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Abstract

The United States Air Force has a pressing need for new methods of hyperspec-

tral imaging. All current hyperspectral imaging technologies require long exposure

times, since each involves filtering the available light, either spatially or according

to color. We consider a recently proposed method for hypserspectral imaging that

promises shorter exposure times. This new method applies the mathematical prin-

ciples of tomography to the hyperspectral data cube. Known as chromotomography,

this method uses a spinning prism to essentially capture the integrals of this cube

over many rotations of a single line. This thesis addresses some of the mathematical

issues that arise when trying to reconstruct a hyperspectral image from chromoto-

mographic measurements. After reviewing some of the mathematical shortcomings

of the current state of the art—which arise from the technical difficulties of working

with the continuous-variable X-ray transform—we make three contributions. First,

we introduce a mathematically rigorous, discrete, X-ray transform that is somewhat

faithful to its continuous cousin. Second, we show how under a few simplifying

assumptions, our discrete transform can be generalized so as to provide a good ap-

proximation of the continuous one. This discretization allows us to apply modern

finite-dimensional optimization methods to the chromotomographic reconstruction

problem. Our third contribution is to apply a popular new example of such a method,

known as Split Bregman iteration.
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A discrete X-ray transform for chromotomographic

hyperspectral imaging

I. Introduction

The United States Air Force has a pressing need for new sensor technologies

that give us the capability to analyze the chemical nature of spontaneous and brief

real world events [13, 17]. A popular modern method for remotely sensing chem-

ical information is hyperspectral imaging, that is, taking photographs with many

color channels, unlike traditional photographs that either have one color channel

(grayscale) or three color channels (red-green-blue). Unfortunately, all current hy-

perspectral imaging technologies require long exposure times, since each involves

filtering the available light, either spatially or according to color. That is, even

state-of-the-art hyperspectral sensors are incapable of imaging transient events [3].

For this reason, in the past decade, researchers have been proposing new hyperspec-

tral imaging systems that make better use of the available light, thereby allowing

shorter exposure times [1, 3, 6–8,10,13,18].

Some of these new methods of hyperspectral imaging are based on principles

of tomography. Traditional tomography passes waves of energy through solid objects

(such as human bodies) to construct three-dimensional images (data cubes) repre-

senting the objects’ composition. Some recently proposed methods of hyperspectral

imaging involve tomography with color. To be precise chromotomography (CT)—

not to be confused with chromatography—is a type of hyperspectral imaging that

uses the mathematical principles of tomography in order to capture a hyperspectral

image via the use of a spinning prism [6]. This thesis addresses some of the mathe-

matical issues that arise when trying to reconstruct a hyperspectral image from the

data produced by a CT camera such as the chromotomographic experiment (CTEx)

developed at the Air Force Institute of Technology (AFIT) [17].
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In particular, we make three major contributions: (1) a mathematically rig-

orous, discrete model of a CT camera system that is somewhat realistic; (2) an

extension of this theory which shows how to slightly generalize our discrete trans-

form so as to make it approximate our continuous one very well; and (3) the first

application of a popular new numerical optimization technique—the Split Bregman

method—to our reconstruction problem.

1.1 Mathematical preliminaries

We now briefly outline our approach. We consider a linear model, that is, we

treat the camera system as a linear operator L. This enables us to examine the

reconstruction problem using linear least squares. In order to do this we need an

expression for the operator itself, as well as one for its adjoint (transpose) L∗. We

rediscover the previously known fact that their composition, L∗L is a filter, meaning

that it is diagonalized by the Fourier transform. Using this fact, we find that we

are dealing with an operator with a gigantic null space; in the literature, this space

is known as the cone of missing information. This means that we are not able to

directly reconstruct the original image from the CT camera measurements. That is,

there is information that we lose in the system, and we cannot get it back. To bypass

this issue, we now realize that we are not exploiting everything we know about our

circumstances: we want to reconstruct images of natural scenes, and such images

typically are sparse or have sparse gradients. This motivates us to investigate the

most recent research on how to solve linear systems with large null spaces subject to

the constraint that the solution is sparse or has a sparse gradient. We now consider

each of these points in greater detail.

A hyperspectral image can be thought of as a continuous three-dimensional

data cube, namely as a function, f(x, y, z) where x and y are the spatial coordinates

of the image and z is the frequency of the light. Many current hyperspectral imaging

systems fall into two types. In the first type, different color filters are placed in

front of the camera. Each picture taken through one of these filters corresponds
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to a single z-cross-section of f(x, y, z). That is, such a system measures f(x, y, z),

one horizontal cross-section at a time. A second type of system uses the push broom

sensor method, which passes the available light (of all frequencies) through a vertical

slit and then through a horizontally-aligned prism. The light that passes through

the slit corresponds to a single x-cross-section of f(x, y, z). When passed through

a prism, this two-dimensional cross-section (one spatial dimension, one frequency

dimension) is transformed into an intensity image with two spatial dimensions which

is then captured with a conventional (grayscale) camera. This enables us to, once

again, measure the original data cube one slice at a time; here, x is fixed while y and

z vary.

Unfortunately, both of these methods have problems with capturing transient

events, that is, events that occur over a small interval of time. With the color-filter

method, we may see the event, but will only capture it in a few color bands. With

the push broom method, we may not see the event at all, and even if we do, we will

only measure a small vertical slice of it.

In this thesis, we investigate a modified version of the push broom system in

which the slit is removed, that is, all of the available light is allowed into the camera,

and is then dispersed by the prism. Though this allows more information to enter the

camera, it has the unfortunate side-effect of producing a horizontal blurring effect.

We can model such a system with the following linear operator:

(Lf)(x, y) =

∞∫
−∞

f(x− z, y, z) dz. (1)

To understand this formula, consider a very simple hyperspectral image that only has

three color channels: red, green, and blue with frequencies −1, 0, and 1, respectively.

The operator L acts as an adding procedure that sums the number of photons that

accumulate at pixel location (x, y) in the intensity image produced by the camera.

In this case, (Lf)(x, y) represents the number of green photons at the hyperspectral
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image’s (x, y) coordinate, along with the number of red photons at (x + 1, y) and

the number of blue photons at (x − 1, y). This corresponds to the actual number

of photons (of any color) measured by our grayscale camera at pixel location (x, y),

since our ideal prism allows green photons to pass straight through, but shifts red

and blue photons one unit to the left and right, respectively.

Note that in (1), we are assuming that the prism is oriented horizontally,

namely at a 0◦ rotation angle. If we were to instead rotate the prism by 90◦ counter-

clockwise, we would suffer a vertical blurring, and we would instead be integrating

f(x, y − z, z) over all frequencies z.

This blurring—a consequence of our desire to allow more light into the camera—

also unfortunately leads to a loss of information. In an attempt to recover this miss-

ing information, we use a system that spins the prism. That is, for any possible

prism angle θ, we produce an intensity image corresponding to a “projection” of the

original hyperspectral image along that axis. Mathematically, we model this process

as a generalization of (1). In particular, we integrate over every possible xy-rotation

of the lines we integrate over in (1). Thus, the measured data we produce is of the

form (Lf)(x, y, θ), where x and y are spatial coordinates and θ is the prism’s rotation

angle. To be precise, we now define Lf as

(Lf)(x, y, θ) =

∞∫
−∞

f(x− z cos θ, y − z sin θ, z) dz. (2)

In the literature, such an angle-indexed collection of line integrals is known as a

continuous X-ray transform. Such transforms have long been studied in the field of

tomography. Given a data cube f(x, y, z) we model our camera measurements as

g(x, y, θ) = (Lf)(x, y, θ) + ε(x, y, θ). (3)
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Whereas f is a real-valued function over R3, g is a real-valued function over R2×T,

where T := R/2πZ is the set of all possible prism angles. In order to build a useful

CT camera, we need a mathematical method for reconstructing f from g. That is,

if possible, we would like to invert the X-ray transform. Unfortunately, as we now

discuss, this transform is not invertible.

Indeed, note that due to the noise term in (3), the equation Lf = g may not

even have a solution. The standard way to get around this issue is to instead consider

the linear least squares version of this equation. That is, we find the f that makes

Lf as close to g as possible in the L2 sense:

arg min
f∈L2(R3)

‖Lf − g‖2
2 = arg min

f∈L2(R3)

∞∫
−∞

∞∫
−∞

∞∫
−∞

|(Lf)(x, y, θ)− g(x, y, θ)|2 dx dy dz. (4)

To be clear, the arg min operator returns the set of f ’s for which ‖Lf − g‖2
2 attains

its minimum value. This is not to be confused with the min operator which, given

the same argument, would return the minimum value of ‖Lf − g‖2
2 over all f . Here,

we are making the (reasonable) assumption that f ∈ L2(R3), g ∈ L2(R2×T) as well

as the (unreasonable, probably false) assumption that the operator L given in (2)

is a well-defined bounded linear operator between these spaces. It is this lack of

rigor that motivates our finite-dimensional CT model given in Chapters III and IV;

until then, we shall wave our hands. If L was a bounded linear operator between

Hilbert spaces, the standard Hilbert space theory of linear least squares gives that

the solutions to the minimization problem in (4) are precisely the solutions to the

normal equations

L∗Lf = L∗g, (5)

where L∗ : L2(R3) → L2(R2 × T) is the adjoint of L, namely the bounded linear

operator that satisfies 〈f, L∗g〉 = 〈Lf, g〉. In the next chapter we informally show

5



that L∗ has the form

(L∗g)(x, y, z) =

2π∫
0

g(x+ z cos θ, y + z sin θ, θ) dθ. (6)

In the tomography literature, L∗ is known as back projection. To illustrate how L∗

behaves, first consider how the operator L treats a single frequency of light z0 emitted

from a specific spatial coordinate (x0, y0). Recall the intensity of light at this point

is denoted f(x0, y0, z0). Under the action of L, the value of f plays a role in several

values of (Lf)(x, y, θ). In particular, if f were a Dirac-δ function based at (x0, y0, z0),

the nonzero values of Lf would trace out a helix in R2×T. This helix is “centered”

at (x0, y0) ∈ R2 and has radius z0. In particular, if we were to shine a fixed laser into

our camera, the rotation of the prism would cause this point to trace out a circle

in the xy-plane over time. Looking at (6), we see that the adjoint of L integrates g

over this helix in order to form the value (L∗g)(x0, y0, z0). In short, (L∗g)(x0, y0, z0)

sums those values of g(x, y, θ) which, if g were of the form Lf , depend on the value

f(x0, y0, z0). In previous research, L∗ has been described as shifting-and-adding the

camera measurements [17].

Having the expressions for L and L∗ given in (2) and (6), respectively, we

return to the normal equations (5). The right-hand side of (5) is determined by

back-projecting (shifting-and-adding) the camera measurements g. Meanwhile, the

left-hand side of (5) is determined by the composition of L and L∗. In the next

chapter, we informally show that the operator L∗L is of the form

(L∗Lf)(x, y, z) =

2π∫
0

∞∫
−∞

f(x− t cos θ, y − t sin θ, z + t) dt dθ. (7)

From (7), we can see that L∗L integrates the values of f that lie on the surface

of a cone. To clarify, note that in (7) we integrate over all points of the form

(x, y, z)− t(cos θ, sin θ,−1). For any θ, (cos θ, sin θ,−1) is a point on the unit circle
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in the z = −1 plane. As t varies, the values t(cos θ, sin θ,−1) trace out a straight

line passing through this point and the origin. As θ varies, these lines trace out a

cone whose vertex lies at the origin, and has “slope” 1 with respect to the xy-plane.

