up. Addi-
tionally, the optimal control problem must be defined by
the objective function, the dynamic constraints, the path
constraints, and the event constraints. Each of these in-
puts have an impact to the quality of the solution returned
as well as the time required to converge to a solution. Fi-
nally an initial guess of the states, control, and time is
required to seed the NLP. The following sections describe
the methodology used to develop the values and functions
for each required input to the optimal control solver using
a simplex formulation.

3.2.1. GPOPS-II Phased Solution

GPOPS-II is described as a general purpose computational
tool for solving multiple-phase optimal control problems us-
ing variable-order Gaussian quadrature collocation meth-
ods.19 Each phase is defined with a set of dynamic con-
straints, path constraints, integral constraints, and parame-
ter constraints. Phases are linked through event constraints
that relate information at the start and terminal point of
each phase and allow for time, state, and control variables
to be continuously transitioned through each phase.20,21

For this method, a solution through one simplex can
be represented as one phase in GPOPS-II. Formulating the
optimal control problem through a simplex set provides the
basis for a trajectory solution that traverses through a cor-
ridor of simplexes each represented as a single phase, linked
together to determine the optimal solution contained inside
the defined search space. It is recognized here that the so-
lution found by this method is dependent on the simplex
corridor that is presented to the optimal solver. Due to the
properties of the A* search algorithm, this corridor may
not provide the global optimal solution, rather a local op-
timal solution may be determined. Therefore, this research
focuses on determining feasible solutions that satisfy the
dynamic constraints consistently and efficiently as opposed
to the necessity of arriving at the global optimal trajectory
for every simulation.

The following defines the optimal control problem in
terms of a phased approach. Each simplex is represented in
barycentric coordinates with appropriate dynamic, path,
and parameter constraints. The number of phases required
is problem specific and defined after the space has been
discretized into a simplex set. The total number of phases
in a solution is represented with the variable P .

3.2.2. Coordinate Transformation

In order to simplify the optimal control solver input pa-
rameters, the problem is expressed in the barycentric coor-
dinate system. Given a tetrahedron shown in Figure 3,

Fig. 3. Barycentric Coordinate Frame for a Tetrahedon

each vertex is defined in Cartesian coordinates as

ri = (xi, yi, zi) ∀i ∈ [1...n] (6)

where n is equal to the number of sides of the simplex. The
solution in this work is limited to the three-dimensional
plane for which n = 4. Each point within the simplex can
be represented as an ordered quartet of real numbers, rep-
resenting the weighted distribution to each vertex. Each
vertex is defined in barycentric coordinates as

q1 = (1,0,0,0) (7)

q2 = (0,1,0,0) (8)

q3 = (0,0,1,0) (9)

q4 = (0,0,0,1) (10)

while any point within the simplex is represented with the
corresponding weights to each vertex

A = (α1, α2, α3, α4). (11)

Given a set of barycentric weights, the Cartesian coordi-
nates can be represented as

R =
n∑

i=1

αiri. (12)
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Expanding Eq. 12, the expression below represents the
weights of the barycentric coordinate frame in terms of the
Cartesian coordinates,

αi = T−1(R− qN) ∀i ∈ [1...N − 1] (13)

and representing the final weight αN in terms of the pre-
ceding weights, 1 : N − 1,

αN = 1−
N−1∑

i=1

αi (14)

where N is defined by the number of vertices in the sim-
plex and R− qN is a (N − 1)× 1 vector summation of the
Cartesian coordinates.

In three dimensions, T is a 3× 3 matrix defined by

T =

(
x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

)
, (15)

where xi, yi define the vertex locations of each simplex se-
lected such that the points are not collinear.

3.2.3. SUAS Dynamics

The dynamics of the aircraft are formulated with a five
state model, representing the position of the SUAS in the
x(t), y(t), z(t) directions, the heading angle, θ(t), and the
pitch angle, ψ(t). The control for the aircraft is the change
in heading angle rate, u1(t), the change in pitch rate, u2(t),
and the velocity, v(t). The three-dimensional SUAS dynam-
ics are described below as a relationship between the states
and the controls22 for each phase (p):

ẋ(p)(t) = v(t)cos(ψ(t))cos(θ(t)) (16)

ẏ(p)(t) = v(t)cos(ψ(t))sin(θ(t)) (17)

ż(p)(t) = v(t)sin(θ(t)) (18)

θ̇(p)(t) = u1(t) (19)

ψ̇(p)(t) = u2(t) (20)

∀p ∈ [1...P ].

