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AFIT-ENS-13-M-10 
 

Abstract 

 
 This thesis provides two new approaches for comparing competing systems. 

Instead of making comparisons based on long run averages or mean performance, the 

first paper presents a generalized method for calculating the probability that a single 

system is the best among all systems in a single trial. Unlike current empirical methods, 

the generalized method calculates the exact multinomial probability that a single system 

is best among competing systems. The ability to avoid time consuming empirical 

estimation techniques could potentially result in significant savings in both time and 

money when comparing alternate systems. A Monte Carlo simulation study is conducted 

comparing the empirical probability estimates of the generalized integral method, 

calculated using density estimation technique, with those of two related estimation 

techniques, Procedure BEM (Bechhofer, Elmaghraby, and Morse) [1] and Procedure 

AVC (All Vector Comparisons) [2]. All test cases show comparable performance in 

empirical estimation accuracy of the generalized integral method with that of the current 

methods analyzed.   

The second paper proposes the use of a distribution-free ordered comparisons 

procedure to test whether one population is stochastically larger (or smaller) than the 

other. This procedure is suggested as a useful alternative to the well-known Wilcoxon 

rank sum and Mann-Whitney tests. A Monte Carlo study is conducted, comparing the 

methods based on simulated power and type I error. All test cases show a marked 

improvement in performance of the ordered comparisons test versus the Wilcoxon rank 
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sum test, when testing for stochastic dominance. A table of critical values is presented 

and a large sample approximation is given. 
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ESTIMATING THE PROBABILITY OF BEING THE BEST SYSTEM:  

A GENERALIZED METHOD AND NONPARAMETRIC HYPOTHESIS TEST 

 

I. Introduction 

 

1.1 Overview   

Suppose we have ݇ ൒ 2 independent populations, denoted as ߨଵ, ,ଶߨ  ௞ whereߨ…

the goal is to determine which of the ݇ systems is best. It is common practice when 

comparing competing systems to simply call system ݅ the “best” if it has the most 

desirable mean or long-run average performance. However, in situations where we have 

only a small sample of data or where one-shot performance is important (i.e. building a 

satellite or firing a missile), we may be unable to compare the systems based on long-run 

performance. Instead, our goal is to find the system that is most likely to perform best in 

a single trial among all systems; this is referred to as the multinomial selection problem. 

Specifically, we will focus our attention on the problem of estimating the probability that 

each system will be the best in a single comparison among all the systems.  

In addition to multinomial probability estimation techniques, many nonparametric 

procedures exist for the two-sample comparison problem, such as the commonly used 

Wilcoxon rank sum [3] and Mann-Whitney [4] tests. However, in terms of detecting 

whether one population is stochastically larger (or smaller) than the other, it appears that 

these test procedures may not make full use of all the information contained in the sample 

data. We present a new distribution-free hypothesis test based on ordered comparisons 

which gleans useful information about the empirical cumulative probability distributions 
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of the sample data by ordering each sample separately (as opposed to a combined 

ordering as in the Wilcoxon rank sum test). The ordered sets of observations are then 

compared and a test statistic is calculated. Essentially, if sample 1 has significantly more 

smaller values than sample 2, then, in general, the cumulative probability distribution of 

sample 1 will be monotonically greater than the cumulative probability distribution of 

sample 2. This will result in population 2 being stochastically larger than population 1.  

Throughout this thesis, a hypothetical example will be considered from which 

example calculations will be conducted on a simulated dataset in order to motivate the 

work therein. Specifically, imagine the Air Force has recently experienced an unusually 

high number of critical failures on a specific Air Force system (i.e. an aircraft or 

computer system). As a result, the Air Force would like to implement a preventative 

maintenance policy to help thwart these failures and extend the time between critical 

failures. Two preventative policies are being considered for implementation (we will 

refer to them simply as Policy A and Policy B). A computer simulation was conducted 

using each of the policies, and output data was collected on the resulting time between 

critical failures (see Table 1) experienced using each policy. This data will be used 

throughout the thesis to demonstrate not only existing analysis techniques, but the 

proposed generalized integral method for calculating the probability that each system will 

be the best in a single comparison among all the systems as well as conducting the 

nonparametric ordered comparisons hypothesis test. At the conclusion of the thesis, we 

will provide a recommendation as to which policy the Air Force should implement in 

order to extend the time between critical failures. 
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1.2 Thesis Organization 

This thesis is formatted as two separate papers. Chapter 2 consists of the first 

paper which presents a generalized method for calculating the probability that each 

system is best in a single comparison among all systems. An overview of the relevant 

literature is provided, followed by an introduction to the generalized method. A Monte 

Carlo simulation study is also conducted, comparing the proposed method with two 

closely related techniques. 

The second paper, in Chapter 3, proposes a nonparametric ordered comparisons 

hypothesis test. A definition of nonparametric statistics, the distribution-free property, 

and stochastic dominance is given, followed by a brief summary of the Wilcoxon rank 

sum and Mann-Whitney tests. The ordered comparisons test procedure is presented, 

along with a derivation of the associated critical values. A large-sample approximation is 

also formulated, followed by a numerical example demonstrating the ordered 

comparisons technique. Finally, we compare the ordered comparisons test to the 

Wilcoxon rank sum test based on the simulated power and type I error, via a Monte Carlo 

simulation study. 
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II. A Generalized Method for Estimating the Probability of Being the Best System  

 

2.1 Abstract 

This paper presents an alternate method for comparing competing systems. 

Instead of making comparisons based on long run averages or mean performance, a 

generalized method is proposed for calculating the probability that a single system is the 

best among all systems in a single trial. Unlike current empirical methods, the 

generalized method calculates the exact multinomial probability that a single system is 

best among competing systems. The ability to avoid time consuming empirical estimation 

techniques could potentially result in significant savings in both time and money when 

comparing alternate systems. A Monte Carlo simulation study is conducted comparing 

the empirical probability estimates of the generalized integral method, calculated using a 

density estimation technique, with those of two related estimation techniques, Procedure 

BEM (Bechhofer, Elmaghraby, and Morse) [1] and Procedure AVC (All Vector 

Comparisons) [2]. All test cases show comparable performance in empirical estimation 

accuracy of the generalized integral method with that of the current methods analyzed.   

 

2.2 Introduction 

Suppose we have ݇ ൒ 2 independent populations, denoted as ߨଵ, ,ଶߨ  ௞ whereߨ…

the goal is to determine which of the ݇ systems is best. It is common practice when 

comparing competing systems to simply call a system the “best” if it has the most 

desirable mean or long-run average performance. However, in situations where there is 

only a small sample of data or where one-shot performance is important (i.e. building a 
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satellite or firing a missile), we may be unable or unwilling to compare the systems based 

on long-run performance. Instead, it may be more beneficial to find the system that is 

most likely to perform best in a single trial among all systems; this is referred to as the 

multinomial selection problem. Specifically, we will focus our attention on the problem 

of estimating the probability that a simulated system is best in a single comparison among 

all systems.  

Section 2.3 of this paper provides a brief overview of the two most relevant 

multinomial selection procedures, Procedure BEM [1] and Procedure AVC [2], from 

which we develop and propose a generalized method. Section 2.4 introduces this 

generalized method for calculating the probability that each system is the best among 

competing systems in a single trial. Section 2.5 compares our method with the BEM and 

AVC procedures through a Monte Carlo simulation study.  

 

2.3 Background 

 Traditionally,  hypothesis tests of homogeneity are conducted by comparing a 

parameter of interest (typically the mean) of ݇ systems under the null hypothesis:   

 

ଵߤ	:଴ܪ ൌ ଶߤ ൌ ⋯ ൌ  ௞ߤ

 

where ߤ௜ is the parameter of interest for the ݅୲୦ system. However, when the null 

hypothesis is rejected, we are limited in our ability to determine which system (or 

systems) is in fact better (or worse) than the others. Ranking and selection techniques 

give us the capability to determine these differences between competing systems.  
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Ranking and selection methods provide the ability to order a set of alternative 

systems from worst to best, select the single best system from among a relatively small 

number of systems, or screen a large number of systems by removing those systems 

whose performance is statistically inferior. These techniques trace their roots to three 

main papers; Gupta [5] [6] pioneered a screening subset selection formulation for 

selecting a subset of alternatives which contains the best system, and Bechhofer [7] 

established the indifference zone formulation for selecting the single best system.  

Suppose we have ݇	systems of interest. Let ௝ܺ௜ be the ݅୲୦ replication of the 

performance parameter of interest from system ݆, where ݆ ൌ 1, 2, … , ݇. We assume that 

the ௝ܺ௜ observations are independent within and across the systems, with means  ߤ௝ ൌ

ൣܧ ௝ܺ௜൧ and variances ߪ௝
ଶ ൌ Varൣ ௝ܺ௜൧. Also, let  

 

௝݌  ൌ Pr൛ ௝ܺ௜ ൐ ܺℓ௜, ∀ℓ ് ݆ൟ (1)

 

be the probability that system ݆ will have the most desirable value of the performance 

parameter on a single replication and ∑ ௝݌ ൌ 1௞
௝ୀଵ . 

For our discussion on ranking and selection techniques, the alternative systems 

are compared based on their expected performance, ߤ௝, or their probability, ݌௝, of being 

the best system in a single trial. We assume that larger is better in both cases and let 

ଵߤ ൑ ଶߤ ൑ ⋯ ൑ ௞ିଵߤ ൑ ଵ݌ ௞ andߤ ൑ ଶ݌ ൑ ⋯ ൑ ௞ିଵ݌ ൑  ௞ so that (unknown to us)݌

system ݇ is best.  
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2.3.1 Subset Selection Formulation 

 Consider the case where the goal is to select a subset of the ݇ systems which 

contains the best system. Since we can’t be absolutely sure that this subset contains the 

best system, we specify a probability, ܲ∗, that the subset contains the best system where 

1 ݇ ൏ ܲ∗⁄ ൏ 1 . More formally, if we have ݒ observations or simulation replications from 

each of the ݇ systems, our goal is to obtain a subset ܫ ⊆ ሼ1, 2, … , ݇ሽ such that  

 

 Prሼ݇ ∈ ሽܫ ൒ ܲ∗. (2)

 

 Ideally, we would like |ܫ| to be as small as possible; the best case scenario being 

|ܫ| ൌ 1 when the subset contains only the best system. Gupta [5] [6] first proposed a 

procedure for cases where the data is normally distributed with common variance ߪଶ and 

we have the same number of observations from each system. Nelson et al. [8] developed 

additional techniques to handle a variety of scenarios, including those where the 

unknown variances are not equal.   

 Gupta’s technique includes in the subset ܫ all of the systems ℓ such that  

 

 
തܺℓሺ݊ሻ ൒ max

௝ஷℓ
തܺ௝ሺ݊ሻ െ ඨߪ݄

2
ݒ

 (3)

 

where തܺ௝ሺ݊ሻ is the sample mean of the first ݒ outputs from system ݆, and ݄ is a constant 

whose value depend on ݇ and ܲ∗ [9].  



8 

 

 The proof that rule (3) guarantees (2) and shows what the value of ݄ should be is 

given by Kim and Nelson [9] as follows: 

 

							Prሼ݇ ∈ ሽܫ ൌ Prቐ തܺ௞ሺ݊ሻ ൒ max
௝ஷ௞

തܺ௝ሺ݊ሻ െ ඨߪ݄
2
ݒ
ቑ 											

ൌ Pr ቐ തܺ௞ሺ݊ሻ ൒ തܺ௝ሺ݊ሻ െ ඨߪ݄
2
ݒ
, ∀݆ ് ݇ቑ

ൌ Pr ቊ
തܺ௝ሺ݊ሻ െ തܺ௞ሺ݊ሻ െ ൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
൑ ݄ െ

൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
, ∀݆ ് ݇ቋ

൒ Pr൛ ௝ܼ ൑ ݄, ݅ ൌ 1, 2, … , ݇ െ 1ൟ ൌ ܲ∗ 

 

where ሺܼଵ, ܼଶ, … , ܼ௞ିଵሻ have a multivariate normal distribution with means 0, variances 

1, and common pairwise correlations 1/2.  

 Additional methods have also been developed which further Gupta’s initial 

groundwork. For example, say we have a large number of competing systems to begin 

our analysis and we only have enough resources available to analyze a specific number of 

alternatives. Koenig and Law [10] developed a screening subset selection procedure 

where we specify a subset of exactly ݉ systems which contain the best system with 

probability ܲ∗. Gupta and Santner [11] extended the original method by specifying a 

maximum size ݉ of the subset ܫ. The benefit of defining ݉ as the maximum subset size 

as opposed to ensuring that exactly ݉ systems be selected, is that it is possible for far 
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fewer than ݉ systems to be selected when it is statistically clear that only a few of the 

systems could be the best [12].  

 

2.3.2 Indifference Zone Formulation 

 A major disadvantage of the subset selection formulation is that it is possible, and 

likely, that the subset ܫ will contain more systems than just the single best system. 

However, there is no subset selection technique that can guarantee a subset of size one 

and satisfy (2) for an arbitrary sample size. Ultimately, we would like to determine the 

single best system among all the competing systems. Bechhofer’s [7] indifference zone 

formulation was developed to solve this problem.   

 The goal of the indifference zone formulation is to select the single best of ݇ 

systems with specified probability, ܲ∗, whenever ߤ௞ െ ௞ିଵߤ ൒ ߜ where ,ߜ ൐ 0 is the 

smallest difference the experimenter deems worth detecting. This specified distance, ߜ, is 

known as the indifference parameter.  Hence, if there are systems whose performance is 

within ߜ  of the best, then we are indifferent as to which system is chosen as the best. 

Similar to the subset selection formulation, Bechhofer’s technique guarantees that 

 

 Prሼselect system ௞ߤ|݇ െ ௞ିଵߤ ൒ ሽߜ ൒ ܲ∗ (4)

 

where 1 ݇ ൏ ܲ∗⁄ ൏ 1 . To perform Bechhofer’s procedure, begin by collecting  

 

 
݊ ൌ ቜ

2݄ଶߪଶ

ଶߜ
ቝ (5)
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observations from each system, where ݄ is a constant (as determined below ) and ۀ∙ڿ 

means to round up; then select as best the system with the largest sample mean [9]. 

Assuming that ߤ௞ െ ௞ିଵߤ ൒   Kim and Nelson [9] show that ,ߜ

 

							Prሼselect	system	݇ሽ ൌ Pr൛ തܺ௞ሺ݊ሻ ൐ തܺ௝ሺ݊ሻ, ∀݆ ് ݇ൟ 											

ൌ Pr ቊ
തܺ௝ሺ݊ሻ െ തܺ௞ሺ݊ሻ െ ൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
൏ െ

൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
, ∀݆ ് ݇ቋ

൒ Pr ቊ
തܺ௝ሺ݊ሻ െ തܺ௞ሺ݊ሻ െ ൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
൏

ߜ

ඥ2ߪ ⁄ݒ
, ∀݆ ് ݇ቋ

൒ Pr ቊ
തܺ௝ሺ݊ሻ െ തܺ௞ሺ݊ሻ െ ൫ߤ௝ െ ௞൯ߤ

ඥ2ߪ ⁄ݒ
൏ ݄, ∀݆ ് ݇ቋ

൒ Pr൛ ௝ܼ ൏ ݄, ݅ ൌ 1, 2, … , ݇ െ 1ൟ ൌ ܲ∗ 

 

where again ሺܼଵ, ܼଶ, … , ܼ௞ିଵሻ have a multivariate normal distribution with means 0, 

variances 1, and common pairwise correlations 1/2.  

 Goldsman et al. [13] note that Bechhofer’s procedure is essentially a power 

calculation that determines how many observations need to be collected in order to detect 

differences between competing systems of at least ߜ. In fact, when the differences in 

performance between systems are greater than ߜ, the number of observations, ݊, that we 

collect from each system may in fact be much larger than needed. Therefore, additional 

methods have been developed which collect observations and make decisions 

sequentially. This allows us to omit inferior systems much earlier in the process. 

