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Abstract

Stochastic particle methods (SPMs) for the Boltzmann equation, such as the Direct

Simulation Monte Carlo (DSMC) technique, have gained popularity for the prediction

of flows in which the assumptions behind the continuum equations of fluid mechanics

break down; however, there are still a number of issues that make SPMs computationally

challenging for practical use. In traditional SPMs, simulated particles may possess only

a single velocity vector, even though they may represent an extremely large collection

of actual particles. This limits the method to converge only in law to the Boltzmann

solution. This document details the development of new SPMs that allow the velocity

of each simulated particle to be distributed. This approach has been termed Distributional

Monte Carlo (DMC).

A technique is described which applies kernel density estimation to Nanbu’s DSMC

algorithm. It is then proven that the method converges not just in law, but also in solution

for L∞
(
R3

)
solutions of the space homogeneous Boltzmann equation. This provides for

direct evaluation of the velocity density function. The derivation of a general Distributional

Monte Carlo method is given which treats collision interactions between simulated particles

as a relaxation problem. The framework is proven to converge in law to the solution of the

space homogeneous Boltzmann equation, as well as in solution for L∞
(
R3

)
solutions. An

approach based on the BGK simplification is presented which computes collision outcomes

deterministically.

Each technique is applied to the well-studied Bobylev-Krook-Wu solution as a

numerical test case. Accuracy and variance of the solutions are examined as functions

of various simulation parameters. Significantly improved accuracy and reduced variance

are observed in the normalized moments for the Distributional Monte Carlo technique

employing discrete BGK collision modeling.
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committee members, Dr. José Camberos (AFRL), and Dr. Alan Lair for lending their

support and expertise in this research endeavor, as well as Dr. Fariba Fahroo of the Air

Force Office of Scientific Research. This research is supported in part by the Air Force

Office of Scientific Research, Project Number PEDRS001.

Christopher R. Schrock

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Kinetic Theory and Rarefied Gas Dynamics . . . . . . . . . . . . . . . . . 3
1.2 Computational Methods for the Boltzmann equation . . . . . . . . . . . . . 9

1.2.1 Deterministic Methods . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1.1 Direct Boltzmann CFD . . . . . . . . . . . . . . . . . . 10
1.2.1.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . 11
1.2.1.3 Discretization Methods . . . . . . . . . . . . . . . . . . 11

1.2.2 Stochastic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2.1 The Direct Simulation Monte Carlo Method . . . . . . . 12
1.2.2.2 Stochastic Particle Methods . . . . . . . . . . . . . . . . 14
1.2.2.3 Low Variance Deviational Simulation Monte Carlo . . . 15

1.3 Overview of Current Approach – Distributional Monte Carlo . . . . . . . . 17

II. The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Overview of Derivation of the Boltzmann Equation . . . . . . . . . . . . . 29
2.1.1 Relation to the Continuum Equations of Fluid Mechanics . . . . . . 35

2.2 The Space Homogeneous Boltzmann equation . . . . . . . . . . . . . . . . 36
2.2.1 Results on Existence and Uniqueness of Solutions . . . . . . . . . 39
2.2.2 The Bobylev, Krook, and Wu Solution . . . . . . . . . . . . . . . . 40

vii



Page

III. The Direct Simulation Monte Carlo Method . . . . . . . . . . . . . . . . . . . . 45

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Nanbu’s Simulation Technique . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Proof of Convergence of Nanbu’s Method . . . . . . . . . . . . . . . . . . 51
3.4 Nanbu’s DSMC Scheme Applied to the Bobylev-Krook-Wu Problem . . . . 65

IV. A Distributional Monte Carlo Algorithm Based on Kernel Density Estimation . . 70

4.1 Overview of Kernel Density Estimation . . . . . . . . . . . . . . . . . . . 71
4.2 Application to Distributional Monte Carlo (DMC-KDE) . . . . . . . . . . 72
4.3 Proof of Convergence of DMC-KDE Approach . . . . . . . . . . . . . . . 77
4.4 Application to Bobylev, Krook, and Wu Problem . . . . . . . . . . . . . . 83

V. A General Approach for Distributional Monte Carlo (DMC) Methods for the
Space Homogeneous Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . 87

5.1 Proof of Convergence of DMC Approach . . . . . . . . . . . . . . . . . . 91
5.2 Distributional Monte Carlo using the Bhatnagar-Gross-Krook Approxima-

tion (DMC-BGK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Application to the Bobylev-Krook-Wu Problem . . . . . . . . . . . . . . . 104

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



List of Figures

Figure Page

1.1 Hypersonic Flow over a Blunt Body . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Knudsen Number Validity Ranges for Various Equation Sets [65] . . . . . . . 5

1.3 DSMC Pre-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 DSMC Post-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 DMC-KDE Pre-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 DMC-KDE Post-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 DMC Pre-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 DMC Post-Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Molecular Speed Density Function of Bobylev-Krook-Wu Solution . . . . . . . 43

2.2 First Four Even Moments of Bobylev-Krook-Wu Solution . . . . . . . . . . . 44

3.1 Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100, 600 run

ensemble) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 First Normalized Moment with Varying Np (400 run sample) . . . . . . . . . . 67

3.3 Second Normalized Moment with Varying Np (400 run sample) . . . . . . . . . 68

3.4 Total Variation of Nanbu Method as a Function of Sample Size for Np = 100 . . 68

3.5 L1
(
R3

)
Error in Normalized Moments as a Function of the Number of

Simulated Particles, Nanbu Method (1000 run ensemble) . . . . . . . . . . . . 69

4.1 Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100, 600 run

ensemble) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 First Normalized Moment with Varying Np (400 run sample) . . . . . . . . . . 84

4.3 Second Normalized Moment with Varying Np (400 run sample) . . . . . . . . . 85

4.4 L1
(
R3

)
Error for DMC-KDE Bobylev-Krook-Wu Solution with Varying Np

(100 run sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



Figure Page

5.1 Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100, ∆v = 2/3,

600 run ensemble) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 First Normalized Moment with Varying Np (∆v = 2/3, 400 run sample) . . . . 106

5.3 Second Normalized Moment with Varying Np (∆v = 2/3, 400 run sample) . . . 106

5.4 L1
(
R3

)
Error for DMC-BGK Bobylev-Krook-Wu Solution with Varying Np

(100 run sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 L1
(
R3

)
Error for DMC-BGK Bobylev-Krook-Wu Solution with Varying ∆v

(100 run sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Total Variation of DMC-BGK Method as a Function of Sample Size for

Np = 100, ∆v = 2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

x



List of Tables

Table Page

1.1 Expectation Values Related to Macroscopic Properties. . . . . . . . . . . . . . 8

xi



List of Symbols

Symbol Page

N Number of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Np Number of Simulated Particles . . . . . . . . . . . . . . . . . . . . . . . 2

W Numerical Particle Weight (Number of Actual Particles Represented by a

Simulated Particle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

f Velocity Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . 2

vi Velocity Vector of ith Simulated Particle . . . . . . . . . . . . . . . . . . . 2

δ Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Kn Knudsen Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

λ Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

L Characteristic Length Scale . . . . . . . . . . . . . . . . . . . . . . . . . 5

ε Translational Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

V Physical Domain (Volume) Occupied by the Gas (V ⊂ R3) . . . . . . . . . 7

r Position Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

v Velocity Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

t Temporal Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Q Generic Function of Molecular Velocity . . . . . . . . . . . . . . . . . . . 8

Q̄ Expectation Value of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

n Number Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

m Molecular Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ρ Mass Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

u Fluid Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

kB Boltzmann Constant (1.38064813 × 10−23 J/K) . . . . . . . . . . . . . . . 8

S Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

xii



Symbol Page

T Translational Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 8

P Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

F Externally Applied Force . . . . . . . . . . . . . . . . . . . . . . . . . . 9

∇r Gradient with respect to Position Variable . . . . . . . . . . . . . . . . . . 9

∇v Gradient with respect to Velocity Variable . . . . . . . . . . . . . . . . . 9

J Collision Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

S + Positive Half of Unit Sphere in R3 . . . . . . . . . . . . . . . . . . . . . . 9

n Collision orientation vector . . . . . . . . . . . . . . . . . . . . . . . . . 9

θ Azimuthal Angle of Collision Orientation Vector . . . . . . . . . . . . . . 9

ε Elevation Angle of Collision Orientation Vector . . . . . . . . . . . . . . 9

v′, w′ Post-Collision Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

gi Numerical Weight of ith particle in Wagner’s Stochastic Particle Method . 15

f d Deviation of Distribution from Maxwellian . . . . . . . . . . . . . . . . . 16

fMB Maxwell-Boltzmann Density . . . . . . . . . . . . . . . . . . . . . . . . 16

nMB Maxwell-Boltzmann Number Density (LV-DSMC) . . . . . . . . . . . . . 16

TMB Maxwell-Boltzmann Temperature (LV-DSMC) . . . . . . . . . . . . . . . 16

uMB Maxwell-Boltzmann Mean Velocity (LV-DSMC) . . . . . . . . . . . . . . 16

K Kernel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

h Kernel Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20(
∂ f
∂t

)
Adv

Rate of Change of Velocity Density Function due to Particle Advection . . 31(
∂ f
∂t

)
Accel

Rate of Change of Velocity Density Function due to Particle Acceleration . 31(
∂ f
∂t

)
Coll

Rate of Change of Velocity Density Function due to Intermolecular

Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G Collision Integral Gain Term . . . . . . . . . . . . . . . . . . . . . . . . 31

L Collision Integral Loss Term . . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



Symbol Page

d Molecular Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B Collision Cross Section or Collision Kernel . . . . . . . . . . . . . . . . . 34

β Function Describing Orientation Dependence in Collision Cross Section

of Inverse Power Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 35

e Specific Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Φ(i) Expansion Terms in Chapman-Enskog Representation of the Density

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

τi j Shear Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

q Heat Flux Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Re Reynold’s Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Pr Prandtl Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Q Bilinear Functional Related to Collision Integral . . . . . . . . . . . . . . 37

α1,2 Parameters in Maxwell-Boltzmann Density Function . . . . . . . . . . . . 37

{ψi}
5
i=1 Basis for Space of Collision Invariants . . . . . . . . . . . . . . . . . . . 38

H Boltzmann’s H-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Kk Bound of Collision Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Φ Fourier Transform (on velocity variable) of Velocity Density Function . . . 41

k Fourier Variable in Bobylev-Krook-Wu Solution . . . . . . . . . . . . . . 41

ΦMB Fourier Transform of Maxwell-Boltzmann Density in Bobylev-Krook-Wu

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

µ Parameter in Bobylev-Krook-Wu Similarity Solution . . . . . . . . . . . . 41

Θ Parameter in Bobylev-Krook-Wu Solution . . . . . . . . . . . . . . . . . 42

λ Parameter in Bobylev-Krook-Wu Solution . . . . . . . . . . . . . . . . . 42

τ Normalized Temporal Variable in Bobylev-Krook-Wu Solution . . . . . . 42

zn Normalized nth Even Moment of Bobylev-Krook-Wu Solution . . . . . . . 42

xiv



Symbol Page

T k
i j Depletion Term for Simulated Collision Pair (i, j) (Nanbu’s Method) . . . 47

S k
i j Replensishment Term for Simulated Collision Pair (i, j) (Nanbu’s Method) 47

Bk
i j Total Collision Cross Section of Simulated Particle Pair (i, j) (Nanbu’s

Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ω Elevation Angle in Second Coordinate System (Nanbu’s Method) . . . . . 48

ξ Elevation Angle in Second Coordinate System (Nanbu’s Method) . . . . . 48

χ Angle Between v − w and ak
i j (Nanbu’s Method) . . . . . . . . . . . . . . 48

g Probability density function for Collision Orientation Angle (Nanbu’s

Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Kv,w Transition Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Φv,w Babovsky’s Mapping Function (see Lemma 3.35) . . . . . . . . . . . . . 53

D Disk in R2 centered at origin of radius 1
√
π

. . . . . . . . . . . . . . . . . . 53

Ψ Mapping to Post-Collision Velocity . . . . . . . . . . . . . . . . . . . . . 53

δωi Delta Measure Supported at ωi . . . . . . . . . . . . . . . . . . . . . . . 54

C (i,N) Index of Collision Partner for Particle i . . . . . . . . . . . . . . . . . . . 57

h Kernel Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

K Kernel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

G ( f , g) Solution of Space Homogeneous Boltzmann Equation at t = ∆t subject to

initial condition f0 =
f +g
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

pi Evolved Density Function of Simulated Particle i . . . . . . . . . . . . . . 90

ν BGK Collision Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xv



DISTRIBUTIONAL MONTE CARLO METHODS FOR

THE BOLTZMANN EQUATION

I. Introduction

The study of the thermodynamic properties of gas flows is critical in many fields

of engineering and the sciences. The field of computational fluid mechanics has in

recent years made ever increasing strides in the analysis of fluids governed by the

continuum equations of fluid mechanics (e.g. the Navier-Stokes and Euler equations).

Numerical methods for solving these equation sets have found their way into many practical

engineering tools and practices, and many recent developments in applied aerodynamics

can be attributed to their use.

Unfortunately, the continuum equation sets cannot provide a complete description

of the physical phenomena taking place within a fluid under all circumstances. Notable

departures from the predicted solutions of these equations occur whenever the “continuum

hypothesis” is violated. Examples of such violations arise in rarefied gas dynamics,

hypersonic flows, and micro-scale flows. Additionally, there is an “equilibrium hypothesis”

inherent to the so-called “continuum” equation sets, as it can be shown that these equation

sets may be derived by assuming various forms of a perturbation from local thermodynamic

equilibrium [32].

To obtain accurate solutions in such cases, models based on kinetic theory are used.

Kinetic theory attempts to relate the molecular interactions occurring at the microscopic

level to macroscopic fluid properties such as pressure, temperature, viscosity, etc. The most

common governing equation employed is the Boltzmann equation, which is an integro-

differential equation which describes the evolution of the probability density function

1



(PDF) of molecular velocities throughout the gas. This function is commonly referred

to in the literature as the velocity distribution function, but to be more mathematically

precise this document will utilize the term velocity density function when referring to the

Boltzmann solution.

Unlike the continuum equation sets, few practical solution methods for the Boltzmann

equation have found their way into practical engineering settings. This is not for a lack

of solution algorithms, but rather due to the complexity and computational demands of

such algorithms. By far, the Direct Simulation Monte Carlo (DSMC) method, originally

developed by Bird [14], has become the dominant approach for examining flows governed

by the Boltzmann equation and has gained general acceptance for practical applications in

rarefied gas dynamics.

The DSMC technique approximates the physics of the Boltzmann equation using a

stochastic simulation of the interactions of a fraction of the molecules in the gas. In

DSMC, each simulated particle possesses a single velocity vector and energy state. As

only a fraction of the number of particles in the gas can be simulated, each simulated

particle is assumed to represent W = N
Np

actual particles, where N is the total number of

actual particles in the gas and Np is the number of simulated particles. In practice W may be

quite large (106 or more), therefore restricting to only a single velocity vector per simulated

particle is equivalent to assuming that millions of actual particles all share the exact velocity

vector. This assumption is non-physical in the sense that kinetic theory tells us that the

probability that any two molecules share the exact velocity is zero. Mathematically, this

representation leads to what is known as a point measure approximation of the density

function, f , as illustrated by

f (v) =
1

Np

Np∑
i=1

δ (v − vi) (1.1)

where vi is the velocity vector of the ith simulated particle, and δ is the Dirac distribution.

This representation restricts the method to converge only in law. Another undesirable
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feature of the DSMC method stems from the stochastic nature of the technique. Namely,

flow solutions are subject to a significant amount of variance. In practice this variance is

reduced by creating an ensemble averaged solution, combining the results of potentially

thousands of simulations (or time steps in steady-state cases). The present work seeks to

address these limitations through the development of Distributional Monte Carlo methods.

Although the Boltzmann equation and DSMC will be discussed in greater detail in Chapters

2 and 3, a brief introduction is warranted here to provide a more comprehensive view of

the motivation and contribution of the work presented herein.

1.1 Kinetic Theory and Rarefied Gas Dynamics

Although the continuum equations are capable of providing fairly accurate flowfields

under relatively benign conditions, two specific regimes in which they fail are rarefied flows

and flows containing non-equilibrium phenomena. Applications of rarefied gas dynamics

typically involve high-altitude flight and microscale flows (e.g. Micro Electro-Mechanical

devices(MEMs)). In the former, the atmospheric density is low enough that the large

intermolecular spacing invalidates the continuum hypothesis. In the latter, the physical

scale of interest is small enough that the flow appears rarefied even at standard densities.

Non-equilibrium phenomena typically result from the propensity of the constituent

molecules to undergo changes in their internal energy state during a collision with a

material surface or another molecule, as well as their ability to react chemically with

other molecules upon collision. These events occur at some finite rate in the fluid, and

not every encounter results in such changes. If these events occur in such a way as to alter

the macroscopic properties of the fluid over timescales which are longer than some local

flow timescale, they may be regarded as non-equilibrium phenomena. These effects can

be responsible for causing a number of fluid properties that might normally be treated as

constants to vary at a finite rate. Among these are fluid composition, viscosity, thermal

conductivity, specific heats, etc. The variable nature of these properties in regions of non-
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equilibrium changes the manner in which energy and momentum are transferred in the

fluid, which alters the macroscopic thermodynamic and flow variables throughout the flow.

Such effects are commonly observed in high temperature or high energy flow fields such as

those generated in hypersonic flight.

The traditional continuum equations of fluid mechanics do nothing in and of

themselves to address these effects. In fact, these equations permit only small departures

from equilibrium in the translational energy mode, but must be augmented with additional

equations to compensate for other forms of non-equilibrium. Integration of such models

with the continuum equations in some cases is not well understood.

To illustrate the need for a noncontinuum based approach, consider a blunt body

in a hypersonic flow, as illustrated in Figure 1.1. The physics involved with the

associated strong shocks invalidate the continuum equations through the generation of non-

equilibrium phenomena. Close to the body, strong gradients exist across the boundary layer

and may generate non-equilibrium phenomena which invalidate the continuum equations.

Further downstream the flow may expand around the body to the point at which the density

is too low for the continuum equations to hold. Clearly the continuum equations are not

sufficient for dealing with such flows.

Figure 1.1: Hypersonic Flow over a Blunt Body
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A common parameter used to examine the validity of the continuum equations is the

Knudsen Number, Kn, defined by

Kn =
λ

L
(1.2)

Here, λ represents the mean free path of a molecule in the gas and L is a characteristic

length. The characteristic length of importance depends upon the situation under

consideration. For example, to obtain a general idea of the validity of the continuum

equations in the overall flowfield around a physical object, L could be set to some

characteristic physical dimension of the object (e.g. the chord of a wing on an aircraft).

On the other hand, to obtain an understanding of the validity of the continuum equations in

approximating the fluid physics of the flow field, L should be set to a characteristic gradient

length of a fluid property, e.g. p
|∇p| . Figure 1.2 illustrates generally accepted bounds on the

regions of validity for the continuum equation sets. Note that the Boltzmann equation,

the governing equation of kinetic theory, exhibits no Knudsen number dependence for

sufficiently dilute gases.

Figure 1.2: Knudsen Number Validity Ranges for Various Equation Sets [65]
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The branch of gas dynamics which is formally concerned with accounting for changes

in the gas which occur due to interactions at the molecular level is kinetic theory. Although

the basic ideas of kinetic theory originated in the mid-1800’s with Ludwig Boltzmann [23],

the practical solution and application of these methods remain areas ripe for mathematical

research. The complexity involved with performing a kinetic analysis of a gas has presented

a challenging problem from the day these methods were conceived.

Kinetic theory attempts to track, at least statistically, the energy state, momenta and

position of every particle in the gas as a function of time, and accounts for the variation

of these properties due to collisions. This information can then be integrated over the

collection of particles to obtain the macroscopic properties of the gas. No inherent

assumptions regarding equilibrium are required and only the particle collision dynamics

require modeling. The assumptions which go into such models typically do not exhibit

restricted validity in regions of non-equilibrium.

Like continuum fluid mechanics, various governing equations have been derived to

describe the behavior of molecules in a gas with various assumptions regarding interactions

and collision dynamics. The most popular and well studied of these is the Boltzmann

equation (alternatives include for example the Kac master equation [45]).

Unfortunately, the great flexibility afforded by kinetic theory is not without cost. The

Boltzmann equation is a nonlinear integro-differential equation for a probability density

function which statistically describes the energy state of the particles as a function of

time. For a monatomic gas, this equation must be solved in a space of dimension no less

than seven. For polyatomic molecules, which may possess several components of angular

momentum and vibrational degrees of freedom, the dimension of the space grows even

higher.

The present work considers a gas which is monatomic and further assumes that the

internal energy capacity of such molecules is negligible. In other words, particles will
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be assumed to possess only translational energy. This restriction allows study of the

phenomena of interest without adding unnecessary complexity. Under this assumption,

recall that the translational kinetic energy of a particle, ε, is related to its velocity via

ε =
1
2

m‖v‖2 (1.3)

Here, ‖ · ‖ represents the standard Euclidean norm. In light of (1.3), one may equivalently

examine thermodynamic properties in terms of the distribution of molecular velocities

rather than energy.

Consider a gas occupying some physical region V⊆ R3 during some interval of time.

The velocity density function, f : V × R3 × R+ → R+, is a probability density function

that describes the distribution of velocity over the collection of particles. The function is

defined such that

f (r, v, t) drdv (1.4)

represents the probability of finding a particle in the differential element of physical space,

dr centered at r, which possesses velocity in the differential element of velocity space, dv

centered at v, at time t. Here, and in all integrals to follow, the use of the notation dr is used

to mean dr1dr2dr3 and likewise the term dv is used for dv1dv2dv3.

It is at this point that one first may begin to grasp the large dimensionality associated

with examining a gas at the microscopic level as f is seen to be defined over a seven-

dimensional space. In comparison, the variables involved in the partial differential

equations modeling the gas at the macroscopic level are defined at most over a four-

dimensional space. The six dimensions of physical and velocity space are commonly

referred to as the “phase space”. It should also be noted that many variations of f appear

in the literature with some authors referring to N f or n f as the distribution function, where

N is the number of molecules in the gas and n is the number density of molecules in the

gas. For clarity in this work, f will always be taken as the probability density function for
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molecular velocity, or what some authors have referred to as the normalized distribution

function.

For any function, Q, of molecular velocity, v, we define the expectation value Q̄ at

position r and time t as

Q̄ (r, t) =

∫
R3

Q (v) f (r, v, t) dv (1.5)

Such functions are of great importance, as they allow for the computation of the

macroscopic thermodynamic properties of the gas. This is illustrated in Table 1.1 [41].

Table 1.1: Expectation Values Related to
Macroscopic Properties.

