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Abstract 

Modal Control of an 
Unstable Periodic Orbit 

W. WieseI1 and W. Shelton2 

We apply Floquet theory to the problem of designing a control system for a satellite in an 
unstable periodic orbit. Expansion about a periodic orbit produces a time periodic linear system, 
which is augmented by a time periodic control term. We show that this can be done such that 
a) the application of control produces only inertial accelerations, b) positive real Poincare ex­
ponents are shifted into the left half-plane, and c) the shift of the exponent is linear with control 
gain. We apply these developments to an unstable orbit near the Earth-Moon L:i point pert4rbed 
by the Sun. Finally, we show that the control theory can be extended to include first order 
perturbations about the periodic orbit without increase in control cost. 

Introduction 

Control of a satellite following a nominal trajectory is a topic which arises in several 
areas of celestial mechanics. For example, stationkeeping costs are a major limiting 
factor on the lifetime of a synchronous satellite. Farquhar (1] has considered the appli­
cation of control theory to satellites near the Earth-Moon libration points, and one 
satellite, ISEE-3 , orbits the libration point between the Earth and Sun; Farquhar (2], 
Farquhar et al. [3]. Due to the relatively benign nature of this latter orbit, ISEE-3 is 
able to stationkeep using impulsive maneuvers every few months. Stationkeeping near 
an unstable periodic orbit has also been studied by Breakwell et al. · [ 4] , who developed 
a continuous feedback controller that stabilizes the orbit. 

In this paper we introduce a new formulation of the periodic orbit control problem. 
Often, a periodic orbit can be found in a dynamical system which does not admit 
equilibrium points. This is important, since it enables more dynamics to be incorporated 
ab initio, reducing overall control costs. We introduce Floquet rnodal variables in the 
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64 Wiesel and Shelton 

vicinity of the periodic orbit, and apply control only to suppress deviations from the 
orbit which grow with time. In common with Breakwell et al., we do not attempt 
to suppress all deviations from the reference orbit. Thus, our controller does not 
expend energy to eliminate sinusoidal or decaying errors, further reducing control 
costs. Finally, we show that it is possible to incorporate some perturbations into the 
controlled system without further increase in control costs. The ideas developed here 
will be applied to an object in a periodic orbit about the Earth-Moon L3 point, but the 
theory may be applied to any unstable periodic orbit. 

Dynamics 

In an earlier work, Wiesel [5], a model for the dynamics of a massless particle in the 
Earth-Moon-Sun system was developed. The geometry of this system is shown in 
Fig. 1, and the Hamiltonian is given by 

H = 1 (p; + p; + p:) + YPx - xpy + nl{/m0(l + m0t213Px sin(l - ~)t 

+ Py cos(! - ~)t - (I - µ,) f r$$ - µ,/ r,r> - rr10/rs0 (1) 

We have adopted the standard units and conventions of the restricted three body 
problem. In the form above, the rectangular coordinates refer to a frame rotating at the 
average lunar rate, while the momenta are inertial velocity components. We shall find 
this latter fact very useful in discussing the control theory. 

For the current discussion, we shall use this model with the Earth and Moon in a 
periodic orbit about their center of mass, consistent with the circular orbit about the 
Sun. This produces a time periodic dynamical system with a period of one synodic 
month. This model thus includes the Sun and "variational" tenns in the lunar orbit from 
the outset. The major effects neglected are the "Keplerian" component of lunar eccen­
tricity, lunar inclination, and the solar eccentricity. These can be incorporated into the 
dynamics (1) (see [5]), and we discuss their inco~ration into the controller in a 
later section. 

Figure 2 shows the particular periodic orbit we shall study in this paper. It was 
constructed in [5], and can be thought of as a forced oscillation about the L3 (opposite 
to the Moon) equilibrium point. It is unstable, and must be controlled if it is to be used 
as a reference trajectory. 

Introduction of Modal Variables 

Expanding the equations of motion from (1) about the periodic orbit, and grouping 
them into state vector form, we find the time periodic variational equations 

& = A(t)& (2) 
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SUN 
FIG. 1. Geometry of the Earth-Moon-Sun System. 