Sequential techniques trace their roots to Wald [14], and the first procedure specifically 
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formulated for sequential selection is credited to Paulson [15]. Law [12] provides an 

overview of additional indifference zone techniques. 

   

2.3.3 Procedure BEM 

Up to this point, we have focused our discussion on comparisons based on the 

expected performance, ߤ௝, of each system.  However, ranking systems based on long-run 

mean performance may not always give us the full picture as to which system is best. It is 

possible for the system with the best mean performance to not be the system with the 

highest probability of being the best. Consider the following example presented by 

Goldsman [16]: Let ܣ and ܤ be two inventory policies, where profit is considered the 

parameter of interest and the higher the profit, the better. Suppose the profit from policy 

 is 1000 and occurs with probability 0.001 or 0 with probability 0.999. The profit from ܣ

policy ܤ is 0.999 with probability 1. The expected profit from policy ܣ is 1 and the 

expected profit from policy ܤ is 0.999. Therefore, we see that policy ܣ has a higher 

expected profit then policy ܤ. However, there is also a 0.999 probability that the profit 

from policy ܤ is greater than the profit from policy ܣ. Therefore, policy ܤ almost always 

has a higher profit than policy ܣ, even though the long-run expected profit for policy ܣ is 

greater. Hence, it may be wise to consider policy ܤ as the best policy. This simple 

example illustrates the need for an alternate method such as the probability estimation 

procedures presented in this paper when comparing competing systems.  

Let ݌௝ be the probability that system ݆ has the most desirable value of the 

performance parameter on any replication containing one observation from each system 

as defined in (1). We assume that our performance parameter is a continuous random 
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variable, and so the probability that a tie occurs between systems is exactly zero. 

Therefore, in each replication only one system can be the best; this corresponds to a 

multinomial trial where one and only one system can ‘win’ in any given trial [17]. If we 

have ݒ independent replications, the number of wins for each system follows a 

multinomial distribution. The objective in the methods presented in the remainder of this 

paper is to estimate these unknown multinomial success probabilities, ݌௝, for each of the 

݇	systems [17].  

Bechhofer and Sobel [18] made use of multinomial selection procedures to find 

the system most likely to produce the largest observation in a single trial. Bechhofer, 

Elmaghraby, and Morse [1] then developed the standard BEM procedure which 

determines the best system as the one having the largest value of the performance 

measure of interest in more trials than any other system. More formally, let  

 

௝ܻ௜ ൌ ൜
1, if	 ௝ܺ௜ ൐ ܺℓ௜	
0,										otherwise

 

 

for ݅ ൌ 1, 2, … , and ℓ ݒ ൌ 1, 2, … , ݇ but ℓ ് ݆ [17]. That is, ௝ܻ௜ ൌ 1 if ௝ܺ௜ is the largest 

observation among all systems in replication ݅. Then count the number of times that 

system ݆ is the best across all of the ݒ independent replications. Specifically, 

 

 
௝ܻ ൌ ෍ ௝ܻ௜

௩

௜ୀଵ

 (6)
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for ݆ ൌ 1, 2, … , ݇. Then let ሾܻଵሿ ൑ 	 ሾܻଶሿ ൑ ⋯ ൑ 	 ሾܻ௞ሿ be the ranked counts. Therefore, the 

system with the largest count, ሾܻ௞ሿ, is determined to be the best system [1]. If there is a tie 

for the largest count, randomly select one of the tied systems as the best. Then the 

estimate for the multinomial success probability, ݌௝,	of each system is just  

 

 
௝̂݌ ൌ

௝ܻ

ݒ
 (7)

 

for ݆ ൌ 1, 2, … , ݇. 

 Consider the following simulated data in Table 1, which represents the time 

between critical failures (in months) for the two preventative maintenance policies being 

considered by the Air Force as mentioned during the thesis introduction. 

 

Table 1. Simulated Time Between Critical Failures (In Months)                                                
for the Air Force’s Alternative Preventative Maintenance Policies 

Policy A Policy B 
0.31950 0.48383 
0.76029 1.18579 
0.26898 0.83970 
1.40037 0.87125 
3.49909 0.47615 
0.01253 2.19601 
0.27408 0.62893 
0.10418 4.42322 
1.55529 0.52177 
0.81182 1.03523 
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Table 2 shows the ௝ܻ௜ calculations and overall ௝ܻ totals for both policies for the 

associated example data in Table 1.  

 

Table 2. ࢐ࢅ Example Calculations 

Policy A Policy B ଵܻ௜ ଶܻ௜ 
0.31950 0.48383 0 1 
0.76029 1.18579 0 1 
0.26898 0.83970 0 1 
1.40037 0.87125 1 0 
3.49909 0.47615 1 0 
0.01253 2.19601 0 1 
0.27408 0.62893 0 1 
0.10418 4.42322 0 1 
1.55529 0.52177 1 0 
0.81182 1.03523 0 1 

  ଵܻ ൌ 3 ଶܻ ൌ 7 

 

 The multinomial probability estimate calculations for ̂݌ଵ and ̂݌ଶ are then  

 

ଵ̂݌ ൌ
ଵܻ

ݒ
ൌ

3
10

ൌ 0.3 

 

and 

 

ଶ̂݌ ൌ
ଶܻ

ݒ
ൌ

7
10

ൌ 0.7 
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 This same example data is used throughout this paper in order to provide a 

common frame of reference for demonstrating each procedure and providing an initial 

performance comparison between the different methods.  

 

2.3.4 Procedure AVC 

 Building on the work of Bechhofer, Elmaghraby, and Morse [1], Miller, Nelson, 

and Reilly [2] developed an improved method known as Procedure AVC (All Vector 

Comparisons). In their method, the same ݒ independent replications across ݇ systems in 

Procedure BEM are used to form ݒ௞ pseudo-replications that contain one observation 

from each system [2]. Instead of only comparing the ݅୲୦ replication for each system with 

the ݅୲୦ replication from the other systems, Procedure AVC compares each ௝ܺ௜              

ሺ݆ ൌ 1, 2, … , ݇; 	݅ ൌ 1, 2, … ,  ሻ with all possible combinations of the remainingݒ

observations, ܺℓ௛	ሺℓ ൌ 1, 2, … , ݇; 	ℓ ് ݆; 	݄ ൌ 1, 2, … ,  ሻ [17]. Therefore, Procedure AVCݒ

makes use of ݒ௞ െ  additional comparisons than Procedure BEM. By using this ݒ

additional information already contained in the sample data, Miller, Nelson, and Reilly 

are able to calculate more accurate estimates of the multinomial probabilities, ݌௝,	for each 

system.  

 Specifically, let 

 

 

௝ܼ ൌ ෍ 		෍ ∙ ∙ ∙ ෍ ෑ ߶ቀ ௝ܺ௔ೕ െ ܺℓ௔ℓቁ

௞

ℓஷଵ;ℓஷ௝

௩

௔ೖୀଵ

௩

௔మୀଵ

௩

௔భୀଵ

 (8)
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for ݆ ൌ 1, 2, … , ݇ with  

 

߶ሺܽሻ ൌ ቄ
1, ܽ ൐ 0
0, ܽ ൏ 0 

 

as defined by Miller, Nelson, and Reilly [17]. Therefore, ௝ܼ is simply the number of times 

that system ݆ is the best out of the ݒ௞ pseudo-replications. Then let ܼሾଵሿ ൑ 	ܼሾଶሿ ൑ ⋯ ൑

	ܼሾ௞ሿ be the ranked counts. Again, the system with the largest count, ܼሾ௞ሿ, is determined to 

be the best system [2]. If there is a tie for the largest count, randomly select one of the 

tied systems as the best. Then the estimate for the multinomial success probability, ݌௝,	of 

each system is just  

 

 
௝̅݌ ൌ

௝ܼ

௞ݒ
 (9)

 

for ݆ ൌ 1, 2, … , ݇. 

 We will again look at an example calculation using the same data as previously 

shown in Table 1. Table 3 shows the ௝ܼ totals for both policies for the associated 

aforementioned data. Instead of having only the 10 original replications, we now have 

100 pseudo-replications for comparing the two preventative maintenance policies.  

 

 

 



17 

 

Table 3. ࢐ࢆ Example Calculations 

Policy A Policy B ଵܺ௜ ܺଶ௛ 
0.31950 0.48383 0 1 
0.31950 1.18579 0 1 
0.31950 0.83970 0 1 
0.31950 0.87125 0 1 
0.31950 0.47615 0 1 
0.31950 2.19601 0 1 
0.31950 0.62893 0 1 
0.31950 4.42322 0 1 
0.31950 0.52177 0 1 
0.31950 1.03523 0 1 

⋮ ⋮ ⋮ ⋮ 
0.81182 0.48383 1 0 
0.81182 1.18579 0 1 
0.81182 0.83970 0 1 
0.81182 0.87125 0 1 
0.81182 0.47615 1 0 
0.81182 2.19601 0 1 
0.81182 0.62893 1 0 
0.81182 4.42322 0 1 
0.81182 0.52177 1 0 
0.81182 1.03523 0 1 

  ܼଵ ൌ 33 ܼଶ ൌ 67 

 

 The multinomial probability estimate calculations for ̅݌ଵ and ̅݌ଶ are then  

 

ଵ̅݌ ൌ
ܼଵ
௞ݒ

ൌ
33
10ଶ

ൌ 0.33 

 

and 

 

ଶ̅݌ ൌ
ܼଶ
௞ݒ

ൌ
67
10ଶ

ൌ 0.67 
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 We can see how there are significantly more comparisons made in Procedure 

AVC than in Procedure BEM, which ultimately leads to slightly different estimates for 

the probability that each population is the best. Next, we’ll show how our new method 

builds off the work of Bechhofer, Elmaghraby, and Morse [1] as well as Miller, Nelson, 

and Reilly [2], but approaches the problem in a more generalized manner. In general, our 

approach estimates the probability density functions or the cumulative density functions 

for each system and then evaluates a joint density function to come up with our 

multinomial probability estimates. 

 
 
2.4 Generalized Integral Method 

 In order to develop the generalized integral method, let’s begin by taking a 

different look at the example data from Table 1. Histograms of the data for Policy A and 

Policy B are shown below in Figure 1 and Figure 2, respectively. We arbitrarily use a 

common bin width of 0.75 for both histograms in order to illustrate initial calculations 

using our method. Different bin sizes may provide different results, with the most 

accurate estimates obtained from using individual observations from each system.  

 

 

Figure 1. Histogram of Policy A Example Data 



19 

 

 

Figure 2. Histogram of Policy B Example Data 

 

 Likewise, we’ll also consider the empirical cumulative distribution plots for each 

policy; these graphs are presented in Figure 3 and Figure 4 below, again using an 

arbitrary common bin width of 0.75. 

 

 

Figure 3. Empirical Cumulative Distribution Plot of Policy A Example Data 
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Figure 4. Empirical Cumulative Distribution Plot of Policy B Example Data 

 

 When estimating the multinomial probability, ݌௝, system ݆ is considered best 

when, for any value of ݔ from system ݆, all other systems perform worse than ݔ. 

Therefore, what we are truly concerned with is the probability of ݔ occurring in system ݆ 

and the probability of any value less than or equal to ݔ occurring in all other systems.  

 For two preventative maintenance policies, we can calculate the probability of 

Policy A having a larger time between critical failures than Policy B by multiplying the 

probability of obtaining a value ଵܺ, using the probability density function (pdf) of Policy 

A, by the probability of obtaining a value ܺଶ less than ଵܺ using the cumulative 

distribution function (cdf) of Policy B. To further illustrate using our empirical pdf for 

Policy A from Figure 1 and our empirical cdf for Policy B from Figure 4, we can estimate 

the overall probability that Policy A is the best in a single trial as  

 

 

 



21 

 

෤ଵ݌ ൌ ሺPrሼ0 ൏ ଵܺ ൑ 0.75ሽሻሺPrሼܺଶ ൑ 0.75ሽሻ 

							൅ሺPrሼ0.75 ൏ ଵܺ ൑ 1.5ሽሻሺPrሼܺଶ ൑ 1.5ሽሻ 

									൅ሺPrሼ1.5 ൏ ଵܺ ൑ 2.25ሽሻሺPrሼܺଶ ൑ 2.25ሽሻ 

							൅ሺPrሼ2.25 ൏ ଵܺ ൑ 3.0ሽሻሺPrሼܺଶ ൑ 3.0ሽሻ 

																													ൌ ሺ0.5ሻሺ0.1ሻ ൅ ሺ0.3ሻሺ0.4ሻ ൅ ሺ0.1ሻሺ0.6ሻ ൅ ሺ0.1ሻሺ0.8ሻ 

																																															ൌ 0.31 

 

and by the same method we find that ݌෤ଶ ൌ 0.69.  

 As we increase the sample size from each simulated maintenance policy, 

eventually we can move from using the empirical pdfs and cdfs for the time between 

critical failures of each policy to using theoretical pdfs and cdfs for each policy. In fact, 

the data used in Table 1 were randomly selected from two exponential distributions 

where ߤଵ ൌ ଵߣ) 1 ൌ 1) and ߤଶ ൌ ଶߣ) 2 ൌ 1/2). Figure 5 shows the theoretical pdfs used 

to generate the example data for both policies.  

 

 

Figure 5. Probability Density Functions for                                                                 
Policy A (Solid Curve) and Policy B (Dashed Curve) 
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Figure 6 shows the theoretical cdfs for both preventative maintenance policies.   

 

 

Figure 6. Cumulative Distribution Functions for                                                         
Policy A (Solid Curve) and Policy B (Dashed Curve) 

  
 
 
 Following our previous multinomial probability calculations using empirical 

distributions, we can now substitute the theoretical distributions shown in Figure 5 and 

Figure 6. Let  

 

ଵ݂ሺݔሻ ൌ ݁ି௫ 

 

and 

 

ଶ݂ሺݔሻ ൌ ሺ1/2ሻ݁ିሺଵ/ଶሻ௫ 

 

be the pdfs for Policy A and Policy B, respectively.  
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Also, let  

 

ሻݔଵሺܨ ൌ 1 െ ݁ି௫ 

 

and 

 

ሻݔଶሺܨ ൌ 1 െ ݁ିሺଵ/ଶሻ௫ 

 

be the cdfs for Policy A and Policy B, respectively.  

 We can calculate the multinomial probabilities for each policy in the same manner 

as we did using the empirical distributions. We have 

 

 
෤ଵ݌ ൌ න ଵ݂ሺݔሻܨଶሺݔሻ݀ݔ

ஶ

଴

 (10)

ൌ නሺ݁ି௫ሻ൫1 െ ݁ିሺଵ/ଶሻ௫൯݀ݔ

ஶ

଴

 

ൌ
1
3

 

 
and  

 

 
෤ଶ݌ ൌ න ଶ݂ሺݔሻܨଵሺݔሻ݀ݔ

ஶ

଴

 (11)

ൌ න൫ሺ1/2ሻ݁ିሺଵ/ଶሻ௫൯ሺ1 െ ݁ି௫ሻ݀ݔ

ஶ

଴

 

ൌ
2
3
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 We can see that these multinomial probabilities are similar to the probability 

estimates found using Procedure BEM (̂݌ଵ ൌ .3, ଶ̂݌	 ൌ .7) and Procedure AVC (̅݌ଵ ൌ .33,

ଶ̅݌ ൌ .67). In fact, if we use the individual observations to construct the empirical pdfs 

and cdfs for the example data in Table 1 as opposed to using an arbitrarily assigned band 

width, we get the exact same results as using Procedure AVC. Specifically, we can 

calculate the multinomial probabilities for each policy as 

 

෤ଵ݌ ൌ ൫Pr൛0 ൏ ଵܺ ൑ ଵሺଵሻൟ൯൫Pr൛ܺଶݔ ൑  + ଵሺଵሻൟ൯ݔ

⋮ 

			൅൫Pr൛ݔଵሺଽሻ ൏ ଵܺ ൑ ଵሺଵ଴ሻൟ൯൫Pr൛ܺଶݔ ൑  ଵሺଵ଴ሻൟ൯ݔ

ൌ ሺPrሼ0 ൏ ଵܺ ൑ 0.01253ሽሻሺPrሼܺଶ ൑ 0.01253ሽሻ + 

⋮ 

൅ሺPrሼ1.55529 ൏ ଵܺ ൑ 3.49909ሽሻሺPrሼܺଶ ൑ 3.49909ሽሻ 

                       ൌ ሺ0.1ሻሺ0ሻ ൅ ሺ0.1ሻሺ0ሻ ൅ ሺ0.1ሻሺ0ሻ ൅ ሺ0.1ሻሺ0ሻ ൅ ሺ0.1ሻሺ0ሻ ൅ ሺ0.1ሻሺ0.4ሻ ൅

ሺ0.1ሻሺ0.4ሻ ൅ ሺ0.1ሻሺ0.8ሻ ൅ ሺ0.1ሻሺ0.8ሻ ൅ ሺ0.1ሻሺ0.9ሻ 

ൌ 0.33 

 

and likewise we find that ݌෤ଶ ൌ 0.67. Therefore, Procedure AVC is just a specific case of 

our generalized method whereby each observation is equally likely to occur. In general, 

the multinomial probabilities found using Procedure AVC can be calculated using our 

method by 
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෤௝݌ ൌ෍቎൬

1
ݒ
൰ ෑ ൫Pr൛ܺℓ ൑ ௝ሺ௜ሻൟ൯ݔ

௞

ℓୀଵ; ℓஷ௝

቏

௩

௜ୀଵ

 (12)

 

for ݆ ൌ 1, 2, … ݇.  