Subtracting the values t(cos θ, sin θ,−1) from (x, y, z) essentially translates this cone

so that its vertex lies at (x, y, z). That is, L∗L performs a rolling average of the

values of f over this cone’s surface. In the image and signal processing literature,

such “rolling average” operators are known as filters. Moreover, it is well-known that

filters are best understood in terms of the (unitary) Fourier transform, namely the

operator, E∗ : L2(R3)→ L2(R3), defined as

(E∗f)(α, β, γ) :=

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αx+βy+γz)f(x, y, z) dx dy dz.

In particular, in the next chapter, we will show that in the Fourier domain, L∗L

becomes a pointwise multiplication operator:

(E∗L∗Lf)(α, β, γ) = (E∗f)(α, β, γ)×


2√

α2+β2−γ2
, γ2 < α2 + β2,

0, γ2 ≥ α2 + β2.
(8)

From (8), we can see that the operator L∗L destroys information, and we cannot

get it back. In particular, in the Fourier domain, L∗L multiplies the values of E∗f

by positive scalars if γ2 < α2 + β2 and by zero if γ2 ≥ α2 + β2. That is, the null

space of L∗L corresponds to those functions f ∈ L2(R3) whose Fourier transforms

are completely supported on the cone

{(α, β, γ) : γ2 ≥ α2 + β2}. (9)

Moreover, since N(L∗L) = N(L), we can see that our camera system is not one-to-

one: two hypercubes f1 and f2 can yield the same camera measurements even if their

Fourier transforms are different, provided these differences only occur at frequencies
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that lie within the cone (9). In the tomography literature, this null space is known

as the cone of missing information.

Since L’s null space is so large, we are forced to make additional assumptions

about f in order to have any chance of reconstructing it from g = Lf + ε. The

purpose of our camera system is to observe transient events occurring in natural

scenes, meaning we may want to restrict ourselves to a class of f ’s that are either

sparse or have sparse gradients. To be precise, we say that a vector is sparse if it has

very few non-zero entries. An example of a natural scene that is sparse would be a

clear night sky (a nearly black background with a few stars), or, alternatively, the

fireball of an explosion seen at night. That is, a sparse image is one that is mostly

black with only a few spots of bright color. On the other hand, if the gradient of f

is sparse this means the image can be broken up into large regions where Of = 0,

that is, regions in which the color is constant. Some might describe these scenes as

“cartoon-like” because their appearance is similar to paint by number.

Mathematically, sparsity relates to a zero “norm,” which counts the number

of non-zero entries in a vector. That is, in order to find the sparsest solution to the

normal equations, we would like to solve

arg min
f
‖f‖0 subject to L∗Lf = L∗g. (10)

Unfortunately the zero “norm” is not a norm: it does not distribute over scalar

multiplication. More importantly, optimization is mostly calculus-based, meaning

that in order to solve an optimization problem such as (10), we would like to use a

norm that is differentiable. The zero “norm” is not differentiable, suggesting that we

should use a different norm to solve our problem. Recently, researchers have begun

to use the 1-norm as a proxy for the zero “norm;” the 1-norm of f is defined as

‖f‖1 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f(x, y, z)| dx dy dz.
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Though not differentiable everywhere, this norm is nevertheless a convex function of

f meaning it can be analyzed with the classical convexity-based generalizations of

calculus-based optimization. Therefore, instead of solving (10) we try to solve

arg min
f
‖f‖1 subject to L∗Lf = L∗g. (11)

It turns out that, even with this relaxation, finding a solution to (11) is too difficult

mathematically because of the size of L’s null space. To account for this problem, we

apply a standard trick, namely we regularize (11) by adding a term that penalizes

large values of ‖Lf − g‖2
2. That is, to find a sparse f for which Lf is close to g, we

will solve

arg min
f
‖f‖1 +

λ

2
‖Lf − g‖2

2, (12)

where λ is some experimentally chosen weight. On the other hand, to find an f with

a sparse gradient we solve

arg min
f
‖Of‖1 +

λ

2
‖Lf − g‖2

2. (13)

In the literature ‖Of‖1 is sometimes known as the total variation norm of f .

In practice, we would attempt to solve (12) or (13) for larger and larger values

of λ and use the, for lack of a better term, “eye test” to find the best solution. Notice

though, that as λ→∞ in (12) and (13), the 1-norm term becomes insignificant and

we are essentially again solving the ill-conditioned problem of minimizing ‖Lf −g‖2
2.

The Bregman method is a recently introduced, yet already very popular, method for

bypassing this issue. That is, it provides an alternative, more numerically stable

approach for minimizing ‖f‖1 or ‖Of‖1 subject to the constraint that L∗Lf = L∗g.

We in particular apply the most recent variant of this algorithm, known as the Split

Bregman method. This is an iterative process in which we “split” our optimization

9



problem into simpler ones that are easier to solve, making use of a technique known

as shrinkage (soft-thresholding).

1.2 Outline

This introduction has served to build up our intuition about the CT recon-

struction problem, as well as highlight some of the key quantities relating to it. In

Chapter II, we delve deeper into the continuous X-ray transform (Lf)(x, y, θ), and

informally derive the important equations given above. Then, in Chapter III, we will

reinvent the X-ray transform in the discrete setting, which allows us to replace the

hand waving of Chapter II with a rigorous analysis. Whereas the continuous model

we present in Chapter II makes intuitive sense but is not rigorous, the discrete model

in Chapter III is completely rigorous, but is less faithful to the real-world physics

of our camera system. In Chapter IV, we refine this discrete model so as to make

it more physically realistic. In Chapter V, we use the Split Bregman method along

with the ideas of Chapters III and IV to perform CT reconstruction experiments.

1.3 Major Contributions

For the past twenty years, several teams of researchers have applied principles

from tomography in order to attempt to build better hyperspectral imagers [1, 3,

6–8, 10, 13, 18]. Some of this previous work inspired our derivations involving the

operator L given in Chapter II. Previous research has also made some of the same

connections that we make: recognizing the problem is tomographic in nature, and

using Fourier analysis to study it [1, 8].

However, much of the mathematics that has been previously applied to the

CT reconstruction problem is not rigorous because it is difficult to prove results in

infinite-dimensional spaces. In short, the integral operators that have been previ-

ously applied to this problem are not well-defined, bounded linear operators between

prescribed vector spaces. We take the novel approach of attacking this problem from
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a purely discrete perspective, making all of the mathematical derivations rigorous

and correct. That is, we are the first to apply recently introduced principles of

discrete tomography [2] to the CT reconstruction problem. This is the first major

contribution of this work.

The second major contribution builds on the results of our first contribution.

Making only a few simplifying assumptions—namely that our continuous function

f is periodic in the spatial and frequency domains and that it has been sampled so

finely that it is effectively piecewise constant—we show that the continuous X-ray

transform boils down to a slight generalization of our aforementioned discrete model.

Realizing this, we then use the theory stemming from our first contribution to gain

a more realistic understanding of a CT camera system.

Our third major contribution is that we are the first to apply a recently

introduced, state-of-the-art numerical optimization technique—the Split Bregman

method—to the CT reconstruction problem. Over the past few years, this method

has become very popular in the sparse image processing community. However, due

to its newness and mathematical sophistication, there are still many reconstruction

problems to which it has not yet been applied. New fast reconstruction algorithms

such as the Split Bregman method are needed in order for CT research to move for-

ward, since only then will researchers be able to perform the numerical experimenta-

tion and simulation needed to address important, basic questions about their camera

systems. That is, reconstruction algorithms such as the Split Bregman method allow

us to focus on the real issues with our CT system, and what kinds of improvements

are necessary in order to make the system function better.
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II. A continuous mathematical model of chromotomography

In this chapter, we continue to discuss the continuous X-ray transform, namely our

operator L, as defined in (2). In particular, in this chapter, we provide the important

derivations concerning L that we glossed over in the introduction. As we shall point

out, these derivations are not completely rigorous due to the mathematical subtleties

of infinite-dimensional spaces. Nevertheless, these derivations are on the right track.

In the coming chapters, we will generalize the techniques introduced here to the

discrete, finite-dimensional setting. There, they become completely rigorous. In

order to use the Hilbert space-based theory of linear least squares, we assume our

continuous hyperspectral image f lies in the Hilbert space

L2(R3) =

{
f : R3 → R

∣∣∣∣
∞∫

−∞

∞∫
−∞

∞∫
−∞

|f(x, y, z)|2 dx dy dz <∞
}
.

The inner product on this space is defined as

〈f1, f2〉 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

[f1(x, y, z)]∗ f2(x, y, z) dx dy dz,

where α∗ denotes the complex conjugate of any real or complex scalar α. As with

any Hilbert space, this inner product defines a norm: ‖f‖ :=
√
〈f, f〉. Now recall

the operator L defined in (2), which integrates f over a set of lines in R3:

(Lf)(x, y, θ) =

∞∫
−∞

f(x− z cos θ, y − z sin θ, z) dz.

Since f lies in L2(R3) instead of L1(R3), we have no guarantees that such line integrals

even exist (converge). Putting this issue aside, note that in order to use the standard

theory of linear least squares, we will also want the output of the operator L to lie

12



in a Hilbert space. Since Lf is a function over R2 × T, the natural space is

L2(R2 × T) =

{
g : R2 × T→ R

∣∣∣∣
2π∫

0

∞∫
−∞

∞∫
−∞

|g(x, y, θ)|2 dx dy dθ <∞
}
,

where the inner product is defined as usual. Here, in order to use least squares,

we need to go beyond our original assumption that Lf is a well-defined function of

R2×T and make the further assumptions that Lf ∈ L2(R2×T) and moreover, that

the operator L is a bounded linear operator, that is, L is a linear operator for which

there exists some constant B such that ‖Lf‖ ≤ B‖f‖ for all f ∈ L2(R3).

Making this assumption, we would like to find the f that solves the equation

Lf = g for a given g. However, the presence of noise in g makes it likely that this

equation will not have a solution. As such, we instead attempt to solve

arg min
f∈L2(R3)

‖Lf − g‖2
2. (14)

That is, we want to find the f that minimizes the integral of the squares of the point-

wise errors (Lf)(x, y, θ)−g(x, y, θ). If we make another oversimplifying assumption—

that the range of L is a closed subspace of L2(R2×T)—classical Hilbert space theory

implies that the solutions to (14) are equivalent to the solutions to the normal equa-

tions L∗Lf = L∗g.

The normal equations make use of the operator L∗ : L2(R2 × T) → L2(R3),

that is the adjoint of L, which is characterized by the fact that 〈f, L∗g〉 = 〈Lf, g〉

for all f ∈ L2(R3) and g ∈ L2(R2 × T). To see how to informally derive the formula
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for L∗ given in (6), consider

〈f, L∗g〉 = 〈Lf, g〉

=

2π∫
0

∞∫
−∞

∞∫
−∞

[Lf(x, y, θ)]∗ g(x, y, θ) dx dy dθ

=

2π∫
0

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

f(x− z cos θ, y − z sin θ, z) dz

∗ g(x, y, θ) dx dy dθ.

To proceed, we now distribute the complex conjugate and then interchange integrals

(without justification) yielding

〈f, L∗g〉 =

2π∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

[f(x− z cos θ, y − z sin θ, z)]∗g(x, y, θ) dz dx dy dθ.

For any fixed θ, making the substitution (u, v, w) = (x− z cos θ, y− z sin θ, z) trans-

forms this expression for 〈f, L∗g〉 into

2π∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

[f(u, v, w)]∗g(u+ w cos θ, u+ w sin θ, θ)J(u, v, w) dw du dv dθ.

Here, J(u, v, w) is the Jacobian of this change of variables, namely the determinant

of a 3× 3 matrix, which happens to be upper triangular in this case:

J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 0 − cos θ

0 1 − sin θ

0 0 1

∣∣∣∣∣∣∣∣∣ = (1)(1)(1) = 1.