3.2.4. Objective Function

The objective is to minimize the final time traversing from
the initial location to the final location. This is accom-
plished by advancing through each simplex of the defined
corridor in a multi-phased approach with the performance
measure defined within each simplex by

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (21)

and the complete objective formed by summing the flight
time within each simplex

J =

P∑

i=1

J (p) (22)

where t0 and tf represent the initial and final time of each
phase respectively.

3.2.5. Dynamic Constraints

With the barycentric coordinate system and the SUAS dy-
namics defined, the dynamic constraints of the optimal con-
trol problem can now be formulated. The desire is to solve
the optimal control problem in a phased approach through
a corridor of simplexes, or phases, and therefore the dynam-
ics are represented in terms of the barycentric coordinate
frame. Characterizing a tetrahedron, the barycentric coor-
dinates are expressed as a function of the state variables

αi = fi(x, y, z), (23)

further defined as

α1 = (EI−FH)(x−x4)−(BI−CH)(y−y4)+(BF−CE)(z−z4)
det(T3) (24)

α2 = −(DI−FG)(x−x4)+(AI−CG)(y−y4)−(AF−CD)(z−z4)
det(T3) (25)

α3 = (DH−EG)(x−x4)−(AH−BG)(y−y4)+(AE−BD)(z−z4)
det(T3) .(26)

where A through I is defined by the mapping

T =

(
A B C
D E F
G H I

)
=

(
x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

)
. (27)

The sum of the weights must equal unity, therefore the
fourth coordinate is expressed as

α4 = 1− α3 − α2 − α1. (28)

Evaluating the gradient of fi defined in Equations 24
through 26 and 28,

α̇i = ∇fiẋ (29)

for

x =

(
x
y
z

)
(30)

yields the dynamic equations with respect to the tetrahe-
dron resulting in

α̇
(p)
1 = (EI−FH)ẋ(p)−(BI−CH)ẏ(p)+(BF−CE)ż(p)

det(T3) (31)

α̇
(p)
2 = −(DI−FG)ẋ(p)+(AI−CG)ẏ(p)−(AF−CD)ż(p)

det(T3) (32)

α̇
(p)
3 = (DH−EG)ẋ(p)−(AH−BG)ẏ(p)+(AE−BD)ż(p)

det(T3) (33)

α̇
(p)
4 = −α̇(p)

1 − α̇(p)
2 − α̇(p)

3 (34)

∀p ∈ [1...P ], where the change in the Cartesian x, y, and
z positions are defined by the aircraft dynamics in Eq.
16 through 18. The state vector for the three-dimensional
problem can now be represented as the barycentric coordi-
nates, heading angle, and pitch angle of the SUAS.

X = (α1, α2, α3, α4, θ, ψ)
T

(35)
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3.2.6. Path Constraints

Inequality path constraints represent hard constraints in
the optimal control problem that cannot be violated. These
constraints are formulated as

c
(p)
min ≤ cp(y(p), u(p), t(p)) ≤ c(p)max ∀p ∈ [1...P ] (36)

where c is a function of the state, control, and time that
influences the vehicle’s trajectory. Often, these path con-
straints represent no-fly zones, terrain, or buildings. For
comparison, this work will evaluate two formulations. The
first will implement building constraints into the optimal
control problem with differentiable functions. The second
will eliminate the requirement to define building constraints
by removing them from the search field through a defined
simplex corridor.

3.2.7. Event Constraints

Event constraints are implemented to maintain a continu-
ous transition of the state, control, and time variables be-
tween each phase. Referencing the two-dimensional case,
this condition requires that each vertex of a simplex be de-
fined as the q1, q2, or q3 vertex. As the path trajectory tra-
verses across an edge, one of the weights (states 1-3) will be
zero as the weight associated with the opposing vertex has
no contribution to the location of the point. As the new
phase begins, it is imperative that the states of the next
simplex match the states of the previous simplex. In other
words, the opposite vertex of the new simplex must accept
the zero value and the associated weights for the other ver-
tices must match appropriately in the state vector.16 This
is illustrated in Figure 4.

Fig. 4. Event constraints through notional simplex corridor

Extending this methodology to the third dimension, the
path will transition from one simplex to the next through a
shared face. The three shared vertices on this face can take
a barycentric weight value between zero and one. However,
the fourth vertex on each simplex must accept a zero value
as it provides no contribution to the path position when
located at a simplex transition boundary. Implementing
these bounds within the optimal control solver increases
the computation speed by providing a required direction
for the search.