However, with perfect knowledge of the underlying population distributions of 

Policy A and Policy B, ݌෤ଵ and ݌෤ଶ are the exact multinomial probabilities for each policy. 

Hence, we can see that the estimates using Procedure BEM and Procedure AVC are just 

that – empirical estimates which approach the true probabilities as determined by the 

integral method.  

 Therefore, in general, the multinomial probability that system ݆ will be the best in 

a single comparison among ݇ systems is computed as follows: 

 

 
 
෤௝݌ ൌ න ௝݂ሺݔሻ ෑ ሻݔℓሺܨ

௞

ℓୀଵ; ℓஷ௝

ݔ݀

ஶ

ିஶ

 

 

(13)

 

where ௝݂ሺݔሻ is the probability density function for system ݆, ݆ ൌ 1, 2, … , ݇ and ܨℓሺݔሻ is 

the cumulative distribution function of system ℓ, ℓ ൌ 1, 2, … , ݇; 	ℓ ് ݆.  

 There are multiple advantages of the integral method compared with its BEM and 

AVC counterparts. As long as we have knowledge of the underlying theoretical 

distributions of the parameter of interest from each system, the integral method provides 

an exact value for the multinomial probabilities. For cases where there is no closed form 

solution to equation (13), some form of numerical integration could be performed to 



26 

 

provide a sufficiently accurate estimate. Our method also requires only one simple 

calculation for each multinomial probability as opposed to the ݒ comparisons made in 

Procedure BEM or even worse, the ݒ௞ comparisons in Procedure AVC. Furthermore, if 

we know the underlying distribution of the parameter of interest for each system, we 

don’t need to collect any data from the systems to calculate empirical estimates as done 

in the other procedures. There is no need to determine the minimum sample size required 

to achieve a certain level of fidelity in our probability calculations. With the integral 

method, we simply calculate the multinomial probabilities based on the distributions 

themselves. In a real world application, this could mean huge savings in both time and 

money.  

 There are also some disadvantages inherent with the integral method. This method 

hinges upon the knowledge of the underlying distributions of the parameter of interest for 

comparing the competing systems. Often times, especially when testing a new system 

from which we have collected little or no data, we may have very little, if any, knowledge 

of the underlying distribution. Unless there is a subject matter expert who knows what the 

distribution is or has historical data to analyze, we won’t be able to use this method in its 

purest form. However, if this is the case, we don’t have to completely abandon the 

method altogether. As we saw using the example data in Table 1, we can still calculate an 

empirical estimate of the multinomial probabilities as long as we can estimate the pdf and 

cdf of each policy. Unfortunately, it is this reality of imperfect knowledge of the 

underlying theoretical distributions of the parameter of interest that leads us into the next 

section of this paper where we conduct a study comparing the results of Procedure BEM 
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and Procedure AVC with the empirical probability estimates using the generalized 

integral method. 

 

2.5 Empirical Comparison Study 

 In the previous section, we discussed the need for calculating empirical estimates 

of the multinomial probabilities in real world situations.  For the purposes of this study, 

we compared the empirical probability estimates found using Procedure BEM and 

Procedure AVC with those of the proposed integral method. The empirical estimates 

found using each of the three methods were also compared to truth values as determined 

by the exact multinomial probabilities computed using the generalized integral method in 

equation (13). Sample data were generated using the Arena Input Analyzer® software 

package from Rockwell Software for seven pairs of distributions. Empirical estimates of 

the multinomial probabilities, ݌ଵ and ݌ଶ, were calculated using Procedure BEM, 

Procedure AVC, and the integral method. Table 4 lists the pairs of distributions analyzed, 

along with their associated indifference zone parameter value, ߠ, where  ߠ ൌ ௣෤మ
௣෤భ

.  

 

Table 4. Empirical Comparison Study Test Cases 

Test Case System 1 System 2 ߠ 

1 Betaሺα ൌ 1, β ൌ 3ሻ Betaሺα ൌ 1, β ൌ 2.5ሻ 1.2 
2 Betaሺα ൌ 2, β ൌ 5ሻ Betaሺα ൌ 2, β ൌ 2ሻ 3.4 
3 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 1.2ሻ 1.2 
4 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 2.2ሻ 2.2 
5 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 3.4ሻ 3.4 
6 Gammaሺα ൌ 2, β ൌ 2ሻ Gammaሺα ൌ 3, β ൌ 2ሻ 2.2 
7 Normalሺμ ൌ 0, σ ൌ 1ሻ Normalሺμ ൌ 0.5, σ ൌ 1ሻ 1.8 
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 For each of the seven cases, we compared the empirical probability estimates 

across a range of sample sizes, ݒ ൌ 10, 30, and	100. In each combination of distribution 

comparison and sample size, 1024 macro-replications were conducted.  

 In order to calculate empirical estimates for the multinomial probabilities using 

the integral method, we need to be able to estimate the pdf and cdf of the parameter of 

interest for each system. For the purpose of this analysis, when calculating the 

multinomial probability, ݌෤௝, the empirical cdf for each system is simply calculated as  

 

 
௜ሻݔℓሺܨ ൌ

number of elements from system ℓ ൑ 	௜ݔ
ݒ

 (14)

 

for each system ℓ, where ℓ ് ݆ and ݅ ൌ 1, 2, … ,  For example, in the two sample case .ݒ

when calculating ݌෤ଵ,  

	

௜ሻݔଶሺܨ ൌ
number	of	elements	from	system	2	 ൑ 	௜ݔ

ݒ
	, 

 

for each ݔ௜ from system 1.  

 Now we just need to estimate the pdf for each system. The histogram method, as 

previously shown at the beginning of section 2.4, is one of the most common density 

estimation techniques. However, the accuracy of the histogram technique is heavily 

dependent on the selection of the bin width and the location of the bin end points. The 

empirical pdf values can vary greatly based on the choice these parameter values. 

Therefore, instead of using the histogram method in order to estimate the pdf, we have 
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elected to use kernel density estimation to calculate the multinomial probability 

estimates, ݌෤ଵ and ݌෤ଶ, for each of the seven test cases. It is important to note here again, if 

we use the individual observations to construct our empirical pdfs, the multinomial 

probabilities found using the generalized integral method match the results using 

Procedure AVC.  

 Like the histogram method, kernel density estimation is a nonparametric density 

estimation technique which is useful for small data sets. The roots of kernel density 

estimation can be found in two seminal papers by Rosenblatt [19] and Parzen [20], 

although the basic principles were introduced by Fix and Hodges [21] and Akaike [22]. 

In general, kernel density estimation is a data smoothing procedure which allows us to 

move from estimating every density with a step function by making more efficient use of 

the data in order to construct a smooth estimate of the density function. Figure 7 below 

shows a typical density estimation for six data points using the histogram as well as a 

smooth kernel density estimate using the same six data points.  

 

 

Figure 7. Comparison of the histogram (left) and                                                        
kernel density estimate (right) using the same data 
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 Instead of binning each data point into a bin of arbitrary size and location, the 

kernel density estimation technique represents each data point by an individual kernel (in 

this case a normal distribution) centered at each observation as represented by the dashed 

curves in Figure 7. These six individual distributions are then accumulated into a smooth 

kernel density estimate. Therefore, in areas where there are more observations, the kernel 

density will assume a larger value than in areas where there are relatively few 

observations.  

 Formally, the kernel density estimator is defined as  

 

 
መ݂ሺݔ; ݄ሻ ൌ

1
݄݊

෍ܭ൬
ݔ െ ௜ܺ

݄
൰

௡

௜ୀଵ

 (15)

 

where ܭሺ∙ሻ is a function satisfying ܭ׬ሺݔሻ݀ݔ ൌ 1, which we call the kernel, and ݄ is a 

positive number called the bandwidth [23]. The kernel determines the shape of the 

function and the bandwidth acts as a smoothing parameter.  The kernel is usually a 

unimodal probability density function that is symmetric about zero, which ensures that 

መ݂ሺݔ; ݄ሻ is also a density [23]. Many different kernel functions are used, such as uniform, 

triangular, Gaussian, cosine, and numerous others functions. For the purpose of our 

Monte Carlo simulation, we will use the common Gaussian kernel which is defined as  

 

 
ሻݐሺܭ ൌ

1

ߨ2√
݁ିሺଵ ଶ⁄ ሻ௧మ . (16)
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 It should be noted that the choice of the kernel function is not nearly as important 

as the choice of the value for the bandwidth, and incorrect selection can result in under or 

over smoothing of the kernel density estimator. When the bandwidth value is too small 

and the estimate pays too much attention to the data set and doesn’t allow for variation 

across samples, the density curve becomes noisy and is said to be undersmoothed. When 

the bandwidth value is too large, the natural structure of the underlying density is 

smoothed away, the estimate is said to be oversmoothed.  However, with a correct 

selection of ݄, the kernel estimate is not overly noisy and the essential structure of the 

underlying density is preserved. Figure 8 from Wand and Jones [23] shows an example of 

each case, where (a) represents an undersmoothed estimate, (b) depicts an oversmoothed 

estimate, and (c) illustrates a correct bandwidth selection.  

 

 

Figure 8. Kernel density estimates for various bandwidths.                                             
The solid line is the density estimate, the dashed line is the true density.                         

The bandwidths are (a) h = 0.06, (b) h = 0.54, and (c) h = 0.18. 
 
 
 
 There are numerous approaches used for determining the correct value for 

bandwidth. If the user has reason to believe that there is certain structure to the data and 
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has knowledge of the position of the modes, it may be acceptable to begin with a large 

bandwidth and decrease the amount of smoothing until fluctuations in the estimate cease 

to appear more structural than random [23]. Many other more rigorous tactics exist which 

make use of automatic bandwidth selectors that produce a bandwidth value based on the 

sample data itself. For the purpose of our Monte Carlo simulation, we will use the 

Silverman’s rule of thumb [24], which is defined as  

 

 

݄ ൌ ቆ
ොହߪ4

3݊
ቇ

ଵ
ହ
ൎ ො݊ିଵߪ1.06 ହ⁄ . (17)

 

 In order to calculate estimates for the multinomial probabilities, ݌ଵand ݌ଶ, in our 

empirical comparison study, we employed built in kernel density estimation functions 

using the computational software package, Mathematica 8.0. We used a Gaussian kernel 

and bandwidths as determined by Silverman’s rule of thumb for all test cases. After 

generating kernel density estimates for each system, the empirical multinomial 

probabilities, ݌෤ଵand ݌෤ଶ, were then calculated using equation (13).  

 To establish truth data for comparing the empirical probability estimates found 

using Procedure BEM, Procedure AVC, and the integral method, we first calculated the 

exact multinomial probabilities, ݌෤ଵand ݌෤ଶ, for each of the seven test cases using the 

known sample distributions and equation (13). These exact multinomial probabilities (to 

four decimal places) are shown below in Table 5 along with their associated indifference 

zone parameter value, ߠ,	where ߠ ൌ ௣෤మ
௣෤భ
.	 
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Table 5. Exact Multinomial Probabilities for Each Test Case 

Test Case ݌෤ଵ ݌෤ଶ ߠ 

1 0.4545 0.5455 1.2 
2 0.2262 0.7738 3.4 
3 0.4545 0.5455 1.2 
4 0.3125 0.6875 2.2 
5 0.2273 0.7727 3.4 
6 0.3125 0.6875 2.2 
7 0.3618 0.6382 1.8 

 
 
 
 For each of the seven test cases, a summary table was constructed comparing the 

multinomial probability estimates found using Procedures BEM and AVC with those of 

the integral method at each of the sample sizes analyzed. The associated error for each of 

the empirical estimates, denoted ߝ௣෤భ and ߝ௣෤మ, were also calculated as the difference 

between the probability estimates found using each method and their respective exact 

multinomial probabilities given in Table 5. The empirical probability estimate summary 

and associated error summary tables for test cases 1 are presented below in Table 6 and 

Table 7, respectively.   

 

Table 6. Empirical Probability Estimates for                                                               
Test Case 1: Beta(α = 1,β = 3) vs. Beta(α = 1,β = 2.5), 1.2 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.4589 0.5411 0.4567 0.5433 0.4530 0.5470 0.4562 0.5438 
AVC 0.4586 0.5414 0.4556 0.5444 0.4534 0.5466 0.4559 0.5441 

Kernel Density 0.4612 0.5381 0.4589 0.5407 0.4555 0.5440 0.4585 0.5410 
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Table 7. Empirical Probability Estimate Errors for                                                           
Test Case 1: Beta(α = 1,β = 3) vs. Beta(α = 1,β = 2.5), 1.2 = ࣂ 

 Sample Size (ݒሻ Overall     
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0043 0.0043 0.0022 0.0022 0.0016 0.0016 0.0027 0.0027 
AVC 0.0041 0.0041 0.0011 0.0011 0.0011 0.0011 0.0021 0.0021 

Kernel Density 0.0066 0.0073 0.0043 0.0048 0.0009 0.0014 0.0040 0.0045 
 
 
 
 We can see from Table 6 that the probability estimates for ݌෤ଵ and ݌෤ଶ are very 

close between the different methods for each sample size. In fact, the probability 

estimates are within at most 0.0032 and 0.0037 for ݌෤ଵ and ݌෤ଶ, respectively. This same 

behavior was observed for the other six test cases as well.  

Looking at Table 7, the probability estimate errors are fairly small for each 

method, and in general, the errors decreased as the sample size increased. The errors 

resulting from Procedure BEM and Procedure AVC are fairly close, with AVC errors 

consistently smaller. The resulting errors from the kernel density estimation technique, 

however, were larger than all other techniques. These larger errors, although still quite 

small, were due to outlying estimates found using the kernel density estimation 

technique. The remaining probability estimate and error summary tables for the other six 

test cases can be found in Appendix A.   

Table 8 below summarizes the average errors for each method at each of the three 

sample sizes, across all seven test cases, as well as the overall average errors for each 

method.  
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Table 8. Average Empirical Probability Estimate Errors                                                    
Across All 7 Test Cases For Each Method Based on Sample Size  

 Sample Size (ݒሻ Overall     
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ

BEM 0.0038 0.0041 0.0024 0.0021 0.0010 0.0010 0.0024 0.0024 
AVC 0.0027 0.0027 0.0018 0.0018 0.0010 0.0010 0.0018 0.0018 

Kernel Density 0.0164 0.0165 0.0140 0.0142 0.0100 0.0101 0.0135 0.0136 
 

 
 Again, we see that the average errors for Procedure BEM and Procedure AVC are 

very similar, with AVC errors consistently smaller. As sample size increases, the average 

errors decrease for each method, with Procedure AVC performing best at ݒ ൌ 100 

samples. Yet again, we see that the overall average error for the kernel density estimation 

technique is much larger than the resulting errors of the other techniques. In fact, the 

overall average error using the density estimation technique, although perhaps still 

acceptably small in practice, was approximately 7 times as large as the average overall 

errors of the other methods.   