Therefore, our expression for 〈f, L∗g〉 becomes

〈f, L∗g〉 =

2π∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

[f(u, v, w)]∗g(u+ w cos θ, u+ w sin θ, θ) dw du dv dθ.
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Once again, we interchange integrals (without justification) and find

〈f, L∗g〉 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

[f(u, v, w)]∗

 2π∫
0

g(u+ w cos θ, u+ w sin θ, θ) dθ

 dw du dv.

That is, we necessarily have that, as given in (6), L∗ has the form

(L∗g)(x, y, z) =

2π∫
0

g(x+ z cos θ, y + z sin θ, θ) dθ.

In words, for each (x, y, z) triple, L∗ integrates g over a helix. As noted above, L∗ is

commonly referred to as a back projection or as the shift-and-add method.

Returning to our goal of solving the normal equations L∗Lf = L∗g, we see that

in order to reconstruct f , we first shift and add g and then attempt to invert the

operator L∗L : L2(R3)→ L2(R3). To do this, we now derive L∗L from (2) and (6):

(L∗Lf)(x, y, z) =

2π∫
0

(Lf)(x+ z cos θ, y + z sin θ, θ) dθ

=

2π∫
0

∞∫
−∞

f(x+ z cos θ − w cos θ, y + z sin θ − w sin θ, w) dw dθ

=

2π∫
0

∞∫
−∞

f(x+ (z − w) cos θ, y + (z − w) sin θ, w) dw dθ.

For any fixed θ, making the substitution t = w − z gives

(L∗Lf)(x, y, z) =

2π∫
0

∞∫
−∞

f(x− t cos θ, y − t sin θ, z + t) dt dθ.

We now notice that L∗L is an example of a well-studied class of linear operators,

namely filters. Filters arise from translations, which are operators that shift a func-

tion’s input by a certain amount. In L∗L, the x, y, and z inputs are shifted by t cos θ,
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t sin θ, and −t, respectively. It is well-known that such filters are diagonalized by

the (continuous) Fourier transform, E∗ : L2(R3)→ L2(R3), defined as

(E∗f)(α, β, γ) :=

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αx+βy+γz)f(x, y, z) dx dy dz.

The Fourier transform is a unitary operator, meaning that E∗ = E−1, where E :

L2(R3)→ L2(R3) is the Inverse Fourier Transform, defined as

(Ef)(x, y, z) :=

∞∫
−∞

∞∫
−∞

∞∫
−∞

e2πi(αx+βy+γz)f(α, β, γ) dα dβ dγ.

To see how the Fourier transform plays a role here, we now apply it to L∗Lf :

(E∗L∗Lf)(α, β, γ)

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αx+βy+γz)(L∗Lf)(x, y, z) dx dy dz

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αx+βy+γz)

2π∫
0

∞∫
−∞

f(x− t cos θ, y − t sin θ, z + t) dt dθ dx dy dz.

Again interchanging integrals (without justification) this becomes

2π∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αx+βy+γz)f(x− t cos θ, y − t sin θ, z + t) dx dy dz dt dθ.

At this point, for any fixed t and θ, we make the change of variables (u, v, w) =

(x − t cos θ, y − t sin θ, z + t). It turns out that the J(u, v, w) for this change of

variables is 1, and so our expression for (E∗L∗Lf)(α, β, γ) becomes

2π∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(α(u+t cos θ)+β(v+t sin θ)+γ(w−t))f(u, v, w) du dv dw dt dθ.
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Once again, we switch the order of integration and our expression becomes

2π∫
0

∞∫
−∞

e−2πi(αt cos θ+βt sin θ−γt)dt dθ

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−2πi(αu+βv+γw)f(u, v, w) du dv dw

=

 2π∫
0

∞∫
−∞

e−2πi(αt cos θ+βt sin θ+γ(−t))dt dθ

 (E∗f)(α, β, γ)

= λ(α, β, γ)(E∗f)(α, β, γ),

where for any (α, β, γ) ∈ R3, the scalar λ(α, β, γ) is defined as

λ(α, β, γ) :=

2π∫
0

∞∫
−∞

e−2πi(αt cos θ+βt sin θ+γ(−t))dt dθ.

That is, we have (E∗L∗Lf)(α, β, γ) = λ(α, β, γ)(E∗f)(α, β, γ), meaning that in the

Fourier domain, L∗L acts as a pointwise multiplication operator. In essence, for

any (α, β, γ) ∈ R3, we have that the function eα,β,γ(x, y, z) := e2πi(αx+βy+γz) is an

eigenfunction for L∗L with corresponding eigenvalue λ(α, β, γ). To understand this

better, we now further investigate λ(α, β, γ). In particular, we write any (α, β) ∈ R2

in polar form as

(α, β) =
√
α2 + β2

(
α√

α2 + β2
,

β√
α2 + β2

)
=
√
α2 + β2(cosφα,β, sinφα,β).
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This allows us to make the following observation:

λ(α, β, γ) =

2π∫
0

∞∫
−∞

e−2πi(αt cos θ+βt sin θ+γ(−t))dt dθ

=

∞∫
−∞

e2πiγt

2π∫
0

e
−2πi
√
α2+β2t

(
α√

α2+β2
cos θ+ β√

α2+β2
sin θ

)
dθ dt

=

∞∫
−∞

e2πiγt

2π∫
0

e−2πi
√
α2+β2t(cosφα,β cos θ+sinφα,β sin θ) dθ dt.

Using the angle sum formula for cosine, we find

λ(α, β, γ) =

∞∫
−∞

e2πiγt

2π∫
0

e−2πi
√
α2+β2t cos(θ−φα,β) dθ dt

=

∞∫
−∞

e2πiγt

π∫
−π

e−2πi
√
α2+β2t cos θ dθ dt

= 2

∞∫
−∞

e2πiγt

π∫
0

e−2πi
√
α2+β2t cos θ dθ dt.

Making the substitution φ = θ − π
2

transforms this expression into

λ(α, β, γ) = 2

∞∫
−∞

e2πiγt

π
2∫

−π
2

e−2πi
√
α2+β2t cos(φ+π

2
) dφ dt

= 2

∞∫
−∞

e2πiγt

π
2∫

−π
2

e−2πi
√
α2+β2t(cosφ cos π

2
−sinφ sin π

2 ) dφ dt

= 2

∞∫
−∞

e2πiγt

π
2∫

−π
2

e2πi
√
α2+β2t sinφ dφ dt.
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At this point, making the substitution u = sinφ, our expression becomes

λ(α, β, γ) = 2

∫ ∞
−∞

e2πiγt

∫ 1

−1

e2πi
√
α2+β2tu 1√

1− u2
du dt

= 2

∞∫
−∞

e2πiγt

∞∫
−∞

e2πi
√
α2+β2tu1(−1,1)(u)√

1− u2
du dt.

Letting v = −u
√
α2 + β2 transforms this expression into

λ(α, β, γ) = 2

∞∫
−∞

e2πiγt

∞∫
−∞

e−2πitv

1(−1,1)

(
−v√
α2+β2

)
√
α2 + β2

√
1− v2

α2+β2

dv dt

= 2

∞∫
−∞

e2πiγt

∞∫
−∞

e−2πitv

1(−1,1)

(
v√

α2+β2

)
√
α2 + β2 − v2

dv dt.

Recognizing this expression to be a composition of a one-dimensional Fourier trans-

form with its inverse, our expression becomes

λ(α, β, γ) = 2

1(−1,1)

(
γ√
α2+β2

)
√
α2 + β2 − γ2

=


2√

α2+β2−γ2
, γ2 < α2 + β2,

0, γ2 ≥ α2 + β2.

Combining this fact with our earlier observation gives

(E∗L∗Lf)(α, β, γ) = (E∗f)(α, β, γ)×


2√

α2+β2−γ2
, γ2 < α2 + β2,

0, γ2 ≥ α2 + β2.
(15)

Note that λ(α, β, γ) = 0 whenever γ2 ≥ α2 +β2. This means L∗L annihilates all the

frequency information of f that lives in the cone {(α, β, γ) : γ2 ≥ α2 + β2}. This

is why this cone is called the “cone of missing information.” This means that even

19



if all the assumptions we made in this chapter were true, in order to reconstruct f

from g we would still be faced with solving a linear system L∗Lf = L∗g where the

null space of L∗L is gigantic. This means that in order to uniquely solve our system,

we must make additional assumptions about f (for example, that f is sparse or its

gradient is sparse), and then reconstruct according to these assumptions. In practice,

such restrictions on f are usually enforced by regularizing our least squares problem

and then performing the reconstruction according to some numerical optimization

scheme. Since, at this point, all of our computations will necessarily become finite-

dimensional, we are led to first investigate how the above derivations generalize to

that setting. As we shall see, in our finite-dimensional CT model, we can rigorously

address all of the technical issues that we oversimplified in this chapter. We now

turn to a discrete, finite-dimensional model that will enable us to rigorously address

all of the issues that were glossed over here.
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III. A discrete mathematical model of chromotomography

Thus far, we have modeled our CT-based hyperspectral imaging system in terms

of line integrals of functions over the continuum. However, as seen in the previous

chapter, most of our derivations in these continuous models are not mathematically

rigorous. In order to increase our understanding of our camera system and to make

our arguments completely legitimate, we now discretize our hyperspectral image f ,

our operator L, and the surrounding theory.

Note that in the continuous model, in order to understand the null space of

L∗L (and thus its noninvertibility), we eventually made use of Fourier transforms.

Therefore, we want a function space over which a Fourier transform can be defined.

Though many such spaces exist, only a select few of these are finite-dimensional,

as needed in order to rigorously derive our CT theory using as little functional and

harmonic analysis as possible. In particular, since our hyperspectral image f will, in

this finite-dimensional model, become a discrete three-dimensional data cube, we use

the three-dimensional Discrete Fourier Transform (DFT). This transform is defined

over spaces of scalar-valued functions of Z3 := Z × Z × Z that are periodic in each

direction. To be precise, for any positive integer P , we consider the space

`(Z3
P ) =

f : Z3 → C

∣∣∣∣∣
f [m,n, p] = f [m+ P, n, p]

= f [m,n+ P, p]

= f [m,n, p+ P ]

, ∀m,n, p ∈ Z

 .

It is well-known that `(Z3
P ) space is a Hilbert space under the inner product

〈f1, f2〉 :=
∑
m∈ZP

∑
n∈ZP

∑
p∈ZP

(f1[m,n, p])∗f2[m,n, p].

Here and throughout, summing over all “m ∈ ZP” means to sum over a set of coset

representatives of the subgroup PZ of the integers Z. For example, one choice of

coset representatives is to take m = 0, ..., P − 1. Note this space has dimension P 3,
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with the only independent quantities of f being the values f [m,n, p] for m,n, p =

0, 1, . . . , P − 1. Recall that in our continuous model, light at frequency z = 0 passes

directly through the prism. Also, when the prism orientation angle θ is 0, light at

frequencies z = 1 and z = −1 is shifted one unit to the right and left, respectively.

In order to keep this same intuition in the discrete setting, it is helpful to regard 0

as the center of ZP . That is, when P is even, we take the coordinates of f to range

from −P
2

to P
2
− 1. Meanwhile when P is odd, we take them from −P−1

2
to P−1

2
.

As seen in (2), the continuous X-ray transform of f ∈ L2(R3) at a given triple

(x, y, θ) ∈ R2 × T is obtained by integrating f(x − z cos θ, y − z sin θ, z) over every

frequency z ∈ R. In the discrete setting, the input for our operator L will be a triple

[m,n, q] where m and n are the horizontal and vertical pixel indices, respectively,

and q represents a discrete angle parameter. Specifically, given some positive integer

Q, let ψ1, ψ2 ∈ `(ZQ,Z) be two Q-periodic integer-valued functions defined over Z.