3.2.8. Bounds

The search space of the optimal solver is limited by the
bounds applied to the state parameters, the control, and
the mission time. Often, these bounds can be difficult to
determine. If they are set too large, convergence times can
become excessive. If they are set too small, there is a greater
probability the solution will converge to a local minimum
instead of continuing to search for the global minimum. Ad-
ditionally, if the bounds are set too restrictive, the optimal
solution may no longer be in the search space and a feasible
solution may not be found.

By defining the problem with a simplex set in the
barycentric coordinate system and solving each simplex as
a separate phase, the bounds become simplified and strictly
defined for each problem. The weights of the barycentric co-
ordinates are defined from 0 to 1, therefore the bounds on
the position states become

0 ≤ αi ≤ 1 i = 1, 2, ...N, (37)

where N defines the number of vertices in the simplex.
The time vector is bounded with an upper and lower limit
in each phase. The furthest distance the SUAS can travel
through any simplex is equal to the length of the longest
edge. The bounds on the remaining state and control pa-
rameters are specific to vehicle characteristics and are set
such that a tractable scenario can be accomplished.

4. Optimal Control Problem

Each tetrahedron in the defined search corridor is solved as
a single phase in the optimal control solver and each phase
is connected through event constraints. The dynamics con-
strain the path through each tetrahedron in barycentric
coordinates. The optimal control problem formulation has
been consolidated as follows.

Minimize the cost functional

J =

P∑

p=1

J (p) (38)

where

J (p) =

∫ t
(p)
f

t
(p)
0

dt ∀p ∈ [1...P ] (39)

subject to the dynamic constraints in Eqs. 31 to 34 and
Eqs. 19 to 20, and the vehicle dynamics defined in Eqs. 16
to 18. The control is placed on rate of change of the pitch
angle, heading angle, and velocity

u
(p)
1 (t) = ψ̇(p)(t) (40)

u
(p)
2 (t) = θ̇(p)(t) (41)

u
(p)
3 (t) = v (42)

with the state vector defined in Eq. 35. The boundary con-
ditions are given as the initial and final constraints on the
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states,

X(1)(t
(1)
0 ) = ((α1)0, (α2)0, (α3)0, (α4)0, (θ)0, (ψ)0) (43)

X(P )(t
(P )
f ) = ((α1)f , (α2)f , (α3)f , (α4)f , (θ)f , (ψ)f ).(44)

For the scenario herein, inequality path constraints repre-
senting bounds on the state, control and time are defined
as

0 ≤ α(p)
1 , α

(p)
2 , α

(p)
3 , α

(p)
4 ≤ 1 (45)

|θ(p)| ≤ 180 deg (46)

|θ̇(p)| ≤ 25 deg/s (47)

|ψ(p)| ≤ 30 deg (48)

|ψ̇(p)| ≤ 10 deg/s (49)

10ft/s ≤ v(p)(t) ≤ 30ft/s (50)

0 ≤ t(p) ≤ ρ edge
(p)
max

v (51)

where edgemax defines the longest edge of a simplex and
ρ is a scaling factor to allow for extended time in a sim-
plex in the presence of wind or other exogenous inputs.
Finally, event constraints are included to maintain a con-
tinuous transition of the state variables between each phase,

X
(p+1)
o −X(p−1)

f = 0 ∀p ∈ [2...P ]. (52)

The key GPOPS-II parameters used herein are listed
below in Table 1.

GPOPS-II User Settings
Mesh Method hp-PattersonRao

Mesh Tolerance 10−3

NLP Solver IPOPT
Derivative Supplier AdiGator
Method RPM-differential

NLP Tolerance 10−5

Min Collocation Points 4
Max Collocation Points 10
Mesh Fraction 1

2 *ones(1,2)
Mesh Collocation Points 4*ones(1,4)

5. Scenario

A simple three constraint model was developed to analyze
the three-dimensional scenario. In order to illustrate the ef-
fectiveness of the simplex approach, the scenario is solved
with previous methods in the literature in a single phase
using superellipsoid constraint functions and compared to
the solution using a simplex discretization. For the simplex
method, a discretization of the space is performed and an
A* search algorithm determines the optimal search corri-
dor. An initial guess for the path solution is determined by
connecting the centroid of each simplex through the search
corridor. A two-point finite differencing scheme is imple-
mented to acquire initial vectors for the heading and pitch
angle, while the heading rate and pitch rate are initiated
with the zero vector and the velocity is presented at a max-
imum value. In order to better compare the two solutions
in each formulation, this initial path solution was used to
seed the NLP in both the single phase and multiple phase

scenarios. The building constraints consists of three con-
nected polygons, representing a series of buildings along a
street with the middle constraint only half the height of the
other two as shown in Figure 5.