 Instead of comparing the average errors for each method based on the various 

sample sizes, Table 9 shows the average probability estimate errors for each method 

based on the four indifference zone parameter values tested.  

Table 9. Average Empirical Probability Estimate Errors                                                    
For Each Method Based on Indifference Zone Parameter Value  

 Indifference Zone Parameter (ߠሻ 
Method 1.2 1.8 2.2 3.4 

 ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ ௣̅෤మߝ ௣̅෤భߝ

BEM 0.0025 0.0025 0.0025 0.0025 0.0029 0.0029 0.0017 0.0017 
AVC 0.0023 0.0023 0.0004 0.0004 0.0017 0.0017 0.0021 0.0021 

Kernel Density 0.0035 0.0037 0.0103 0.0103 0.0176 0.0176 0.0210 0.0211 
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 It is interesting to note that changes in the indifference zone parameter don’t 

exhibit any noticeable effect on the probability estimate errors for each method. The 

errors for each method remain fairly constant across each of the four indifference zone 

parameter levels. Although we may have expected the errors to decrease as the 

indifference zone parameter value increased, no such trend occurred. It appears that the 

method itself is the most important factor affecting the probability estimate errors, which, 

on the whole, are quite small considering these are only empirical estimates at relatively 

small sample sizes.  

 

2.6 Conclusions 

 We have presented an effective alternate method for comparing competing 

systems using a generalized integral method. Building on the work of Bechhofer, 

Elmaghraby, and Morse [1] and Miller, Nelson, and Reilly [2], the generalized integral 

method provides the ability to calculate the exact probability that a single system is best 

among competing systems in a single trial. If one possesses knowledge of the 

distributions of the parameter of interest for each system, the generalized method allows 

us to avoid calculating computationally intensive empirical probability estimates and 

provides more accurate multinomial probabilities that could potentially result in 

significant savings in both time and money when comparing alternate systems. If 

distributional knowledge of the systems is unknown, we have shown through the Monte 

Carlo simulation study that the kernel density estimation technique, although lacking in 

accuracy when compared with Procedures BEM and AVC, is a viable approach for 

calculating empirical probability estimates using the generalized integral method. We 
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also found that if the individual observations are used for empirical pdf and cdf 

generation, then the generalized integral method’s performance exactly matches that of 

Procedure AVC. While further analysis could be conducted in order to find more optimal 

empirical estimation techniques, our method provides an effective alternate approach to 

the current methods available as well as the traditional techniques which focus solely on 

comparisons based on long run performance.  
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III. A Distribution-Free Ordered Comparisons Test:                                  

Determining If One Random Variable is Stochastically Larger Than Another 

 

3.1 Abstract 

This paper proposes the use of a distribution-free ordered comparisons procedure 

to test whether one population is stochastically larger (or smaller) than another. This 

procedure is suggested as a useful alternative to the well-known Wilcoxon rank sum and 

Mann-Whitney tests. A Monte Carlo simulation study is conducted, comparing the 

methods based on simulated power and type I error. All test cases show a marked 

improvement in performance of the ordered comparisons test versus the Wilcoxon rank 

sum test, when testing for stochastic dominance. A table of critical values is presented 

and a large sample approximation is given. 

 

3.2 Introduction 

Many nonparametric techniques exist for the two-sample comparison problem, 

such as the commonly used Wilcoxon rank sum [3] and Mann-Whitney [4] tests. 

However, in terms of detecting whether one population is stochastically larger (or 

smaller) than the other, it appears that these test procedures may not make full use of all 

the information contained in the sample data. This paper presents a new distribution-free 

method based on ordered comparisons. The technique gleans useful information about the 

empirical cumulative distribution functions of the sample data by ordering each sample 

separately (as opposed to a combined ordering as in the Wilcoxon rank sum test). The 

ordered sets of observations are then compared and a test statistic is calculated. 
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Essentially, if sample 1 has significantly more smaller values than sample 2, then, in 

general, the cumulative distribution function of sample 1 will be monotonically greater 

than the cumulative distribution function of sample 2. This will result in population 2 

being stochastically larger than population 1.  

Section 3.3 of this paper provides a brief overview of nonparametric statistics and 

the advantages over their parametric counterparts. A definition of the distribution-free 

property and stochastic dominance is provided, followed by a brief summary of the 

Wilcoxon rank sum and Mann-Whitney tests. Section 3.4 introduces the ordered 

comparisons test procedure, along with a derivation of the associated critical values. A 

large-sample approximation is also formulated, followed by a numerical example 

demonstrating the ordered comparisons technique. Section 3.5 compares the ordered 

comparisons test to the Wilcoxon rank sum test using a Monte Carlo simulation study; 

simulated power and type I error results are presented. 

 

3.3 Background 

Suppose we have ଵܺ, … , ܺ௠ random observations from population 1 and ଵܻ, … , ௡ܻ 

random observations from population 2. When comparing these two populations, say 

based on their respective means, it is common to use a two-sample t-test (small sample 

size) or z-test (larger sample size). However, both of these methods require us to assume 

that the observations are normally distributed; as we know, this is not always a valid 

assumption and can bring in to question whether we are using the appropriate statistical 

procedure. Both of these well-known techniques are considered parametric methods in 
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that they apply to problems where the distributions from which the samples are drawn are 

specified, except for the values of a finite number of parameters (i.e. ߪ ,ߤଶ, etc.) [25].  

Alternatively, suppose we wish to test the hypothesis that the two population 

distributions are identical, but of unspecified form. In this case, we refer to an area of 

mathematics known as nonparametric statistics. Nonparametric statistical methods 

require only general assumptions about the nature of the probability distributions [25]. 

Nonparametric methods, although perhaps not as widely used or familiar as their 

parametric counterparts, are very useful techniques and offer numerous advantages over 

parametric methods.  

Hollander and Wolfe [26] discuss various advantages that nonparametric methods 

enjoy to include:  

1. Nonparametric methods require few assumptions about the underlying 
populations from which the data are obtained. In particular, nonparametric 
procedures forgo the traditional assumption that the underlying populations 
are normal.  
 

2. Nonparametric procedures are often quite easy to understand. 
 

3. Nonparametric techniques are often easier to apply than their normal theory 
counterparts. 

 
4. Nonparametric procedures enable the user to obtain exact p-values for tests 

and the development of computer software has facilitated fast computation of 
these values.  

 
5. Nonparametric procedures are only slightly less efficient than their normal 

theory competitors when the underlying populations are normal, and they can 
potentially be much more efficient than these competitors when the 
underlying populations are not normal. 

 
6. Nonparametric methods are relatively insensitive to outlying observations.  

7. Nonparametric procedures are applicable in many situations where normal 
theory procedures cannot be utilized. 
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The distribution-free property is another important aspect associated with many 

nonparametric procedures. A distribution-free test statistic is used in the Wilcoxon rank 

sum test, the equivalent Mann-Whitney test, and in the ordered comparisons test 

proposed in this paper.  

Consider the two-sample case where we have an independent random sample of 

݉ observations from population 1 with continuous cumulative distribution function,  

 ሻ, and an independent random sample of ݊ observations from population 2 withݔଵሺܨ

continuous cumulative distribution function, ܨଶሺݔሻ. The null hypothesis being tested is: 

 

ሻݔଵሺܨ	:଴ܪ ൌ ሻݔଶሺܨ ൌ  .ሻ unspecifiedݔሺܨ  ,ሻݔሺܨ

 

We are testing that the two random samples have the same probability 

distribution, but the common distribution is not specified [26]. In the case of the 

Wilcoxon rank sum test, the test statistic, ܹ, is simply the sum of the ranks obtained for 

population 2 in the joint ranking.  

When ܪ଴ is true, the distribution of ܹ does not depend on 	ܨሺݔሻ. Hence, when ܪ଴ 

is true, for all ݔ-values, the probability that ܹ ൑ denoted ଴ܲሺܹ ,ݔ ൑  ሻ, does not dependݔ

on ܨሺݔሻ. This is known as the distribution-free property [26]. This allows us to table the 

distribution of ܹ under ܪ଴ without specifying or even knowing the underlying 

probability distribution function, ܨሺݔሻ.  

When considering the alternative hypothesis for tests such as the Wilcoxon rank 

sum test or the Mann-Whitney test, we are testing that ܻ tends to be larger (or smaller) 

than ܺ. That is, that ܻ is stochastically larger (or smaller) than ܺ. By definition, the 
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random variable ܻ with cumulative distribution function ܨଶሺݔሻ is said to be stochastically 

larger than the random variable ܺ with cumulative distribution function ܨଵሺݔሻ if:  

 

ሻݔଶሺܨ  ൑ ሻ, (18)ݔଵሺܨ

 

for every ݔ, with strict inequality for at least one value [27]. If ܻ is stochastically larger 

than ܺ, then ܺ is said to be stochastically smaller than ܻ and the two distributions are 

said to be stochastically ordered with ܺ less than ܻ [27]. For simplification purposes, this 

is sometimes written as ܨଶሺ∙ሻ is stochastically larger than ܨଵሺ∙ሻ.  

 

3.3.1 Wilcoxon Rank Sum Test 

For the Wilcoxon rank sum test, begin by collecting ܰ ൌ ݉ ൅ ݊ random 

observations ଵܺ, … , ܺ௠ and ଵܻ, … , ௡ܻ, which are independent and identically distributed. 

We also assume that the ܺ’s and ܻ’s are mutually independent and that populations 1 and 

2 are continuous populations [26]. Let ܨଵሺݔሻ be the cumulative distribution function for 

population 1 and ܨଶሺݔሻ be the cumulative distribution function for population 2.  

The null hypothesis is: 

 

ሻݔଵሺܨ	:଴ܪ ൌ   .ݔ ሻ, for everyݔଶሺܨ

 

The Wilcoxon rank sum test statistic, ܹ, is computed by first ordering the 

combined sample of ܺ-values and ܻ-values from least to greatest and assigning a rank 
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1,… ,ܰ to each ordered term [3]. ܹ is then calculated as the sum of the ranks assigned to 

the ܻ-values [26]. 

Specifically,  

 

 
ܹ ൌ෍ ௜ܵ

௡

௜ୀଵ

 (19)

 

where ௜ܵ denotes the rank of ௜ܻ in the combined ordering [26].  

The alternative hypothesis can take one of three forms. Namely,  

a.  

 ଵሺ∙ሻܨ ଶሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

We reject ܪ଴ at the ߙ level of significance if: 

 

ܹ ൒  ఈݓ

 

where ݓఈ is chosen to make the type I error probability, P(rejecting ܪ଴ when ܪ଴ is true), 

equal to ߙ; otherwise, do not reject ܪ଴ [26]. It is important to note that when naming the 

samples, the ܻ-sample is the sample with the smaller sample size. If ݉ ൌ ݊, then either 

sample can be designated as the ܻ-sample. 

b.  

 ଶሺ∙ሻܨ ଵሺ∙ሻ is stochastically larger thanܨ	:ଵܪ
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We reject ܪ଴ at the ߙ level of significance if: 

 

ܹ ൑ ݊ሺ݉ ൅ ݊ ൅ 1ሻ െ  .ఈݓ

 

Otherwise, do not reject ܪ଴. 

c.  

ሻݔଵሺܨ	:ଵܪ ്  ሻݔଶሺܨ

 

We reject ܪ଴ at the ߙ level of significance if: 

 

 ܹ ൒ ܹ ఈమ orݓ ൑ ݊ሺ݉ ൅ ݊ ൅ 1ሻ െ  ఈభݓ

 

where ߙଵ ൅ ଶߙ ൌ  ,ఈݓ ,଴ [26]. For a table of critical valuesܪ Otherwise, do not reject .ߙ

see Hollander and Wolfe [26]. 

 

3.3.2 Large-Sample Approximation 
 

For sample sizes where ݉, ݊ ൐ 10, we can use a large-sample approximation 

based on the asymptotic normality of ܹ, standardized. This approximation requires 

knowledge of the mean and variance of ܹ when the null hypothesis is true. When ܪ଴ is 

true, the mean and variance of ܹ are, respectively, 
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଴ሺܹሻܧ ൌ

݊ሺ݉ ൅ ݊ ൅ 1ሻ

2
 (20)

 

 
var଴ሺܹሻ ൌ

݉݊ሺ݉ ൅ ݊ ൅ 1ሻ
12

 (21)

 

The standardized large-sample approximation of ܹ is: 

 

 
ܹ∗ ൌ

ܹ െ ଴ሺܹሻܧ

ඥvar଴ሺܹሻ
ൌ
ܹ െ ሾ݊ሺ݉ ൅ ݊ ൅ 1ሻ 2⁄ ሿ

ඥ݉݊ሺ݉ ൅ ݊ ൅ 1ሻ 12⁄
 (22)

 

where ܹ∗ has an asymptotic ܰሺ0,1ሻ distribution when ܪ଴ is true [26]. 

The normal theory approximation for alternative hypothesis (a) is: 

 

Reject ܪ଴ if ܹ∗ ൒  .ఈ;     otherwise do not rejectݖ

 

The normal theory approximation for alternative hypothesis (b) is: 

 

Reject ܪ଴ if ܹ∗ ൑ െݖఈ;     otherwise do not reject. 

 

The normal theory approximation for alternative hypothesis (c) is: 

 

Reject ܪ଴ if |ܹ∗| ൒ ఈݖ ଶ⁄ ;     otherwise do not reject. 
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 The critical value, ݖఈ, comes from the standard normal distribution.  

 

3.3.3 Mann-Whitney Test 

In 1947, H. B. Mann and D. R. Whitney proposed a test similar to Wilcoxon’s 

rank sum test, again testing if one random variable is stochastically larger (or smaller) 

than the other. It can be shown that the Wilcoxon rank sum test and the Mann-Whitney 

test produce equivalent results [26]. Mann and Whitney showed that, in the case of no 

ties, their ܷ-statistic is directly related to Wilcoxon’s ܹ-statistic by: 

 

 
ܷ ൌ ݉݊ ൅

݉ሺ݉ ൅ 1ሻ
2

െܹ (23)

 

where we have ݉ observations from population 1 and ݊ observations from population 2 

and ܹ is the rank sum of the associated ݔ-values from population 1 [4].  

 As in the Wilcoxon rank sum test, we begin by ordering the ܰ ൌ ݉ ൅ ݊ samples 

from least to greatest. However, instead of summing the ranks of the ݕ-values as in the 

Wilcoxon rank sum test, we calculate ܷ by counting the number of times a ݕ precedes an 

 :We then use this ܷ-statistic to test the null hypothesis .[4] ݔ

 

ሻݔଵሺܨ	:଴ܪ ൌ  ݔ ሻ, for everyݔଶሺܨ

 

just as we did in the Wilcoxon rank sum test. We can also test against the same three 

alternative hypotheses as the Wilcoxon rank sum test. For a list of the associated rejection 
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criterion for each alternative hypothesis, and a table of associated critical values, and a 

large-sample approximation formula, see Wackerly, Mendenhall, and Sheaffer [25]. 

For the remainder of this paper, however, we will make use of the Wilcoxon rank 

sum test for purposes of comparison with the proposed distribution-free ordered 

comparisons test. 

 

3.4 Ordered Comparisons Test 

We propose a new nonparametric hypothesis test similar to the Wilcoxon rank 

sum and Mann-Whitney tests for determining if one population is stochastically larger (or 

smaller than) the other. Let ଵܺ, … , ܺ௠ be random observations from population 1 and 

ଵܻ, … , ௡ܻ be random observations from population 2. That is, the ܺ’s are independent and 

identically distributed and the ܻ′ݏ are independent and identically distributed. In addition 

to the assumptions of independence within each sample, we also assume independence 

between the two samples. That is, the ܺ’s and ܻ’s are mutually independent. Lastly, we 

will assume that populations 1 and 2 are both continuous populations. 

