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Abstract

Opinion dynamics is the study of how opinions in a group of individuals change over

time. A goal of opinion dynamics modelers has long been to find a social science-

based model that generates strong diversity — smooth, stable, possibly multi-modal

distributions of opinions.

This research lays the foundations for and develops such a model. First, a taxon-

omy is developed to precisely describe agent schedules in an opinion dynamics model.

The importance of scheduling is shown with applications to generalized forms of two

models. Next, the meta-contrast influence field (MIF) model is defined. It is rooted

in self-categorization theory and improves on the existing meta-contrast model by

providing a properly scaled, continuous influence basis. Finally, the MIF-Local Re-

pulsion (MIF-LR) model is developed and presented. This augments the MIF model

with a formulation of uniqueness theory. The MIF-LR model generates strong diver-

sity. An application of the model shows that partisan polarization can be explained

by increased non-local social ties enabled by communications technology.
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To the memory of my grandmother, for whom every challenge was a puzzle to be

solved with impish glee

v



Acknowledgements

First and foremost, I’d like to thank Dr. J.O. Miller for mentoring and advising

me through both graduate degrees and for supporting my pursuit of a non-traditional

research topic. You have helped me to grow both academically and professionally

through a change in career fields that would not have been possible without you.

My thanks also go to Dr. Ray Hill and Dr. Douglas Hodson for your support and

mentorship. You have made this a tremendous experience.

Christopher W. Weimer

vi



Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Outline of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Modeling and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Paradigms of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Agent-based modeling and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Opinion dynamics and related models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Cultural dynamics models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Discrete (binary-choice) opinion dynamics models . . . . . . . . . . . . . 19
2.3.3 Continuous opinion dynamics models . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Other modeling techniques that could inform

new opinion dynamics models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Social science relating to opinion dynamics models . . . . . . . . . . . . . . . . . . 48

2.4.1 Choice shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Interpersonal influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III. Paper #1: Agent Scheduling in Opinion Dynamics: A
Taxonomy and Comparison Using Generalized Models . . . . . . . . . . . . . . . . . . . 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Synchrony, Actor type, Scale (SAS) scheduling taxonomy . . . . . . . . . . . . 64

3.2.1 Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Actor type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Generalized Repeated Averaging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Generalized Bounded Confidence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



Page

3.4.2 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

IV. Paper #2: Distilling Meta-contrast: The Meta-contrast
Influence Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Meta-contrast model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Meta-contrast information field model definition . . . . . . . . . . . . . . 99
4.3.2 Changes from the meta-contrast model . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Small-world network variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V. Paper #3: Generating Strong Diversity with the
Meta-contrast Influence Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Influence, Susceptibility, and Conformity (ISC)
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Meta-contrast Influence Field (MIF) Model . . . . . . . . . . . . . . . . . 121
5.2.3 Drive for Individualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.1 Effect of adding a drive for individualization . . . . . . . . . . . . . . . . 126

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Effect of varying relative strength of

individualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6 A Political Science Application: Generating Partisan

Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Appendix A. Opinion Dynamics Models Summary . . . . . . . . . . . . . . . . . . . . . . . . . 159

viii



Page

Appendix B. NetLogo Code: Replication of Carley (1991) . . . . . . . . . . . . . . . . . . 162

Appendix C. NetLogo Code: Replication of Mark (1998) . . . . . . . . . . . . . . . . . . . 164

Appendix D. NetLogo Code: Replication of Axelrod (1997) . . . . . . . . . . . . . . . . . 168

Appendix E. NetLogo Code: Voter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendix F. NetLogo Code: Replication of Nowak et al. (1990) . . . . . . . . . . . . . 173

Appendix G. NetLogo Code: Agent-based implementation of
Galam (1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Appendix H. NetLogo Code: Replication of Sznajd-Weron &
Sznajd (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Appendix I. NetLogo Code: Replication of Stauffer (2002) . . . . . . . . . . . . . . . . . 182

Appendix J. NetLogo Code: Replication of Deffuant et al. (2000) . . . . . . . . . . . . 185

Appendix K. NetLogo Code: Replication of opinion dynamics
portion of Sun & Müller (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Appendix L. NetLogo Code: Replication of Hegselmann &
Krause (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Appendix M. NetLogo Code: Replication of Deffuant et al. (2002) . . . . . . . . . . . . 197

Appendix N. NetLogo Code: Replication of base model of
Salzarulo (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Appendix O. NetLogo Code: Replication of small-world network
model of Salzarulo (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix P. NetLogo Code: Replication of Mäs & Flache (2013) . . . . . . . . . . . . 208

Appendix Q. NetLogo Code: Replication of Duggins (2017) . . . . . . . . . . . . . . . . . 212

Appendix R. NetLogo Code: Generalized Repeated Averaging
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Appendix S. NetLogo Code: Generalized Bounded Confidence
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Appendix T. NetLogo Code: Meta-contrast Influence Field Model . . . . . . . . . . . 226

Appendix U. NetLogo Code: Meta-contrast Model . . . . . . . . . . . . . . . . . . . . . . . . . 231

ix



Page

Appendix V. NetLogo Code: Meta-contrast Influence Field -
Local Repulsion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Appendix W. NetLogo Code: Meta-contrast Influence Field -
Local Repulsion Model on U.S. Map . . . . . . . . . . . . . . . . . . . . . . . . . 243

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

x



List of Figures

Figure Page

1 Ideal-typical single-run distribution of cultures at
convergence of Axelrod (1997) model for 10× 10,
20× 20, and 100× 100 grid geographies . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Approximately random walk behavior of a voter model
leading to consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Outcomes of replication of Nowak-Szamrej-Latené
model (Nowak et al. 1990) with limited range (left) and
unlimited range (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Outcomes of replication of Nowak-Szamrej-Latené
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GENERATING STRONG DIVERSITY OF OPINIONS:

AGENT MODELS OF CONTINUOUS OPINION DYNAMICS

I. Introduction

Opinion dynamics is the study of how opinions in a group of individuals change

over time. This broad topic is of direct interest to fields as diverse as marketing, mil-

itary influence operations, politics, and law. Opinion dynamics was originally in the

sole domain of sociologists and social psychologists who draw correlations in behavior

and provide theories for the causal structures but typically cannot verify the veracity

of sometimes conflicting theories. More recent research has seen mathematical mod-

els of opinion dynamics developed by scientists from fields ranging from physics and

mathematics to psychology and sociology.

Generative social science (GSS) provides an avenue to confirm or reject theories

that imply a given theory is sufficient to generate realistic behavior. GSS is a simu-

lation paradigm in which theories derived from social science are given mathematical

formulation and simulated in a simplified population of software agents in order to

test whether those theories are sufficient to generate realistic behaviors of interest

(Epstein 2006). Despite decades of sociological and psychological theorizing related

to opinion dynamics, the state of mathematical models of opinion dynamics is im-

mature. Recently, the first continuous opinion dynamics model to generate realistic

distributions of opinions was published (Duggins 2017), and it relies upon a com-

plicated array of inputs and at least one assumption that is not strongly supported

by the psychological literature. Furthermore, most opinion dynamics models in the

literature do not justify critical assumptions relating to the order in which agents act,
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despite the existence of path dependencies in complex patterns of interaction.

The following research contributes two new models to the opinion dynamics: one

is a framework based upon social psychological literature that readily allows augmen-

tation with other theoretic forces, and the other expands upon the first to provide

the second known example of an opinion dynamics model that can generate realistic

distributions of opinions. These distributions are characterized by strong diversity

— diversity both within and between clusters of opinions — and can be formed as

unimodal, bimodal, or multimodal distribution. It also provides a taxonomy for de-

scribing the order in which agents act in such a model along with generalized forms

of models from the opinion dynamics literature that demonstrate the overwhelming

effect changes in schedule can have upon behavior.

1.1 Outline of Document

This document is presented in a k-paper format. It begins with a detailed review

of the literature relevant to the state of the art of agent-based opinion dynamics

modeling. This includes both a survey of opinion dynamics models in the literature,

with many of them replicated by code provided in the appendices, and a survey of

the social scientific literature that relates directly to those models.

The following three chapters are constructed as independent journal articles, and

therefore include relevant literature review sections along with associated methodol-

ogy, results, discussion, and conclusions.

The first article defines a taxonomy for communicating the agent schedule of an

opinion dynamics model, which specifies how many agents influence or are influenced

by how many other agents in what order at each discrete step of the model. This

fills a gap in communication and allows clear, precise, and concise description of a

proposed model. The impact that may be caused by altering the schedule in two
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often-used opinion dynamics models is demonstrated using generalized forms of those

models.

The second article introduces the meta-contrast influence field (MIF) model to

the literature. This expands on the meta-contrast (MC) model of Salzarulo (2006)

in several ways. First, it equalizes the scale of previously imbalanced inputs into the

prototypicality function. This prototypicality function computes how prototypical an

agent will perceive other opinions to be, and it is the backbone of the MC model.

The inter-group component of that prototypicality dominates the calculation in the

MC formulation. Second, it implements a continuous source of influence based upon

the derivative of the MC model’s prototypicality function, which computed how pro-

totypical an agent would perceive an opinion to be. Using the derivative, in effect,

creates an influence field composed of competing forces acting upon the point of an

agent’s opinion. Finally, as a result of this field-based formulation, the schedule is

altered to allow all agents to update in synchrony based upon the information avail-

able to them. The MIF model is a significant improvement upon the MC model,

and its construction allows it to be a framework upon which more nuanced models of

interpersonal influence can be built.

The third article updates the MIF model to include a drive for individualization

based on uniqueness theory (Fromkin & Snyder 1980). By including local repulsive

forces into the influence field, the meta-contrast field local repulsion (MIF-LR) model

generates strong diversity of opinions. This outcome has been sought after for over 50

years since Abelson (1964) famously asked “what on earth one must assume in order

to generate the bimodal outcome of community cleavage studies” [p. 153]. Examples

of parameter settings that generate unimodal, bimodal, trimodal, and quatrimodal

distributions are provided. An application that generates partisan polarization as

an outcome of increasing random ties in social networks is also explored. These
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distributions are stable with respect to time and repeatable between experiments.

Furthermore, this is a parsimonious model with only 8 parameters, of which only

4 define agent behavior in a manner unique to this model and 3 define the social

network itself. It is also firmly based in social psychological literature.
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II. Literature Review

2.1 Modeling and simulation

A system is a closed set of entities interacting in the real world. A model is an

abstraction of a system. This could be a physical model, such as a scaled model

airplane, or a mathematical model, such as the relationship between force, mass, and

acceleration integral to Newtonian physics. Mathematical models could be systems

of equations that can be solved analytically or they could be computer models (or

simulation models) that are implemented via software and typically have no analytical

solution (Law 2007). For the purpose of this paper, I focus primarily upon computer

modeling, the use of software to approximate a process seen in reality.

For a computer model, simulation is the act of using a model. This typically

includes setting initial conditions for the model, implementing the rules of the model

upon those conditions, and generating data from the outputs of that model. Sim-

ulation provides a method by which we can experiment on approximations of real

physical systems that, for some reason, we cannot reasonably experiment upon di-

rectly. A common motivation for simulation is cost; it may be prohibitively expensive

in terms of time, money, and/or manpower to experiment with a real-world system.

In the social sciences, ethics may play a larger role; many experiments that might be

scientifically of interest would be unethical to perform upon human participants.

Important distinctions between types of models relate to their use of random el-

ements and time. Mathematical models may be either stochastic or deterministic:

stochastic models implement random or pseudo-random elements so that outcomes

vary for a given set of inputs, whereas deterministic models have only one outcome

for a given set of inputs (Law 2007). Models may also be static or dynamic: static

models do not include a time component, whereas dynamic models evolve over sim-
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ulated time. How a dynamic model evolves over time can also vary: discrete models

change at set points in time whereas continuous models change continuously, typically

by implementing differential equations (Law 2007). Discrete models may further be

distinguished between continuous-time and discrete-time models: discrete-time mod-

els are concerned only with the order of events and not the time that they occur,

whereas continuous-time models are concerned with the time that events occur. For

the purpose of this paper, I focus primarily upon stochastic, dynamic, discrete models.

2.1.1 Paradigms of simulation

These distinctions between types of mathematical models have led to the existence

of distinct paradigms of dynamic simulation. Three of the most common paradigms

are system dynamics, discrete event, and agent-based or individual-based models.

2.1.1.1 System dynamics

System dynamics (SD) models are concerned with continuous feedback loops be-

tween elements of a system. SD models are deterministic, dynamic, continuous-time

models. A SD model is at its core a mathematical model comprised of systems of

integral equations with continuous time, which constitute a continuous model (Kunc

2016). In practice, an analytical solution is often computationally intractable, and

these systems of integral equations are solved approximately by simulating with dis-

crete time steps that are sufficiently small to approximate continuity (Kunc 2016).

SD models are usually communicated in terms of stocks and flows. Stocks repre-

sent the state of the system at a given point in time, while flows represent the rate of

change of a stock as a function of the stocks in the system. An example of a system

amenable to SD modeling would be the fishing industry. Consider the stock of a type

of fish and the stock of food available to the fish. There are several relevant flows as
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well: the birth rate, the natural death rate, and the fishing rate are obvious examples.

These flows are functions of the stocks of fish and food, while the stocks of fish and

food are functions of the flows.

2.1.1.2 Discrete-event simulation

Discrete-event simulation (DES) models are concerned with systems whose state

changes at discrete points in time (Banks et al. 2010). DES models are stochastic,

dynamic, discrete, continuous-time models. A DES model consists of entities, pro-

cesses, and a set of state variables. Entities may have their own sets of attribute

variables that can vary between entities. During the simulation a future event list

(FEL) and a clock variable are used to maintain the schedule in memory. Processes

implement events known as activities, typically according to a function of state vari-

ables, attribute variables, and random variables. Delays may also occur as an entity

must wait until a resource (a common state variable) is freed up by completion of

another activity.

DES models are usually communicated in terms of a series of events. An example

of a system amenable to DES modeling would be a shop queue. Entities (shoppers)

arrive sporadically to the system when they complete their shopping, typically ac-

cording to some probability distribution. They then wait in a queue until a resource

(cashier) is available. Once that resource is available, the entity enters the process

of checking out. The duration of this activity is a function of the number of items a

shopper has chosen (the entity’s attribute) and some random variation. The entity

then departs the process and the system, freeing up a resource for another entity.

7



2.1.1.3 Agent/individual-based modeling

Agent- or individual-based models (ABM) are typically concerned with systems

with interacting entities that communicate with their environment and other entities

according to internal rules rather than an externally defined process. Agent-based

modeling is the more common term, so it is used here, but individual-based modeling

is a commonly used term in ecology (Railsback & Grimm 2011). ABMs are stochastic,

dynamic, discrete, and typically discrete-time models. Hybrid models may be built

that combine ABM with DES or SD models and introduce continuous-time modeling.

The focus of ABM is typically emergence, which may be defined as “the arising of

novel and coherent structures, patterns, and properties through the interactions of

multiple distributed elements” (Wilensky & Rand 2015, p. 6).

ABMs are usually communicated and built in a bottom-up way by defining the

agents first rather than any overarching process. This allows examinations of emergent

behavior, a characteristic of complex systems which may be defined as higher-level

behaviors that arise from lower-level entities’ localized behaviors (Bonabeau et al.

1995). An example of an emergent system amenable to ABM would be a flock of

birds. Although the emergent behavior of flocking is easily observed and modeled from

the process-overview top-down perspective, a more satisfying and predictive model

can be built by implementing agents (commonly known as boids) that implement

rules for collision avoidance, velocity matching, and flock centering (Reynolds 1987).

By finding a set of rules that result in realistic emergent behavior, we can develop

theories for the cognitive processes that result in flock behavior. This is a classical

use of ABM.
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2.2 Agent-based modeling and simulation

As has been noted by Axelrod & Tesfatsion (2006), agent-based modeling is par-

ticularly well-suited to the social sciences; as such, it is the primary focus of this

document. Therefore, let us consider more deeply the history, current state, and

continuing issues in ABM. First, a more formal definition of ABM is required.

There is no one agreed-upon definition for an agent or an agent-based model;

in fact, this definition has been a point of significant contention between researchers.

Most of this disagreement has centered around the degree of complexity an agent must

possess in order to qualify as an agent. On the broad acceptance end of the spectrum,

Bonabeau (2002) argues that ABM is more a mindset than a particular tool and that

agents exist whenever a system is described in terms of its pieces. He specifically

includes systems of differential equations, where those equations are defined at the

individual level, within this definition. On the other side of the spectrum, Casti (1997)

argues that an agent must possess adaptive behavior; they must be capable not only

of following rules but also of changing those rules in response to their environment.

In a nod to this disagreement, North & Macal (2007) make a distinction between

adaptive ‘agents’ and non-adaptive ‘proto-agents.’

Most other definitions fall somewhere in between these two extremes, occasion-

ally with concessions made to those at the poles. A helpful categorization of these

definitions is provided by Macal (2016). Rather than define ABM as a whole, he

distinguishes four separate definitions of ABMs with increasing complexity: individ-

ual, autonomous, interactive, and adaptive ABM. Individual ABM exists when “the

agents in the model are represented individually and have diverse characteristics”

(Macal 2016, p. 149), which is analogous to Bonabeau’s 2002 definition. In au-

tonomous ABMs, “agents have internal behavior that allow them to be autonomous,

able to sense whatever condition occurs within the model at any time, and to act
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on the appropriate behavior in response” (Macal 2016, p. 149); this is similar to

definitions by Gilbert & Troitzsch (2005), Macal & North (2014), Wilensky & Rand

(2015), and C. W. Weimer et al. (2016). In interactive ABMs, “autonomous agents

interact with other agents and with the environment” (Macal 2016, p. 150); this

accommodates definitions by Epstein & Axtell (1996), Axelrod & Tesfatsion (2006),

and Railsback & Grimm (2011). In adaptive ABM, “interacting, autonomous agents

change their behaviors during the simulation, as agents learn, encounter novel sit-

uations, or as populations adjust their composition to include larger proportions of

agents who have successfully adapted” (Macal 2016, p. 150); this meets the high bar

set by Casti (1997). Although this is a very useful conceptualization, a weakness of

this set of definitions is that cellular automata could be considered interactive ABMs.

In the field of opinion dynamics, which builds theoretical models of how opinions

flow between individuals, there have been few attempts to lay claim to the term ABM,

but for the sake of shared information in this research, there is value in considering

them as such. The definition of adaptive ABM would be too restrictive to allow many

of these models. On the other hand, the definition of individual ABM raises questions

of whether DES and SD are actually different paradigms, as they can be defined at

that level, so that definition seems not to be restrictive enough. Furthermore, calling

agents autonomous is misleading and has led to arguments by nay-sayers; no agent

is truly autonomous because it follows only the rules set by the modeler. A truly

autonomous agent would require true artificial intelligence. However, a greater degree

of autonomy is a defining feature of ABM. Another defining feature of ABM, which

differentiates it from cellular automata, is the ability of agents to move within their

environment. Therefore, for the purposes of this document, we will use the definition

of ABM from C. W. Weimer et al. (2016):
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An ABM is a simulation framework, using primarily the discrete-event
scheduling paradigm, where the entities within the simulation have a
greater degree of autonomy in movement and decision making than gen-
erally found in simulation models. (p. 67)

Some of the literature in the field of opinion dynamics, especially early work,

does not fit this definition although it typically incorporates the individual-focused,

bottom-up focus of ABM. Therefore, I will delineate between ABMs as defined above

and models utilizing what Bonabeau (2002) called the “ABM mindset”:

The ABM mindset consists of describing a system from the perspective of
its constituent units (p. 7280).

Models built with the ABM mindset include some systems of differential equations,

Markov chain models, discrete-event simulations, cellular automata, and other types

of models that would otherwise be excluded but spring from the same point of view

and thus possess rules, properties, and insights that may be incorporated in full

ABMs. For the purpose of this paper, the term ABM is specific to the former defini-

tion while the term agent extends over both definitions. Agent, individual, and entity

are thus used interchangeably.

2.2.1 History

Agent-based modeling arose from the field of cellular automata, so they share an

early history. Cellular automata are grids of entities, known as cells, that interact

with their neighbors to modify their states. Typically, cells are arranged in a 1- or 2-

dimensional grid, although they can theoretically exist in any number of dimensions,

and their states are typically defined as binary, although again they can theoretically

have any finite number of states (Fatès 2014). Each cell has identical rules of behavior

and does not move. Typically, cells are updated synchronously and deterministically,
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although exceptions exist in the form of stochastic and asynchronous CAs (see Fatès

2014).

Cellular automata (CA), and the theory of automata in general (which includes

agents), owe their beginnings to the work of John von Neumann. His lectures and

manuscripts through the 1940s and 50s were published posthumously in 1966 in a

volume generally credited with popularizing the notion of cellular automata (von

Neumann 1966). Unfortunately, von Neumann died before finishing a coherent the-

ory of automata, but Stephen Wolfram has carried that torch in the area of CA. His

collected works and more recent book on the topic detail practical uses on CAs and im-

portantly exhaustively define the possible rules for a 1-dimensional CA whose actions

depend solely on the states of their immediate neighbors, which he called elemen-

tary cellular automata and are commonly referenced according to his rule-numbering

convention (Wolfram 1986, 2002).

One of the earliest and most well-known works in CA was formed shortly after

von Neumann introduced the theory; John Conway combined CA with game theory

to produce the Game of Life, brought into public consciousness by Gardner (1970).

The Game of Life is a synchronous, deterministic CA (or in game theory terms, a

zero-player game) with relatively simple rules that demonstrates complex emergent

behavior without randomness. The wealth of stable and periodic outcomes is fasci-

nating given its simplicity.

The natural growth of CA led to relaxation of rules. Relaxation of synchronous

updating and determinism led to the fields of asynchronous and stochastic CA, ex-

amples of which are well-detailed by Fatès (2014). Stochastic asynchrony can come

in the form of purely asynchronous updates, where one cell is updated at random at

each step; α-asynchronous updates, where each cell has probability α of updating at

each step; random order updates, where all cells are updated at each step in random
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order; or other less common schedules. Deterministic asynchrony typically is in the

form of fixed order updates, where each cell is updated in the same order at each step,

although other possibilities such as incentive-based updates exist (see Page 1997).

Another relaxation of the rules of CA was to break the rules of immobility and

homogeneity of cell rules. Mobile cells, especially with heterogeneous rules, fit our

definition of agents; indeed, this is how agent-based modeling was born. Schelling

(1971) is usually credited with the first agent-based model, which he operated by

hand rather than by computer. He showed that even a mild intolerance for living in

a highly mixed neighborhood results in large-scale housing segregation using a very

simple homogeneous ABM. Further explorations of this model (Schelling 1978) were

partially credited with Schelling winning the Nobel Prize in Economics in 2005. ABM

was kicked off with distinction by a social scientist.

Interest in ABM subsided thereafter until computers grew powerful enough to

handle the multitude of required calculations more quickly and easily. The next

ABMs to reach popularity were Echo and Sugarscape in the mid-1990s. Echo is a

model of evolution based upon characteristics, which may be considered elements of

a gene describing an individual (Holland 1995). Holland is also credited with starting

the field of genetic algorithms, which have become popular heuristic methods for

optimization and illustrate that the perspective of ABM lends itself to use in problems

beyond simulation. Sugarscape can be seen as an extension of Schelling’s model;

various distributions of resources over an environment (so-called sugarscapes) led to

emergence of distinct cultures of individual agents (Epstein & Axtell 1996).

ABM’s beginnings provide insight into the multi-disciplinary flavor that ABM has

developed. As mentioned, Schelling was an economist and Nobel laureate. Holland

was trained as a mathematician but served as both a Professor of psychology and

a Professor of electrical engineering and computer science. Epstein’s doctorate was
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in political science, and he is currently a Professor of emergency medicine with joint

appointments spanning the health, social, and mathematical sciences.

2.3 Opinion dynamics and related models

Building upon the social scientific roots of agent-based modeling, and owing to

the nature of many social scientists to think using an agent-based mindset, a wealth

of models examining opinion formation by individuals in a social environment have

arisen1. The emergent behavior of a group of agents forming their own individual

opinions is of primary interest to these opinion dynamics models. This serves at least

two purposes, one based in generative social science and another based in forecasting.

From a generative social science perspective (see Epstein 2006), opinion dynamics

models are useful for identifying individual rules that can generate emergent behavior

of interest. In other words, it can serve as a validation tool for social psychological

theories of human opinion formation — if the theory, when applied, generates realistic

group opinion dynamics, then it can be considered a sufficient condition. This vali-

dation is iterative; if a model shows that a social psychological theory is sufficient to

generate realistic group behavior, the next step is to further validate the construction

of the model with psychological experimentation.

From a forecasting perspective, there are innumerable applications that would

benefit from a realistic model of how opinions might permeate a crowd and how one

might influence these dynamics. In the business world, marketing is an example

of a field that could be revolutionized by validated models of opinion dynamics.

In a military context, military information support operations (formerly known as

psychological operations) planners would gain a strong advantage from such a model

1There are also opinion dynamics models that do not arise from the agent-based mindset. How-
ever, they are not of interest for the present research unless their insights spawned agent-based
work.
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through realistic war-gaming opportunities.

Early work related to opinion dynamics focused on a related concept of culture.

These are relevant to the present research in their contributions to the opinion dy-

namics literature. This chapter will first examine these cultural dynamics models

and follow up with an in-depth examination of a broad range, although certainly not

an exhaustive list, of the most influential opinion dynamics models in the literature.

Opinion dynamics models are broken up into discrete (i.e., binary choice) opinion

models and continuous opinion models. A summary of all reviewed models in tabular

form is given in Appendix A.

2.3.1 Cultural dynamics models

Culture is a difficult concept to precisely define. Recognizing this, but needing

some frame of reference for his cultural dynamics model, Axelrod (1997, p. 204)

defined culture as “the set of individual attributes that are subject to social influence.”

Within this definition of culture, there is no distinction between culture and a set of

discrete-valued opinions, which makes this work particularly relevant to the field of

opinion dynamics. These models are all built with an agent-based mindset and are

replicable using agent-based tools. However, if a geography is defined at all, it takes

the form of a cellular automata model.

2.3.1.1 Carley (1991) group stability model

In one of the earliest cultural dynamics models, Carley (1991) modeled the spread

of a set of facts through a group and the factors that influence group stability as

groups absorb new individuals. The primary assumption of this model is that a

pair of individuals are more likely to share information if they possess a greater

amount of similarity; in particular, two individuals without completely disjoint sets of
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facts will never interact. This assumption is this model’s single greatest contribution

to the opinion dynamics literature; homophily has been one of the most common

assumptions in opinion dynamics models since it was encoded by Carley.

She found that in a connected graph, in which there is some direct or indirect path

for communication between any two individuals, eventually all individuals share the

full set of facts available to the group. However, in a disconnected graph, multiple

stable groups form with unique sets of facts. Introducing a new member to this

society, especially one that possesses facts from more than one of the stable groups,

can cause significant turmoil in the short-term and eliminate sub-groups by further

connecting the graph.

NetLogo 6.0.1 code replicating the Carley (1991) model is provided in Appendix

B. N agents are initialized with a set of m facts randomly chosen from the M facts

available to the group. Each tick, in random order, every agent chooses a partner

(which may be themselves) from those that do not yet have a partner with proba-

bility proportional to the degree of information that they have in common. Once all

pairs have been formed, each member of the pair shares one randomly selected piece

of information with the other. After all information has been shared, every agent

updates their set of facts. As expected, if the resultant social network is a connected

graph, this model obtains perfect homogeneity.

2.3.1.2 Mark (1998) social differentiation model

Mark (1998) derived his model from that of Carley (1991) and generated a model

with nearly opposite behavior. Like Carley, he assumes homophily, and his agents

communicate in nearly the same manner as Carley’s. The primary changes are knowl-

edge creation and forgetting. Rather than only being capable of communicating ex-

isting information, there is a positive probability that two agents will interact and
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generate a unique new fact. Additionally, agents have a limited span of memory; after

a defined number of ticks, if a fact has not been communicated to or by an agent, that

fact will be forgotten. With these additions, a population that is initialized to perfect

homogeneity will differentiate into sub-groups that only interact among themselves.

Mark (1998) ran a 3 × 3 factorial experiment varying number of agents N ∈

{6, 50, 100} and memory length m ∈ {3, 4, 5}. He found that the number of agents

and memory length had primary and combined affects upon the number of sub-groups

existing after 500 ticks, with the most sub-groups appearing with many agents with

short memories and the fewest sub-groups appearing when agents had long memories

regardless of the number of agents. He did not examine the dynamics that occur after

500 ticks.

NetLogo 6.0.1 code replicating the Mark (1998) model is provided in Appendix

C. N agents are initialized with identical sets of 1 fact. Mark’s model uses a different

agent schedule than Carley’s model did. Each tick, each agent picks a partner (which

may be themselves) with probability proportional to the degree of information infor-

mation that they have in common, regardless of whether that partner has already

partnered with another agent. Once all partners have been chosen, the agents either

share one fact randomly chosen from the set of facts available to one or both partners,

or they generate a new fact. Generation of a new fact occurs with equal probability

to selection of any one fact (i.e., if the set of facts available to one or both partners is

of size k, each fact may be chosen or a new one generated with probability 1/(k+1)).

New facts may not be generated by an agent interacting with themselves, but a topic

is communicated internally for the purpose of avoiding forgetting. Next, each agent

forgets any fact that has not been communicated in the last m ticks. Contrary to

the findings of Mark (1998), given sufficient time, these dynamics result in perfect so-

cial differentiation regardless of memory and number of agents; each agent eventually
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forms their own sub-group. In one run with 100 agents and memory length 5, this

occurred after 657,053 ticks; in another run with 6 agents and memory length 5, this

occurred after 19,795 ticks. Both are far longer than the original paper’s stopping

time of 500 ticks.

2.3.1.3 Axelrod (1997) cultural dissemination model

Axelrod (1997) aimed to propose a mechanism by which, despite normative influ-

ence between individuals, cultural diversity is maintained. While not directly a devi-

ation of the Carley (1991) model, this model shares its implementation of homophily

along with an assumption that different aspects of culture are not independent of one

another. Agents’ cultures in this model are a fixed-length array of variables (features)

which may take a limited number of values (traits). When two agents interact, with

probability proportional to the cultural similarity between the two agents, the source

agent influences the target agent by changing a single feature of the target’s culture

to the trait matching its own.

Axelrod’s 1997 model is presented as an ABM, but it behaves as a 2-dimensional

cellular automata model in which agents are influenced by their neighbors. The base

model uses the von Neumann neighborhood (i.e., the four cells directly neighboring)

but he also experiments with the Moore neighborhood (i.e., the eight cells including

diagonal neighbors). Target agents are chosen randomly according to an asynchronous

random independent schedule, and source agents are chosen randomly from the tar-

get’s neighbors. Axelrod (1997) found that a cultural majority tends to arise along

with persistent minority clusters having completely dissimilar cultures. He also notes

that the number of cultures decreases as the number of cultural features increases,

increases with the number of traits per feature, decreases as the size of cell’s neigh-

borhoods grows from von Neumann to Moore, and changes non-linearly with the size
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of the modeling geography (increasing up to a certain size, then decreasing).

NetLogo 6.0.1 code replicating the Axelrod (1997) base model is provided in Ap-

pendix D. As the size of the geography increases, we can also observe that the size

of minority cultures appears to decrease. Figure 1 shows single-run outcomes of the

model with increasing numbers of cells. For a 10× 10 grid, minority cultures include

a 20-cell culture, a 4-cell culture, a dyad, and a singleton. The 20× 20 grid includes

a dyad and 4 singletons; the 100× 100 grid includes only 2 singletons.

Figure 1. Ideal-typical single-run distribution of cultures at convergence of Axelrod
(1997) model for 10× 10, 20× 20, and 100× 100 grid geographies

2.3.2 Discrete (binary-choice) opinion dynamics models

Typically the term discrete opinion model refers to those models that treat opinion

as a binary variable having values in either the set {0, 1} or {−1, 1}. There exist

models that are technically discrete opinion models, in that there exists a finite set of

possible opinions that an agent may possess, but approximate a continuous opinion;

these are usually considered continuous opinion models and are discussed in that

section of the present document.

2.3.2.1 Voter model

What is now known as the voter model was first proposed by Clifford & Sud-

bury (1973) as a stochastic model of conflict between opposing species. It was first
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termed the voter model by Holley & Liggett (1975) when it was applied to the realm

of American political opinion, forcing agents to decide between two opposing view-

points. The classic voter model postulates agents existing on a 2-dimensional grid.

In a voter model, agents randomly choose another agent to whom they are connected

(e.g., neighbors in a grid) and take on their opinion. The voter model gained popu-

larity due to its mathematical tractability; if we restrict time steps to those in which

state changes occur and consider an infinite lattice grid with equal probabilities of

choosing any neighbor, the model behaves as a random walk (Clifford & Sudbury

1973). Both Clifford & Sudbury (1973) and Holley & Liggett (1975) prove proba-

bilistic outcomes of such a model. It has since been deeply researched and modified;

these are considered beyond the scope of the present paper (for an excellent review

of that work, see Castellano et al. 2009).

Although the voter model was not originally proposed as a simulation but as an

analytic model, NetLogo 6.0.1 code for a cellular automata simulation of the voter

model is given in Appendix E. Agents are chosen to act according to an asynchronous

random independent schedule. Neighbors are chosen with equal likelihood, so it be-

haves approximately as a random walk, although the finite grid limits this interpre-

tation and introduces absorbing states where all agents possess the same opinion. An

ideal-typical development of the opinion dynamics of the voter model as it approaches

polarized homogeneity is shown in Figure 2.

2.3.2.2 Nowak-Szamrej-Latané model

One of the earliest simulation models of opinion dynamics was a cellular automata

model proposed by Nowak et al. (1990) that is based heavily upon social impact

theory (Latané 1981). Social impact theory is discussed in more detail in Section

2.4.2. It specifies that the impact of others’ opinions upon one’s own is a function
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Figure 2. Approximately random walk behavior of a voter model leading to consensus

of the strength, immediacy, and quantity of others’ arguments. Furthermore, others’

impact diminishes as the number of influences increases according to a power law.

This model uses an exponent of 0.5 for this function.

Nowak et al. introduce agents that possess an opinion (oi ∈ {0, 1}), persuasiveness

(pi ∈ [0, 1]), supportiveness (si ∈ [0, 1]), and a location in a 2-dimensional grid of social

space ({x, y} ∈ Z2). Persuasiveness is an agent’s strength in changing the minds of

others with dissenting opinions. Supportiveness is an agent’s strength in convincing

others with the same opinion not to change their opinion. Immediacy as defined by

Latané (1981) is a function of the squared distance between two agents, in keeping

with Latané’s metaphor of a gravitational field. Persuasiveness and supportiveness

are initialized randomly according to a uniform distribution over the relevant range.