These functions will play the role of discrete cosines and sines: below, when we

discretize our continuous X-ray transform (2), we will replace the terms z cos θ and

z sin θ with pψ1[q] and pψ2[q], respectively.

For example, if our camera system used Q = 4 angles, we may use the four

evenly-spaced pairs of integers, namely

(ψ1[0], ψ2[0]) = (1, 0),

(ψ1[1], ψ2[1]) = (0, 1),

(ψ1[2], ψ2[2]) = (−1, 0),

(ψ1[3], ψ2[3]) = (0,−1).

(16)

If we wanted to use Q = 8 angles, we could use the “knight’s moves” set:

{(2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2), (1,−2), (2,−1)}. (17)

These 8 points are depicted in Figure 1. We can now form a discrete operator L
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Figure 1: Here we portray the 8 symmetric discrete “angles” known as the “knight’s moves” set, as given in (17).
For this figure, we have chosen P = 13.

which generalizes (2):

(Lf)[m,n, q] =
∑
p∈ZP

f [m− pψ1[q], n− pψ2[q], p]. (18)

That is, instead of integrating over all frequencies z, we now sum over a finite number

of frequencies p ∈ ZP . Note that since f ∈ `(Z3
P ) and ψ1, ψ2 ∈ `(ZQ,Z), then Lf is

(P, P,Q)-periodic. Indeed, the P -periodicity of f gives

(Lf)[m+ P, n, q] =
∑
p∈ZP

f [m+ P − pψ1[q], n− pψ2[q], p]

=
∑
p∈ZP

f [m− pψ1[q], n− pψ2[q], p]

= (Lf)[m,n, q].

The fact that (Lf)[m,n + P, q] = (Lf)[m,n, q] follows similarly. Finally, the Q-

periodicity of ψ1 and ψ2 gives

(Lf)[m,n, q +Q] =
∑
p∈ZP

f [m− pψ1[q +Q], n− pψ2[q +Q], p]

=
∑
p∈ZP

f [m− pψ1[q], n− pψ2[q], p]

= (Lf)[m,n, q].
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That is, Lf lies in the Hilbert space

`(Z2
P × ZQ) =

g : Z3 → C

∣∣∣∣∣
g[m,n, q] = g[m+ P, n, q]

= g[m,n+ P, q]

= g[m,n, q +Q]

, ∀m,n, q ∈ Z

 .

One can immediately see that L : `(Z3
P )→ `(Z2

P ×ZQ) is linear. Also, since `(Z3
P ) is

finite-dimensional, this linear operator is automatically bounded. Moreover, since L

is bounded its adjoint exists. As such, the technicalities we encountered in Chapter II

concerning whether or not L and L∗ are well-defined do not arise here.

Having that L∗ exists, we now parallel the derivation in the continuous setting

in order to find an explicit formula for it. Throughout the following calculations,

summations over the variables m,n, p range over ZP , while those over the variable q

range over ZQ. For any f ∈ `(Z3
P ) and any g ∈ `(Z2

P × ZQ):

〈f ,L∗g〉 = 〈Lf ,g〉

=
∑
m

∑
n

∑
q

((Lf)[m,n, q])∗g[m,n, q]

=
∑
m

∑
n

∑
q

∑
p

(f [m− pψ1[q], n− pψ2[q], p])∗g[m,n, q].

At this point in Chapter II, we interchanged integrals without justification. Here

however, our sums are finite, and so we can interchange them freely:

〈f ,L∗g〉 =
∑
q

∑
p

∑
m

∑
n

(f [m− pψ1[q], n− pψ2[q], p])∗g[m,n, q].
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For any p and q, we now substitute (m′, n′) for (m− pψ1[q], n− pψ1[q]):

〈f ,L∗g〉 =
∑
q

∑
p

∑
m′

∑
n′

(f [m′, n′, p])∗g[m′ + pψ1[q], n′ + pψ2[q], q]

=
∑
m′

∑
n′

∑
p

(f [m′, n′, p])∗
∑
q

g[m′ + pψ1[q], n′ + pψ2[q], q].

That is, the adjoint of L is

(L∗g)[m,n, p] =
∑
q∈ZQ

g[m+ pψ1[q], n+ pψ2[q], q]. (19)

Note the similarities between (6) and (19); the L∗ given here adds up the values of

g over a discrete “helix” centered at [m,n] with radius p.

At this point, recall that we want L∗ in order to help us solve the least squares

problem arg minf ‖Lf − g‖2
2. Since L is a bounded linear operator between Hilbert

spaces, this problem is equivalent to solving the normal equations L∗Lf = L∗g.

Moreover, these equations will have a solution provided the range of L is closed. In

the continuous setting, this was yet another assumption we made in order to proceed.

Here however, we need not make such an assumption since it is automatically true:

the range of L is a subspace of the finite-dimensional space `(Z2
P × ZQ) and so is

necessarily closed. Thus, we can indeed minimize ‖Lf −g‖2
2 by solving L∗Lf = L∗g.

That is, given camera data g ∈ `(Z2
P × ZQ), our first step is to compute L∗g

according to (19). We then attempt to solve the normal equations. To facilitate this,

we now derive an explicit formula for L∗L from (18) and (19):

(L∗Lf)[m,n, p] =
∑
q

(Lf)[m+ pψ1[q], n+ pψ2[q], q]

=
∑
q

∑
p′

f [m+ pψ1[q]− p′ψ1[q], n+ pψ2[q]− p′ψ2[q], p′].
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For any fixed p, letting r = p′ − p gives

(L∗Lf)[m,n, p] =
∑
q∈ZQ

∑
r∈ZP

f [m− rψ1[q], n− rψ2[q], p+ r]. (20)

In Chapter II, we informally discussed how our continuous operator L∗L was

a filter. Now that we are in the discrete setting, we can make this notion rigorous

by using the theory of convolutions. Convolution is a type of vector-vector prod-

uct: it takes any two functions and produces a third. To be precise, we define the

convolution of f1, f2 ∈ `(Z3
P ) as

(f1 ∗ f2)[m,n, p] =
∑
m′∈ZP

∑
n′∈ZP

∑
p′∈ZP

f1[m′, n′, p′]f2[m−m′, n− n′, p− p′]. (21)

This convolutional product is well-known, having many nice properties. In partic-

ular, under standard addition and this notion of multiplication, it turns out that

`(Z3
P ) is a commutative ring with identity δ(0,0,0). Here, for any m0, n0, p0 ∈ Z, the

Dirac-δ function at (m0, n0, p0) is δ(m0,n0,p0) ∈ `(Z3
P ),

δ(m0,n0,p0)[m,n, p] :=

 1, m = m0, n = n0, p = p0, mod P,

0, else.

One way to think about the convolution of f1 and f2 is that it is a “rolling

average” of the values of f1 with coefficients from f2. As we now show, this is
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precisely what our operator L∗L does; we rewrite (20) as

(L∗Lf)[m,n, p] =
∑
q

∑
r

f [m− rψ1[q], n− rψ2[q], p− (−r)]

=
∑
q

∑
r

(δ(rψ1[q],rψ2[q],−r) ∗ f)[m,n, p]

=

(∑
q

∑
r

δr(ψ1[q],ψ2[q],−1)

)
∗ f [m,n, p]

=

(∑
q

hq

)
∗ f [m,n, p]

where, for any q ∈ Z, hq ∈ `(Z3
P ) is a “characteristic function” of the discrete “line”

that consists of all integer multiples of (ψ1[q], ψ2[q],−1):

hq :=
∑
r∈ZP

δr(ψ1[q],ψ2[q],−1). (22)

We can now express L∗L as

L∗Lf = h ∗ f , (23)

where h ∈ `(Z3
P ) represents the “surface” of a discrete “cone”:

h[m,n, p] :=
∑
q∈ZQ

hq[m,n, p] =
∑
q∈ZQ

∑
r∈ZP

δr(ψ1[q],ψ2[q],−1)[m,n, p]. (24)

That is, at any (m,n, p) ∈ Z3, L∗Lf represents an “average” of those values of f that

lie on any one of the Q discrete “lines” of all integer multiples of (ψ1[q], ψ2[q],−1).

For example, when Q = 8 and ψ1, ψ2 correspond to the knight’s moves of (17),

(L∗Lf)[m,n, p] adds up the values of f over the surface of a “cone” consisting of 8

“lines” radiating outward from (m,n, p).

Having that L∗L is a filter, namely, the convolutional operator L∗Lf = h ∗ f ,

we can now better understand it using Fourier transforms. In particular, since our

model is now discrete, we use the Discrete Fourier Transform (DFT), namely the
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operator E∗ : `(Z3
P )→ `(Z3

P ), defined as

(E∗f)[α, β, γ] :=
∑
m∈ZP

∑
n∈ZP

∑
p∈ZP

e−
2πi
P

(αm+βn+γp)f [m,n, p].

It is well-known that the DFT is a scalar multiple of a unitary operator, meaning

its inverse is a scalar multiple of its adjoint. In particular, (E∗)−1 = 1
P 3 E, where

E : `(Z3
P )→ `(Z3

P ),

(Ef)[m,n, p] =
∑
α∈ZP

∑
β∈ZP

∑
γ∈ZP

e
2πi
P

(αm+βn+γp)f [α, β, γ].

It is also well-known that the DFT of a discrete convolution (21) is a scalar multiple

of the pointwise product of their individual DFTs:

(E∗(f1 ∗ f2))[α, β, γ] = (E∗f1)[α, β, γ](E∗f2)[α, β, γ].

Applying this fact to L∗Lf = h ∗ f gives

(E∗L∗Lf)[α, β, γ] = (E∗h)[α, β, γ] (E∗f) [α, β, γ].

Letting λ = (E∗h) allows us to express the DFT of L∗Lf as

(E∗L∗Lf)[α, β, γ] = λ[α, β, γ](E∗f)[α, β, γ].

That is, just like in the continuous setting, L∗L acts as a pointwise multiplica-

tion operator in the Fourier domain. Here, for any (α, β, γ) ∈ Z3, eα,β,γ ∈ `(Z3
P ),

eα,β,γ[m,n, p] = e
2πi
P

(αm+βn+γp) is an eigenfunction for L∗L with corresponding eigen-

value λ[α, β, γ]. This is equivalent to us having L∗L = EΛE∗ where Λ : `(Z3
P ) →

`(Z3
P ) is pointwise multiplication by λ. To better understand the ramifications of
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this fact, we now obtain a simplified expression for λ[α, β, γ]:

λ[α, β, γ] = (E∗h)[α, β, γ]

= (E∗
∑
q

hq)[α, β, γ]

=
∑
q

(E∗hq)[α, β, γ].

From here we will focus on calculating λq[α, β, γ] = (E∗hq)[α, β, γ]:

λq[α, β, γ] =

(
E∗
∑
r

δr(ψ1[q],ψ2[q],−1)

)
[α, β, γ]

=
∑
m

∑
n

∑
p

e−
2πi
P

(αm+βn+γp)
∑
r

δr(ψ1[q],ψ2[q],−1)[m,n, p].

To proceed, we interchange sums:

λq[α, β, γ] =
∑
r

∑
m

∑
n

∑
p

e−
2πi
P

(αm+βn+γp)δr(ψ1[q],ψ2[q],−1)[m,n, p]

=
∑
r

e−
2πi
P

(αrψ1[q]+βrψ2[q]+γ(−r))

=
∑
r

[
e−

2πi
P

(αψ1[q]+βψ2[q]+γ(−1))
]r
.