Let ܨଵሺݔሻ be the continuous cumulative distribution function for population 1 and 

 ሻ be the continuous cumulative distribution function for population 2. The nullݔଶሺܨ

hypothesis is: 

 

ሻݔଵሺܨ	:଴ܪ ൌ   .ݔ ሻ, for everyݔଶሺܨ

 

That is, ܺ and ܻ have the same probability distribution, but the common 

distribution is not specified. 
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3.4.1 Procedure 

If ݉ ൌ ݊, begin by separately ordering the observations from each sample from 

least to greatest. We now have ሾܺଵሿ, … , ሾܺ௠ሿ ordered ܺ-values and ሾܻଵሿ, … , ሾܻ௡ሿ ordered ܻ-

values. Let ܯ be the common sample size when ݉ ൌ ݊ or the minሺ݉, ݊ሻ when ݉ ് ݊. 

[Note: If ݉ ൐ ݊, randomly select ݊ observations from the ܺ-sample data so that we have 

an equal number of samples from each population. Likewise, if ݉ ൏ ݊, randomly select 

݉ observations from the ܻ-sample data.]  

To compute our test statistic ܮ, we compare the ordered pairs of observations and 

count the number of times that ሾܺ௜ሿ ൏ ሾܻ௜ሿ. Specifically, 

 

 
ܮ ൌ෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

୑

௜ୀଵ

 (24)

 

where 

 

߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯ ൌ ൜
1,				if	 ሾܺ௜ሿ ൏ ሾܻ௜ሿ

0,						otherwise
 , 

 

 and from our assumptions the probability of a tie is zero. That is, ሾܺ௜ሿ ് ሾܻ௜ሿ	, for any ݅. 

However, if we don’t make this assumption, then for every ordered replication where a 

tie exists, randomly select one of the tied systems as best in that replication.  
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To test 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 

 

 ଵሺ∙ሻܨ ଶሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ level of significance,  

 

Reject ܪ଴ if ܮ ൒ ℓఈ;     otherwise do not reject, 

 

where the constant ℓఈ is chosen to make the type I error probability equal to ߙ. Values of 

ℓఈ based on the sample size, ܯ,	are given in Table 43 in Appendix B. 

To test 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 

 

 ଶሺ∙ሻܨ ଵሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ level of significance, 
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Reject ܪ଴ if ܮ ൑ Mെ ℓఈ;     otherwise do not reject. 

 

3.4.2 Derivation of the Distribution of ࡸ 

Assuming that the underlying, unknown distribution under ܪ଴ is continuous, ties 

among  ሺ ሾܺ௜ሿ, ሾܻ௜ሿሻ have a zero probability of occurring. That is, ሾܺ௜ሿ ് ሾܻ௜ሿ, for any ݅. Then 

under ܪ଴, all possible arrangements of the ordered comparisons are equally likely, with 

probability  

 

1

∑ ቀܯ
݅
ቁெ

௜ୀ଴

	. 

 

For example, consider the simple case where ݉ ൌ ݊ ൌ ܯ ൌ 4. There are 

∑ ቀ4
݅
ቁ ൌ 16ସ

௜ୀ଴  possible arrangements of the ordered comparisons, each with a 
ଵ

ଵ଺
ൌ

.0625 probability of occurring. Specifically, there is ቀ4
0
ቁ ൌ 1 way that ܮ ൌ 0,  ቀ4

1
ቁ ൌ 4 

ways that ܮ ൌ 1, ቀ4
2
ቁ ൌ 6 ways that ܮ ൌ 2, ቀ4

3
ቁ ൌ 4 ways that ܮ ൌ 3, and ቀ4

4
ቁ ൌ 1 way 

that ܮ ൌ 4, resulting in 16 possible arrangements. Therefore, the probability that ܮ ൌ 3 

under ܪ଴, is 
ଵ

ଵ଺
൅ ଵ

ଵ଺
൅ ଵ

ଵ଺
൅ ଵ

ଵ଺
ൌ ସ

ଵ଺
. The other probability values are calculated in a 

similar fashion and shown in Table 10. 
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Table 10. Null Distribution of L for ࡹ ൌ ૝ 

 

Hence, under ܪ଴, the probability that ܮ is greater than or equal to 3 is: 

 

଴ܲሺܮ ൒ 3ሻ ൌ ଴ܲሺܮ ൌ 3ሻ ൅ ଴ܲሺܮ ൌ 4ሻ 

										ൌ .25 ൅ .0625 ൌ .3125. 

 

Looking at the critical values in Table 43 in Appendix B, we see that this matches 

the tail probability corresponding to ݔ ൌ 3 when ܯ ൌ 4. Therefore, if we were to obtain 

an ܮ-statistic of 3 when ܯ ൌ 4, we could reject ܪ଴ at only the ߙ ൌ .3125 level of 

significance.  

As with the Wilcoxon rank sum and Mann-Whitney tests, the distribution derived 

for our test statistic does not depend on the underlying distributions of the two 

populations. This makes our test a distribution-free procedure as previously discussed. 

 

3.4.3 Large-Sample Approximation 

In order to construct the large-sample approximation of ܮ, we must first determine 

the mean and variance of ܮ under the null hypothesis. The mean of ܮ under ܪ଴ is: 

Possible Value of L Probability of Value 
0      1/16 = .0625 
1 4/16  = .25 
2    6/16 = .375 
3 4/16  = .25 
4      1/16 = .0625 
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ሿܮ଴ሾܧ ൌ ଴ܧ ൥෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

ெ

௜ୀଵ

൩ (25)

 

and because the expectation of the sum of independent trials is equal to the sum of the 

expectations [25], 

 

଴ܧ ൥෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

ெ

௜ୀଵ

൩ ൌ෍ܧ଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧

ெ

௜ୀଵ

 

 

and by the definition of expectation and ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯ we have 

 

෍ܧ଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧

ெ

௜ୀଵ

ൌ෍ሾ1 ∙ Probሺ߮ ൌ 1ሻ ൅ 0 ∙ Probሺφ ൌ 0ሻሿ
ெ

௜ୀଵ

 

										ൌ ෍ሾ1 ∙ Probሺ߮ ൌ 1ሻሿ
ெ

௜ୀଵ

 

 

and since under the null hypothesis ܨଵሺݔሻ ൌ  we know that ,ݔ ሻ, for everyݔଶሺܨ

 

෍ሾ1 ∙ Probሺ߮ ൌ 1ሻሿ
ெ

௜ୀଵ

ൌ෍൤
1
2
൨ ൌ

ܯ
2

ெ

௜ୀଵ

 

 

Therefore, we have shown that 
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ሿܮ଴ሾܧ  ൌ
ெ

ଶ
. (26)

 

The variance of ܮ is: 

 

 
var଴ሾܮሿ ൌ var଴ ൥෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

ெ

௜ୀଵ

൩ (27)

 

and using the fact that all the ߮’s are independent,  

 

var଴ ൥෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

ெ

௜ୀଵ

൩ ൌ෍var଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧

ெ

௜ୀଵ

 

 

and since for any of the ߮’s, ߮ଶ ൌ ߮,  

 

଴ൣ߮ଶ൫ܧ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ ൌ ଴ൣ߮൫ܧ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ 

 

and from the previous derivation of ܧ଴ሾܮሿ we know that 

଴ൣ߮൫ܧ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ ൌ
1
2

 

 

and thus  
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var଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ ൌ ଴ൣ߮ଶ൫ܧ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ െ ൛ܧ଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ൟ
ଶ
 

                            ൌ ଴ൣ߮൫ܧ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ െ ൛ܧ଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧ൟ
ଶ
 

ൌ
1
2
െ ൜

1
2
ൠ
ଶ

ൌ
1
2
െ
1
4
ൌ
1
4

 

 

and by substitution we have 

 

෍var଴ൣ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯൧

ெ

௜ୀଵ

ൌ෍
1
4

ெ

௜ୀଵ

ൌ
ܯ
4

 

 

Therefore, we have shown that 

 

 var଴ሾܮሿ ൌ
ெ

ସ
. (28)

 

The standardized large-sample approximation of ܮ, based on the asymptotic 

normality of ܮ is then defined as 

 

 

∗ܮ ൌ
ܮ െ ሿܮ଴ሾܧ

ඥvar଴ሾܮሿ
ൌ
ܮ െܯ

2

ටܯ
4

ൌ
ܮ െܯ

2
ܯ√
2

ൌ
ܮ2 െܯ

ܯ√
 (29)

 

and the central limit theorem establishes that as ܯ →  has a limiting ܰሺ0,1ሻ ∗ܮ ,∞

distribution [28]. 
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To test 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 

 

 ଵሺ∙ሻܨ ଶሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ level of significance, the normal theory approximation is: 

 

Reject ܪ଴ if ܮ∗ ൒  .ఈ;     otherwise do not rejectݖ

 

To test 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 

 ଶሺ∙ሻܨ ଵሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ level of significance, the normal theory approximation is: 

 

Reject ܪ଴ if ܮ∗ ൑ െzఈ;     otherwise do not reject. 
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3.4.4 Example Calculation 

Let’s now provide a simple example, illustrating the ordered comparisons test 

procedure. Consider again the following random sample data used in Section 2.3.3 where 

݉ ൌ ݊ ൌ ܯ ൌ 10: 

 

Table 11. Example Data 

X-values Y-Values 
0.31950 0.48383 
0.76029 1.18579 
0.26898 0.83970 
1.40037 0.87125 
3.49909 0.47615 
0.01253 2.19601 
0.27408 0.62893 
0.10418 4.42322 
1.55529 0.52177 
0.81182 1.03523 

 
 
 

Begin by separately ordering the observations from each sample from least to 

greatest. Then calculate ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯ for each ordered pair of observations. That is, 

 

߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯ ൌ ൜
1,				if	 ሾܺ௜ሿ ൏ ሾܻ௜ሿ

0,						otherwise
  

 

and  

 

ܮ ൌ෍߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯

ଵ଴

௜ୀଵ
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Table 12. Example L-Statistic Calculation 

X-values Y-Values ߮൫ ሾܺ௜ሿ, ሾܻ௜ሿ൯ 
0.01253 0.47615 1 
0.10418 0.48383 1 
0.26898 0.52177 1 
0.27408 0.62893 1 
0.31950 0.83970 1 
0.76029 0.87125 1 
0.81182 1.03523 1 
1.40037 1.18579 0 
1.55529 2.19601 1 
3.49909 4.42322 1 

  L = 9    
 
 
 

We will test 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 

 

 ଵሺ∙ሻܨ ଶሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ ൎ 	 .05 level of significance where we 

 

Reject ܪ଴ if ܮ ൒ ℓఈ;     otherwise do not reject. 

 

Looking at the critical values in Table 43 in Appendix B, we find that for 

݉ ൌ ݊ ൌ ܯ ൌ 10, ℓఈ ൌ 8 at the ߙ ൌ 	 .0547 level of significance. Therefore, since 
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ሺܮ ൌ 9ሻ ൐ ሺℓ.଴ହସ଻ ൌ 8ሻ, we can reject ܪ଴ at the ߙ ൌ .0547 level of significance and 

conclude that there is significant statistical evidence to suggest that ܨଶሺ∙ሻ is stochastically 

larger than ܨଵሺ∙ሻ. 

 

3.4.5 The Probability That One System Is Stochastically Larger Than Another 

 It is worth noting that we can use the test statistic ܮ calculated during the ordered 

comparisons test in order to estimate the probability that system 2 is stochastically larger 

than system 1. Let ߩ be the probability that system 2 is stochastically larger than system 

1. That is, let ߩ ൌ Prሼܨଶሺݔሻ ൑  or in ,ݔ with strict inequality at some ,ݔ ሻሽ for allݔଵሺܨ

notation form, let ߩ be the probability that PrሼSystem	2 ൒ ሽݔ ൒ PrሼSystem	1 ൒  ሽ for allݔ

2	PrሼSystem ,ݔ and for some ,ݔ ൒ ሽݔ ൐ PrሼSystem	1 ൒  statistic from the ܮ ሽ. Using theݔ

ordered comparisons test and the common sample size, ܯ, we can compute a point 

estimator for ߩ, given by 

 

ොߩ  ൌ ܮ
ൗܯ . (30)

 

 It can be shown that  

 

 
ොሿߩሾܧ ൌ ܧ ൤

ܮ
ܯ
൨ ൌ

ሿܮሾܧ

ሿܯሾܧ
ൌ
ܯ

2ൗ

ܯ
ൌ
1
2
ൌ .ߩ (31)
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 Therefore, the point estimator ߩො is an unbiased estimator for the probability that 

system 2 is stochastically larger than system 1. On the other hand, 1 െ   is an unbiased	ොߩ

estimator for the probability that system 1 is stochastically larger than system 2.  

 Looking at the ܮ statistic calculated in Table 12 for the preventative maintenance 

policy data, we can calculate the unbiased estimate for the probability that Policy B is 

stochastically larger than Policy A as  

 

ොߩ ൌ ܮ
ൗܯ ൌ 9

10ൗ ൌ 0.9. 

  

3.5 Empirical Comparison Study 

In order to characterize the performance of the ordered comparisons test, a Monte 

Carlo simulation study was conducted. The ordered comparisons test was compared to 

the Wilcoxon rank sum test based on the simulated power (the proportion of correct 

rejections of ܪ଴) and type I error rates. Seven two-sample cases were analyzed, where the 

second population is known to be stochastically larger than the first. Therefore, ݌෤ଶ ൐  ෤ଵ݌

where ݌෤௝ is defined in Section 2.4, equation (13) as: 

 

 
 
෤௝݌ ൌ න ௝݂ሺݔሻ ෑ ሻݔℓሺܨ

௞

ℓୀଵ; ℓஷ௝

ݔ݀

ஶ

ିஶ

 

 
 

where ௝݂ሺݔሻ is the probability density function for system ݆, ݆ ൌ 1, 2, … , ݇ and ܨℓሺݔሻ is 

the cumulative distribution function of system ℓ, ℓ ൌ 1, 2, … , ݇; 	ℓ ് ݆. 
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 As a measure of how much better the second system is than the first, we define 

the indifference zone parameter as ߠ ൌ ௣෤మ
௣෤భ

. The following table lists the pairs of 

distributions analyzed along with their associated ߠ value.  

 

Table 13. Empirical Comparison Study Test Cases 

Test Case System 1 System 2 ߠ 

1 Betaሺα ൌ 1, β ൌ 3ሻ Betaሺα ൌ 1, β ൌ 2.5ሻ 1.2 
2 Betaሺα ൌ 2, β ൌ 5ሻ Betaሺα ൌ 2, β ൌ 2ሻ 3.4 
3 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 1.2ሻ 1.2 
4 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 2.2ሻ 2.2 
5 Exponentialሺμ ൌ 1ሻ Exponentialሺμ ൌ 3.4ሻ 3.4 
6 Gammaሺα ൌ 2, β ൌ 2ሻ Gammaሺα ൌ 3, β ൌ 2ሻ 2.2 
7 Normalሺμ ൌ 0, σ ൌ 1ሻ Normalሺμ ൌ 0.5, σ ൌ 1ሻ 1.8 

 
 

For each of the seven cases, we examined test performance of the ordered 

comparisons test versus the Wilcoxon rank sum test across a range of sample sizes, 

ܯ ൌ 10, 30, 50, and	100. The sample data were generated using the Arena Input 

Analyzer® software package from Rockwell Software. In each combination of 

distribution comparison and sample size, 1024 macro-replications were produced in order 

to reduce the Monte Carlo error. 