Q (r, v, t) Q̄ Description

N n Number Density

mN ρ Mass Density

Nv
n u Fluid Velocity

−kBln
[
f
]

S Entropy

m
3nkB
‖v − u|2 T Temperature

m
3 ‖v − u|2 P Pressure

One can therefore see the importance of the density function in determining the

macroscopic thermodynamic properties of interest in the fluid. It is with this in mind

that one seeks a relation to describe the evolution of the density function throughout

phase space. One such description is provided by the Boltzmann equation which accounts

for changes to f due to three influences: particle advection, acceleration of particles by

external forces, and intermolecular collisions. The equation may be modified to include the

distribution of energy over various internal energy modes, but for simplicity we consider

only the basic case of a simple, monatomic gas. In this case, the Boltzmann equation is
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given by
∂

∂t
f (r, v, t) + v · ∇r f (r, v, t) + F · ∇v f (r, v, t) = J

[
f
]
(r, v, t) (1.6)

Here, F is any externally applied force, and ∇r and ∇v represent the gradient with

respect to position and velocity variables, respectively. That is, ∇r =
(
∂
∂r1
, ∂
∂r2
, ∂
∂r3

)
, and

∇v =
(
∂
∂v1
, ∂
∂v2
, ∂
∂v3

)
. The collision integral J is defined as

J
[
f
]
(r, v, t) =

∫
R3

∫
S +

[
f
(
r, v′ (v,w, n) , t

)
f
(
r,w′ (v,w, n) , t

)
−

f (r, v, t) f (r,w, t)
]

B (θ, ‖v − w‖) dθdεdw

where S + denotes the positive half of the unit sphere in R3, n is the unit vector defining the

collision orientation, θ and ε are the azimuth and elevation angles of n, respectively, and B

is the collision cross section. The post-collision velocities v′, w′ are given by

v′ (v,w, n) = v − [n · (v − w)] n (1.7)

w′ (v,w, n) = w + [n · (v − w)] n (1.8)

Given the complexity inherent to (1.6), it is not difficult to understand why closed form

solutions of the Boltzmann equation for flows of practical interest are difficult to obtain.

The Boltzmann equation will be discussed in greater detail in Chapter 2.

1.2 Computational Methods for the Boltzmann equation

Computational methods for the Boltzmann equation continue to be developed;

however, due to the inherent complexity of the equation itself, such methods are

correspondingly complicated. This section summarizes the strengths and weaknesses of a

few of the methods currently employed in this field. These methods can largely be broken

into two categories: deterministic methods and stochastic methods.

1.2.1 Deterministic Methods.

Deterministic methods for the Boltzmann equation are typically plagued by two issues

over their stochastic counterparts, namely, increased complexity and degraded physical
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fidelity. On the other hand, they avoid the introduction of variance due to stochastic

processes.

1.2.1.1 Direct Boltzmann CFD.

A class of methods known as Direct Boltzmann solvers or Direct Boltzmann

Computational Fluid Dynamics (CFD) borrows from the methods of continuum CFD.

These methods attempt to track the evolution of the velocity distribution function by

performing finite difference or finite volume computations over a grid in phase space.

A number of issues arise with such an approach. Developing a numerical grid in the

six-dimensional phase space is much more complex than simply gridding physical space

as in continuum CFD. When discretized over a velocity grid, the distribution function is

constrained to have compact support. In general, this is not physically accurate and it is

non-trivial to establish appropriate bounds on the support region a priori. Furthermore, grid

refinement in velocity space is non-trivial, and as of yet an area of open research, leading

to the requirement of including a large number of grid points in order to obtain an accurate

representation.

Even with these drawbacks, these methods have a number of desirable features that are

not necessarily present in other computational schemes. First, they are directly traceable

to the Boltzmann equation. Second, the numerical methods employed, although tailored

to the Boltzmann equation, are well understood in general from a mathematical viewpoint,

and are directly amenable to stability and error analysis.

Work on such methods began in the late-1960’s and has continued to the present [7,

48]. Due to the associated complexities and computational demands required for accuracy,

these methods have not yet gained popular acceptance as practical engineering tools but

have been successfully employed to solve basic, fundamental flows.
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1.2.1.2 Molecular Dynamics.

Molecular dynamics methods have been employed since the late 1950’s [6, 16].

The idea behind such methods is to simulate the evolution of a very large collection

of particles throughout the flowfield. Particle interactions and collisions are computed

deterministically.

The complexity associated with such methods is fairly substantial. First, as these

methods seek to deterministically describe the evolution of the particles, each particle’s

trajectory must be advanced by computing all of the possible field interactions with all other

particles. Secondly, as collision interactions are computed deterministically, selection of an

appropriate collision partner cannot be decoupled from particle advection/field interactions.

Finally, scatter due to the finite sample size decreases only as one over the square root of

the sample size [16]. Therefore, in order to achieve accuracy, a large number of particles

must be simulated.

As such, molecular dynamics approaches are more frequently employed when the

number of simulated particles can be nearly on the order of the number of actual particles

in the flow. In these cases, the molecular dynamics method yields accurate results and has

been applied to the study of elementary physical problems.

1.2.1.3 Discretization Methods.

There is a class of deterministic methods known as discretization methods which seek

to “discretize” the behavior of the gas molecules. One such method is known as the Lattice

Gas Automata Method. In this method, particle advection through phase space is viewed

as motion from one node to an adjacent node in physical and velocity space. A similar

method known as the Discrete Velocity Method discretizes only velocity space. That is, a

finite set of possible particle velocities is specified [17].

Such methods, while interesting in their own right, cannot fully replicate the physics

represented in the Boltzmann equation. Namely, it is impossible to totally conserve mass,
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momentum, and energy over a finite velocity set [17]. This leads to a requirement for

inclusion of a large number of potential velocities and the computations associated with

determining the most appropriate post collision velocities over such a set is quite complex.

Although consistency is an issue for such methods it has been shown that when a large

enough set of possible velocities is taken, these methods can be accurate for elementary

problems. Their associated complexity has, however, rendered them impractical for

engineering applications at this time [38].

1.2.2 Stochastic Methods.

Stochastic methods for the Boltzmann equation typically employ a simulation algo-

rithm of relatively lower complexity than deterministic methods to model intermolecular

interactions. For this reason, initial attempts at developing such methods were aimed not at

preserving mathematical consistency with the Boltzmann equation as much as accurately

simulating the physics of particle interactions. For this reason, convergence results on such

methods are somewhat limited. Additionally, the incorporation of various stochastic pro-

cesses in such simulations leads to the introduction of variance in the solution that is not

present in their deterministic counterparts.

1.2.2.1 The Direct Simulation Monte Carlo Method.

The Direct Simulation Monte Carlo (DSMC) method was originally developed in

the mid-1960’s by Bird [15]. The method relies on the Monte Carlo method originally

developed by von Neumann and Ulam (although published in 1950 by Forsythe and

Liebler [40]). The method is based on a stochastic simulation of a fraction of the actual

number of particles in the gas. Each simulated particle is taken to represent N/Np actual

particles.

Unlike the molecular dynamics method, particle interactions are computed probabilis-

tically. The principal approximation is termed the uncoupling principle, which allows

intermolecular collisions to be decoupled from particle advection. Collision interactions
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appropriate for the time increment are computed probabilistically after which particles are

advected along their velocity vectors. Each simulated collision represents N/Np actual col-

lisions. Use of a grid in physical space ensures that the selected collision interactions are

between near neighbors [17]. Specifically, one can view this as a two-stage splitting scheme

with collisionless advection integrating

∂ f
∂t

+ v · ∇r f = 0 (1.9)

and the collision simulation integrating

∂ f
∂t

= J
[
f
]
(r, v, t) (1.10)

Initially, the DSMC method was met with some consternation. Although remaining

true to the principles of kinetic theory, the method itself was not formally derived from the

Boltzmann equation. Without a proof of consistency or convergence, this raised questions

as to the validity of the method itself. By the early 1980’s, however, Nanbu [58] and others

had proposed methods derived from the Boltzmann equation itself, and by 1992 Bird’s

method had been proven to be consistent with the Boltzmann equation as well [75].

The DSMC method is not without its drawbacks. First, a significant number of

particles must be simulated to achieve results representative of reality. This raises

storage issues as the position and velocity vectors of each simulated particle must

be stored throughout the simulation. Selection of representative collisions over these

potentially large data arrays introduces a significant burden on the simulation process.

Secondly, the stochastic nature of the simulation introduces a significant amount of

variation in the results and in practice data must be averaged over an ensemble to

reduce the variance in the solution. Even with these drawbacks, DSMC is the standard

computational method employed when increased accuracy over the continuum equation

sets is required and has gained acceptance in the field of hypersonic aerodynamics [24, 44,

73], flows involving micro electromechanical systems (MEMS) [37], and semiconductor

manufacturing processes such as film deposition processes [71].

13



With only a single velocity vector per simulated particle, DSMC approximates the

velocity density function utilizing a point measure approximation as illustrated by

f (v) =
1

Np

Np∑
i=1

δ (v − vi) (1.11)

where vi is the velocity vector of the ith particle.

Equation 1.11 was the starting point for Nanbu’s derivation of an algorithm consistent

with the Boltzmann equation. Within each cell of the grid, the solution is assumed

to be space homogeneous. Beginning with the weak form of the space homogeneous

Boltzmann equation, Nanbu was able to develop appropriate stochastic processes that

governed selection of collision pairs and collision outcomes within a given cell. Such

methods will be discussed in greater detail in Chapter 3.

1.2.2.2 Stochastic Particle Methods.

Recently, Wagner sought to generalize the DSMC method into a class of methods he

termed Stochastic Particle Methods [61, 62, 76]. His approach was motivated by a desire

to allow simulated particles to have a varying level of influence, possibly depending on

their location in the flowfield. This technique would potentially improve the ability of

DSMC to handle flowfields which contain both low and high density regions of simulated

particles. Specifically, as flow expands around an obstacle, it is common that the density

of simulated particles in the wake region fall to levels that exorbitantly increase the level

of scatter present in the solution [62]. This is predominantly due to the fact that although

very few simulated collisions are being calculated, they will have tremendous impact on the

approximation to the density function, since each simulated collision may in fact represent

millions of actual collisions. Secondly, the very assumption that several million particles

share the same velocity vector in a region where very few simulated particles exist leads

to a gross underrepresentation of the density function itself. While the stochastic particle

method developed by Wagner attempts to address the first of these issues, it does little to

combat the second, as the method continues to employ point measures. This is a goal of
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the work presented herein that will be discussed in much greater detail throughout this

document.

Specifically, the stochastic particle method approximates the density function as

illustrated by

f (v, t) =

Np(t)∑
i=1

gi (t) δ (v − vi) (1.12)

where gi is a weighting term on the influence of the i-th particle. Also, note that Np is

now allowed to vary with time. The reason for this is due to another feature of the method,

namely a collision softening effect that requires Np in general to grow as more collisions

are computed. Specifically, each collision generates two new particles which are assigned

a weight and post-collision velocity, while the two original particles persist with their

velocities unaltered, but with their weighting reduced. The post-collision weightings of the

four particles must be chosen in such a way as to ensure conservation of mass, momentum,

and energy. The key criticism of the method is that because of this, the number of simulated

particles grows with time which is highly undesirable from an implementation standpoint.

To combat this, a method was proposed by which particles would be discarded after their

weight fell below a certain threshold [61]. Nevertheless, perhaps because of the complexity

associated with the creation and destruction of simulated particles, the method has not seen

widespread application.

1.2.2.3 Low Variance Deviational Simulation Monte Carlo.

Recently, Baker, Homolle, and Hadjiconstatinou have developed a simulation

method which employs Monte Carlo techniques only to simulate the departure from

thermodynamic equilibrium [10, 43]. This method is termed Low Variance Deviational

Simulation Monte Carlo (LV-DSMC). The method was specifically developed to handle

low Mach number flows (e.g. microscale applications) in such a way as to attempt to

ensure the variance is independent of the magnitude of the departure from thermodynamic

equilibrium. With traditional DSMC, a limiting factor is that for near-equilibrium solutions,
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large numbers of simulated particles must be employed to reduce the variance to the point

that the deviation is observable.

This technique is based on defining the deviation, f d, from an arbitrary Maxwell-

Boltzmann (equilibrium) density function as

f d ≡ f − fMB (1.13)

where fMB is a Maxwell-Boltzmann density of the form given by

fMB (v) =
nMB(

2πkTMB
m

) exp
[
−

m (v − uMB)2

2kTMB

]
(1.14)

where nMB, TMB, and uMB are the number density, temperature and mean velocity associated

with the Maxwell-Boltzmann density function. As shown in any text on kinetic theory,

the Maxwell-Boltzmann density is the solution of the Boltzmann equation in translational

equilibrium. Substituting (1.13) into the (1.6), a new form of the collision integral is

obtained. Baker, Homolle, and Hadjiconstantinou were then able to develop a particle

scheme with particle advection and collision substeps to simulate the transformed equation.

The process is more complicated than traditional DSMC, as particles do not

necessarily advect according to (1.9), and their advection behavior is dependent upon how

fMB is chosen. As for the collision substep, it is viewed as having a two step effect: first,

a net change to fMB, and second, a change to f d with the goal being to lump as much of

the change as possible into fMB and then regenerate deviational particles with velocities

corresponding to the new f d. Therefore, like the stochastic particle method, LVDSMC also

relies on particle creation and destruction at each time step.

The summary of methods provided here is in no way totally comprehensive. In fact,

many methods currently being developed blur the lines of distinction outlined here [16]

(e.g. Monte Carlo based Discrete Velocity Methods [56]). Each method presents unique

challenges in its implementation and representation of the Boltzmann solution. In this
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work, we focus on developing a stochastic particle based method which borrows from the

ideas of DSMC, but removes the point measure representation of the density function.

1.3 Overview of Current Approach – Distributional Monte Carlo

This work outlines the development of a new approach for the solution of the

Boltzmann equation which has been termed “Distributional Monte Carlo”. This method

falls under the category of stochastic particle methods, but unlike attempts by prior authors,

the Distributional Monte Carlo method removes the point measure approximation of the

density function by allowing each simulated particle to possess not just a single velocity

vector, but rather, a complete velocity distribution function. Binary collisions computed

between simulated particles have the effect of altering the particles’ density function.

Specifically, a binary collision between two simulated particles is viewed as a space

homogeneous relaxation of the distribution function of the potentially millions of actual

particles represented by the two simulated particles; rather than assuming that millions of

collisions each have the same outcome (as in traditional DSMC).

The reasons for such modifications are many. First, the assumption that the millions

of actual particles represented by a single simulated particle all possess the same velocity

vector, is nonphysical. Kinetic theory tells us that intermolecular collisions will drive

the velocity density function of the collection towards the Maxwell-Boltzmann density

function. Second, in addition to being nonphysical, this assumption has the effect of

over emphasizing collision effects and introducing additional variance in the solution

particularly in areas where the density of simulated particles is low as observed by

Wagner [76]. Third, the point measure approximation limits convergence to occur only

in the weak sense to the Boltzmann solution.

To illustrate the restrictive nature of the point measure representation, consider an

arbitrary collision pair of simulated particles. Figure 1.3(a) is a 2-dimensional conceptual

illustration of the two simulated particles as well as the collection of actual particles
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represented by each simulated particle. Note that every particle represented by a given

simulated particle possesses the same velocity vector. Figure 1.3(b) illustrates the velocity

density function of the entire collection of actual particles prior to collision. The function

is singular exactly at the velocities of the two simulated particles and identically zero

everywhere else.
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Figure 1.3: DSMC Pre-Collision Modeling

18



Figure 1.4(a) illustrates the same collision pair post collision. Note that the collision

process changes the velocity vectors of all the particles and all of the actual particles

represented by a simulated particle are assumed to possess the same velocity vector post

collision. Figure 1.4(b) illustrates the velocity density function of the collection of actual

particles post-collision. The function is still singular at the new post-collision velocities

and identically zero elsewhere. The locus of possible collision outcomes is given by the

overlaid circle. That is to say, any two velocities which lie on the circle directly across from

one another represent a possible collision outcome. As there are infinitely many possible

outcomes, the selection of a single outcome is performed stochastically.

The Distributional Monte Carlo Methods developed by the author represent the density

function not as in (1.11) or (1.12), but rather as

f (v) =
1

Np

Np∑
i=1

fi (v) (1.15)

where fi is the density function of the ith simulated particle. In developing such a scheme

for the space homogeneous case, the most important choices one must consider are how

to approximate fi and how to compute collision interactions between particle pairs. The

current work presents the results for two specific schemes.

The first scheme is an approach which employs a fixed functional form of fi, and is

termed DMC-KDE, where KDE stands for Kernel Density Estimator. In this case, each

particle’s density function assumes a prescribed form, namely

fi (v) =
1
h3 K

(v − vi

h

)
(1.16)

where, K ∈ L2
(
R3

)
satisfies ∫

R3
K (v) dv = 1 (1.17)∫

R3
vK (v) dv = 0 (1.18)
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Figure 1.4: DSMC Post-Collision Modeling

and h ∈ R+. Under these conditions, (1.15) assumes the form of a Kernel Density

Estimator, where K is the kernel function and h is the bandwidth. Unlike a point

measure approximation, it will be shown that an approach based on this technique achieves

convergence for L∞
(
R3

)
solutions of the space homogeneous Boltzmann equation, as well

as pointwise convergence for bounded solutions, whereas DSMC converges only in law (or
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weakly). A sufficient criteria for convergence of the method will be shown that h must be

chosen as a function of Np in such a way that h→ 0 as Np → ∞.

An intuitive choice for K is a Maxwellian density, in which case the actual particles

represented by a single particle are no longer assumed to possess the exact same velocity,

but rather have velocities distributed according to a Maxwellian distribution. The physical

interpretation of this approach is that the actual particles represented by a simulated

particle are in thermodynamic equilibrium with one another. This situation is illustrated

in Figure 1.5(a). Note that the actual particles are no longer constrained to possess the

same velocities. The velocity density function prior to collision of the actual particles

represented by the simulated collision pair is illustrated in Figure 1.5(b). Note that unlike

DSMC, the distribution function is no longer singular, but rather bimodal, being a sum of

Maxwellians.

As will be discussed later, the DMC-KDE method represents a kernel density

estimator applied to the DSMC technique. While simulated particles are allowed to

posses non-singular distributions, collision simulation is still performed using similar rules

to DSMC to assign the mean of the post-collision Maxwellian distributions. The post-

collision situation is outlined in Figure 1.6(a). In this case the actual particles are not

assumed to possess the exact same velocity, but note that the mean velocity of the collection

is the same as the post-collision velocity computed in DSMC (Figure 1.4(a)). The post-

collision velocity density function is given in Figure 1.6(b). In this case, valid solutions for

the center points of the Maxwellian density functions will lie on opposite sides of the locus

of the overlaid circle.

As will be discussed, the replacement of the point measure representation with the

non-singular DMC-KDE form allowed the author to prove strong convergence of the

method for L∞
(
R3

)
and bounded solutions of the space homogeneous Boltzmann equation.

This was the first time that a stochastic particle simulation was shown to converge in this
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Figure 1.5: DMC-KDE Pre-Collision Modeling

sense, as opposed to simply in law. Unfortunately, it will be observed that the method does

not achieve a significant variance reduction over traditional DSMC. Even so, the method is

valuable from a practical perspective in that it allows for direct evaluation of the velocity

density function.

Although valuable in its own right, DMC-KDE does not fully embody the Distribu-

tional Monte Carlo concept envisioned by this research. In the general Distributional Monte
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Figure 1.6: DMC-KDE Post-Collision Modeling

Carlo approach, particles may possess arbitrary velocity density functions, and interactions

are computed as a space homogeneous relaxation over the current time step of the com-

bined density function of the two simulated particles involved in a collision. Figures 1.7(a)

and 1.7(b) illustrate the pre-collision conditions for two simulated particles each possessing

Maxwellian distribution functions prior to collision.
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Instead of basing the collision modeling on a binary collision between the simulated

particles, the method computes the post-collision velocity density function of both particles

by computing an approximate space homogeneous relaxation of the initial density function

over the current time step. As the time step is increased the post collision solution tends

toward a Maxwellian. This is illustrated in Figures 1.8(a) and 1.8(b).
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In this work, the author derives and proves that so long as the binary collision

relaxation calculation is consistent with the Boltzmann equation, the Distributional Monte

Carlo method converges in law to the Boltzmann solution. Additionally, the method

exhibits strong convergence for L∞
(
R3

)
solutions. This marks the first development of

a non-point measure based stochastic particle method for the Boltzmann equation, as well
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as the first proof of such a method’s convergence. This is the main contribution of this

work.

Finally, in order to obtain numerical results, the method was implemented using a

BGK [11] approximation for collision simulation. This approach is termed DMC-BGK.

Although not completely consistent with the Boltzmann equation, the BGK approximation

is commonly applied in rarefied gas dynamics. It should be noted that this does not detract

from the theoretical proof previously discussed, as many suitable approaches exist which

are consistent with the space-homogeneous Boltzmann equation (e.g. moment methods,

spectral methods, etc.); the BGK approximation was chosen simply because its ease of

coding allowed for rapid generation of numerical solutions. The approach is applied

to the well-studied Bobylev-Krook-Wu [22, 50] problem, where it is observed to have

significantly reduced variance over traditional DSMC.

The remainder of this work is outlined as follows: Chapters 2 and 3 provide the

necessary background and results on the space-homogeneous Boltzmann equation and the

Direct Simulation Monte Carlo Method. Chapter 4 presents the DMC-KDE method, proof

of convergence of the method, and numerical results on the Bobylev-Krook-Wu problem.

Chapter 5 presents the general Distributional Monte Carlo approach in detail as well as

proof of its convergence in law to the Boltzmann solution. Also in Chapter 5, the DMC-

BGK approach is detailed and applied numerically to the Bobylev-Krook-Wu problem.

Chapter 6 summarizes the conclusions and findings of this work and outlines potential

areas of fertile research for future investigators.
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II. The Boltzmann equation

The Boltzmann equation (1.6) is the governing equation of kinetic theory. As

introduced in Chapter 1, the fundamental assumption of kinetic theory is that all

macroscopic properties of a gas can be deduced from a knowledge of the interactions

and internal structure of its constituent molecules [41]. Remarkably, the fundamentals of

kinetic theory were first formally postulated by Ludwig Boltzmann [23] at a time when

the atomic makeup of matter was not an accepted concept. Modern physics realizes

Boltzmann’s vision as the application of statistical mechanics to a gas. Although the

development of these concepts can be traced back nearly 150 years, it has been only

over the last 50 years that significant contributions have been made to understanding

some of the mathematical properties (e.g. existence and uniqueness of solutions) of the

Boltzmann equation [1, 2, 26, 46, 54]. Numerical methods for the Boltzmann equation

were successfully developed and applied to the study of basic physical flows over the last

30 years [14, 18, 57], but have only recently made significant inroads to applications of

practical interest in both hypersonic/high altitude flight [24, 44] and microscale flows [37].

To understand and appreciate the development of the methods described in this work,

it is necessary to begin with a brief general discussion of the Boltzmann equation (1.6). This

chapter briefly outlines the assumptions behind and derivation of the Boltzmann equation,

before simplifying to the space homogeneous Boltzmann equation which is the basis for

the remainder of this work. The chapter concludes with the presentation of a well known

solution [22, 50] of the space homogeneous Boltzmann equation which has been employed

in numerous studies [52, 64] to examine the performance of various numerical methods.