All agents update their opinions synchronously at each tick (i.e., an agent’s changed

opinion is not communicated until the end of the tick). If the total persuasive in-

fluence of dissenting agents îp exceeds the total supportive influence of like-minded

agents îs, an agent changes their opinion at the end of the tick. When an agent

changes their opinion, they are randomly assigned new values for persuasiveness and

supportiveness. By initializing the model with variously-sized minorities with respect

to opinion, Nowak et al. (1990) found that minorities of sufficient size (> 10%) were

maintained but at a level lower than the initialized level; a pressure to conform existed
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but did not dominate all others.

In the original paper, two formulae for impacts (and thus differing rules for cell

updates) are included. The published results require that the cells change their opin-

ion if the impact of persuasion is greater than the impact of social support, that is,

îp > îs, where

îp = N
1
2
o

(∑
(pi/d

2
i )

No

)
and (1)

îs = N
1
2
s

(∑
(si/d

2
i )

Ns

)
. (2)

No is the number of persuading (non-agreeing) cells, Ns is the number of supporting

(agreeing) cells, and di is the distance to cell i from the cell under consideration with
√

2 added to avoid dividing by 0. To speed computation, the authors considered only

those cells within a distance of 10.

An alternative formula for impacts is suggested later in the paper that the authors

state that they came to prefer, but it was not used. Those formulae are

îp =
(∑(

(pi/d
2
i )

2
)) 1

2
(3)

îs =
(∑(

(si/d
2
i )

2
)) 1

2
(4)

NetLogo 6.0.1 code that replicates the Nowak et al. (1990) model is provided in

Appendix F. The results suggest that the computation-induced assumption of range

limitation had an unintended effect of changing the qualitative outcome of the model.

An ideal-typical result at convergence for the base model is shown in Figure 3 at left,

and an unlimited-range deviation is shown at right. All runs are initialized with

a randomly-placed 30% minority blue opinion. Using unlimited range, the mean

persuasive effect is watered down by low-impact, long-distance cells resulting in a

growth of minority opinion expanding from one corner.
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Figure 3. Outcomes of replication of Nowak-Szamrej-Latené model (Nowak et al. 1990)
with limited range (left) and unlimited range (right)

Figure 4. Outcomes of replication of Nowak-Szamrej-Latené model using alternative
formulae (Nowak et al. 1990) with limited range (left) and unlimited range (right)
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Using the alternative formulae given in Equations 3 and 4 results in another

qualitative change model behavior. These formulae do not use a mean and thus are

much more robust to range limitations as shown in Figure 4. They do not result in

the same clustering effects that were the primary finding of the original paper, which

find empirical support (Lewenstein et al. 1992). In fact, few cells ever switch using

this formula, presumably due to the strength of influence upon oneself.

2.3.2.3 Sociophysics models of opinion dynamics

Sociophysics is a term developed in the early 1990s to describe the application of

traditional physics tools and models to the problems of the social sciences (Monica &

Bergenti 2017). While sociophysics models exist far outside of the realm of opinion

dynamics, there is at least one influential discrete opinion dynamics model arising

from sociophysics: the Sznajd model (Sznajd-Weron & Sznajd 2000; Stauffer et al.

2000; Stauffer 2002). However, sociophysics models in general have been criticized for

lacking any real-world connection, or sufficient collaboration with social scientists, in

their applications (Sobkowicz 2009).

Zero-temperature finite random-field Ising ferromagnetic model in

an external magnetic field. The Sznajd model draws inspiration from Galam’s

(1997) application of the zero-temperature finite random-field Ising ferromagnetic

model in an external magnetic field to opinion dynamics. While the original arti-

cle vacillates between using the agent-based mindset and a top-down systems-level

mindset, the process is best described from an agent-based mindset. Each agent is

assumed to be motivated to minimize total group conflict. This conflict has three

components: interaction conflict (generated by disagreements among individuals),

external social field conflict (generated by external pressures in one direction), and

internal social field conflict (generated by disagreement between one’s opinion and
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their internal pressures, i.e., cognitive dissonance). In other words, agents seek to

maximize an objective function

G = I ·
∑
i,j

cicj + S

N∑
i=1

ci +
N∑
i=1

Sici (5)

where N is the number of agents, I is the relative strength of interaction conflict,

S is the strength and direction of the external social field, Si is the strength and

direction of an individual’s internal social field, and ci ∈ {−1, 1} is individual i’s

binary opinion.

It is unclear how individual agents implement this global maximization; the max-

imization of G is assumed to occur at a macro level without specifying an implemen-

tation at the micro level. For example, it is unclear in what order each agent should

act to maximize the objective function at a given time. This is a weakness of the

model that deserves some scrutiny.

NetLogo 6.0.1 code that implements the Galam (1997) model as a cellular au-

tomata model is provided in Appendix G. This model exists as a 33 × 33 grid of

agents that, when they act, choose the state ci that maximizes G as given in Equa-

tion 5. Agents’ initial values for ci are chosen at random from {−1, 1}, values for the

internal social fields Si are chosen randomly from the uniform distribution in [0, 1],

and the external social field is set to S = 0.

An experiment was conducted varying the agent schedule between synchronous,

asynchronous random order, and asynchronous random independent using synchro-

nized random number streams to force initialization states to be identical across 1000

replicates. Although random order and synchronous updates yielded nearly identi-

cal outcomes, as shown in Figure 5, the final objective function value G and final

consensus opinion’s magnitude |C| =
N∑
i=1

ci/N can vary between random independent

and random order schedules. On average, the random independent schedule yielded
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Figure 5. Paired outcomes of G (left) and |C| (right) from Galam (1997) model using
random order and random independent schedules

a value of G 16.6 higher (less conflict) and a value of |C| 0.026 lower (less polarized)

than the random order schedule. Since neither schedule dominates the other in terms

of G, this shows that an agent-based implementation of the model does not always

find the optimal G. As such, there is so reason to believe that an actual social system

of people should be expected to find the optimal G.

Sznajd 1-dimensional model. Sznajd-Weron & Sznajd (2000) first pro-

posed a far less complicated Ising field model of opinion dynamics as a 1-dimensional

cellular automata model. What they called the United we Stand, Divided we Fall

(USDF) ruleset implements both ferromagnetic and anti-ferromagnetic rules. A ran-

dom pair of neighboring agents are chosen to influence their neighbors. The ferromag-

netic rule stipulates that if both members of this pair have the same “Ising spin,” or

opinion, then their neighbors will also take on this spin. The anti-ferromagnetic rule

stipulates that if the pair has opposing spins, their neighbors will take on spins op-

posite them. There are three absorbing states of this model: all agents have positive

spin, all agents have negative spin, or agents take on alternating spins. Random noise

can be added (positive temperature in a physics sense) to overcome the stability of

the system in these configurations. NetLogo 6.0.1 code replicating the Sznajd-Weron

& Sznajd (2000) model, along with deviations to implement synchronous and asyn-
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chronous random order agent schedules, is provided in Appendix H.

Sznajd 2-dimensional model. Stauffer et al. (2000) examined deviations

from the original Sznajd model into 2 dimensions and experimented with several

rulesets, finally settling upon the rules explained in Stauffer (2002). This is the

model most commonly referred to as simply the Sznajd model (Castellano et al. 2009),

and it uses only the United we Stand portion of the ruleset from Sznajd-Weron &

Sznajd (2000). A random pair of neighboring agents are chosen to influence their

neighbors. If both members of this pair have the same spin, they impart this spin on

all 6 of their neighboring agents. Otherwise, no state change occurs. This eliminates

the absorbing state in which agents have alternating spins; only total homogeneity

results from this model, although the path by which consensus is reached may be

of interest. NetLogo 6.0.1 code replicating the 2-dimensional Sznajd (Stauffer 2002)

model, along with deviations to implement synchronous and asynchronous random

order agent schedules, is provided in Appendix I.

2.3.3 Continuous opinion dynamics models

Continuous opinion dynamics models trace their origins to the work of DeGroot

(1974), with a model commonly known as the repeated averaging model. This is

also an early formulation of social influence network theory (Friedkin 1999). In this

formulation, there are N agents with opinions Fi, i = 1, . . . , N . Each time step, agent

i calculates its new opinion as a convex combination of the opinions of all N agents

with weights Pij, j = 1, . . . , N . In matrix form,

F(t+ 1) = F(t)P (6)
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where P is an N ×N stochastic matrix filled with influence weights and F(t) is the

1×N vector of agent opinions at time t. This is identical in formulation to a discrete-

time Markov chain, and thus many properties can be derived similarly. In particular,

if the associated Markov chain is ergodic (aperiodic and positive recurrent), then the

system will reach consensus (DeGroot 1974). There are additional conditions when

a periodic system will also reach consensus (R. L. Berger 1981). Furthermore, if

consensus will eventually be reached, the consensus set of opinions π can be found

by solving the system π = πP .

This finding, while mathematically satisfying, underlies one of the most significant

challenges in the use of continuous opinion dynamics models: the curse of monocul-

ture. DeGroot (1974) assumes that only positive influence exists; that is, the weights

given to the influence provided by others is strictly non-negative. Under this assump-

tion, which is examined from a social psychological perspective in Section 2.4.2, unless

a system is divided into non-communicating classes the system tends to converge to

a single opinion. Continuous opinion dynamics models after DeGroot, then, try to

explain mechanisms by which diversity may be maintained in light of this tendency

toward convergence.

2.3.3.1 Bounded confidence models

One of the earliest and most influential approaches to generating sustained di-

versity is the use of bounded confidence. Bounded confidence (BC) models assume

that two individuals can only influence one another if the absolute difference in their

opinions is below a specified value. A confident individual would have a lower bound;

they would be susceptible to influence by others with only slightly differing opinions.

Less confident individuals would be susceptible to a wider range of influences. This

serves to break the system into recurrent classes that do not communicate, thereby
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making the associated Markov chain non-ergodic. Depending on the implementation,

this confidence may be either homogeneous or heterogeneous, and it may remain

static or change over time. In general, BC models are characterized by generation

of weak diversity, which Duggins (2017) defines as “the convergence of opinions to a

finite number of attractor states,” rather than strong diversity, which he defines as

“a smooth distribution of opinions along a continuous ideological spectrum.”

Bounded confidence models can be split into two types: those based upon the

Deffuant-Weisbuch model and those based upon the Hegselmann-Krause model. The

Deffuant-Weisbuch model is the most well-studied bounded confidence opinion dy-

namics model (Castellano et al. 2009), as can be seen from the number of models

derived thereof. Both this model and the Hegselmann-Krause model remain influen-

tial, largely as inputs to larger behavior models or as bases for comparison for newer

opinion dynamics model.

Deffuant-Weisbuch model. Deffuant et al. (2000) first implemented bounded

confidence as an agent-based model. Agents are randomly assigned values between

0 and 1 for their opinions, and they interact such that both individuals converge by

an amount equal to µ ∈ (0, 0.5] times the difference between them. Mathematically,

given agents i and j with opinions xi and xj,

xi ← xi + µ · (xj − xi) if |xi − xj| < di (7)

xj ← xj + µ · (xi − xj) if |xi − xj| < dj (8)

where di is the confidence bound for agent i. Their opinions can then be considered the

1-dimensional geography upon which agents move. The parameter µ in the Deffuant

et al. (2000) model is approximately equivalent to Pij in the DeGroot (1974) model

with the following changes: (1) interactions are pair-wise, (2) Pij = 0 if |xi−xj| > dj,
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and (3) Pij is otherwise equal for all i, j. Random pairs of agents are chosen to

interact at each step using a random independent schedule. Smaller values of d

result in greater numbers of stable groups of opinions, while higher values of d result

in convergence. The maximum number of stable groups is approximately 1/(2d).

Within stable groups, opinions converge toward a single value (i.e., weak diversity is

generated). NetLogo 6.0.1 code replicating the base model of Deffuant et al. (2000)

is provided in Appendix J. Ideal-typical results of a model run with d = 0.25, µ = 0.5

are shown in Figure 6; note that a single agent (what the authors call a wing, which

is disregarded as a group in their results) remains outside of the main groups with

opinion 1.

Figure 6. Ideal-typical results of base Deffuant-Weisbuch model converging to 2 groups
and 1 wing, with d = 0.25, µ = 0.5

The authors also consider two variants of their model in the original paper: so-

cial networks and vector opinions. Social networks are implemented by way of a

2-dimensional cellular automata geography. Only neighbors are considered for in-

teraction rather than all other agents. This type of social network implementation,

which is quite common, has been criticized for being unrealistic (Sobkowicz 2009).

Additionally, Deffuant et al. (2000) note that this does not significantly alter the

results.

The vector opinion implementation is similar in function to a gene in a genetic
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algorithm. Opinion is set as an m-length vector of bits that represent binary opinions

on specific issues. Agents must have a Hamming distance (number of unequal bits)

no greater than d ∈ Z in order to interact. If they interact, equal bits are kept while

each agent in the pair randomly selects a value for unequal bits. As in the base model,

higher values of d yield consensus while lower values of d generate greater numbers

of opinion clusters (Deffuant et al. 2000). Both variations generate weak diversity as

well, and they have not been as influential as the base model.

Additional analysis of this model is performed by most of the same authors in a

later work (Weisbuch et al. 2002). The two additions in this work involve heteroge-

neous assignment of d and values for d that decrease with the number of interactions.

Heterogeneous assignment between two possible values of d appears to maintain the

same number of clusters, in the long run, as predicted by the largest values of d and,

in the short run, as predicted by the smallest values of d. Dynamically increasing

confidence (decreasing d) with the number of interactions leads to slightly different

clustering dynamics. For example, when 2 clusters form, they tend to be slightly more

moderate clusters than would occur otherwise. Additionally, few wings are generated

outside of clusters in this implementation.

Later work by Lorenz (2010) more deeply examines the dynamics of the Deffuant-

Weisbuch model using heterogeneous confidence bounds. He finds that open-minded

agents have the capacity to draw closed-minded agents from one cluster into another

cluster, generating greater consensus and introducing more polarized average opinions

in the population. Furthermore, he finds that the number of clusters decreases in this

condition, even finding consensus despite all agents have confidence bounds smaller

than that which would yield clustering in the base model.

Derivatives of the Deffuant-Weisbuch model. One fairly straight-

forward modification of the Deffuant-Weisbuch model is the social judgment model of
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Jager & Amblard (2005). Whereas the Deffuant-Weisbuch model only allows positive

influence between agents within bounds of confidence, the social judgment model adds

negative influence between agents beyond further bounds of confidence. Negative

influence assumes that an agent’s influence upon another agent that is sufficiently

dissimilar will be in the opposite direction (i.e., after interaction their opinions will be

more distant from one another). Put mathematically, given an acceptance threshold

value of ui and a rejection threshold of ti > ui, the change in an agent’s opinion as a

result of interaction

∆xi =


µ · (xj − xi) if |xi − xj| < ui

µ · (xi − xj) if |xi − xj| > ti

0 otherwise

(9)

The results are similar to those of the Deffuant-Weisbuch model; varying the pa-

rameters can yield consensus formation as a population or consensus within a set of

clusters.

A second modification of the Deffuant-Weisbuch model uses Bayesian updates of

opinions and uncertainties by observing the actions of others. Martins et al. (2009) in-

troduces this deviation, called the Continuous Opinion and Discrete Actions (CODA)

model, and Martins (2009) further examines the model. CODA assumes that agents

exhibit action (i.e., communicate an opinion) with valence equal to the rounded value

of their opinion. Others observe this action and update their opinion (i.e., first mo-

ment) and, in some versions, uncertainty (i.e., second moment). Updating only the

first moment results in behavior very similar to the base Deffuant-Weisbuch model,

while adding updates of the second moment yields unimodal moderate opinions with

some variance (Martins 2009). In other words, CODA either yields many clusters

with no variance within clusters or one cluster with variance within that cluster;
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unfortunately, it is not capable of yielding many clusters with variance (i.e., strong

diversity).

Sun & Müller (2013) introduce another modification of the Deffuant-Weisbuch

model embedded in a behavior model of land use decision-making in a region of

China. This implements more realistic, small-world social networks among agents,

heterogeneous convergence (µ) values, and confidence bounds that vary according

to an agent’s opinion. Small-world networks, introduced by Milgram (1967), are

characterized by minimally interconnected, small clusters of individuals such that the

number of links that must be traversed to connect any two individuals is relatively

small. Agents are initialized with µ drawn from a truncated normal distribution with

mean 0.5, standard deviation 0.2, and bounded within the range [0, 1]. Additionally,

confidence of an agent at any point in time can be calculated from the agent’s opinion:

di = 1− 2 · |xi − 0.5| (10)

where di is agent i’s confidence bound and xi is agent i’s opinion.

These minor changes result in some interesting behavior that, by itself, has not

yet been examined in any detail. This lack of investigation is likely due to its being

embedded in a larger behavior model. A fairly shallow examination of possibilities

shows that this can be an unpredictable model: utilizing the same input parameters,

the three clusters may converge to a moderate opinion, an extreme opinion, or differ-

ent and opposing extreme opinions. See Figure 7 for examples of all three behaviors.

Varying the number of within-group and between-group social network connections

or the distribution from which µ is drawn would likely have significant impacts upon

the convergence behavior.

Hegselmann-Krause model. Hegselmann & Krause (2002) proposed a
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Figure 7. Three instances of output from a model derived from Sun & Müller (2013),
yielding convergence to moderate opinion (top), convergence to an extreme opinion
(middle), and within-group convergence to opposing extreme opinions (bottom)
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bounded confidence opinion dynamics model that varies from the Deffuant-Weisbuch

model primarily in the agents’ schedules. In the Deffuant-Weisbuch model, at each

step one random agent is selected to be influenced by one random agent within its

bounds of confidence. In the Hegselmann-Krause model, at each step all agents take

the mean opinion of all agents (including themselves) within their bounds of confi-

dence, effectively giving equal weight to all sufficiently similar opinions including their

own. Mathematically, given agent i with opinion xi among N agents:

xi ← |I(i, xi)|−1 ·
∑

j∈I(i,xi)

xj (11)

I = {j ∈ 1, ..., N : −d ≤ xi − xj ≤ d} (12)

This corresponds with a synchronous schedule in selection of both source and target

agents. This yields a much smoother convergence to fewer clusters as compared to

the Deffuant-Weisbuch model. The Hegselmann-Krause model is equivalent to the

DeGroot (1974) model where P is redefined each step such that

Pij =


|I(j, xj)|−1 if |xi − xj| < d

0 otherwise

The NetLogo 6.0.1 model given in Appendix L implements the Hegselmann-Krause

model. An ideal-typical result with d = 0.25, analogous to that of Figure 6, is shown

in Figure 8, along with an ideal-typical result with d = 0.20, which behaves more

like the Deffuant-Weisbuch model with d = 0.25. Note that, when d = 0.25, a small

group of agents with moderate opinions is caught between the influence of opposing

groups and slowly moderates both of the larger groups. In the Deffuant-Weisbuch

model, this moderate group would have randomly become a part of one of the larger
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groups.

Figure 8. Ideal-typical results of base Hegselmann-Krause model converging to one
group (d = 0.25, top) and two groups (d = 0.20, bottom)

Hegselmann & Krause (2002) also experiment with asymmetric bounds of confi-

dence and find that asymmetric bounds of confidence yield asymmetric convergence

behavior. That is, agents that are more open to dissenting opinions in one direction

than another tend to move toward the opinion they are more open to.

Lorenz (2010) considered heterogeneous confidence bounds for the Hegselmann-

Krause model as they did with the Deffuant-Weisbuch model and found that the same

behavior applies to both. Heterogeneity of confidence bounds increases the likelihood

of convergence to a consensus opinion, even when all confidence bounds are smaller

than that which would be expected to yield consensus in the base model.
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2.3.3.2 Alternatives to bounded confidence

While bounded confidence models are the basis for comparison for nearly every

newer technique, many alternative models have been suggested that make up for

shortcomings of the bounded confidence technique. What follows is a review of the

best alternatives that have been proposed, though it is not exhaustive.

Relative agreement model. The relative agreement model was proposed

by Deffuant et al. (2002) as an extension to the Deffuant-Weisbuch bounded confi-

dence model in order to explain how initially extremist viewpoints (e.g., Nazism or

fashion trends initially far outside of the norm) can become mainstream in a society.

Whereas the bounded confidence model uses static confidence and dynamic opinion,

the relative agreement model allows both an agent’s opinion and confidence to be dy-

namic as a result of social interactions. In this formulation, agent i’s state is defined

by both their opinion xi ∈ [−1, 1] and their uncertainty ui ∈ [0, 2]. This state can be

visualized as a line segment covering the range [xi − ui, xi + ui].

As in the Deffuant-Weisbuch model, agents are chosen randomly to influence an-

other random agent. Upon agent j attempting to influence agent i, agent i updates

it opinion and uncertainty according to the following rules:

hij = min(xi + ui, xj + uj)−max(xi − ui, xj − uj) (13)

xi ← xi + µ ·
(
hij
uj
− 1

)
· (xj − xi) (14)

ui ← ui + µ ·
(
hij
uj
− 1

)
· (uj − ui) (15)

In this way, the amount of influence agent j has upon agent i increases with the

ratio of the line segment overlap hij to its uncertainty uj. Thus confident agents are

more influential and uncertain agents are more heavily influenced by others. Further-
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more, agents whose line segments do not overlap cannot influence one another, which

generates bounded confidence-like behavior.

In the base model, where all agents have identical initial uncertainty (and there-

fore, their uncertainty does not change with time), the relative agreement model

behaves almost identically to the bounded confidence model, with the number of

resultant clusters varying approximately with 1
u
. Adding high certainty (ui ≈ 0), ex-

tremist (|xi| ≈ 1) agents has the effect of polarizing an initially uniformly distributed

population, fulfilling the desideratum of their modeling effort. NetLogo 6.0.1 code

replicating this model is provided in Appendix M.

Meta-contrast model. The meta-contrast model was proposed by Salzarulo

(2006) to implement interaction following the predictions of self-categorization theory

(Turner et al. 1987), which is discussed in Section 2.4.1. Self-categorization theory

predicts that an individual will associate with an in-group with higher probability if

that group is cohesive and other individuals’ opinions are separated from the in-group.

This is measured by the difference between opinions within that group compared to

the difference between that group and individuals outside of that group. Therefore, in

a very diverse group, two relatively different individuals may become part of the same

in-group; in a less diverse group, these same individuals might associate with differ-

ent in-groups. Salzarulo implements this by first introducing the fuzzy membership

function:

µ(x, xi) = e−
(x−xi)

2

w2 (16)

where w ∈ [0, 1] is a parameter associated with the typical group width; higher values

are expected to result in fewer groups while lower values are expected to result in

more groups. Equation 16 is used to calculate the intra-category distance and the
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inter-category distance for an opinion x ∈ [0, 1] to the set of n agent opinions X:

dintra(x,X) =

n∑
i=1

(µ(x, xi) · (x− xi)2)
n∑
i=1

µ(x, xi)
(17)

dinter(x,X) =

n∑
i=1

((1− µ(x, xi)) · (x− xi)2)
n∑
i=1

(1− µ(x, xi))
(18)

These distances in turn are used in the calculation of the prototypicality function of

an opinion x to the set of n agent opinions X:

P (x,X) = a · dinter(x,X)− (1− a) · dintra(x,X) (19)

where a is another parameter that defines out-group aversion; higher values are ex-

pected to result in more groups while lower values are expected to result in fewer

groups.

Agents update their opinions according to an asynchronous random independent

schedule. An agent i updates their opinion by first finding the local maxima of the

prototypicality function P (x,X) where X is all agents to whom agent i is connected.

Agent i interprets the local maximum nearest their own opinion as the prototypical

opinion of their in-group. Agent i then finds agent j, the agent with opinion nearest

the prototypical opinion, and adopts agent j’s opinion as their own. In the base model,

agents are fully connected. NetLogo 6.0.1 code implementing the fully-connected

model from Salzarulo (2006) is provided in Appendix N. The original paper also

implements small-world social networks between agents that define the interactions.

NetLogo 6.0.1 code implementing the small-world networks model from Salzarulo

(2006) is provided in Appendix O.
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Salzarulo (2006) explores the parameter space defined by a ∈ [0, 0.3] and w ∈ [0, 1]

and find that, in the fully connected model, different parameters yield consensus (low

a and high w) or fractioning into 2 or many groups (low a and low w). The results are

similar for the small-world model, but the focus there is more on variance in opinions;

the highest opinion variance is found in the parameter space that yields 2 groups in

the fully connected model. The clustering in the small-world model is also spatially

observable but less distinct than in other models explored thus far. See Figure 9 for

an example of this.

Figure 9. Example outcome of meta-contrast model with a = 0.08 and w = 0.36, using a
small-world network

The meta-contrast model differs from other models in several important ways.

First, it is based upon experimentally-grounded social psychological research. Second,

it generates the effect of negative influence (two agents may move away from one

another because of each other’s presence) without actually implementing negative

influence. Lastly, it can generate lasting diversity of opinions without relying upon

disconnecting the social network.
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Individuation by adaptive noise. Attempts to generate clustering from

continuous opinion dynamics models by using random noise have been ineffective (Mäs

et al. 2010). However, Mäs et al. (2010) introduced a model that uses noise in an

adaptive capacity more rooted in sociological theory. The basic model is similar to the

Hegselmann-Krause model, but instead of using a step function, influence decreases

exponentially as the difference in opinion increases. Thus influence is homophilous;

individuals with similar opinions have a greater effect than those with dissimilar

opinions. The major addition is an adaptive noise component ξi(t) that becomes

stronger when there are many others with similar opinion and weaker otherwise; this

is intended as a drive for individuation.

The mathematical form of the Mäs et al. (2010) model follows. Given a group of

N agents, the opinion of agent i, oi ∈ [−1, 1], changes at each turn by

∆oi =

N∑
j=1
j 6=i

(oj(t)− oi(t))wij(t)

N∑
j=1
j 6=i

wij(t)

+ ξi(t) (20)

where the weight of influence between agents i and j, wij is defined by their opinions

and the model parameter A where A >= 0:

wij(t) = e−
|oj(t)−oi(t)|

A (21)

High values of A represent openness and allow stronger influence by dissimilar others;

low values represent confidence and allow little influence by dissimilar others. The

noise component ξi(t) is a random variate drawn from the normal distribution with
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mean 0 and standard deviation θi(t), calculated as

θi(t) = s ·
N∑
j=1

e−dij(t) (22)

where s is a model parameter representing the strength of individuation. In order to

keep opinions within the defined bounds, the noise component is ignored if it would

cause an opinion to go beyond the bounds. Agents are homogeneous in this model

with respect to parameters A and s. Interestingly, although an agent is simultaneously

influenced by all agents when it is updated, the agents are chosen to be influenced

according to a random independent schedule. This makes the scheduling a hybrid of

that used in the Deffuant-Weisbuch model and that used in the Hegselmann-Krause

model; it is synchronous with respect to source agents and asynchronous random

independent with respect to target agents.

Given appropriate parameterization, this model can cause opinions to converge to

a single cluster, to maintain an approximately uniform distribution, or to vary between

periods of multiple clusters and periods of approximate convergence. This is an

appealing model due to its flexibility and sociological foundations. It is also interesting

in that it maintains diversity without negative influence in a fully connected social

network, even given starting conditions of perfect agreement.

A later work by Mäs et al. (2014) modifies the 2010 model by adding negative

influence. This has the effect of making the clustering more predictable and stable at

the cost of introducing negative influence. With negative influence, the distribution

of opinions at initialization ceases to have an effect upon the number of clusters that

emerge or the polarization present in those clusters.

Persuasive arguments. Persuasive argument theory, despite its popularity

in the social psychology literature, is surprisingly underused in the opinion dynamics
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modeling world. The one notable exception is provided by Mäs & Flache (2013). They

call their model based on persuasive argument theory the argument-communication

theory of bi-polarization (ACTB). The ACTB model is populated with N agents with

opinions oi ∈ [−1, 1]. Their world also contains P arguments in support of an opinion

(pro arguments) and C arguments against an opinion (con arguments), making a pool

of arguments l for which cl = 1 for pro arguments and cl = −1 for con arguments.

Each agent stores Si,t distinct arguments in memory at each time step and holds the

opinion

oi =
1

Si,t
·
Si,t∑
l=1

clri,t,l (23)

where ri,t,l = 1 if argument l is in agent i’s memory at time t, and ri,t,l = 0 oth-

erwise. This is not technically a continuous opinion, as only (Si,t + 1) opinions are

possible. However, the article contends that these are continuous opinions, and they

approximate continuous opinions, so they are included here in that section.

Agents are chosen to be influenced according to an asynchronous random inde-

pendent schedule. Agent i is chosen to be influenced, and agent j is chosen from the

population according to a multinomial distribution with probability proportional to

the pair-wise similarity of opinions, calculated as

simi,j,t =
1

2
(2− |oi,t − oj,t|) (24)

such that simi,j,t = 1 when two agents have identical opinions and simi,j,t = 0 when

two agents have opinions at opposite ends of the spectrum. An agent j has probability

of being selected

pj,t =
(simi,j,t)

h

N∑
k=1
k 6=i

(simi,k,t)
h

(25)

where h is a model parameter defining the strength of homophily. It is worth noting
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that an agent has the highest probability of being influenced by another agent with

the same opinion. If agent i has a polarized opinion (|oi| = 1), then agent j with the

opposite polarized opinion (oj = −oi) has zero probability of influencing them.

Source agent j then chooses one of the arguments in its memory to communicate

to target agent i. If agent i already has that argument in memory, it becomes the

most recent argument in agent i’s memory and no arguments are forgotten. If agent

i does not have that argument in memory, it becomes the most recent argument in

agent i’s memory and the least recent argument in memory is forgotten.

NetLogo 6.0.1 code implementing the model from Mäs & Flache (2013) is provided

in Appendix P. Due to the implementation of homophily and the dwindling of the

arguments in agents’ memories over time, there are three convergence conditions. If

all agents possess the same arguments in memory (regardless of order), the system

has converged to consensus. If all agents possess polarized opinions (|oi| = 1, ∀ i),

the system has converged to either consensus (if all agents possess the same opinion)

or bi-polarization (if agents possess opinions in both poles).

ISC model. A desideratum of opinion dynamics modelers that has long

eluded them has been the generation of strong diversity of continuous opinions at

convergence. Recently, Duggins (2017) achieved that goal with the Influence, Suscep-

tibility, and Conformity (ISC) model. This aims to be a more cognitively complex

and realistic model of opinion dynamics by including heterogeneity among spatially

distributed agents. Each agent i is initialized with an opinion oi ∈ [0, 100], intol-

erance ti ∈ [0,∞), susceptibility si ∈ [0,∞), conformity ci ∈ (−∞,∞), and social

range ri ∈ [0,∞)2. Each value is drawn from a random normal distribution with pa-

2In the Python 2.7 simulation code provided in Duggins (2017), there was a typo in the code that
set susceptibility to the conformity value. I informed the author of the typo, and he confirmed it was
a mistake. Based on some informal testing, it appears not to change the qualitative performance of
the model, but the author intends to follow up on it.

44



rameters varying as model parameters, and values falling outside of the bounds take

the boundary values. These agents are placed at random (x, y)-coordinates within a

316× 316 grid. The agents then form a social network by pairing every agent whose

distance is within both members’ social reach. At each time step, agents update their

opinions in random order.

To update their opinion, agent i starts a discussion with the set of their immediate

neighbors J in the social network by expressing their true opinion oi. In random order,

each neighbor j expresses an opinion that is tempered by the set of opinions D that

have already been expressed in this discussion, expressing the value

ej = oj +
cj
kj
∗ 1

|D|
∑
ok∈D

(ok − oj) (26)

where kj is a value for commitment calculated as

kj = 1 + sj ·
|50− oj|

50
(27)

such that commitment increases with susceptibility and polarization of opinion. In-

fluence is then calculated from the list of opinions expressed by others as

Ii =

∑
j∈J wij · (ej − oi)∑

j∈J |wij|
(28)

where wij is the weight given that paired interaction, calculated as

wij = 1− ti ·
ej − oi

50
(29)

NetLogo 6.0.1 code replicating the Duggins (2017) model is given in Appendix Q,

with the noted bug corrected.

This model is capable of generating strong diversity in various distributions. The
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original paper gives examples of bimodal distributions that span the opinion spectrum,

unimodal distributions centered on moderate opinions, and collapse to polarized con-

sensus. Furthermore, he is able to replicate the distributions of several opinions from

real-world polls of political opinions. It is also fairly unique among opinion dynamics

in that it uses a random order schedule.

2.3.4 Other modeling techniques that could inform new opinion dy-

namics models

Social influence network theory models. Social influence network the-

ory was first mathematically modeled by DeGroot (1974) with the repeated averaging

model, as discussed above. An expansion was proposed by Friedkin (1999) as a way

to integrate social comparison theory, persuasive argument theory, self-categorization

theory, and social decision scheme theory within the sociological (group-level) per-

spective rather than the psychological (individual-level) perspective. According to

social influence network theory, opinions flow through a population as a function of

pair-wise influence weights and susceptibility to influence of each individual. Math-

ematically, N agents update their opinions at time t = 2, 3, . . . according to the

following:

y(t) = AWy(t−1) + (I−A)y(1) (30)

where y(t) is an N × 1 vector of individual opinions at time t, A is an N × N

diagonal matrix defining each individual’s susceptibility to influence, and W is the

N ×N stochastic matrix of pair-wise influence weights. As this type of model implies

synchronous updates of all individuals’ opinions, this is also deterministic in nature.

Thus we can find the consensus opinions,

y(∞) = AWy(∞) + (I−A)y(1) = Vy(1) (31)
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where V is a stochastic matrix. If (I−AW) is nonsingular, V = (I−AW)−1(I−A).

If we assume that an individual’s susceptibility to influence is really the weight

that an individual gives to their own opinion (i.e., wii = 1−aii), then the formulation

can be simplified using an N ×N stochastic matrix C, cii = 0, ∀ i. We can then set

W = AC + I−A; this has the impact of distributing the weight remaining to other

individuals aii proportionally according to the original W matrix and simplifies the

parameter space. Friedkin (1999) originally uses this simplification but omits it in

later work (Friedkin 2001). This model has been used in at least one behavior model

(Pires & Crooks 2017).

The primary difference between this and the much earlier DeGroot (1974) model

is that in this formulation, for perpetuity, an individual’s original opinion continues

to strongly influence their later opinions. This concept has also been applied in a

more agent-based method to a modified DeGroot model by Dandekar et al. (2013).