Using the ordered comparisons test, we tested 

 

ሻݔଵሺܨ	:଴ܪ ൌ   ,ݔ ሻ, for everyݔଶሺܨ

 

versus 
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 ଵሺ∙ሻܨ ଶሺ∙ሻ is stochastically larger thanܨ	:ଵܪ

 

at the ߙ ൎ .05 level of significance, where we 

 

Reject ܪ଴ if ܮ ൒ ℓఈൎ.଴ହ;     otherwise do not reject. 

 

Using the ordered comparisons critical values from Table 43 in Appendix B, we 

see that the critical values for the various sample sizes are 

 

		ℓఈୀ.଴ହସ଻ ൌ 8,      		݉ ൌ ݊ ൌ ܯ ൌ 10 
		ℓఈୀ.଴ସଽସ ൌ 20,     	݉ ൌ ݊ ൌ ܯ ൌ 30 
	ℓఈୀ.଴ହଽହ ൌ 31,      ݉ ൌ ݊ ൌ ܯ ൌ 50 
			ℓఈୀ.଴ସସଷ ൌ 59,      ݉ ൌ ݊ ൌ ܯ ൌ 100 

 

For the Wilcoxon rank sum test, we tested the same null and alternate hypotheses, 

but we rejected ܪ଴ at the ߙ ൎ .05 level of significance if ܹ ൒  ఈ. For the case whereݓ

ܯ ൌ ఈୀ.଴ସସ଺ݓ ,10 ൌ 128. For the other three sample sizes, we used the large-sample 

approximation: 

 

ܹ∗ ൌ
ܹ െ ଴ሺܹሻܧ

ඥܸܽݎ଴ሺܹሻ
ൌ
ܹ െ ሾ݊ሺ݉ ൅ ݊ ൅ 1ሻ 2⁄ ሿ

ඥ݉݊ሺ݉ ൅ ݊ ൅ 1ሻ 12⁄
 

 

where ܹ∗ has an asymptotic ܰሺ0,1ሻ distribution when ܪ଴ is true, and we rejected ܪ଴ if: 

 

ܹ∗ ൒  .଴ହ;     otherwise we did not reject.ݖ
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The power results are presented below: 
 

 
Table 14. Simulated Power (ࢻ ൎ. ૙૞) for                                                                   

Test Case 1: Betaሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Betaሺહ ൌ ૚, ઺ ൌ ૛. ૞ሻ, 1.2 = ࣂ 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.106       0.403             
30 0.158 0.579      0.579* 
50 0.205 0.660      0.660*        
100 0.322 0.807      0.807* 

  *using the large-sample approximation for ܮ∗ 
 
 
 

 

Figure 9. Simulated Power (ࢻ ൎ. ૙૞) for                                                                   
Test Case 1: Betaሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Betaሺહ ൌ ૚, ઺ ൌ ૛. ૞ሻ, 1.2 = ࣂ 

 
 
 
Note that the performance results were identical when using the large-sample 

approximation versus the critical values found in Table 43 for the ordered comparisons 

test. This was true for all other cases as well. Therefore, the remaining results are 
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presented using only the ℓఈ critical values as previously discussed. Figures for test cases 

2-7 can be found in Appendix C. 

 

Table 15. Simulated Power (ࢻ ൎ. ૙૞) for                                                                   
Test Case 2: Betaሺહ ൌ ૛, ઺ ൌ ૞ሻ	vs. Betaሺહ ൌ ૛, ઺ ൌ ૛ሻ, 3.4 = ࣂ 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.714 0.929 
30 0.993 1.000 
50 1.000 1.000 
100 1.000 1.000 

 
 
 

Table 16. Simulated Power (ࢻ ൎ. ૙૞) for                                                                    
Test Case 3: Exponential	ሺૄ ൌ ૚ሻ vs. Exponential	ሺૄ ൌ ૚. ૛ሻ, 1.2 = ࣂ 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.108 0.393 
30 0.176 0.596 
50 0.221 0.694 
100 0.328 0.813 

 
 
 

Notice in test cases 1 and 3 where ߠ ൌ 1.2, the power results are nearly identical 

across all sample sizes even though case 1 is comparing beta distributions and case 3 is 

comparing exponential distributions. The average difference in power between the two 

cases across all sample sizes is only 0.010 for the Wilcoxon rank sum test and 0.012 for 

the ordered comparisons test. It is also worth noting that the ordered comparisons test has 

a 204% average increase in power over the Wilcoxon rank sum test for cases 1 and 3. 
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Table 17. Simulated Power (α  ≈ .05) for                                                                   
Test Case 4: Exponential (μ = 1) vs. Exponential (μ = 2.2), 2.2 = ࣂ 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.400 0.782 
30 0.813 0.979 
50 0.949 0.996 
100 0.999 1.000 

 

 
Table 18. Simulated Power (ࢻ ൎ. ૙૞) for                                                                   

Test Case 5: Exponential	ሺૄ ൌ ૚ሻ vs. Exponential	ሺૄ ൌ ૜. ૝ሻ, 3.4 = ࣂ 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.695 0.934 
30 0.988 0.999 
50 1.000 1.000 
100 1.000 1.000 

 
 
 

Looking at the three exponential cases, we see that as the difference between the 

two systems being compared increases (as ߠ increases), both methods achieve greater 

power. However, in the third test case where ߠ ൌ 1.2, the ordered comparisons test has 

an average increase in power of .416 which amounts to a 200% average increase in power 

over the Wilcoxon rank sum test. Likewise, the statistical power of both tests also 

increases as sample size increases. 
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Table 19. Simulated Power (ࢻ ൎ. ૙૞) for                                                                   
Test Case 6: Gamma (હ ൌ ૛, ઺ ൌ ૛) vs. Gamma (હ ൌ ૜, ઺ ൌ ૛), 2.2 = ࣂ 

 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.421 0.799 
30 0.817 0.918 
50 0.951 0.998 
100 0.999 1.000 

 
  
 
 It is also interesting to compare the results for test cases 4 and 6, where ߠ ൌ 2.2 in 

both cases. The power results for both statistical tests are almost identical across all 

sample sizes even though case 4 is comparing two exponential distributions and case 6 is 

comparing two gamma distributions. The average difference in power between the two 

cases across all sample sizes is only 0.007 for the Wilcoxon rank sum test and 0.011 for 

the ordered comparisons test. 

 

Table 20. Simulated Power (ࢻ ൎ. ૙૞) for                                                                    
Test Case 7: Normal (ૄ ൌ ૙, ો ൌ ૚) vs. Normal (ૄ ൌ ૙. ૞, ો ൌ ૚), 1.8 = ࣂ 

 

Sample Size Power 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.252 0.661 
30 0.588 0.934 
50 0.771 0.985 
100 0.966 1.000 

 
 
 

As we can see, the ordered comparisons test has greater power than the Wilcoxon 

rank sum test for all samples sizes and across all seven test cases. Most notably, the 

ordered comparison test has a much larger simulated power at the smaller sample sizes. 

For example, with a sample size of M = 10, the ordered comparisons test has an 81.68% 



66 

 

increase in power over the Wilcoxon rank sum test. Table 21 below summarizes the 

average increase in power for the ordered comparisons test for all sample sizes analyzed. 

 

Table 21. Average Simulated Power Increase for the Ordered Comparisons Test 
over the Wilcoxon Rank Sum Test Based on Sample Size 

Sample Size 
(m = n = M) 

Average Power Average 
Increase in 

Power 

Average Percent 
Increase in PowerWilcoxon Rank 

Sum Test 
Ordered 

Comparisons Test
10 0.385 0.700 0.315 81.68% 
30 0.648 0.858 0.210 32.44% 
50 0.728 0.905 0.177 24.25% 
100 0.802 0.946 0.144 17.92% 

  
 
 
 Furthermore, the ordered comparisons test had had an average power of 0.852 

over all test cases and sample sizes, whereas the Wilcoxon rank sum test had an average 

power of 0.641. Therefore, in our Monte Carlo simulation study, we can say that, on 

average, the ordered comparisons test was 33% more powerful than the Wilcoxon rank 

sum test and had an average increase in power of 0.211.  

 Likewise, if we compare the two methods based on the indifference zone 

parameter, ߠ, we find that as the difference between the two systems being compared 

decreases (as ߠ increases) and it’s harder to tell a difference between the systems, the 

ordered comparisons test performs increasingly better than the Wilcoxon rank sum test. 

Therefore, in cases where there are only small differences between systems yet we would 

still like to determine which system is best, the ordered comparison test performs much 

better than the Wilcoxon rank sum test. Table 22 summarizes the average increase in 
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power of the ordered comparisons test for all four indifference zone parameter levels 

analyzed. 

  

Table 22. Average Simulated Power Increase for the Ordered Comparisons Test 
over the Wilcoxon Rank Sum Test Based on the Indifference Zone Parameter (ࣂ) 

Indifference 
Zone 

Parameter (ߠ) 

Average Power Average 
Increase in 

Power 

Average Percent 
Increase in 

Power 
Wilcoxon Rank 

Sum Test 
Ordered 

Comparisons Test 
1.2 0.203 0.618 0.415 204.3% 
1.8 0.644 0.895 0.251 38.92% 
2.2 0.794 0.934 0.140 17.67% 
3.4 0.924 0.983 0.059 6.369% 

 
 

The simulated type I error rates were determined by analyzing data randomly 

sampled from the same population for the ܺ-sample and ܻ-sample. The flowing 

population distributions were used: 

 

Betaሺα ൌ 1, β ൌ 3ሻ 

Exponentialሺμ ൌ 2ሻ 

Gammaሺα ൌ 2, β ൌ 2ሻ 

Normalሺμ ൌ 0, σ ൌ 1ሻ. 

 

Since we know that the null hypothesis  

 

ሻݔଵሺܨ	:଴ܪ ൌ  ݔ ሻ, for everyݔଶሺܨ
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is true, the simulated type I error rate is simply the proportion of rejections of ܪ଴ found 

during the 1024 macro-replications. The simulated type I error rate results are presented 

below: 

 
 

Table 23. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                       
Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ 

 

Sample Size Type I Error 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.082 0.251 
30 0.094 0.341 
50 0.100 0.398 
100 0.109 0.404 

   
 
 

 

Figure 10. Simulated Type I Error for (ࢻ ൎ. ૙૞) for                                               
Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ 

 
 
 
 The Figures for the remaining cases can be found in Appendix C.  
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Table 24. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                        
Exponential	ሺૄ ൌ ૛ሻ vs. Exponential	ሺૄ ൌ ૛ሻ 

 

Sample Size Type I Error 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.100 0.268 
30 0.105 0.349 
50 0.101 0.391 
100 0.102 0.401 

 
 
 

Table 25. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                        
Gamma (હ ൌ ૛, ઺ ൌ ૛) vs. Gamma (હ ൌ ૛, ઺ ൌ ૛) 

 

Sample Size Type I Error 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.098 0.300 
30 0.098 0.374 
50 0.090 0.382 
100 0.127 0.426 

 

 
Table 26. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                        

Normal (ૄ ൌ ૙, ો ൌ ૚) vs. Normal (ૄ ൌ ૙, ો ൌ ૚) 
 

Sample Size Type I Error 
(m = n = M) Wilcoxon rank sum Ordered Comparisons 

10 0.094 0.284 
30 0.094 0.345 
50 0.100 0.383 
100 0.096 0.434 

 

 

Looking at the results above, we see that the Wilcoxon rank sum test has a 

noticeably smaller simulated type I error than the ordered comparisons test in all four 

cases and at all four sample sizes. The overall average increase in type I error for the 

ordered comparisons test was 0.259. Table 27 summarizes the average increase in 
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simulated type I error for the ordered comparisons test across the various sample sizes 

analyzed.  

  

Table 27. Average Simulated Type I Error Increase                                                           
for the Ordered Comparisons Test over the Wilcoxon Rank Sum Test 

 

Sample Size 
(m = n = M) 

Average Increase 
in Type I Error 

10 0.182 
30 0.254 
50 0.291 
100 0.308 

 
 
 
It is worth noting that both tests could be considered liberal in that they both had a 

higher type I error rate than the specified error rate, ߙ ൎ .05.  

With its increased power, the ordered comparisons test is more protective against 

type II errors (false negatives) and is more likely to pick up on differences between the 

two population distributions than the Wilcoxon rank sum test. However, this comes at the 

price of an increased type I error (false positives), and the ordered comparisons test is 

more likely to conclude that there is a difference between the two population distributions 

when in fact there may not be. Nevertheless, one could argue that this is a trade worth 

making considering that in many cases it is very unlikely for the two data samples to 

come from the exact same distribution and more likely that there exists at least a shift in 

population mean, small as it may be. In the case where we are interested in picking the 

best system, we typically assume that there is in fact a difference between the competing 

systems and we are not concerned with a type I error. In this case it would be more 

beneficial to use the ordered comparisons test with its superior ability at detecting 
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differences in distributions, especially at small sample sizes and when the difference 

between competing systems is small.  

 

3.6 Conclusions 

We have proposed an effective nonparametric hypothesis test for determining if 

one distribution is stochastically larger (or smaller) than another. Our results show that 

the distribution-free ordered comparisons test is more powerful than the Wilcoxon rank 

sum test at detecting differences in distributions for all test cases analyzed. The 

improvement in performance is most noticeable at small sample sizes where 

nonparametric tests are most beneficial, as well as when there exist only small differences 

between the systems. The Wilcoxon rank sum test has smaller type I error on average. 

However, a sacrifice in type I error for the increase in power of the ordered comparisons 

test is of particular importance when testing whether one population is stochastically 

larger (or smaller) than another since it is rare for the sample data to come from the exact 

same population. By separately ranking the data from each sample and making ordered 

comparisons, our test makes full use of the information contained in the sample data. 
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IV. Conclusions 

 

Throughout both papers, we have analyzed the critical failure data for the 

alternative preventative maintenance policies the Air Force is considering to increase the 

time between critical failures for an important Air Force system. We have shown various 

example calculations with both the newly proposed methods as well as several current 

analysis techniques. Table 28 below summarizes the results from each of the multinomial 

probability estimate methods discussed in Section II. 

 

Table 28. Summary of Multinomial Probability Estimates for the Air Force's 
Preventative Maintenance Policy A (࢖෥૚) and Policy B (࢖෥૛) 

Method 
Multinomial Probability Estimate 

 ෤ଶ݌ ෤ଵ݌

BEM 0.3 0.7 

AVC 0.33 0.67 

Exact Integral 1 3⁄  = 0.3333 2 3⁄  = 0.6667 

Kernel Density 0.3906 0.6094 
 
 
 
In all techniques, the multinomial probability estimate for Policy B is roughly 

twice as large as the multinomial probability estimate for Policy A. This means that 

Policy B is twice as likely to result in a longer time between critical failures as Policy A. 

Therefore, we can recommend from this analysis that the Air Force should implement 

Policy B as a more effective preventative maintenance policy for increasing the time 

between critical failures.  
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In Section III, using the ordered comparisons hypothesis test, we concluded that 

we should reject ܪ଴ (that there is no statistical difference between Policy A and Policy 

B). Therefore, we can say that there is enough statistical evidence at the ߙ ൌ .0547 level 

of significance to conclude that ܨଶሺ∙ሻ is stochastically larger than ܨଵሺ∙ሻ. That is, 

PrሼPolicy	B	 ൒ ሽݔ ൒ PrሼPolicy	A	 ൒ 	B	PrሼPolicy ,ݔ and for some ,ݔ ሽ, for allݔ ൒ ሽݔ ൐

PrሼPolicy	A	 ൒  ሽ. Therefore, if current Air Force regulation states that systems shouldݔ

have a minimum time between critical failures of ݔ ൌ 1.25 months, we can say with 

94.53% confidence that there is a greater probability that Policy B will fulfill this 

requirement than Policy A. In fact, we found an unbiased probability estimate, ߩො, that 

showed there is a 0.9 probability that Policy B is stochastically greater than Policy A.  

It is worth noting that at the same level of significance, the Wilcoxon rank sum 

test fails to reject ܪ଴ for the same set of failure time data. Since we know that the failure 

times for Policy B are from an exponential distribution with a mean time between critical 

failures of 2 months and the failure times for Policy A are from an exponential 

distribution with a mean time between critical failures of only 1 month, we know that 

there is in fact a difference between the two policies. Therefore, we can see that the 

ordered comparisons test is more powerful in picking up on smaller differences between 

systems than the Wilcoxon rank sum test.  