The Boltzmann equation is a probabilistic representation of the evolution of the energy

state of the molecules comprising the gas under consideration. In general, a molecule may

store its energy in a number of modes. It may possess energy in translational and rotational
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motion. It may also store energy in a vibrational mode along one or more chemical bonds.

Additionally, the molecule may become electronically excited. To simplify the analysis

of the present work, it will henceforth be assumed that the gas under consideration is

monatomic and further, that the internal energy capacity of such molecules is negligible. In

other words, particles will be assumed to possess only translational energy. This restriction

allows study of all of the phenomena of interest without adding unnecessary complexity

and does not prohibit later generalization to molecules with internal structure.

As the Boltzmann equation is a probabilistic model of the gas, some basic concepts

from probability theory must be introduced before continuing with a brief derivation of the

Boltzmann equation. The following definitions motivate the concept of a probability space.

Definition 2.1. Given a set Ω and a σ-algebra S of subsets of X, a countably additive

function, µ, from S into [0,∞] is called a measure and (Ω,S, µ) is called a measure space.

Definition 2.2. A measurable space (Ω,S) is a set Ω with a σ-algebra S of subsets of Ω.

Definition 2.3. Given a measurable space (Ω,S), a probability measure, P, is a measure

on S with P (Ω) = 1. (Ω,S, P) is called a probability space. Elements of S are called

events.

Definition 2.4. A law is a Borel probability measure; that is a probability measure defined

on the Borel σ-algebra.

The Boltzmann equation is a relation describing the evolution of a law on the

measurable space (D,D), where D = V × R3, and D is the Borel σ-algebra defined on D.

Here, V ⊂ R3 is the physical volume occupied by the gas, and the remaining dimensions

of D represent three components of velocity. In rarefied gas dynamics, D is commonly

referred to as the phase space. The following theorem is necessary to motivate the concept

of probability density.
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Theorem 2.1. (Radon-Nikodym) [35] On the measurable space (X,S) let µ be a σ-finite

measure. Let ν be a finite measure, absolutely continuous with respect to µ. Then for some

h ∈ L1 (X,S, µ),

ν (E) =

∫
E

hdµ (2.1)

for all E ∈ S. Any two such h are equal µ-almost everywhere. h is called the Radon-

Nikodym derivative or density of ν with respect to µ, and is written h = dν
dµ .

Definition 2.5. A law P on Rk is said to have a density f if P is absolutely continuous

with respect to Lebesgue measure λk and has Radon-Nikodym derivative dP
dλk = f . In other

words, P (A) =
∫

A
f (x) dλk (x) for all Borel sets A.

For purposes of this work, the term probability density will be used to describe the

Radon-Nikodym derivative as given in Definition 2.5 so as to avoid confusion with the

physical properties of the gas of mass density or number density. As mentioned above, the

Boltzmann equation describes the evolution of a probability law for molecular velocity. To

be more precise, the Boltzmann equation is an integro-differential equation over the space

D for the evolution of the probability density of the law for molecular velocity. Physically

speaking, the probability of a molecule existing in a given subset of phase space A ⊂ D is

given by P (A) =
∫

A
f (x) dx, where dx denotes the Lebesgue measure in the phase space.

This is equivalent to the more common differential description that f (r, v) drdv represents

the probability of molecule existing in the differential element dr centered at r in physical

space, while possessing velocity in the differential element dv centered at v in velocity

space. Having established the required mathematical definitions, a brief derivation of the

Boltzmann equation based on physical reasoning is next presented.

2.1 Overview of Derivation of the Boltzmann Equation

A brief exposition of the origin of the Boltzmann equation and the development

of relations that will later prove useful is discussed herein. Detailed derivations and
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discussions of the Boltzmann equation can be found in numerous sources (see, for example

Reference [23, 27–30, 32, 41, 74]).

There are a few important physical assumptions that are inherent to the Boltzmann

equation. First, one must assume complete collisions. That is, the “dt” time interval

involved in the equation is much larger than the collision interaction time [41]. This

is somewhat more precise and restrictive than the more common interpretation that only

binary collisions occur in the gas. The assumption implies, in fact, that the collisions occur

so rapidly (instantaneously) that the probability of a tertiary collision is zero [41].

The next assumption is that f is slowly varying at small scales, i.e. on the order of

molecular diameters[41]. This assumption is based on the concept of a thermodynamic

limit, namely, that at the physical scales of interest the gas must be capable of being

described in a statistically meaningful way. Unless the gas is quite dense this assumption

has no implication on how f varies on the order of the mean free path. This assumption

limits the Boltzmann equation to dilute gases.

The final assumption inherent to the Boltzmann equation is the existence of molecular

chaos [41]. This means that no correlation can exist between the molecular velocities of

any two particles which are outside of one another’s field of influence. These assumptions

can be shown to be consequential from a single assumption termed the Boltzmann-Grad

limit [29, 30].

The Boltzmann equation accounts for changes to the density function throughout the

phase space by three mechanisms: particle advection through physical space, particle

acceleration by means of some external force, and intermolecular collisions. Let drdv

represent a differential element of phase space centered at (r, v). By accounting for these

mechanisms, one can determine a balance equation for particle accumulation within the

differential element of phase space over the differential time dt. Heuristically, we seek an
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expression of the form

∂ f
∂t

(r, v, t) =

(
∂ f
∂t

)
Adv

(r, v, t) +

(
∂ f
∂t

)
Accel

(r, v, t) +

(
∂ f
∂t

)
Coll

(r, v, t) (2.2)

where,
(
∂ f
∂t

)
Adv

represents the rate of change of f due to particle advection,
(
∂ f
∂t

)
Accel

represents the rate of change of f due to particle acceleration, and
(
∂ f
∂t

)
Coll

represents the rate

of change of f due to intermolecular collisions. Considering only elementary mechanics, it

can be shown [29, 74] that the changes due to advection, and particle acceleration are given

by (
∂ f
∂t

)
Conv

(r, v, t) = −v · ∇r f (r, v, t) (2.3)(
∂ f
∂t

)
Accel

(r, v, t) = −F (r, t) · ∇v f (r, v, t) (2.4)

where F (r, t) is the total external force acting at r at time t.

The term resulting from collisions requires some additional considerations. At a given

time and location in phase space, we must account for all possible collisions that result

in particles with pre-collision velocities outside the differential element dv centered at v

attaining a post-collision velocity within dv. Additionally, we must account for all possible

collisions that result in particles with pre-collision velocities within the differential element

dv centered at v attaining post-collision velocities outside dv. Generically, we will represent

these gain and loss terms by the symbols G and L, respectively, and write(
∂ f
∂t

)
Coll

(r, v, t) = G (r, v, t) − L (r, v, t) (2.5)

In order to analyze G and L properly, one must first consider the mechanics of a binary

collision between two particles. Conceptually, the easiest model to employ is the hard

sphere, or billiard ball model of a molecule. Although the model is physically imperfect, it

provides a credible starting point for this analysis and the modifications required for other

molecular models will be discussed shortly.
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To begin, consider two particles undergoing a collision with velocities v and w

respectively. Denote the relative velocity of the particles by V = v−w. Denote the velocities

of the two molecules post collision by v′ and w′, and the post collision relative velocity by

V ′ = v′ − w′.

During the collision, both momentum and kinetic energy must be conserved, which

implies [30]

v + w = v′ + w′ (2.6)

‖v‖2 + ‖w‖2 = ‖v′‖2 + ‖w′‖2 (2.7)

Let n be a unit vector directed along v − v′. Then the post-collision velocities are related to

the pre-collision velocities via

v′ = v − [n · V] n (2.8)

w′ = w + [n · V] n (2.9)

which implies

V ′ = V − [2n · V] n (2.10)

From the reference frame of the first molecule, this means that the second molecule is

specularly reflected and n is directed along the line of centers. This reference frame

provides a convenient method for computing the gain and loss terms sought above.

Specifically, let d represent the diameter of a single molecule. In this reference frame

let particle 1 be a sphere at rest and endowed with diameter 2d, and view the remaining

particles as point masses moving with velocity V = w − v. Next, one must determine

the probability that a particle possessing velocity w impacts the sphere at the differential

surface element dS = d2dn during the time interval [t, t + dt]. If a particle is to exhibit such

a collision it must lie within the slant cylinder traced out by the differential element over dt

which has height ‖V‖ dt and volume |V · n| dS dt. The probability that a molecule satisfies
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these requirements is given by

f (r,w, t) |V · n| dS dwdt (2.11)

where dw represents a differential element of velocity space centered at w.

What we have established in (2.11) is the probability of a collision between a molecule

with velocity in the differential element dw impacting a single molecule with velocity in

the differential element dv, but have said nothing of the probability of the first molecule

possessing a velocity in the differential element dv. Therefore the probability of any

molecule with velocity in the differential element dw impacting any molecule with velocity

in the differential element dv per unit time is given by [74]

f (r, v, t) f (r,w, t) |V · n| dS dwdv (2.12)

This is commonly referred to as a collision of class (v,w) [74]. The L term we seek in (2.5)

is due to the loss of particles with velocity in the differential element dv due to collisions

with particles of any other velocity. Therefore, we conclude

L (r, v, t) =

∫
R3

∫
S −

f (r, v, t) f (r,w, t) d2 |V · n| dndw (2.13)

where S − is the hemisphere corresponding to V · n < 0, i.e. orientations over which

particles are moving toward each other prior to the collision [29]. A similar analysis can

be performed to determine an expression for G. To do this, one must consider the concept

of inverse collisions or replenishing collisions for a given collision class. Given a collision

between molecules with velocities v1 and v2, an inverse collision is any collision which has

initial velocities equal to the final velocities of the original collision and the same direction

of the line of centers [74]. Using this concept one can determine the G term we seek in

(2.5), which represents the replenishment of particles in the differential element dv centered

at v due to collisions, is given by [30, 74]

G (r, v, t) =

∫
R3

∫
S +

f
(
r, v′, t

)
f
(
r,w′, t

)
d2 |V · n| dndw (2.14)
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Therefore, we conclude that(
∂ f
∂t

)
Coll

(r, v, t) =

∫
R3

∫
S +

[
f
(
r, v′, t

)
f
(
r,w′, t

)
−

f (r, v, t) f (r,w, t)
]
d2 |(v − w) · n| dndw

(2.15)

where,

v′ = v − [n · (v − w)] n (2.16)

w′ = w + [n · (v − w)] n (2.17)

The right hand side of (2.15) is known as the collision integral and is the main source of

complexity in the Boltzmann equation. Thus, the Boltzmann equation for a monatomic

hard sphere gas is given by

∂ f
∂t

(r, v, t) + v · ∇r f (r, v, t) + F (r, t) · ∇v f (r, v, t) =∫
R3

∫
S +

[
f
(
r, v′, t

)
f
(
r,w′, t

)
− f (r, v, t) f (r,w, t)

]
d2 |(v − w) · n| dndw

(2.18)

As previously mentioned, other molecular models beyond hard sphere exist; some of

which are preferred due to improved physical accuracy and others because of mathematical

simplicity. It can be shown [28, 29] that in such cases the only required modification to

the above is to replace the term d2 |(v − w) · n| with a function of ‖v − w‖, and θ, the angle

between n and v − w. In this case, the Boltzmann equation becomes

∂ f
∂t

(r, v, t) + v · ∇r f (r, v, t) + F (r, t) · ∇v f (r, v, t) =∫
R3

∫
S +

[
f
(
r, v′, t

)
f
(
r,w′, t

)
− f (r, v, t) f (r,w, t)

]
B (θ, ‖v − w‖) dwdθdε

(2.19)

where ε is the second angle defining the orientation of n on the unit sphere, and B

is called the collision cross section or collision kernel. In the case of hard spheres,

B (θ, ‖v − w‖) = cos (θ) sin (θ) ‖v − w‖. Another common model is called the inverse power

law, in which the attractive force between two particles is assumed to vary as the n-th

inverse power of the distance between them. In this case, B is given by

B (θ, ‖v − w‖) = β (θ) ‖v − w‖
n−5
n−1 (2.20)
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where the function β incorporates the collision orientation. The case of n = 5 gives rise to

the Maxwell molecule, in which case the dependence on ‖v − w‖ vanishes [53].

2.1.1 Relation to the Continuum Equations of Fluid Mechanics.

During this general discussion of the Boltzmann equation, it is worth noting its

connection to the continuum equations of fluid motion.

Upon taking the moment of the Boltzmann equation with respect to m, mv, and 1
2m‖v‖2,

expressions for the conservation of mass, momentum, and energy in the gas will result.

These expressions will vary with respect to the form of f . If f is locally Maxwellian, the

resulting set of conservation equations reduces to the well known Euler equations of fluid

mechanics.

∂ρ

∂t
+ ∇ · ρu = 0 (2.21)

∂ρu
∂t

+ (∇ · ρu) u + ∇P = 0 (2.22)

∂e
∂t

+ ∇ · (e + P) u = 0 (2.23)

where e is the specific energy. As stated previously, however, an equilibrium (locally

Maxwellian) description is not sufficient to capture all of the phenomena of interest. A

method which attempts to address this situation was proposed first by Hilbert [42] and

later developed independently by Chapman and Enskog [31, 36]. The method expands the

distribution function in a Hilbert series from a local Maxwellian.

f = fM

(
1 + Φ(1) + Φ(2) + · · ·

)
(2.24)

Truncating the expansion, one may develop expressions for the Φ(i) terms. For

example, including the first correction term one obtains the Navier-Stokes equations.

∂ρ

∂t
+ ∇ · ρu = 0 (2.25)

∂ρu
∂t

+ (∇ · ρu) u + ∇p =
1

Re
∇τi j (2.26)

∂e
∂t

+ ∇ · (e + p) u = −
1

RePr
[
∇ · q

]
(2.27)
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The inclusion of the first correction term allows for the physical phenomena of

viscosity and thermal conductivity in the gas. This results in the appearance of the shear

stress tensor, τi j, the heat flux vector, q, as well as the Reynold’s Number, Re, and Prandtl

Number, Pr. Including the second order term yields the Burnett equations, the third yields

the Super-Burnett equations and so forth. It is important to note however that while the

connection is seen to exist to the continuum equation sets, there is no guarantee that such

a truncated approximation will be a good one. In fact, open debate continues over whether

the Burnett and higher order sets add any accuracy over the Navier-Stokes equations,

and it has been shown that there are situations in which they violate the second law of

thermodynamics [34, 39].

2.2 The Space Homogeneous Boltzmann equation

Clearly, much of the complexity associated with the Boltzmann equation is inherent to

the right-hand side which is known as the collision integral. For this reason, it is common

to study the space homogeneous version of the equation. It is also common to neglect the

influence of external forces, in which case the equation reduces to

∂ f
∂t

(v, t) =

∫
R3

∫
S +

[
f
(
v′, t

)
f
(
w′, t

)
− f (v, t) f (w, t)

]
B (θ, ‖v − w‖) dwdθdε (2.28)

The equation is solved subject to the initial condition f (v, 0) = f0 (v), where f0 ∈ L1
(
R3

)
is a non-negative function which satisfies the normalization condition∫

R3
f (v) dv = 1 (2.29)

Additionally, in order to maintain finite energy, the boundary condition,

lim
‖v‖→∞

f (v, t) = 0 for all t ≥ 0 (2.30)

is imposed. In the space homogeneous case, any changes to f are solely due to

intermolecular collisions. Existence and uniqueness of solutions of (2.28) was established

by Akeryd [1, 2].
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Another common notation is to denote the collision integral by Q ( f , f ) where Q is the

functional defined by [30]

Q ( f , g) =

∫
R3

∫
S +

[
f
(
v′, t

)
g
(
w′, t

)
+ f

(
w′, t

)
g
(
v′, t

)
− f (v, t) g (w, t) − f (w, t) g (v, t)

]
B (θ, ‖v − w‖) dwdθdε

(2.31)

In this case the space homogeneous equation can be written as

∂ f
∂t

(v, t) = Q ( f , f ) (2.32)

A fundamental solution is the case when Q ( f , f ) = 0. In this case, the density function

is constant and depleting collisions are exactly balanced by replenishing collisions for all

collision classes. This state is known as translational thermodynamic equilibrium. It can be

shown [74] that the solution for which this criteria holds is the Maxwell-Boltzmann density

function

f (v) = α1 exp
[
−α2 ‖v − u‖2

]
(2.33)

where α1,2 are constants that depend upon the physical characteristics of the gas, and u

represents the bulk fluid velocity. One frequently considers the case where u = 0 which is

known as a nondrifting Maxwellian [29].

Let φ be a real valued function over R3 such that
∫
R3 φ (v) Q ( f , f ) dv exists. Cercignani

shows [29] ∫
R3
φ (v) Q ( f , f ) dv =

1
4

∫
R3

∫
R3

∫
S +

[
f
(
v′
)

f
(
w′

)
− f (v) f (w)

]
·

[
φ (v) + φ (w) − φ

(
v′
)
− φ

(
w′

)]
B (θ, ‖v − w‖) dwdvdn

(2.34)

as well as the more compact form∫
R3
φ (v) Q ( f , f ) dv =

1
2

∫
R3

∫
R3

∫
S +

f (v) f (w) ·

[
φ
(
v′
)

+ φ
(
w′

)
− φ (v) − φ (w)

]
B (θ, ‖v − w‖) dwdvdn

(2.35)

The right-hand side of (2.35), can be made to be zero independent of f if

φ (v) + φ (w) = φ
(
v′
)

+ φ
(
w′

)
(2.36)
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almost everywhere in velocity space [29]. Since the left-hand side of (2.35) represents

the net rate of change of the average value of φ due to collisions, any φ for which∫
R3 φ (v) Q ( f , f ) dv = 0 for any f is termed a collision invariant.

It can be shown [29] that there exists a five-dimensional subspace of continuous

functions which are collision invariants that is spanned by the functions, {ψi}
5
i=1, given by

ψ1 (v) = 1 (2.37)

ψ2 (v) = vx (2.38)

ψ3 (v) = vy (2.39)

ψ4 (v) = vz (2.40)

ψ5 (v) = ‖v‖2 (2.41)

This is not a surprising result, as the appearance of ψ1 is a statement of the conservation

of mass, whereas (ψ2, ψ3, ψ4) result from the conservation of momentum in each of the

cardinal directions and ψ5 is a statement of the conservation of energy.

Next, we note that a special case exists when φ = log f . If
∫
R3 log ( f ) Q ( f , f ) dv exists,

it can be shown [74] that ∫
R3

log ( f ) Q ( f , f ) dv ≤ 0 (2.42)

This is known as the Boltzmann inequality and is required to prove the Boltzmann H-

Theorem, which applies not just to the space homogeneous equation but to the general

Boltzmann equation as well.

Theorem 2.2. Boltzmann’s H-Theorem. LetH (t) =
∫
R3 f (v, t) log ( f (v, t)) dv Then

dH
dt

(t) ≤ 0 (2.43)

Further, dH
dt = 0 if and only if f is a Maxwell-Boltzmann density function.

The function H is commonly referred to as Boltzmann’s H-function. This theorem

is the analogue of the second law of thermodynamics at the microscopic level, in fact,
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it can be shown [47, 74] that the entropy of the gas is related to the H-function by

S = −kBH . This is important because it demonstrates that the Boltzmann equation

possesses the basic thermodynamic feature of irreversibility [30]. It also indicates that

the Maxwellian distribution is the prevailing distribution in thermodynamic equilibrium, a

state characterized by zero entropy generation.

2.2.1 Results on Existence and Uniqueness of Solutions.

Existence and uniqueness of solutions for the space homogeneous Boltzmann equation

(2.28) is a well studied area. Carleman [25] proved existence and uniqueness of solutions

for continuous initial conditions which satisfied (1 + ‖v‖κ) f0 (v) ∈ L∞
(
R3

)
for some κ > 6.

Morgenstern [54, 55] proved the same for Maxwellian molecules with a truncated collision

kernel and initial conditions f0 ∈ L1
(
R3

)
. Povzner [59] proved existence and uniqueness

for continuous collision kernels that obey B (θ,V) ≤ C (1 + V), where C ∈ R+ and initial

conditions f0 with
(
1 + ‖v‖4

)
f0 (v) ∈ L1

(
R3

)
. The results presented herein are due to

Akeryd [1, 2], and represent a more general result for bounded collision kernels. The

following theorem combines several of Akeryd’s results.

Theorem 2.3. Suppose that

0 ≤ B (θ, ‖v − w‖) ≤ Kk (2.44)

for all v,w ∈ R3, θ ∈ [0, 2π]. Here, Kk∈ R+. If f0 ∈ L1
(
R3

)
, with f0 ≥ 0 and∫

R3 f0 (v) dv = 1, then there exists a unique, nonnegative solution f (v, t) ∈ L1
(
R3

)
of the

space homogeneous Boltzmann equation (2.28) with f (v, 0) = f0 (v).

Furthermore, if
(
1 + ‖v‖2

)
f0 (v) ∈ L1

(
R3

)
, then f (v, t)

(
1 + ‖v‖2

)
∈ L1

(
R3

)
for all

t > 0 and ∫
R3

f (v, t) dv =

∫
R3

f0 (v) dv (2.45)∫
R3

v f (v, t) dv =

∫
R3

v f0 (v) dv (2.46)∫
R3
‖v‖2 f (v, t) dv =

∫
R3
‖v‖2 f0 (v) dv (2.47)
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for all t > 0. Also, if f0 log f0 ∈ L1
(
R3

)
, then f (v, t) log f (v, t) ∈ L1

(
R3

)
for all t > 0, and

H (t) =

∫
R3

f (v, t) log ( f (v, t)) dv (2.48)

is a nonincreasing decreasing function in t.

2.2.2 The Bobylev, Krook, and Wu Solution.

Although many of the fundamental mathematical properties such as existence and

uniqueness of solutions of the Boltzmann equation have been solved, and several

approximate approaches exist, a characterizing feature of the equation has been the

nearly complete absence of exact analytical results [22]. One well known exception is

the Bobylev-Krook-Wu solution of the space homogeneous equation, first published by

Bobylev [19–21] and later independently by Krook and Wu [49, 50]. The problem has thus

served as a useful test case for various schemes (e.g. [52, 58]) and will be utilized in the

same capacity by the work presented herein. For this reason, a brief background on the

solution is presented here.