Using the Geometric Sum Formula, we end up with

λq[α, β, γ] =

P, αψ1[q] + βψ2[q]− γ = 0 mod P,

0, else,

= P

1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

(25)
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Note that the multiplier of P in (25) is the characteristic function of the plane in Z3
P

which is “perpendicular” to (ψ1[q], ψ2[q],−1). We now summarize the main results

of this chapter in the following theorem:

Theorem 1. Let L : `(Z3
P )→ `(Z2

P × ZQ) be the discrete X-ray transform:

(Lf)[m,n, q] :=
∑
p∈ZP

f [m− pψ1[q], n− pψ2[q], p].

The adjoint of L is L∗ : `(Z2
P × ZQ)→ `(Z3

P ),

(L∗g)[m,n, p] =
∑
q∈ZQ

g[m+ pψ1[q], n+ pψ2[q], q].

Moreover, L∗L : `(Z3
P )→ `(Z3

P × ZQ), is a filter, with L∗Lf = h ∗ f , where

h[m,n, p] =
∑
q∈ZQ

∑
r∈ZP

δr(ψ1[q],ψ2[q],−1)[m,n, p].

As such, the DFT of L∗Lf is (E∗L∗Lf)[α, β, γ] = λ[α, β, γ](E∗f)[α, β, γ], where

λ[α, β, γ] =
∑
q∈ZQ

(E∗hq)[α, β, γ]

= P
∑
q∈ZQ

1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

As in the continuous setting, we see that L∗L is not invertible. Indeed, the

null space of L∗L (which equals the null space of L) consists of all f ∈ `(Z3
P ) whose

DFT is completely supported on the set-complement of every plane of the form

{(α, β, γ) ∈ Z3
P : γ = αψ1[q] + βψ2[q] mod P}. Part of this null space corresponds

to a discrete “cone of missing information.” For example, when Q = 4 and ψ1, ψ2

are given by (16), the null space of L is the set of all f whose DFTs are identically

zero on the four planes in Z3
P consisting of the points of the form (α, β, α), (α, β, β),

30



(α, β,−α), and (α, β,−β). The four planes form a rough “cone.” Any f whose DFT is

completely supported on the “interior” of this cone, namely the set {(α, β, γ) : |γ| ≤

min{|α|, |β|}}, lies in the null space of L. All such f ’s are completely annihilated by

L, meaning any solution to L∗Lf = L∗g is only unique up to the addition of such

functions. Because of this non-uniqueness we, in Chapter V, will regularize our least

squares problem with penalty terms that will promote those solutions to the normal

equations which are either sparse or have sparse gradients.

For now however, we turn our attention to a more in-depth comparison of the

above discrete model and the continuous model from Chapter II. We find that despite

being fully rigorous, the discrete model is not entirely faithful to the motivating real-

world physics, and as such, take steps to improve it.
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IV. Approximating continuous chromotomography with a

generalized discrete model

In Chapter II we introduced the linear operator (2) that provides a continuous-

variable model of the CT camera system. In this model, the operator L integrates a

hyperspectral image f over every line of the form {(x−z cos θ, y−z sin θ, z) : z ∈ R}.

The xy-projection of an example of such a line is depicted in Figure 2(a). Here θ is

chosen so that this line has slope 1
2
, that is, so that tan θ = 1

2
. Every point on the line

seen in Figure 2(a) contributes to our measurement (Lf)(x, y, θ). In Chapter III,

we created a discrete version (18) of the X-ray transform. This operator behaves

similarly to the continuous version in that it sums the values of a data cube f over

discrete “lines,” namely over all points of the form {(m− pψ1[q], n− pψ2[q], p) : p ∈

ZP}. Figure 2(b) depicts these points for a discrete “line” that has the same slope

as the continuous line of Figure 2(a), namely one in which ψ1[q] = 2, ψ2[q] = 1.

Note there are two main differences between the continuous version seen in

Figure 2(a) and the discrete version depicted in Figure 2(b). The first difference is

that due to the periodicity in the discrete model, the discrete line “wraps around” the

edges of our grid. We do not address this issue here. The second difference is that the

discrete operator only takes into account the integer multiples of (ψ1[q], ψ2[q],−1),

and therefore “skips over” the pixels that lie between p(ψ1[q], ψ2[q],−1) and (p +

1)(ψ1[q], ψ2[q],−1). This chapter attempts to improve our discrete model by taking

these “skipped” pixels into account.

In particular, rather than attempt to fully reconcile the discrete operator L

with the continuous one, L, we instead try to relate L to a periodic analog of L. To

be precise, let TP := R/(PZ) be the real numbers modulo P . Recall the operator

L is applied to functions f : R3 → R. We now generalize it to another operator LP

that is applied to the P -periodic functions f : T3
P → R. To do this, recall that L

integrates f over lines of the form {(x− z cos θ, y − z sin θ, z) : z ∈ R}. In order for

the image of these lines in T3
P to have finite length, it turns out that we must only
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Figure 2: (a) In Chapter II, we investigate the continuous X-ray transform (2) which, of all the models presented
here, provides the most accurate representation of the underlying real world physics of the CT camera
system. This operator L integrates over lines of the form (x − z cos θ, y − sin θ, z). In this figure we
depict the xy-projection of one of these three-dimensional lines, namely the one in which tan θ = 1

2
and (x, y) = (0, 0). In Chapter II, we discuss how L∗L is a filter and can thus be diagonalized by the
continuous Fourier transform. Examining L∗L in the Fourier domain allows us to identify the “cone of
missing information,” that is, the frequency information of f annihilated by L∗L. Unfortunately, it is
difficult to make the theory from that chapter rigorous, motivating us to turn to the discrete theory in
Chapter III. (b) In Chapter III we create a discrete version of L, that is, we create the operator L that
sums over discrete “lines” of the form (m−pψ1[q], n−pψ2[q], p). In this figure we depict a discrete version
of the continuous line depicted in (a), namely one in which (ψ1[q], ψ2[q]) = (2, 1). In Chapter III, we show
that L∗L convolves f with a sum of characteristic functions of lines of this form and can be understood
by applying the DFT to it. In a similar manner to Chapter II, investigating L∗L in the Fourier domain,
we see that L∗L eliminates the frequency components of f whose DFT is completely supported on the
complement of every plane of the form γ = αψ1[q]+βψ2[q] mod P . This roughly corresponds to a discrete
“cone of missing information.” In this chapter, we focus on generalizing the discrete theory of Chapter III
so as to make it better approximate the continuous theory of Chapter II. To do this, we modify the discrete
“line” in (b) to make it look more like the continuous line (a).

use angles θ for which tan θ is rational. That is, we take LP to integrate over lines

of the form {(x − zψ1[q], y − zψ2[q], z) : z ∈ TP} where, for any angle parameter q,

we require ψ1[q], ψ2[q] ∈ Z. That is, for any f ∈ L2(T3
P ) we let

(LPf)(x, y, q) :=

∫
TP

f(x− zψ1[q], y − zψ2[q], z) dz. (26)

For example, for P = 13 and (ψ1[q], ψ2[q]) = (2, 1), the line that LP integrates over

is depicted in Figure 3(a). To see how a continuous integral over such a line can

be related to a discrete sum over the “line” in Figure 2(b), it is helpful to overlay

Figure 3(a) with a grid of pixels; see Figure 3(b). In particular, we claim that if f is
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Figure 3: (a) To reconcile the operators L and L alluded to in Figure 2, we introduce a periodic version of the
continuous X-ray transform. This continuous, periodic operator LP , formally defined in (30), integrates
over lines on a torus, which forces the “wrap around” effect, depicted here. While this model is not as
physically realistic as L—space and color are not cyclic—it seems more realistic than the discrete periodic
operator L. However, this model is not ideal because, being analog rather than digital, it cannot exploit
modern computational hardware. In order to make this continuous-periodic model more conducive for
such computations, we, in Chapter IV, take steps to bridge the gap between it and our non-realistic but
computational-friendly discrete-periodic operator L. (b) Intuitively, if a continuous, P -periodic function
f were sampled finely enough, we should be able to discretize its X-ray transform LP f in terms of finite
sums. Graphically, we can think of this process as overlaying our continuous torus with an integer grid, as
depicted here. Each square represents a region over which we assume our continuous function f assumes a
constant value. Identifying this continuous function with its integer samples f we, in Theorem 2, show that
the continuous-periodic X-ray transform of f indeed equals a weighted version of the discrete-periodic X-ray
transform of f . (c) In order to relate LP f to the discrete theory of Chapter III, it turns out it is necessary
to generalize our discrete periodic X-ray transform L to another operator K that contains additional
weight parameters w[a, b]. As explained in Theorem 2, these weights are related to the proportion of our
continuous line that lives in any given square. In essence, we form a discretized version of (a) by overlaying
it with a grid (b). This results in a weight function (c). That is, when compared to a sum over the
points depicted in Figure 2(b), summing over the weights in (c) does a better job of approximating the
integral over the line depicted in (a). After Theorem 2, the remainder of this chapter is devoted to showing
that K shares many of the nice computational properties of L. That is, the point of this chapter is to
show how, under slight modification, the discrete perspective of Chapter III can indeed be used to form a
computationally efficient, mathematically rigorous, and physically realistic discretization of the continuous
theory in Chapter II.

sampled at a high enough resolution (i.e., if the grid in Figure 3(b) is fine enough)

the integral of f over the continuous line is essentially equal to a weighted sum of the

integer samples of f ; see Figure 3(c). Moreover, the values of these weights follow

patterns similar to our discrete “line” in Figure 2(b). The remainder of this chapter

is devoted to making these notions rigorous and then exploring their consequences.

As before, for the sake of readability we suppress the domains of the indices of

summation; sums over the variables m,n, p, a, b, c range over ZP , while those over

the variable q range over ZQ.

Specifically, we make the simplifying assumption that our continuous-variable

periodic function f : T3
P → R has been sampled so finely that it is effectively
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piecewise constant. That is, letting f ∈ `(Z3
P ) denote the integer samples of f , we

assume that for almost every (x, y, z) ∈ T3
P , f(x, y, z) has the form

f(x, y, z) =
∑

a,b,c∈ZP

f [a, b, c]1
(a,b,c)+[− 1

2
, 1
2 ]

3(x, y, z). (27)

Here, the function 1
(a,b,c)+[− 1

2
, 1
2 ]

3 : T3
P → R is the characteristic function of the cube

{
(x, y, z) ∈ T3

P : a− 1

2
≤ x ≤ a+

1

2
, b− 1

2
≤ y ≤ b+

1

2
, c− 1

2
≤ z ≤ c+

1

2

}
.

Replacing (a, b, c) with (a′, b′, c′) and substituting this expression for f into our con-

tinuous periodic operator (26) gives

(LPf)(x, y, q) =

∫
TP

∑
a′,b′,c′

f [a′, b′, c′]1
(a′,b′,c′)+[− 1

2
, 1
2 ]

3(x− zψ1[q], y − zψ2[q], z) dz.

To proceed, we decompose the integral over TP =
[
−1

2
, P − 1

2

)
into a sum of P

integrals, each over an interval of the form
[
p− 1

2
, p+ 1

2

)
for some p = 0, ..., P − 1:

(LPf)(x, y, q) =
∑
p

p+ 1
2∫

p− 1
2

∑
a′,b′,c′

f [a′, b′, c′]1
(a′,b′,c′)+[− 1

2
, 1
2 ]

3(x− zψ1[q], y − zψ2[q], z) dz.

Distributing this integral over finite sums and scalar multiples gives

(LPf)(x, y, q) =
∑
p

∑
a′,b′,c′

f [a′, b′, c′]

p+ 1
2∫

p− 1
2

1
(a′,b′,c′)+[− 1

2
, 1
2 ]

3(x− zψ1[q], y − zψ2[q], z) dz.