The development of the periodic A matrix is contained in the Appendix. Floquet's 
theorem states that the state transition matrix <l>(t, 0) of (2) can be decomposed as 

<l>(t, 0) = A(t)e1
' K 1(t = O) (3) 

where A(t) is a time periodic matrix, and J is a constant matrix whose entries are 
Poincare exponents. Direct substitution of (3) into (2) yields 

A(t) = A(t) A(t) - A(t)J (4) 

Initial conditions for this equation are supplied by the eigenvectors of the monodromy 
matrix <l>( T, 0), where T is the period. In order to keep A real , it is assembled in column 
vectors which consist of either the real eigenvector conjugate to a real Poincare ex­
ponent, or the real and imaginary parts of a complex eigenvector conjugate to a pair of 
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FIG. 2. The UnstableL:, Periodic Orbit. 
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imaginary Poincare exponents. For our L3 orbit, which has 2 imaginary pairs and one 
real pair of Poincare exponents , J assumes the form 

0 +lwd 
-lwd 0 

]= (5) 

which is also real. Table I gives the w; values. 
The construction of this solution to (2) begins with the numerical integration of 

<P=A(t)<I> 

for one period, to obtain the monodromy matrix <I>( r). Since A(t) is periodic, 
equation (3) implies that the eigenvectors of <I>( r) are A(O), while its eigenvalues A; are 
related to the Poincare exponents by 

l 
w; = - ln(A;) 

T 

Thus, a slight modification to the standard eigenvector/eigenvalue problem furnishes us 
with the J matrix and the value of the A matrix at t = 0. 

Since A(t) is periodic, we need to obtain it over the interval (0, -r) to complete the 
solution. This is performed by numerically integrating (4) over one period, starting 
from the initial conditions obtained in solving the eigenvector problem. In order to 
conveniently deal with functions obtained by numerical processes, we suggest the use 
of harmonic analysis, Brouwer and Clemence [6]. By this technique , a tabular function 
may be easily reduced to its Fourier series coefficients. Having obtained J and A(t), the 
solution (3) to the variational equations (2) is completed. We shall also require A- 1(t), 
which can be obtained by inverting A(t) for many values of t over one period and 
applying harmonic analysis again. Equation (3) implies that A(t) is never singular. 

We now introduce Floquet modal variables ~ by 

~=K1(t)ox (6) 

TABLE 1. Poincare Exponents and Periods/ e-Folding Times for the L, Periodic Orbit 

Mode W; T; 

1 0.0777384i 351.458 days; periodic 
2 0.1789305 24.302 days; unstable 
3 0.0841342i 324.739 days; periodic 
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Substituting into (2) and using (4), the variational equations (2) reduce to the constant 
coefficient system 

(7) 

Thus, the effect of the periodic linear transfonnation (6) is to reduce the system to 
an uncoupled, linear constant coefficient problem. For our L3 orbit (where J has the 
form given in (5)) the flow assumes the character of a center when projected on either 
the (771,772) or (775, 776) planes, and becomes a saddle point when projected on the 
( 773, TJ4) plane. 

Figure 3 is an example of a projection on to the (773,714) plane. Trajectories near the 
periodic orbit were integrated using the full nonlinear equations of motion from (l). The 
Bx vector was then computed, and converted to 77 variables for output. The success of 
the transfonnation to modal variables is confirmed by the appearance of a perfect saddle 
point structure near the origin. Figure 3 also emphasizes the local character of the 
modal transformation, since elsewhere on the figure the trajectories are time dependent 
and nonlinear. It is the unstable behavior of the 773 coordinate which must be altered if 
this orbit is to be stabilized .. 

Control Theory 

We return to the variational equations in physical variables, and augment them with 
the usual control term 

al = A(t)m + B(r)u(t} (8) 

At this stage we apply the physical constraint that a satellite can only produce control 
accelerations with respect to inertial space. Since the momenta in the Hamiltonian (1) 
are the inertial velocity components resolved on the rotating axes, this constraint 
implies that control terms can only occur in momenta (p"' py) equations of motion. We 
elect to control only the 773 coordinate, implying we need only consider scalar u, and 
take B(t) as the constant vector 

B7 = (0, 1, 0, 1,0) (9) 

This choice corresponds to 2 fixed thrusters operating at a 45° angle to the Earth-Moon 
line. It is otherwise arbitrary. 