Fig. 5. Three-Dimensional Constraint Map

The aircraft begins at level flight flying parallel to the
building constraints and is required to climb over the center
building and descend to a terminal point perpendicular to
the original path. The initial and final aircraft constraints
are defined as

(x0, y0, z0, θ0, ψ0) = (0, 100, 50, 0, 0) (53)

(xf , yf , zf , θf , ψf ) = (290, 600, 50, π2 , 0), (54)

where the initial and terminal location are defined by a
green and red asterisk respectfully, as shown in Figure 5.

5.1. Single Phase Formulation

The first formulation illustrates a single phase solution.
The problem is solved using Cartesian coordinates with
superellipsoid constraint functions implemented in the op-
timal control solver to model each of the three buildings.
The dynamics consist of a five state model consisting of
the Cartesian coordinates expressed in Eq. 16 to 18, the
heading angle, θ, and the pitch angle, ψ. The control is im-
plemented on the change in heading angle, θ̇, the change
in pitch angle, ψ̇, and the velocity. The bounds on each of
the first three states are consistent with the search domain
space and are defined as

0 ≤ x ≤ 500ft (55)

0 ≤ y ≤ 600ft (56)

0 ≤ z ≤ 300ft. (57)

The bounds on the remaining states and control parameters
are consistent with those defined in Eq. 46 to 51.

The three building constraints are modeled with a su-
perellipsoid function and designed as an inequality path
constraint defined as

((
xa−xc
a1

) 2
ε2

+
(
ya−yc
a2

) 2
ε2

) ε2
ε1

+
(
za−zc
a3

) 2
ε1 ≤ 1. (58)

Here, the a subscript on the Cartesian coordinates refers
to the aircraft position, the c subscript defines the center
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point of the superellipsoid, while the principle axes in each
direction is defined by ai. The curvature at the edges of
the superellipsoid is defined with the ε1 and ε2 term which
represent cuboids when they take on values less than one
and greater than zero.14 For this work, both ε1 and ε2 were
set to 0.01. Figure 6 shows the superellipsoid shape.

Fig. 6. Three-Dimensional Superellipsoid Constraint Map

Although the constraint shape looks polygonal, the
edges are rounded ever so slightly, creating a small error
between the polygonal shape and the superellipsoid. This
error is characterized in the results. Finally, the natural log
is taken on both sides of Eq 58 to minimize the impact the
large constraint values can have on the computation time
of the NLP solver.

With the optimal control problem defined for a sin-
gle phase, an optimal flight path can be computed. Results
for the state and control parameters are compared to the
results for a multi-simplex solution and are shown in the
subsequent sections.

5.2. Simplex Formulation

The new proposed formulation demonstrates the simplex
solution and is solved in barycentric coordinates with a
phased approach in the optimal control solver. The space
is discretized into a tetrahedronal set and an A* search al-
gorithm is implemented based on a mid-point heuristic to
determine the search corridor as described in Section 3.1.
The defined simplex corridor is shown in Figure 7.

Fig. 7. Three-Dimensional Simplex Search Corridor

The dashed red line indicates a path solution, connect-
ing the mid-point of each simplex of the search corridor and
is used to seed the NLP. Given this defined search corridor,
the optimal path is computed with a phased approach as
defined in the optimal control problem in Section 4. These
results are compared to the single phase solution in com-
putational time and accuracy.

6. Results

In order to draw comparisons between the two formula-
tions, the same path solution was used to seed the NLP
in the single phase and multi-phase formulation. This ini-
tial path solution can be seen in Figure 8 with the dashed
red line. The green asterisks reflect the first formulation in
which the optimal solution is solved in one phase within
the global search domain of the space and satisfies the su-
perellipsoid constraint function. The blue asterisks reflect
the second formulation where the optimal solution is deter-
mined through each simplex of the defined search corridor.

Fig. 8. Three-Dimensional Optimal Control Path Solution

Variation between the two paths can be seen as they
climb over the center building with the single phase solu-
tion taking a more direct route to the terminal point. The
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angular state and control parameters are shown in Figure
9.