Overall, we have presented two additional methods not currently in the literature 

for effectively comparing competing systems. The generalized integral method provides 

the ability to calculate the exact probability that a single system is best among competing 

systems in a single trial, when the analyst has knowledge of the distribution of the 

parameter of interest for each system. When this is the case, we can avoid calculating 
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computationally intensive empirical probability estimates and save potentially large 

amounts of time and money attempting to quantify differences between systems. 

However, if distributional knowledge of the systems is unknown, we also showed that 

there are still several techniques which can be used to calculate accurate empirical 

probability estimates using the generalized integral method.  

While these empirical probability estimation techniques provide sufficient results, 

they are more computationally intensive than current empirical techniques. Further 

analysis ought to be conducted in order uncover a more efficient and accurate procedure 

for estimating the pdf and cdf of the parameter of interest for each system. We also 

briefly explored a bootstrapping density estimation technique that was easy to employ, 

however, accurate multinomial probability estimates were only achieved when using a 

large number of bootstrap samples. Results from that analysis exhibited probability 

estimate accuracies that were comparable with that of Procedure AVC, but again, a more 

thorough analysis should be conducted in order to find an improved empirical density 

estimation procedure.   

In theory, the kernel density estimation technique is appealing, however, in 

practice the results left something to be desired. A further analysis should be conducted 

in order to determine optimal settings for the bandwidth parameter, ݄, as well as the 

appropriate kernel to use for specific situations. A more in depth search of density 

estimation techniques may also uncover a more effective method for modeling density 

functions.   

The nonparametric ordered comparisons test proved very effective in determining 

if one system is stochastically larger than another. Although it makes a slight sacrifice in 
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type I error, the ordered comparisons test is far more effective than the Wilcoxon rank 

sum test at detecting differences between systems. The improvement in performance was 

most noticeable at small sample sizes and when the true difference between the two 

systems was small. At a sample size of ܯ ൌ 10, the ordered comparison test was 81.68% 

more powerful than the Wilcoxon rank sum test. Likewise, for an indifference parameter 

value of ߠ ൌ 1.2, the ordered comparisons test was 204.3% more powerful than the 

Wilcoxon rank sum test. By separately ranking the data from each sample and making 

ordered comparisons, our test makes full use of the information contained in the sample 

data.  

When trying to determine the best system among competing systems, it is typical 

to consider a system as best if it has the largest mean or best long run performance. 

However, we have shown that there are cases when this determination should be based on 

one-time performance. There are also instances when long run average performance data 

is unavailable or we are dealing with only a small dataset but would still like to determine 

which system is best. The generalized integral method and ordered comparisons 

hypothesis test have proven to be effective alternative approaches for achieving this goal.  
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Appendix A: Empirical Probability Estimate and Error Summary Tables 

Table 29. Empirical Probability Estimates for                                                                
Test Case 1: Beta(α = 1,β = 3) vs. Beta(α = 1,β = 2.5), 1.2 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.4589 0.5411 0.4567 0.5433 0.4530 0.5470 0.4562 0.5438 
AVC 0.4586 0.5414 0.4556 0.5444 0.4534 0.5466 0.4559 0.5441 

Kernel Density 0.4612 0.5381 0.4589 0.5407 0.4555 0.5440 0.4585 0.5410 
 

Table 30. Empirical Probability Estimate Errors for                                                          
Test Case 1: Beta(α = 1,β = 3) vs. Beta(α = 1,β = 2.5), 1.2 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0043 0.0043 0.0022 0.0022 0.0016 0.0016 0.0027 0.0027 
AVC 0.0041 0.0041 0.0011 0.0011 0.0011 0.0011 0.0021 0.0021 

Kernel Density 0.0066 0.0073 0.0043 0.0048 0.0009 0.0014 0.0040 0.0045 
 

Table 31. Empirical Probability Estimates for                                                                
Test Case 2: Beta(α = 2,β = 5) vs. Beta(α = 2,β = 2), 3.4 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.2224 0.7776 0.2232 0.7768 0.2263 0.7737 0.2240 0.7760 
AVC 0.2210 0.7790 0.2234 0.7766 0.2260 0.7740 0.2235 0.7765 

Kernel Density 0.2435 0.7563 0.2405 0.7591 0.2374 0.7626 0.2405 0.7593 

 

Table 32. Empirical Probability Estimate Errors for                                                          
Test Case 2: Beta(α = 2,β = 5) vs. Beta(α = 2,β = 2), 3.4 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0038 0.0038 0.0030 0.0030 0.0001 0.0001 0.0023 0.0023 
AVC 0.0052 0.0052 0.0028 0.0028 0.0002 0.0002 0.0027 0.0027 

Kernel Density 0.0173 0.0175 0.0143 0.0147 0.0112 0.0112 0.0143 0.0145 
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Table 33. Empirical Probability Estimates for                                                                
Test Case 3: Exponential(μ = 1) vs. Exponential(μ = 1.2), 1.2 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.4564 0.5436 0.4500 0.5500 0.4539 0.5461 0.4535 0.5465 
AVC 0.4573 0.5427 0.4508 0.5492 0.4535 0.5465 0.4539 0.5461 

Kernel Density 0.4616 0.5384 0.4542 0.5457 0.4560 0.5439 0.4573 0.5427 
 
 
 

Table 34. Empirical Probability Estimate Errors for                                                          
Test Case 3: Exponential(μ = 1) vs. Exponential(μ = 1.2), 1.2 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0019 0.0019 0.0045 0.0045 0.0006 0.0006 0.0024 0.0024 
AVC 0.0028 0.0028 0.0038 0.0038 0.0010 0.0010 0.0025 0.0025 

Kernel Density 0.0071 0.0071 0.0003 0.0003 0.0015 0.0015 0.0030 0.0030 
 

 

Table 35. Empirical Probability Estimates for                                                                
Test Case 4: Exponential(μ = 1) vs. Exponential(μ = 2.2), 2.2 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.3076 0.6924 0.3147 0.6853 0.3113 0.6887 0.3112 0.6888 
AVC 0.3122 0.6878 0.3125 0.6875 0.3121 0.6879 0.3123 0.6877 

Kernel Density 0.3315 0.6685 0.3299 0.6701 0.3250 0.6750 0.3288 0.6712 
 
 

Table 36. Empirical Probability Estimate Errors for                                                          
Test Case 4: Exponential(μ = 1) vs. Exponential(μ = 2.2), 2.2 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0049 0.0049 0.0022 0.0022 0.0012 0.0012 0.0028 0.0028 
AVC 0.0003 0.0003 0.0000 0.0000 0.0004 0.0004 0.0002 0.0002 

Kernel Density 0.0190 0.0190 0.0174 0.0174 0.0125 0.0125 0.0163 0.0163 
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Table 37. Empirical Probability Estimates for                                                                
Test Case 5: Exponential(μ = 1) vs. Exponential(μ = 3.4), 3.4 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.2257 0.7743 0.2269 0.7731 0.2259 0.7741 0.2262 0.7738 
AVC 0.2250 0.7750 0.2267 0.7733 0.2257 0.7743 0.2258 0.7742 

Kernel Density 0.2594 0.7406 0.2570 0.7430 0.2485 0.7514 0.2550 0.7450 
 
 

Table 38. Empirical Probability Estimate Errors for                                                          
Test Case 5: Exponential(μ = 1) vs. Exponential(μ = 3.4), 3.4 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0016 0.0016 0.0004 0.0004 0.0014 0.0014 0.0011 0.0011 
AVC 0.0022 0.0022 0.0006 0.0006 0.0016 0.0016 0.0015 0.0015 

Kernel Density 0.0322 0.0322 0.0297 0.0297 0.0212 0.0214 0.0277 0.0277 
 
 

Table 39. Empirical Probability Estimates for                                                                
Test Case 6: Gamma(α = 2,β = 2) vs. Gamma(α = 3,β = 2), 2.2 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.3063 0.6937 0.3150 0.6850 0.3133 0.6867 0.3115 0.6885 
AVC 0.3092 0.6908 0.3165 0.6835 0.3149 0.6851 0.3135 0.6865 

Kernel Density 0.3316 0.6684 0.3347 0.6653 0.3281 0.6719 0.3314 0.6686 
 
 
 

Table 40. Empirical Probability Estimate Errors for                                                          
Test Case 6: Gamma(α = 2,β = 2) vs. Gamma(α = 3,β = 2), 2.2 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0062 0.0062 0.0025 0.0025 0.0008 0.0008 0.0031 0.0031 
AVC 0.0033 0.0033 0.0040 0.0040 0.0024 0.0024 0.0032 0.0032 

Kernel Density 0.0191 0.0191 0.0222 0.0222 0.0156 0.0156 0.0189 0.0189 
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Table 41. Empirical Probability Estimates for                                                                
Test Case 7: Normal(ࣆ	 ൌ 	૙, 	࣌ ൌ 	૚) vs. Normal(ࣆ	 ൌ 	૙. ૞, 	࣌ ൌ 	૚), 1.8 = ࣂ 

 Sample Size (ݒሻ Average 
Probabilities Method 10 30 100 

 ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌ ෤ଶ݌ ෤ଵ݌

BEM 0.3680 0.6320 0.3615 0.6385 0.3606 0.6394 0.3634 0.6366 
AVC 0.3626 0.6374 0.3617 0.6383 0.3620 0.6380 0.3621 0.6379 

Kernel Density 0.3754 0.6246 0.3720 0.6280 0.3692 0.6308 0.3722 0.6278 
 

 
 

Table 42. Empirical Probability Estimate Errors for                                                          
Test Case 7: Normal(μ = 0,σ = 1) vs. Normal(μ = 0.5,σ = 1), 1.8 = ࣂ 

 Sample Size (ݒሻ Overall  
Average Error Method 10 30 100 

 ௣̅෤మߝ ௣̅෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ ௣෤మߝ ௣෤భߝ

BEM 0.0061 0.0061 0.0003 0.0003 0.0012 0.0012 0.0025 0.0025 
AVC 0.0008 0.0008 0.0001 0.0001 0.0001 0.0001 0.0004 0.0004 

Kernel Density 0.0135 0.0135 0.0101 0.0101 0.0074 0.0074 0.0103 0.0103 
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Appendix B: Ordered Comparisons Hypothesis Test Probability Tables 

Table 43. Upper-Tail Probabilities for the Null Distribution of the Ordered 
Comparisons Test  

For a given	ܯ, the table entry for the point ℓ is ଴ܲሼܮ ൒  is ݔ ሽ. Under these conditions, ifݔ
such that ଴ܲሼܮ ൒ ሽݔ ൌ then ℓఈ ,ߙ ൌ  .ݔ

ܯ
 11 10 9 8 7 6 5 4 3 2 ݔ
1 .7500          
2 .2500 .5000 .6875        
3  .1250 .3125 .5000 .6563      
4   .0625 .1875 .3438 .5000 .6367    
5    .0313 .1094 .2266 .3633 .5000 .6230  
6     .0156 .0625 .1445 .2539 .3770 .5000 
7      .0078 .0352 .0898 .1719 .2744 
8       .0039 .0195 .0547 .1133 
9        .0020 .0107 .0327 
10         .0010 .0059 
11          .0005 

 
 
 

ܯ
 21 20 19 18 17 16 15 14 13 12 ݔ
6 .6128          
7 .3872 .5000 .6047        
8 .1938 .2905 .3953 .5000 .5982      
9 .0730 .1334 .2120 .3036 .4018 .5000 .5927    
10 .0193 .0461 .0898 .1509 .2272 .3145 .4073 .5000 .5881  
11 .0032 .0112 .0287 .0592 .1051 .1662 .2403 .3238 .4119 .5000 
12 .0002 .0017 .0065 .0176 .0384 .0717 .1189 .1796 .2517 .3318 
13  .0001 .0009 .0037 .0106 .0245 .0481 .0835 .1316 .1917 
14   .0001 .0005 .0021 .0064 .0154 .0318 .0577 .0946 
15    .0000 .0003 .0012 .0038 .0096 .0207 .0392 
16     .0000 .0001 .0007 .0022 .0059 .0133 
17      .0000 .0001 .0004 .0013 .0036 
18       .0000 .0000 .0002 .0007 
19        .0000 .0000 .0001 
20         .0000 .0000 
21          .0000 
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ܯ
 31 30 29 28 27 26 25 24 23 22 ݔ
11 .5841          
12 .4159 .5000 .5806        
13 .2617 .3388 .4194 .5000 .5775      
14 .1431 .2024 .2706 .3450 .4225 .5000 .5747    
15 .0669 .1050 .1537 .2122 .2786 .3506 .4253 .5000 .5722  
16 .0262 .0466 .0758 .1148 .1635 .2210 .2858 .3555 .4278 .5000 
17 .0085 .0173 .0320 .0539 .0843 .1239 .1725 .2291 .2923 .3601 
18 .0022 .0053 .0113 .0216 .0378 .0610 .0925 .1325 .1808 .2366 
19 .0004 .0013 .0033 .0073 .0145 .0261 .0436 .0680 .1002 .1405 
20 .0001 .0002 .0008 .0020 .0047 .0096 .0178 .0307 .0494 .0748 
21 .0000 .0000 .0001 .0005 .0012 .0030 .0063 .0121 .0214 .0354 
22 .0000 .0000 .0000 .0001 .0003 .0008 .0019 .0041 .0081 .0147 
23  .0000 .0000 .0000 .0000 .0002 .0005 .0012 .0026 .0053 
24   .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0017 
25    .0000 .0000 .0000 .0000 .0001 .0002 .0004 
26     .0000 .0000 .0000 .0000 .0000 .0001 
27      .0000 .0000 .0000 .0000 .0000 
28       .0000 .0000 .0000 .0000 
29        .0000 .0000 .0000 
30         .0000 .0000 
31          .0000 

 
 