At this point, we further assume that (x, y) lies on the integer grid. That is, we

assume that (x, y) = (m,n) for some m,n ∈ Z. Thus, for any p, we can substitute
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(x− pψ1[q]− a, y − pψ2[q]− b, p− c) for (a′, b′, c′), yielding

(LPf)(x, y, q)

=
∑
p

∑
a,b,c

f [x− pψ1[q]− a, y − pψ1[q]− b, p− c]

×

p+ 1
2∫

p− 1
2

1
(x−pψ1[q]−a,y−pψ2[q]−b,p−c)+[− 1

2
, 1
2 ]

3(x− zψ1[q], y − zψ2[q], z) dz

=
∑
p

∑
a,b,c

wq[a, b, c]f [x− pψ1[q]− a, y − pψ1[q]− b, p− c],

where wq ∈ `(Z3
P ) is the q-dependent weight function

wq[a, b, c] :=

p+ 1
2∫

p− 1
2

1
(x−pψ1[q]−a,y−pψ2[q]−b,p−c)+[− 1

2
, 1
2 ]

3(x− zψ1[q], y − zψ2[q], z) dz.

We now simplify our expression for wq. First, by writing out the formula for the

characteristic function and simplifying, we observe that

wq[a, b, c] =

p+ 1
2∫

p− 1
2

1
(a,b,c)+[− 1

2
, 1
2 ]

3((z − p)ψ1[q], (z − p)ψ2[q], p− z) dz.

Next, for any fixed p we substitute t = z − p to obtain

wq[a, b, c] =

1
2∫

− 1
2

1
(a,b,c)+[− 1

2
, 1
2 ]

3(tψ1[q], tψ2[q],−t) dt. (28)

Here, as t ranges from −1
2

to 1
2
, (tψ1[q], tψ2[q],−t) traces out a segment of the line

that, for a given q, passes through (0, 0, 0) and (ψ1[q], ψ2[q],−1). This line corre-

sponds to the same discrete “line” that we sum over in our discrete CT model (18).

Examining (28), we further note that since −1
2
≤ t ≤ 1

2
, in order for wq(a, b, c) to
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be non-zero, we must have that c = 0. Therefore, we can write (28) as a function of

only two variables:

wq[a, b] =

1
2∫

− 1
2

1
(a,b)+[− 1

2
, 1
2 ]

2(tψ1[q], tψ2[q]) dt. (29)

We now summarize these results in the following theorem:

Theorem 2. Making the assumption that the hyperspectral data cube f(x, y, z) is a

piecewise constant (27), the continuous periodic X-ray transform (26) of f : T3
P → R

at any (x, y) = (m,n) ∈ Z2 is a sum of the form

(LPf)(m,n, q) =
∑
p∈ZP

∑
a,b∈ZP

wq[a, b]f [m− pψ1[q]− a, n− pψ2[q]− b, p] (30)

where wq[a, b] is given by (29).

Inspired by this result, given any ψ1, ψ2 ∈ `(ZQ,Z) and weight functions

{wq}Q∈ZQ ⊆ `(Z2
P ), consider the operator K : `(Z3

P )→ `(Z2
P × ZQ),

(Kf)[m,n, q] =
∑
p∈ZP

∑
a,b∈ZP

wq[a, b]f [m− pψ1[q]− a, n− pψ2[q]− b, p]. (31)

Theorem 2 tells us that the continuous X-ray transform of f ∈ L2(T3
P ) can be well-

approximated by sums of the form Kf where f ∈ `(Z3
P ), provided the weights are

taken according to (29). Moreover, note that our formula (31) for K is only a slight

generalization of the formula (18) of our purely discrete X-ray transform L. As such,

it is reasonable to hope that the theory that we developed in Chapter III will carry

over to this setting. We now show that this is indeed the case.

In the derivations that follow, it is helpful to regard the two-dimensional func-

tion wq ∈ `(Z3
P ) as a three-dimensional function wq ∈ `(Z3

P ) where wq[a, b, c] :=

wq[a, b]δ0[c]. Note this implies wq[a, b] =
∑

c wq[a, b, c], at which point our formula
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for K becomes

(Kf)[m,n, q] =
∑
p

∑
a,b,c

wq[a, b, c]f [m− pψ1[q]− a, n− pψ2[q]− b, p− c].

As in Chapter III, it is not hard to show that this K is a well-defined bounded

linear operator from `(Z3
P ) into `(Z2

P × ZQ). Moreover, our method for computing

L∗ generalizes to a method for computing K∗:

〈f ,K∗g〉

= 〈Kf ,g〉

=
∑
m,n

∑
q

((Kf)[m,n, q])∗g[m,n, q]

=
∑
a,b,c

∑
q

∑
m,n,p

(wq[a, b, c]f [m− pψ1[q]− a, n− pψ2[q]− b, p− c])∗g[m,n, q].

Continuing, for any q ∈ ZQ and a, b, c ∈ ZP , we make the substitution (m′, n′, p′) =

(m− pψ1[q]− a, n− pψ1[q]− b, p− c). Our expression for 〈f ,K∗g〉 then becomes

∑
a,b,c

∑
q

∑
m′,n′,p′

(f [m′, n′, p′])∗(wq[a, b, c])
∗

× g[m′ + (p′ + c)ψ1[q] + a, n′ + (p′ + c)ψ2[q] + b, q]

=
∑

m′,n′,p′

(f [m′, n′, p′])∗

×
∑
q

∑
a,b,c

(wq[a, b, c])
∗g[m′ + (p′ + c)ψ1[q] + a, n′ + (p′ + c)ψ2[q] + b, q].

At this point, we replace (a, b, c) with its negative, and write (wq[−a,−b,−c])∗ as

w̃q[a, b, c]; in the signal processing literature, the conjugate-reversal w̃q of w is known

as the involution of w. This yields the following expression for 〈f ,K∗g〉:

∑
m′,n′,p′

(f [m′, n′, p′])∗
∑
q

∑
a,b,c

w̃q[a, b, c]g[m′+ (p′− c)ψ1[q]− a, n′+ (p′− c)ψ2[q]− b, q].
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Thus, the adjoint of K is necessarily

(K∗g)[m,n, p] =
∑
q

∑
a,b,c

w̃q[a, b, c]g[m+ (p− c)ψ1[q]− a, n+ (p− c)ψ2[q]− b, q].

Since wq[a, b, c] = wq[a, b]δ0(c) and w̃q[a, b, c] = w̃q[a, b]δ0(c) this becomes

(K∗g)[m,n, p] =
∑
q∈ZQ

∑
a,b∈ZP

w̃q[a, b]g[m+ pψ1[q]− a, n+ pψ2[q]− b, q]. (32)

Note that this expression for K∗ is a generalization of that for L∗. Indeed, it becomes

L∗ provided we take wq = δ(0,0). Similarly, our expression (20) for L∗L generalizes

to one for K∗K:

(K∗Kf)[m,n, p]

=
∑
q

∑
a,b,c

w̃q[a, b, c](Kf)[m+ (p− c)ψ1[q]− a, n+ (p− c)ψ2[q]− b, q]

=
∑
q

∑
a′,b′,c′

∑
a,b,c

wq[a
′, b′, c′]w̃q[a, b, c]

×
∑
p′

f [m+ (p− p′ − c)ψ1[q]− a− a′, n+ (p− p′ − c)ψ2[q]− b− b′, p′ − c′].

Making the substitution r = p′ − p+ c, our expression now becomes

(K∗Kf)[m,n, p] =
∑
q

∑
a′,b′,c′

∑
a,b,c

wq[a
′, b′, c′]w̃q[a, b, c]

×
∑
r

f [m− rψ1[q]− a− a′, n− rψ2[q]− b− b′, p+ r − c− c′].

Recalling that L∗L could be expressed as a convolution, it is not surprising that

K∗K follows a similar pattern. To see this, recall the functions {hq}q∈ZQ defined

in (22) which correspond to “characteristic functions” of discrete “lines.” The last

summations in our above expression for K∗K can be written in terms of convolutions
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of f with these hq’s:

(K∗Kf)[m,n, p]

=
∑
q

∑
a′,b′,c′

∑
a,b,c

wq[a
′, b′, c′]w̃q[a, b, c](hq ∗ f)[m− a− a′, n− b− b′, p− c− c′]

=
∑
q

∑
a,b,c

w̃q[a, b, c][wq ∗ (hq ∗ f)][m− a, n− b, p− c]

=
∑
q

(w̃q ∗ [wq ∗ (hq ∗ f)]) [m,n, p].

Since convolutions are associative, commutative, and distributive, we can rewrite

this expression for K∗K as

(K∗Kf) =

∑
q∈ZQ

[(wq ∗ w̃q) ∗ hq]

 ∗ f . (33)

That is, K∗K is the act of filtering by
∑

q(w ∗ w̃q) ∗ hq. As a quick check on our

derivation, note that (33) becomes (23) when we take wq = w̃q = δ(0,0,0) for all q.

Since K∗K can be expressed as a convolution, in order to understand it better,

we once again turn to the DFT. Recall from (25) that

λq[α, β, γ] = (E∗hq)[α, β, γ]

= P

1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

(34)

Next, it is well-known that the DFT of w̃ is the complex conjugate of the DFT of

w. Indeed, replacing (a, b, c) with its negative gives

(E∗w̃q)[α, β, γ] =

(∑
a,b,c

e−
2πi
P

(αa′+βb′+γc′)wq[a, b, c]

)∗
= {(E∗wq)[α, β, γ]}∗.
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Now recall that these wq’s are intended to be the three-dimensional extensions of

those two-dimensional weight functions defined in (29). That is, given wq ∈ `(Z2
P ),

we regard it as wq ∈ `(Z3
P ) by letting wq[a, b, c] := wq[a, b]δ0[c]. The three-

dimensional DFTs of such functions are equal to the two-dimensional DFTs of their

restriction to Z2
P :

(E∗wq)[α, β, γ] =
∑
a,b,c

e−
2πi
P

(αa+βb+γc)wq[a, b, c]

=
∑
a,b,c

e−
2πi
P

(αa+βb+γc)wq[a, b]δ0[c]

=
∑
a,b

e−
2πi
P

(αa+βb)wq[a, b]

= (E∗wq)[α, β].

As such, we actually have

(E∗K∗Kf)[α, β, γ] =
∑
q∈ZQ

|(E∗wq)[α, β]|2 λq[α, β, γ](E∗f)[α, β, γ]. (35)

We summarize (31), (32), (34), and (35) in the following theorem:

Theorem 3. Given ψ1, ψ2 ∈ `(ZQ,Z) and {wq}q∈ZQ ⊆ `(Z2
P ), consider the corre-

sponding weighted discrete X-ray transform K : `(Z3
P )→ `(Z2

P × ZQ),

(Kf)[m,n, q] =
∑
p∈ZP

∑
a,b∈ZP

wq[a, b]f [m− pψ1[q]− a, n− pψ2[q]− b, p].

The adjoint of K is K∗ : `(Z2
P × ZQ)→ `(Z3

P ),

(K∗g)[m,n, p] =
∑
q∈ZQ

∑
a,b∈ZP

(wq[a, b])
∗g[m+ pψ1[q] + a, n+ pψ2[q] + b, q].
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Moreover, K∗K : `(Z3
P )→ `(Z3

P × ZQ) is a filter. Specifically, for any f ∈ `(Z3
P ),

(E∗K∗Kf)[α, β, γ] = κ[α, β, γ](E∗f)[α, β, γ],

where the eigenvalue function κ ∈ `(Z3
P ) is

κ[α, β, γ] = P
∑
q∈ZQ

|(E∗wq)[α, β]|2

1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

To see how this result helps us to better understand K∗K, we now examine κ

in the example where ψ1 and ψ2 correspond to the “knight’s moves” of (17), depicted

in Figure 1. In particular, for q = 0, we have ψ1[0] = 2 and ψ2[0] = 1. In this case,

our expression (29) for our zeroth weight function is

w0[a, b] =

1
2∫

− 1
2

1
(a,b)+[− 1

2
, 1
2 ]

2(2t, t) dt.