Dandekar et al. (2013) use other methods to implement this concept, which they call

biased assimilation, including PageRank algorithms. They find that these algorithms

lead to polarization where unbiased methods do not and suggest that this method-

ology can be used to study the effects of personalized recommendation algorithms

(e.g., Google searches, Facebook content) on societal polarization, a topic known as

the filter bubble (Pariser 2011) that is of interest for the third paper.

Vector opinions and demographic faultlines. The use of vector opinions

was briefly explored by Deffuant et al. (2000), but it seems to have gotten very little

traction. Similarly, Salzarulo (2006) devotes a short paragraph (2.3) to discussing

how his model could be easily modified to implement vector opinions but states that

this is not the purpose of the paper. C. Weimer et al. (2013) used vector opinions of

a form similar to that used by Deffuant et al. (2000) that allow communication to be

similar to genetic recombination.
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In the field of group stability modeling, there has been more use of discrete vec-

tor opinions. Flache & Mäs (2008a) and Flache & Mäs (2008b) use vectors mixing

continuous, malleable opinions with binary, fixed demographic elements to examine

the effects of demographic faultlines in team performance. Flache & Macy (2011)

removes the demographic elements and embeds these agents in small-world social

networks. This is the most in-depth use of vector opinions, using negative influence

and homophily to develop weak diversity in the form of bi-polarization. Mäs et al.

(2013) adds demographic elements back, along with small-world networks, to again

examine team performance and group stability rather than opinion dynamics. In this

form, they find that sub-groups initially separate and then find consensus.

2.4 Social science relating to opinion dynamics models

In this section, the social science literature relevant opinion dynamics models are

briefly reviewed. The literature on interpersonal influence is vast; it is the primary

focus of the field of social psychology. Additionally, the literature on group opinion

dynamics, the domain of sociology, expands that corpus significantly. Therefore,

this is not meant to be exhaustive with respect to influence; instead, only literature

directly related to the models in the previous section or the research being proposed

are presented.

2.4.1 Choice shift

Theories that underpin many opinion dynamics models arose from the experimen-

tal observations of choice shift in the forms of group polarization and depolarization.

Group polarization is the tendency of a group’s mean opinion, through deliberation,

to become more extreme than the mean opinions prior to deliberation. Group depo-

larization is the tendency after deliberation of a group composed of two subgroups

48



with opposing viewpoints to approach a mean opinion less extreme than either sub-

groups’ opinions prior to deliberation. Individual opinions also trend along with the

groups in both cases.

Stoner (1968) ignited attempts to explain group polarization when he found a ten-

dency for groups to accept more risk than their constituent individuals, a phenomenon

that became known as the risky shift. He gave a group of students a scenario in which

an individual is debating taking a risk by writing a novel. If successful, this would

seriously bolster their career, but failure would mean a waste of time and effort for

which they would never be paid. Students were asked what minimum chance of suc-

cess the author should have in order to take the risk, then given the chance to discuss

it as a group and select a chance of success as a group. The groups tended to suggest

taking greater risk than the individuals composing that group had suggested prior to

discussion; group discussion seemed to elicit riskier behavior.

Moscovici & Zavalloni (1969) proposed and showed that this phenomenon is not

restricted to risky behavior but is a specific case of group polarization. They found

that although their students in France held positive opinions of the French president

and negative opinions of Americans, discussion actually strengthened students’ atti-

tudes in these topics. This has since been confirmed by others in hundreds of articles

using different experimental techniques (Isenberg 1986). In the political science do-

main, it has gained enough traction to be raised to the status of the Law of Group

Polarization (Sunstein 2002). In particular, group polarization has been shown to

occur among ideologically like-minded individuals when discussing American politics

(Schkade et al. 2010).

Group polarization research tended to focus on isolated groups that had a pre-

disposition toward one side of an issue. Vinokur & Burnstein (1978) demonstrated

group depolarization by examining what occurs when two such groups on opposite
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sides of an issue meet to have a discussion. They found that in this case, the difference

in mean opinion between the groups decreases. The mean opinion of all participants

tends to become more polarized due to one side having more influence than the other,

so examining solely the group mean would be misleading. It is notable that this de-

polarization outcome would not be predicted by bounded confidence models.

In the following section, five theories of choice shift are explored: social comparison

theory, persuasive arguments theory, self-categorization theory, social decision scheme

theory, and social influence network theory. These are each well summarized by

Friedkin (1999). Social comparison theory represents the group-normative aspect of

influence, which may be thought of as an emotional component. Persuasive arguments

theory represents a more reasoned influence based on weighing the arguments for

and against a point of view; this may be thought of as a logical component. Self-

categorization theory represents group-normative influence along with a desire to

distance oneself from other groups. As a normative influence theory, it can also be

thought of as primarily emotional. Social decision scheme theory posits that group

consensus opinions are some function of initial individual opinions without regard to

any particular inter-personal influence mechanisms. Social influence network theory

is intended as a consolidation of the other four theories.

2.4.1.1 Social comparison theory

Festinger (1954) first proposed social comparison theory. This theory represents a

meta-theory driven by the assumption that humans are driven to evaluate their own

opinions and abilities and that, in the absence of objective methods of self-evaluation,

they will evaluate their opinions and abilities by comparing themselves to others. For

the purpose of this discussion, discussion of the theory with respect to abilities is

ignored; rather, the focus is on opinions. The drive to compare one’s opinion to an-
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other’s opinion diminishes as the difference between those two individuals’ opinions

increases. This leads to an uncomfortable situation for individuals who are driven to

evaluate their opinions but are surrounded by others with vastly differing opinions,

motivating people to seek communities of like-minded individuals against whose opin-

ions they may evaluate themselves. Furthermore, where diversity of opinion exists

within a group, an individual will be motivated to decrease this diversity both by

altering their own beliefs to be more in line with an opinion perceived as desirable

in the group and by altering others’ beliefs to be more in line with their own. This

motivation varies in proportion to an individual’s distance from the desirable opinion;

those who are close to that opinion will seek to influence others and broaden the range

of individuals with whom they compare themselves, whereas those who are farther

from it will seek to change their own position to conform with the group and compare

themselves with a narrow range of individuals.

Social comparison theory can explain group polarization, as explained by Sanders

& Baron (1977), due to shifts in the opinion that is perceived as desirable in the

group. In a new group, an individual will tend to moderate their true opinions when

expressing their point of view. As discussion continues, however, the fear of being

perceived as too extreme is tempered by the presence of others with similar opinions.

In fact, the perception may change such that the opinion perceived as desirable in

the group is more extreme than any individual’s initial opinion, leading to group

polarization.

Social comparison theory is at the root of many opinion dynamics models, even

though it may not be explicitly stated. The assumption inherent to bounded confi-

dence and repeated averaging models is that those individuals sufficiently similar to

oneself provide positive influence; this is a normative effect as predicted by social com-

parison theory. The assumption that those perceived as too dissimilar to oneself, and
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thereby not members of the individual’s self-identified group, provide no influence is

also in keeping with social comparison theory. However, to my knowledge, the differ-

ence between expressed and true opinions is only present in Duggins’s (2017) model.

In his model, the opposite trend occurs; initially expressed opinions are untempered

by others’ opinions whereas later expressed opinions are strongly moderated toward

the average opinion expressed up to that point.

2.4.1.2 Persuasive arguments theory

Persuasive arguments theory was proposed by Vinokur & Burnstein (1974) as an

alternative explanation for choice shift. This assumes that there exists a culturally-

relevant pool of persuasive arguments for risky behavior and cautious behavior. Initial

attitudes will then reflect the strength and proportion of arguments in each direction.

Diversity reflects the fact that not all persuasive arguments are known to every indi-

vidual. Groups in which individuals know relatively few overlapping arguments are

most prone to shifting their opinions from the initial attitude, as discussion brings

more of these persuasive arguments into one another’s awareness.

Persuasive argument theory is supported by the phenomenon of group depolar-

ization observed by Vinokur & Burnstein (1978). Two opposite groups placed into

a position where they could interact would be expected by social comparison theory

to bi-polarize by interacting nearly exclusively within their own group and behaving

as if the other group were not present. Instead, the groups deliberated together and,

both as groups and as individuals, approached more moderate opinions than their

initial opinions.

A meta-analysis of experiments in support of both social comparison theory and

persuasive arguments theory found that the impact of both theories acted in concert to

predict opinion shifts (Isenberg 1986). The author notes that the effect size observed
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in support of persuasive arguments tends to be larger than those in support of social

comparison theory. The fact that the two theories work together is generally accepted;

even authors such as Sanders & Baron (1977) explicitly defending social comparison

theory argue that both theories work together.

Despite persuasive arguments theory being fairly well accepted by social scientists,

I am aware of only one opinion dynamics model with it explicitly implemented (Mäs

& Flache 2013). Genetic implementations of opinion (Deffuant et al. 2000; C. Weimer

et al. 2013) can also be considered to be using persuasive arguments theory although

it is not explicitly stated.

2.4.1.3 Self-categorization theory

Self-categorization theory grew out of social identity theory. Tajfel & Turner

(1979) proposed social identity theory, which predicts that humans will naturally

categorize the people with whom they interact into groups, then identify with certain

groups (in-groups) and contrast themselves with other groups (out-groups). Experi-

ments have supported the idea that individuals in groups tend to modify their behav-

ior in order to avoid signaling belonging to an out-group (J. Berger & Heath 2008),

which may serve as a distancing function between groups that grow too similar (or, in

opinion dynamics modeling terms, preserve clusters). Turner & Oakes (1986) noted

that individuals take on an identity that is defined more at the individual or at the

group level depending upon the situation.

Turner et al. (1987) expanded this concept into self-categorization theory, which

proposes that individuals shift their opinions toward a perceived “prototypical” opin-

ion of their in-group. This prototypicality is an opinion that best defines their group

while providing separation from the opinions held by others in out-groups. This

stands in contrast with persuasive arguments theory by predicting that the persua-
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siveness of an argument is not an attribute associated with that argument but rather

a function of how closely it is considered to hold to the prototypical position of their

in-group.

Self-categorization theory is explicitly modeled by Salzarulo (2006). This model

shows how self-categorization theory can explain both group polarization and group

depolarization depending on the distribution of initial opinions and the construction

of the prototypicality function.

2.4.1.4 Social decision scheme theory

Social decision scheme theory was first proposed by Davis (1973) to explain how

groups may come to decide among a set of possible choices that are proposed by

individuals in that group when voting is not performed but rather a decision must be

reached by consensus. This posits that some combinatorial process exists that links

the distribution of initial opinions of the group to a final opinion. In well-defined

cases this might be the majority opinion, for example; in less-defined cases it might

be the median, mean, most extreme, or any other rule.

An example of social decision scheme theory in action, presented by Zuber et al.

(1992), looked at sequential choices by subjects given various information regarding

others’ first choices. In this condition, a median-opinion social decision scheme out-

performed persuasive arguments in predicting the distribution of choices after differing

information was provided.

Social decision scheme theory is not explicitly stated as the basis for an opinion

dynamics model, to my knowledge. However, in the sense that every agent-based

model implements some combinatorial function based on the initial distribution of

opinions (perhaps in addition to other factors), every agent-based opinion dynamics

model adheres to this theory. Perhaps the closest adherent is the repeated averaging
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model (DeGroot 1974), which implements a well-defined, deterministic function to

the initial distribution of opinions to find consensus if consensus exists.

2.4.1.5 Social influence network theory

Social influence network theory was first proposed by French (1956). It describes

individuals as emanating an influence field that affects those to whom they are di-

rectly connected in a social network. The strength of this influence field varies with

social power and inversely with the difference in their opinions. Under this theory,

individuals shift their opinions until the combined effect of all influence fields is zero.

A more general form of this theory was implemented by DeGroot (1974), whose model

is described in detail above, which showed that this stable point in a connected social

network is population consensus.

According to Friedkin (1986), this model is no longer considered useful due to

advancements in social psychology since 1956, but he provided a modernized version

of social influence network theory to replace it. The basis of the updated form of

social influence network theory is the equation:

mi(t+1) =
N∑
j=1

wijmj(t) for i = 1, . . . , N (32)

where mi(t) is the opinion of agent i at time t, wij ∈ [0, 1] is the weight of influence

from agent j on agent i, and N is the size of the population. Opinion mi(t) is a column

vector of real-valued scalars. The sum of all weights of influence on a specific agent
N∑
j=1

wij = 1, ∀ i. Furthermore, every agent has positive influence upon themselves,

wii > 0, ∀ i, and every influence is bi-directional, wij > 0 ↔ wji > 0. This is

fundamentally the same as the DeGroot (1974) model, but the network structure

approach implied by the restrictions on values allows for different analyses.

Social influence network theory has been implemented in the opinion dynamics
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models of Friedkin (1999), Friedkin (2001), Dandekar et al. (2013), and Pires & Crooks

(2017).

2.4.2 Interpersonal influence

Interpersonal influence is a large field and the focus of social psychology, so a

complete review of interpersonal influence is impractical. However, there are several

themes that arise in the literature of opinion dynamics models and that therefore

should be addressed. In particular, this section reviews research on homophily, social

impact theory, negative influence, and memory.

2.4.2.1 Homophily

One of the most common assumptions in opinion dynamics models is that of ho-

mophily, increased influence between agents that share attributes in common. This

typically comes in one of two forms: an increased probability of interaction for indi-

viduals that share similar opinions (used in models with dyadic interactions, including

Deffuant et al. 2000, 2002; Weisbuch et al. 2002; Mäs & Flache 2013; Duggins 2017); or

weight of influence being a decreasing function with respect to the difference between

two agents’ opinions (used in models with group interactions, including Hegselmann

& Krause 2002; Mäs et al. 2010, 2014).

Both similarity and, relatedly, perceived attractiveness have been shown to in-

crease the effects of influence attempts by an individual (Berscheid 1966). Further-

more, Berscheid (1966) showed that similarity in attributes perceived to be relevant

to the interaction have a far stronger impact than similarities in irrelevant attributes.

This distinction is important for modeling opinion dynamics, because it implies that

one need not model irrelevant attributes in order to accurately model homophily. It

also implies that using a set of relevant opinions (such as may be used in a vector opin-

56



ion implementation) is more appropriate than a single opinion. Another examination

by D. Abrams et al. (1990) found that perception of belonging to the same in-group,

from a self-categorization theory perspective, is the primary determinant of the de-

gree of influence achieved during communication. This group membership-focused

implementation of homophily is not implemented directly in any opinion dynamics

model to my knowledge, but it is implicitly used in bounded confidence models. A

more detailed review on the history of homophily is presented by McPherson et al.

(2001), but it is sufficient to further state that homophily is well documented and

observed, with support that backs its inclusion in most opinion dynamics models.

2.4.2.2 Social impact theory

Social impact theory (Latané 1981) is an attempt to codify mathematically how

influence between two individuals varies. Social impact theory is composed of three

principles. First, the degree of social impact upon an individual from an interaction

(I) is an increasing function of the strength (S) and immediacy (I) of the interaction

along with the number of sources present (N) — I = f(SIN). Second, the marginal

influence of each additional source diminishes according to a power law — I = sN t,

where s is a scaling constant and t is some power such that 0 < t < 1. Lastly, the

social impact of an individual diminishes as the number of targets increases according

to a power law — I = sN−t for outward influence. Nowak et al. (1990) and Mäs et

al. (2014) both implement social impact theory and note that experimental results

seem to support that t ≈ 0.5.

2.4.2.3 Negative influence

Positive influence, whereby interaction pushes individuals to have more similar

opinions, is fairly ubiquitous among opinion dynamics models. Negative influence,
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whereby interaction pushes individuals with sufficiently dissimilar opinions to fur-

ther separate, is less ubiquitous but observable for example in the models of Jager

& Amblard (2005), Mäs et al. (2014), and Duggins (2017). For modelers desiring

an outcome of diverse opinions, the presence of negative influence is a tempting as-

sumption. Furthermore, there has been some evidence that negative influence occurs.

Berscheid (1966), for example, found that negative influence occurred when two in-

dividuals who are dissimilar with respect to traits that are relevant to the discussion

interacted. From the self-categorization theory perspective results have been mixed;

D. Abrams et al. (1990) did not observe any negative influence between individuals

from separate groups, but Hogg et al. (1990) observed separation of opinions between

groups. The latter outcome can be explained in ways that do not rely upon negative

influence; meta-contrast as modeled by Salzarulo (2006) would predict a similar out-

come. Additionally, a recent experiment by Takács et al. (2016) found no evidence

of negative influence but rather decreased influence as similarity decreased. These

mixed results suggest that, if negative influence exists, its effect is much smaller than

that of positive influence. Opinion dynamics modelers should, then, use negative in-

fluence with caution and never implement it in a way that suggests it is comparable

in strength to positive influence.

2.4.3 Memory

It is surprising that, of the opinion dynamics reviewed above, only two had an

explicit implementation of memory: those of Mark (1998) and Mäs & Flache (2013).

These implementations do not have strong justifications in social science, however, so

it is worth looking briefly at the social scientific theories in this area.

Asch (1946) first found in experiments that, given a list of words describing an

individual, people tend to be more influenced by the first words that they are given.
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This relatively strong impact of first impressions is known as the primacy effect or

anchoring. On the other hand, Miller & Campbell (1959) found that more recently

encountered information has the stronger effect if a delay existed between the presen-

tation of two pieces of information. This effect is termed the recency effect.

By their nature, these effects are difficult to disentangle from one another, par-

ticularly in the context of complex opinions. However, it is much simpler to assess

the relative strength of primacy and recency effects upon memory. In a serial recall

task, a participant is presented with a list of things to remember; these might be

numbers, letters, words, images, or other things depending on the experiment. The

participant is later asked to remember that list in the correct order. In a memory

context, the primacy effect seems to be stronger than the recency effect although they

clearly interact (Jahnke 1963), even among lower primates (Sands & Wright 1980).

Neither primacy nor recency are modeled by Mark (1998) or Mäs & Flache (2013).

Mark (1998) assumes a firm time horizon for memory within which all information

is equal; a fact is remembered for a limited period of time and is then forgotten

completely, and any facts in memory have an equal impact upon that agent’s identity.

Mäs & Flache (2013) similarly assumes a fixed number of persuasive arguments can

be maintained in memory; attempts to remember a new argument result in forgetting

an old argument, but all arguments in memory have equal impact upon opinion.

59



III. Paper #1: Agent Scheduling in Opinion Dynamics: A
Taxonomy and Comparison Using Generalized Models

3.1 Introduction

The field of opinion dynamics (OD) seeks to model the mechanisms by which

opinions spread through a population. Within this context, opinions may be loosely

defined as Axelrod (1997) defined culture: they are any attributes that may be altered

by social influence. Recent papers have extensively covered the dominant models,

ideal-typical results, and challenges facing the field of OD modeling (Ŝırbu et al.

2017; Flache et al. 2017). OD is inherently a multi-disciplinary field; first authors

of influential papers in the field have degrees spanning cognitive science (Deffuant

et al. 2000, 2002), management science (Dandekar et al. 2013), mathematics (Holley

& Liggett 1975; Salzarulo 2006; Lorenz 2010), philosophy (Hegselmann & Krause

2002), psychology (Nowak et al. 1990), physics (Galam 1997; Sznajd-Weron & Sznajd

2000; Stauffer et al. 2000; Castellano et al. 2009; Martins 2009; Martins et al. 2009),

political science (Axelrod 1997), social sciences (Carley 1991; Jager & Amblard 2005),

sociology (Mark 1998; Friedkin 2001; Mäs et al. 2010; Mäs & Flache 2013; Mäs et al.

2013, 2014), and statistics (DeGroot 1974) to name only a few.

OD modeling lends itself to the use of what Bonabeau (2002) called the agent-

based mindset, where one describes ”a system from the perspective of its constituent

units” (p. 7280). Using this mindset, modelers can define the rules of interaction

between individual agents within the model and allow social influence to propagate

throughout the system. This allows a modeler to build complex models from rela-

tively simple rules that are based upon theories developed in the psychological and

sociological literature. If these outputs are realistic, the modeler has proven that the

proposed rules are sufficient to generate realistic emergent behavior. In other words,
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that behavior can be explained by the proposed mechanism. This is best stated by

Epstein (1999) in his motto for generative social science: ”if you didn’t grow it, you

didn’t explain its emergence” (p. 43). For the purpose of this paper, agents are any

objects that populate a model implementing an agent-based mindset. This is consis-

tent with individual agent-based models (ABM) in the taxonomy proposed by Macal

(2016).

While it is possible to build continuous-time OD models, discrete-time models are

more common and are thus the focus of the present paper. Discrete-time OD mod-

els map the set of N agents’ opinions at time t to the set of those agents’ opinions

at time t + 1. Continuous OD models are those that map RN → RN , with indi-

vidual opinions drawn from a continuous range of values, typically [0, 1] or [−1, 1].

These maps may take the form of a linear transformation as seen in the repeated

averaging models (Harary 1959; Abelson 1964; DeGroot 1974), a deterministic non-

linear transformation as seen in the the Hegselmann-Krause (HK) bounded confidence

model (Hegselmann & Krause 2002), or a stochastically-varied non-linear transfor-

mation as seen in the Deffuant-Weisbuch (DW) bounded confidence model (Deffuant

et al. 2000). They may take as inputs only the vector of opinions and any model

parameters, as in the basic forms of those listed above, or take additional inputs from

agent characteristics such as uncertainty (Deffuant et al. 2002), vectors of arguments

(Mäs & Flache 2013), or locations and personality traits (Duggins 2017).

In discrete OD models, individual opinions are drawn from a discrete set of values,

typically {0, 1} or {−1, 1}. These usually implement non-linear transformations with

additional inputs from agent characteristics, often including their geographic position.

Examples of discrete OD models that take this form are the voter model (Holley &

Liggett 1975), the social impact theory model (Nowak et al. 1990), and the Sznajd

model (Sznajd-Weron & Sznajd 2000; Stauffer et al. 2000). One discrete OD model
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that breaks this form is the Ising field model of Galam (1997), which solves a global

optimization problem without an agent-based implementation despite defining its

elements using an agent-based mindset.

The agent-based mindset, for all its strengths, can yield weaknesses. One, which

explains its emergence in recent decades as a viable method of modeling, is the amount

of computation required. Interactions and associate computations tend to increase

exponentially as the number of agents increases. Another potential weakness is the

tendency to ignore system-level elements of behavior when focusing upon agent-level

behavior.

One system-level behavior of an OD model that may have a significant effect

upon dynamics is the agent schedule: which agent(s), in what order, influence (or

are influenced by) which other agents in each discrete step of time. OD models

have used various schedules with little justification. The Sznajd model has 2 agents

simultaneously influencing their immediate neighbors in 1 dimension (Sznajd-Weron

& Sznajd 2000; Stauffer et al. 2000). The repeated averaging models have all agents

simultaneously being influenced by all others to whom they are connected (Harary

1959; Abelson 1964; DeGroot 1974). The bounded confidence models have 1 pair

of agents influencing one another simultaneously in the DW model (Deffuant et al.

2000) or all agents simultaneously being influenced by all others in the HK model

(Hegselmann & Krause 2002), subject to confidence constraints.

Research into the impact of varying agent schedules is limited. Cellular automata

(CA) researchers have examined the effects of varying agent schedules upon CA behav-

ior (Page 1997; Cornforth et al. 2005) and proposed schedules based on probabilistic

sets of cells acting each turn and imperfect communication of states between cells at

each turn (Bouré et al. 2012). A thorough survey of existing work on the impact of

scheduling upon CA behavior is provided by Fatès (2014).
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The world of ABM has focused much less upon this impact. The earliest ABMs,

run without computers, did not adhere to any schedule strictly (Schelling 1971). In

many of the most influential ABMs, all agents act in random order (examples include

Holland 1995; Epstein & Axtell 1996; Epstein 2006), and books detailing the use of

ABM continue to use this schedule without explanation (Gilbert & Troitzsch 2005;

North & Macal 2007). Introductory tutorials on ABM tend to avoid the question

of agent scheduling entirely (Bonabeau 2002; Axelrod & Tesfatsion 2006; Macal &

North 2014; Macal 2016; C. W. Weimer et al. 2016). Textbooks address the difference

between synchronous and asynchronous update schedules without acknowledging the

variety of schedules that fit into those broad categories (Railsback & Grimm 2011;

Wilensky & Rand 2015). None of these resources delve into the depth of schedules

that may exist.

Research into the impact of scheduling upon ABMs is limited to a small handful

of articles. Caron-Lormier et al. (2008) used a basic ecological ABM to show a signif-

icant difference in the behavior of the model when switching between two schedules.

Fatès & Chevrier (2010) compared the behavior of a basic ABM based upon various

deconfliction rules paired with a particular synchronous schedule and found signifi-

cant differences. Bonnell et al. (2016) used a basic foraging model to examine the

combined effects of cell size, cell heterogeneity, and two specific schedules upon pat-

terns of behavior; they found significant non-linear effects and interactions between

these inputs.

Notably in OD modeling, Urbig et al. (2008) generalized the DW and HK bounded

confidence models into a single model where all agents are simultaneously influenced

by up to m others simultaneously. They found that the general behavior of the

models is qualitatively similar, although the value of m did have various effects on the

specifics of that behavior. However, direction of influence was not addressed; agents
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were influenced by other agents’ opinions without reciprocating influence, making the

generalized model adaptable to replicate the HK model but not the DW model.

The Overview, Design concepts, Details (ODD) protocol (Grimm et al. 2010)

encourages ABM modelers to explicitly specify the schedule used in the model. More

recently, Collins et al. (2015) called for development of descriptive standards for

agent-based models, but as yet no standard exists with which to communicate agent

schedules in a way that is adequate for OD modeling. Some attempts at this do exist;

one example focused specifically upon cellular automata is that of Cornforth et al.

(2005). However, it is insufficient to adequately explain an OD model’s schedule due

to not addressing direction of influence and adhering to only the extremes of scale in

which one or all agents act per time step.

The purpose of this paper is threefold: (1) to build a taxonomy for agent schedul-

ing that is adequate for describing OD model schedules, (2) to demonstrate the po-

tential impact of various schedules using influential continuous OD models, and (3) to

discuss social interpretations of schedule choices. This taxonomy also serves to poten-

tially unite disparate models implementing similar assumptions, such as the bounded

confidence models, into a single set of parameters as recently called for by Flache et

al. (2017).

3.2 Synchrony, Actor type, Scale (SAS) scheduling taxonomy

The Synchrony, Actor type, Scale (SAS) taxonomy is a concise method of commu-

nicating the schedule of an OD model. The components should be reported in order

as shown in the summary in Table 1. Synchrony relates to whether states are contin-

uously updated as agents act and has two options: synchronous and asynchronous.

Actor type relates to the direction of influence and has four options: target, source,

group, and mixed. Scale relates to the number of actors chosen for each role per time
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Table 1. Summary of SAS taxonomy by component

Synchrony Actor type Scale

Synchronous
or

Asynchronous

Target
 (s, t)Source

Group
Mixed (r, s, t, u)

step and has 2 parameters (or 4 if actor type is mixed). Each component is explained

in detail below. Table 2 lists the schedules of many OD models in the literature using

this taxonomy.

3.2.1 Synchrony

Synchrony refers to whether updates to each agent’s state occur in parallel or

in series. A model in which all agent updates occur in parallel would be called

synchronous. A model in which some or all agent updates occur in series would be

called asynchronous.

Let A be a set of ordered source-target pairs (i, j), where i 6= j, chosen to exhibit

influence in a given time step in an OD model. Let fA : RN → RN be the function

that maps a vector of N opinions to the vector of N opinions after the pairs in

A exhibit their influence synchronously. This synchronous model cannot be broken

down further. A single time step of an asynchronous model, to the contrary, can be

broken into a repeated application of f{(i,j)}, in some order, for each (i, j) pair in A.

Synchronous and asynchronous models are therefore identical when A consists of no

more than one (i, j) pair, i.e., when at most one interaction occurs per time step.

Synchrony is best illustrated using a repeated averaging model. Let xt ∈ RN be

the row vector of opinions at time t. Let wij be the weight of influence from agent i

to agent j, where wii = 0. An OD model can be formulated as an N ×N matrix P
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Table 2. Schedules of opinion dynamics models using SAS taxonomy

OD Model Schedule Used

DeGroot (1974) Synchronous Target (∞,∞)
Holley & Liggett (1975) Synchronous Target (1,∞)

Nowak et al. (1990) Synchronous Target (233,∞)
Carley (1991) Synchronous Group (2,∞)

Axelrod (1997) Asynchronous Target (4, 1)
Mark (1998) Synchronous Group (2,∞)

Friedkin (1999) Synchronous Target (∞,∞)
Deffuant et al. (2000) Synchronous Group (2, 1)

Sznajd-Weron & Sznajd (2000) Synchronous Source (2, 1)
Stauffer et al. (2000) Synchronous Source (2, 3)

Friedkin (2001) Synchronous Target (∞,∞)
Hegselmann & Krause (2002) Synchronous Target (∞,∞)

Jager & Amblard (2005) Synchronous Group (2, 1)
Salzarulo (2006) Asynchronous Target (∞, 1)

Martins et al. (2009) Asynchronous Target (1, 1)
Mäs et al. (2010) Synchronous Target (∞, 1)

Lorenz (2010) Synchronous Target (∞,∞)
Dandekar et al. (2013) Synchronous Target (∞,∞)

Mäs et al. (2013) Asynchronous Target (1, 1)
Mäs & Flache (2013) Asynchronous Target (1, 1)

Mäs et al. (2014) Synchronous Target (∞, 1)
Duggins (2017) Asynchronous Target (∞,∞)

where

xt+1 = xtP

The synchronous model’s matrix would be defined by

PAij =



0 if i 6= j, (i, j) /∈ A

wij if i 6= j, (i, j) ∈ A

1−
N∑
k=1

wij if i = j

To generate an asynchronous model, let P(i,j) be the N × N matrix defining a syn-

chronous model where A = {(i, j)}. Let A(l) be the lth pair drawn in some order
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from A. Then the asynchronous model is defined by

P = PA
(1)

PA
(2) · · ·PA(|A|)

A synchronous model’s update in an object-oriented programming language may

be written as two steps: (1) update temporary opinions for each agent using the

permanent opinions of other agents and (2) update permanent opinions to match

temporary opinions. This avoids cascading effects within a single time step such that

agent i’s opinion at time t has no effect on agent j’s opinion at time t+1 unless agent

i directly influences agent j.

An asynchronous model updates permanent opinions directly after each inter-

action. This allows cascading effects within a single time step such that agent i’s

opinion may influence agent j’s opinion without directly influencing agent j. This

occurs when there is an unbroken chain of influence between agent i and agent j in

the order of agents’ actions.

3.2.2 Actor type

In the context of the SAS taxonomy, the primary actor in an OD model is the

entity that is chosen to act. In an agent-based model, this is the agent or group of

agents that executes code directly. Primary actors may be paired with other agents

in the course of this action. An agent paired in such a way is a secondary actor. In a

model not explicitly coded as an agent-based model, the primary actor is implicitly

identified as performing some action by the mathematical formulation.

In defining a model built from an agent-based mindset, three primary actor types

exist: source agents who influence others when they act, target agents who are in-

fluenced by others when they act, and groups of agents who mutually influence one

another. The choice of agent type impacts the schedule both in how pairing of agents
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is performed and, for asynchronous schedules, the order in which influence occurs.

Figure 10 shows examples of possible pairings based on actor types. Additionally, it

is possible for actors to be of mixed type; various “breeds” of agent may act differently,

for example, or an agent’s action may vary as a function of the model state.

If primary actors are source agents, some set of secondary actors (targets) is chosen

for each primary actor. In an asynchronous model, this source influences all of its

targets before another source acts. If primary actors are target agents, some set

of secondary actors (sources) is chosen for each primary actor. In an asynchronous

model, this target is influenced by all of its sources before another target acts.

If primary actors are groups of agents, there are no secondary actors; each group

exhibits influence between member agents as defined by the model. Each group

action may be represented as an OD model executed upon a subset of agents, so

these schedules may be further refined using the SAS taxonomy. Deconfliction rules

may be required for synchronous models when one agent may be chosen to act as a

member of multiple groups.

If primary actors are of mixed types, some or all of the above actor types exist and

act within the model. It must be specified whether actors of a given type act before

actors of another type, representing sequential applications of multiple OD models

within a time step, or they act in mixed order, representing a truly mixed OD model.

Regardless of primary actor type, it is vital for the modeler to further detail the

order in which agents take action. Random order is common, but potential alternative

ordering techniques are without limit.

3.2.3 Scale

In this context, scale refers to the number of agents contained in sets of primary

actors, secondary actors, and groups. For a model using source actors, no more than
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Figure 10. Graphical view of flow of influence for three types of actor

s source agents are chosen as primary actors, with no more than t target agents

selected as secondary actors for each primary actor. For a model using target actors,

no more than t target agents are chosen as primary actors, with no more than s

source agents selected as secondary actors for each. For a model using group actors,

no more than t groups of no more than s agents each are chosen to influence one

another. For a model with mixed-type actors, no more than r agents are chosen to

act as primary actors. If a primary actor acts as a target, it is influenced by no more

than s secondary actors; if it acts as a source, it influences no more than t secondary

actors; and if it is a group, it consists of no more than u agents. Parameters should

be listed in alphabetical order.

If the model imposes scaling limits below the number of agents in the model, re-

lated parameters should be given as positive integers. Otherwise, parameters should

be reported as ∞ to communicate the scale is not limited. This allows direct com-

parison between otherwise-identical models of differing population sizes. Similarly,

if individual agents are heterogeneous with respect to scale parameters, the largest

scale parameter should be reported along with more detail regarding the heteroge-

neous values.

69



3.3 Generalized Repeated Averaging Model

To demonstrate the use of the SAS taxonomy, and to demonstrate potential dif-

ferences that may arise in model outputs as a result of differing schedules, we examine

two models generalized from those available in the literature. The first of these is the

repeated averaging model.

3.3.1 Model definition

As originally presented by Harary (1959), the repeated averaging model uses a

linear transformation upon the vector of agents’ opinions to perform discrete-time

updates. This linear transformation takes the form of an N × N right-stochastic

matrix of pair-wise weights between agents. DeGroot (1974) and R. L. Berger (1981)

proved that this model tends to converge under reasonable conditions. We limit our

model such that these conditions are met.

The generalized repeated averaging model (GRAM) removes the requirement that

the model’s matrix be pre-determined and static. For ease of communication, we use

the transposed form of earlier models. Let xt be the row vector of agent opinions at

time t and P be the left-stochastic matrix defining the OD model from time t to time

t+ 1. Then,

xt+1 = xtP

This matrix is further restricted to have diagonal elements of value (1 − µ), where

µ ∈ (0, 1) is a convergence parameter analogous to that in the Deffuant-Weisbuch

model (Deffuant et al. 2000). An individual agent, if influenced during time t, grants

µ influence to others while maintaining (1 − µ) self-influence. This ensures that the

model converges and allows direct comparison between varied schedules.