Transforming (8) to the modal variables, we find 

(10) 

which is again a time periodic system. If we choose to feed back the unstable T/3 
coordinate 

u = k713 (11) 
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FIG. 3. Phase Portrait of the Uncontrolled System. 

where k is a gain, we are led to another Floquet problem of particularly simple form 

0 +lwd 0 0 0 0 

-lwd 0 0 0 0 0 

0 0 u>i + kA(t) 0 0 0 
11 = 

0 0 0 0 0 
11, (12) 

-Wi 

0 0 0 0 0 +lw3I 
0 0 0 0 -lw3I 
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where 

A(t) = A-1(t)B 

Of particular interest is the new equation of motion for 713 

T/3 = [aii + kAJ{t)J1/1 

Wiesel and Shelton 

(13) 

(14) 

Equation (14) can be solved by using an integrating factor. From (13), A(t) is avail­
able as a Fourier series. Separating A3 into its constant and sinusoidal parts, the solution 
to (14) is 

TJh) = 11iO)e(wiHA3c)rexp{ I: kA3p(t) dt} (15) 

Since the last exponential is a periodic function of time, the new Poincare exponent 
becomes 

~ = Wi + kA3c (16) 

which yields the rule for gain calculation, and the controllability condition is 

,\3c * 0 (17) 

This condition is satisfied for our L3 orbit. 
The complete solution to (12) is obtainable by the methods we developed earlier. It 

should be mentioned that the control term does not alter any other Poincare exponent 
in the controlled system. Also, should a periodic orbit have multiple real pairs of 
Poincare exponents, the procedure used here can be reapplied to (12) after it is rediago­
nalized by a second modal transformation. Our technique is thus the Floquet analogue 
of the "pole placement" method used for constant coefficient systems. 

Converting back to physical variables, the controller is implemented in the full 
nonlinear system by adding the term 

- -
kB111 = kB{A- '(t) [i - ip(t)]h (18) 

to the equation of motion, where {·h represents the 3rd component of the vector in 
brackets. Here, xp(t) is the periodic orbit, and i the full system state vector. It is still 
convenient to display results of trajectory integrations in the ij variables, although these 
variables no longer completely decouple the system. 

Figure 4 is a phase portrait for a gain k = +0.3, just above what is needed to 
stabilize the system. (A positive gain is needed because A3c is itself negative.) Some 
trajectories do indeed enter the origin, but the behavior over much of the ( 713 , 714) plane 
is complicated, and many trajectories depart to infinity. 

The situation improves for somewhat higher gain. Figure 5 shows a phase portrait 
fork= 0.5. The pattern is now that of a nodal point - both exponents are real and 
negative. For a gain of0.8 (Fig. 6) the nodal pattern appears again, and covers a larger 
area on the ( 713 , 714) plane. The region of validity of the linear theory thus increases with 
increasing gain. All trajectories shown in Figure 6 enter the origin. Control acceler­
ations applied in these cases average about 10-5 g during the suppressi?n of the 
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FIG. 4. Phase Portrait for a Gain of0.3. 

transient. As yet, we cannot cite a long term control cost, since once the satellite 
reaches the reference trajectory no further- control is needed, ignoring outside per­
turbations. 

The last two figures also show oscillations which occur along the "slow" axis of the 
nodal structure. These are not a result of the periodic nature of the dynamics, but are 
a nonlinear effect predicted by Poincare [7]. The cause of the effect is shown sche­
matically in Fig. 7. Over most of the plane we may neglect higher order terms, and if 
k1 ~ k2, y is the "fast" variable and quickly decays to a small value. However, near the 
x axis, higher order terms (proportional to x2) dominate the linear term in j,. The x 
behavior is still linear, but the trajectory exhibits decaying oscillations transverse to the 
x axis as the origin is approached. Since the trajectory cannot depart too far from the 
x axis (or the linear term in j, dominates), this interesting effect does not alter the 
overall stability of the controlled orbit. 
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FIG. 5. PhasePortraitforaGainof0.5. 