Note w0[a, b] = 0 unless b = 0. Moreover, for b = 0 it turns out that w0[a, b] 6= 0

only when a = −1, 0, 1. To be precise, in this case, it is easy to show that

w0[a, b] =



1
2
, (a, b) = (0, 0),

1
4
, (a, b) = (1, 0),

1
4
, (a, b) = (−1, 0),

0, else.
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Meanwhile when q = 1, we have ψ1[1] = 1, ψ2[1] = 2, and so

w1[a, b] =

1
2∫

− 1
2

1
(a,b)+[− 1

2
, 1
2 ]

2(t, 2t) dt.

The calculation of w1 yields a result similar to the one for w0:

w1[a, b] =



1
2
, (a, b) = (0, 0),

1
4
, (a, b) = (0, 1),

1
4
, (a, b) = (0,−1),

0, else.

Further calculations shows that w3, w4 and w7 are all equal to w0, while w2, w5

and w6 equal w1, reflecting the inherent symmetries of the “knight’s moves” set. In

order to understand the ramifications of Theorem 3 in this setting, we must compute

the DFTs of the wq’s. In particular, the DFT of w0 is

(E∗w0)[α, β] =
∑
a,b

e−
2πi
P

(αa+βb)w0[a, b]

=
1

2
e0 +

1

4
e−

2πi
P
α +

1

4
e−

2πi
P

(−α)

=
1

2
+

1

2
cos
(

2πα
P

)
=

1

2

(
1 + cos

(
2πα
P

))
= cos2

(
πα
P

)
.

In a similar manner, it can be shown that the DFT of w1 (which equals that of

w2,w5, and w6) is cos2 (πβ/P ). Thus, for the “knight’s moves” example, K∗K acts
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as a pointwise multiplication operator in the Fourier domain, multiplying E∗f by κ

which, by Theorem 3, is given by

κ[α, β, γ] =
∑
q

|(E∗wq)[α, β]|2 λq[α, β, γ]

= P cos4(πα
P

)
∑

q∈{0,3,4,7}


1, γ = αψ1[q] + βψ2[q] mod P,

0, else

+ P cos4(πβ
P

)
∑

q∈{1,2,5,6}


1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

We now compare this result—obtained via the more realistic CT model introduced in

this chapter—against that given in Chapter III. There, the unweighted discrete op-

erator L∗L also acts a pointwise multiplication operator in the Fourier domain. But

whereas E∗K∗Kf = κE∗f where κ is given above, L∗L instead satisfies E∗L∗Lf =

λE∗f , where λ is an unweighted version of κ, namely

λ[α, β, γ] =
7∑
q=0


1, γ = αψ1[q] + βψ2[q] mod P,

0, else.

That is, the main difference between the two approaches is the presence of the

cos4(πα
P

) and cos4(πβ
P

) weights in the more realistic model—more realistic in the

sense that K more closely imitates the continuous X-ray transform than L does.

These weights in frequency space are nonnegative, no more than 1 in magnitude,

and decay to 0 at the edges of our
[
−P

2
, P

2

]2
grid. This decay means that K∗K does

a worse job of preserving f ’s high frequency content than L∗L does. This makes

sense: by design, K∗K does a better job modeling the continuous “blur” induced

by our prism. Such blurring will, in reality, destroy high spatial frequency content.
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We thus see that we pay a price for making our discrete model more faithful to the

continuous one: given L∗Lf , we can recover all parts of the DFT of f that lie on

the planes perpendicular to {(ψ1[q], ψ2[q],−1)}q∈ZQ ; given K∗Kf , the information

contained in the edges of these planes is unreliable.

We emphasize that the above observations regarding L∗L versus K∗K were

made in the special case where {(ψ1[q], ψ2[q]}q∈ZQ corresponded to the knight’s moves

of (17). We do not know whether this same behavior occurs in general. Nevertheless,

there are some things we can say. First, both the operator L∗L of Theorem 1 and

K∗K of Theorem 3 are filters, and the only difference between their eigenvalue func-

tions λ and κ is the presence of additional weight terms in κ. More can be said when

we require these weights |(E∗wq)[α, β]|2 to arise from wq’s of the form (29), such as is

needed for Theorem 3 to hold. In particular, such wq’s necessarily have nonnegative

values. Moreover, like we saw in the above example, these values necessarily sum to

1:

∑
a,b∈ZP

wq[a, b] =
∑
a,b∈ZP

1
2∫

− 1
2

1
(a,b)+[− 1

2
, 1
2 ]

2(tψ1[q], tψ2[q]) dt

=

1
2∫

− 1
2

( ∑
a,b∈ZP

1
(a,b)+[− 1

2
, 1
2 ]

2

)
(tψ1[q], tψ2[q]) dt

=

1
2∫

− 1
2

1
[− 1

2
,P+ 1

2 ]
2(tψ1[q], tψ2[q]) dt

=

1
2∫

− 1
2

1 dt

= 1.
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This forces the corresponding weights in the frequency domain to be no more than 1

for every (α, β) ∈ Z2
P :

|(E∗wq)[α, β]|2 =

∣∣∣∣∑
a,b

e−
2πi
P

(αa+βb)wq[a, b]

∣∣∣∣2
≤
(∑

a,b

∣∣∣e− 2πi
P

(αa+βb)wq[a, b]
∣∣∣)2

=

(∑
a,b

wq[a, b]

)2

= 1.

In order to determine the rate of decay of |(E∗wq)[α, β]|2, we would probably need

to first find explicit expressions for the DFTs of weight functions that have the form

of (29). Our preliminary investigation of this quantity leads us to believe that such

a computation is nontrivial. As such, we leave it for future work.

Regardless of whether we use L∗L or K∗K, we are still faced with solving a

linear system with a large null space. Because of this, we now regularize our least

squares problem with penalty terms that will promote those solutions to the normal

equations which are either sparse or have sparse gradients.
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V. Chromotomographic reconstruction via the Split

Bregman Method

Throughout this thesis our efforts have been focused toward creating and understand-

ing a discrete model of the X-ray transform. From a computational standpoint, a

discrete model is necessary: the best reconstruction algorithms are discrete in nature,

and make use of modern computational hardware. In the following discussion, we

present the ideas in terms of the discrete X-ray transform L of Chapter III. However,

the same ideas can easily be applied to its generalization K given in Chapter IV.

At its core, the CT reconstruction problem involves computing the f that solves the

equation Lf = g for given camera measurements, g. However, as mentioned in the

introduction, if our measurements are noisy, that is g = Lf0 + ε, this equation may

not even have a solution.

This issue motivates us to turn to the method of linear least squares. That is,

finding the f that makes Lf as close to g as possible by solving arg minf ‖Lf − g‖2
2.

Since L is a bounded linear operator, the standard Hilbert space theory of linear

least squares tells us that we can solve this minimization problem by instead solving

the normal equations, L∗Lf = L∗g. To do this, in the previous chapters we have

rigorously derived expressions for L∗ and L∗L. Further investigation gave us that

L∗L is a type of operator known as a filter that is best understood from a frequency-

based perspective. In particular, after examining it in the Fourier domain, we find

that L∗L destroys information; see Chapter III. Specifically, L∗L has a nontrivial

null space consisting of those functions whose Fourier transforms are supported on

the set-complements of certain discrete planes.

Due to the size of L∗L’s null space, there are an infinite number of solutions

to the normal equations, meaning we must make some further assumptions about

the f ’s we wish to reconstruct. The intended purpose of the CT camera system

is to monitor transient events that take place in natural scenes. In particular, if

the transient event is very bright relative to the surrounding background, such as
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a fireball, it is reasonable to restrict f to be sparse, meaning it has few nonzero

entries. In addition to being a natural model for such signals, this allows us to

make use of the many recent developments in the fields of sparse signal processing

and compressed sensing. To be precise, of the infinite number of solutions f to the

normal equations, we would like to choose the one solution whose zero “norm” ‖f‖0

is as small as possible. Here ‖f‖0 denotes the number of nonzero entries of f . That

is, in order to find the sparsest solution to the normal equations, we want to solve

arg min
f
‖f‖0 subject to L∗Lf = L∗g.

However, the zero “norm” is not well-behaved: it is not a norm, nor is it differentiable,

nor is it convex. Instead we will take the now-standard approach of using the 1-norm

as a proxy for the zero “norm,” and attempt to solve

arg min
f
‖f‖1 subject to L∗Lf = L∗g. (36)

Here, the 1-norm of f ∈ `(Z3
P ) is defined to be

‖f‖1 :=
∑
m∈ZP

∑
n∈ZP

∑
p∈ZP

|f [m,n, p]| .

It turns out that due to the size of L’s null space, finding a direct solution to (36) is

still too computationally difficult. The standard way of getting around this issue is

to regularize (36) by adding a term that penalizes large values of ‖Lf − g‖2
2. That

is, to find a sparse f for which Lf is close to g, we want to solve the unconstrained

optimization problem

arg min
f
‖f‖1 +

µ

2
‖Lf − g‖2

2, (37)

where µ is some experimentally chosen weight. This problem is itself highly nontriv-

ial. In short, if our task was to simply solve arg minf ‖Lf − g‖2
2 we would be able

to find (many) solutions using standard linear least squares. On the other hand,
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if L was the identity, it is known that we can solve minf ‖f‖1 + µ
2
‖f − g‖2

2 using a

technique known as shrinkage, or soft-thresholding :

f = shrink(g, 1
µ
) := sign(g)�max{|g| − 1

µ
, 0}.

Here the sign and max functions are evaluated coordinate-wise, and the � denotes

pointwise vector multiplication. Unfortunately, our problem does not fit into either

of these “simple” frameworks, and we must use a more complicated approach. In

short, it is the combination of minimizing ‖f‖1 and the 2-norm of a function of f

that makes finding a solution to (37) so difficult.

To make this hard optimization problem more tractable, we instead attempt

to solve a modified version of (37) obtained by transforming it into a two-variable

problem. That is, we attempt to solve

arg min
f ,d

‖d‖1 +
µ

2
‖Lf − g‖2

2 subject to d = f .

Of course, this is simply a restatement of (37) and is truly no easier to directly solve.

Nevertheless, this two-variable formulation helps us think about this problem in a

new way. In particular, we can attempt to enforce our d = f constraint by adding a

new penalty term, once again yielding an unconstrained optimization problem:

arg min
f ,d

‖d‖1 +
µ

2
‖Lf − g‖2

2 +
ν

2
‖d− f‖2

2. (38)

In practice, in order to ensure that our Lf = g and d = f constraints are adequately

enforced, it is common to try to solve (38) for larger and larger values of µ and ν and

use the “eye test” to find the best apparent solution. Notice though, that as µ and

ν get very large, the 1-norm term becomes insignificant and we are essentially again

solving an ill-conditioned problem. Putting aside this issue for the moment, note

that for any fixed µ and ν, it is not obvious how to find an optimal d and f . One
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approach to solving (38) involves alternating minimizations, where we iteratively

calculate new values of f and d according to:

fk+1 = arg min
f

µ

2
‖Lf − g‖2

2 +
ν

2
‖dk − f‖2

2,

dk+1 = arg min
d
‖d‖1 +

ν

2
‖d− fk+1‖2

2.

The issue with this approach is that dk+1 = shrink(fk+1, 1/ν) meaning that d and f

will never be equal.