Fig. 9. Three-Dimensional Optimal State & Control

The top plot in Figure 9 shows the heading angle.
As expected with larger tetrahedrons, the centroid solu-
tion used to seed the NLP has the most variation in the
heading and takes the longest time to complete the path.
The single phase and simplex solution only differ in the
timing of the turn to fly over the center constraint. The
third plot defines the pitch angle with all three path solu-
tions resembling the same angular requirements, however,
the computation time of the centroid solution is signifi-
cantly longer. The second and fourth plots describe the
angle rates for the heading and pitch respectively and re-
semble Pontryagin’s principles as expected given the rate
limitations on the parameters. Finally, the fifth plot shows
the SUAS maintains max speed throughout the simulation
in each scenario, however this would not be the case when
tighter turn radii are required.4

The computation and objective times are shown in Ta-
ble 2 for each of the two solutions.

Solution Type Comp Time (s) Obj Time (s)
Single Phase 45.47 22.631

Simplex Solution 5.21 22.77

The objective times between the two scenarios only differ
by less than two-tenths of a second while the difference
in computation time is significant at over 40 seconds. The
disparity in the objective time can be explained in the dif-
ference of the constraint function models. Superquadrics
were used in modeling the constraints in the single phase
solution. The small εi values increase the sharpness of the
constraint edges, but also increases the exponential power
of the constraint function. This creates large gradient val-
ues within the NLP resulting in a significant increase in
computation time. With these epsilon values implemented,
there remains a small error in the shape of the superquadric

when compared to the polygonal constraint used in the sim-
plex solution. Characterizing this error is accomplished by
reviewing Barr’s work for modeling the volume of a superel-
lipsoid,23 defined in his work as

VE = 2
3a1a2a3ε1ε2β

(
ε1
2 ,

ε1
2

)
β
(
ε2,

ε2
2

)
(59)

where β represents the beta function and the ai terms
represent the principle axes of the superellipsoid in each
direction. The difference between the polygon shape con-
straint and the superquadric is 1099.6ft3, which results in
a 0.012% error. Although this error is small, it is concen-
trated at the edges of the constraint. The rounded edge of
the superquadric function as well as the spacing of the col-
location points allows for a more direct flight path over the
center constraint. However, the path violates the constraint
modeled as a polygon as the path skips over the corner of
the constrained edge. The SUAS path solution over the first
edge of the center constraint can be seen in the left side and
top image in Figure 10.

Fig. 10. Three-Dimensional Path and Constraint Comparison

The superquadric model is a good representation of a
polygonal constraint, however, to guarantee the true polyg-
onal constraint is not violated, a subjective safety buffer
would have to be included into the superquadric model to
assure a feasible flight path. By determining a path through
a defined simplex corridor, the constraints are eliminated
from the domain of the problem and a feasible flight path
is presented based on strictly defined system parameters.

7. Conclusions

The significant difference between the two and three-
dimensional approach for flight through an urban environ-
ment is the lack of a readily available three-dimensional
discretization and geometric path planning solver. Extend-
ing the simplex discretization to three-dimensions, while
maintaining the characteristics of a constrained triangula-
tion, is a current research challenge. This work provided
a methodology to discretize the constrained domain us-
ing simple rectangular prism shapes. Additionally, fast ge-
ometric path planners used in the two-dimensional analysis
contain A* search algorithm as well as a funnel algorithm
based on a heuristic that has been tuned and developed
for the specified path solution. The approach taken in this
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work implements a straightforward A* search with a cen-
troid heuristic to attain a rudimentary path solution. Both
the discretization and initial path generation can be sig-
nificantly improved to allow for more complex constraint
environments and a more accurate path solution to seed
the NLP of the optimal control solver.

Given a discretization of the space and an initial path
solution, extending the principles of the two-dimensional
optimal control problem to three-dimensions is straightfor-
ward under the simplex construct. Three-dimensional ve-
hicle dynamics can be implemented with barycentric coor-
dinates and a path solution can be attained by solving the
path one simplex at a time and connecting each simplex so-
lution through path constraints in the optimal solver. The
results attained in this work illustrate the benefits that can
be achieved by formulating the problem with a simplex ap-
proach resulting in strictly defined parameter bounds where
the constraints imposed by the urban infrastructure are
eliminated from the search space of the NLP solver. Fu-
ture work developing efficient three-dimension discretiza-
tion and geometric search algorithms will further increase
computational speed and accuracy and allow for rapid so-
lutions to more realistic scenarios.
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