P may vary over time as different primary and secondary actors are chosen and, in
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the case of asynchronous schedules, as the order of actors changes. Actors are always

selected at random from the pool of available agents. As all agents are equally likely

to be chosen at each time step, the social network is a complete graph. However,

depending on schedule parameters, every pair of agents need not interact at each

time step.

Further definition of the GRAM varies by synchrony and actor type. For precision

in defining the model, it is defined in matrix form. However, all simulations were

performed using an agent-based implementation in NetLogo 6.0 (Wilensky 1999).

That implementation can be found in Appendix R.

3.3.1.1 Synchronous

Let us first consider the model associated with a Synchronous Target (s, t) sched-

ule. Let T be the set of t target agents randomly chosen as primary actors, or the

set of all agents if t ≥ N . For each agent j ∈ T , let Sj be the set of s source agents

randomly chosen to influence agent j, or the set of all other agents if s ≥ N − 1.

The matrix associated with the model appears as an N × N identity matrix where

columns with indices in T are modified. It may be defined element-wise by

Pij =



0 if i 6= j, j /∈ T

1 if i = j, j /∈ T

µ
|Sj | if i 6= j, j ∈ T , i ∈ Sj

1− µ if i = j, j ∈ T ,

0 otherwise

(33)

For the Synchronous Source (s, t) schedule, let S be the set of s source agents

randomly chosen as primary actors at time t, or the set of all agents if s ≥ N . For
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each agent i ∈ S, let Ti be the set of t target agents randomly chosen to be influenced

by agent i, or the set of all agents if t ≥ N − 1. By extension, let Sj be the set

of agents i for which j ∈ Ti. The matrix associated with this model appears as an

identity matrix where rows with indices in S are modified. It is defined by

Pij =



0 if i /∈ S, j 6= i

1 if i /∈ S, j = i

µ
|Sj | if i ∈ S, j 6= i, j ∈ Ti

1− µ if i ∈ S, j = i

0 otherwise

(34)

For the Synchronous Group (s, t) schedule, we assume that repeat influences may

not occur; that is, if two agents are members of multiple groups, they only influence

each other once. Let A be the set of t s-tuples of agents chosen as primary actors,

or the set of all possible s-tuples of agents if t ≥
(
N
s

)
. Let T be the set of all agents

belonging to one or more groups in A. For each agent j, let Sj be the set of all

agents belonging to one or more groups in A that also contain agent j. The matrix

associated with this model is defined by

Pij =



0 if i 6= j, j /∈ T

1 if i = j, j /∈ T

µ
|Sj | if i 6= j, i ∈ Sj, j ∈ T

1− µ if i = j, j ∈ T

0 otherwise

(35)

Mixed actor types are not used in the GRAM. The multitude of options make
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direct comparison to other actor types impossible. Furthermore, we are not aware of

any OD models that currently utilize mixed actor types.

3.3.1.2 Asynchronous

Asynchronous schedules are more complicated to define as a result of their iterative

nature. Let us first define the matrix P(i,j), which is used for both source and target

actor types. This is the matrix associated with a Synchronous Target (1,1) GRAM

where T = {j},Sj = {i}, µ = µ∗.

To solve for the appropriate value of µ∗, we must ensure that (1 − µ) influence

remains assigned to the agent’s initial opinion at the end of the time step, potentially

after several iterative updates. Consider agent j, with a set of source agents Sj that

will serially influence agent j in some order. Let S(k)
j be the lth element drawn from

Sj. The opinion of agent j, xj, after the kth interaction becomes

xj ← (1− µ∗) · xj + µ∗ · xS(k)j
(36)

where xS(k)j
is that agent’s opinion when the interaction occurs, which may have been

modified since the beginning of the time step. Therefore, after all interactions the

opinion becomes

xj ← (1− µ∗)|Sj | · xj +

|Sj |∑
k=1

(
(1− µ∗)|Sj |−k · µ∗ · xS(k)j

)
(37)

In order to maintain (1− µ) self-influence, we then have that

(1− µ∗)|Sj | = (1− µ) =⇒ µ∗ = 1− (1− µ)
1
|Sj | (38)
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The matrix P(i,j) is therefore defined as

P
(i,j)
kl =



0 if k 6= l, l 6= j

1 if k = l, l 6= j

1− (1− µ)
1
|Sj | if k 6= l, l = j

(1− µ)
1
|Sj | if k = l = j

0 otherwise

(39)

We may now define the Asynchronous Target (s, t) GRAM. Let T be the set of t

target agents randomly chosen as primary actors, or the set of all agents if t ≥ N . For

each agent j ∈ T , let Sj be the set of s source agents randomly chosen to influence

agent j, or the set of all other agents if s ≥ N − 1. Let T (l) be the lth element drawn

from T , and let S(k)
j be the kth element drawn from Sj. The matrix associated with

the model, then, is the ordered product of P(i,j) matrices.

P =

|T |∏
l=1

|Sl|∏
k=1

P

(
S(k)
T (l)

,T (l)
)

(40)

For the Asynchronous Source (s, t) GRAM, let S be the set of s source agents

randomly chosen as primary actors, or the set of all agents if s ≥ N . For each agent

i ∈ S, let Ti be the set of t target agents randomly chosen to be influenced by agent

i, or the set of all other agents if t ≥ N − 1. By extension, let Sj be the set of agents

i for which j ∈ Ti. Let S(k) be the kth element drawn from S, and let T (l)
i be the lth

element drawn from Ti. The matrix associated with the model is again the ordered

product of P(i,j) matrices.

P =

|S|∏
k=1

|Tk|∏
l=1

P

(
S(k),T (l)

S(k)

)
(41)
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For the Asynchronous Group (s, t) GRAM, let A be the set of t s-tuples of agents

chosen as primary actors, or the set of all possible s-tuples of agents if t ≥
(
N
s

)
. Let

A(k) be the kth element drawn from A. Let PA
(k)

be the matrix associated with a

Synchronous Group (s, 1) GRAM where A(k) is the chosen primary actor according

to Equation 35. The Asynchronous Group (s, t) GRAM’s associated matrix is the

ordered product of PA
(k)

matrices.

P =

|A|∏
k=1

PA
(k)

(42)

3.3.2 Parameter selection

Parameters for the GRAM that remain in need of values are s, t, µ, and N . The

intent of the present experiment is to motivate experimenters to explicitly state their

schedule use by showing that scheduling choices can have a significant impact upon

the outcome of an OD model. Therefore, a quantity of interest is the influence that

particular agents have based on their order in an asynchronous model.

In an Asynchronous Target (s, t) schedule, let the coefficient associated with agent

i’s influence upon agent j be denoted λi. As shown in Equation 37,

λi = (1− µ∗)|Sj |−k · µ∗ = (1− µ)
|Sj |−k

|Sj | ·
(

1− (1− µ)
1
|Sj |
)

(43)

where k is the order in which agent i was drawn from Sj. It follows that the absolute

difference between the influence of the last source and that of the first source is

λ|Sj | − λ1 = 2− µ− (1− µ)
1
|Sj | − (1− µ)

1− 1
|Sj | (44)

For a set value of µ, this is a decreasing function of |Sj| when |Sj| ≥ 2 and equals

0 when |Sj| = 1. Therefore, the greatest absolute difference in influence is observed
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when s = |Sj| = 2.

max
|Sj |

λ|Sj | − λ1 =
(

1−
√

1− µ
)2

(45)

This function of µ ∈ (0, 1) approaches 0 as µ → 0+ and approaches 1 as µ → 1−.

Therefore, the largest absolute difference in influence exists when s = 2 and µ is large.

Using the same schedule, another measure of interest would be the ratio of the

last agent’s influence to that of the first. From Equation 43 we can calculate this

ratio.

λ|Sj |

λ1
= (1− µ)

1
|Sj |
−1

(46)

Because µ ∈ (0, 1), for a set value µ, this is an increasing function of |Sj| with value

1 when |Sj| = 1 that approaches (1− µ)−1 as |Sj| → ∞. For a set value of |Sj|, this

is an increasing function that approaches 0 as µ→ 0+ and approaches ∞ as µ→ 1−.

Therefore, the greatest influence ratio is observed when s =∞ and µ is large.

In an Asynchronous Source (s, t) schedule, the precise influence of an agent is not

analytically tractable because effects cascade depending upon the nature of the social

network defined by primary and secondary actor selection. Some observations related

to order may still be made, however. The first primary actor shifts the mean opinion

in the model toward their opinion upon action. If one of that actor’s secondary

actors is a later primary actor, that shift further affects the mean. The probability

of this occurring increases with t. Therefore, we expect the influence of an agent i to

decrease with k, the order in which agent j is drawn from S. Furthermore, we expect

this variation in influence to increase with t. Because the opinion of source agent i is

unchanging, the order in which agents are drawn from Ti has no effect.

In an Asynchronous Group (s, t) schedule, as defined in the GRAM, cascading
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effects behave similarly to those in the Asynchronous Source (s, t) schedule. There-

fore, we expect the influence of agents in group k, where k is the order in which that

group of agents is drawn from A, to decrease as k increases. The probability of cas-

cading effects increases with t, again, so we also expect the difference in influence to

increase with t. Note that when s =∞, only one group is possible (all agents), so the

Asynchronous Group (∞, t) GRAM is identical to the Synchronous Target (∞,∞)

GRAM, which is itself equivalent to both the Synchronous Source (∞,∞) and the

Synchronous Group (∞,∞) GRAM.

These results suggest that s should be varied between 2 and ∞ for Source and

Target actor types and held at 2 for Group actors. Because there is no reason to

believe that t would have a significant effect for Source actors while high values of

t elicit the most effect for Target and Group actors, t should be set high for those

actor types. Setting t ≥ 1000 results in s · t interactions for Source and Target actors,

while the number of interactions increases up to
(
N
s

)
for Group actors, so setting

t = 1000 allows for the most direct comparisons between actor types by keeping

total interactions equal. Furthermore, although we expect the greatest magnitude of

effect when µ is high, a range of values should be examined to assess the robustness

of these findings. The number of agents, N , should be set to a high value, but

computation time increases exponentially with N . Informal pilot runs varying N

indicated N = 1000 is a good compromise value. Thus, all simulations are performed

with t = 1000, N = 1000, s varied between 2 and 1000, and µ varied from 0.01 to

0.99 at increments of 0.01.

The order effects also suggest a manner of observing the impact that schedule may

have by biasing that order. Randomly ordered agent actions should be expected to

obscure any variance in influence when a large number of agents are used. However,

there is no reason to believe that humans are influenced in random order by those with
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whom they interact. Indeed, the dynamics of individual conversations is a relatively

unexplored area in opinion dynamics (Duggins (2017) is a notable exception here).

We seek to show the effect that scheduling may have by comparing models in which

agent order is randomized and biased forms, in which agent order is sorted to bias

opinions toward one extreme. In biased forms of GRAM, we opted to bias opinions

toward 0. When primary actors are targets, sources act in order of decreasing opinion

as Equations 44 and 46 show that later sources have higher influence. When primary

actors are sources, they act in order of increasing opinions as early actors propagate

greater cascading influence. For the same reason, when primary actors are groups in

biased models, they act in increasing order of the mean opinions of agents within the

group.

3.3.3 Results

The GRAM was run for 1000 replications for each set of parameters, beginning

with a set of N = 1000 agents initialized to uniformly distributed opinions.

Normalized histograms are shown in Figures 11 and 12. For each set of parameters

(seen as a column within a plot), the histogram was constructed with bins of 0.01

and frequencies normalized such that a value of 0 is observed only if no outcome

resulted in that opinion and a value of 1 is observed only if that opinion was the

most frequently observed outcome for that set of parameters. Each dot in these plots

is colored according to the normalized frequency, with red being the most common

outcome and blue being unseen outcomes.

For s = 2, all three primary actor types (target, source, group) were examined

with and without synchrony. When schedules were asynchronous, both unbiased and

biased forms were run as described above. Figure 11 shows the results as a normal-

ized histogram. This broad view shows that there are differences between schedules
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Figure 11. Histogram of observed opinions at convergence for GRAM, where (s, t) =
(2, 1000)
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Figure 12. Histogram of observed opinions at convergence for GRAM, where (s, t) =
(∞, 1000)

with respect to the degree of biasing exhibited in biased models and the variance in

observed opinions at convergence. Both source and target primary actors exhibited

noticeable differences in variance for high values of µ when changing synchrony. For

all synchrony and biases, source primary actors generate drastically higher variance in
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opinions at convergence than target or group primary actors. Group primary actors

exhibit the weakest biasing with relatively small variance even for high µ.

For s = ∞, only source and target primary actors were simulated; as the ac-

tion for group primary actors is defined, those models would be equivalent for both

synchronous and asynchronous schedules. Furthermore, for synchronous schedules,

source and target primary actors result in identical models; therefore, only target pri-

mary actors were simulated, although the results show them in both positions for ease

of comparison. When schedules were asynchronous, both unbiased and biased forms

were again run. Figure 12 shows the results as a normalized histogram. A larger value

of s appears from a broad view to have eliminated the differences between schedules.

A closer view is warranted.

Figures 13 (for s = 2) and 14 (for s = ∞) plot the variance observed for each

parameter set across 1000 replicates. Note that scales vary between plots when in

Figure 13 due to the drastic differences in scale between actor types that mostly

disappear for s = ∞. The variance in observed opinions for the Source (2, 1000)

schedules stands out as being significantly different from that observed with other

schedules. This is likely due to the strong influence that the first agents chosen

have upon every other agent. However, closer examination shows that all schedules

exhibit unique patterns of variance as µ is varied. Interestingly, increasing µ beyond

a point for some schedules actually has the effect of decreasing variance. For the

biased Asynchronous Target (2, 1000), biased Asynchronous Target (∞, 1000), and

biased Asynchronous Source (∞, 1000) models, this is likely the result of the strength

of schedule bias overcoming other sources of variance. For the Asynchronous Group

(2, 1000) schedules, we suspect that the cohesive impact of high values of µ decreases

the variance based upon early interactions of agents with disparate opinions that

moderate both agents.
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Figure 13. Variance in observed opinions at convergence for GRAM, where (s, t) =
(2, 1000), by primary actor type: Target (left), Source (middle), Group (right)
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Figure 14. Variance in observed opinions at convergence for GRAM, where (s, t) =
(∞, 1000), by primary actor type: Target (left), Source (right)

0
HD

Q�
2
SL
QL
RQ

�D
W�&

RQ
YH

UJ
HQ

FH
�

����

����

����

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
PX

6FKHGXOH�SDUDPHWHUV
$V\QFKURQRXV��%LDVHG��7DUJHW����������
$V\QFKURQRXV��%LDVHG��6RXUFH����������
$V\QFKURQRXV��%LDVHG��*URXS����������
$V\QFKURQRXV��%LDVHG��7DUJHW��∞�������
$V\QFKURQRXV��%LDVHG��6RXUFH��∞������

Figure 15. Mean observed opinions at convergence for GRAM

The biasing effect of ordering primary actors according to their opinion can be

clearly observed in the results in Figure 15, a plot of the mean observed outcomes

across all 1000 replicates for each parameter setting for which bias is included. As

expected, it is strongest when the convergence parameter µ is high, but its effect

is clearly observable even for low to moderate values. In these conditions, when

µ < 0.65, the schedule that exhibits the strongest bias is the Asynchronous Source
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(2, 1000). In this schedule, the mean opinion at convergence decreases in a nearly

linear fashion as µ increases, while other schedules exhibit more nonlinear effects.

When 0.65 ≤ µ ≤ 0.85, the strongest bias is exhibited in the Asynchronous Target

(∞, 1000) schedule. For µ > 0.85, the strongest bias is in the Asynchronous Target

(2, 1000) schedule. For all values of µ, biasing is weakest with an Asynchronous Group

(2, 1000) schedule.

3.4 Generalized Bounded Confidence Model

While the GRAM is sufficient to demonstrate differences that may arise in model

outputs as a result of schedule selection, there is value in presenting results for a more

complex model in more common contemporary usage. The bounded confidence OD

models presented by Deffuant et al. (2000) (the Deffuant-Weisbuch or DW model)

and that presented by Hegselmann & Krause (2002) (the Hegselmann-Krause or HK

model) have been heavily studied and reused. The two are very similar to one another;

the primary difference relates to schedule. Using the SAS taxonomy, the DW model

uses a Synchronous Group (2, 1) schedule while the HK model uses a Synchronous

Target (∞,∞) schedule.

The generalized bounded confidence model (GBCM) is a generalized model that

includes the DW, but not the HK model, as a special case. Taking an average of all

agents within confidence threshold d, as the HK model does, sets individual values

of µ to
Sj−1
Sj . Thus, including the HK model perfectly into the GBCM would negate

the ability to compare between schedules as µ would become heterogeneous between

agents, and its scale would vary with actor type and scale parameters. A near ana-

logue exists, however, using the same schedule but fixing µ as a homogeneous input

parameter.

The GBCM differs from the GRAM in one key way: after initializing sets Sj
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and/or Ti, they are filtered to only include secondary actors whose opinions are within

d of the primary actor, where d is the confidence threshold. In order to include the

base DW and HK models and enable direct comparisons between schedules, d is

homogeneous across the model.

3.4.1 Model definition

The above informal definition of the model is useful for a conceptual overview

of the GBCM but insufficiently precise to replicate the model. Let xt again be the

row vector of N agent opinions at time t and P be the left-stochastic N ×N matrix

defining the OD model from time t to t+ 1. Then,

xt+1 = xtP

As with the GRAM, P is further restricted to have diagonal elements of value (1−µ),

where µ ∈ (0, 1) is a convergence parameter. An individual agent, if influenced during

time t, grants µ influence to others while maintaining (1−µ) self-influence. This form

ensures the clusters converge and allows direct comparison between schedules.

Again, P may vary over time as sets of primary and secondary actors are chosen

and, in the case of asynchronous schedules, as the order of actors changes. Actors

are always initially selected at random from the pool of available agents, regardless

of their opinions.

Further definition of the GBCM varies by synchrony and actor type. For precision

in defining the model, it is defined in matrix form. However, all simulations were per-

formed using an agent-based implementation in NetLogo 6.0. That implementation

can be found in Appendix S.
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3.4.1.1 Synchronous

For the Synchronous Target (s, t) schedule, let T be the set of t target agents

randomly chosen as primary actors, or the set of all agents if t ≥ N . For each agent

j ∈ T , let S∗j be the set of s source agents randomly chosen to potentially influence

agent j, or the set of all other agents if s ≥ N − 1. Let Ij be the set of agents i for

whom |xi− xj| ≤ d. The set Sj = S∗j ∩ Ij becomes the filtered set of eligible sources.

The matrix P associated with the model is the N ×N matrix derived from T and Sj

that is defined by Equation 33.

For the Synchronous Source (s, t) schedule, let S be the set of s source agents

randomly chosen as primary actors at time t, or the set of all agents if s ≥ N . For

each agent i ∈ S, let T ∗i be the set of t target agents randomly chosen to potentially

be influenced by agent i, or the set of all other agents if t ≥ N − 1. Let Ii be the

set of agents j for whom |xi − xj| ≤ d. The set Ti = T ∗i ∩ Ii becomes the filtered set

of eligible targets. By extension, let Sj be the set of agents i for which j ∈ Ti. The

matrix P associated with the model is the N ×N matrix derived from S and Sj that

is defined by Equation 34.

For the Synchronous Group (s, t) schedule, we again assume that repeat influences

may not occur, as in the GRAM. Let A be the set of t s-tuples of agents initially

chosen as primary actors, or the set of all possible s-tuples of agents if t ≥
(
N
s

)
. Let

T be the set of all agents belonging to one or more groups in A. For each agent j,

let S∗j be the set of all agents belonging to one or more groups in A that also contain

j. Let Ij be the set of agents i for whom |xi−xj| ≤ d. The set Sj = S∗j ∩Ij becomes

the filtered set of eligible sources. The matrix associated with the model is the N×N

matrix derived from T and Sj that is defined by Equation 35.

As in the GRAM, mixed actor types are not used in the GBCM.
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3.4.1.2 Asynchronous

Asynchronous schedules with source and target primary actors are defined using

the P(i,j) matrices defined in Equation 39 in the GBCM as in the GRAM.

For the Asynchronous Target (s, t) schedule, let T be the set of t target agents

randomly chosen as primary actors, or the set of all agents if t ≥ N . For each agent

j ∈ T , let S∗j be the set of s source agents randomly chosen to potentially influence

agent j, or the set of all other agents if s ≥ N − 1. Let Ij be the set of agents i for

whom |xi − xj| ≤ d. Let T (l) be the lth element drawn from T , and let S(k)
j be the

kth element drawn from Sj. The set Sj = S∗j ∩ Ij becomes the filtered set of eligible

sources. The matrix P associated with the model is the N × N matrix defined by

Equation 40.

For the Asynchronous Source (s, t) schedule, let S be the set of s source agents

randomly chosen as primary actors at time t, or the set of all agents if s ≥ N . For

each agent i ∈ S, let T ∗i be the set of t target agents randomly chosen to potentially

be influenced by agent i, or the set of all other agents if t ≥ N − 1. Let Ii be the set

of agents j for whom |xi − xj| ≤ d. The set Ti = T ∗i ∩ Ii becomes the filtered set of

eligible targets. By extension, let Sj be the set of agents i for which j ∈ Ti. Let S(k)

be the kth element drawn from S, and let T (l)
i be the lth element drawn from Ti. The

matrix P associated with the model is the N ×N matrix defined by Equation 41.

For the Asynchronous Group (s, t) schedule, let A∗ be the set of t s-tuples of

agents initially chosen as primary actors, or the set of all possible s-tuples of agents

if t ≥
(
N
s

)
. Let A(k) be the kth element drawn from A. Let PA

(k)
be the matrix

associated with a Synchronous Group (s, 1) GBCM where A(k) is the chosen primary

actor according to Equation 35. The Asynchronous Group (s, t) GBCM’s associated

matrix is the ordered product of PA
(k)

matrices given in Equation 42.
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3.4.2 Parameter selection

Parameters for the GBCM that are in need of values are s, t, µ, d, and N .

Calculations for an agent’s influence are identical to those for the GRAM, with the

exception that |Sj| ≤ s in GBCM. When s = 2, it is likely for many agents that

|Sj| = 1, so we expect to see the biasing effect reduced in GBCM compared to GRAM.

In particular, when the schedule is Asynchronous (biased) Source (2, 1000), only the

set of agents with opinions within d of both randomly chosen primary actors will be

affected by order biasing. This implies that such agents would have opinions within 2d

of one another. Because opinion shift is proportional to the distance between source

and target opinions, these interactions will result in relatively small shifts. Thus we

expect the biasing effect for the Asynchronous (biased) Source (2, 1000) schedule to

be very weak.

In order to best show potential differences between schedules, it is most effective

to use a value of d for which the results are well-known. Both Deffuant et al. (2000)

and Hegselmann & Krause (2002) examine their models in-depth with d = 0.20, so

we follow suit with the same value. In both models the prototypical outcome for

this model is two distinct clusters with the possibility of small clusters at the opinion

poles (called “wings”) or between the major clusters. In their analyses, these smaller

clusters were ignored, but we will include them.

All simulations are performed with t = 1000, N = 1000, d = 0.20, s varied

between 2 and 1000, and µ varied from 0.01 to 0.99 at increments of 0.01. Aside from

d, which is not defined in the GRAM, these are the same values used in the GRAM.

3.4.3 Results

The GBCM was run for 1000 replications for each set of parameters, beginning

with a set of N = 1000 agents initialized to uniformly distributed opinions.
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Figure 16. Histogram of observed opinions at convergence for GBCM, where (s, t) =
(2, 1000) and d = 0.20
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Figure 17. Histogram of observed opinions at convergence for GBCM, where (s, t) =
(∞, 1000) and d = 0.20

Normalized histograms are shown in Figures 16 and 17. For these plots, the

mean opinion within each cluster at convergence is treated as a separate outcome,

regardless of how many agents were in that cluster. For each set of parameters
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(seen as a column within a plot), the histogram was constructed with bins of 0.01

and frequencies normalized such that a value of 0 is observed only if no outcome

resulted in that opinion and a value of 1 is observed only if that opinion was the

most frequently observed outcome for that set of parameters. Each dot in these plots

is colored according to the normalized frequency, with red being the most common

outcome and blue being unseen outcomes.

For s = 2, all three primary actor types (target, source, group) were examined

with and without synchrony. When schedules were asynchronous, both unbiased and

biased forms were run. Figure 16 shows the results as a normalized histogram. This

broad overview shows several interesting outcomes. As with the GRAM, source actors

yield much higher variance in opinions in the model at convergence. Furthermore,

as µ increases for these schedules, the location of the most common clusters diverge

toward the opinion poles. No obvious differences exist between schedules utilizing

source actors with s = 2. For both target and group actors, there appears to be

a difference in variance in cluster opinions in the synchronous and asynchronous

schedules. Biasing effects appear mild for group actors but much stronger for target

actors.

For s = ∞, only source and target primary actors were simulated; as the ac-

tion for group primary actors is defined, those models would be equivalent for both

synchronous and asynchronous schedules. Furthermore, for synchronous schedules,

source and target primary actors result in identical models; therefore, only target

primary actors were simulated, although the results shown in Figure 17 show them

in both positions for ease of comparison. While the GRAM showed the differences

between schedules to be less drastic for s =∞, the GBCM shows the opposite trend.

Synchronous schedules exhibit similar distributions of cluster opinions with s = ∞

to those observed when s = 2. Asynchronous schedules, however, have no instances
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of extreme “wings” occurring across all values of µ for either primary actor type,

and only 9 observed instances of opinion convergence when µ < 0.25. Instead, clus-

ter opinions shift gradually toward a moderate opinion until they are near enough

to converge when µ is high. This pattern is observed for both unbiased and biased

schedules, although “moderate” opinion is significantly affected by µ for biased sched-

ules for both actor types. It is also the opposite pattern to that observed for source

actors when s = 2, in which clusters tended to diverge as µ increased.

In order to compare the biasing effect across schedules, Figure 18 plots the mean

opinion of all agents at convergence with the same parameters, regardless of cluster

membership. Unlike with GRAM, GBCM biasing effects appear to have roughly

the same pattern of increasing with respect to µ, allowing schedules to be rank-

ordered by their biasing effect. As predicted, the Asynchronous Source (2, 1000)

schedule exhibited the weakest biasing effect; mean opinion decreases by 0.0075 as µ

increases, which is visually imperceptible. From weakest to strongest, schedules are

Asynchronous Source (2, 1000), Group (2, 1000), Target (2, 1000), Source (∞, 1000),

Target (∞, 1000).

The feature that distinguishes bounded confidence models from repeated averag-

ing models is the presence of distinct opinion clusters at convergence. As such, for

these models, a primary measure of interest is the number of clusters that exist at

convergence within a single replicate. Figure 19 shows the mean number of clus-

ters of any size that exist for each schedule and µ parameter across 1000 replicates.

At low values of µ, all schedules result in approximately 2 clusters. When s = ∞,

the number of clusters decreases as µ increases for all schedules. Of these, only the

Asynchronous (Unbiased) Target (∞, 1000) schedule does not reach a single cluster

when µ is sufficiently high. When s = 2, the number of clusters initially increases

as µ increases for all schedules. The number of clusters in the Synchronous Source
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Figure 18. Mean observed opinions at convergence, averaged across clusters, per repli-
cate of GBCM, where d = 0.20
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Figure 19. Mean number of clusters at convergence per replicate of GBCM, where
d = 0.20

(2, 1000), Asynchronous (Unbiased and Biased) Source (2, 1000), and Synchronous

Group (2, 1000) schedules increase as a function of µ across its entire range, while the

function is non-monotonic for the remaining 5 schedules.

The variance in number of observed clusters between replicates, shown in Figure

20 also shows varying patterns for each schedule. For most schedules, the variance in-

creases with µ to a point, then decreases. The Asynchronous (Biased) Target (2, 1000)

schedule is unique in resuming an increase at the highest values of µ, while the Syn-

chronous and Asynchronous (Unbiased and Biased) Source (2, 1000) schedules stand

out with variance that increases drastically up to µ ≈ 0.15 and continuing to increase
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Figure 20. Variance in number of observed clusters per replicate of GBCM, where
d = 0.20

approximately linearly for the remaining range of µ.

3.5 Discussion

The clearest outcome for both the GRAM and GBCM is that varying the sched-

ule of agent interactions can have significant impacts upon the emergent behavior

observed. This is the primary outcome intended to be demonstrated by these mod-

els, and it suggests that schedules should be more clearly stated and justified in OD

models. A clear and inclusive taxonomy such as SAS makes these discussions far

easier.

In the GRAM, varying synchrony in all cases altered the relationship between

the convergence parameter µ and the variance in opinions observed at convergence.

Varying the primary actor type had drastic effects upon that variance for s = 2, while

that effect largely disappeared for s =∞.

In the GBCM, the patterns of where emergent clusters were located varied with

synchrony, especially for high values of µ. For s = 2 and moderate values of µ,

Asynchronous schedules were more likely to generate clusters toward the poles of the

opinion spectrum (i.e., “wings”) than synchronous schedules. For s = ∞, only syn-
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chronous schedules ever resulted in these wings. The pattern of cluster locations was

changed drastically by varying synchrony in this case. For all synchronous schedules,

with sufficiently high values of µ, wings were more likely to be observed than clusters

at more moderate locations; these models increasingly generated bi-polarization. For

s = 2 and source-type primary actors, this effect was more clearly observed regardless

of synchrony and bias; the most-observed clusters shifted toward the poles as µ was

increased.

The biased models were biased solely by affecting the order in which agents were

chosen to act. No schedule completely eliminated the effect of biased ordering, but in

both models target actors were most affected by this ordering regardless of synchrony

and parameters. This suggests that further research should be made into the dynamics

of conversations; the assumption inherent to OD models that individuals speak with

others in random order should be questioned. For example, it may be true that

individuals tend to initiate conversations with like-minded others but are motivated

to interject in existing conversations when they hear opinions that differ moderately

from their own. This would imply a non-random order that may affect emergent

behaviors.

The schedules in this model do not exist in a technical vacuum; there are social

implications for each element. Synchrony indicates whether individuals change their

minds in the course of an interaction, or if their opinion shifts after the interaction

is completed during a period of reflection. Scale parameters indicate the social ac-

tivity levels of an individual by defining the how many interactions they may have.

This may vary by time, topic, and individual. Primary actor type reflects how an

individual approaches interactions – as a learner (target), as a teacher (source), or

as a collaborator (group). An individual may have different motivations, and there-

fore different approaches, depending upon the situation. This mixture may also vary
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depending on the status of that individual; writers for media outlets and individuals

with many followers on social media may act as sources far more often than others.

An interesting and counterintuitive outcome was observed in the GBCM with

source actors for s = 2, where increasing the convergence parameter µ increased the

separation between the most observed clusters. The convergence parameter could

alternatively be considered “susceptibility to influence,” as it is related to how much

others’ opinions affect one’s own. This suggests that the presence of primarily source-

type actors has a bi-polarizing influence. Partisan news sources and social media

have been examined for their effects on bi-polarization (see, for example, Levendusky

2013; Lee et al. 2014; Messing & Westwood 2014; Bakshy et al. 2015). This suggests

a mechanism for such a phenomenon.

3.6 Conclusion

The SAS taxonomy represents a step toward creating a common language with

which opinion dynamics researchers can compare models and discuss the social as-

sumptions inherent to those schedules. This paper defines the taxonomy and examines

variants of two generalized models using the mechanisms of repeated averaging and

bounded confidence.

The outcomes of these models executed under various schedules show that varying

any element of the schedule as defined can significantly affect emergent behavior in

even relatively simple models. Existing models rely primarily upon randomization to

order actions and choose agent type and synchrony without significant justification,

but these can be interesting and useful inputs to a model. Furthermore, openly

discussing these aspects of models can allow greater standardization and repeatability

of models.
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IV. Paper #2: Distilling Meta-contrast: The Meta-contrast
Influence Field Model

4.1 Introduction

Opinion dynamics or sociophysics models are mathematical formulations for the

evolution of opinions within groups. They have been criticized for being insufficiently

based in reality and social science (Sobkowicz 2009). The meta-contrast (MC) model

(Salzarulo 2006) is firmly rooted in the social science literature; it is an attempt

to mathematically formalize the meta-contrast principle of self-categorization theory

(Turner et al. 1987). This principle posits that individuals divide others into in-groups

and out-groups, and they seek to exhibit an opinion prototypical of their in-group

while avoiding opinions prototypical of out-groups. The MC model has been heavily

cited (102 citations at the time of writing), but no known work has attempted to

improve upon or extend the model.

The meta-contrast influence field (MIF) model developed herein expands on the

MC model of Salzarulo (2006) in several ways. First, it equalizes the scale of previ-

ously imbalanced inputs into the prototypicality function. This prototypicality func-

tion computes how prototypical an agent will perceive other opinions to be, and it is

the backbone of the MC model. The inter-group component of that prototypicality

dominates the calculation in the MC formulation. Second, it implements a continu-

ous source of influence based upon the derivative of the MC model’s prototypicality

function, which computed how prototypical an agent would perceive an opinion to be.

Using the derivative, in effect, creates an influence field composed of competing forces

acting upon the point of an agent’s opinion. Finally, as a result of this field-based

formulation, the schedule is altered to allow all agents to update in synchrony based

upon the information available to them. The MIF model is a significant improvement
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upon the MC model, and its construction allows it to be a framework upon which

more nuanced models of interpersonal influence can be built.

4.2 Background

Flache et al. (2017) provide an excellent overview of the state of the art of con-

tinuous opinion dynamics models, but a historical overview of the models that have

influenced the meta-contrast model motivates a way forward. A continuous opinion

dynamics model is one that implements opinion as a continuous value, typically in

the range [0, 1] or [−1, 1], rather than as one of a set of discrete values representing

various choices.

Continuous opinion dynamics models trace their heritage to the repeated averag-

ing model. The conceptual framework behind the repeated averaging model began

with French’s work on a theory of social power (French 1956; French & Raven 1959)

and were given more rigorous mathematical form by Harary (1959), Abelson (1964),

and DeGroot (1974). These models examine social networks in which an individual

takes as its opinion a convex combination of the opinions they observe, with weights

determined by the degree of social power that others have over them. DeGroot (1974)

and R. L. Berger (1981) proved that such models generate consensus if the matrix of

weights has the form of an ergodic, non-periodic Markov chain, as well as under some

other conditions. This condition is met by any connected social network in which no

individual has total power over another’s opinion. As a result, nearly any realistic

social structure generates a consensus opinion over time using this model. This led

Abelson (1964) to famously ask “what on earth one must assume in order to generate

the bimodal outcome of community cleavage studies” [p. 153].