The solution is specific to Maxwellian Molecules. Without loss of generality, Bobylev

considered the following initial conditions∫
R3

v f0 (v) dv = 0 (2.49)∫
R3
‖v‖2 f0 (v) dv = 3 (2.50)

which by (2.41) will hold for all t > 0. These moments correspond to the net momentum

and energy of the gas, and thus by utilizing (2.33) the corresponding Maxwell-Boltzmann

density function (the solution as t → ∞) can immediately be determined to be

fMB (v) = (2π)−3/2 exp
(
−
‖v‖2

2

)
(2.51)

Bobylev’s approach was to perform a Fourier transform on the space homogeneous

Boltzmann equation. Under this representation, the velocity density function is replaced
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by the Fourier variable Φ defined as,

Φ (k, t) =

∫
R3

f (v, t) exp (−ik · v) dv (2.52)

where k∈ R3 is the variable in the Fourier domain. The transformed space homogeneous

equation becomes

∂Φ

∂t
=

∫
R3

Q ( f , f ) exp (−ik · v) dv

=

∫
S +

β

(
k · n
‖k‖

) [
Φ

(
k + ‖k‖ n

2

)
Φ

(
k − ‖k‖ n

2

)
− Φ (0) Φ (k)

]
dn (2.53)

Note the drastic simplification that results from taking the Fourier transform, namely the

five dimensional integral in (2.28) is reduced to a two dimensional integral. The strategy,

therefore, is to determine the solution of (2.53) and invert the transformation to obtain the

density function via the inversion formula

f (v, t) =
1

(2π)3

∫
R3

Φ (k, t) exp (ik · v) dk (2.54)

(2.53) must be solved subject to the transformed initial and normalization conditions

Φ0 (k) =

∫
R3

f0 (v) exp (−ik · v) dv (2.55)

Also, the transformed Maxwellian, ΦMB, can be determined by direct substitution of (2.51)

into (2.52) and is given by

ΦMB (k) = exp
(
−
‖k‖2

2

)
(2.56)

Bobylev then sought to determine a similarity solution of (2.53) of the form

Φ (k, t) = Φ0
(
ke−µt) exp

[
−
‖k‖2

2

(
1 − e−2µt

)]
(2.57)

where µ∈ R3. This is further simplified by seeking an isotropic solution, the simplest of

which can be written as

Φ (x, t) =
(
1 − Θxe−λt

)
exp

[
−x

(
1 − Θe−λt

)]
(2.58)
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where x = ‖k‖2

2 and the parameter Θ is any real number in the interval
[
0, 2

5

]
. Note the

dependence on x versus k clearly exhibits the isotropic property of the solution. The

variable λ∈ R+ is dependent upon the collision cross section and is given by

λ =
π

2

∫ 2π

0
β (θ)

(
1 − cos (θ)2

)
dθ (2.59)

Applying the inverse transform to (2.58) results in the final expression for the density

function

f (v, t) =
1

(1πτ (t))−3/2 exp

−
∥∥∥v2

∥∥∥
2τ (t)

 [1 +
1 − τ (t)
τ (t)

(
‖v‖2

2τ
−

3
2

)]
(2.60)

where τ(t) = 1 − Θe−λt. This was the first known nontrivial closed form solution of the

space homogeneous Boltzmann equation [22]. Bobylev defines the following normalized

even moments of the distribution function

zn (t) =
1

(2n + 1)!!

∫
R3
‖v‖2n f (v, t) dv n = 1, 2, . . . (2.61)

where,

(2n + 1)!! =

n∏
i=1

(2i + 1) (2.62)

In the process of obtaining his solution, Bobylev was able to exploit the isotropic nature

of the solution and determine expressions for these moments fairly simply in the Fourier

domain. The resulting normalized moments, zn are given by

zn (t) =
(
1 − Θe−λt

)n−1 [
1 + (n − 1) Θe−λt

]
(2.63)

The simplicity of this closed form solution lends it to great use in evaluating numerical

schemes for the Boltzmann equation (e.g. [52, 56, 58, 63, 64]), and will be used towards

that end in the present work as well. The present work will utilize the solution for λ = 1/6

and Θ = 2/5. Visualizing the velocity density function can be difficult given its inherent

dimensionality, however, as the present solution is spherically symmetric one can readily

derive the density function for molecular speed by moving to spherical polar coordinates
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and integrating out the directional dependence from (2.60)

F (‖v‖ , t) =
4π

(2π)−3/2 ‖v‖
2 exp

(
−
‖v‖2

2τ (t)

) [
1 +

1 − τ (t)
τ (t)

(
‖v‖2

2τ (t)
−

3
2

)]
(2.64)

The speed density function is shown in Figure 2.1 below. In many situations it is not

Figure 2.1: Molecular Speed Density Function of Bobylev-Krook-Wu Solution

practical to directly compare the density function (e.g. DSMC, which converges in law but

does not directly produce a convergent density function), and therefore it is common to

employ a comparison of the even moments of the Bobylev-Krook-Wu solution. The first

four moments are illustrated in Figure 2.2.

These results have been employed in the current work as a numerical test case for the

various algorithms under development and represent a standard benchmark problem for

Boltzmann simulators and solvers.
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Figure 2.2: First Four Even Moments of Bobylev-Krook-Wu Solution
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III. The Direct Simulation Monte Carlo Method

3.1 Overview

The Direct Simulation Monte Carlo Method was originally proposed by Bird in

1963 [14]. Bird entitled the method Direct Simulation to distinguish from methods which

would be characterized as Direct Solution techniques. In other words, Bird’s original

development of DSMC was never intended to be a numerical solution technique for

the Boltzmann equation. Bird argued that a computational simulation of the physics of

rarefied gas interactions without explicitly incorporating the Boltzmann equation was more

tractable and perhaps more valuable than applying numerical techniques to the equation

itself [17].

Others were not as content to accept the simulation process without a connection to

the underlying equation and in 1980 Nanbu proposed a DSMC scheme directly derived

from the Boltzmann equation [58]. By 1987, Babovsky [8] had proven that Nanbu’s

scheme was in fact convergent in law to the space homogeneous Boltzmann solution. Two

years later, Babovsky and Illner proved the same for the nonhomogeneous equation [9].

Interestingly, as Bird’s method itself argues from the same physical assumptions (e.g. dilute

gas, molecular chaos, etc.) inherent to the Boltzmann equation, Wagner was later able to

prove that in spite of the procedure’s ignorance of the Boltzmann equation itself, it did in

fact converge to the solution of the Boltzmann equation in law [75].

We utilize results which stem from Nanbu’s technique and Babovsky’s proof of its

convergence, both of which are presented in this chapter. The approaches could be applied

equally well to develop techniques that are more like Bird’s approach, but the direct

traceability to the Boltzmann equation of Nanbu’s technique results in a relatively easier

path to proving convergence. For this reason, we utilize results from Nanbu’s technique

over those of Bird’s.
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3.2 Nanbu’s Simulation Technique

In this section, an overview of the original derivation [58] of Nanbu’s method is

provided while in Section 3.3 an explanation [8] is given which is more amenable to

analyzing convergence of the method. Although other DSMC schemes exist which are

in more widespread usage, Nanbu’s method is presented here due to the clarity with which

it can be derived from the Boltzmann equation.

The basic premise of any DSMC scheme is the uncoupling principle, namely, that

particle convection and particle collisions are treated independently. In non-homogeneous

problems, physical space is discretized by means of a volume grid, and within a cell the

solution is assumed to be space homogeneous. For this reason, the original derivation

of Nanbu’s scheme focused on developing the stochastic relations to simulate the space

homogeneous Boltzmann equation. Simulated particle convection is a more trivial

problem, as particles simply convect along their velocity vectors for the current time step

by ∆r = v∆t. The space-homogeneous simulation of the collision operator is therefore

the central problem in DSMC. As such, proof of convergence of Nanbu’s method was

originally obtained for the space homogeneous equation [8] and subsequently for the full

Boltzmann equation [9]. With this in mind, the current work focuses solely on space

homogeneous results.

Nanbu’s derivation seeks to develop a set of stochastic rules governing collision pair

selection and collision outcomes for a set of N particles each possessing a velocity vector

vi. Nanbu begins by writing the initial density function for molecular velocity as a point

measure approximation

f k (v) =
1

Np

Np∑
i=1

δ
(
v − vk

i

)
(3.1)

where the superscript indicates the kth time step of the simulation. Expanding the

temporal derivative in the space homogeneous Boltzmann equation using a forward Euler
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discretization in time and solving for f k+1 yields

f k+1 (v) = f k (v) + Q
(

f k, f k
)
∆t (3.2)

Upon substituting (3.1) into (3.2), Nanbu [58] shows that the collision integral is given by

Q
(

f k, f k
)

=
1

N2
p

Np∑
i=1

Np∑
j=1

(
S k

i j − T k
i j

)
(3.3)

where,

S k
i j =

∫
R3

∫
S +

δ
(
v′ − vk

i

)
δ
(
w′ − vk

j

)
‖v − w‖ B (‖v − w‖ , θ) dndw (3.4)

T k
i j =

∫
R3

∫
S +

δ
(
v − vk

i

)
δ
(
w − vk

j

)
‖v − w‖ B (‖v − w‖ , θ) dndw (3.5)

which represent the replenishing and depleting collision contributions, respectively. Note

that T k
i j has a somewhat simpler form than S k

i j and may be evaluated directly,

T k
i j =

∥∥∥vk
i − vk

j

∥∥∥ Bk
i jδ

(
v − vk

i

)
(3.6)

where Bk
i j is sometimes referred to as the total collision cross section and is given by

Bk
i j =

∫
S +

B
(∥∥∥vk

i − vk
j

∥∥∥ , θ) dn (3.7)

In order to simplify S k
i j, Nanbu resorts to approximating the delta function as

δ (v) = lim
ε→0

1
(πε)3 exp

[
−
‖v‖2

ε

]
(3.8)

Upon substituting (3.8) and (2.9) into (3.4), one obtains

S k
i j = lim

ε→0

1
(πε)3

∫
R3

Gk
i j (v,w) ·

exp
{
−

1
ε

[
‖v‖2 + ‖w‖2 +

∥∥∥vk
i

∥∥∥2
+

∥∥∥vk
j

∥∥∥2
−

(
vk

i + vk
j

)
· (v + w)

]}
‖v − w‖ dw

(3.9)

where Gk
i j is defined by

Gk
i j (v,w) =

∫
S +

exp
(
ak

i j · n
)

B (‖v − w‖ , θ) dn (3.10)
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and ak
i j = 1

ε
‖v − w‖

(
vk

j − vk
i

)
. As stated previously, θ is the angle between (v − w) and

n. Next, introduce the spherical-polar coordinate system with the axis directed along ak
i j.

Denote the angle between ak
i j and n by ω and the azimuth angle of n about the new axis by

ξ. Then dn = sin (ω) dωdξ and θ = θ (ω, ξ). Substituting into (3.10)

Gk
i j (v,w) =

∫ 2π

0

∫ π

0
exp

[∥∥∥ak
i j

∥∥∥ cos (ω)
]

B (‖v − w‖ , θ (ω, ξ)) sin (ω) dωdξ (3.11)

Nanbu [58] next asserts that since
∥∥∥ak

i j

∥∥∥→ ∞ as ε → 0, the range of smallω is the dominant

contributor in (3.11). This allows him to utilize the following approximations

exp
[∥∥∥ak

i j

∥∥∥ cos (ω)
]
≈ exp

[∥∥∥ak
i j

∥∥∥ (
1 −

ω2

2

)]
(3.12)

θ (ω, ξ) ≈ θ (0, ξ) = χ (3.13)

sin (ω) ≈ ω (3.14)

where χ is the angle between (v − w) and ak
i j. Nanbu then substitutes these approximations

into (3.11), along with one additional approximation, obtained by changing the upper limit

of integration from π to∞ on dω to obtain

Gk
i j (v,w) ≈

∫ 2π

0

∫ ∞

0
exp

[∥∥∥ak
i j

∥∥∥ (
1 −

ω2

2

)]
ωB (‖v − w‖ , χ) dωdξ (3.15)

= 2πB (‖v − w‖ , χ)
exp

(∥∥∥ak
i j

∥∥∥)∥∥∥∥ak
i j

∥∥∥∥ (3.16)

Substituting (3.16) into (3.9), and using the fact that ‖a‖ =
‖v−w‖‖vi−v j‖

ε
, one obtains

S k
i j = lim

ε→0

2
(πε)2

∫
R3

exp
{
−

1
2ε

[(
v + w − vk

i − vk
j

)2
+

(
‖v − w‖ −

∥∥∥vi − v j

∥∥∥)2
]}
·

B (‖v − w‖ , ξ) dw

(3.17)

Recalling (3.8), this expression can be rewritten as

S k
i j =

8∥∥∥∥vk
i − vk

j

∥∥∥∥
∫
R3
δ
(
v + w − vi − v j

)
δ (‖v − w‖ −

∥∥∥vi − v j

∥∥∥) B (‖v − w‖ , χ) dw

=
4∥∥∥∥vk

i − vk
j

∥∥∥∥δ
∥∥∥v∗i j

k
∥∥∥ − ∥∥∥vk

i − vk
j

∥∥∥
2

 B
(∥∥∥vk

i − vk
j

∥∥∥ , χk
i j

)
(3.18)
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where

v∗i j
k

= v −
vk

i + vk
j

2
(3.19)

and χk
i j is the angle between

(
vk

i − vk
j

)
and v∗i j

k. Substituting (3.9), (3.6), and (3.3), into (3.2)

yields the final expression for f k+1

f k+1 (v) =
1

Np

Np∑
i=1

[(
1 − Pk

i

)
δ
(
v − vk

i

)
+ Qk

i

]
(3.20)

where

Pk
i =

∆t
Np

Np∑
j=1

∥∥∥vk
i − vk

j

∥∥∥ Bk
i j (3.21)

Qk
i =

4∆t
Np

Np∑
j=1

δ

∥∥∥v∗i j
k
∥∥∥ − ∥∥∥vk

i − vk
j

∥∥∥
2

 B
(∥∥∥vk

i − vk
j

∥∥∥ , χk
i j

)∥∥∥∥vk
i − vk

j

∥∥∥∥ (3.22)

Rewriting Pk
i as

Pk
i =

Np∑
i=1

Pk
i j (3.23)

where,

Pk
i j =

∆t
N

∥∥∥vk
i − vk

j

∥∥∥ Bk
i j (3.24)

Nanbu bases his scheme on the interpretation that Pk
i represents the probability that the

ith simulated particle undergoes a collision during the time interval [tk, tk+1], while Pk
i j

represents the probability that particle i collides with particle j during ∆t. Under this

interpretation, the j = i terms must be omitted from the summation, as a simulated particle

cannot collide with itself.

Assuming that particle i collides with particle j, Nanbu then shows that the conditional

probability density function for collision angle, g, is given by

g (χ) =
B

(∥∥∥vk
i − vk

j

∥∥∥ , χ) sin (χ)

Bk
i j

(3.25)

Note that the absence of ξ from the expression implies that the azimuthal dependence is of

uniform probability.
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Based on these results, Nanbu developed the following stochastic scheme to evolve

the molecular velocities during a given time step:

• For each particle, calculate Pk
i . Generate a random number r1 in the interval (0, 1) . If

Pk
i > r1, accept the particle for collision.

• Sample a collision partner j from the conditional probability distribution P∗im =
Pk

im

Pk
i

,

by sampling a second random number r2 uniformly from the interval (0, 1) and

identifying the j which satisfies
∑ j−1

m=1 P∗im < r2 <
∑ j

m=1 P∗im

• Sample the direction of v∗ based on (3.25), and compute the post collision velocity

of the ith particle, According to

v′i =
1
2

(∥∥∥vk
i − vk

j

∥∥∥ R + vk
i + vk

j

)
(3.26)

where the vector R is a unit vector computed by sampling the densities for azimuthal

and elevation angles, namely

ξ̃ = 2πr3 (3.27)

where r3 ∈ (0, 1) is another random number, χ̃ is determined by generating a random

number r4 ∈ (0, 1) until g (χ̃) ≥ r4 where χ̃ = πr4, and R is computed as

R =


sin

(
ξ̃
)

cos (χ̃)

sin
(
ξ̃
)

sin (χ̃)

cos
(
ξ̃
)

 (3.28)

In general Pk
i , Pk

j, but Nanbu points out that in the special case of Maxwell

molecules, the collision probabilities are all equal, namely

Pk
i = πβ2

0

(
8b
m

) 1
2
(

Np − 1
Np

)
∆t∀i (3.29)

where β0 and b are parameters which define the collision cross section. In this case,

collision partners can be chosen randomly simplifying the second step of the procedure

significantly.
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Note, however, that the procedure developed by Nanbu does not exactly produce the

solution at time step k+1 from equation 3.20. Specifically, note that the effect of collisions,

namely the Qk
i term, does not lend itself to be written as a simple delta function involving

two distinct post collision velocities. Rather the form of this term indicates that the post

collision velocities for a collision pair are distributed over a sphere. DSMC techniques such

as Nanbu’s method simply sample discrete post collision velocities from this sphere. In so

doing, much of the information contained in equation 3.20 is destroyed. If one considers the

fact that each simulated particle represents a large number of actual particles, the solution

indicates that the collision interaction will distribute the velocities of the actual particles

over the sphere post collision. Further, the appearance of the first term in equation 3.20

indicates that a portion of the molecules are unaffected by the collision interaction. As

DSMC allows for only a single velocity per simulated particle, the sampling cannot account

for all of these effects.

3.3 Proof of Convergence of Nanbu’s Method

The previous section provided an overview of Nanbu’s method which followed

Nanbu’s original derivation fairly closely [58]. This section will follow Babovsky’s proof,

which showed Nanbu’s method converged in law to the solution of the space homogeneous

Boltzmann equation (2.28) [8]. Much of the details of Babovsky’s work will be included

here, as the work serves as a good template for completing such proofs, and the following

section lays out many of the details omitted from Babovsky’s original paper. Before

continuing we define this form of convergence concretely as follows.

Definition 3.1. Let (S ,T ) be a topological space, with Borel σ-algebra B. Define

Cb (S ) B Cb (S ,T ) to be the set of all bounded, continuous, real-valued functions on S . A

sequence of laws {Pn} is said to converge to a law P if
∫

S
f dPn →

∫
S

f dP as n → ∞ for

every f in Cb (S ) [35].
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To begin, it is necessary to develop a few additional relations and consider Nanbu’s

approach in a somewhat more rigorous setting. Recalling the expressions for the post-

collision velocities (2.9), here we define the more compact notation

Tv,w (n) B v − [n · (v − w)] n (3.30)

to more explicitly indicate the dependence on the pre-collision velocities and the orientation

angle. It should be noted that the Jacobian of the transformation which maps (v,w) →

(v′,w′) is unity [30]. Further, Tv′,w′ (n) = v. Babovsky begins his explanation of Nanbu’s

method by developing a weak form of the time discretized Boltzmann equation [8].

Rewriting (3.2) using (2.31), one obtains

f k+1 (v) =

(
1 − ∆t

∫
R3

∫
S +

B (‖v − w‖ , θ) f k (w) dS (n) dw
)

f k (v) +

∆t
∫
R3

∫
S +

B (‖v − w‖ , θ) f k (v′) f k (w′) dS (n) dw
(3.31)

which, so long as B is bounded, is an approximation to the solution of (2.28) with truncation

error on the order of O (∆t).

Let φ ∈ Cb

(
R3

)
. By multiplying (3.31) by φ and integrating over velocity space, i.e.

R3, one obtains a weak form of the equation. Utilizing the properties discussed above, it

can be shown [8] that this expression can be written as∫
R3
φ (v) f k+1 (v) dv =

∫
R3

∫
R3

Kv,w (φ) f k (v) f k (w) dwdv (3.32)

where, Kv,w

Kv,w (φ) =

[
1 − ∆t

∫
S +

B (‖v − w‖ , θ) dθdε
]
φ (v) +

∆t
∫

S +

B (‖v − w‖ , θ) φ
(
v′
)

dθdε
(3.33)

is called the transition kernel. Note that the kernel itself exhibits no dependence on f k.

Also, as Babovsky points out, there is no guarantee that (3.31) preserves non-negativity of

solutions. To ensure non-negativity is preserved one must assume

1 − ∆t
∫

S +

B (‖v − w‖ , θ) dθdε ≥ 0 ∀v,w ∈ R3 (3.34)
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This establishes a restriction on the time step and typically also requires that B be truncated

in velocity space.

Babovsky [8] proves the following lemma which allows the transition kernel to be

written more compactly.

Lemma 3.1. For all v,w ∈ R3, there exists a continuous mapping, Φv,w : D → S +, where

D is the disk in R2 centered at the origin with radius 1
√
π
, such that

Kv,w (φ) =

∫
D
φ
(
Tv,w ◦ Φv,w (x)

)
dx (3.35)

for any φ ∈ Cb

(
R3

)
.

Using this property, and assuming B is bounded and continuous, we define the

function, Ψ : D × R3 × R3 → R3 as

Ψ (x, v,w) = Tv,w ◦ Φv,w (x) (3.36)

It can be shown [8] that because B is assumed to be bounded and continuous, Ψ is

continuous almost everywhere (a.e.) in D × R3 × R3. Physically, Ψ is a function which

takes two velocities and a 2-parameter orientation as inputs and maps to a single velocity.

The following definitions motivate the concept of a point measure approximation, which is

the framework by which DSMC constructs a weak solution to the Boltzmann equation.

Definition 3.2. Let µ be a measure on the measurable space (Ω,S). The support of µ is the

set of all points ω ∈ Ω for which every open neighborhood of ω has a positive measure and

is denoted supp (µ).

Definition 3.3. Let P be a probability measure on the measurable space (Ω,S). P is called

a discrete probability measure if supp (P) is countable.

Lemma 3.2. Let P be a disrete probability measure on the measurable space (Ω,S) with

supp (P) = {ωi}. Then there exists {ai}, with ai ∈ R+ such that for any A ⊂ Ω,

P (A) =
∑

i

aiδωi (A) (3.37)
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where δωi is the delta measure supported at ωi, and,∑
i

ai = 1 (3.38)

Definition 3.4. Let P be a probability measure on the measurable space (Ω,S), and let

{PN} be a sequence of discrete probability measures on (Ω,S) with card
(
supp (PN)

)
= N.

If {PN} converges to P in law, then {PN} is called a point measure approximation to P.

Further, denoting supp (PN) by {ωi}
N
i=1, if

PN (A) =
1
N

N∑
i=1

δωi (A) (3.39)

for every A ⊂ Ω, then PN is said to possess uniform weights.

We also require the following definitions and results regarding image measures.

Definition 3.5. Let (X,S) and (Y,B) be measurable spaces, and let f be a transformation

from X into Y. If f −1 (B) ∈ S for all B ∈ B then f is called a measurable transformation.

Definition 3.6. Let (X,S, µ) be a measure space and (Y,B) a measurable space. Let T be

a measurable transformation from X into Y. Let
(
µ ◦ T−1

)
(A) = µ

(
T−1 (A)

)
for all A ∈ B.

Since A 7→ T−1 (A) preserves all set operations and preserves disjointedness, µ ◦ T−1 is a

countably additive measure and is called the image measure of µ by T .[35]

Lemma 3.3. Let f be any measurable function from Y into [−∞,∞]. Then
∫

f d
(
µ ◦ T−1

)
=∫

f ◦ Tdµ if either integral is defined, (possibly infinite) [35].