Perturbation Theory 

We have seen that it is possible to use Floquet theory to design a control system for 
an unstable periodic orbit. If our L3 satellite is delivered to the vicinity of the periodic 
orbit, the control system will drive the unstable modal variable TJ3 to zero, while 
ignoring the stable oscillations in the ( 1/i , 7"/2) and ( 'l'/s, '176) planes. Once the origin of the 
( 113, 1/4) plane is reached, the control system turns off, continuing to ignore small 
oscillations along inherently stable directions . 

However, the above results hold only in the dynamics in which the periodic orbit 
itself exists . As mentioned in the first section, the free lunar eccentricity, the lunar 
inclination, and the eccentricity of the Sun have not yet been included. There are two 
possible approaches which might be taken to include these effects. The first approach 
would be to add damping to the two stable Floquet modes. This would move the 
pure imaginary Poincare exponents into the left half plane, and the controller would 
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I 
FIG. 6. PhasePortraitforaGainof0.8. 

then suppress all oscillations about the periodic orbit, regardless of their source. The 
second, and more interesting option, is to continue to teach the controller to ignore 
any stable effects. 

It appears that classical perturbation techniques can be extended to this case, since 
with the active controller operating, the periodic orbit becomes a stable reference 
solution. If we write the variational equations again, we may also include the lowest 
order perturbation terms to find: 

Bi = {A(t) + kBA31(t)}c5x + P(t) (19) 

Here, P(t) represents the perturbing effects evaluated on the periodic orbit, and is a 
function of time alone. If we apply the Floquet transform to modal variables for the 
controlled orbit, we find 

~, = 1'rl' + N-1cr)P(t) (20) 
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y 

x = -K,x + {J(x~ Y2
) 

-
- - X - -- - - - - -- -FIG. 7. Schematic Representation of the Oscillations on the "Slow" Variable Axis. 

Here, primes refer to the Floquet transfonn (at a given gain k) which reduces the sys­
tem (12) to constant coefficient fonn. 

Equation (20) is a constant coefficient linear system with a forcing function. Its 
solution consists of a homogeneous and particular part 

71' (t) = TJ~(t) + TJ~(t) (21) 

The standard series techniques can be used to obtain 77~(t) if they are generalized to 
allow series expansions of the fonn 

(23) 
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where the w; can be either real or imaginary. If T/~ is well behaved (e.g., free of 
resonances and positive real w;) , then the controller can be taught to suppress only the 
"free" component of T)3 in the unprimed variables. This is a topic of current research. 

Higher order perturbation terms in (19) would be of order & times a small parameter 
(eo , io, eo), or of order W. If the controller operates satisfactorily in the lowest order 
perturbed system, there is then every reason to believe that higher order terms would 
be negligible. We would again arrive at a control system with effectively zero long-term 
stationkeeping costs. 

Conclusions 

By using Floquet theory, we have found that the variational equations (2) can be 
solved. The A matrix obtained in this solution can be used to reduce the variational 
equations to a decoupled, constant-coefficient system. This reduction considerably 
simplifies the control problem, and in the case of a single unstable root the pole shift 
is linear with the gain. The long term control costs can approach zero if perturbation 
theory is used to include nonlinearities. 

This paper addresses a problem which is very similar to the problem solved by 
Break.well et al., and we reach many of the same conclusions. However, our ap­
proaches differ substantially. While Break.well et al. solved their problem using an 
optimal control approach entirely in physical state variables, our method centers 
around the modal decoupling transformation (6). Both methods have advantages, and 
since applications to orbital stationkeeping, satellite stability, and helicopter problems 
are only beginning, there is still much to learn. 
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Appendix: Hamiltonian Variational Equations 

The Hamilton equations of motion are 

. aH 
q;=­

dp; 
p; = (A-1) 

where q; is the coordinate conjugate to the momentum p;. They can be written in state 
vector form 

. aH 
x=Z­ax (A-2) 

where Z is a skew-symmetric matrix containing the off-diagonal ± I entries necessary 
to reproduce (A-I). Variational equations are used to study small deviations from a 
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known trajectory. Expanding (A-2) about a given orbit, and retaining only first order 
terms, we find 

ox = ZHi(r)ox 

Here ox represents a small deviation, and H2 is the symmetric matrix 

iJ2H 
[Hi];i = --

iJx;iJxi 

evaluated on the known solution. Comparing (A-3) to (2), we see 

A(t) = ZHi(t) 
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