One of the earliest and most influential approaches to generating such a bimodal

outcome is the use of bounded confidence. Bounded confidence (BC) models assume
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that two individuals can only influence one another if the absolute difference in their

opinions is below a specified value (Deffuant et al. 2000; Hegselmann & Krause 2002).

A confident individual has a lower value and thus a smaller range of opinions by which

they may be influenced. Less confident individuals would be susceptible to a wider

range of influences. From a Markov chain perspective, this serves to break the sys-

tem into recurrent classes that do not communicate, thereby making the associated

Markov chain non-ergodic and keeping consensus from occurring. This model has

been examined for both homogeneous and heterogeneous confidence values, and het-

erogeneity makes consensus more likely (Weisbuch et al. 2002; Lorenz 2010). The

behavior generated by BC models is characterized by weak diversity, which Duggins

(2017) defines as “the convergence of opinions to a finite number of attractor states.”

The BC model is not based in any one social scientific theory but upon the princi-

ple that individuals are more likely to interact if they are more similar, or homophily,

a concept which has strong support in the literature (McPherson et al. 2001). How-

ever, even weak connections between dissimilar individuals are sufficient to make the

associated Markov chain ergodic and therefore generate consensus.

The social judgment model of Jager & Amblard (2005) is based explicitly upon

social judgment theory (Sherif & Hovland 1961). This model implements the assump-

tion of bounded confidence, while also adding a social rejection zone of influence. If

two individuals are sufficiently similar in opinion, they will attract one another (i.e.,

impart positive influence), and if they are sufficiently different, they will repel one

another (i.e., impart negative influence). This model generates weak diversity similar

to the behavior generated by BC models, except that in models that result in at least

2 clusters, 2 of those clusters will have fully polarized opinions 0 and 1.

The assumption of negative influence has been criticized in light of mixed evi-

dence that such a phenomenon exists (Takács et al. 2016), although other studies
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indicate that negative influence may be nearly as strong as positive in certain sit-

uations (Hilmert et al. 2006). As influence is calculated as a proportion of the dis-

tance between two opinions, negative influence triggered by this formulation is always

stronger than positive influence. No known evidence exists to support this, so there

is reason to be skeptical of this formulation.

4.2.1 Meta-contrast model

The meta-contrast (MC) model was proposed by Salzarulo (2006) to implement

the principle of meta-contrast in self-categorization theory (Turner et al. 1987). The

meta-contrast principle predicts that an individual is more likely to associate with an

in-group if that group is cohesive and other groups’ opinions are distinct from those

of the in-group. Therefore, in a setting with diverse opinions two individuals may

become part of the same in-group while in less diverse context these same individuals

might associate with different in-groups.

The MC model proposes a formula for calculating the degree to which a given

opinion is perceived as prototypical of any group’s opinion. This prototypicality has

two components: an intra-group component that generates a region of increased pro-

totypicality near each observed opinion and an inter-group component that generates

increased prototypicality far from each observed opinion. The degree to which each

component impacts the prototypicality calculation is determined by a model param-

eter. An individual is then attracted to highly prototypical opinions that are similar

to their own. Specifically, the nearest local maximum on the prototypicality curve

generated by their surroundings is perceived as the in-group opinion, and the individ-

ual with the nearest opinion to the in-group opinion becomes the source of positive

influence. The individual takes this source opinion as its own.

Many papers in the literature referencing the MC model state that it implements
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both positive and negative influence (Flache & Mäs 2008a; Mäs & Flache 2013; Groe-

ber et al. 2014; Huet & Deffuant 2010; Takács et al. 2016; Kurahashi-Nakamura et

al. 2016; Krueger et al. 2017). This is not precisely accurate; only positive influence

occurs. It is considered an example of negative influence because the presence of a

dissimilar individual may push the prototypical opinion farther from that individual.

This generates an effect similar to negative influence by disconnecting the social net-

work and selecting sources farther from the outgroup member. Despite this, the MC

model does have the potential to address the criticism of the social judgment model

that negative influence outweighs positive influence by allowing the modeler to choose

the proportion of prototypicality generated by intra- and inter-group components.

In the base MC model, during each turn, one randomly chosen agent updates

its opinion as described above based on observation of all others’ opinions. Behavior

generated by the MC model is similar to that generated by the social judgment model:

one or more clusters of agents with homogeneous behavior emerge. If more than one

cluster is generated, two of those clusters move toward the poles at 0 and 1.

One deviation from the base model implements a small-world network (SWN)

rather than a fully connected network. SWNs, introduced by Milgram (1967) as a

description of real-world social ties, are characterized by minimally interconnected,

small clusters of individuals where the number of links that must be traversed to

connect any two individuals is small. A popular method for generating SWNs is to

first generate a ring network where a number of nearest neighbors are connected,

then randomly rewire these links with some probability (Watts & Strogatz 1998).

Salzarulo (2006) instead starts with a 2-dimensional grid of agents connected to their

8-agent Moore neighborhood, then randomly rewiring those connections. This gen-

erates behavior similar to the fully-connected base model except that clusters do not

necessarily fully converge.
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4.3 Method

4.3.1 Meta-contrast information field model definition

The meta-contrast influence field (MIF) model is based upon the MC model.

The system of interest is defined by N agents each possessing opinions xi ∈ [0, 1]

for i = 1, . . . , N . These opinions are initialized to random values within the defined

range. The network of agents is fully connected unless otherwise stated; that is, every

pair of agents in the population is connected.

An agent assesses the prototypicality of opinions according to the prototypicality

function used by the MC model with an added multiplier to equalize the scale of

intra- and inter-group effects. The rationale for these changes are explained in detail

in section 4.3.2. From the perspective of agent i, the prototypicality of an arbitrary

opinion x, given the set of opinions X of agents to whom agent i is connected, is

defined by the equation

P (x,X) = a · λ · dinter(x,X)− (1− a) · dintra(x,X) (47)

where a is the model parameter defining the proportion of influence caused by inter-

group effects (generated by the desire to distinguish one’s group from outgroups), λ

is a scaling factor defined by

λ =
w2

e− e1−
1

w2

(48)

w is the model parameter defining the breadth of opinions one is willing to attribute

to a single group (i.e., group width), dinter(x,X) is the inter-group component of
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opinion prototypicality

dinter(x,X) =

|X|∑
i=1

((
1− µ(x, xi)

)
· (x− xi)2

)
|X|∑
i=1

(
1− µ(x, xi)

)
dintra(x,X) is the intra-group component of opinion prototypicality

dintra(x,X) =

|X|∑
i=1

(
µ(x, xi) · (x− xi)2

)
|X|∑
i=1

µ(x, xi)

and µ(x, xi) is the fuzzy membership function defining the perceived degree to which

opinions x and xi belong in the same group

µ(x, xi) = e−
(x−xi)

2

w2 . (49)

Agents are influenced by the influence field generated by others’ observed opinions.

For agent i, this is a function of the gradient of the prototypicality function at their

current opinion, xi. At each update, an agent updates their opinion

xi ← xi + k · δ
δx
P (xi, X) (50)

where k is a convergence parameter, 0 if this would result in an opinion less than 0, or

1 if this would result in an opinion greater than 1. When using the fuzzy membership

function defined by Equation 49, the gradient is given by

δ

δx
P (x,X) = a · λ · δ

δx
dinter(x,X)− (1− a) · δ

δx
dintra(x,X) (51)
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δ

δx
dintra(x,X) = 2


w2
|X|∑
i=1

(x− xi)µ(x, xi)−
|X|∑
i=1

(x− xi)3µ(x, xi)

w2
|X|∑
i=1

µ(x, xi)

+

|X|∑
i=1

(x− xi)µ(x, xi) ·
|X|∑
i=1

(x− xi)2µ(x, xi)

w2

(
|X|∑
i=1

µ(x, xi)

)2



δ

δx
dinter(x,X) = 2


w2
|X|∑
i=1

(x− xi)
(
1− µ(x, xi)

)
+
|X|∑
i=1

(x− xi)3µ(x, xi)

w2
|X|∑
i=1

(
1− µ(x, xi)

)

−

|X|∑
i=1

(x− xi)µ(x, xi) ·
|X|∑
i=1

(x− xi)2
(
1− µ(x, xi)

)
w2

(
|X|∑
i=1

(
1− µ(x, xi)

))2

 .

The base MIF model uses a synchronous target (∞,∞) model, according to the

synchrony, actor type, scale (SAS) taxonomy (see Chapter III). This assumes that

all agents adjust their opinions continuously according to the influence field they

perceive. Values of k should then be small enough that time steps approximate

continuous time.

NetLogo 6.0 (Wilensky 1999) code implementing the MIF model is given in Ap-

pendix T.

4.3.2 Changes from the meta-contrast model

To enable direct comparison of results between the MIF model and the MC model,

a replication of the MC model is used that adheres to the rules specified in the text

of Salzarulo (2006). In this model, during each step, one agent updates its opinion to
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match that of another agent. This source agent is the one with opinion most similar

to the nearest opinion with a locally maximal prototypicality. The local maximum

is obtained to an accuracy of 0.01. This differs slightly from the code used in the

original paper, in which a gradient-based search was used that does not guarantee

that the nearest local maximum is chosen. The Netlogo 6.0 code for the MC model

is given in Appendix U.

The MIF model implements three major changes to the MC model: scaling the

dinter(x,X) by λ in the calculation of prototypicality, updating opinion as a function

of the gradient, and modifying the agent schedule. These changes exist to rectify

weaknesses in the original MC model; the rationale behind those changes is given

below.

4.3.2.1 Scaling factor

The form of the prototypicality function (Equation 47) suggests that prototyp-

icality is a weighted average of two components: dinter(x,X) and dintra(x,X). One

might assume that both components are of a comparable scale, but Salzarulo (2006)

notes that for a ≥ 0.3 the effect of dinter(x,X) dominates the prototypicality function.

This disparity is illustrated by comparing the individual agent’s contribution to each

function’s numerator, which are functions of the distance from their opinion xi to x.

Let an individual’s contribution to the numerator of dintra be

d̂intra(|x− xi|) = e−
(x−xi)

2

w2 · (x− xi)2

The maximum value of this function occurs when |x− xi| = w, yielding a maximum

contribution of

max
|x−xi|

d̂intra(x− xi) = e−
w2

w2 · w2 =
w2

e
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Let an individual’s contribution to the numerator of dinter be

d̂inter(|x− xi|) = (1− e−
(x−xi)

2

w2 ) · (x− xi)2

The maximum value of this function occurs when |x − xi| = 1, yielding a maximum

contribution of

max
|x−xi|

d̂inter(x− xi) =
(

1− e−
1

w2

)
· 12 = 1− e−

1
w2
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Figure 21. Maximum values as function of w (left), and ratio of these values as a
function of w (right)

Figure 21 shows each of these maximum values as a function of w and the ratio

of maxx−xi d̂intra to maxx−xi d̂inter. It is clear that there is a large disparity between

the ranges of dinter(x,X) and dintra(x,X), especially for low values of w. To equalize

this, the MIF multiplies dinter(x,X) by the ratio of component maxima λ defined by

Equation 48.

4.3.2.2 Agent updates

Most continuous opinion dynamics models use as their core updating mechanism

some weighted sum of agent opinions. Prior to the MIF, this has remained fun-
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damentally unchanged since the original repeated averaging models, although the

calculation of weights varies between models. The repeated averaging model of DeG-

root (1974) uses fixed non-negative weights summing to 1. Deffuant et al. (2000) and

Hegselmann & Krause (2002) use averages of a subset of opinions within confidence

bounds. The relative agreement model (Deffuant et al. 2002) calculates non-negative

weights summing to 1 based upon uncertainty levels. Jager & Amblard (2005) use

both positive and negative weights. The influence, susceptibility, and conformity

(ISC) model (Duggins 2017) calculates weights based upon agent characteristics and

conversational dynamics. The MC model is no different; as used by Salzarulo (2006)

it imparts the source agent’s opinion fully upon the target agent, thereby giving a

weight of 1 to the chosen source agent’s opinion and a weight of 0 to all others.

The prototypicality function of the MC model suggests an alternative mecha-

nism, which the MIF model uses, when it is recast as a utility function. From this

perspective, individuals should seek to hold opinions prototypical of their in-group.

Therefore the derivative of this function can be considered a social pressure pushing

them toward group conformity.

Using the derivative of the prototypicality function, rather than any subset of

agents’ opinions, avoids non-continuous breaks in the the value upon which any change

in opinion is based, or the influence basis. Consider the case of X = {x0, 0.2, 0.8}. In

the MC model, the basis of influence for agent 0 is x∗ − x0 where x∗ is the nearest

prototypical opinion. Four cases may occur: (1) x1 is the nearest prototypical opinion,

(2) x2 is the nearest prototypical opinion, (3) x0 is the nearest prototypical opinion,

or (4) x0 = 0.5 and a tie exists for nearest prototypical opinion. For parameters

a = 0.08 and w = 0.36, (1) occurs for x0 ∈ [0, 0.043] ∩ [0.2, 0.5), (2) occurs for

x0 ∈ (0.5, 0.8] ∩ [0.957, 1], (3) occurs for x0 ∈ (0.043, 0.2) ∩ (0.8, 0.957), and (4)

occurs for x0 = 0. The corresponding basis of influence for the MC model along
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with the derivative of P are shown in Figure 22. Discontinuities in the MC model’s

influence basis exist where x0 ∈ {0.043, 0.5, 0.957}, and tie-breaking rules must be

implemented to determine influence at these points. The gradient, shown in blue,

is continuous. Furthermore, tie-breaking is not required; an agent caught perfectly

between two prototypical opinions will be influenced equally by both and experience

zero net influence.

Figure 22. Basis of influence when a = 0.08, w = 0.36, X = {x0, 0.2, 0.8}

The gradient as a basis of influence also eliminates ambiguity in source opinion

selection. The MC model, as described by Salzarulo (2006), identifies the prototypical

in-group opinion as the opinion closest to the nearest local maximum. However,

in the associated code, a gradient-based search for local maximum is utilized. In

the case where identified groups are of uneven sizes, this may lead to the farther

local maximum, although it might be considered the group that exerts the most

influence. Consider the case of X = {x0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.8}. Figure 23 shows

the associated prototypicality curve for agent 0 when a = 0.08 and w = 0.36. If

x0 = 0.6, a gradient-based search will result in influence toward 0.2 rather than 0.8,

despite the nearest prototypical opinion being near 1. This seems appropriate as the

larger group should be expected to exert stronger influence, although it contrasts with

the model as described. The gradient maintains this direction of influence.
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Figure 23. MC prototypicality function when a = 0.08, w = 0.36, X =
{x0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.8}

The MIF influence field exhibits both positive and negative influence except when

a = 1, in which case only negative influence exists. This can be seen in Figure 24,

which plots the force exerted by an agent with opinion x0 = 0 upon an agent with

opinion x1 when those two agents are interacting in isolation. At left of Figure 24,

only the intra-group component is exerting force. At right of Figure 24, only the inter-

group component is exerting force. Positive values represent a repulsive force from

the source at 0 (i.e., negative influence) and negative values represent an attractive

force toward the source at 0 (i.e., positive influence).
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Figure 24. Influence field at x1 when a = 0 (left) and a = 1 (right), w = 0.36, X = {0, x1}

The gradient allows for influence based upon a single calculation rather than
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performing a search for local maxima. This calculation is certainly more complex

than average-based opinion dynamics models, particularly for a fully connected social

network, but the increase in complexity yields more justifiable and flexible behavior.

4.3.2.3 Agent schedule

The base MC model uses an asynchronous target (1, 1) schedule according to

the SAS taxonomy (see Chapter III). This models sequential conversations in which

high status individuals convince lower-status individuals who perceive that they are

members of the same in-group. The MIF model considers agents to be continuously

influenced by the influence fields that they are exposed to over time, rather than

influenced at discrete times through conversation events. Therefore, a better schedule

is the synchronous target (∞,∞) schedule, in which all agents are simultaneously

influenced by those to whom they are connected at every time step.

4.3.3 Small-world network variant

A strength of the MC model is that agents use the full set of observed opinions to

inform their opinion updates, so an important variant to examine is one in which the

social network is not fully connected and agents do not possess perfect information.

The small-world network (SWN) variant of the MIF model uses the method of Watts

& Strogatz (1998) to build the social network, which remains static over the course of

the model run. Agents are placed into a ring network and connected with the c closest

neighbors in each direction (k = 2 · c in the original paper’s notation). Each of these

connections is randomly rewired with probability p. Salzarulo (2006) used a similar

method on a 2-dimensional grid of agents utilizing the 8-agent Moore neighborhood.

All SWN experiments used for this paper take a fixed value c = 8. The MC model

replication used for comparison also uses the Watts-Strogatz method, rather than the
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similar method used in the original paper. These variants are built into the same

code as the base model (Appendix T for MIF and Appendix U for MC).

4.4 Results

The base model was run 100 times for each set of parameters with a varied from

0 to 1 at increments of 0.01, w varied from 0.01 to 1 at increments of 0.01, and k

fixed at 0.2. N was fixed at 100 as in the experiments performed by Salzarulo (2006).

The primary response variable of interest is the number of clusters that form. Thus,

the model is considered to have sufficiently converged when clusters have formed of

width no greater than w
2
, with separation of no less than w between clusters. The

MC model used for comparison is stopped when the set of opinions in the population

is no larger than the set of local maxima in the prototypicality curve.

Figure 25 shows the mean number of clusters that form for the base MC model and

the base MIF model. Each dot in the plots represents the mean number of clusters

observed over all 100 replications using a logarithmic color scale to ensure variation

between both small and large numbers of clusters is visible. The dark blue region in

the top-left of each plot represents convergence to consensus; a single cluster is formed.

The region in the lower-left represents the opposite behavior, formation of a large

number of clusters. Clustering behavior observable in the MC model is maintained in

the MIF model, but the effect of changing a is diminished significantly, and additional

interaction between the effects of a and w are induced by the λ multiplier.

The within-run dynamics over time can be characterized by three overlapping

phases: (1) initial moderation of extreme opinions, (2) consolidation of opinions

within clusters, and (3) separation of clusters if more than one remains. As a in-

creases, the strength of phase 1 is diminished. This is well illustrated in the case

where w = 0.5. Figure 26 shows three individual runs, where each line is the opinion
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Figure 25. Mean number of clusters that form in the MC model (left) and MIF model
(right)

of an agent over time. When a = 0.25, phase 1 is strong enough to form a single

cluster, and phase 3 does not occur. When a = 0.5, all three phases occur: initially,

extreme opinions are pulled toward the center, then clusters consolidate and are sepa-

rated resulting in bi-polarization. This outcome is not inevitable for these parameters

but depends upon minor variations in the initial conditions. When a = 0.75, the effect

of phase 1 is far weaker and the range of opinions barely diminishes before phase 3

begins. Similar dynamics exist for other values of w but with more clusters forming.

Figure 27 shows an individual run for w = 0.15 and a = 0.5 in which the three phases

can be observed in the formation of four clusters.

The time for a single run of the MIF model had a mean of 1.52 seconds and a

median of 0.85 seconds, with individual runs ranging from 0.08 to 806 seconds. The

time for a single run of the MC model has a mean of 12.0 seconds and a median

of 11.4 seconds, with individual runs ranging from 4.38 seconds to 235 seconds. All

instances of the mean time to compute being greater for the MIF model than the MC

model have parameters a ≥ 0.95 and w ≤ 0.25. In this region of the parameter space,

the MIF model converged slowly.

The SWN variant was also run 100 times for each set of parameters with a varied
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Figure 26. Individual model runs where w = 0.5 and a = 0.25 (top), a = 0.5 (middle),
and a = 0.75 (bottom)
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Figure 27. Individual model run where w = 0.15 a = 0.5

from 0 to 1 at increments of 0.01, w varied from 0.01 to 1 at increments of 0.01,

and p varied between values {0, 0.05, 0.1}. Other parameters were fixed: N = 100,

k = 0.2, c = 8. The SWN model may not converge to clusters in the same manner

as the base model as a result of individual agents experiencing differing contexts, so

the model is stopped when an update would result in no agent changing their opinion

by more than w
100

. This is intended to capture the bulk of the clustering behavior

in the model to enable comparison with the MC model and between parameters, as

only small adjustments relative to group width are being made. However, it may

not fully capture long-run behavior that may take hundreds of thousands of updates

to reach. The MC model SWN variant is stopped when the range of agent opinions

decreases below 0.01, two clusters have formed with identical opinions, or after 1500

updates (an average of 15 per agent), whichever occurs first. Salzarulo (2006) used

1500 updates as the stopping criterion for the MC model, so it is used here as well.

Figure 28 shows the mean normalized variance in opinions at the end of a model

run. At initialization, opinions are taken from the uniform distribution in [0, 1], which

has a variance of 1
12

. The relative variance, then, is 12 times the observed variance of

opinions. This allows observation of under what conditions opinion variance increased

or decreased and by how much. The outcome of complete bi-polarization into equal-
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sized groups with opinions at the extremes has the maximum normalized variance

of 3, while the consensus outcome has the minimum normalized variance of 0. This

method was also used by Salzarulo (2006) in examining the MC model’s behavior in

a SWN. Figure 29 shows results over the same parameter set using the MC model.
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Figure 28. Normalized opinion variance for MIF model using a SWN
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Figure 29. Normalized opinion variance for MC model using a SWN

There is very little change observed between the ring network (p = 0) and vary-

ingly random small-world networks (p = 0.05, p = 0.1) in either the MIF or MC

model. Similar outcomes were reported by Salzarulo (2006). In the MIF (Figure 28),

bi-polarization is not a common outcome in a small-world network when a < 0.4. In

the range 0.4 ≤ a ≤ 0.65, the probability of that outcome is highly contingent upon
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w. As w increases, the change required in a to move from a region of guaranteed

consensus to a region of guaranteed bi-polarization decreases significantly. The MC

model generates bi-polarization for nearly all of the parameter space. This is a re-

sult of the scaling factor decreasing the magnitude of inter-group pressure to a level

comparable with the magnitude of intra-group pressure.

A closer examination of data for model runs where w = 0.5 showcases the impact

of the scale modifier applied in the MIF model. It seems appropriate that a group

width of w = 0.5 should result in consensus when a is low; all agents are within opinion

0.5 of those agents with opinion 0.5. It also seems appropriate that bi-polarization

should occur when a is high; agents with moderate opinions should be pushed away

from whichever side exerts greater force while w is too large for intermediate clusters

to exist. Both of these outcomes are observed in both the MC and MIF models.

However, it seems reasonable for the region in which a ≈ 0.5 to be unstable as both

competing forces should approximately cancel one another out. This is exactly what

is observed in the central region of the MIF model (see Figure 28). This unstable

region in the MC model occurs for a < 0.2 (see Figure 29) because the inter-group

pressure is dominant in that formulation of prototypicality.

4.5 Discussion

One of the strongest aspects of the MC model is its capability to specify the

relative impact of intra- and inter-group components of prototypicality. This gives

the MC model the flexibility to model situations in which only intra-group pressures

apply, situations in which only inter-group pressures apply, or anything in between.

However, the implementation of the MC model muddled the interpretation of the

parameter a that defined the relative impact of each component and only implemented

positive influence, although source selection yielded results that might be expected
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from a negative influence model.

The MIF model strengthens this capability of the MC model. The MIF model

addresses the imbalance of scale between the intra- and inter-group components of

prototypicality calculation. This imbalance has a real practical effect. If one were

to measure the relative impact of each type of pressure experimentally, it would not

be possible to parameterize the relevant MC model for validation. The MIF model

could be parameterized in this way. This is an area to be explored in more detail in

future research with this model.

The desirable clustering behavior observed in the MC model remains in the MIF

model. The MC model deterministically selects source agents based on prototypical

opinion calculations, which serves to disconnect the social network and allow for the

generation of weak diversity. The MIF model uses all connected agents as sources

for the influence field, reconnecting the social network and instead using negative

influence to generate weak diversity.

The computation required in the MIF model is reduced to a single calculation

of δ
δx
P (x,X) rather than a costly search for local maxima of P (x,X) as in the MC

model. Using the described criteria for determining convergence of the model and

finding local maxima on the prototypicality curve to an accuracy of 0.01, the MIF

model reduced the mean computation time over the entire parameter space of the

MC model by 87% and the median time by 81%. This eases the computational

burden of implementing meta-contrast and makes larger models with more agents

computationally feasible.

The MIF model is a first step toward building a more comprehensive model of

opinion dynamics. The construction of the MIF model makes extension using ad-

ditional components possible in a way not easily done with other opinion dynamics

models. Prototypicality is viewed as a utility function, and the MIF model uses its
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gradient as an influence field. Additional components can easily be added to the util-

ity function, with corresponding gradients added to the influence field. Thus, future

research can expand on the MIF model by adding other sources of utility that mo-

tivate opinion change, each contributing another competing force into the influence

field.

The MIF model, like the MC model, is fundamentally rooted in the meta-contrast

principle of self-categorization theory. While Turner & Oakes (1986) argued against

the distinction between normative and informational influence, there is evidence that

informational influence should be modeled separately (Isenberg 1986). An area for fu-

ture research is to combine this normative model with a model of informative influence

such as the Argument-Communication Theory of Bi-polarization (ACTB) model of

Mäs & Flache (2013). This could yield a more complete model of opinion dynamics.

4.6 Conclusion

The meta-contrast (MC) model is heavily rooted in social science theory. Its

behavior is characterized by weak diversity — sustained clusters with homogeneous

opinions within clusters. It has nonetheless remained unused in the opinion dynamics

modeling field, likely because it has a high computational cost and because it has

been dismissed as yielding results identical to the social judgment model.

The meta-contrast influence field (MIF) model introduced herein breathes new

life into the MC model and makes significant improvements by using a continuous

basis of influence derived from the prototypicality gradient, addressing the relative

scale of intra- and inter-group contributions to opinion prototypicality, and reducing

computation time by a mean of 87% over the entire parameter space. The resultant

model has a closer tie to reality and is far more usable while retaining all desirable

qualitative behavior.
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By moving to a continuous basis of influence the MIF model, unlike the MC

model, becomes a model that implements both positive and negative influence. The

parameter a controls the relative magnitude of intra- and inter-group forces so that

experimentally-derived estimates can be used to model a given situation. This allows

the MIF model to be more interpretable, as the parameters have clear meaning. The

MIF model maintains the desirable behavior of the MC model; when a = 0 weak

diversity is generated without using negative influence or disconnecting the social

network. These improvements also come with significant savings in computation.

The MIF model alone is a significant improvement on its own, but the strongest

impact of this research comes from the ability for this model to be extended and

combined with other models. Influence in the MIF is a sum of forces exerted by other

agents. Additional forces can literally be simply added to this sum. The modular

construction of the MIF model makes extension using additional components possible

in a way not easily done with other opinion dynamics models, opening an avenue for

extension and modification of the MIF to incorporate other forces that motivate

influence and opinion change.
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V. Paper #3: Generating Strong Diversity with the
Meta-contrast Influence Field Model

5.1 Introduction

Models of social influence, known as opinion dynamics models, have long sought

an explanatory mechanism for the diversity of opinions observed in society (Abelson

1964; Axelrod 1997; Flache et al. 2017). Models that generate diversity between,

but not within, groups have been criticized for making assumptions beyond what

social scientific evidence justifies (Mäs et al. 2010). The harder problem of generating

diversity both between and within groups has been solved by a single known model,

the Influence, Susceptibility, and Conformity (ISC) model, which relies heavily upon

randomness and heterogeneity to achieve this goal (Duggins 2017).

While generating diversity of opinions in such a way is a worthwhile goal of its

own, opinion dynamics models are inherently forms of what Epstein (1999) calls

generative social science. Within this paradigm, the goal of modeling is to provide a

set of rules that generate a desired complex behavior. Parsimony is key to this type

of modeling, as a complex answer does little to explain the underlying mechanisms

driving behavior.

The present paper introduces the meta-contrast influence field with local repulsion

(MIF-LR) model, a parsimonious model of opinion dynamics that can generate a

wealth of opinion distributions. It is rooted in theories from the social scientific

literature, specifically self-categorization theory (Turner et al. 1987) and uniqueness

theory (Fromkin & Snyder 1980). Self-categorization theory is used to define the

rules of cluster formation, while uniqueness theory motivates local repulsion amongst

agents to maintain diversity within clusters.

The resulting opinion distributions suggest that individuals’ competing drives to
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conform within in-groups, appear unique within those in-groups, and differentiate

between in-groups and out-groups is sufficient to explain opinion diversity in a small-

world network. This is further applied to a political science topic that has generated

much attention: partisan polarization of society. We are able to generate this polar-

ization by simply increasing the randomness of connections within a social network,

proving the generative sufficiency of this mechanism of polarization.

5.2 Background

“The formation of persistent opinion clusters is such a difficult puzzle that
all attempts to explain them had to make assumptions that are difficult
to justify by empirical evidence.” (Mäs et al. 2010, p. 3)

A mathematical model that explains the diversity of opinions in the populations

has been an elusive goal of opinion dynamics modelers. The earliest continuous

opinion dynamics models were based upon repeated averaging of the opinions in one’s

social network based upon pair-wise social power (French 1956; Harary 1959). These

linear models have been proven to converge within a broad set of conditions that

replicate most real-world social networks (Abelson 1964; DeGroot 1974; R. L. Berger

1981).

Abelson (1964) insightfully identified three ways in which diversity might be ob-

tained in a continuous opinion dynamics model, each of which have been applied in

modern models. First, the social network might not be connected, in which case each

group would converge separately. Second, negative influence may exist that pushes an

individual’s opinion away from another’s opinion. Third, contact rates and pair-wise

effect rates may change over time.

Non-linear opinion dynamics models have been developed in the last 20 years that

make use of Abelson’s suggestions. These all follow his third suggestion; the rates of
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contact and/or effect between pairs of individuals varies over time.

Bounded confidence models (Deffuant et al. 2000; Hegselmann & Krause 2002)

posit that only opinions similar to one’s own provide influence. This makes use of

Abelson’s first suggestion by gradually breaking the connectivity of the social network

into groups with a width defined by the range of opinions an individual considers

meaningful. These models generate what Duggins (2017) defines as weak diversity —

within a group, opinions converge to consensus.

The relative agreement model (Deffuant et al. 2002) takes an alternative approach

to disconnecting the social network over time. Individuals update their confidence

as well as their opinions over time based upon interactions with others. With time,

individuals gain sufficient confidence in their opinions to decrease the set of opinions

that may impact their own, gradually disconnecting the network. This also generates

weak diversity of opinions.

An extension of the bounded confidence model is the social judgment model (Jager

& Amblard 2005). This adds a region within which Abelson’s second suggestion holds.

As in the bounded confidence models, opinions similar to one’s own induce positive,

or attractive, influence. To this, Jager & Amblard add a region in which, if two

individuals’ opinions are sufficiently different, the resultant influence is negative, or

repulsive. This generates weak diversity of opinions, and if two or more clusters arise,

two clusters move to the most extreme positions.

Many other models have been developed that implement similar rules in varying

ways. Others have cataloged them extensively (see Flache et al. 2017; Ŝırbu et al.

2017), and they all have in common that they generate weak diversity of opinions with

one exception. Furthermore, they have been criticized for relying upon assumptions

that are not well supported (Mäs et al. 2010). In particular, any formulation that

completely disconnects a social network fails to reflect the real world.
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5.2.1 Influence, Susceptibility, and Conformity (ISC) Model

The Influence, Susceptibility, and Conformity (ISC) model is the first known opin-

ion dynamics model to have generated strong diversity (Duggins 2017), or diversity

both between and within clusters. Agents in this model have heterogeneous values

for internal, psychologically-based parameters of susceptibility, conformity, tolerance,

and social reach. Agents are connected to one another by proximity along with some

random rewiring to form a small-world social network in a manner similar to that

of Watts & Strogatz (1998). At each interaction, an agent initiates a conversation

within its social network that occurs in random order. Within this conversation,

agents modify their expressed opinion toward the average opinion that has been ex-

pressed so far, with dynamics varying according to their internal parameters. The

resultant influence may be positive or negative with magnitude dependent upon the

distance between the average expressed opinion and the target agent’s opinion along

with internal parameters. Negative influence occurs when the difference between these

opinions is large and is a function of that distance. This causes negative influence to

have the potential to be much stronger than positive influence. This can generate a

diverse set of opinion distributions that are sustained over time.

Duggins (2017) deserves credit for identifying a model that can create strong

diversity, but it strays significantly from the principle of parsimony in order to do

so. Both heterogeneous parameter values and the dynamics of a conversation are

defined by randomness. It is therefore unclear how consistently a distribution may be

generated by a given set of parameters. These processes are based in social science

and well justified, but a more parsimonious model is desirable if it can also generate

strong diversity.
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5.2.2 Meta-contrast Influence Field (MIF) Model

The meta-contrast influence field (MIF) model (see Chapter IV) serves as a frame-

work that allows a modeler to add potentially conflicting forces of influence to an

agent’s behavior. The base model uses the prototypicality function of the meta-

contrast model (Salzarulo 2006) as a utility function and assumes that opinions will

be updated in accordance with the derivative of the utility function. This derivative,

then, serves as the net force acting upon the point of the agent’s opinion as a result

of a field emanating from all others within their social network.

These forces take two forms, the intra-group and inter-group components, rep-

resenting components of the meta-contrast principle of self-categorization theory

(Turner et al. 1987). The intra-group component represents the agent’s desire to

categorize themselves and their social network into in-groups and out-groups. It

causes opinions common to a cluster of others to be perceived as prototypical (the

in-group), as well as opinions far from such a cluster (the out-group). The inter-

group component represents the agent’s desire to distinguish their own in-group from

perceived out-groups. It increases prototypicality of opinions distant from observed

opinions, which has the effect of pushing the opinions perceived to be prototypical of

each group apart from one another.

In the MIF formulation, the intra-group component results in both positive and

negative influence while the inter-group results only in negative influence. The MIF

model, then, is an example of Abelson’s second and third suggestions; it includes

negative influence and the forces change over time. There is some controversy re-

garding the empirical support for negative influence. A recent study by Takács et al.

(2016) found no evidence of negative influence in their study and cautioned against

relying upon it as a model foundation. Others have found strong evidence of negative

influence (Hilmert et al. 2006). On a macro scale, however, group members consis-
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tently change behavior to signal a group identity consistent with their in-group and

distinctive from out-groups (J. Berger & Heath 2007, 2008). This is consistent with

the meta-contrast principle.

5.2.3 Drive for Individualization

One interesting finding by Takács et al. (2016) was that negative influence was

observed between individuals with closely aligned opinions. This would be predicted

by uniqueness theory, which postulates that over-similarity to others can generate

a negative emotional reaction (Fromkin & Snyder 1980). Chan et al. (2012) found

support for an interaction between desire to both belong to an in-group and be unique

within that group.