 ܯ
 41 40 39 38 37 36 35 34 33 32 ݔ
16 .5700          
17 .4300 .5000 .5679        
18 .2983 .3642 .4321 .5000 .5660      
19 .1885 .2434 .3038 .3679 .4340 .5000 .5643    
20 .1077 .1481 .1958 .2498 .3089 .3714 .4357 .5000 .5627  
21 .0551 .0814 .1147 .1553 .2025 .2557 .3136 .3746 .4373 .5000 
22 .0251 .0401 .0607 .0877 .1215 .1620 .2088 .2612 .3179 .3776 
23 .0100 .0175 .0288 .0448 .0662 .0939 .1279 .1684 .2148 .2664 
24 .0035 .0068 .0122 .0205 .0326 .0494 .0717 .0998 .1341 .1744 
25 .0011 .0023 .0045 .0083 .0144 .0235 .0365 .0541 .0769 .1055 
26 .0003 .0007 .0015 .0030 .0057 .0100 .0168 .0266 .0403 .0586 
27 .0001 .0002 .0004 .0009 .0020 .0038 .0069 .0119 .0192 .0298 
28 .0000 .0000 .0001 .0003 .0006 .0013 .0025 .0047 .0083 .0138 
29 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0017 .0032 .0058 
30 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0011 .0022 
31 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0007 
32 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 
33  .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 
34   .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
35    .0000 .0000 .0000 .0000 .0000 .0000 .0000 
36     .0000 .0000 .0000 .0000 .0000 .0000 
37      .0000 .0000 .0000 .0000 .0000 
38       .0000 .0000 .0000 .0000 
39        .0000 .0000 .0000 
40         .0000 .0000 
41          .0000 
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ܯ
 51 50 49 48 47 46 45 44 43 42 ݔ
21 .5612          
22 .4388 .5000 .5598        
23 .3220 .3804 .4402 .5000 .5585      
24 .2204 .2712 .3258 .3830 .4415 .5000 .5573    
25 .1400 .1802 .2257 .2757 .3294 .3854 .4427 .5000 .5561  
26 .0821 .1110 .1456 .1856 .2307 .2800 .3327 .3877 .4439 .5000 
27 .0442 .0631 .0871 .1163 .1510 .1908 .2354 .2841 .3359 .3899 
28 .0218 .0330 .0481 .0676 .0920 .1215 .1562 .1958 .2399 .2879 
29 .0098 .0158 .0244 .0362 .0519 .0719 .0967 .1264 .1611 .2005 
30 .0040 .0069 .0113 .0178 .0270 .0395 .0557 .0762 .1013 .1312 
31 .0014 .0027 .0048 .0080 .0129 .0200 .0297 .0427 .0595 .0804 
32 .0005 .0010 .0018 .0033 .0057 .0093 .0147 .0222 .0325 .0460 
33 .0001 .0003 .0006 .0012 .0023 .0040 .0066 .0106 .0164 .0244 
34 .0000 .0001 .0002 .0004 .0008 .0015 .0028 .0047 .0077 .0120 
35 .0000 .0000 .0001 .0001 .0003 .0005 .0010 .0019 .0033 .0055 
36 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0013 .0023 
37 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0009 
38 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 
39 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 
40 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
41 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
42 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
43  .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
44   .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
45    .0000 .0000 .0000 .0000 .0000 .0000 .0000 
46     .0000 .0000 .0000 .0000 .0000 .0000 
47      .0000 .0000 .0000 .0000 .0000 
48       .0000 .0000 .0000 .0000 
49        .0000 .0000 .0000 
50         .0000 .0000 
51          .0000 
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ܯ
 61 60 59 58 57 56 55 54 53 52 ݔ
26 0.5551          
27 0.4449 0.5000 0.5540        
28 0.3389 0.3919 0.4460 0.5000 0.5531      
29 0.2442 0.2916 0.3417 0.3939 0.4469 0.5000 0.5522    
30 0.1659 0.2051 0.2483 0.2950 0.3444 0.3957 0.4478 0.5000 0.5513  
31 0.1058 0.1358 0.1704 0.2094 0.2522 0.2983 0.3470 0.3974 0.4487 0.5000 
32 0.0632 0.0845 0.1102 0.1403 0.1748 0.2135 0.2559 0.3015 0.3494 0.3991 
33 0.0352 0.0492 0.0668 0.0885 0.1144 0.1446 0.1791 0.2175 0.2595 0.3045 
34 0.0182 0.0267 0.0380 0.0524 0.0704 0.0924 0.1185 0.1488 0.1831 0.2213 
35 0.0088 0.0135 0.0201 0.0290 0.0407 0.0556 0.0740 0.0963 0.1225 0.1528 
36 0.0039 0.0063 0.0099 0.0150 0.0220 0.0314 0.0435 0.0587 0.0775 0.1000 
37 0.0016 0.0027 0.0045 0.0072 0.0111 0.0166 0.0240 0.0337 0.0462 0.0619 
38 0.0006 0.0011 0.0019 0.0032 0.0052 0.0082 0.0124 0.0182 0.0259 0.0361 
39 0.0002 0.0004 0.0007 0.0013 0.0023 0.0038 0.0060 0.0092 0.0137 0.0198 
40 0.0001 0.0001 0.0003 0.0005 0.0009 0.0016 0.0027 0.0043 0.0067 0.0102 
41 0.0000 0.0000 0.0001 0.0002 0.0003 0.0006 0.0011 0.0019 0.0031 0.0049 
42 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0008 0.0013 0.0022 
43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0009 
44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 
45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 
46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
51 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
52 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
53  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
54   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
55    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
56     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
57      0.0000 0.0000 0.0000 0.0000 0.0000 
58       0.0000 0.0000 0.0000 0.0000 
59        0.0000 0.0000 0.0000 
60         0.0000 0.0000 
61          0.0000 
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ܯ
 71 70 69 68 67 66 65 64 63 62 ݔ
31 0.5505          
32 0.4495 0.5000 0.5497        
33 0.3518 0.4007 0.4503 0.5000 0.5489      
34 0.2629 0.3073 0.3540 0.4022 0.4511 0.5000 0.5482    
35 0.1871 0.2250 0.2662 0.3101 0.3561 0.4036 0.4518 0.5000 0.5475  
36 0.1264 0.1568 0.1909 0.2285 0.2693 0.3127 0.3582 0.4050 0.4525 0.5000 
37 0.0809 0.1037 0.1302 0.1605 0.1945 0.2319 0.2723 0.3152 0.3601 0.4063 
38 0.0490 0.0650 0.0843 0.1073 0.1339 0.1642 0.1981 0.2352 0.2752 0.3177 
39 0.0279 0.0385 0.0517 0.0680 0.0876 0.1108 0.1375 0.1678 0.2015 0.2383 
40 0.0150 0.0215 0.0300 0.0408 0.0544 0.0710 0.0909 0.1142 0.1410 0.1712 
41 0.0076 0.0113 0.0164 0.0232 0.0320 0.0432 0.0571 0.0740 0.0941 0.1175 
42 0.0036 0.0056 0.0084 0.0124 0.0178 0.0249 0.0341 0.0456 0.0598 0.0770 
43 0.0016 0.0026 0.0041 0.0063 0.0093 0.0136 0.0192 0.0266 0.0361 0.0480 
44 0.0006 0.0011 0.0018 0.0030 0.0046 0.0070 0.0103 0.0147 0.0207 0.0284 
45 0.0002 0.0004 0.0008 0.0013 0.0021 0.0034 0.0052 0.0077 0.0112 0.0160 
46 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0025 0.0038 0.0058 0.0085 
47 0.0000 0.0001 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0028 0.0043 
48 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0008 0.0013 0.0020 
49 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0009 
50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 
51 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 
52 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
53 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
54 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
57 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
58 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
59 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
61 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
62 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
63  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
64   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
65    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
66     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
67      0.0000 0.0000 0.0000 0.0000 0.0000 
68       0.0000 0.0000 0.0000 0.0000 
69        0.0000 0.0000 0.0000 
70         0.0000 0.0000 
71          0.0000 
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ܯ
 81 80 79 78 77 76 75 74 73 72 ݔ
36 0.5469          
37 0.4531 0.5000 0.5462        
38 0.3620 0.4076 0.4538 0.5000 0.5456      
39 0.2780 0.3200 0.3638 0.4088 0.4544 0.5000 0.5450    
40 0.2048 0.2414 0.2807 0.3222 0.3655 0.4099 0.4550 0.5000 0.5445  
41 0.1444 0.1746 0.2080 0.2443 0.2833 0.3244 0.3672 0.4111 0.4555 0.5000 
42 0.0973 0.1208 0.1477 0.1778 0.2111 0.2472 0.2858 0.3265 0.3688 0.4122 
43 0.0625 0.0799 0.1003 0.1240 0.1509 0.1810 0.2141 0.2499 0.2882 0.3285 
44 0.0382 0.0503 0.0651 0.0827 0.1034 0.1272 0.1541 0.1841 0.2170 0.2526 
45 0.0222 0.0302 0.0403 0.0527 0.0677 0.0855 0.1063 0.1302 0.1572 0.1871 
46 0.0122 0.0172 0.0237 0.0320 0.0423 0.0550 0.0703 0.0883 0.1093 0.1332 
47 0.0064 0.0093 0.0133 0.0185 0.0252 0.0338 0.0444 0.0573 0.0728 0.0910 
48 0.0032 0.0048 0.0070 0.0101 0.0143 0.0198 0.0268 0.0356 0.0465 0.0596 
49 0.0015 0.0023 0.0035 0.0053 0.0077 0.0110 0.0154 0.0211 0.0283 0.0374 
50 0.0006 0.0011 0.0017 0.0026 0.0040 0.0058 0.0084 0.0119 0.0165 0.0224 
51 0.0003 0.0005 0.0008 0.0012 0.0019 0.0029 0.0044 0.0064 0.0092 0.0128 
52 0.0001 0.0002 0.0003 0.0005 0.0009 0.0014 0.0022 0.0033 0.0048 0.0070 
53 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0010 0.0016 0.0024 0.0036 
54 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0012 0.0018 
55 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 
56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 
57 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 
58 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
59 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
61 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
62 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
63 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
66 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
67 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
68 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
71 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
73  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
74   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
75    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
77      0.0000 0.0000 0.0000 0.0000 0.0000 
78       0.0000 0.0000 0.0000 0.0000 
79        0.0000 0.0000 0.0000 
80         0.0000 0.0000 
81          0.0000 
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ܯ
 91 90 89 88 87 86 85 84 83 82 ݔ
41 0.5439          
42 0.4561 0.5000 0.5434        
43 0.3703 0.4132 0.4566 0.5000 0.5429      
44 0.2906 0.3304 0.3718 0.4142 0.4571 0.5000 0.5424    
45 0.2199 0.2552 0.2928 0.3323 0.3733 0.4152 0.4576 0.5000 0.5419  
46 0.1601 0.1900 0.2226 0.2577 0.2950 0.3341 0.3747 0.4161 0.4581 0.5000 
47 0.1121 0.1361 0.1631 0.1928 0.2253 0.2601 0.2971 0.3359 0.3760 0.4170 
48 0.0753 0.0937 0.1149 0.1390 0.1659 0.1956 0.2279 0.2625 0.2992 0.3376 
49 0.0485 0.0619 0.0778 0.0964 0.1177 0.1418 0.1687 0.1983 0.2304 0.2648 
50 0.0299 0.0392 0.0506 0.0642 0.0803 0.0990 0.1204 0.1445 0.1714 0.2009 
51 0.0176 0.0238 0.0315 0.0410 0.0526 0.0665 0.0827 0.1016 0.1231 0.1472 
52 0.0099 0.0138 0.0188 0.0251 0.0331 0.0428 0.0546 0.0687 0.0851 0.1041 
53 0.0053 0.0076 0.0107 0.0147 0.0199 0.0265 0.0347 0.0447 0.0567 0.0709 
54 0.0027 0.0040 0.0058 0.0083 0.0115 0.0157 0.0211 0.0279 0.0363 0.0465 
55 0.0013 0.0020 0.0030 0.0044 0.0063 0.0089 0.0123 0.0167 0.0223 0.0293 
56 0.0006 0.0010 0.0015 0.0023 0.0033 0.0048 0.0069 0.0096 0.0132 0.0177 
57 0.0003 0.0004 0.0007 0.0011 0.0017 0.0025 0.0037 0.0053 0.0074 0.0103 
58 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 0.0019 0.0028 0.0040 0.0057 
59 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0009 0.0014 0.0021 0.0031 
60 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0007 0.0010 0.0016 
61 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 
62 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 
63 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 
64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
66 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
67 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
68 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
71 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
73 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
77 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
79 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
81 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
83  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
84   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
85    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
86     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
87      0.0000 0.0000 0.0000 0.0000 0.0000 
88       0.0000 0.0000 0.0000 0.0000 
89        0.0000 0.0000 0.0000 
90         0.0000 0.0000 
91          0.0000 
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ܯ
 101 100 99 98 97 96 95 94 93 92 ݔ
46 0.5415 0.5821 0.6214 0.6591 0.6950 0.7287 0.7602 0.7892 0.8159 0.8401 
47 0.4585 0.5000 0.5410 0.5812 0.6202 0.6576 0.6931 0.7266 0.7579 0.7869 
48 0.3773 0.4179 0.4590 0.5000 0.5406 0.5804 0.6190 0.6561 0.6914 0.7246 
49 0.3012 0.3393 0.3786 0.4188 0.4594 0.5000 0.5402 0.5796 0.6178 0.6546 
50 0.2329 0.2670 0.3031 0.3409 0.3798 0.4196 0.4598 0.5000 0.5398 0.5788 
51 0.1741 0.2035 0.2352 0.2692 0.3050 0.3424 0.3810 0.4204 0.4602 0.5000 
52 0.1257 0.1499 0.1767 0.2060 0.2376 0.2713 0.3069 0.3439 0.3822 0.4212 
53 0.0875 0.1066 0.1282 0.1524 0.1792 0.2084 0.2398 0.2734 0.3086 0.3454 
54 0.0587 0.0731 0.0898 0.1090 0.1307 0.1550 0.1817 0.2108 0.2421 0.2754 
55 0.0379 0.0483 0.0607 0.0753 0.0921 0.1114 0.1332 0.1574 0.1841 0.2131 
56 0.0235 0.0307 0.0395 0.0501 0.0627 0.0774 0.0944 0.1138 0.1356 0.1599 
57 0.0140 0.0188 0.0247 0.0321 0.0411 0.0519 0.0646 0.0795 0.0967 0.1162 
58 0.0080 0.0110 0.0149 0.0198 0.0260 0.0335 0.0427 0.0537 0.0666 0.0816 
59 0.0044 0.0062 0.0086 0.0117 0.0158 0.0209 0.0272 0.0350 0.0443 0.0555 
60 0.0023 0.0033 0.0048 0.0067 0.0092 0.0125 0.0167 0.0219 0.0284 0.0364 
61 0.0012 0.0017 0.0025 0.0037 0.0052 0.0072 0.0098 0.0133 0.0176 0.0230 
62 0.0006 0.0009 0.0013 0.0019 0.0028 0.0040 0.0056 0.0077 0.0105 0.0140 
63 0.0003 0.0004 0.0006 0.0010 0.0014 0.0021 0.0030 0.0043 0.0060 0.0083 
64 0.0001 0.0002 0.0003 0.0005 0.0007 0.0011 0.0016 0.0023 0.0033 0.0047 
65 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 0.0018 0.0025 
66 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0006 0.0009 0.0013 
67 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0007 
68 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 
69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 
70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
71 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
73 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
77 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
79 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
81 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
83 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
84 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
85 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
83 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
84 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
85 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
87 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
88  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
89   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
90    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
		⋮          ⋮ 
101          0.0000 
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Appendix C: Simulated Power and Type I Error Plots 

 

 

Figure 11. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 1: Betaሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Betaሺહ ൌ ૚, ઺ ൌ ૛. ૞ሻ, 1.2 = ࣂ 

 
 
 

 

Figure 12. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 2: Betaሺહ ൌ ૛, ઺ ൌ ૞ሻ	vs. Betaሺહ ൌ ૛, ઺ ൌ ૛ሻ, 3.4 = ࣂ 
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Figure 13. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 3: Exponential	ሺૄ ൌ ૚ሻ vs. Exponential	ሺૄ ൌ ૚. ૛ሻ, 1.2 = ࣂ 

 
 

 

  

Figure 14. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 4: Exponential (μ = 1) vs. Exponential (μ = 2.2), 2.2 = ࣂ 
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Figure 15. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 5: Exponential	ሺૄ ൌ ૚ሻ vs. Exponential	ሺૄ ൌ ૜. ૝ሻ, 3.4 = ࣂ 

 
 
 
 
 

 

Figure 16. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 6: Gamma (હ ൌ ૛, ઺ ൌ ૛) vs. Gamma (હ ൌ ૜, ઺ ൌ ૛), 2.2 = ࣂ 
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Figure 17. Simulated Power (ࢻ ൎ. ૙૞) for                                                                  
Test Case 7: Normal (ૄ ൌ ૙, ો ൌ ૚) vs. Normal (ૄ ൌ ૙. ૞, ો ൌ ૚), 1.8 = ࣂ 

 
 

 

 

Figure 18. Simulated Type I Error for (ࢻ ൎ. ૙૞) for                                               
Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ	vs. Beta	ሺહ ൌ ૚, ઺ ൌ ૜ሻ 
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Figure 19. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                  
Exponential (ૄ ൌ ૛) vs. Exponential (ૄ ൌ ૛) 

 
 
 
 

 

Figure 20. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                        
Gamma (હ ൌ ૛, ઺ ൌ ૛) vs. Gamma (હ ൌ ૛, ઺ ൌ ૛) 
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Figure 21. Simulated Type I Error (ࢻ ൎ. ૙૞) for                                                        
Normal (ૄ ൌ ૙, ો ൌ ૚) vs. Normal (ૄ ൌ ૙, ો ൌ ૚) 
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