Lemma 3.4. Let (X,S, P) be a measure space and (Y,B) a measurable space. Let T be

a transformation from X into Y, and let T be continuous a.e. Let
{
PN

}
be a sequence of

probability measures on (X,S) which converges to P in law. Then, the sequence
{
PN ◦ T−1

}
converges in law to the image measure P ◦ T−1 [13].

The following theorem, proven by Babovsky [8] employs these results to develop

a sufficiency criteria for a point measure scheme to converge in law to the space

homogeneous Boltzmann solution.
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Theorem 3.1. Let P2k be the probability measure on D × R3 × R3 defined by

P2k (B) =

∫
B

f k (v) f k (w) dxdwdv for any B ⊂ D × R3 × R3 (3.40)

where f k is the solution of the space homogeneous Boltzmann equation at t = tk. Let Pk+1

be the probability measure on R3 defined by

Pk+1 (A) =

∫
A

f k+1 (v) dv for any A ⊂ R3 (3.41)

Suppose a sequence of probability measures {P2N} is a point measure approximation with

uniform weights to P2k, with support denoted by

supp (P2N) =
{(

xN
i , v

N
i ,w

N
i

)}N

i=1
(3.42)

Then define a probability measure PN on R3 by

PN (A) =
1
N

N∑
i=1

δΨ(xN
i ,v

N
i ,w

N
i ) (A) for any A ⊂ R3 (3.43)

where Ψ is defined as in (3.36). Then, {PN} is a point measure approximation to Pk+1.

Proof. By definition, card
(
supp (PN)

)
= N. We will show that {PN} converges to Pk+1 in

law. Take any φ ∈ Cb

(
R3

)
. Then

∫
R3
φ (v) dPN =

1
N

N∑
i=1

∫
R3
φ (v) δ

(
v − Ψ

(
xN

i , v
N
i ,w

N
i

))
dv

=
1
N

N∑
i=1

φ
(
Ψ

(
xN

i , v
N
i ,w

N
i

))
=

1
N

N∑
i=1

∫
D

∫
R3

∫
R3
φ ◦ Ψ (x, v,w) δ

(
x − xN

i

)
· δ

(
v − vN

i

)
·

δ
(
w − wN

i

)
dxdwdv

=

∫
D

∫
R3

∫
R3
φ ◦ Ψ (x, v,w) dP2N

=

∫
R3
φ (v) d

(
P2N ◦ Ψ−1

)
by Lemma 3.3 (3.44)
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Thus, PN = P2N ◦Ψ
−1. Recall that by assumption {P2N} converges in law to P2k as N → ∞.

Since Ψ is continuous a.e., by Lemma 3.4 we have
{
P2N ◦ Ψ−1

}
converges to P2k ◦ Ψ−1 in

law as N → ∞. By (3.44) this implies that {PN} converges to P2k ◦ Ψ−1 in law as N → ∞.

Next, for any φ ∈ Cb

(
R3

)
, we have∫

R3
φ (v) d

(
P2N ◦ Ψ−1

)
=

∫
D

∫
R3

∫
R3
φ (Ψ (x, v,w)) dP2k by Lemma 3.3

=

∫
D

∫
R3

∫
R3
φ (Ψ (x, v,w)) f k (v) f k (w) dxdwdv

=

∫
R3

∫
R3

Kv,w (φ) f k (v) f k (w) dwdv by (3.35) and (3.36)

=

∫
R3
φ (v) f k+1 (v) dv by (3.32)

=

∫
R3
φ (v) dPk+1 (3.45)

Thus, P2k ◦ Ψ−1 = Pk+1 and hence we conclude that {PN} converges to Pk+1 in law as

N → ∞. �

Theorem 3.1 provides a sufficient criterion for the convergence of a point-measure

based simulation scheme for the space homogeneous Boltzmann equation in law. Namely,

if one can show that a scheme constructs a point measure approximation, {P2N} to P2k at

t = tk, then one can construct a point mesure approximation, {PN}, to Pk+1 by defining its

support to be given by supp (PN) = Ψ
(
supp (P2N)

)
.

Babovsky [8] summarizes Nanbu’s scheme more compactly than the overview

described in the prior section. Babovsky’s description lends itself better to the proofs

that follow while retaining the important characteristics of the scheme. Nanbu’s scheme

is summarized as follows:

• Let P0
N be a point measure approximation to P0 defined by

P0 (A) =

∫
A

f 0 (v) dv (3.46)

where f 0 is the initial condition for the Boltzmann equation, and let supp
(
P0

N

)
={

vN
i

}N

i=1
.
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• For a fixed N, choose a set of N uniformly distributed random numbers {ri}
N
i=1,

rN
i ∈ [0, 1] and a set of N uniformly distributed random vectors

{
xN

i

}N

i=1
, xi ∈ D.

• Define collision partners C (i,N)=
⌊
NrN

i

⌋
+ 1 with velocities given by wN

i = vN
C(i,N).

• Define the sequence of discrete probability measures Pk+1
N by

Pk+1
N (A) =

1
N

N∑
i=1

δΨ(xN
i ,v

N
i ,w

N
i ) (A) for all A ⊂ R3 (3.47)

This sequence will be shown to be a point measure approximation to P1 defined by

P1 (A) =

∫
A

f 1 (v) dv (3.48)

where f 1 is the Boltzmann solution at time t = ∆t

• Repeat the process with f 1 as the new initial condition.

Before continuing, a few additional definitions and results on random variables and

probability theory are required.

Definition 3.7. If (Ω,A, P) is a probability space and (S ,B) is any measurable space, a

function X from Ω into S is called a random variable. The law of the random variable X,

denoted L (X), is the image measure P ◦ X−1 defined by

(
P ◦ X−1

)
(B) B P

(
X−1 (B)

)
for any B ⊂ S (3.49)

The notation X−1 (B) is used to indicate the pre-image of B, that is X−1 (B) B

{ω ∈ Ω : X (ω) ∈ B}. [35]

Definition 3.8. The expected value of a random variable X on (Ω, σ, P) is denoted EX and

is defined by EX B
∫

XdP.[35]

Theorem 3.2. For any two random variables, X and Y such that EX and EY are both

defined and finite, and any constant c, E (cX + Y) = cEX + EY.
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Definition 3.9. The variance of a random variable X is denoted by var (X) or σ2 (X), and

is defined by

var (X) B σ2 (X) B


E (X − EX)2 = EX2 − (EX)2 if EX2 < ∞

0 otherwise

If EX2 < ∞, then σ (X) B
√
σ2 (X) is called the standard deviation of X.

Definition 3.10. Given a random variable X on a probability space (Ω,S, P) with values

in Rk, (i.e. X : Ω→ Rk), the distribution function of X on Rk is defined by

F (x) B P (X ≤ x) (3.50)

where “≤” is defined on Rk by x ≤ y if and only if xi ≤ yi for i = 1, . . . , k.

These definitions motivate defining convergence not just for probability measures, but

for random variables as well. In this case, several forms of convergence are important.

Definition 3.11. Let {Xn} be a sequence of random variables with distribution functions

{Fn}, and X be a random variable with distribution function, F. If Fn → F, then {Xn} is

said to converge in distribution to X.

It should be noted that convergence in distribution is equivalent to convergence in law

for random variables, that is, Fn → F if and only if L (Xn)→ L (X) [12].

Theorem 3.3. (Central Limit Theorem [12]) Suppose that {Xn} is a sequence of

independent random variables having the same distribution with mean c and finite positive

variance σ2. If S n = X1 + · · · + Xn, then the random variable

S n − nc
σ
√

n
(3.51)

is distributed according to the standard normal distribution, N (0, 1).
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Definition 3.12. Let (Ω,S, P) be a probability space. Any event with probability 1 is said

to happen almost surely (a.s.). A sequence of random variables {Xn} is said to converge

almost surely to a random variable X if P ({ω ∈ Ω : limn→∞ Xn (ω) = X (ω)}) = 1. [35]

The following definition and theorem are useful in considering the convergence of

stochastic schemes.

Definition 3.13. Given a probability space, (Ω,S, P) and a sequence of events {An}, define

lim sup An as the event

lim sup An = ∩m≥1 ∪n≥m An (3.52)

The event lim sup An is also referred to as An infinitely often (i.o.), as ω ∈ lim sup An if and

only if ω ∈ An for infinitely many values of n.

Theorem 3.4. (Borel-Cantelli Lemma) If {An} are any events with
∑

n P (An) < ∞, then

P
(
lim sup An

)
= 0. If the {An} are independent and

∑
n P (An) = ∞ then P

(
lim sup An

)
=

1 [35].

With these results, one may proceed to prove the following theorem.

Theorem 3.5. Let {PN} be a point-measure approximation with uniform weights to the

probability measure P on R3, defined by P (A) =
∫

A
f (v) dv for any A ⊂ R3. Further, let P̂

be the probability measure on R3 × R3 defined by P̂ (B) =
∫

B
f (v) f (w) dwdv.

Denote supp (PN) by {vi}
N
i=1. Define the probability measure, P̂N on R3 × R3 by

P̂N (B) =
1
N

N∑
i=1

δvi,wi (B) for any B ∈ R3 × R3 (3.53)

where wi is as defined in Nanbu’s method (i.e. wi = vC(i,N), where C (i,N) = bNric + 1).

Then, P̂N is a point measure approximation to P̂.

Proof. Define the following distribution functions,

F (v) =

∫
v′≤v

f
(
v′
)

dv′ (3.54)
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G (v,w) =

∫
v′≤v

∫
w′≤w

f
(
v′
)

f
(
w′

)
dv′dw′ = F (v) F (w) (3.55)

which are the distribution functions associated with the laws P and P̂ respectively. Define

the distribution functions for PN and P̂N by

FN (v) =

∫
v′≤v

1
N

N∑
i=1

δ
(
v′ − vi

)
dv′ (3.56)

and

GN (v,w) =

∫
v′≤v

∫
w′≤w

1
N

N∑
i=1

δ
(
v′ − vi

)
δ
(
w′ − wi

)
dw′dv′ (3.57)

respectively. Recall, by Definition 3.11 a sequence of probability laws {Pn} with

distribution functions {Fn} converge to a law P with distribution function F if and only

if {Fn} converges to F. By assumption, we have PN converges to P in law, which implies

FN → F. We will prove that for any (a, b) ∈ R3 × R3, GN (a, b) → G (a, b) and hence P̂N

converges to P̂ in law. To begin, define the following variables,

kN (v) = card ({i ≤ N : vi ≤ v}) (3.58)

mN (v,w) = card
({

i ≤ N :
(
vi,wC(i,N)

)
≤ (v,w)

})
(3.59)

Then,

FN (v) =
kN (v)

N
(3.60)

GN (v) =
mN (v,w)

N
(3.61)

Let (a, b) ∈
(
R3 × R3

)
. Define

S i =


1 if vi ≤ a

0 otherwise
(3.62)

Then,

GN (a, b) =
mN (a, b)

N

=
1
N

N∑
i=1

∫
v≤a

∫
w≤b

δ (v − vi) δ (w − wi) dwdv

=
1
N

N∑
i=1

S i

∫
w≤b

δ
(
w − vC(i,n)

)
dw
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Let {i (s)}kN (a)
s=1 be the set of kN (a) integers such that vi(s) ≤ a. Define

Xs =


1 if vC(i(s),N) ≤ b

0 otherwise
(3.63)

Then,

GN (a, b) =
1
N

kN (a)∑
s=1

Xs (3.64)

Substituting the above into (3.61) we find

mN (a, b) =

kN (a)∑
s=1

Xs (3.65)

Let Ωn = (0, 1). Then (Ωn,Sn, λ) is a probability space, where Sn is the standard σ−algebra

on (0, 1) and λ is the Lebesgue measure. Define Ω to be the Cartesian product

Ω =

N∏
n=1

Ωn (3.66)

The elements of Ω are thus N-tuples {ωn}
N
n=1 with ωn ∈ Ωn. Defining πm to be the natural

projection of Ω onto Ωm (i.e. πm

(
{ωn}

N
n=1

)
= ωm), let S be the smallest σ− algebra of

subsets of Ω containing all sets π−1
n (A) for all n and all A ⊂ Ωn. Here, π−1

n (A) denotes

the pre-image of A (namely, π−1
n (A) B {ω ∈ Ω : π (ω) ∈ A ⊂ Ωn}) . Then (Ω,S, Prob) is a

product probability space with Prob = λN . Now, given an N-tuple {ωn}
N
i=1 ∈ Ω, Xs maps the

N-tuple to either 0 or 1. That is, Xs : Ω→ {0, 1}, which implies Xs is a random variable on

the probability space (Ω,S, Prob). Furthermore, the set of random variables {Xs}
kN (a)
s=1 are

independent, and identically distributed (i.i.d.). Furthermore,

EXs =

∫
XsdProb

=

∫
Ω1

· · ·

∫
Ωs

· · ·

∫
ΩN

XsdλN

= 1 · λ
(
Ω′s

)
+ 0 · λ

(
Ωs −Ω′s

)
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where Ω′s =
{
x ∈ (0, 1) : vbxNc+1 ≤ b

}
Thus, Nλ (Ω′) = card ({i ≤ N : vi ≤ b}). Therefore,

EXs = λ
(
Ω′s

)
=

Nλ
(
Ω′s

)
N

=
card ({i ≤ N : vi ≤ b})

N

=
kN (b)

N
(3.67)

Also,

Var (Xs) = EX2
s − (EXs)2

=

∫
X2

s dProb −
(
kN (b)

N

)2

=

∫
Ω1

· · ·

∫
Ωs

· · ·

∫
ΩN

X2
s dλN −

(
kN (b)

N

)2

= 12 · λ
(
Ω′s

)
+ 02 · λ

(
Ωs −Ω′s

)
−

(
kN (b)

N

)2

= λ
(
Ω′s

)
−

(
kN (b)

N

)2

=
Nλ

(
Ω′s

)
N

−

(
kN (b)

N

)2

=
card ({i ≤ N : vi ≤ b})

N
−

(
kN (b)

N

)2

=
kN (b)

N
−

(
kN (b)

N

)2

=
kN (b)

N

(
1 −

kN (b)
N

)
(3.68)

Combining (3.65) and (3.67) we have

EmN (a, b) =

kN (a)∑
s=1

EXs =
kn (a) kn (b)

N2 (3.69)

Define the set (or event) AN ⊂ Ω as

AN =

{
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

− F (a, b)
∣∣∣∣∣ > ε (N)

}
(3.70)

62



where ε (N) is some positive real number. In this expression, note that the mN term is

dependant upon {ri}
N
i=1, via equation 3.65 . We next develop an upper bound on Prob (AN).

By the triangle inequality,

AN ⊂

{
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

−
kN (a)

N
kN (b)

N
)
∣∣∣∣∣ > ε (N)

2

}
∪

{
{ri}

N
i=1 :

∣∣∣∣∣kN (a)
N

kN (b)
N
− F (a) F (b)

∣∣∣∣∣ > ε (N)
2

} (3.71)

Thus,

Prob (AN) ≤ Prob
({
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

−
kN (a)

N
kN (b)

N
)
∣∣∣∣∣ > ε (N)

2

})
+

Prob
({
{ri}

N
i=1 :

∣∣∣∣∣kN (a)
N

kN (b)
N
− F (a) F (b)

∣∣∣∣∣ > ε (N)
2

}) (3.72)

Notice that by equations 3.56 and 3.60, the term
∣∣∣ kN (a)

N
kN (b)

N − F (a) F (b)
∣∣∣ does not depend

on {ri}
N
i=1, and is simply a constant for a given N. Define ε2 (N) to be

ε2 (N) = 2
∣∣∣∣∣kN (a)

N
kN (b)

N
− F (a) F (b)

∣∣∣∣∣ (3.73)

and thus,

Prob
({
{ri}

N
i=1 :

∣∣∣∣∣kN (a)
N

kN (b)
N
− F (a) F (b)

∣∣∣∣∣ > ε2 (N)
2

})
= 0 (3.74)

Note that since PN → P implies FN → F, we have ε2 (N)→ 0 as N → ∞.

Since mN is the summation of the kN i.i.d random variables Xs, by the central limit

theorem (Theorem 3.3), we have that

mN (a, b) − kN (a) EXs
√

kN (a) VarXs
(3.75)

is distributed according to the standard normal distribution N (0, 1). This implies that

1
N

kN (a)∑
s=1

(Xs − EXs) =
mN (a, b)

N
−

kN (a)
N

kN (b)
N

(3.76)

is distributed according to N (0, σN), where

σN =

√
kN (a) Var (Xs)

N

=

√
kN (a)

N
kN (b)

N

(
1 − kN (b)

N

)
√

N
(3.77)
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Now, since E
[

mN (a,b)
N −

kN (a)
N

kN (b)
N

]
= 0, and σN is finite, choose ε1 (N) to be the smallest

positive number such that

Prob
({
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

−
kN (a)

N
kN (b)

N

∣∣∣∣∣ > ε1 (N)
2

})
≤

1
N2 (3.78)

The existence of such a value follows from the conditions on the expected value and

variance of mN (a,b)
N −

kN (a)
N

kN (b)
N . Furthermore, ε1 (N)→ 0 as N → ∞ since

lim
N→∞

σN = lim
N→∞

√
kN (a)

N
kN (b)

N

(
1 − kN (b)

N

)
√

N

=

(
lim

N→∞

1
√

N

)  lim
N→∞

√
kN (a)

N
kN (b)

N

(
1 −

kN (b)
N

)
= (0)

√
F (a) F (b) (1 − F (b))

= 0

Let ε (N) = max {ε1 (N) , ε2 (N)}. Then, ε (N)→ 0 as N → ∞ and

Prob (AN) ≤ Prob
({
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

−
kN (a)

N
kN (b)

N

∣∣∣∣∣ > ε (N)
2

})
+Prob

({
{ri}

N
i=1 :

∣∣∣∣∣kN (a)
N

kN (b)
N
− F (a) F (b)

∣∣∣∣∣ > ε (N)
2

})
= Prob

({
{ri}

N
i=1 :

∣∣∣∣∣mN (a, b)
N

−
kN (a)

N
kN (b)

N

∣∣∣∣∣ > ε (N)
2

})
+ 0

≤
1

N2

Thus, we have,
∞∑

N=1

Prob (AN) ≤
∞∑

N=1

1
N2 < ∞ (3.79)

Thus defining A to be the event AN i.o., as given in (3.52), by the Borel-Cantelli Lemma

(Theorem 3.4) we have Prob (A) = 0. Thus,

lim
N→∞

∣∣∣∣∣mN (a, b)
N

− F (a) F (b)
∣∣∣∣∣ = 0 (3.80)

for almost all r. Combining this result with (3.55) and (3.61) yeilds that

lim
N→∞
|GN (a, b) −G (a, b)| = 0 almost surely (3.81)
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for all (a, b) ∈ R3 × R3. Hence P̂N converges in law to P̂ as N → ∞ almost surely. �

The next result incorporates the distribution of collision orientations; the proof will be

omitted as it follows the same technique as Theorem 3.5.

Theorem 3.6. Let {PN} be a point measure approximation to the probability measure P on

R3, defined by P (A) =
∫

A
f (v) dv for any A ∈ R3. Further, let P̃ be the probability measure

on D × R3 × R3 defined by P̃ (B) =
∫

B
f (v) f (w) dxdwdv for any B ∈ D × R3 × R3.

Denote supp (PN) by {(vi,wi)}Ni=1. Let {xi}
N
i=1 be a sequence of uniformly distributed

random numbers on D =
{
x ∈ R2 : ‖x‖ ≤ 1

√
pi

}
, where ‖·‖ represents the Euclidean norm.

Define the probability measure P̃N on D × R3 × R3 by

P̃N (B) =
1
N

N∑
i=1

δxi,vi,wi (B) for any B ∈ D × R3 × R3 (3.82)

Then P̃N is a point measure approximation to P̃.

Theorem 3.7. Nanbu’s scheme converges in law almost surely to the solution of the time

discretized space homogeneous Boltzmann equation (3.2) for all timesteps.

Proof. Combing Theorems 3.1,3.5, and 3.6 yields the desired result. �

3.4 Nanbu’s DSMC Scheme Applied to the Bobylev-Krook-Wu Problem

To provide a numerical baseline for comparison with the schemes developed by the

author, Nanbu’s DSMC technique was applied to the Bobylev-Krook-Wu Problem. As

Nanbu’s scheme converges only in law, it is not possible to directly evaluate the error

present in the solution (e.g. in terms of L1
(
R3

)
norm, etc.). For this reason, the moment

expressions for the Bobylev-Krook-Wu solution presented in Chapter 2 provide a very

valuable and commonly exploited tool for evaluating the effectiveness of various DSMC

schemes. Utilizing the Nanbu approximation to the distribution function, these normalized
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moments can easily be computed as

zn (t) =
1

(2n + 1)!!

Np∑
i=1

1
Np

∫
R3
δ (v − vi (t)) ‖v‖2n dv =

1
Np (2n + 1)!!

Np∑
i=1

v2n
i (t) (3.83)

Figure 3.1 presents a comparison of the first four normalized moments of the density

function for the case in which Np = 100. The results have been averaged over an ensemble

of 600 runs. This is common practice to reduce the variance present in the solution.

Figure 3.1: Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100, 600
run ensemble)

Notice the significant amount of variance present in the solution and that the solution tends

to diverge more significantly for the higher order moments. A particularly concerning

effect for which Nanbu’s method has received much criticism is apparent in examining z1.

Note that the exact solution for z1 is unity for all time. This moment is in fact a multiple

of the energy in the gas which must be conserved for all time. Nanbu’s method does not

exactly conserve energy with each collision, but rather only on average. This leads to some

variation in z1 throughout the simulation.

The results illustrated in Figures 3.2 and 3.3 illustrate results for the first and second

normalized moments for varying values of Np. These results were derived from an
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ensemble of 400 samples, and the time step was chosen as ∆t = 1/Np. Notice that as the

number of simulated particles is increased, both the accuracy and variance are improved;

however, even at the largest number of particles simulated, the variance is still substantial.

Higher order moments exhibit similar features, however the divergence from the exact

solution increases as higher moments are considered.

Figure 3.2: First Normalized Moment with Varying Np (400 run sample)

To measure the effect of the simulation parameters on the variance in the solution, one

technique is to consider the total variation of each moment. For the current problem we

define the total variation of the nth moment as

V (zn) =

∫ t f inal

0
|żn (t)| dt (3.84)

For the current work, t f inal = 10. The total variation for Np = 100 is plotted against the

number of runs in the ensemble average in Figure 3.4 along with the exact solution for

the total variation of each moment. Notice that the only moment whose total variation is

identically zero for all time is z1 which again is a statement of the conservation of energy.
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Figure 3.3: Second Normalized Moment with Varying Np (400 run sample)

Figure 3.4: Total Variation of Nanbu Method as a Function of Sample Size for
Np = 100

While increasing the number of samples in a DSMC simulation is the primary

approach for variance reduction, it does not improve the accuracy of the solution itself. To

improve the accuracy of a simulation one must increase the number of simulated particles.