Formulations including a desire for uniqueness are largely absent from the opin-

ion dynamics modeling literature. The one exception appears to be that of the

Durkheimian opinion dynamics model of Mäs et al. (2010). This is inspired by

Durkheim’s theory of social integration (Durkheim 1933), which similarly argued that

society was formed by contrasting forces to conform and individualize. This formu-

lation fundamentally uses a repeated averaging model augmented with an adaptive

noise component. This adaptive noise is a random fluctuation in opinions drawn from

a normal distribution with mean 0 and with standard deviation

s

N∑
j=1

e−|xi−xj |

where s is a model parameter, N is the number of agents in the model, and xi is the

opinion of agent i. In this way, the noise parameter has greater variation when agents

were densely packed than when they were dispersed. This results in clusters forming

and dissolving without stabilizing as time progresses. A drive for individualization is

therefore useful for explaining cluster generation, but randomness in its formulation
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yields temporal instability.

5.3 Method

The meta-contrast influence field local repulsion (MIF-LR) model is based upon

the meta-contrast influence field (MIF) model. The MIF model and its rationale

is described in detail in Chapter IV. It takes a variant of the prototypicality func-

tion used in the meta-contrast (MC) model (Salzarulo 2006), which calculates the

perceived prototypicality of opinion x based upon observations of a set of opinions

X, and redefines it as a utility function. This modification of the MIF model adds

a non-prototypicality element to that utility function representing a drive for indi-

vidualization, which makes it a broader function of opinion desirability than simple

prototypicality.

NetLogo 6.0 (Wilensky 1999) code implementing the MIF-LR model is provided

in Appendix V.

The system of interest is defined by N agents each possessing opinions xi ∈ [0, 1]

for i = 1, . . . , N . These opinions are initialized to random values within the defined

range. Agents are placed within a small world network generated using the method

of Watts & Strogatz (1998). All agents are placed in a ring network and connected

with c nearest neighbors in each direction (2 · c total), and connections are rewired

to another agent chosen at random with probability p.

The MIF model’s prototypicality function contained two components: an intra-

group (dintra) and an inter-group (dinter). Taking into account relevant scalar multi-
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pliers, these have the values

dintra(x,X) = −

|X|∑
i=1

(x− xi)2 · e
−(x−xi)

2

w2

|X|∑
i=1

e
−(x−xi)

2

w2

dinter(x,X) =

w2

e+e
w2−1
w2

·
|X|∑
i=1

(x− xi)2 ·
(

1− e
−(x−xi)

2

w2

)
|X|∑
i=1

(
1− e

−(x−xi)
2

w2

)

where X is the set of observed opinions and w is a parameter defining group width.

The MIF-LR extends the prototypicality function with an extra component: a

drive for individualization (dindiv).

dindiv(x,X) = −

w2

e
·
|X|∑
i=1

e
−(x−xi)

2

(v·w)2

|X|∑
i=1

e
−(x−xi)

2

w2

where v ∈ (0, 1) defines the relative width of a repulsive force stemming from a desire

to be unique. The multiplier w2

e
is used to equalize the relative scale of dintra, the

numerator of which has a maximum value of e
w2 , with that of dindiv, the numerator of

which has a maximum value of 1.

These components combine to define the perceived desirability of opinion x based

upon observations of the set of opinions X available to an agent. Letting a be the

proportion of desirability attributable to inter-group dynamics and b be the proportion

of intra-group desirability attributable to a drive for individualization, the desirability

of opinion x is

D(x,X) = a · dinter(x,X) + (1− a) · (b · dindiv(x,X) + (1− b) · dintra(x,X)) .
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The influence field generated at x by the perception of desirability is defined by the

derivative of the desirability function

δ

δx
D(x,X) = a· δ

δx
dinter(x,X)+(1−a)·

(
b · δ
δx
dindiv(x,X) + (1− b) · δ

δx
dintra(x,X)

)

with component derivatives defined by

δ

δx
dinter(x,X) =

2

e+ e
w2−1

w2

·


w2
|X|∑
i=1

(x− xi)
(
1− µ(x, xi)

)
+
|X|∑
i=1

(x− xi)3µ(x, xi)

|X|∑
i=1

(
1− µ(x, xi)

)

−

|X|∑
i=1

(x− xi)µ(x, xi) ·
|X|∑
i=1

(x− xi)2
(
1− µ(x, xi)

)
(
|X|∑
i=1

(
1− µ(x, xi)

))2


δ

δx
dintra(x,X) =

−2

w2


w2
|X|∑
i=1

(x− xi)µ(x, xi)−
|X|∑
i=1

(x− xi)3µ(x, xi)

|X|∑
i=1

µ(x, xi)

+

|X|∑
i=1

(x− xi)µ(x, xi) ·
|X|∑
i=1

(x− xi)2µ(x, xi)(
|X|∑
i=1

µ(x, xi)

)2



δ

δx
dindiv(x,X) =

−2w2

e
·


|X|∑
i=1

(x− xi)µ(x, xi) ·
|X|∑
i=1

µ∗(x, xi)

w2 ·

(
|X|∑
i=1

µ(x, xi)

)2 −

|X|∑
i=1

µ∗(x, xi)

v2 ·
|X|∑
i=1

µ(x, xi)

 .

Agents in the MIF-LR model update their opinions much like the agents in the

MIF model. Using a Synchronous Target (∞,∞) schedule, per the SAS taxonomy
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(see Chapter III), all agents i = 1, . . . , N update their opinions according to

xi ← xi + k · δ
δx
D(x,X)

where k is a convergence parameter that should be set low enough to approximate

continuous time. If k is set too high, the modeler will observe agents overshooting

their preferred opinion and oscillating with each update.

5.3.1 Effect of adding a drive for individualization

The drive for individualization, dindiv, serves as a modifier to the original intra-

group effect of meta-contrast, dintra. They share a denominator, so they may be

compared using the numerator alone without altering the shape of the effect in the

full model. Figure 30 shows the shapes of each component and their sum with b = 0.5,

to keep their scales equal, and v = 0.10, 0.25, 0.5, and 0.75 as noted above each plot.

Without the drive for individualization, dintra creates local maxima at |x − xi| = 0

and at |x − xi| = 1. Considering the derivative, this generates positive influence

for 0 < |x − xi| < w and negative influence for |x − xi| > w. Without the dintra

component, dindiv generates a local maximum at |x−xi| = 1. Its derivative generates

negative influence for all |x− xi| > 0, although its magnitude diminishes rapidly.

The sum of both components shows a more interesting pattern. For low to

moderate values of v . 0.6, the sum generates a local maximum at some point

0 < |x − xi| < w and another at |x − xi| = 1. This has the effect of generating neg-

ative influence for those with very similar opinions, positive influence for those with

moderately dissimilar opinions, and negative influence for those with very dissimilar

opinions. These three groups correspond with in-group members whose similarity

causes a desire to appear unique, other in-group members, and out-group members

respectively. The lower the value of v, the stronger the repulsive force against sim-
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Figure 30. Shape of numerators of dintra, dindiv, and their sum for w = 0.4, b = 0.5

ilar others but the narrower the range of this negative influence. For higher values

of v, the shape is similar to that of dintra alone, except that the local maximum at

|x− xi| = w is moved toward 0.

5.4 Results

The desired outcome of the MIF-LR model is the capability of generating a broad

range of opinion distributions that are stable over time and consistently generated by

a particular set of parameters. To demonstrate this capability, parameter sets were

identified that generate unimodal, bimodal, trimodal, and quatrimodal distributions.

This outcome was achieved while only varying a single variable: w. The other pa-

rameters are set to a = 0, b = 0.50, c = 8, N = 1000, p = 0.05, v = 0.25. Each model

was run for 2000 updates.
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The results shown in Figure 31 come from setting w = 0.45. The distribution on

the left shows the 1000 opinions resulting from a single model run for 2000 updates.

The distribution on the right shows the 100,000 individual opinions from 100 model

runs for 2000 updates. A clear unimodal distribution has formed in the single run,

and that distribution is reflected in the multi-run behavior showing that the outcome

is repeatable with those parameters. The long tails appear to have created very small

clusters at the extreme opinion values of 0 and 1, with less than 0.1% of opinions at

each of those values.

Figure 31. Distribution of opinions after 2000 updates, single replicate (left) and 100
replicates (right) w = 0.45

The results shown in Figure 32 come from setting w = 0.23. By decreasing

the group width, a bimodal distribution has formed in the single run. Again, that

distribution is reflected in the multi-run behavior. Approximately 3.5% of agents over

100 runs are clustered at each extreme opinion as the extreme tails of group cannot

shift past 0 or 1. This point density interrupts the smooth distribution of opinions

near the poles slightly as the local repulsion there adds up.

The results shown in Figure 33 come from setting w = 0.15. Further decreasing

the group width results in a trimodal distribution being formed in the single run.

Again, that distribution is reflected in the multi-run behavior. Approximately 5%

of agents over 100 runs are clustered at each extreme opinion. The density at those

points adds further disruption to the distribution of opinions near the poles.

The results shown in Figure 34 come from setting w = 0.12. A quatrimodal
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Figure 32. Distribution of opinions after 2000 updates, single replicate (left) and 100
replicates (right) w = 0.23

Figure 33. Distribution of opinions after 2000 updates, single replicate (left) and 100
replicates (right) w = 0.15

distribution has formed in the single run, with that distribution being again reflected

in the multi-run behavior. Approximately 5% of agents over 100 runs are again

clustered at each extreme opinion. The pattern of disrupted opinion distribution at

the poles appears nearly identical to the trimodal results.

Figure 34. Distribution of opinions after 2000 updates, single replicate (left) and 100
replicates (right) w = 0.12

The stopping criterion of 2000 updates was chosen to ensure that sufficient time

had elapsed that opinions were no longer in shift. Figure 35 shows the development
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over time of the opinion distributions shown at left in Figures 31–34. Each line is

drawn by one of 1000 agents with color corresponding to the opinion with which they

were randomly initialized. This shows that the impact of running the model beyond

2000 updates is unlikely to significantly change distributions.

Figure 35. Single-run trajectory of opinions over 2000 updates

5.4.1 Effect of varying relative strength of individualization

The balance between dintra and dindiv yields interesting dynamics that can also

shape the distribution of opinions. This balance is characterized by the parameter

b. Taking the quatrimodal example above as a starting point, Figure 36 shows the

distribution of opinion of 100 replicates for a = 0, v = 0.25, w = 0.12 and b varied

between 0, 0.25, 0.5, 0.75, and 1. The stopping criterion was increased to 3000 updates

for this experiment to ensure clustering had completed for the slower b = 0 case.

Increasing the strength of the individualization force has the effect of widening

clusters, which can cause clusters to combine and decrease the number of modes ob-

served in the final distribution. For b ≤ 0.5 this results in a quatrimodal distribution,

but b = 0.75 forms a trimodal distribution and pure individualization at b = 1.0 forms
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Figure 36. Distribution of opinions after 3000 updates, varying b ∈ {0, 0.25, 0.5, 0.75, 1}
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a broad unimodal distribution. This fits with intuition; as the desire to form groups

is overcome by the desire to appear unique, group membership dissolves.

5.5 Discussion

“It seems that some relaxation of the principle of parsimony might be
required. Perhaps Occam’s razor should be replaced by Occam’s lawn-
mower.” (Abelson 1964, p. 160)

The MIF-LR model is the second known opinion dynamics model to generate

sustained strong diversity of continuous opinions. The first, the ISC model (Duggins

2017), relies upon heterogeneous agents and defined distributions of parameters for

every agent. When homogeneous agents are used, only weak diversity can be obtained.

The MIF-LR achieves this goal with far greater parsimony and homogeneous agents.

Of 8 parameters, 3 are directly related to initializing the social network (N, c, p), 1

is a convergence parameter that must be set to a sufficiently small value (k), leaving

only 4 parameters unique to the model that impact the distribution (a, b, v, w).

The MIF-LR model also makes little use of randomness; development of opinions is

a deterministic chaotic process instead. The only random element in the model is the

initial opinion set of agents. As a result, all outcomes are approximately symmetrical.

To achieve non-symmetrical results, either a non-symmetrical set of initial conditions

must be used, or an external force must be introduced into the model. This is not

a weakness of the model but a strength; the MIF model is constructed to allow for

additional internal or external forces to be added with ease.

The potential uses of the MIF-LR model in future research are myriad. From

a generativist perspective, it serves as validation for self-categorization theory and

uniqueness theory. Modelers may also find a parameter set that generates a particular

opinion distributions of interest, such as those derived from polling data, and forecast
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how societal changes in out-group aversion, social network connectedness, or in-group

width might impact those distributions over time.

The MIF framework upon which the MIF-LR model is built also allows for ex-

tension of the model based on more specific and individualized situations. There are

certainly forces of influence at play in society beyond self-categorization and unique-

ness that may be added.

In an attempt to maintain the minimum required complexity, however, a broad

set of distributions of opinions are generated while varying only w in the model.

Furthermore, this parameter and its effects are readily interpreted; as the perceived

width of a group decreases, a greater number of groups arise, each of which has a

membership with a diverse set of opinions centered on one value.

Varying the strength of the individualization force relative to the intra-group

force, in the form of the parameter b, has the effect of dissolving group membership

until, for very high values of b, a broad unimodal distribution of opinions is achieved.

The intra-group force and the individualization force act upon the distribution much

as the competing forces of surface tension and surface friction on a pool of liquid.

As surface tension overcomes surface friction, distinct droplets appear. As surface

friction overcomes surface tension, a puddle forms.

Outgroup aversion, the component of the MIF model that generates pure negative

influence with strength that increases with the distance between two agents’ opinions,

is not used in any of the examples shown. Group formation, then, is attainable with

only intra-group forces that diminish with distance.

5.6 A Political Science Application: Generating Partisan Polarization

While the ability to generate a broad spectrum of opinion distributions is itself

a useful contribution to opinion dynamics literature, a generative model is especially
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useful if it can explain the mechanisms behind behaviors observed in the real world.

A trend in opinion distributions that has received ample attention recently is an

increase in political polarization, particularly in the United States but more recently

worldwide. There is some disagreement in the political science field about whether

polarization is restricted to political elites (Fiorina & Abrams 2008), political elites

and those who identify with partisan labels (Evans 2003), or political elites and the

population at large (Abramowitz & Saunders 2008).

Much of this debate centers around the definition of polarization. S. J. Abrams &

Fiorina (2015) distinguishes between mass polarization, which suggests that moder-

ates have disappeared and groups have moved toward the poles, and partisan polariza-

tion (or party sorting), which suggests that groups have become less diverse and more

separated from other groups. They argue that the evidence for mass polarization is

weak but that the evidence for partisan polarization is unambiguous. Pew Research

Center (2012) also find that this partisan polarization has accelerated through the

1990s and 2000s. For the purposes of this application, we are more focused upon

partisan polarization than mass polarization.

The mechanisms behind this increased partisan polarization is hotly debated. One

popular explanation is that algorithmically-selected social media and search results

create personal “filter bubbles” or “echo chambers” in which an individual’s opinions

are reinforced by the filtered information fed to us via the internet (Pariser 2011).

The evidence for this is weak at best. Bakshy et al. (2015) found that algorithmically

ranked social media actually expose individuals to viewpoints conflicting with their

own, and that personal choices rather than algorithms limited exposure to such view-

points. Furthermore, Nguyen et al. (2014) found that those who actually consumed

algorithmically-selected content accessed a broader set of content than those who did

not. An alternative explanation comes from Levendusky (2013), who argues that the
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increase in partisan media availability leads to polarization first in the extremes, with

influences cascading to the rest of the populace. He provides experimental data that

supports this conclusion. Each of these proposed mechanisms rely upon changes in

the content individuals consume.

An alternative mechanism is suggested by the time frame over which increased

polarization has been observed; Abramowitz & Saunders (2008) estimates that po-

larization began to grow in the 1970s and Pew Research Center (2012) finds this

trend accelerating from the 1990s until today. These years have seen the increased

availability of communication and travel to the mass public. One effect of increased

availability of communication and travel, from a small-world network perspective,

may be an increase in randomness in connections. A more random network has an

increased probability that social network contacts of one individual are not themselves

directly connected.

In the MIF-LR results displayed thus far, a small-world network is based upon each

agent being initially connected to the nearest c = 8 agents in each direction along

a ring network. These connections are rewired to random agents with probability

p = 0.05. This value of c was chosen to allow comparison with the results of the

MIF model (see Chapter IV). The probability of rewiring, p, is set to a value that

Watts & Strogatz (1998) showed gained most of the path-shortening effect desired in

a small-world network without significantly diminishing clustering.

The MIF-LR model allows an examination of the predicted qualitative change in

opinion distributions achieved by increasing the randomness of a social network. Dis-

cussion of political polarization tends to assume three groups: liberals, conservatives,

and moderates (see, for example, S. J. Abrams & Fiorina 2015). To replicate this

tri-modal distribution, w is fixed to 0.18, a value that generates a tri-modal distri-

bution with strong intermingling for p = 0. As before, other parameters are fixed
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Figure 37. MIF-LR results varying network randomness: single-run distribution (left),
trajectory (center), and 100-run distribution (right)
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to a = 0, b = 0.5, c = 8, N = 1000, and v = 0.25. Figure 37 shows distributions

resulting from varying the network from a ring network (p = 0), among small-world

networks (p ∈ {0.05, 0.10, 0.20, 0.25}) up to a purely random network (p = 1). Parti-

san polarization clearly increased with even small increases in network randomness.

The number of agents converging to an opinion between clusters diminishes as p in-

creases; for p ≥ 0.25 the clusters no longer blended together in between at all. In a

purely random network, the partisan polarization effect was strong enough to dissolve

the moderate cluster in 24 of 100 runs.

This demonstrates an unintuitive generative explanation based on the MIF-LR

model; increased randomness of social network connections alone is sufficient to gen-

erate partisan polarization. In other words, no media bias or personalized content

need be blamed for increased partisanship; the expansion of social network ties be-

yond the limits of geography may be at the root of this development. In a ring

network as in society without communication technology, neighbors are likely to have

similar opinions. This amplifies the effect of the drive for uniqueness. Randomness in

the network, as induced by the ability to communicate at a distance, increases con-

nections outside of these geographic clusters, stifling the compounding effect of the

drive for uniqueness within these clusters. At the extreme, a purely random network

has no geographic clusters because location in the original ring no longer holds any

meaning.

5.7 Conclusion

The MIF-LR model is the second known opinion dynamics model to generate

the desired behavior of strong diversity. This is accomplished without relying upon

randomness or excessively complicated interaction rules. Examples of distributions

with 1–4 modes are shown based on the variation of only a single model parameter.

137



The effect of varying the relative strength of group formation and individualization

forces is also examined, with individualization widening and potentially combining

clusters as its strength increases.

The MIF-LR model’s capability to generate these distributions informs not only

the opinion dynamics modeling field but the social sciences as well. This mathematical

formulation shows that the interplay between self-categorization theory and unique-

ness theory is sufficient to explain the emergence of sustained, multi-modal opinion

distributions in society. This serves as an unprecedented mathematical validation of

these social psychological theories.

Epstein (1999) stated that the motto of generative social science is “if you didn’t

grow it, you didn’t explain its emergence” [p.43]. Several explanations have been

offered to explain the emergent behavior of partisan polarization observed in recent

decades, but we are unaware of another example satisfactorily growing that behavior.

The MIF-LR demonstrated a generative explanation for this increased polarization.

By increasing the randomness of a small-world network, the MIF-LR model generated

increased polarization. This displays a mechanism that can generate this behavior

that has thus far been ignored: communication technology has increased the random-

ness of individuals’ social ties, diminishing the compounding effect of the desire for

uniqueness of geographically clustered groups.

The MIF-LR is a strong contribution to these fields for both its modeling out-

comes and its explanatory power. Being based in the MIF framework, it can easily

be augmented with greater psychological realism in future research. One such aug-

mentation that would seem to enhance the explanatory power of the model would be

direct modeling of information, facts, and arguments.
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VI. Conclusion

Presented herein are three distinct contributions to the literature relating to opin-

ion dynamics models, each presented as a separate articles in Chapters III–V.

Chapter III defined the synchrony, actor type, scale (SAS) taxonomy, a means

of communicating the agent schedule of an opinion dynamics model. This filled a

lingering gap in communication and allowed for proposed models to be described

more clearly, precisely, and concisely. The changes in emergent behavior that may

be caused by altering the schedule in two often-used opinion dynamics models were

demonstrated using generalized forms of those models.

Chapter IV introduced the meta-contrast influence field (MIF) model to the lit-

erature. This expanded on the meta-contrast (MC) model of Salzarulo (2006) in

several ways. First, it equalized the scale of previously imbalanced inputs into the

prototypicality function. This prototypicality function computed how prototypical an

agent will perceive other opinions to be, and it was the backbone of the MC model.

The inter-group component of that prototypicality dominated the calculation in the

MC formulation. Second, it implemented a continuous basis of influence calculated

from the derivative of the MC model’s prototypicality function, which computed how

prototypical an agent would perceive an opinion to be. Using the derivative, in ef-

fect, created an influence field composed of competing forces acting upon the point

of an agent’s opinion. Finally, as a result of this field-based formulation, the sched-

ule is altered to allow all agents to update in synchrony based upon the information

available to them. These improvements came with a mean 87% decrease in required

computation time, which is a significant contribution all its own. The MIF model is

a significant enhancement of the MC model, and its construction allows it to be a

framework upon which more nuanced models of interpersonal influence can be built.

Chapter V represents by far the largest contribution to the field in this dissertation.
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It updated the MIF model to include a drive for individualization based on uniqueness

theory. By including local repulsive forces into the influence field, the meta-contrast

field local repulsion (MIF-LR) model generated strong diversity of opinions. This

outcome has been sought after for over 50 years since Abelson (1964) famously asked

“what on earth one must assume in order to generate the bimodal outcome of com-

munity cleavage studies” [p. 153]. Examples of parameter settings that generate

unimodal, bimodal, trimodal, and quatrimodal distributions are provided. An appli-

cation that generates partisan polarization as an outcome of increasing random ties

in social networks is also explored. These distributions are stable with respect to time

and repeatable between experiments. Furthermore, this is a parsimonious model with

only 8 parameters, of which only 4 define agent behavior in a manner unique to this

model, 1 needs only to be sufficiently small to avoid erratic behavior, and 3 define the

social network itself. It is also firmly based in social psychological literature. This

model has the potential to revolutionize opinion dynamics modeling and be the gold

standard in the field.

6.1 Future Research

There are many opportunities to expand upon the MIF-LR model or further ex-

plore its behavior. Two such avenues of expansion have already had some groundwork

laid that suggests promising results. First, the topic of initial conditions is not ad-

dressed in Chapter V. All results are based upon an initial distribution drawn from

the uniform (0,1) distribution. This is partially a result of push-back from referees

in reviewing an earlier version of the paper in Chapter III when using other initial

conditions, and it is partially to allow more apples-to-apples comparisons with earlier

opinion dynamics models that use the same initial conditions. However, many other

models show very limited robustness to deviations in initial conditions. In particu-
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lar, bounded confidence models are strongly affected by initial conditions with lower

variance.

Initial results of using initial conditions drawn from the normal distribution with

mean 0.5 and standard deviation s are shown in Figure 38. Each histogram is based

on 100 replicates. These results vary the parameter a (fixed by column) along with s

(fixed by row), as negative influence between groups has the potential to increase the

variance in the opinion distribution and allow clusters to form. Other parameters are

fixed: b = 0.5, c = 8, k = 0.2, N = 1000, p = 0.05, v = 0.25, w = 0.12. This shows that

a standard deviation of s = 0.2 is sufficient to generate clustering in this example,

even with a = 0. By setting a ≥ 0.25, clustering is observed for s = 0.15. Other

early results suggest that increasing a may cause a unimodal distribution based on

w = 0.45 to split into a bimodal distribution with modes near 0.5 on either side.

Figure 38. Distributions resulting from 100 replicates of MIF-LR model varying initial
conditions
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Another intriguing area for future research would be to determine a mechanism

by which the urban-rural split observable in election maps can be generated. To

accomplish this, agents could be placed randomly according to population density

data that is available to 1 arc-second (approximately 1 square kilometer) fidelity

(Columbia University 2005). NetLogo code accomplishing this task and implementing

the MIF-LR model with non-random distance-based network within it is available in

Appendix W, and the accompanying data file with population density data is available

from the author. A method for generating a small-world network based upon this

framework is not known to exist in the literature. This alone would be a useful

contribution. Operating the MIF-LR model within such a network could yield very

useful generative explanations for emergent behavior of interest in our society.
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Appendix A. Opinion Dynamics Models Summary
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Appendix B. NetLogo Code: Replication of Carley (1991)

extensions [ Rnd ]

globals [ total-facts ]

turtles-own [ facts partner-facts busy ]

to setup

clear-all

setup-turtles

set total-facts (length remove-duplicates (reduce sentence [facts] of

turtles))

reset-ticks

end

to setup-turtles

create-turtles pop-size [

set facts n-of init-known-facts (range num-facts)

set busy false

hide-turtle

]

end

to go

ask turtles [ pick-partner ]

ask turtles [ update-facts ]

tick

if homogeneity = 1 [stop]

end

to pick-partner

if not busy [

let candidates turtles with [ not busy ]
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let partner rnd:weighted-one-of candidates [ num-shared-facts myself ]

set partner-facts [facts] of partner

set busy true

ask partner [

set partner-facts [facts] of myself

set busy true

]

]

end

to-report num-shared-facts [ them ]

; called by turtle, reports number of shared facts

report sum map [ [k] -> ifelse-value (member? k facts) [1][0] ] ([facts]

of them)

end

to update-facts

let k one-of partner-facts

if (not member? k facts) [

set facts lput k facts

]

set busy false

end

to-report homogeneity

let den (pop-size * (pop-size - 1)) / 2 * total-facts

let num 0

ask turtles [

ask turtles with [who > [who] of myself] [

set num (num + num-shared-facts myself)

]

]

report num / den

end
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Appendix C. NetLogo Code: Replication of Mark (1998)

extensions [ Rnd ]

globals [ total-facts max-fact ]

turtles-own [ facts fact-times partner ]

to setup

clear-all

setup-turtles

setup-globals

reset-ticks

end

to setup-turtles

;;; initially sets up turtles

create-turtles pop-size [

; turtles all begin with 1 fact common to all turtles

set facts (list 0)

set fact-times (list 0)

hide-turtle

]

end

to setup-globals

;;; initially sets up, or updates, global variables

set total-facts remove-duplicates (reduce sentence [facts] of turtles)

164



; list of all facts in the system

set max-fact max total-facts

; used to ensure new facts are unique

end

to go

ask turtles [ pick-partner ]

ask turtles [ interact ]

ask turtles [ forget ]

setup-globals ; updates total-facts (list of all facts in the system)

tick

let h homogeneity

if h = 1 or h = 0 [stop]

;if ticks = 500 [stop]

end

to pick-partner

;;; turtle - implements partner selection rules

let candidates turtles

set partner rnd:weighted-one-of candidates [ num-shared-facts myself ]

end

to interact

;;; turtle - implements interaction rules

let all-facts remove-duplicates sentence facts [facts] of partner

if partner != self [ set all-facts lput (max-fact + 1) all-facts ]

let convo-topic one-of all-facts

if convo-topic > max-fact [ set max-fact convo-topic ]

add-fact convo-topic

if partner != self [ ask partner [ add-fact convo-topic ] ]

end

to forget

;;; turtle - implements forgetting rules

while [min fact-times < (ticks - memory-length)] [

let index position (min fact-times) fact-times

set facts remove-item index facts

set fact-times remove-item index fact-times

]

end

to-report num-shared-facts [ them ]

;;; turtle - reports number of shared facts with them

report sum map [ [k] -> ifelse-value (member? k facts) [1][0] ] ([facts]

of them)

end
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to add-fact [ this-fact ]

;;; turtle - adds this-fact to its facts (if new) and updates the

fact-times

ifelse member? this-fact facts [

let index position this-fact facts

set fact-times replace-item index fact-times ticks

] [

set facts lput this-fact facts

set fact-times lput ticks fact-times

]

end

to-report homogeneity

;;; reports the cultural homogeneity of the system, values in range [0,1]

let num-facts length total-facts

let den (pop-size * (pop-size - 1)) / 2 * num-facts

let num 0

ask turtles [

ask turtles with [who > [who] of myself] [

set num (num + num-shared-facts myself)

]

]

report num / den

end

to-report social-diff

;;; reports the number of disconnected groups

let num-groups 0

let ungrouped-agents turtles

while [any? ungrouped-agents] [

let this-group turtle-set one-of ungrouped-agents

let group-facts reduce sentence [facts] of this-group

let still-crawling? true

while [still-crawling?] [

let old-group count this-group

foreach group-facts [ [this-fact] ->

set this-group (turtle-set this-group (turtles with [member?

this-fact facts]))

]

set group-facts remove-duplicates reduce sentence [facts] of

this-group

set still-crawling? count this-group > old-group

]

set ungrouped-agents ungrouped-agents with [not member? self

this-group]
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set num-groups num-groups + 1

]

report num-groups

end
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Appendix D. NetLogo Code: Replication of Axelrod (1997)

globals [ num-groups N last-change ]

turtles-own [ culture group next-culture ]

to setup

clear-all

setup-world

setup-turtles

if visualization [ ask turtles [ setup-links ] ]

set num-groups length all-cultures

set N count turtles

reset-ticks

end

to setup-world

resize-world 0 (grid-width - 1) 0 (grid-width - 1)

set-patch-size floor (300 / grid-width)

end

to setup-turtles

set-default-shape turtles "square"
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ask patches [

sprout 1 [

set culture n-values num-features [ one-of range num-traits ]

set next-culture culture

set color white

]

]

end

to setup-links

create-links-with turtles-on neighbors4 [

set thickness 0.8

set color 9.9 * similarity both-ends

]

end

to go

if agent-schedule = "Synchronous" [

ask turtles [ interact ]

ask turtles [ set culture next-culture ]

]

if agent-schedule = "Random order" [ ask turtles [ interact ] ]

if agent-schedule = "Random independent" [ repeat N [ ask random-turtle

[ interact ] ] ]

ask links [ set color 9.9 * similarity both-ends ]

tick

if update-num-groups? [ set num-groups length all-cultures ]

if num-groups < 15 [

if show-groups? [

show-groups

ask links [ ifelse color = white [ hide-link ] [ show-link ] ]

]

]

if last-change <= (ticks - 5) [ stop ]

end

to interact

let them one-of turtles-on neighbors4

let G-indices filter [ [index] -> item index culture != [item index

culture] of them ] range num-features

let f random num-features

if item f culture = [item f culture] of them [

if G-indices != [] [

let g one-of G-indices

ifelse agent-schedule = "Synchronous" [

set next-culture replace-item g culture [item g culture] of them
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] [

set culture replace-item g culture [item g culture] of them

]

set last-change ticks

]

]

end

to-report random-turtle

report turtle (random N)

end

to-report similarity [ pair ]

let cultures [ culture ] of pair

let sim length filter [ [index] -> item index (item 0 cultures) = item

index (item 1 cultures) ] range num-features

report sim / num-features

end

to-report all-cultures

report remove-duplicates n-values N [ [index] -> [culture] of turtle

index ]

end

to show-groups

let cultures all-cultures

(foreach cultures (range length cultures) [ [this-culture grp] ->

ask turtles with [culture = this-culture] [

set group grp

ifelse length cultures < 10 [

set color item group (list red blue green yellow violet orange

turquoise white black)

] [ set color (10 * group + 5)

]

]

])

;ask links [ hide-link ]

end
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Appendix E. NetLogo Code: Voter Model

patches-own [ opinion ]

to setup

clear-all

ask patches [ set-opinion one-of [0 1] ]

reset-ticks

end
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to go

let i one-of patches

let o [opinion] of i

ask one-of patches [ set-opinion [opinion] of one-of neighbors4 ]

if o != [opinion] of i [ tick ]

let op [opinion] of patch 0 0

if all? patches [ opinion = op ] [stop]

end

to set-opinion [ val ]

set opinion val

set pcolor ifelse-value (val = 1) [red] [blue]

end
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Appendix F. NetLogo Code: Replication of Nowak et al.
(1990)

patches-own [

p ; persuasiveness

s ; social support

]

to setup

clear-all

ask patches [

set pcolor red

set p random 101
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set s random 101

]

ask n-of (round ( (count patches) * minority-percentage / 100)) patches [

set pcolor blue

]

reset-ticks

end

to go

let finished? false ; when it ends the turn true, stop the model at

equilibrium

if update-schedule = "Synchronous" [ ; original schedule

let flippers patches with [flip?]

ask flippers [ flip ]

if count flippers = 0 [ set finished? true ]

]

if update-schedule = "Random order" [

set finished? true

ask patches [

if flip? [

flip

set finished? false

]

]

]

if update-schedule = "Random independent" [

set finished? true

repeat count patches [

ask one-of patches [

if flip? [

flip

set finished? false

]

]

]

]

tick

if finished? [ stop ]

end

to-report flip?

let all-cells ifelse-value (limit-range?) [ patches in-radius 10 ] [

patches ]

; Calculate persuasive impact
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let opposers all-cells with [pcolor != [pcolor] of myself]

let No count opposers

let ip 0

if No > 0 [ ; to keep from failing when none oppose

if-else alternative-formula? [

set ip sqrt (sum [(p / (((sqrt 2) + distance myself) ^ 2) ) ^ 2 ] of

opposers)

] [

set ip ( (mean [p / (((sqrt 2) + distance myself) ^ 2)] of opposers)

* sqrt(No) ) ; persuasive impact

]

]

; Calculate social support impact

let supporters all-cells with [pcolor = [pcolor] of myself]

let Ns count supporters

let is 0

if-else alternative-formula? [

set is sqrt (sum [(s / (((sqrt 2) + distance myself) ^ 2) ) ^ 2 ] of

supporters)

] [

set is ( (mean [s / (((sqrt 2) + distance myself) ^ 2)] of supporters)

* sqrt(Ns) ) ; social support impact

]

report ip > is

end

to flip

set pcolor ifelse-value (pcolor = red) [ blue ] [ red ]

set p random 101

set s random 101

end
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Appendix G. NetLogo Code: Agent-based implementation
of Galam (1997)

globals [

N ; number of people (patches)

I ; conflict amplitude

gamma ; constant used in field computation

smalln ; number of people with whom each individual interacts

S ; external social field

patch-list ; list of patches to allow ticks within runs through all

patches

updates ; number of updates this step (to check if model is finished)

]

patches-own [

ci ; binary choice (-1 or 1) at the individual level

Si ; internal social field

nextci ; next value of ci (for use in synchronous updates)

]

to setup

clear-all

setup-patches
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setup-globals

reset-ticks

end

to setup-globals

set N count patches

set I 1 / N

set smalln N

set S 0

set gamma (smalln * I * N) / (2 * (N - 1))

set patch-list [self] of patches

set updates 0

end

to setup-patches

ask patches [

set ci one-of [-1 1]

set nextci ci

set Si (random-float 2) - 1

set pcolor ifelse-value (ci = 1) [red] [blue]

]

end

to go

set updates 0

if agent_schedule = "Random independent" [

repeat N [

ask one-of patches [ make-choice update-state]

tick

]

]

if agent_schedule = "Random order" [

foreach shuffle patch-list [ [this-patch] ->

ask this-patch [make-choice update-state]

tick

]

]

if agent_schedule = "Synchronous" [

ask patches [ make-choice ]

foreach shuffle patch-list [ [this-patch] ->

ask this-patch [ update-state ]

tick

]

]

if updates = 0 [stop]

end
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to make-choice

let deltaG (-2 * ci * (S + Si + I * sum [ci] of other patches))

if deltaG > 0 [

set nextci -1 * ci

set updates updates + 1

]

end

to update-state

set ci nextci

set pcolor ifelse-value (ci = 1) [red] [blue]

end

to-report C ; group choice

report sum [ci] of patches

end

to-report GI ; group internal conflict function

let gtemp 0

foreach [ci] of patches [ [ci1] ->

foreach [ci] of patches [ [ci2] ->

set gtemp (gtemp + (ci1 * ci2))

]

]

report I * gtemp

end

to-report Sg ; group social field

report gamma * C / N

end

to-report G ; total group conflict (higher is less conflict)

report GI + sum [(S + Si) * ci] of patches

end
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Appendix H. NetLogo Code: Replication of Sznajd-Weron
& Sznajd (2000)

patches-own [ influences opinion ]

to setup

clear-all

resize-world 0 (N - 1) 0 20

set-patch-size 650 / N

ask patches [ set opinion 0 ]

foreach range N [ [x] ->

set-opinion x (one-of [-1 1])

ask patch x 0 [ set influences [] ]

]

reset-ticks

end

to go

if agent_schedule = "Random independent" [

repeat N [

let r random-float (N - 1)

ask patch (floor r) 0 [ flip-neighbors ]

]

]

if agent_schedule = "Random order" [

let left-partners shuffle n-values (N - 1) [ [i] -> patch i 0 ]

foreach left-partners [ [left-patch] ->

ask left-patch [ flip-neighbors ]
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]

]

if agent_schedule = "Synchronous" [

let left-partners n-values (N - 1) [ [i] -> patch i 0 ]

foreach left-partners [ [left-patch] ->

ask left-patch [ influence-neighbors ]

]

update-patches

]

tick

if all? patches [pcolor = red] [stop]

if all? patches [pcolor = blue] [stop]

end

to flip-neighbors

let xi pxcor

let xj (xi + 1)

let Si opinion

let Sj [opinion] of patch xj 0

if xi > 0 [ set-opinion (xi - 1) Sj ]

if xj < (N - 1) [ set-opinion (xj + 1) Si ]

end

to influence-neighbors

let xi pxcor

let xj (xi + 1)

let Si opinion

let Sj [opinion] of patch xj 0

if xi > 0 [ add-influence (xi - 1) Sj ]

if xj < (N - 1) [ add-influence (xj + 1) Si ]

end

to update-patches

foreach range N [ [x] ->

let consensus mean [influences] of patch x 0

if consensus != 0 [ set-opinion x consensus ]

ask patch x 0 [ set influences [] ]

]

end

to add-influence [ x val ]

ask patch x 0 [ set influences lput val influences ]

end

to set-opinion [ x val ]

ask patch x 0 [ set opinion val ]
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let col ifelse-value (val = -1) [blue] [red]

foreach range (max-pycor + 1) [ [i] ->

ask patch x i [ set pcolor col ]

]

end
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Appendix I. NetLogo Code: Replication of Stauffer (2002)

patches-own [ influences opinion ]

globals [ N pairs max-obs min-obs mo ]

to setup

clear-all

setup-world

setup-patches

reset-ticks

end

to setup-world

set N (N-width ^ 2)

resize-world 0 (N-width - 1) 0 (N-width - 1)

set-patch-size 300 / N-width

end

to setup-patches

ask patches [

set-opinion one-of [-1 1]

set pcolor ifelse-value (opinion = 1) [ red ] [ blue ]

set influences []

]

set pairs all-pairs

set mo mean [opinion] of patches

set max-obs mo

set min-obs mo

end

to-report all-pairs

182



let patch-list []

ask patches with [pxcor < max-pxcor] [

let x pxcor

let y pycor

set patch-list lput (list self (patch (x + 1) y)) patch-list

]

ask patches with [pycor < max-pycor] [

let x pxcor

let y pycor

set patch-list lput (list self (patch x (y + 1))) patch-list

]

report patch-list

end

to go

if agent_schedule = "Random independent" [

repeat N [

let actors one-of pairs

flip-neighbors actors

]

]

if agent_schedule = "Random order" [

foreach shuffle pairs [ [actors] ->

flip-neighbors actors

]

]

if agent_schedule = "Synchronous" [

foreach pairs [ [actors] ->

influence-neighbors actors

]

update-patches

]

tick

update-outputs

if abs mo = 1 [stop]

end

to set-opinion [ o ]

set opinion o

set pcolor ifelse-value (o = 1) [red] [blue]

end

to flip-neighbors [ actors ]

let op [opinion] of item 0 actors

if (op = [opinion] of item 1 actors) [

let audience patch-set [neighbors4] of patch-set actors
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ask audience [ set-opinion op ]

]

end

to influence-neighbors [ actors ]

let op [opinion] of item 0 actors

if (op = [opinion] of item 1 actors) [

let audience patch-set [neighbors4] of patch-set actors

ask item 0 actors [ set audience other audience ]

ask item 1 actors [ set audience other audience ]

ask audience [ set influences lput op influences ]

]

end

to update-patches

ask patches [

if not empty? influences [

let consensus mean influences

if consensus != 0 [ set consensus ifelse-value (consensus < 0) [-1]

[1] ]

set-opinion consensus

set influences []

]

]

end

to update-outputs

set mo mean [opinion] of patches

set min-obs min list min-obs mo

set max-obs max list max-obs mo

end
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Appendix J. NetLogo Code: Replication of Deffuant et al.
(2000)

turtles-own [

opinion

next-opinion

]

to setup

clear-all

create-turtles N [

set opinion random-float 1

set next-opinion opinion

set color hsb (310 * opinion) 100 100

setxy (opinion * 100) 0

]

reset-ticks

setup-plot

end
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to setup-plot

set-current-plot "Opinion over time"

set-plot-x-range 0 max-time

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up

]

end

to go

if agent_schedule = "Random independent" [

repeat count turtles [

ask one-of turtles [

influence-another

]

]

]

if agent_schedule = "Random order" [

ask turtles [

influence-another

]

]

if agent_schedule = "Synchronous" [

ask turtles [ survey-nearby ]

ask turtles [ update-opinion ]

]

if update-plots? [ ask turtles [ update-plot ] ]

tick

let finished? true

let opinions group-opinions

if (length opinions > 1) [

let opnow item 0 opinions

set opinions but-first opinions

foreach opinions [ [op] ->

if ((op - opnow) < d) [ set finished? false ]

set opnow op

]

]

if finished? [ stop ]

;if ticks > max-time [ stop ]

end

to influence-another

let j one-of other turtles
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let xi opinion

let xj [opinion] of j

if abs (xi - xj) < d [

set opinion xi + mu * (xj - xi)

set xcor (opinion * 100)

ask j [

set opinion xj + mu * (xi - xj)

set xcor (opinion * 100)

]

]

end

to survey-nearby

let j one-of other turtles

let xi opinion

let xj [opinion] of j

if abs (xi - xj) < d [

set next-opinion xi + mu * (xj - xi)

]

end

to update-opinion

set opinion next-opinion

set xcor (opinion * 100)

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

to-report group-opinions

let opinions remove-duplicates [precision opinion 2] of turtles

report sort opinions

end

to-report group-membership

let membership []

foreach group-opinions [ [op] ->

set membership lput (count turtles with [(precision opinion 2) = op])

membership

]

report membership
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end

to-report wingless-group-opinions

let opinions group-opinions

let gm group-membership

(foreach opinions gm [ [op mem] ->

if (mem < 0.03 * N) [

set opinions remove-item op opinions

]

])

report opinions

end
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Appendix K. NetLogo Code: Replication of opinion
dynamics portion of Sun & Müller (2013)

globals [

ingroup-density

outgroup-density

]

turtles-own [

opinion

next-influence

mu

d

group
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]

to setup

clear-all

set ingroup-density (avg-ingroup-neighbors / (N / N-groups) )

set outgroup-density ifelse-value (N-groups > 1) [

(avg-outgroup-neighbors / (N - N / N-groups))] [ 0 ]

setup-turtles

reset-ticks

setup-plot

end

to setup-turtles

create-turtles N [

set opinion random-float 1

set mu random-normal 0.5 0.2

while [(mu < 0) or (mu > 1)] [

set mu random-normal 0.5 0.2

]

setxy (opinion * 100) (mu * 100)

update-d

set group one-of range N-groups

set color ifelse-value social-networks? [(10 * group + 5)] [hsb (310 *

opinion) 100 100]

]

if social-networks? [

ask turtles [

foreach (range (who + 1) N) [ [their-who] ->

let them turtle their-who

let r random-float 1

if r < (ifelse-value ([group] of them = group) [ingroup-density]

[outgroup-density]) [

create-link-with them [ set color (10 * [group] of myself + 5) ]

]

]

]

]

end

to setup-plot

set-current-plot "Opinion over time"

set-plot-x-range 0 max-time

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up
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]

end

to go

if agent_schedule = "Random independent" [

repeat count turtles [

ask one-of turtles [

influence-another

]

]

]

if agent_schedule = "Random order" [

ask turtles [

influence-another

]

]

if agent_schedule = "Synchronous" [

ask turtles [ survey-nearby ]

ask turtles [ update-opinion ]

]

if update-plots? [ ask turtles [ update-plot ] ]

tick

if is-finished [ stop ]

end

to influence-another

let my-neighbors ifelse-value social-networks? [ other

out-link-neighbors ] [ other turtles ]

if any? my-neighbors [

let j one-of my-neighbors

let xi opinion

let xj [opinion] of j

if abs (xi - xj) < d [

set opinion xi + mu * (xj - xi)

update-d

set xcor (opinion * 100)

if abs (xi - xj) < [d] of j [

ask j [

set opinion xj + mu * (xi - xj)

update-d

set xcor (opinion * 100)

]

]

]
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]

end

to survey-nearby

let my-neighbors ifelse-value social-networks? [ other

out-link-neighbors ] [ other turtles ]

let eligible-others my-neighbors with [ abs (opinion - [opinion] of

myself) < [d] of myself ]

if-else any? eligible-others [

set next-influence mean [opinion] of eligible-others

] [

set next-influence opinion

]

end

to update-opinion

set opinion opinion + mu * (next-influence - opinion)

set xcor (opinion * 100)

update-d

end

to update-d

set d (1 - 2 * abs (opinion - 0.5))

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

to-report group-opinions

let opinions remove-duplicates [precision opinion 2] of turtles

report sort opinions

end

to-report group-membership

let membership []

foreach group-opinions [ [op] ->

set membership lput (count turtles with [(precision opinion 2) = op])

membership

]

report membership

end
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to-report wingless-group-opinions

let opinions group-opinions

let gm group-membership

(foreach opinions gm [ [op mem] ->

if (mem < 0.03 * N) [

set opinions remove-item op opinions

]

])

report opinions

end

to-report is-finished

let finished? true

let opinions group-opinions

if (length opinions > 1) [

let opnow item 0 opinions

set opinions but-first opinions

foreach opinions [ [op] ->

if ((op - opnow) < (max [d] of turtles)) [ set finished? false ]

set opnow op

]

]

report finished?

;if ticks > max-time [ stop ]

end
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Appendix L. NetLogo Code: Replication of Hegselmann &
Krause (2002)

turtles-own [

opinion

next-opinion

]

to setup

clear-all

create-turtles N [

set opinion random-float 1

set color hsb (310 * opinion) 100 100

setxy (opinion * 100) 0

]

reset-ticks

setup-plot

end

to setup-plot

set-current-plot "Opinion over time"

set-plot-x-range 0 max-time
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ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up

]

end

to go

if agent_schedule = "Random independent" [

repeat count turtles [

ask one-of turtles [

survey-nearby

update-opinion

]

]

]

if agent_schedule = "Random order" [

ask turtles [

survey-nearby

update-opinion

]

]

if agent_schedule = "Synchronous" [

ask turtles [ survey-nearby ]

ask turtles [ update-opinion ]

]

if update-plots? [ ask turtles [ update-plot ] ]

tick

let finished? true

let opinions group-opinions

if (length opinions > 1) [

let opnow item 0 opinions

set opinions but-first opinions

foreach opinions [ [op] ->

if ((op - opnow) < d ) [ set finished? false ]

set opnow op

]

]

if finished? [ stop ]

;if ticks > max-time [ stop ]

end

to survey-nearby

let eligible-others turtles with [ abs (opinion - [opinion] of myself) <

d ]
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set next-opinion mean [opinion] of eligible-others

end

to update-opinion

set opinion next-opinion

set xcor (opinion * 100)

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

to-report group-opinions

let opinions remove-duplicates [precision opinion 2] of turtles

report sort opinions

end

to-report group-membership

let membership []

foreach group-opinions [ [op] ->

set membership lput (count turtles with [(precision opinion 2) = op])

membership

]

report membership

end

to-report wingless-group-opinions

let opinions group-opinions

let gm group-membership

(foreach opinions gm [ [op mem] ->

if (mem < 0.03 * N) [

set opinions remove-item op opinions

]

])

report opinions

end
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Appendix M. NetLogo Code: Replication of Deffuant et al.
(2002)

turtles-own [

opinion

uncertainty

next-opinion

next-uncertainty
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]

to setup

clear-all

create-turtles N [

set opinion (random-float 2) - 1

set uncertainty initial_uncertainty

set color hsb (155 * opinion + 155) 100 100

setxy (opinion * 50 + 50) 0

]

reset-ticks

setup-plot

end

to setup-plot

set-current-plot "Uncertainty over time"

set-plot-x-range 0 max-time

set-plot-y-range 0 initial_uncertainty + 0.1

set-current-plot "Opinion over time"

set-plot-x-range 0 max-time

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up

]

end

to go

if agent_schedule = "Random independent" [

repeat count turtles [

ask one-of turtles [

influence-another

]

]

]

if agent_schedule = "Random order" [

ask turtles [

influence-another

]

]

if agent_schedule = "Synchronous" [

ask turtles [ survey-nearby ]

ask turtles [ update-opinion ]

]

ask turtles [ update-plot ]
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tick

if ticks > max-time [ stop ]

end

to influence-another

survey-nearby

update-opinion

end

to survey-nearby

let j one-of other turtles

let xi opinion

let ui uncertainty

let xj [opinion] of j

let uj [uncertainty] of j

let hij ( (min list (xi + ui) (xj + uj)) - (max list (xi - ui) (xj -

uj)) )

if hij > uj [

set next-opinion (xi + mu * (hij / uj - 1) * (xj - xi))

set next-uncertainty (ui + mu * (hij / uj - 1) * (uj - ui))

]

if hij > ui [

ask j [

set next-opinion (xj + mu * (hij / ui - 1) * (xi - xj))

set next-uncertainty (uj + mu * (hij / ui - 1) * (ui - uj))

]

]

end

to update-opinion

set opinion next-opinion

set uncertainty next-uncertainty

setxy (opinion * 50 + 50) 0

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

199



Appendix N. NetLogo Code: Replication of base model of
Salzarulo (2006)

globals [ proto-opinions N ]

turtles-own [ opinion next-opinion ]

to test-P-curve

clear-all

ask patch 0 0 [ sprout 1 [

set opinion 0.3

set color hsb (310 * opinion) 100 100

] ]

ask patch 0 1 [ sprout 1 [

set opinion 0.7

set color hsb (310 * opinion) 100 100

] ]

set group-width 0.36

set outgroup-aversion 0.08

setup-plot

end

to setup
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clear-all

setup-turtles

set N count turtles

setup-plot

reset-ticks

end

to setup-turtles

set-default-shape turtles "square"

ask patches [ sprout 1 [

set opinion random-float 1

update-color

] ]

end

to setup-plot

set-current-plot "P curve"

create-temporary-plot-pen "P plot"

update-proto-opinions

end

to go

if agent-schedule = "Random independent" [ repeat N [ ask one-of turtles

[ be-influenced ] ] ]

if agent-schedule = "Random order" [ ask turtles [ be-influenced ] ]

if agent-schedule = "Synchronous" [

ask turtles [ get-opinion ]

ask turtles [ update-opinion ]

update-proto-opinions

]

tick

if length remove-duplicates [opinion] of turtles = length proto-opinions

[ stop ]

end

to be-influenced

get-opinion

update-opinion

update-proto-opinions

end

to get-opinion

let distances map [ [xi] -> abs (opinion - xi) ] proto-opinions

let ideal-index position (min distances) distances

let ideal-opinion item ideal-index proto-opinions

let group-leader min-one-of turtles [ abs (opinion - ideal-opinion) ]
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set next-opinion [opinion] of group-leader

end

to update-opinion

set opinion next-opinion

update-color

end

to update-color

set color hsb 0 100 (100 * opinion)

end

to update-proto-opinions

plot-pen-reset

let index 0

let protos [0]

let Plist ( list prototypicality 0 )

let increasing? true

foreach n-values 100 [ [i] -> (i + 1) / 100 ] [ [xi] ->

let P prototypicality xi

plotxy xi P

if-else increasing? [

if-else P > last Plist [

set Plist replace-item index Plist P

set protos replace-item index protos xi

] [

set increasing? false

set index index + 1

set protos lput xi protos

set Plist lput P Plist

if xi = 1 [ set protos but-last protos ]

]

] [

if P > last Plist [ set increasing? true ]

set Plist replace-item index Plist P

set protos replace-item index protos xi

if xi = 1 [ set protos but-last protos ]

]

]

set proto-opinions protos

end

to-report fuz-mem [ x xi ]

;;; fuzzy membership function

report exp (- ((x - xi) ^ 2) / group-width ^ 2)

end
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to-report d_intra [x]

;;; intra-category distance

let dnum 0 ; numerator

let dden 0 ; denominator

foreach [opinion] of turtles [ [xi] ->

let mu fuz-mem x xi

set dnum (dnum + (mu * (x - xi) ^ 2))

set dden (dden + mu)

]

report dnum / dden

end

to-report d_inter [x]

;;; inter-category distance

let dnum 0 ; numerator

let dden 0 ; denominator

foreach [opinion] of turtles [ [xi] ->

let mu fuz-mem x xi

set dnum (dnum + ((1 - mu) * (x - xi) ^ 2))

set dden (dden + (1 - mu))

]

report dnum / dden

end

to-report prototypicality [x]

report (outgroup-aversion * d_inter x) - ((1 - outgroup-aversion) *

d_intra x)

end
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Appendix O. NetLogo Code: Replication of small-world
network model of Salzarulo (2006)

extensions [ nw ]

turtles-own [ opinion next-opinion proto-opinions ]

to setup

clear-all

setup-turtles

reset-ticks

end

to setup-turtles

ifelse ring? [

nw:generate-watts-strogatz turtles links N k-connectivity p-reconnect [

set opinion random-float 1

update-color

setxy (max-pxcor / 2) (max-pycor / 2)

fd max-pxcor / 2

face patch (max-pxcor / 2) (max-pycor / 2)
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]

] [

ask patches [ sprout 1 [

set shape "square"

set opinion random-float 1

update-color

] ]

ask turtles [ create-links-with turtles-on neighbors ]

ask turtles [

let r n-values (count my-out-links) [ifelse-value (random-float 1 <

p-reconnect) [1] [0]]

ask n-of (sum r) my-links [ die ]

create-links-with n-of (sum r) (other turtles with [ not

in-link-neighbor? myself ])

]

ask links [ hide-link ]

]

end

to go

if agent-schedule = "Random independent" [ repeat N [ ask one-of turtles

[ be-influenced ] ] ]

if agent-schedule = "Random order" [ ask turtles [ be-influenced ] ]

if agent-schedule = "Synchronous" [

ask turtles [ get-opinion ]

ask turtles [ update-opinion ]

]

let protos remove-duplicates reduce se [proto-opinions] of turtles

if length remove-duplicates [opinion] of turtles = length protos [stop]

tick

end

to update-proto-opinions

let my_neighbors link-neighbors

set my_neighbors (turtle-set my_neighbors self)

let index 0

let protos [0]

let Plist ( list prototypicality 0 my_neighbors )

let increasing? true

foreach n-values 100 [ [i] -> (i + 1) / 100 ] [ [xi] ->

let P prototypicality xi my_neighbors

if-else increasing? [

if-else P > last Plist [

set Plist replace-item index Plist P

set protos replace-item index protos xi

] [
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set increasing? false

set index index + 1

set protos lput xi protos

set Plist lput P Plist

if xi = 1 [ set protos but-last protos ]

]

] [

if P > last Plist [ set increasing? true ]

set Plist replace-item index Plist P

set protos replace-item index protos xi

if xi = 1 [ set protos but-last protos ]

]

]

set proto-opinions protos

end

to be-influenced

update-proto-opinions

get-opinion

update-opinion

end

to get-opinion

let distances map [ [xi] -> abs (opinion - xi) ] proto-opinions

let ideal-index position (min distances) distances

let ideal-opinion item ideal-index proto-opinions

let group-leader min-one-of turtles [ abs (opinion - ideal-opinion) ]

set next-opinion [opinion] of group-leader

end

to update-opinion

set opinion next-opinion

update-color

end

to update-color

set color hsb 0 100 (100 * opinion)

end

to-report fuz-mem [ x xi ]

;;; fuzzy membership function

report exp (- ((x - xi) ^ 2) / group-width ^ 2)

end

to-report d_intra [x my_neighbors ]

;;; intra-category distance
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let dnum 0 ; numerator

let dden 0 ; denominator

foreach [opinion] of my_neighbors [ [xi] ->

let mu fuz-mem x xi

set dnum (dnum + (mu * (x - xi) ^ 2))

set dden (dden + mu)

]

report dnum / dden

end

to-report d_inter [x my_neighbors ]

;;; inter-category distance

let dnum 0 ; numerator

let dden 0 ; denominator

foreach [opinion] of my_neighbors [ [xi] ->

let mu fuz-mem x xi

set dnum (dnum + ((1 - mu) * (x - xi) ^ 2))

set dden (dden + (1 - mu))

]

report dnum / dden

end

to-report prototypicality [x my_neighbors]

report (outgroup-aversion * d_inter x my_neighbors) - ((1 -

outgroup-aversion) * d_intra x my_neighbors)

end
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Appendix P. NetLogo Code: Replication of Mäs & Flache
(2013)

globals [

arguments

groupSplit

]

turtles-own [

opinion

args
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CDF

next-arg

]

to setup

clear-all

setup-globals

setup-turtles

reset-ticks

setup-plot

end

to setup-globals

set arguments sentence (n-values conArguments [-1]) (n-values

proArguments [1])

end

to setup-turtles

create-turtles N / 2 [

let conargs n-of (memory / 2) (n-values conArguments [ [i] -> i ])

let proargs n-of (memory / 2) (n-values proArguments [ [i] -> i +

conArguments ])

set args shuffle sentence conargs proargs

set opinion mean map [ [i] -> item i arguments ] args

set color hsb (310 * who / N) 100 100

setxy (opinion * 50 + 50) 0

]

end

to setup-plot

set-current-plot "Size of remaining argument pool"

set-plot-x-range 0 max-time

set-plot-y-range memory (conArguments + proArguments)

set-current-plot "Opinion over time"

set-plot-x-range 0 max-time

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up

]

end

to go

if agent_schedule = "Random independent" [

repeat count turtles [ ask one-of turtles [ get-influenced ] ]
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]

if agent_schedule = "Random order" [

ask turtles [ get-influenced ]

]

if agent_schedule = "Synchronous" [

ask turtles [ survey-nearby ]

ask turtles [ update-opinion ]

]

if update_plots? [ ask turtles [ update-plot ] ]

tick

if stopping-conditions-met? [ stop ]

end

to get-influenced

survey-nearby

update-opinion

end

to survey-nearby

let i random-neighbor

set next-arg one-of [args] of i

end

to update-opinion

set args ifelse-value (member? next-arg args) [remove next-arg args]

[but-first args]

set args lput next-arg args

set opinion mean map [ [index] -> item index arguments ] args

setxy (opinion * 50 + 50) 0

end

to-report remainingArgs [ agents ]

let remArgs []

foreach [args] of agents [ [this-args] ->

set remArgs remove-duplicates sentence remArgs this-args

]

report remArgs

end

to-report random-neighbor

set CDF []

let sumS sum [(similarity myself) ^ homophilyStrength] of other turtles

let pCum 0

foreach (n-values (count turtles) turtle) [ [other_agent] ->

if other_agent != self [
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let p ((similarity other_agent) ^ homophilyStrength) / sumS

set pCum pCum + p

]

set CDF lput pCum CDF

]

let r random-float 1

report turtle (position (min filter [ [p] -> p >= r ] CDF) CDF)

end

to-report similarity [ other_agent ]

report 0.5 * (2 - abs (opinion - [opinion] of other_agent) )

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

to-report stopping-conditions-met?

let allOpinions remove-duplicates [opinion] of turtles

if length allOpinions = 1 [

if (abs item 0 allOpinions = 1) [

set groupSplit false

report true

]

if length (remainingArgs turtles) = memory [

set groupSplit false

report true

]

]

if (sort allOpinions = [-1 1]) [

set groupSplit true

report true

]

report false

end
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Appendix Q. NetLogo Code: Replication of Duggins (2017)

turtles-own [

true-opinion

expr-opinion ; expressed opinion

intolerance ; t_i

conformity ; c_j

susceptibility ; s_j

commitment ; k_j

reach

next-opinion ; used to enable Synchronous version

]

to setup

clear-all

random-seed seed

setup-turtles

setup-links

reset-ticks

setup-plot

end
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to setup-turtles

create-turtles N [

set-opinion random-normal mean-o sigma-o

if agent-schedule = "Synchronous" [ update-opinion ]

set conformity random-normal mean-c sigma-c

set intolerance random-normal mean-t sigma-t

if intolerance < 0 [ set intolerance 0 ]

set susceptibility random-normal mean-s sigma-s

if susceptibility < 0 [ set susceptibility 0 ]

;set susceptibility conformity ; this implements a bug I found in the

original code

set reach random-normal mean-r sigma-r

if reach < 0 [ set reach 0 ]

setxy random-xcor random-ycor

set size 5 ; to make it easier to see

set shape "circle"

]

end

to setup-links

; ask turtles [

; create-links-from other turtles in-radius reach [ set hidden?

hide-links? ]

; ] ; removed because it’s not how he did it

ask turtles [

let network []

ask other turtles in-radius reach [

if distance myself < reach [ create-link-with myself [ set hidden?

hide-links? ] ]

]

]

end

to setup-plot

set-current-plot "Opinion over time"

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color hsb (310 * (true-opinion / 100 )) 100 100

plot-pen-down

plotxy ticks true-opinion

plot-pen-up

]

end

;;;; END SETUP
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to go

if agent-schedule = "Random order" [ ask turtles [ initiate-dialogue ] ]

if agent-schedule = "Random independent" [ repeat N [ ask one-of turtles

[ initiate-dialogue ] ] ]

if agent-schedule = "Synchronous" [

ask turtles [ initiate-dialogue ]

ask turtles [ update-opinion ]

]

tick

if plot-trajectory? [ if ticks mod 50 = 0 [ ask turtles [ update-plot ]

] ]

let all-opinions [ true-opinion ] of turtles

if ( (max all-opinions) - (min all-opinions) < 1 ) [ stop ]

if ticks >= max-time [ stop ]

end

to initiate-dialogue

if any? in-link-neighbors [

set expr-opinion true-opinion

let D (list expr-opinion) ; list of opinions expressed so far in this

dialogue

let w [] ; list of weights for each expressed opinion other than own

ask in-link-neighbors [

set expr-opinion true-opinion + (conformity / commitment) * (mean D -

true-opinion)

if expr-opinion < 0 [ set expr-opinion 0 ]

if expr-opinion > 100 [ set expr-opinion 100 ]

set D lput expr-opinion D

let wij (1 - [intolerance] of myself * abs (expr-opinion -

[true-opinion] of myself) / 50)

if wij < -1 [ set wij -1 ]

if wij > 1 [ set wij 1 ]

set w lput wij w

]

set D but-first D ; remove own opinion from list of influences

let influence (sum (map [[ ej wij ] -> wij * (ej - true-opinion)] D

w)) / (sum map abs w)

set-opinion (true-opinion + influence / commitment)

]

end

to set-opinion [ new-op ]

set next-opinion new-op

if next-opinion < 0 [ set next-opinion 0 ]

if next-opinion > 100 [ set next-opinion 100 ]

if agent-schedule != "Synchronous" [ update-opinion ]
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end

to update-opinion

set true-opinion next-opinion

set commitment 1 + susceptibility * (abs (50 - true-opinion)) / 50

let hue ifelse-value (true-opinion < 50) [ 250 ] [ 0 ]

let saturation 2 * abs (50 - true-opinion)

set color hsb hue saturation 100

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks true-opinion

plot-pen-up

end
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Appendix R. NetLogo Code: Generalized Repeated
Averaging Model

globals [ actors opinions range-op all-pairs num-prim-actors

num-sec-actors]

turtles-own [ opinion sources targets next-opinion coeff ]

to setup

clear-all

create-turtles N [

set opinion random-float 1

]

set opinions [opinion] of turtles

set range-op ( max opinions - min opinions )

if Actor-type = "Source" [

set num-prim-actors (min (list s N))

set num-sec-actors (min (list t (N - 1)))

]

if Actor-type = "Target" [

set num-prim-actors (min (list t N))

set num-sec-actors (min (list s (N - 1)))

]

if Actor-type = "Group" [

set num-prim-actors (min (list t (N * (N - 1) / 2)))

set all-pairs []

foreach range N [ [who1] ->

foreach (range (who1 + 1) N) [ [who2] ->

set all-pairs lput (turtle-set (turtle who1) (turtle who2))

all-pairs
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]

]

]

reset-ticks

end

to go

ask turtles [

set sources no-turtles

set targets no-turtles

]

; Assign relevant sets S, T, S_j, T_i as needed by actor type

; Note that if-values exist only to speed up calculations when

parameters are infinite

if Actor-type = "Source" [

set actors ifelse-value (num-prim-actors = N)

[turtles] [n-of num-prim-actors turtles] ; Set S

ask actors [

set targets ifelse-value (num-sec-actors = N - 1)

[other turtles] [n-of num-sec-actors other turtles] ; Set T_i

if (num-prim-actors < N) [ask targets [

set sources (turtle-set sources myself) ; Set S_j

] ]

]

if (num-prim-actors = N) [ask turtles [

set sources other turtles ; Set S_j

] ]

]

if Actor-type = "Target" [

set actors ifelse-value (num-prim-actors = N)

[turtles] [n-of num-prim-actors turtles] ; Set S

ask actors [

set sources ifelse-value (num-sec-actors = N - 1)

[other turtles][n-of num-sec-actors other turtles] ; Set S_j

]

]

if Actor-type = "Group" [

set actors ifelse-value (num-prim-actors = length all-pairs)

[all-pairs] [n-of num-prim-actors all-pairs] ; Set A

foreach actors [ [this-pair] ->

ask this-pair [

set sources (turtle-set sources other this-pair) ; Set S_j

]

]

]

if-else Synchrony = "Synchronous" [ go-sync ] [ go-async ]
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set opinions [opinion] of turtles

set range-op ( max opinions - min opinions )

tick

if range-op < 0.01 [ stop ]

end

to go-sync

let target-set no-turtles ; set of agents with |S_j|>0

if-else Actor-type = "Source" [

set target-set ifelse-value (num-sec-actors = N - 1)

[turtles] [turtle-set [targets] of actors]

] [

set target-set ifelse-value (num-prim-actors = ifelse-value

(Actor-type = "Target") [N] [length all-pairs])

[turtles] [turtle-set actors]

]

ask target-set [

set next-opinion ( (1 - mu) * opinion + mu * mean [opinion] of sources

)

]

ask target-set [

set opinion next-opinion

]

end

to go-async

ask turtles with [ count sources > 0 ] [ set coeff ((1 - mu) ^ (1 /

count sources)) ] ; coeff = 1 - mu^*

if Actor-type = "Source" [

let sourcelist ifelse-value Bias? [

; sort agents in ascending order of opinion

sort-on [opinion] actors

] [

; keep agents in random order

[self] of actors

]

foreach sourcelist [ [this-source] ->

ask this-source [ ask targets [ ; Set T_i

set opinion coeff * opinion + (1 - coeff) * [opinion] of this-source

] ]

]

]

if Actor-type = "Target" [

ask actors [

let sourcelist ifelse-value Bias? [

; sort agents in descending order of opinion
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reverse (sort-on [opinion] sources)

] [

; keep agents in random order

[self] of sources

]

foreach sourcelist [ [this-source] ->

set opinion coeff * opinion + (1 - coeff) * [opinion] of this-source

]

]

]

if Actor-type = "Group" [ ; Note, this only works for s=2

; if Bias, sort in ascending order by mean opinion

if Bias? [ set actors sort-by [ [set1 set2] -> mean [opinion] of set1

< mean [opinion] of set2 ] actors ]

foreach actors [ [this-pair] ->

; Synchronously update both members’ opinions

ask this-pair [

let source-op (item 0 [opinion] of other this-pair)

set next-opinion coeff * opinion + (1 - coeff) * source-op

]

ask this-pair [

set opinion next-opinion

]

]

]

end
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Appendix S. NetLogo Code: Generalized Bounded
Confidence Model

globals [ actors opinions range-op all-pairs num-prim-actors

num-sec-actors final-clusters final-opinions cluster-count]

turtles-own [ opinion sources targets next-opinion coeff my-cluster ]

to setup

clear-all

create-turtles N [

set opinion random-float 1

; setxy opinion 0

set color hsb (310 * opinion) 100 100

; set shape "dot"

]

set opinions [opinion] of turtles
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set range-op ( max opinions - min opinions )

if Actor-type = "Source" [

set num-prim-actors (min (list s N))

set num-sec-actors (min (list t (N - 1)))

]

if Actor-type = "Target" [

set num-prim-actors (min (list t N))

set num-sec-actors (min (list s (N - 1)))