Since it is not possible to directly analyze the distribution function, consider the L1
(
R3

)
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error for each of the moments defined by

Error (zn) =

∫ t f inal

0
|ẑn (t) − zn (t)| dt (3.85)

Fixing the number of samples at 1000, Figure 3.5 shows the effect of increasing the number

of particles on the L1
(
R3

)
error in the solution.

Figure 3.5: L1
(
R3

)
Error in Normalized Moments as a Function of the Number of

Simulated Particles, Nanbu Method (1000 run ensemble)
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IV. A Distributional Monte Carlo Algorithm Based on Kernel Density Estimation

As a first attempt towards a distributional approach, the concept of Kernel Density

Estimation was applied to the DSMC framework. As outlined in Chapter 1, the

Distributional Monte Carlo method advocated by the author replaces the point measure

representation of the velocity density function with one in which each simulated particle is

allowed to possess an entire velocity density function versus only a single velocity vector.

One interesting limiting case is the case in which particle velocity density functions are

all assumed to have the same functional form. Perhaps the simplest such representation is

obtained by writing the particle density functions as

fi (v) =
1
h3 K

(v − v̄i

h

)
(4.1)

where K is a specified probability density function, h ∈ R+, and v̄i is the mean velocity

of the ith simulated particle. The problem then becomes one of determining a suitable

stochastic scheme for altering v̄i to account for the collisional process. In this chapter,

such a scheme is developed, which is equivalent to applying kernel density estimation to

Nanbu’s DSMC scheme. It will be shown that with an appropriately chosen value of K,

the scheme converges in law, as well as in solution for L∞
(
R3

)
and bounded solutions of

the space homogeneous Boltzmann equation. These latter two forms of convergence have

never previously been demonstrated for a stochastic particle scheme. The method could

therefore be viewed as a bridge from Direct Simulation to Direct Solution.

The remainder of this chapter is outlined as follows. First, a brief explanation of kernel

density estimation is presented, as the development of the scheme draws significantly upon

the concept. Next, a brief derivation of the technique is presented, followed by proof of its

convergence in law, as well as in solution for L∞
(
R3

)
and bounded solutions of the space

homogeneous Boltzmann equation. The chapter concludes with some numerical results

obtained by applying the technique to the Bobylev-Krook-Wu solution.
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4.1 Overview of Kernel Density Estimation

Kernel Density Estimation (KDE) is a technique for estimating the probability density

function of a random variable X ∈ Rd from a set of discrete samples as follows [77].

f̂ (x; h) =
1

Nhd

N∑
i=1

K
( x − Xi

h

)
(4.2)

Here, N is the number of discrete samples, Xi the value of the ith sample, h∈ R+ the

kernel bandwidth, and K∈ L2
(
Rd

)
the kernel function. The kernel function must satisfy

the following conditions ∫
Rd

K (x) dx = 1 (4.3)∫
Rd

xK (x) dx = 0 (4.4)

The problem then becomes one of determining a suitable K and h with which to

approximate the distribution function. The value of h is chosen to minimize the error

between the estimator and the actual distribution function in some sense. If h is too small,

the estimator will exhibit overly oscillatory behavior. It h is too large, subtle features of

the distribution function may not be captured by the estimator. Wand [77] shows that the

asymptotic mean square error between f and f̂ is minimized when

h =

[
m (K)

(µ2 (K))2 m ( f ′′) N

] 1
5

(4.5)

where,

m (g) =

∫
Rd

[
g (x)

]2 dx

µ2 (g) =

∫
Rd

x2g (x) dx

Notice that calculation of such an h requires not only that f ′′ is known, but also that

f ∈ W2,2. If f is normal with variance σ2, (4.5) becomes,

h =

[
8
√
πm (K)

3 (µ2 (K))2 N

] 1
5

σ (4.6)
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4.2 Application to Distributional Monte Carlo (DMC-KDE)

Observe that a point measure approximation (as in DSMC, e.g. (1.11)) to the

distribution function may be viewed as a special case of a kernel density estimator with

K = δ and h = 1. Recognizing this similarity, a distributional Monte Carlo method

employing some of the results from kernel density estimation was developed by the

author [66, 67, 69]. The approach has been termed DMC-KDE. It should be noted that

KDE has been applied in the Variance Reduced DSMC (VRDSMC) approach proposed by

Al-Mohssen and Hadjiconstantinou [3–5] though in that application it was employed only

as a smoothing and stabilization technique.

In the Distributional Monte Carlo approach we allow each simulated particle to

possess its own velocity distribution function, fi. The overall distribution function in the

gas is then given by

f =
1

Np

Np∑
i=1

fi (4.7)

In the DMC-KDE approach, we make the simplification that each particle’s velocity is

distributed according to a prescribed distribution, that is

fi (v) =
1
h3 K

(v − v̄i

h

)
(4.8)

The mean of each particle’s distribution function v̄i is allowed to vary, but the kernel

function and bandwidth are chosen to be identical for all particles. Therefore the

approximation to the overall distribution function of the gas is given by

f̃ (v; h) =
1

Nph3

Np∑
i=1

K
(v − v̄i

h

)
(4.9)

Choosing h : N→ R+ with the property

lim
Np→∞

h
(
Np

)
= 0 (4.10)

and choosing K with properties as described in the previous section, (4.9) is observed to be

a kernel density estimator for f . Although we prove that convergence is guaranteed for any
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such h and K, it is necessary to choose specific values of such parameters from which to

construct a simulation scheme. On the basis of physical reasoning we choose a Gaussian

kernel for K and utilize (4.6) to determine h.

K (x) = (2π)−3/2 exp
(
−
‖x‖2

2

)
(4.11)

h
(
Np

)
=

 32

3
√

2Np


1
5

σest (4.12)

where σest is an estimation of the standard deviation of f . These choices are advantageous

for a number of reasons. Since h is chosen such that h → 0 as Np → ∞, (4.9) will

converge to the delta representation when Np becomes large, recovering the point measure

approximation of DSMC. Further, the distribution function of each simulated particle is

Maxwellian, the prevailing distribution in an equilibrium gas. The physical interpretation

therefore is that although the collection of particles, which a simulated particle represents,

all possess different velocities, as a collection, the particles represented by a single

simulated particle are in translational equilibrium with one another. This represents a

relaxation of the assumption made by DSMC that the collection of particles possess the

same singular velocity. To develop the mathematical formulation of this approach, we

follow an analysis similar to Nanbu [58].

Beginning with (4.9) we seek to determine the evolution of the distribution function

due to intermolecular collisions through the time interval ∆t. We begin by utilizing a

forward Euler discretization

f (v, t + ∆t) = f (v, t) + ∆t
∂ f
∂t

(v, t) (4.13)

where, ∂ f
∂t is obtained from the space homogeneous Boltzmann equation

∂ f
∂t

(v, t) = Q ( f , f ) (v, t) (4.14)

and Q is defined by (2.31). Substituting (4.9) into (4.14), one obtains

∂ f
∂t

=
1

N2
p

Np∑
i=1

Np∑
j=1

(
S i j − Ti j

)
(4.15)
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where,

S i j =
1
h6

∫
R3

∫
S +

K
(
v′ − v̄i

h

)
K

(
w′ − v̄ j

h

)
· ‖v − w‖ B (‖v − w‖ , θ) dndw (4.16)

Ti j =
1
h6

∫
R3

∫
S +

K
(v − v̄i

h

)
K

(
w − v̄ j

h

)
· ‖v − w‖ B (‖v − w‖ , θ) dndw (4.17)

Substituting (4.11), (1.7) and (1.8) into (4.16), one obtains

S i j =
1

2πh6

∫
R3

G (v,w) exp
{
−

1
4h2

[
‖w‖2 + ‖v‖2+

‖v̄i‖
2 +

∥∥∥v̄ j

∥∥∥2
−

(
v̄i + v̄ j

)
· (w + v)

]}
‖v − w‖ dw

(4.18)

where,

G (v,w) =

∫
S +

exp [a · n] B (‖v − w‖ , θ)

a =
‖v − w‖

(
v̄ j − v̄i

)
4h2

Nanbu [58] shows that G may be approximated for small h by the following

G (v,w) ≈ 2πB (‖v − w‖ , χ)
e‖a‖

‖a‖
for h small

Substituting this expression for G into (4.18) yields

S i j =
2∥∥∥vi − v j

∥∥∥
∫
R3

 (2π)−3/2

h3 exp

−
(
v + w − v̄i − v̄ j

)2

4h2


 · 1

√
2πh

exp

−
(
‖v − w‖ − gi j

)2

4h2


 B (‖v − w‖ , χ) dw

(4.19)

where gi j =
∥∥∥v̄ j − v̄i

∥∥∥. Next, we consider (4.13) under the limit as h → 0 with ∂ f
∂t as in

(4.15).

f (v, t + ∆t) = f (v, t) +
∆t
N2

p

Np∑
i=1

Np∑
j=1

(
S ∗i j − T ∗i j

)
(4.20)

where,

S ∗i j = lim
h→0

S i j

T ∗i j = lim
h→0

Ti j
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Definition 4.1. Let {gα} be a family of locally integrable functions on Rn with parameter

α ∈ R. {gα} is called an n-dimensional delta family as α→ α0 if

lim
α→α0

∫
Rn

gα (x) φ (x) dx = φ (0)

where φ is any bounded continuous function on Rn. We write

lim
α→α0

gα (x) = δ (x)

in conformance with [72].

For any bounded and continuous function φ on R3, it can be shown that It can be

shown that

lim
h→0

∫
R3
φ (w)

 (2π)−3/2

h3 exp

−
(
v + w − v̄i − v̄ j

)2

4h2


 dw = φ

(
v̄i + v̄ j − v

)
(4.21)

Thus, the first bracketed term in (4.19) is a three-dimensional delta family. Utilizing this

property, it can be shown

S ∗i j =
4

gi j
δ

(
‖v∗‖ −

1
2

gi j

)
σ

(
gi j, χ

)
(4.22)

where,

v∗ = v −
1
2

(
v̄i − v̄ j

)
(4.23)

Using (4.17) and performing a similar analysis, it can be shown

T ∗i j = gi jBi jδ (v − v̄i) (4.24)

where,

Bi j =

∫
S +

B
(
gi j, θ

)
dn (4.25)

Substituting these terms into (4.20), one obtains

f (v, t + ∆t) =
1

Np

Np∑
i=1

[
(1 − Pi) δ ( f − v̄i) + Qi (v)

]
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where,

Pi =
∆t
N

N∑
j=1, j,i

gi jBi j (4.26)

Qi (v) =
4∆t
N

N∑
j=1, j,i

B
(
gi j, χ

)
gi j

δ

(
‖v∗‖ −

1
2

gi j

)
(4.27)

and χ is the angle between v∗ and v̄i − v̄ j. Pi represents the probability that the ith particle

collides in the time interval ∆t, while the individual terms

Pi j =
∆t
N

gi jBi j

represent the probability that the ith particle collides with the jth particle over ∆t. Also,

notice that Qi represents the portion of distribution function describing the effects of

collisions over the time interval ∆t. Having passed to the limit of large Np (where the

distributions tend towards a delta approximation), we have obtained the same result as

Nanbu [58] for the evolution of the distribution function over ∆t. Therefore, we may

reuse the collision selection and modeling rules developed by Nanbu, but with a new

interpretation. Namely, v̄i now represents the mean velocity of the ith simulated particle.

Collision interactions therefore have the effect of shifting the individual Maxwellian

densities to new mean values. The stochastic scheme to evolve f through ∆t is therefore

given as follows:

• For each particle, calculate Pi. Generate a random number r1 in the interval (0, 1) . If

Pi > r1, accept the particle for collision.

• Sample a collision partner j from the conditional probability distribution P∗ik = Pik
Pi

,

by sampling a second random number r2 uniformly from the interval (0, 1) and

identifying the j which satisfies
∑ j−1

k=1 P∗ik < r2 <
∑ j

k=1 P∗ik

• Sample the direction of v∗ based on (4.27), and compute the post collision velocity

of the ith particle.
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Like DSMC, the simulation would be evolved many times to generate an ensemble

averaged solution so as to reduce statistical fluctuations. Nanbu’s scheme has in the past

been criticized for not mainintaining strict conservation of energy in each collision but

only over the ensemble. Since the current scheme employs a similar sampling procedure

for the Maxwellian centers, it will not conserve energy with each collision either. This is

not a major concern in demonstrating the benefits of such an approach, and a number of

practical alternative sampling procedures for collision interactions exist which do conserve

energy with each collision.

Although the scheme is in some sense similar to Nanbu, the effect of allowing

velocities to be distributed has a significant impact on the mathematical convergence

properties of the method. Namely, whereas DSMC can only achieve convergence in

probability measure (weak convergence), it is proven that the DMC-KDE approach results

in convergence in solution (strong convergence) for L∞
(
R3

)
and bounded solutions of

the Boltzmann equation. Therefore, rather than a stochastic simulator of the Boltzmann

equation, the DMC-KDE approach represents a stochastic solver of the Boltzmann

equation.

4.3 Proof of Convergence of DMC-KDE Approach

In the following, we prove weak convergence of the DMC-KDE approximation for

the space homogeneous Boltzmann equation. Based upon the results of Babovsky and

Illner [8, 9] this is not unreasonable to expect. Although in the previous section specific

functions for h and K were chosen, the proof is for the more general case.

Let {v̄i}
Np

i=1 be the mean velocities of the Np simulated particles at a given time step

derived by the above method. The velocity distribution function (VDF) of the DMC-KDE

method is then

f̃ (v) =
1

Nph3

Np∑
i=1

K
(v − v̄i

h

)

77



where

K ∈
{

g ∈ L2
(
R3

)
: g (x) ≥ 0 ∀x;

∫
R3

g (x) dx = 1;∫
R3

xg (x) dx = 0
}
,

and h : N→ R+ defined as in (4.10). Define { fh} by

fh (x) =
1
h3 K

( x
h

)
Then, f̃ may be rewritten as,

f̃ (v) =
1

Np

Np∑
i=1

fh (v − v̄i) (4.28)

Lemma 4.1. { fh} is a delta family as h→ 0+.

Proof. [72] Let u = x
h . we have∫
R3

fh (x) dx =
1
h3

∫
R3

K
( x
h

)
dx =

∫
R3

K (u) du = 1.

Also, for any A > 0,

lim
h→0

∫
‖x‖>A

fh (x) dx = lim
h→0

1
h3

∫
‖x‖>A

K
( x
h

)
dx

= lim
h→0

∫
‖u‖> A

h

K (u) du

= 0

and,

lim
h→0

∫
‖x‖<A

fh (x) dx = lim
h→0

1
h3

∫
‖x‖<A

K
( x
h

)
dx

= lim
h→0

∫
‖u‖< A

h

K (u) du

= 1

Now, let φ be any bounded and continuous function on R3. We have,

lim
h→0

∫
R3

fh (x) φ (x) dx − φ (0) = lim
h→0

[∫
R3

fh (x) φ (x) dx − φ (0)
∫
R3

fh (x) dx
]

= lim
h→0

∫
R3

fh (x)
[
φ (x) − φ (0)

]
dx
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Define η (x) = φ (x) − φ (0). Let ε > 0 and B > 0. We have,∫
R3

fh (x) η (x) dx =

∫
‖x‖<B

fh (x) η (x) dx +

∫
‖x‖>B

fh (x) η (x) dx

Choose M > 0 such that |η (x)| ≤ M ∀x. Let p (B) = max‖x‖<B |η (x)|. We have,

∣∣∣∣∣∫
R3

fh (x) η (x) dx
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∫
‖x‖≤B

fh (x) η (x) dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
‖x‖>B

fh (x) η (x) dx

∣∣∣∣∣∣
≤ p (B)

∣∣∣∣∣∣
∫
‖x‖≤B

fh (x) dx

∣∣∣∣∣∣ + M

∣∣∣∣∣∣
∫
‖x‖>B

fh (x) dx

∣∣∣∣∣∣
≤ p (B) + M

∣∣∣∣∣∣
∫
‖x‖>B

fh (x) dx

∣∣∣∣∣∣
Since η is continuous and η (0) = 0, there exists B ∈ R such that p (B) < ε

2 . Also, from

above we have that there exists α > 0 such that∣∣∣∣∣∣
∫
‖x‖>B

fh (x) dx

∣∣∣∣∣∣ < ε

2M

whenever 0 < h < α. Therefore, for any ε > 0, we have shown that there exists α such that∣∣∣∣∣∣
∫
R3

fh (x) η (x) dx

∣∣∣∣∣∣ ≤ p (B) + M

∣∣∣∣∣∣
∫
‖x‖>B

fh (x) dx

∣∣∣∣∣∣
<

ε

2
+ M

ε

2M

= ε

whenever 0 < h < α. Therefore, limh→0

∫
R3

fh (x) η (x) dx = 0. Which implies

limh→0

∫
R3

fh (x) φ (x) dx = φ (0), and hence { fh} is a delta family as h→ 0. �

Recall that the parameter h is chosen in the DMC-KDE method such that limNp→∞ h
(
Np

)
=

0. Then
{
fh(Np)

}
is a delta family as Np → ∞ by Lemma 4.1. Denote this family by

{
fNp

}
.

Next it is proven that in the limit as Np → ∞ the probability measure generated by the

DMC-KDE approach is the same as that generated by the Nanbu DSMC method.
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Lemma 4.2. For any bounded and continuous φ on R3,

lim
Np→∞

∫
R3
φ (v) f̃ (v) dv = lim

Np→∞

∫
R3

φ (v) f̂ (v) dv

where,

f̂ (v) =)
1

Np

Np∑
i=1

δ (v − v̄i) (4.29)

Proof. Choose any ε > 0. Then by Lemma 4.1, for any bounded and continuous φ, there

exists M such that ∣∣∣∣∣∫
R3
φ (v) fNp (v − v̄i) dv − φ (v̄i)

∣∣∣∣∣ < ε
for all Np > M. Recalling that the DMC-KDE scheme generates the same values for the

Maxwellian centers as the Nanbu method generates for molecular velocities, we have∣∣∣∣∣∫
R3
φ (v)

(
f̃ (v) − f̂ (v)

)
dv

∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
R3
φ (v)

1
Np

 Np∑
i=1

fNp (v − v̄i) − δ (v − v̄i)

 dv

∣∣∣∣∣∣∣
≤

1
Np

Np∑
i=1

∣∣∣∣∣∫
R3
φ (v)

(
fNp (v − v̄i) − δ (v − v̄i)

)
dv

∣∣∣∣∣
<

1
Np

Np∑
i=1

ε

= ε

for all Np > M. �

Combining this result with Theorem 3.7, yields the following result.

Theorem 4.1. If the time discretized space homogeneous Boltzmann equation (3.2) has

a non-negative solution f ∈ L1
(
R3

)
, then the solution f̃ 4.9 of the DMC-KDE method

converges in law (see Definition 3.1) at each timestep.

Proof. Take any φ ∈ Cb

(
R3

)
. Choose any ε > 0. Then, by the triangle inequality,∣∣∣∣∣∫

R3
φ (v)

(
f̃ (v) − f (v)

)
dv

∣∣∣∣∣ ≤ ∣∣∣∣∣∫
R3
φ (v)

(
f̃ (v) − f̂ (v)

)
dv

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
φ (v)

(
f̂ (v) − f (v)

)
dv

∣∣∣∣∣
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where f̂ is as defined in (4.29). Applying Lemma 4.2 and Theorem 3.7 to the terms to the

right of the inequality yields the desired result. �

We have therefore proven that the DMC-KDE method exhibits the same convergence

as Nanbu’s method in the general case, namely convergence in law to the space

homogeneous Boltzmann solution. We next prove that stronger forms of convergence are

possible compared with Nanbu’s method, specifically for solutions which are L∞
(
R3

)
or

bounded. Such solutions arise frequently in kinetic theory and are of greater practical

interest than L1
(
R3

)
solutions.

Corollary 4.1. If the time discretized space homogeneous Boltzmann equation (3.2) has

a non-negative solution f ∈ L∞
(
R3

)
, then the solution f̃ (4.9) of the DMC-KDE method

converges in L∞
(
R3

)
to f at each timestep. That is,

lim
Np→∞

∥∥∥ f̃ − f
∥∥∥
∞

= 0

Proof. Take any ε > 0. Since f̃ , f ∈ L∞
(
R3

)
, there exist B1, B2 ∈ R+ such that

∣∣∣ f̃ (x)
∣∣∣ ≤ B1,

and | f ( x )| ≤ B2 almost everywhere. Let S 1 and S 2 be the sets of zero measure over which

these inequalities do not hold for f̃ and f respectively. Let S = S 1∪S 2. For any x′ ∈ R3−S ,

define φh : R3 → R by

φh (x) =
1

√
2πh3

exp
(
−
‖x − x′‖2

h2

)
where h ∈ R+. By Lemma 4.1, φh is a delta family as h → 0+ centered at x′. Therefore,

there exists H1 > 0 such that ∣∣∣∣∣∫
R3
φh (x) f̃ (x) dx − f̃

(
x′
)∣∣∣∣∣ < ε

3
(4.30)

for all h < H1. Likewise, there exists H2 > 0 such that∣∣∣∣∣∫
R3
φh (x) f (x) dx − f

(
x′
)∣∣∣∣∣ < ε

3
(4.31)
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Note that φh is everywhere continuous and |φh (x)| ≤ 1
√

2πh3 for all x ∈ R3. Thus by

Theorem 4.1, there exist N > 0 such that∣∣∣∣∣∫
R3
φh (x)

(
f̃ (x) − f (x)

)
dx

∣∣∣∣∣ < ε

3
(4.32)

for all Np > N. Choose H < min {H1,H2}, then for any Np < N we have,

∥∥∥ f̃ − f
∥∥∥
∞

= ess sup
∣∣∣ f̃ − f

∣∣∣
= sup

x′∈R3−S

∣∣∣ f̃ (
x′
)
− f

(
x′
)∣∣∣

≤ sup
x′∈R3−S

∣∣∣∣∣ f̃ (
x′
)
−

∫
R3
φh (x) f̃ (x) dx

∣∣∣∣∣ +∣∣∣∣∣∫
R3
φh (x) f̃ (x) dx − f

(
x′
)∣∣∣∣∣ by the triangle inequality

≤ sup
x′∈R3−S

∣∣∣∣∣ f̃ (
x′
)
−

∫
R3
φh (x) f̃ (x) dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
φh (x)

(
f̃ (x) − f (x)

)
dx

∣∣∣∣∣ +∣∣∣∣∣∫
R3
φh (x) f (x) dx − f

(
x′
)∣∣∣∣∣ by the triangle inequality

<
ε

3
+
ε

3
+
ε

3
by inequalities (4.30), (4.31), and (4.32)

= ε

�

Corollary 4.2. If the time discretized space homogeneous Boltzmann equation (3.2) has

a non-negative bounded solution f , then the solution f̃ (4.9) of the DMC-KDE method

converges pointwise to f .