]

if Actor-type = "Group" [

set num-prim-actors (min (list t (N * (N - 1) / 2)))

set all-pairs []

foreach range N [ [who1] ->

foreach (range (who1 + 1) N) [ [who2] ->

set all-pairs lput (turtle-set (turtle who1) (turtle who2))

all-pairs

]

]

]

reset-ticks

if update-plots? [ setup-plot ]

end

to setup-plot

set-current-plot "Opinion over time"

set-plot-x-range 0 (10 * update-frequency)

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

plot-pen-up

]

if update-plots? [ ask turtles [ update-plot] ]

end

to go

ask turtles [

set sources no-turtles

set targets no-turtles

]

; Assign relevant sets S, T, S_j, T_i as needed by actor type

; Note that if-values exist only to speed up calculations when

parameters are infinite

if Actor-type = "Source" [

set actors ifelse-value (num-prim-actors = N)

[turtles] [n-of num-prim-actors turtles] ; Set S

ask actors [
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set targets ifelse-value (num-sec-actors = N - 1)

[other turtles] [n-of num-sec-actors other turtles] ; Set T_i

set targets targets with [abs (opinion - [opinion] of myself) < d]

ifelse (num-prim-actors = N and num-sec-actors = N - 1) [

; unlimited actors means sources = targets (runs much faster)

set sources targets ; Set S_j

] [

ask targets [

set sources (turtle-set sources myself) ; Set S_j

]

]

]

]

if Actor-type = "Target" [

set actors ifelse-value (num-prim-actors = N)

[turtles] [n-of num-prim-actors turtles] ; Set T

ask actors [

set sources n-of num-sec-actors other turtles ; Set S_j

set sources sources with [abs (opinion - [opinion] of myself) < d]

]

]

if Actor-type = "Group" [

; filter pairs based on opinion similarity

set actors ifelse-value (num-prim-actors = length all-pairs)

[all-pairs] [n-of num-prim-actors all-pairs] ; Set A

set actors filter [ [pair] -> max [opinion] of pair - min [opinion] of

pair < d ] actors

foreach actors [ [this-pair] ->

ask this-pair [

set sources (turtle-set sources other this-pair) ; Set S_j

]

]

]

if-else Synchrony = "Synchronous" [ go-sync ] [ go-async ]

; Update plots and plotted values

set opinions [opinion] of turtles

set range-op ( max opinions - min opinions )

tick

if update-plots? [ if (ticks mod update-frequency = 0) [ ask turtles [

update-plot ] ] ]

if check-clusters [

if update-plots? [ ask turtles [ update-plot ] ]

stop

]
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end

to go-sync

let target-set no-turtles ; set of agents with |S_j|>0

if-else Actor-type = "Source" [

set target-set turtle-set [targets] of actors

] [

set target-set (turtle-set actors) with [count sources > 0]

]

ask target-set [

set next-opinion ( (1 - mu) * opinion + mu * mean [opinion] of sources

)

]

ask target-set [

set opinion next-opinion

; setxy opinion 0

]

end

to go-async

ask turtles with [count sources > 0] [ set coeff ((1 - mu) ^ (1 / count

sources)) ] ; coeff = 1 - mu^*

if Actor-type = "Source" [

let sourcelist ifelse-value Bias? [

; sort agents in ascending order of opinion

sort-on [opinion] actors

] [

; keep agents in random order

[self] of actors

]

foreach sourcelist [ [this-source] ->

ask this-source [

if count targets > 0 [ ; Set T_i

ask targets [

set opinion coeff * opinion + (1 - coeff) * [opinion] of

this-source

; setxy opinion 0

]

]

]

]

]

if Actor-type = "Target" [

ask actors with [ count sources > 0 ] [

let sourcelist ifelse-value Bias? [

; sort agents in descending order of opinion
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reverse (sort-on [opinion] sources)

] [

; keep agents in random order

[self] of sources

]

foreach sourcelist [ [this-source] ->

set opinion coeff * opinion + (1 - coeff) * [opinion] of this-source

; setxy opinion 0

]

]

]

if Actor-type = "Group" [

; if Bias, sort in ascending order by mean opinion

if Bias? [ set actors sort-by [ [set1 set2] -> mean [opinion] of set1

< mean [opinion] of set2 ] actors ]

foreach actors [ [this-pair] ->

; Synchronously update both members’ opinions

ask this-pair [

let source-op (item 0 [opinion] of other this-pair)

set next-opinion coeff * opinion + (1 - coeff) * source-op

]

ask this-pair [

set opinion next-opinion

; setxy opinion 0

]

]

]

end

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plot-pen-down

plotxy ticks opinion

plot-pen-up

end

to-report check-clusters

; Stop at convergence within clusters

let cluster-width 0

let clusters []

ask turtles [

let cluster turtles with [abs (opinion - [opinion] of myself) < d]

set clusters sentence clusters cluster

set cluster-width max list cluster-width (max [opinion] of cluster -

min [opinion] of cluster)
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]

if cluster-width < d / 2 [

set clusters remove-duplicates clusters

set final-clusters length clusters

set final-opinions sort map [ [clus] -> mean [opinion] of clus ]

clusters

set cluster-count map [ [op] -> count turtles with [abs (opinion - op)

< d] ] final-opinions

report true

]

report false

end
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Appendix T. NetLogo Code: Meta-contrast Influence Field
Model

extensions [ nw ]

globals [ clusters cluster-ops ]

turtles-own [ opinion next-opinion ]

;;;;; SETUP ;;;;;

to setup

clear-all

setup-turtles

reset-ticks

setup-plot

end

to setup-turtles

set-default-shape turtles "dot"

ifelse SWN? [ ; generate small-world network using Watts-Strogatz method

nw:generate-watts-strogatz turtles links N num-neighbors p-rewire [

set size 0.5

fd min list max-pxcor max-pycor

initialize-turtle

]
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] [ ; else, don’t bother with links

create-turtles N [

set size 0.5

set heading (who / N) * 359

fd min list max-pxcor max-pycor

initialize-turtle

]

]

end

to initialize-turtle

set opinion random-float 1

set next-opinion opinion

set color hsb (260 * opinion + 5) 100 100

end

to setup-plot

set-current-plot "Opinion over time"

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

]

ask turtles [ update-plot ]

end

;;;;; GO ;;;;;

to go

let prim-actors ifelse-value (num-prim-actors >= N) [ turtles ] [ n-of

num-prim-actors turtles ]

ask prim-actors [

be-influenced

]

if synchrony = "Synchronous" [ ask prim-actors [ update-opinion ] ]

tick

if op-plot? [ if ticks mod update-freq = 0 [ ask turtles [ update-plot ]

] ]

if not SWN? [ update-clusters ]

if not SWN? [ if max map [ [y] -> max [opinion] of y - min [opinion] of

y ] clusters <= (group-width / 2) [stop] ]

if count turtles with [opinion >= 0.0001 and opinion <= 0.9999] = 0 [

stop ]

if max [opinion] of turtles - min [opinion] of turtles < 0.01 [ stop ]

if SWN? and ticks > 0 and ticks mod 50 = 0 [ if max [ abs (get-influence

get-ops)] of turtles with [opinion > 0 and opinion < 1] <=

(group-width / 100) [ stop ] ]
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end

;;;;; PROCEDURES ;;;;;

;; OBSERVER PROCEDURES ;;

to update-clusters

let old-clusters clusters

set clusters remove-duplicates [ turtles with [abs (opinion - [opinion]

of myself) < group-width] ] of turtles

set cluster-ops map [ [y] -> mean [opinion] of y ] clusters

end

;; TURTLE PROCEDURES ;;

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plotxy ticks opinion

end

to update-opinion

if next-opinion > 1 [ set next-opinion 1 ]

if next-opinion < 0 [ set next-opinion 0 ]

set opinion next-opinion

set color hsb (260 * opinion + 5) 100 100

end

to be-influenced

let ops get-ops

let influence get-influence ops

set next-opinion next-opinion + influence

if synchrony = "Asynchronous" [ update-opinion ]

end

;;;;; FUNCTIONS ;;;;;

;; OBSERVER FUNCTIONS ;;

to-report membership [x xi] ; mu(x,x_i) in Salzarulo (2006)

;; Note: this assumes agents are unaware of group membership (may not be

appropriate in all cases)

let w group-width

report exp (- ((x - xi) ^ 2 / (w ^ 2)))

end
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to-report prototypicality [ x ops ] ; P(x,X) in Salzarulo (2006), modified

with lambda multiplier

let a outgroup-aversion

let w group-width

let mus map [[xi] -> membership x xi] ops

let diffs2 map [[y] -> (x - item y ops) ^ 2 ] range length ops

let summus sum mus ; sum(mu(x,xi))

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let summus2 (length ops) - summus ; sum(1-mu(x,xi))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let dintra ifelse-value (summus = 0) [0] [diff2mus / summus]

let dinter ifelse-value (summus2 = 0) [0] [diff2mus2 / summus2]

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))

let P (a * lambda * dinter - (1 - a) * dintra)

report P

end

to-report P-deriv [ x ops ] ; (d/dx)P(x,X) as specified above, with lambda

multiplier

let a outgroup-aversion

let w group-width

let mus map [[xi] -> membership x xi] ops

let diffs map [[xi] -> x - xi] ops

let diffs2 map [[y] -> (item y diffs) ^ 2 ] range length ops

let diffs3 map [[y] -> (item y diffs) ^ 3 ] range length ops

let summus sum mus ; sum(mu(x,xi))

let diffmus sum map [[y] -> (item y mus) * (item y diffs)] range length

ops ; sum((x-xi)mu(x,xi))

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let diff3mus sum map [[y] -> (item y mus) * (item y diffs3)] range

length ops; sum((x-xi)^3 mu(x,xi))

let summus2 (length ops) - summus ; sum(1-mu(x,xi)) = n - sum(mu(x,xi))

let diffmus2 sum map [[y] -> (1 - item y mus) * (item y diffs)] range

length ops ; sum((x-xi)(1-mu(x,xi)))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let ddintradx ifelse-value (summus = 0) [0] [2 * (((((w ^ 2) * diffmus)

- diff3mus) / ((w ^ 2) * summus)) + ((diff2mus * diffmus) / ((w *

summus) ^ 2)))]

let ddinterdx ifelse-value (summus2 = 0) [0] [2 * (((((w ^ 2) *

diffmus2) + diff3mus) / ((w ^ 2) * summus2)) - ((diff2mus2 * diffmus)

/ ((w * summus2) ^ 2)))]

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))
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let dPdx (a * lambda * ddinterdx - (1 - a) * ddintradx)

report dPdx

end

to-report influence-MIF [ x ops ] ; converts P-deriv to actual influence

value

let influence P-deriv x ops

set influence k * influence

report influence

end

to-report norm-var ; report normalized variance of opinions

let var variance [opinion] of turtles ; NetLogo calculates the sample

variance (not population)

report 12 * var * (N - 1) / N ; Convert to pop variance, divide by 1/12

end

;; TURTLE FUNCTIONS ;;

to-report get-ops ; gets appropriate opinions, based on setting of SWN?

let ops []

ifelse SWN? [ set ops [opinion] of (turtle-set link-neighbors self) ] [

set ops [opinion] of turtles ]

report ops

end

to-report get-influence [ ops ] ; gets appropriate influence value. Added

to increase modularity.

let influence influence-MIF opinion ops

report influence

end
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Appendix U. NetLogo Code: Meta-contrast Model

extensions [ nw ]

globals [ MC-list clusters cluster-ops ]

turtles-own [ opinion next-opinion ]

;;;;; SETUP ;;;;;

to setup

clear-all

setup-turtles

reset-ticks

setup-plot

set search-delta min list search-delta (1 / round (2 / group-width))

end

to setup-turtles

set-default-shape turtles "dot"

ifelse SWN? [ ; generate small-world network using Watts-Strogatz method

nw:generate-watts-strogatz turtles links N num-neighbors p-rewire [
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set size 0.5

fd min list max-pxcor max-pycor

initialize-turtle

]

] [ ; else, don’t bother with links

create-turtles N [

set size 0.5

set heading (who / N) * 359

fd min list max-pxcor max-pycor

initialize-turtle

]

]

end

to initialize-turtle

set opinion random-float 1

set next-opinion opinion

set color hsb (260 * opinion + 5) 100 100

end

to setup-plot

set-current-plot "Opinion over time"

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

; plot-pen-up

]

ask turtles [ update-plot ]

end

;;;;; GO ;;;;;

to go

let prim-actors ifelse-value (num-prim-actors >= N) [ turtles ] [ n-of

num-prim-actors turtles ]

if (not SWN?) and synchrony = "Synchronous" [set-noSWN-source]

ask prim-actors [

if (not SWN?) and synchrony = "Asynchronous" [set-noSWN-source]

be-influenced

]

if synchrony = "Synchronous" [ ask prim-actors [ update-opinion ] ]

tick

if op-plot? [ if ticks mod update-freq = 0 [ ask turtles [ update-plot ]

] ]

update-clusters

let max-op max [opinion] of turtles
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let min-op min [opinion] of turtles

if count turtles with [opinion = min-op or opinion = max-op] = N [ stop ]

if max-op - min-op < 0.01 [ stop ]

if not SWN? and k < 1 [ if max map [ [y] -> max [opinion] of y - min

[opinion] of y ] clusters <= (group-width / 2) [stop] ]

if not SWN? [ if length remove-duplicates [opinion] of turtles <= length

MC-list [ stop ] ]

end

;;;;; PROCEDURES ;;;;;

;; OBSERVER PROCEDURES ;;

to set-noSWN-source ; pre-calculates values for fully connected values

set MC-list []

let ops [opinion] of turtles

; create list of prototypicality values

let inputs map [ [y] -> y * search-delta ] range ((1 / search-delta) + 1)

let x-list []

let P-list []

foreach inputs [ [x] ->

set x-list lput x x-list

set P-list lput (prototypicality x ops) P-list

]

; eliminate values that are not local maxima

let decreasing? false

foreach range (length x-list) [ [index] ->

ifelse decreasing? [

if index < length x-list - 1 [

if (item index P-list) < (item (index + 1) P-list) [

set decreasing? false

]

]

] [ ; not decreasing?

ifelse index = length x-list - 1 [

set MC-list lput last x-list MC-list

] [

if (item index P-list) > (item (index + 1) P-list) [

set MC-list lput (item index x-list) MC-list

set decreasing? true

]

]

]

]

end
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to update-clusters

let old-clusters clusters

set clusters remove-duplicates [ turtles with [abs (opinion - [opinion]

of myself) < group-width] ] of turtles

set cluster-ops map [ [y] -> mean [opinion] of y ] clusters

end

;; TURTLE PROCEDURES ;;

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plotxy ticks opinion

end

to update-opinion

set opinion next-opinion

if opinion > 1 [ set opinion 1 ]

if opinion < 0 [ set opinion 0 ]

set color hsb (260 * opinion + 5) 100 100

end

to be-influenced

let ops get-ops

let influence get-influence ops

set next-opinion next-opinion + influence

if synchrony = "Asynchronous" [ update-opinion ]

end

;;;;; FUNCTIONS ;;;;;

;; OBSERVER FUNCTIONS ;;

to-report membership [x xi] ; mu(x,x_i) in Salzarulo (2006)

;; Note: this assumes agents are unaware of group membership (may not be

appropriate in all cases)

let w group-width

report exp (- ((x - xi) ^ 2 / (w ^ 2)))

end

to-report prototypicality [ x ops ] ; P(x,X) in Salzarulo (2006)

let a outgroup-aversion

let w group-width

let mus map [[xi] -> membership x xi] ops

let diffs2 map [[y] -> (x - item y ops) ^ 2 ] range length ops

let summus sum mus ; sum(mu(x,xi))
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let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let summus2 (length ops) - summus ; sum(1-mu(x,xi))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let dintra ifelse-value (summus = 0) [0] [diff2mus / summus]

let dinter ifelse-value (summus2 = 0) [0] [diff2mus2 / summus2]

let P (a * dinter - (1 - a) * dintra)

report P

end

to-report influence-MC [ x ops ]

let proto-ops []

ifelse SWN? [

foreach list (- search-delta) search-delta [ [eps] -> ; find local

maxima in each direction

let proto-op x

let P prototypicality proto-op ops

let decreasing? true ; becomes false once first local minimum is found

let increasing? true ; becomes false once first local maximum is found

while [increasing? and (proto-op >= 0) and (proto-op <= 1)] [

set proto-op (proto-op + eps)

let Pnew prototypicality proto-op ops

ifelse decreasing? [

if Pnew > P [ set decreasing? false ]

] [ ; not decreasing

if Pnew < P [ ; last value was the local maximum

set increasing? false

set proto-op (proto-op - eps)

]

]

set P Pnew

]

if not decreasing? [ set proto-ops lput proto-op proto-ops ]

]

if (proto-ops = []) [set proto-ops (list x) ]

] [ ; fully connected model

set proto-ops MC-list

]

let proto-distance (map [ [y] -> abs (x - y) ] proto-ops)

let my-proto-op item (position (min proto-distance) proto-distance)

proto-ops

let source-op 0

let source-distance min map [ [y] -> abs (y - my-proto-op) ] ops

set source-op item 0 (filter [ [y] -> abs (y - my-proto-op) =

source-distance] ops)
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if source-op > 1 [ set source-op 1 ]

if source-op < 0 [ set source-op 0 ]

let influence k * (source-op - x)

report influence

end

to-report skewness [ xlist ]

let len length xlist

let xbar mean xlist

let skew (sum map [ [x] -> (x - xbar) ^ 3 ] xlist) / ( len * (((len - 1)

/ len) * variance xlist) ^ 1.5)

report skew

end

to-report kurtosis [ xlist ]

let len length xlist

let xbar mean xlist

let kurt (sum map [ [x] -> (x - xbar) ^ 4 ] xlist) / ( len * (((len - 1)

/ len) * variance xlist) ^ 2)

report kurt

end

;; TURTLE FUNCTIONS ;;

to-report get-ops

let ops []

ifelse SWN? [ set ops [opinion] of (turtle-set link-neighbors self) ] [

set ops [opinion] of turtles ]

report ops

end

to-report get-influence [ ops ]

let influence influence-MC opinion ops

report influence

end
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Appendix V. NetLogo Code: Meta-contrast Influence Field
- Local Repulsion Model

extensions [ nw ]

globals [ clusters cluster-ops ]

turtles-own [ opinion next-opinion ]

;;;;; SETUP ;;;;;

to setup

clear-all

setup-turtles

reset-ticks

setup-plot

end

to setup-turtles

set-default-shape turtles "dot"

ifelse SWN? [ ; generate small-world network using Watts-Strogatz method

nw:generate-watts-strogatz turtles links N num-neighbors p-rewire [

set size 0.5

fd min list max-pxcor max-pycor

initialize-turtle

]

] [ ; else, don’t bother with links

create-turtles N [

set size 0.5
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set heading (who / N) * 359

fd min list max-pxcor max-pycor

initialize-turtle

]

]

end

to initialize-turtle

if init-dist = "Uniform" [set next-opinion random-float 1]

if init-dist = "Normal" [set next-opinion random-normal 0.5 Std-Dev]

update-opinion

end

to setup-plot

set-current-plot "Opinion over time"

ask turtles [

create-temporary-plot-pen word "Turtle " who

set-plot-pen-color color

]

ask turtles [ update-plot ]

end

;;;;; GO ;;;;;

to go

let prim-actors ifelse-value (num-prim-actors >= N) [ turtles ] [ n-of

num-prim-actors turtles ]

ask prim-actors [

be-influenced

]

if synchrony = "Synchronous" [ ask prim-actors [ update-opinion ] ]

tick

if op-plot? [ if ticks mod update-freq = 0 [ ask turtles [ update-plot ]

] ]

end

;;;;; PROCEDURES ;;;;;

;; OBSERVER PROCEDURES ;;

to draw-force-curve

set-current-plot "Force curve"

clear-plot

foreach range 101 [ [x] ->

let ops [opinion] of turtles

let y (influence-MIF (x / 100) ops)
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set-current-plot-pen "default"

plotxy (x / 100) y

set-current-plot-pen "zero"

plotxy (x / 100) 0

]

end

to draw-D-curve

set-current-plot "Desirability curve"

clear-plot

let ops [opinion] of turtles

let P map [ [x] -> desirability (x / 100) ops ] range 101

let min-P (floor (1000 * min P)) / 1000

let max-P (ceiling (1000 * max P)) / 1000

set-plot-y-range min-P max-P

let x 0

set-current-plot-pen "default"

foreach P [ [y] ->

plotxy x y

set x (x + 0.01)

]

set-plot-x-range 0 1

end

;; TURTLE PROCEDURES ;;

to update-plot

set-current-plot "Opinion over time"

set-current-plot-pen word "Turtle " who

plotxy ticks opinion

end

to update-opinion

if next-opinion > 1 [ set next-opinion 1 ]

if next-opinion < 0 [ set next-opinion 0 ]

set opinion next-opinion

set color hsb (260 * opinion + 5) 100 100

end

to be-influenced

let ops get-ops

let influence get-influence ops

set next-opinion next-opinion + influence

if synchrony = "Asynchronous" [ update-opinion ]

end

239



;;;;; FUNCTIONS ;;;;;

;; OBSERVER FUNCTIONS ;;

to-report membership [x xi] ; mu(x,x_i) in Salzarulo (2006)

;; Note: this assumes agents are unaware of group membership (may not be

appropriate in all cases)

let w group-width

report exp (- ((x - xi) ^ 2 / (w ^ 2)))

end

to-report saturation [x xi] ; same as membership but different value for w

let v repulse-range * group-width

report exp (- ((x - xi) ^ 2 / (v ^ 2)))

end

to-report desirability [ x ops ]

let a outgroup-aversion

let w group-width

let v repulse-range * w

let mus map [[xi] -> membership x xi] ops

let diffs2 map [[y] -> (x - item y ops) ^ 2 ] range length ops

let summus sum mus ; sum(mu(x,xi))

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let dintra ifelse-value (summus = 0) [0] [-1 * diff2mus / summus]

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let summus2 (length ops) - summus ; sum(1-mu(x,xi))

let dinter lambda * ifelse-value (summus2 = 0) [0] [diff2mus2 / summus2]

let gamma (w ^ 2) / exp(1)

let sats map [[xi] -> saturation x xi] ops

let sumsats sum sats

let dindiv (1 - a) * b * (w ^ 2) / (exp 1) * ifelse-value (summus = 0)

[0] [-1 * sumsats / summus]

let P (a * dinter) + ((1 - a) * (1 - b) * dintra) + ((1 - a) * b *

dindiv)

report P

end
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to-report D-deriv [ x ops ]

let a outgroup-aversion

let w group-width

let v repulse-range * w

let mus map [[xi] -> membership x xi] ops

let summus sum mus ; sum(mu(x,xi))

let diffs map [[xi] -> x - xi] ops

let diffmus sum map [[y] -> (item y mus) * (item y diffs)] range length

ops ; sum((x-xi)mu(x,xi))

let diffs2 map [[y] -> (item y diffs) ^ 2 ] range length ops

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let diffs3 map [[y] -> (item y diffs) ^ 3 ] range length ops

let diff3mus sum map [[y] -> (item y mus) * (item y diffs3)] range

length ops; sum((x-xi)^3 mu(x,xi))

let ddintradx ifelse-value ((w * summus) ^ 2 = 0) [0] [(-2 * (((((w ^ 2)

* diffmus) - diff3mus) / ((w ^ 2) * summus)) + ((diff2mus * diffmus)

/ ((w * summus) ^ 2))))]

let summus2 (length ops) - summus ; sum(1-mu(x,xi)) = n - sum(mu(x,xi))

let diffmus2 sum map [[y] -> (1 - item y mus) * (item y diffs)] range

length ops ; sum((x-xi)(1-mu(x,xi)))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))

let ddinterdx lambda * ifelse-value ((w * summus2) ^ 2 = 0) [0] [2 *

(((((w ^ 2) * diffmus2) + diff3mus) / ((w ^ 2) * summus2)) -

((diff2mus2 * diffmus) / ((w * summus2) ^ 2)))]

let sats map [[xi] -> (saturation x xi)] ops

let sumsats sum sats

let diffsats sum map [[y] -> (item y sats) * (item y diffs)] range

length ops ; sum ((x-xi)mu*(x,xi))

let ddindivdx (w ^ 2) / exp(1) * ifelse-value ((w * summus) ^ 2 = 0) [0]

[-2 * ((diffmus * sumsats / ((w ^ 2) * (summus ^ 2))) - (diffsats /

((v ^ 2) * summus)))] ; THIS WORKS

let dDdx (a * ddinterdx) + ((1 - a) * (1 - b) * ddintradx) + ((1 - a) *

b * ddindivdx)

report dDdx

end

to-report influence-MIF [ x ops ] ; converts P-deriv to actual influence

value

let influence (D-deriv x ops)
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set influence k * influence

report influence

end

to-report skewness [ xlist ] ; reports skewness of a distribution

let len length xlist

let xbar mean xlist

let skew (sum map [ [x] -> (x - xbar) ^ 3 ] xlist) / ( len * (((len - 1)

/ len) * variance xlist) ^ 1.5)

report skew

end

to-report kurtosis [ xlist ] ; reports kurtosis of a distribution

let len length xlist

let xbar mean xlist

let kurt (sum map [ [x] -> (x - xbar) ^ 4 ] xlist) / ( len * (((len - 1)

/ len) * variance xlist) ^ 2)

report kurt

end

;; TURTLE FUNCTIONS ;;

to-report get-ops ; gets appropriate opinions, based on setting of SWN?

let ops []

ifelse SWN? [ set ops [opinion] of (turtle-set link-neighbors self) ] [

set ops [opinion] of turtles ]

report ops

end

to-report get-influence [ ops ] ; gets appropriate influence value. Added

to increase modularity.

let influence (influence-MIF opinion ops)

report influence

end
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Appendix W. NetLogo Code: Meta-contrast Influence Field
- Local Repulsion Model on U.S. Map

extensions [ rnd ]

globals [ clusters cluster-ops land-patches ]

patches-own [ density influence-density ]

turtles-own [opinion next-opinion]

;;;;; SETUP ;;;;;

to setup-map

clear-all

file-open "uspopdensity.txt"

foreach range world-height [ [y] ->

foreach range world-width [ [x] ->

ask patch x (max-pycor - y) [

set density file-read

if density = 0 [ set pcolor blue - 1 ]

;set pcolor ifelse-value (density < 1) [ 0 ] [ ln density ] ; this

shows a density map of U.S.

]

]

]

file-close

set land-patches patches with [density > 0]

let mean-density mean [density] of land-patches

ask land-patches [ set influence-density (1 - exp (- density /

mean-density)) ]

let mean-inf mean [influence-density] of land-patches
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ask land-patches [ set influence-density influence-density - mean-inf ]

; causes mean influence to be zero

end

to setup

clear-turtles

setup-turtles

setup-network

reset-ticks

end

to setup-turtles

set-default-shape turtles "circle"

let sprouters rnd:weighted-n-of-with-repeats N patches [ density ]

foreach sprouters [ [here] ->

ask here [ sprout 1 [

set size 5

jitter-pos

initialize-turtle

] ]

]

end

to setup-network

ask turtles [

let my-neighbors other turtles in-radius 5

if count my-neighbors < num-neighbors [

set my-neighbors (turtle-set my-neighbors min-n-of (num-neighbors -

count my-neighbors) (other turtles with [not member? self

my-neighbors]) [distance myself])

]

if count my-neighbors < num-neighbors [ show count my-neighbors ]

create-links-with my-neighbors [

set hidden? hide-links?

]

]

end

to initialize-turtle

set opinion random-float 1

set next-opinion opinion

set color hsb (260 * opinion + 5) 100 100

end

;;;;; STEP ;;;;;
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to go

let prim-actors ifelse-value (num-prim-actors >= N) [ turtles ] [ n-of

num-prim-actors turtles ]

ask prim-actors [

be-influenced

]

if synchrony = "Synchronous" [ ask prim-actors [ update-opinion ] ]

tick

if count turtles with [opinion = 0 or opinion = 1] = N [ stop ]

; if max [opinion] of turtles - min [opinion] of turtles < 0.01 [ stop ]

; if max [abs (get-influence get-ops)] of turtles <= (group-width / 100) [

stop ]

end

;;;;; PROCEDURES ;;;;;

; OBSERVER PROCEDURES

to show-turtle-map

ask land-patches [ set pcolor black ]

ask turtles [ show-turtle ]

end

to show-sentiment-map

ask turtles [ hide-turtle ]

ask land-patches [

set pcolor black

let nearby-ops [opinion] of turtles in-radius 5

if length nearby-ops > 0 [

set pcolor hsb (260 * mean nearby-ops + 5) 100 100

]

]

spread-color

end

to show-voter-map

ask turtles [ hide-turtle ]

ask land-patches [

set pcolor black

let nearby-ops [opinion] of turtles in-radius 5

if length nearby-ops > 0 [

ifelse mean nearby-ops < 0.5 [

set pcolor red

] [

set pcolor blue

245



]

]

]

spread-color

end

to spread-color

let done? false

while [not done?] [

set done? true

ask land-patches with [pcolor != black] [

ask neighbors4 with [pcolor = black] [

set pcolor [pcolor] of myself

set done? false

]

]

]

end

; TURTLE PROCEDURES

to jitter-pos

setxy (pxcor - 0.5 + random-float 1) (pycor - 0.5 + random-float 1)

end

to update-opinion

set opinion next-opinion

if opinion > 1 [ set opinion 1 ]

if opinion < 0 [ set opinion 0 ]

set color hsb (260 * opinion + 5) 100 100

end

to be-influenced

let ops get-ops

let influence get-influence ops

set next-opinion next-opinion + influence

if synchrony = "Asynchronous" [ update-opinion ]

end

;;;;; FUNCTIONS ;;;;;

;; OBSERVER FUNCTIONS ;;

to-report membership [x xi] ; mu(x,x_i) in Salzarulo (2006)

;; Note: this assumes agents are unaware of group membership (may not be

appropriate in all cases)
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let w group-width

report exp (- ((x - xi) ^ 2 / (w ^ 2)))

end

to-report saturation [x xi] ; same as membership but different value for w

let v repulse-range * group-width

report exp (- ((x - xi) ^ 2 / (v ^ 2)))

end

to-report desirability [ x ops ]

let a outgroup-aversion

let w group-width

let v repulse-range * w

let mus map [[xi] -> membership x xi] ops

let diffs2 map [[y] -> (x - item y ops) ^ 2 ] range length ops

let summus sum mus ; sum(mu(x,xi))

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let dintra ifelse-value (summus = 0) [0] [-1 * diff2mus / summus]

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let summus2 (length ops) - summus ; sum(1-mu(x,xi))

let dinter lambda * ifelse-value (summus2 = 0) [0] [diff2mus2 / summus2]

let gamma (w ^ 2) / exp(1)

let sats map [[xi] -> saturation x xi] ops

let sumsats sum sats

let dindiv (1 - a) * b * (w ^ 2) / (exp 1) * ifelse-value (summus = 0)

[0] [-1 * sumsats / summus]

let P (a * dinter) + ((1 - a) * dintra) + dindiv

report P

end

to-report P-deriv [ x ops ]

let a outgroup-aversion

let w group-width

let v repulse-range * w

let mus map [[xi] -> membership x xi] ops

let summus sum mus ; sum(mu(x,xi))

let diffs map [[xi] -> x - xi] ops
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let diffmus sum map [[y] -> (item y mus) * (item y diffs)] range length

ops ; sum((x-xi)mu(x,xi))

let diffs2 map [[y] -> (item y diffs) ^ 2 ] range length ops

let diff2mus sum map [[y] -> (item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 mu(x,xi))

let diffs3 map [[y] -> (item y diffs) ^ 3 ] range length ops

let diff3mus sum map [[y] -> (item y mus) * (item y diffs3)] range

length ops; sum((x-xi)^3 mu(x,xi))

let ddintradx ifelse-value ((w * summus) ^ 2 = 0) [0] [(-2 * (((((w ^ 2)

* diffmus) - diff3mus) / ((w ^ 2) * summus)) + ((diff2mus * diffmus)

/ ((w * summus) ^ 2))))]

let summus2 (length ops) - summus ; sum(1-mu(x,xi)) = n - sum(mu(x,xi))

let diffmus2 sum map [[y] -> (1 - item y mus) * (item y diffs)] range

length ops ; sum((x-xi)(1-mu(x,xi)))

let diff2mus2 sum map [[y] -> (1 - item y mus) * (item y diffs2)] range

length ops; sum((x-xi)^2 (1-mu(x,xi)))

let lambda (w ^ 2) / ((exp 1) - (exp (1 - (1 / (w ^ 2)))))

let ddinterdx lambda * ifelse-value ((w * summus2) ^ 2 = 0) [0] [2 *

(((((w ^ 2) * diffmus2) + diff3mus) / ((w ^ 2) * summus2)) -

((diff2mus2 * diffmus) / ((w * summus2) ^ 2)))]

let sats map [[xi] -> (saturation x xi)] ops

let sumsats sum sats

let diffsats sum map [[y] -> (item y sats) * (item y diffs)] range

length ops ; sum ((x-xi)mu*(x,xi))

let ddindivdx (w ^ 2) / exp(1) * ifelse-value ((w * summus) ^ 2 = 0) [0]

[-2 * ((diffmus * sumsats / ((w ^ 2) * (summus ^ 2))) - (diffsats /

((v ^ 2) * summus)))] ; THIS WORKS

let dPdx (a * (1 - b) * ddinterdx) + ((1 - a) * ddintradx) + ((1 - a) *

b * ddindivdx)

report dPdx

end

to-report influence-MIF [ x ops ] ; converts P-deriv to actual influence

value

let influence (P-deriv x ops)

set influence k * influence

report influence

end

to-report skewness [ xlist ] ; reports skewness of a distribution

let len length xlist

let xbar mean xlist

let skew (sum map [ [x] -> (x - xbar) ^ 3 ] xlist) / ( len * (((len - 1)
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/ len) * variance xlist) ^ 1.5)

report skew

end

to-report kurtosis [ xlist ] ; reports kurtosis of a distribution

let len length xlist

let xbar mean xlist

let kurt (sum map [ [x] -> (x - xbar) ^ 4 ] xlist) / ( len * (((len - 1)

/ len) * variance xlist) ^ 2)

report kurt

end

;; TURTLE FUNCTIONS ;;

to-report get-ops ; gets appropriate opinions, based on setting of SWN?

let ops []

set ops [opinion] of (turtle-set link-neighbors self)

report ops

end

to-report get-influence [ ops ] ; gets appropriate influence value. Added

to increase modularity.

let influence (influence-MIF opinion ops) + (k * density-bias *

influence-density)

report influence

end
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