Proof. The proof follows naturally from Corollary 4.1. �

The current work represents the first time these forms of convergence have been

proven for a stochastic particle method, and illustrates that DMC-KDE transforms DSMC

from a Boltzmann simulator to a Boltzmann solver, allowing direct evaluation of the

velocity density function.
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4.4 Application to Bobylev, Krook, and Wu Problem

To provide a numerical demonstration of the DMC-KDE technique, the method was

applied to the Bobylev-Krook-Wu problem. As with Nanbu’s DSMC technique, it is

possible to compute the normalized moments by substituting the DMC-KDE distribution

function into (2.61)

zn (t) =
1

(2n + 1)!!

Np∑
i=1

1
Nph3

∫
R3

K
(
v − v̄i (t)

h

)
‖v‖2n dv (4.33)

from which closed form expressions for the moments can be derived. The first three

moments are given by

z1 (t) =
1

3Np

Np∑
i=1

v̄2
i (t) +

1
2

h2

z2 (t) =
1

15Np

Np∑
i=1

v̄4
i (t) +

1
4

h4

z3 (t) =
1

105Np

Np∑
i=1

v̄6
i (t) +

107
840

h6

One may therefore see that the Nanbu solution and the DMC-KDE solution for the

normalized moments vary only by a term involving h2n. Since h → 0 as Np → ∞ these

terms become negligible as the number of simulated particles become large and are rapidly

diminishing for higher order moments.

Figure 4.1 presents a comparison of the first three normalized moments of the density

function for the case in which Np = 100. The results have been averaged over an ensemble

of 600 runs. Note that like the DSMC results, there is a significant amount of variance

present in the solution and that the solution tends to diverge more significantly for the higher

order moments. Additionally, note that the moments are offset by the h2n term, which is

most visible for the first moment.
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Figure 4.1: Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100, 600
run ensemble)

Figures 4.2 and 4.3 illustrate the same normalized moments for the DMC-KDE

solution of the Bobylev problem for an ensemble of 400 samples. Notice that in

comparison to Figures 3.2 and 3.3, the moments are offset by an amount proportional

to h2n. As predicted theoretically, the offset diminishes rapidly with increasing

Figure 4.2: First Normalized Moment with Varying Np (400 run sample)
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Figure 4.3: Second Normalized Moment with Varying Np (400 run sample)

moment orders and as the number of simulated particles is increased. Strictly speaking,

however, notice that neither method performs particularly well in capturing the evolution

of the higher order moments. The advantage of DMC-KDE is that it allows for direct

computation/visualization of the distribution function, but when only examining moments

this advantage is not observable.

To better exhibit this advantage consider the L1
(
R3

)
error between the approximate

and actual solution defined by

Error (t) =

∫
R3

∣∣∣ f̃ (v) − f (v)
∣∣∣ dv (4.34)

As the Bobylev-Krook-Wu solution is bounded and continuous for all t, Corollary 4.2

guarantees that f̃ (v) → f (v) for all v ∈ R3. Since f̃ is also bounded and continuous

it is trivial to prove that in this case convergence in the L1
(
R3

)
norm is also guaranteed.

Figure 4.4 presents the results for the L1
(
R3

)
error as it varies with the number of simulated

particles for a 1000 run sample.

Notice that the convergence is fairly monotonic with some exception at larger values

of t. As stated in the previous section, this form of convergence has never previously been
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Figure 4.4: L1
(
R3

)
Error for DMC-KDE Bobylev-Krook-Wu Solution with

Varying Np (100 run sample)

proven for a stochastic particle scheme for the Boltzmann equation. The present work has

demonstrated that by applying principles from kernel density estimation such schemes can

be taken from the realm of Boltzmann simulators to the realm of Boltzmann solvers.
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V. A General Approach for Distributional Monte Carlo (DMC) Methods for the

Space Homogeneous Boltzmann Equation

As observed in the previous chapter, the DMC-KDE approach allowed for stronger

forms of convergence than traditional DSMC and provides a means for recovering the

velocity density function. The fixed functional form of the particle velocity density

functions, however, precludes it from being considered a fully distributional method as

envisioned by the author. A Distributional Monte Carlo method for the Boltzmann equation

is a particle simulation which employs a non-singular representation of the velocity

density function by allowing each simulated particle to posess a velocity density function

throughout the simulation instead of just a single velocity. Collision outcomes for a given

pair are determined by computing an approximate space homogeneous relaxation of the

velocity density functions of the two simulated particles participating in a collision.

From a physically intuitive point of view, this approach makes sense. As each

simulated particle represents a very large number of actual particles, kinetic theory tells us

that intermolecular collisions occurring within the collection will drive the density function

toward equilibrium. What is perhaps somewhat suprising is that it can be shown that such

an approach arises naturally from the time discretized, space homogeneous Boltzmann

equation when nonsingular particle distributions with arbitrary forms are employed.

In this case, the velocity density function of the gas is modelled by

f (v) =
1

Np

Np∑
i=1

gi (v) (5.1)

where gi is the velocity density function of the ith simulated particle. No particular

functional form of gi is assumed in the general approach. Let f , g be density functions

such that f (v) (1 + ‖v‖) ∈ L1
(
R3

)
, g (v) (1 + ‖v‖) ∈ L1

(
R3

)
, f (v) log ( f (v)) ∈ L1

(
R3

)
,

and g (v) log (g (v)) ∈ L1
(
R3

)
. Then by Theorem 2.3 the space homogeneous Boltzmann
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equation has a unique solution over the time interval ∆t for the initial condition f0 =

1
2 ( f + g). Denote this solution by G ( f , g).

To illustrate the mathematical motivation for treating collision interactions as a

relaxation problem, recall the weak transition kernel formulation of the space homogeneous

Boltzmann equation from Chapter 2∫
R3
φ (v) f k+1 (v) dv =

∫
R3

∫
R3

Kv,w (φ) f k (v) f k (w) dwdv (5.2)

By definition we have∫
R3
φ (v)G ( f , g) dv =

1
4

∫
R3

∫
R3

Kv,w (φ) ( f (v) + g (v)) ( f (w) + g (w)) dwdv

=
1
4

∫
R3

∫
R3

Kv,w (φ) ( f (v) f (w) + f (v) g (w) + g (v) f (w) +

g (v) g (w)) dwdv

=
1
4

(∫
R3
G ( f , f ) dv + 2

∫
R3

∫
R3

Kv,w (φ) f (v) g (w) dwdv+∫
R3
G (g, g) dv

)
(5.3)

Rearraging, one obtains∫
R3

∫
R3

Kv,w (φ) f (v) g (w) dwdv =

∫
R3
φ (v)

(
2G ( f , g) −

1
2
G ( f , f ) −

1
2
G (g, g)

)
dv (5.4)

Allowing f k to have the form of equation 5.1, upon direct substitution into Equation 5.2,

one obtains ∫
R3
φ (v) f k+1 (v) dv =

1
N2

N∑
i=1

N∑
j=1

∫
R3

∫
R3

Kv,w (φ) gk
i (v) gk

j (w) dwdv (5.5)

Note that each particle pair contibutes a term similar in form to Equation 5.4 to the solution,

therefore one obtains∫
R3
φ (v) f k+1 (v) dv =

1
N2

N∑
i=1

N∑
j=1

∫
R3
φ (v)

(
2G

(
gk

i , g
k
j

)
−

1
2
G

(
gk

i , g
k
i

)
−

1
2
G

(
gk

j, g
k
j

))
dv

(5.6)
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This demonstrates that the solution at the next time step can be written as a summation

of space homogeneous relaxation solutions for the particle pairs. This expression can be

further simplified to∫
R3
φ (v) f k+1 (v) dv =

2
N2

N∑
i=1
i, j

N∑
j=1
j,i

∫
R3
φ (v)G

(
gk

i , g
k
j

)
dv +

1
N

N∑
i=1

∫
R3
φ (v)G

(
gk

i , g
k
i

)
dv

(5.7)

In this form, the evolved solution is clearly decomposed into two contributions. The first

term on the right side represents space homogeneous relaxation among the particle pairs

while the second term represents the self-evolution of the individual particle distribution

function due to intermolecular collisions only between the actual particles it represents. In

the special case where the gk
i terms are Maxwellian, G

(
gk

i , g
k
i

)
= gk

i , and thus∫
R3
φ (v) f k+1 (v) dv =

2
N2

N∑
i=1
i, j

N∑
j=1
j,i

∫
R3
φ (v)G

(
gk

i , g
k
j

)
dv +

1
N

N∑
i=1

∫
R3
φ (v) gk

i (v) dv

=
2

N2

N∑
i=1
i, j

N∑
j=1
j,i

∫
R3
φ (v)G

(
gk

i , g
k
j

)
dv +

∫
R3
φ (v) f k (v) dv (5.8)

which is somewhat analguous to the form obtained by Nanbu in Equation 3.20 in that it is

decomposed into a binary interaction term and the original density function.

In principle, any stochastic scheme which emulates the density function on the right-

hand side of Equation 5.6 should be a valid simulation scheme for the space-homogeneous

Boltzmann equation. Within the Distributional Monte Carlo framework, one such choice

is as follows

• Choose a set of velocity density functions {gi}
N
i=1 for which the probability measure,

PN on R3 defined by

PN (A) =
1
N

N∑
i=1

∫
A

gi (v) dv (5.9)

converges in law to P0 defined by

P0 (A) =

∫
A

f0 (v) dv (5.10)
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where f0 is the initial condition for the Boltzmann equation.

• Choose a sequence of equidistributed random numbers {ri}, ri ∈ [0, 1].

• Define the indices of collision partners

C (i,N) = bNric + 1 (5.11)

with velocity density functions given by

hi (v) = gC(i,N) (v) (5.12)

• Compute the set of velocity density functions {pi}
N
i=1 where pi is given by

pi = 2G (gi, hi) −
1
2
G (gi, gi) −

1
2
G (hi, hi) (5.13)

The overall density function is given by

f̌ =
1
N

N∑
i=1

pi (5.14)

The sequence of probability measures
{
P̂N

}
on R3 defined by

P̂N (A) =

∫
A

f̌ (v) dv =
1
N

N∑
i=1

∫
A

pi (v) dv for any A ⊂ R3 (5.15)

will be shown to converge in law to P1 defined by

P1 (A) =

∫
A

f1 (v) dv (5.16)

as N → ∞. Here f1 is the Boltzmann solution at time t = ∆t

• Repeat the process with f1 as the new initial condition.

90



5.1 Proof of Convergence of DMC Approach

In developing this approach, it became necessary to develop a generalization of one

of Babovsky’s theorems. Namely, the following theorem provides a sufficient condition

for the convergence of any numerical scheme for the Boltzmann equation; that is, no

assumptions are made regarding the use of a point measure approximation to the density

function.

Theorem 5.1. Let f k be the solution of the time discretized space homogeneous Boltzmann

equation (3.2) at t = tk, and let Pk be the probability measure defined by

Pk (A) =

∫
A

f k (v) dv for any A ⊂ R3 (5.17)

Define P2k to be the probability measure on D × R3 × R3 given by

P2k (B) =

∫
R3

∫
R3

∫
D

f k (v) f k (w) dxdwdv (5.18)

If a sequence of probability measures
{
P̃2N

}
converges to P2k as N → ∞, then the sequence

of probability measures,
{
P̃2N ◦ Ψ−1

}
, on R3 converges to Pk+1 in law as N → ∞.

Proof. Since Ψ is absolutely continuous and P̃2N → P2k in law as N → ∞, we have that

P̃2N ◦ Ψ−1 → P2k ◦ Ψ−1 in law as N → ∞ by Lemma 3.4. Take any φ ∈ Cb

(
R3

)
. Then,∫

R3
φ (v) d

(
P2k ◦ Ψ−1

)
=

∫
R3
φ (Ψ (x, v,w)) dP2k by Lemma 3.3

=

∫
R3

∫
R3

∫
D
φ (Ψ (x, v,w)) f k (v) f k (w) dxdwdv by (5.18)

=

∫
R3

∫
R3

Kv,w (φ) f k (v) f k (w) dxdwdv by (3.35) and (3.36)

=

∫
R3
φ (v) f k+1 (v) dv by (3.32)

Thus, P2k ◦ Ψ−1 = Pk+1 and hence, P̃2N ◦ Ψ−1 converges in law to Pk+1 as N → ∞. �

Thus, any scheme which can be shown to be constructed in such a way that the above

theorem is satisfied will be convergent.

The following results will be needed for the convergence proofs that follow.
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Theorem 5.2. (Kolmogorov’s Convergence Criterion) [60] Suppose {Xn} is a sequence of

independent random variables. If

∞∑
j=1

Var
(
X j

)
< ∞ (5.19)

then
∞∑
j=1

(
X j − EX j

)
converges almost surely. (5.20)

Lemma 5.1. (Kronecker’s Lemma) [60] Given two sequences {xk} and {ak} such that

xk, ak ∈ R and 0 < ak ↑ ∞. If
∞∑

k=1

xk

ak
converges, (5.21)

then

lim
n→∞

a−1
n

n∑
k=1

xk = 0 (5.22)

While the traditional strong law of large numbers typically is stated as applying to

only sequences of independent, identically distributed random variables, by combining

Theorem 5.2 and Lemma 5.1 one can derive the following Corollary for independent

sequences of random variables (not neccessarily identically distributed), which is

sometimes labelled as Kolmogorov’s Strong Law of Large Numbers.

Corollary 5.1. (Kolmogorov’s Strong Law of Large Numbers) [60] Let {Xn} be a sequence

of independent random variables satisfying E
(
X2

n

)
< ∞. If {bn} is a monotonic sequence

such that bn ↑ ∞, and if ∑
k

Var
(

Xk

bk

)
< ∞ (5.23)

then
S n − ES n

bn
→ 0 almost surely as n→ ∞ (5.24)

where S n =
∑n

k=1 Xk.
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This result allows one to prove the following.

Theorem 5.3. Let f k be the solution to the time discretized space homogeneous Boltzmann

equation (3.2), and define P to be the probability measure on R3 given by

P (A) =

∫
A

f (v) dv for any A ⊂ R3 (5.25)

Define the probability measure, P̂ on R3 × R3 by

P̂ (B) =

∫
B

f (v) f (w) dvdw for any B ⊂ R3 × R3 (5.26)

Let PN be the probability measure defined on R3 by

PN (A) =
1
N

N∑
i=1

∫
A

gi (v) dv for any A ⊂ R3 (5.27)

where {gi}
N
i=1 is a set of density funtions. Also define the probability measure P̂N on R3 ×R3

to be

P̂N (B) =
1
N

N∑
i=1

∫
B

gi (v) hi (w) dvdw for any B ⊂ R3 × R3 (5.28)

where hi are defined as in (5.12). If PN converges to P in law as N → ∞, then P̂N converges

in law to P̂ as N → ∞.

Proof. Define the distribution functions associated with P and P̂ to be

F (v) =

∫
v′≤v

f
(
v′
)

dv′ (5.29)

G (v,w) =

∫
v′≤v

∫
w′≤w

f
(
v′
)

f
(
w′

)
dv′dw′ = F (v) F (w) (5.30)

respectively. Also define the distribution functions associated with PN and P̂N to be

FN (v) =

∫
v′≤v

1
N

N∑
i=1

gi
(
v′
)

dv′ (5.31)

GN (v,w) =

∫
v′≤v

∫
v′≤w

1
N

N∑
i=1

gi
(
v′
)

hi
(
w′

)
dv′dw′ (5.32)
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Take any (a, b) ∈ R3 × R3. We will prove GN (a, b) → G (a, b) as N → ∞, and thus P̂N

converges to P̂ in law as N → ∞. Define the particle distribution functions

Fi (v) =

∫
v′≤v

gi
(
v′
)

dv′ (5.33)

Note that

FN (v) =
1
N

N∑
i=1

Fi (v) (5.34)

Let Ωn = (0, 1). Then (Ωn,Sn, λ) is a probability space, where Sn is the standard σ−algebra

on (0, 1) and λ is Lebesgue measure. Define Ω to be the cartesian product

Ω =

N∏
n=1

Ωn (5.35)

The elements of Ω are thus N-tuples {ωn}
N
n=1 with ωn ∈ Ωn. Defining πm to be the natural

projection of Ω onto Ωm (i.e. πm

(
{ωn}

N
n=1

)
= ωm), let S be the smallest σ− algebra of

subsets of Ω containing all sets π−1
n (A) for all n and all A ⊂ Ωn. Here, π−1

n (A) denotes

the pre-image of A (namely, π−1
n (A) B {ω ∈ Ω : π (ω) ∈ A ⊂ Ωn}) . Then (Ω,S, Prob) is

a product probability space with Prob = λN . Define the sequence of random variables

Xi : Ω→ [0, 1] by

Xi (ω) =

∫
v≤a

∫
w≤b

gi (v) hi (w) dvdw

=

∫
v≤a

gi (v) dv
∫

w≤b
gC(i,N) (w) dw

= Fi (a)
∫

w≤b
gC(i,N) (w) dw

= Fi (a)FC(i,N) (b)

= Fi (a) Yi (ω) (5.36)

where

Yi (ω) = FC(i,N) (b) (5.37)

Note that by Equation 5.32,

GN (a, b) =
1
N

N∑
i=1

Xi (5.38)
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Unlike in Babovsky’s proof for Nanbu’s scheme, the variables {Xi} are independent, but

not identically distributed. Therefore, we cannot employ the same arguments based on

the Central Limit Theorem that Babovsky utilized, but rather will employ Kolmogorov’s

Strong Law of Large Numbers. To begin, recall EXi = Fi (a) EYi, thus consider

EYi =

∫
Ω

YidλN

=

∫
Ω1

· · ·

∫
Ωi

· · ·

∫
ΩN

FC(i,N) (b) dλN by (5.37)

=

∫
Ωi

FC(i,N) (b) dλ (5.39)

Recall from (5.11) that FC(i,N) (b) can be written piecewise over the intervals
[

j−1
N , j

N

]
for

j = 1, . . . ,N, namely,

FC(i,N) (b) = F j (b) for ωi ∈

[
j − 1

N
,

j
N

]
(5.40)

Substituting (5.40) into (5.39),

EYi =

∫ 1/N

0
F1 (b) dλ +

∫ 2/N

1/N
F2 (b) dλ + · · · +

∫ 1

(N−1)/N
FN (b) dλ

=
1
N

N∑
i=1

Fi (b)

= FN (b) (5.41)

Thus,

EXi = Fi (a) F (b) (5.42)
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Also, recall Var (Xi) = (Fi (a))2 Var (Yi). Thus we have

Var (Yi) = E
(
Y2

i

)
− (EYi)2

=

∫
Ω

Y2
i (ω) dλN − (F (b))2 by (5.39)

=

∫
Ω1

· · ·

∫
Ωi

· · ·

∫
ΩN

(
FC(i,N) (b)

)2 dλN − (F (b))2 by (5.37)

=

∫
Ωi

(
FC(i,N) (b)

)2 dλ − (FN (b))2

=

∫ 1/N

0
(F1 (b))2 dλ +

∫ 2/N

1/N
(F2 (b))2 dλ + · · · +∫ 1

(N−1)/N
(FN (b))2 dλi − (FN (b))2 by (5.40)

=
1
N

N∑
i=1

(Fi (b))2
− (FN (b))2

≤ 1 − (FN (b))2

≤ 1 (5.43)

Consider

N∑
k=1

1
k2 Var (Xk) =

N∑
k=1

(Fk (a))2

k2 Var (Yk)

≤

N∑
k=1

(Fk (a))2

k2 by (5.43)

≤

N∑
k=1

1
k2 < ∞

Therefore, having satified the requirements of Corollary 5.1, we conclude

S N − ES N

N
→ 0 almost surely (5.44)

where S N =
∑N

i=1 Xi = NGN (a, b). Thus,

ES N =

N∑
i=1

Fi (a) FN (b)

= NFN (a) FN (b)
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By Equation 5.44 we have that

GN (a, b)→ FN (a) FN (b) almost surely. (5.45)

Recall that by assumption FN converges to F. Thus,

FN (a) FN (b)→ F (a) F (b) = G (a, b) (5.46)

Combining this with Equation 5.45 yeilds

GN (a, b)→ G (a, b) almost surely (5.47)

for all (a, b) ∈ R3 × R3, which implies P̂N converges to P̂ in law as N → ∞. �

We are now ready to prove our main result.

Theorem 5.4. Let f k be the solution of the time discretized space homogeneous Boltzmann

equation (3.2) and define the probability measure Pk on R3 by

Pk (A) =

∫
A

f k (v) dv for any A ⊂ R3 (5.48)

Given a set of density functions {gi}
N
i=1 define the sequence of probability measures

{
Pk

N

}
on

R3 by

Pk
N (A) =

1
N

N∑
i=1

∫
A

gi (v) dv (5.49)

Let

pi = 2G (gi, hi) −
1
2
G (gi, gi) −

1
2
G (hi, hi) (5.50)

with hi as given in (5.12). Define the sequence of probability measures
{
Pk+1

N

}
on R3 by

Pk+1
N (A) =

1
N

N∑
i=1

∫
A

pi (v) dv (5.51)

If Pk
N converges to Pk in law as N → ∞, then Pk+1

N converges to Pk+1 in law as N → ∞

almost surely.
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Proof. Take any φ ∈ Cb

(
R3

)
. Then,∫

R3
φ (v) =

∫
R3
φ (v)

 1
N

N∑
i=1

2G
[
gi, gC(i,N)

]
(v) −

1
2
G

[
gi, gi

]
(v)−

1
2
G

[
gC(i,N), gC(i,N)

]
(v)

]
dv

(5.52)

Employing (3.32), one may obtain,∫
R3
φ (v)G

[
gi, gC(i,N)

]
(v) dv =

1
4

∫
R3

∫
R3

Kv,w (φ)
[
gi (v) gi (w) + gi (v) gC(i,N) (w) +

gi (w) gC(i,N) (v) + gC(i,N) (v) gC(i,N) (w)
]
dvdw

=
1
4

∫
R3

∫
R3

Kv,w (φ) gi (v) gi (w) dvdw +

1
4

∫
R3

∫
R3

Kv,w (φ) gi (v) gC(i,N) (w) dvdw +

1
4

∫
R3

∫
R3

Kv,w (φ) gi (w) gC(i,N) (v) dvdw +

1
4

∫
R3

∫
R3

Kv,w (φ) gC(i,N) (v) gC(i,N) (w) dvdw (5.53)

Recall that Kv,w (φ) = Kw,v (φ), thus (5.53) reduces to∫
R3
φ (v)G

[
gi, gC(i,N)

]
(v) dv =

1
4

∫
R3

∫
R3

Kv,w (φ) gi (v) gi (w) dvdw +

1
2

∫
R3

∫
R3

Kv,w (φ) gi (v) gC(i,N) (w) dvdw +

1
4

∫
R3

∫
R3

Kv,w (φ) gC(i,N) (v) gC(i,N) (w) dvdw

Recalling the definition of G, we have∫
R3
φ (v)G

[
gi, gC(i,N)

]
(v) dv =

1
4

∫
R3
φ (v)G

[
gi, gi

]
(v) dv +

1
2

∫
R3

∫
R3

Kv,w (φ) gi (v) gC(i,N) (w) dvdw +∫
R3
φ (v)G

[
gC(i,N), gC(i,N)

]
(v) dv (5.54)

Rearranging, yields∫
R3

∫
R3

Kv,w (φ) gi (v) gC(i,N) (w) dvdw = 2
∫
R3
φ (v)G

[
gi, gC(i,N)

]
(v) dv −

1
2

∫
R3
φ (v)G

[
gi, gi

]
(v) dv −

1
2

∫
R3
φ (v)G

[
gC(i,N), gC(i,N)

]
(v) dv (5.55)
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Substituting (5.55) into (5.52) yields,∫
R3
φ (v) dPk+1

N =
1
N

N∑
i=1

∫
R3

∫
R3

Kv,w (φ) gi (v) gC(i,N) (w) dvdw

=
1
N

N∑
i=1

∫
D

∫
R3

∫
R3
φ (Ψ (x, v,w)) gi (v) hi (w) dxdvdw (5.56)

by Lemma 3.35. Denote by P2N the probability measure on D × R3 × R3 given by

P2N (B) =

∫
B

1
N

N∑
i=1

gi (v) hi (w) dxdvdw for any B ⊂ D × R3 × R3 (5.57)

Recalling (5.56) we have∫
R3
φ (v) dPk+1

N =

∫
D

∫
R3

∫
R3
φ (Ψ (x, v,w)) dP2N by (5.57)

=

∫
R3
φ (v) d

(
P2N ◦ Ψ−1

)
by Lemma 3.3 (5.58)

Thus, we have shown that Pk+1
N = P2N ◦ Ψ−1. Denote by P2 the probability measure on

D × R3 × R3 given by

P2 (B) =

∫
B

f (v) f (w) dxdwdv for any B ⊂ D × R3 × R3 (5.59)

Also, denote by P̂N the probability measure on R3 × R3 given by

P̂N (C) =
1
N

N∑
i=1

∫
C

gi (v) hi (w) dvdw for any C ⊂ R3 × R3 (5.60)

Likewise, denote by P̂ the probability measure on R3 × R3 given by

P̂N (C) =

∫
C

f (v) f (w) dvdw for any C ⊂ R3 × R3 (5.61)

Consider,

lim
N→∞

∫
D

∫
R3

∫
R3
φ (x, v,w) dP2N = lim

N→∞

∫
D

∫
R3

∫
R3
φ (x, v,w)

1
N

N∑
i=1

gi (v) hi (w) dxdvdw

= lim
N→∞

∫
D

∫
R3

∫
R3
φ (x, v,w) dxdP̂N by (5.60)

=

∫
D

∫
R3

∫
R3
φ (x, v,w) dxdP̂ a.s. by Theorem 5.3

=

∫
D

∫
R3

∫
R3
φ (x, v,w) f (v) f (w) dxdvdw

=

∫
D

∫
R3

∫
R3
φ (x, v,w) dP2
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Thus, P2N converges in law to P2 as N → ∞. Therefore, by Lemma 5.1 we have that

Pk+1
N = P2N ◦ Ψ−1 converges to Pk+1 in law as N → ∞. �

While the previous theorem proved convergence in law to the time discretized space

homogeneous Boltzmann solution, the following Corollaries prove convergence in solution

for solutions which are L∞
(
R3

)
or bounded.

Corollary 5.2. If the time discretized space homogeneous Boltzmann equation (3.2) has a

non-negative solution f ∈ L∞
(
R3

)
, then the solution f̌ of the DMC method (5.14) converges

in L∞
(
R3

)
to f at each timestep. That is,

lim
Np→∞

∥∥∥ f̌ − f
∥∥∥
∞

= 0

Proof. Take any ε > 0. Since f̌ , f ∈ L∞
(
R3

)
, there exist B1, B2 ∈ R+ such that

∣∣∣ f̌ (x)
∣∣∣ ≤ B1,

and | f ( x )| ≤ B2 almost everywhere. Let S 1 and S 2 be the sets of zero measure over which

these inequalities do not hold for f̌ and f respectively. Let S = S 1∪S 2. For any x′ ∈ R3−S ,

define

φh (x) =
1

√
2πh3

exp
(
−
‖x − x′‖2

h2

)
where h ∈ R+. By Lemma 4.1, φh is a delta family as h → 0+ centered at x′. Therefore,

there exists H1 > 0 such that ∣∣∣∣∣∫
R3
φh (x) f̌ (x) dx − f̌

(
x′
)∣∣∣∣∣ < ε

3
(5.62)

for all h < H1. Likewise, there exists H2 > 0 such that∣∣∣∣∣∫
R3
φh (x) f (x) dx − f

(
x′
)∣∣∣∣∣ < ε

3
(5.63)

Note that φh is everywhere continuous and |φh (x)| ≤ 1
√

2πh3 for all x ∈ R3. Thus by

Theorem 5.4, there exists N > 0 such that∣∣∣∣∣∫
R3
φh (x)

(
f̌ (x) − f (x)

)
dx

∣∣∣∣∣ < ε

3
(5.64)
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for all Np > N. Choose H < min {H1,H2}, then for any Np < N we have,

∥∥∥ f̌ − f
∥∥∥
∞

= ess sup
∣∣∣ f̌ − f

∣∣∣
= sup

x′∈R3−S

∣∣∣ f̌ (
x′
)
− f

(
x′
)∣∣∣

≤ sup
x′∈R3−S

∣∣∣∣∣ f̌ (
x′
)
−

∫
R3
φh (x) f̌ (x) dx

∣∣∣∣∣ +∣∣∣∣∣∫
R3
φh (x) f̌ (x) dx − f

(
x′
)∣∣∣∣∣ by the triangle inequality

≤ sup
x′∈R3−S

∣∣∣∣∣ f̌ (
x′
)
−

∫
R3
φh (x) f̌ (x) dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
φh (x)

(
f̌ (x) − f (x)

)
dx

∣∣∣∣∣ +∣∣∣∣∣∫
R3
φh (x) f (x) dx − f

(
x′
)∣∣∣∣∣ by the triangle inequality

<
ε

3
+
ε

3
+
ε

3
by inequalities (5.62), (5.63), and (5.64)

= ε

�

Corollary 5.3. If the time discretized space homogeneous Boltzmann equation (3.2) has a

non-negative bounded solution f , then the solution f̌ of the DMC method (5.14) converges

pointwise to f .

Proof. The proof follows naturally from Corollary 5.2. �

Note that as mentioned previously, the current work represents the first time such

forms of convergence have ever been proven for a stochastic particle method for the

Boltzmann equation.

5.2 Distributional Monte Carlo using the Bhatnagar-Gross-Krook Approximation

(DMC-BGK)

Note that the proofs presented in the prior section assumed the space homogenous

relaxation problem between the two particles was solved in a way which is consistent with

the Boltzmann solution. In practice, this will necesitate some numerical approximation
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technique; however, so long as the technique is consistent with the Boltzmann equation

the prior theorems guarantee the DMC approach will converge in law to the Boltzmann

solution.

A number of appropriate techniques could be applied toward this end. Such techniques

could be either stochastic or deterministic. Some possible choices include moment

methods, spectral methods, linearization of the collision operator, or even simplified

stochastic particle schemes. In practice, it would be desirable to reduce the complexity

of the scheme as a large number of simulated collisions will require computation. A

complementing aspect, however, is that since a large number of collisions will be computed,

and each particle already carries a significant amount of information in its distribution

function, the actual collision calculation can be rather coarse.

As a demonstration case, the present work employs the Bhatnagar-Gross-Krook

(BGK) equation [11] to compute the outcome of intermolecular collisions. The space

homogeneous BGK equation is a model equation for the Boltzmann equation which

replaces the complex collision integral with a simple relaxation form.

∂

∂t
f (v, t) = −ν

[
f (v, t) − fM (v)

]
(5.65)

Here, ν is the collision frequency and fM is the Maxwellian which possesses the same

energy and momentum as f . In the case where ν is constant with respect to molecular

velocity, equation 5.65 becomes a linear, ordinary differential equation in t. Given initial

data f0, the solution of equation 5.65 is given by

f (v, t) = e−νt f0 (v) +
(
1 − e−νt

)
fM (v) (5.66)

Though the BGK equation is not fully consistent with the Boltzmann equation, various

BGK implementations have served as an appropriate approximation in many investigations

of rarefied gases [33, 78], including variance reduced DSMC schemes [51] and therefore

represents an appropriate choice to demonstrate the benefits of a distributional approach.
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The above solution is employed to approximate the solutionG of the previous sections.

Denoting the respective velocity distributions as g and h, the initial condition is given

by f = 1/2 (g + h). The Maxwellian which corresponds to this density function can be

determined by matching the first and second moments.

fM (v) = α1e−α2(v−u)2
(5.67)

Where the mean velocity u =
∫

v f (v) dv, α1 =

[
8(M2−‖u‖2)

π

]3/2
, α2 = 8

(
M2 − ‖u‖2

)
, and

M2 =
∫
‖v‖2 f (v) dv. The space homogeneous evolution of the combined distribution

function may then be obtained utilizing (5.66).

G
[
g, h

]
(v) =

e−ν∆t

2
[
g (v) + h (v)

]
+

(
1 − e−ν∆t

)
α1e−α2(v−u)2

(5.68)

Equation 5.68 is a closed form expression for the evolution of the joint distribution

function of the two simulated particles involved in a collision interaction. Although an

exact expression, one must determine an appropriate way to represent the distribution

functions g, h numerically. Several approaches exist. For simplicity, the current study

represents the distribution function as a set of values evaluated on a three dimensional grid

in velocity space. Although conceptually simple, this approach would be suboptimal for

implementation in a production code as a large amount of data is tied to each particle.

In a parallel implementation the latency associated with convecting a particle from one

processing domain to another could become nontrivial because of the amount of data to

be transferred to the new processing unit. A better approach would be to approximate

the distribution function in closed form. For example, if one expanded the distribution

functions utilizing Hermite polynomials (as suggested by Grad [41]), Equation 5.68 could

then be used to evolve each of the Hermite coefficients in time. The polynomial coefficients

are then the only data carried with each particle and the latency associated with a parallel

implementation would be significantly reduced.

Computation of the distribution function over a discrete grid as described above

presents the method with another tunable parameter, namely, the grid spacing. Grid
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refinement in velocity space is a problem that is common with other numerical techniques

for the Boltzmann equation (e.g. direct solvers) but is not currently well understood. For

this reason, the results and techniques described in this work are based only on uniform

grid spacing in velocity space.

Before continuing, it should be noted that the method described here represents a

hybrid stochastic-deterministic scheme. That is to say, collision pair selections continue to

be performed stochastically using the Monte Carlo scheme previosly discussed. Collision

outcomes, however, are computed deterministically using equation 5.68. This hybridization

is made possible by the fact that particles possess distributed velocities. If the scheme

restriced them to a finite set of velocities, a stochasic approach would be required to sample

from equation 5.68 (such a scheme was presented by the author in Reference [67]). The

hybridization of the current scheme, however, will be observed in the subsequent section

to result in a drastic reduction in variance.

5.3 Application to the Bobylev-Krook-Wu Problem

To provide a numerical demostration of the DMC-BGK technique, the method was

applied to the Bobylev-Krook-Wu problem. As the solution is computed over a discrete

grid in velocity space, simple quadrature was utilied to compute the normalized moments

as defined by Equation 2.61. Figure 5.1 presents a comparison of the first three normalized

moments of the density function for the case in which Np = 100. The cell width on the

velocity grid was chosen to be ∆v = 2/3 over the region [−5, 5]× [−5, 5]× [−5, 5]. Outside

of this region the value of the density function was assumed to be zero. The results have

been averaged over an ensemble of 600 runs.

Note that unlike the DSMC results or the DMC-KDE results, the current method does

not display large amounts of variance. This effect is due to the fact that collision outcomes

are determined deterministically which was facilitated by the distributed particle velocities.
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Figure 5.1: Normalized Moments of Bobylev-Krook-Wu Solution (Np = 100,
∆v = 2/3, 600 run ensemble)

Furthermore, note that not only does the current solution display reduced variance, but is

also much more accurate than the prior methods discused. As each particle possesses an

entire distribution function of unrestricted form, a tremendous amount of information is

represented with each particle which allows for the overall density function to be calculated

much more accurately for the same number of particles. Finally, also note that as a result

of the variance reduction previously discussed, the scheme conserves energy much better

that the prior schemes as evidenced by the nearly constant first normalized even moment

z1.

Figures 5.2 and 5.3 illustrate the results for the first and second normalized moments

obtained by varying Np while holding the cell size constant at ∆v = 2/3 and using an

ensemble of 400 runs.

Note that in this case, Figure 5.2 shows that the total fluctuation in energy throughout

the simulation is less that one-tenth of one percent. In contrast, the results for Nanbu’s

method (Figure 3.1) displayed about an order of magnitude greater fluctuation in this
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Figure 5.2: First Normalized Moment with Varying Np (∆v = 2/3, 400 run sample)

Figure 5.3: Second Normalized Moment with Varying Np (∆v = 2/3, 400 run
sample)

moment. The results for the second moment in Figure 5.3 show very little variance as

well and nearly monotonic convergence.

As the entire distribution function is computed, like DMC-KDE it is possible to

compute the L1
(
R3

)
error via Equation 4.34. Figure 5.4 shows how the L1

(
R3

)
error
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varies as a function of the number of simulated particles with ∆v = 2/3. Note that

Figure 5.4: L1
(
R3

)
Error for DMC-BGK Bobylev-Krook-Wu Solution with

Varying Np (100 run sample)

the convergence is monatonic, and the maximum error throughout the simulation is about

one order of magnitude smaller than the DMC-KDE approach (Figure 4.4). Also, unlike

the DMC-KDE approach, note that the error is nearly zero at t = 0. This is due to the

fact that the initial condition can be much better represented with non-gaussian particle

distributions.

Figure 5.5 presents the results for the L1
(
R3

)
error as it varies with velocity grid cell

size. The simulations employed 50 simulated particles and were ensemble averaged over

100 runs. Here, the expected general trend is observed, namely that reduced cell size

results in reduced error, however the results are not necessarily monatonic. This is likely

owed to the fact that as domain was finite and held constant, at some point the error in

approximating the quadrature becomes smaller than the stochastic variance introduced by

collision pair selection over a collection of only 50 particles.
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Figure 5.5: L1
(
R3

)
Error for DMC-BGK Bobylev-Krook-Wu Solution with

Varying ∆v (100 run sample)

The total variation for the first three moments as a function of the size of the ensemble

average is given in Figure 5.6. Here Np = 100 and ∆v = 2/3. Notice the drastic

improvement over Figure 3.4. The total variation is very nearly equal to the analytical

value even for a very modest number of samples. This is owed in large part to the fact

that the stochastic step predicting collision outcomes has been replaced by a deterministic

calculation, which due to the ability of particles to posess distributed velocities accounts

for all possible collision outcomes. This represents the first use of deterministic collision

modeling within a stochastic particle method.

It should be noted that although the numerical solutions presented in this section

compare well to the Boltzmann solution, it should not be assumed that the scheme

employing the BGK approximation is convergent to the Boltzmann solution. Although

in many cases the BGK model can be a useful surrogate, it cannot be directly derived

by simplification of the Boltzmann collision integral. Nevertheless, the results presented

here suggest that so long as an appropriate number of collisions are calculated, some

simplification of the collision operator is tolerable.
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Figure 5.6: Total Variation of DMC-BGK Method as a Function of Sample Size for
Np = 100, ∆v = 2/3
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VI. Conclusion

The work presented herein has contributed a number of important discoveries and

developments to the stochastic solution of the Boltzmann equation. First and foremost,

this research has introduced the Distributional Monte Carlo concept for the Boltzmann

equation. The framework derived by the author represents the first stochastic particle

based method which does not employ a point measure based approximation of the velocity

density function, but rather allows each simulated particle to possess an entire velocity

density function of its own. Allowing the simulated particle velocities to be distributed

enables the modeling of collision events between simulated particles to be treated as a space

homogeneous relaxation problem over the collection of actual particles they represent.

While physically intuitive, the author was able to prove that such a representation results

naturally from the weak time discretized space homogeneous equation when particle

velocities are distributed. In addition to deriving the general DMC approach, it was

also proven that the technique was convergent to the solution of the space homogeneous

Boltzmann equation in law, and in solution for L∞
(
R3

)
solutions.

The distributional framework derived by the author is quite general, and the present

work established a sufficiency criterion by which any distributional scheme will converge

so long as collision modeling is consistent with the space homogeneous solution. This

facilitates possible employment of both stochastic and deterministic schemes. The author

presented one such scheme based on the BGK simplification of the collision operator which

employed deterministic modeling of collision effects. Note that while collision outcomes

were determined deterministically, collision pair selection was performed stochastically. In

contrast to DSMC which performs both steps stochastically, the technique is observed to

have drastically reduced variance. This is due to three sources. First, replacement of the

stochastic process for selecting collision outcomes with a deterministic one tends to reduce
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variability. Second, the use of distributed velocities and particle distribution functions of

general form allows for the calculation of not just one possible collision outcome, but

computes the effects of all possible collision interactions. Finally, the mere fact that particle

velocities are distributed means that each simulated particle carries with it significantly

more information than it would in a traditional DSMC approach, allowing for the overall

distribution function to be represented much more accurately. Reduced variance in solution

translates to a reduction in the number of particles required to accurately simulate a given

problem which can have a drastic impact on computational time to solution.

The author also applied kernel density estimation to DSMC to develop a new approach

called DMC-KDE. It was shown that through the application of kernel density estimation,

the DSMC technique could be made to converge not just in law, but in solution for L∞
(
R3

)
and bounded solutions of the space homogeneous equation. This represents the first time

that such forms of convergence have been proven for a stochastic particle method for the

Boltzmann equation. Simply put, the DMC-KDE approach turns a stochastic Boltzmann

simulator into a stochastic Boltzmann solver. This facilitates the direct computation and/or

visualization of the distribution function, something which is not directly available to

Boltzmann simulators which converge only in law, such as DSMC.

Although the particle velocities were allowed to be distributed, they were constrained

to be distributed by a prescribed form of a density function. In this case, particles were

allowed to possess velocities distributed according to a Maxwellian distribution. This leads

to the physical interpretation that the actual particles represented by a simulated particle

do not all possess the same velocity vectors, but rather are in translational equilibrium

with one another. Collision interactions were computed stochastically and had the effect of

shifting the mean of the particle Maxwellians. The rules governing the selection of the new

mean were shown to be identical to the rules Nanbu used to assign post collision velocities.

Unfortunately, the restrictions placed on the form and evolution of the particle velocity
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density functions eliminate any potential variance reduction by distributing velocities,

and for the Bobylev-Krook-Wu solution it was observed that the total variation in the

normalized moments was equal to that of Nanbu’s scheme.

The current work has opened up a number of avenues for continued research in

Distributional Monte Carlo methods for the Boltzmann equation. The next logical step

for such methods is generalization to the full Boltzmann equation. The approach for such

a technique would largely mirror DSMC, that is a grid will be employed in physical space

to ensure collisions occur between simulated particles which are near neighbors. Particle

advection and collision interactions will be decoupled via the uncoupling principle, and

within a cell the solution will be presumed to be space homogeneous. The approach

for handling particle advection is not necessarily determined, as simulated particles

now possess not just a single velocity vector but an entire distribution function. Early

experimentation by the author suggests one appropriate choice is to sample an advection

velocity at each timestep with which to convect each particle from its density function.

There is great potential for distributional approaches in the nonhomogeneous case

which arises from the fact that the distribution function is directly computed and available

throughout the computation. When the distribution function of a given cell is Maxwellian

or near-Maxwellian collisional effects can be neglected. To illustrate this, consider the

problem of a one-dimensional shock wave. The typical approach for modeling such a case

is to initialize the upstream half of the domain to an equilibrium distribution based on the

freestream conditions. The downstream half of the domain is initialized to an equilibrium

distribution based on the downstream conditions which can be computed via the normal

shock relations. In the case of a distributional approach, at t = 0, the particles in upstream

domain share a common Maxwellian density function, as do the particles in the downstream

domain. As particles begin to advect, the cells near the middle of the domain become the

first to possess non-Maxwellian distributions, and therefore become the only location where
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collisions are required to be calculated. That is to say, collision calculations are clustered

in the area of the shock wave itself. As the simulation continues, the region grows slightly

but the majority of collisions are computed in the shock region. The method is therefore

self adjusting to regions of non-equilibrium, in that it requires little to no computations

in equilibrium regions and focuses its computational power in regions which are highly

non-equilibrium.

In addition to generalization to the full Boltzmann equation, there are a number of

potential research areas that can still be addressed in the space homogeneous setting. First,

for the numerical results presented here, the current effort employed a grid in velocity

space. This is suboptimal for use in a production code as each simulated particle carries

with it an enormous amount of information which could introduce significant latency in a

parallel environment as particles convect between processing domains. A better approach

is likely to expand the particle velocity density functions using Hermite polynomials, in

which case a handful of coefficients would be the only data required to fully describe each

particles velocity density function. Second, in addition to the numerical representation

of the density function, the exploration of methods to model the solution G used in the

collision simulation of the Distributional Monte Carlo approach is an area which holds a

number of interesting problems. The framework proven by the author made little restriction

on the form of such modeling, allowing for both stochastic and deterministic techniques.

Although the present work has demonstrated significant variance reductions are achievable

with a deterministic approach, there is value in pursuing stochastic approaches as well. One

such approach is to apply kernel density estimation to the particle distribution functions

themselves (versus the overall distribution). The author has presented such a technique in

the past [67], however, some additional work is required to make the approach consistent

with the DMC framework presented in this effort.
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While the DMC-KDE scheme presented did not exhibit variance reduction over

DSMC, it did establish an interesting approach for turning Boltzmann simulators into

Boltzmann solvers. There are a number of modifications that could be explored which

could enhance the performance of such an approach. As mentioned above, the author has

presented a scheme which applied kernel density estimation at the particle density function

level [67] which allowed for multiple velocity samples per particle. This has the effect

of unconstraining the particle density functions from a fixed form. Another, less drastic,

approach might be to allow the kernel bandwidth to vary for each particle. In this case,

particle densities would continue to be Maxwellian but each particle would have a unique

mean and standard deviation. This is equivalent to allowing each particle to possess a

translational temperature. Relations governing the collision modeling would need to be

developed which not only determined a mean post-collision velocity, but post-collision

temperature for each simulated particle.

When viewed as a whole, the current effort has provided a number of firsts in the area

of stochastic particle schemes for the Boltzmann equation and has opened a new area of

research with many interesting mathematical challenges for future researchers. In addition,

the importance of hypersonic and rarefied flows has ensured that techniques for modeling

the Boltzmann equation will remain relevant to Air Force problems for the foreseeable

future.
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