Fortunately, the Split Bregman method of [11] gives a way to circumvent both

of these problems. In the Split Bregman method we, like above, alternate between

finding the optimal d for a given f and finding the optimal f for a given d. How-

ever, unlike the above algorithm, the Split Bregman method introduces extra “noise”

parameters that, when taken into account, allow this alternating optimization ap-

proach to converge. In order to understand the Split Bregman method, we must first

understand its predecessor, known as Bregman Iteration.

5.1 Bregman Iteration

Bregman iteration [5] provides an alternative method for minimizing a given

convex functional E(u) according to a constraint of the form H(u) = 0. Here, H

is assumed to be a differentiable convex functional whose minimum value is 0. In

the context of the CT reconstruction, u will become our pair of variables (d, f), and

H(u) and E(u) will be taken to be

E(u) = E(d, f) = ‖d‖1 +
µ

2
‖Lf − g‖2

2,

H(u) = H(d, f) =
1

2
‖d− f‖2

2. (39)

As mentioned in the previous section, the traditional method for enforcing the con-

straint H(u) = 0 is to add a penalty term to our objective function E(u). That is
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we attempt to solve

arg min
u

E(u) + νH(u) (40)

for larger and larger values of ν. This however can lead to numerical instabilities for

large values of ν. As a remedy to this problem, Bregman iteration takes a different

approach. Specifically, it uses the concept of “Bregman distance,” which is the

“error” between the convex functional E and its supporting linear approximation,

namely the function

Dp
E(u,v) = E(u)− E(v)− 〈p,u− v〉.

Here, p is a subgradient of E at v, namely a member of the subdifferential set

∂E(v) := {p ∈ [`(Z3
P )]2 : E(u) ≥ E(v) + 〈p,u− v〉, ∀u}.

To be clear, Bregman iteration does not require E to be differentiable but rather,

only convex. At any point v where E is differentiable the only p ∈ ∂E is its gradient

OE(v). This can be understood by considering the first-order Taylor approximation,

or linearization, of E at v: E(u) ≈ E(v) + 〈OE(v),u − v〉. Because E is convex,

this approximation is from below, that is, E(u) ≥ E(v) + 〈OE(v), u − v〉 for all u

and so OE(v) ∈ ∂E(v). At points v at which E is not differentiable, one can show

that there nevertheless exist vectors p for which E(u) ≥ E(v) + 〈p,u − v〉 for all

u. As stated above, any such vector p is called a subgradient of E at v, and the

(nonempty) collection of all such subgradients is denoted ∂E(v).

In Bregman iteration, rather than attempt to solve (40) over and over again

for larger and larger values of ν, we instead fix ν, make an initial guess u0, and

iteratively solve a version of (40) where our objective function E(u) is replaced with
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the Bregman distance from a given uk:

uk+1 = arg min
u

Dpk

E (u,uk) + νH(u).

Note this requires us to find an explicit subgradient pk for E at every given uk.

In practice, this is accomplished by choosing u0 to be any minimizer of the un-

constrained functional E(u), which permits us to take our initial subgradient to be

p0 = 0. To derive a formula that iteratively updates p, remember that H is differen-

tiable, and since uk+1 minimizes Dpk

E (u,uk) + νH(u), subdifferential theory informs

us that

0 ∈ ∂
[
Dpk

E (u,uk) + νH(u)
]
|u=uk+1

= ∂
[
E(u)− E(uk)− 〈pk,u− uk〉+ νH(u)

]
|u=uk+1 .

Since −E(uk)− 〈pk,u− uk〉+ νH(u) is differentiable, this simplifies to

0 ∈ ∂E(u)|u=uk+1 + O
[
−E(uk)− 〈pk,u− uk〉+ νH(u)

]
|u=uk+1

= ∂E(u)|u=uk+1 − pk + ν(OH)(uk+1).

Since pk+1 ∈ ∂E(uk+1) this tell us it suffices to take

pk+1 := pk − νOH(uk+1).

To summarize, traditional Bregman iteration is to let u0 be a minimum of E(u), let

p0 = 0, and to then repeatedly apply the following two-step algorithm:

uk+1 := arg min
u

Dpk

E (u,uk) + νH(u), (41)

pk+1 := pk − νOH(uk+1). (42)
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In [11], the authors focus on the special case where H(u) is assumed to have the

form 1
2
‖Au− b‖2

2. Note that this assumption is indeed valid in our setting since we

define H(u) as H(d, f) = ‖d− f‖2
2, meaning we can take

A =
[
I −I

]
, u =

d

f

 , and b =

0

0

 .
The reason they make this assumption in [11] is that it simplifies the Bregman

iteration steps given in (41) and (42). Specifically, since O‖Au − b‖2
2 = 2AT (Au −

b), (41) and (42) become

uk+1 = arg min
u

Dpk

E (u,uk) + νH(u)

= arg min
u

E(u)− E(uk)− 〈pk,u− uk〉+
ν

2
‖Au− b‖2

2

= arg min
u

E(u)− 〈pk,u− uk〉+
ν

2
‖Au− b‖2

2, (43)

pk+1 = pk − νAT (Auk+1 − b). (44)

Moreover, in [11] they use the fact that this two-step process has a surprisingly

simpler formulation: letting u0 be a minimizer of E(u), p0 = 0 and b0 = b, it turns

out that the repeated application of (43) and (44) is equivalent to the repeated

application of

uk+1 = arg min
u

E(u) +
ν

2
‖Au− bk‖2

2, (45)

bk+1 = bk + b− Auk+1. (46)

Looking at (46) we can see the true inspiration behind Bregman iteration: for a fixed

ν the value uk+1 given by (45) will not exactly satisfy the constraint Au = b; in (46)

we add the “error” b − Auk+1 back into bk, thereby forcing, in the next iteration,

the optimization (45) to better compensate for the aspects of b that it is missing. In
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the image denoising literature—where Bregman iteration was first popularized—this

step is known as “adding the noise back in.”

We now apply these ideas in the special case where we have

E(u) = E(d, f) = ‖d‖1 +
µ

2
‖Lf − g‖2

2, (47)

H(u) = H(d, f) =

∣∣∣∣∣∣
∣∣∣∣∣∣
[
I −I

]d

f

−
0

0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

. (48)

Note that here, the initialization of picking u0 to be a minimum of E(u) and b0 = b

corresponds to taking d0 = 0, f0 to be any solution to L∗Lf = L∗g and b0 = 0.

5.2 Split Bregman Iteration

We now turn to the recently introduced, state-of-the art numerical optimization

technique known as the Split Bregman method in order to solve

arg min
d,f

‖d‖1 +
µ

2
‖Lf − g‖2

2 +
ν

2
‖d− f‖2

2.

Letting d0 = 0, f0 be any solution to L∗Lf = L∗g, and b0 = 0, applying the Bregman

iteration steps (45) and (46) to the functionals given in (47) and (48) gives

(dk+1, fk+1) = arg min
d,f

‖d‖1 +
µ

2
‖Lf − g‖2

2 +
ν

2
‖d− f − bk‖2

2, (49)

bk+1 = bk + b− (dk+1 − fk+1). (50)
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This is Bregman iteration in this particular setting. The Split-Bregman method

involves splitting the numerically difficult optimization (49) into two steps:

fk+1 = arg min
f

µ

2
‖Lf − g‖2

2 +
ν

2
‖dk − f − bk‖2

2, (51)

dk+1 = arg min
d
‖d‖1 +

ν

2
‖d− fk+1 − bk‖2

2, (52)

bk+1 = bk + b− (dk+1 − fk+1). (53)

We now discuss the optimizations (51) and (52) in greater detail. To be precise, (51)

can be solved using standard linear least squares:

fk+1 = arg min
f

∣∣∣∣∣∣
∣∣∣∣∣∣
√µL
√
νI

 [f ]−

 √
µg

√
ν(dk − bk)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

.

This is equivalent to solving the corresponding set of normal equations:

(µL∗L + νI)fk+1 = µL∗g + νI(dk − bk).

Namely, we let fk+1 = (µL∗L + νI)−1[µL∗g + νI(dk − bk)]. Here, µL∗L + νI is a

filter meaning we can use the DFT to invert it. To be precise, in Chapter III, we

showed how to use the DFT to unitarily diagonalize L∗L in terms of its eigenvalues

λ[α, β, γ]. The eigenvalues of µL∗L + νI are given by the function µλ[α, β, γ] + ν.

The second step (52) of our Split Bregman iteration can be solved using shrinkage:

dk+1 = shrink(fk+1 + bk,
1

ν
)

= sign(fk+1 + bk)�max{|fk+1 + bk| − 1

ν
, 0}.

To be clear, Split Bregman iteration truly calls for new f ’s and d’s to be calcu-

lated until the difference between f and d falls within a pre-determined threshold, at

which point a new b is calculated and the process is repeated. That is, one is truly
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supposed to alternate between (51) and (52) many times before updating b in (53).

However, the authors of [11] indicate that this method is not desirable. They instead

advocate calculating f , d, and b consecutively, claiming that for many applications,

optimal efficiency is obtained with only one iteration of the “inner loop.” This is

because the advantage gained by a slight refinement of f and d pales in comparison

against the benefit of updating b. We now summarize this algorithm:

Split Bregman Algorithm for discrete chromotomographic reconstruction:

While ‖fk − fk−1‖2 > tolerance

fk+1 = arg min
f

µ

2
‖Lf − g‖2

2 +
ν

2
‖dk − f − bk‖2

2

dk+1 = arg min
d
‖d‖1 +

ν

2
‖d− fk+1 − bk‖2

2

bk+1 = bk + b− (dk+1 − fk+1)

end

5.3 Numerical Experimentation

In Chapter IV we introduced a generalization K of our discrete X-ray transform

L that was more faithful to the underlying real-world physics of CT cameras. At

the end of that chapter, we discussed an example which showed that the price of

this realism is a larger null space. In short, the operator K is not as well-behaved

as L, and so we expect the problem of reconstructing f from Kf to be harder than

that of reconstructing it from Lf . This begs two questions. First, how much of a

price—from the standpoint of numerical reconstruction error—do we actually pay for

using a more realistic model? Second, does the numerical experimentation support

our hope that real-world CT reconstruction is actually possible?

In this section, we provide some preliminary numerical experimentation that

answers both of these questions. We find that reconstructing from Kf is indeed
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less reliable than reconstructing from Lf . However, the two approaches perform

similarly, meaning that the theory of Chapter IV indeed delivers greater realism at

little cost. More importantly, our simulations reveal that when using either L or K,

it is indeed feasible to reconstruct a sufficiently sparse hyperspectral image f from a

very small number of CT camera measurements.

To be precise, we compare L and K by synthesizing a large number of sparse

images f and then applying the Split Bregman reconstruction algorithm twice, once

for L and once for K. To be clear, we are interested in reconstructing f ’s that are

sparse, that is images with very few bright spots. To test how well we can reconstruct

f after taking measurements from K and L, we create examples of sparse scenes,

drawing inspiration from astronomical images. In this setting we expect a nearly

black background with a few stars. To create this scene we pick a proportion of pixels

that correspond to stars and incrementally increase this proportion to investigate how

L and K operate on scenes that are less and less sparse. Due to the large null spaces

of both L and K, we expect both to perform poorly as f becomes nonsparse. For each

given proportion of pixels, we randomly assign points in our P×P spatial grid where

these stars will appear, and assume that at every star location, 10 percent of the star’s

spectrum will be nonzero. That is, these stars are sparse in the color spectrum as well.

To be clear, in our simulated data, we allow our fixed proportion of star locations

to overlap, just as two stars may align in our line of sight. After simultaneously

applying the Split Bregman algorithm to the problem of reconstructing f from Lf

and Kf , we plot the relative error, ‖f − frecon‖2/‖f‖2, of the reconstructed image

from the original as a function of the proportion of stars in the scene.

Looking at Figure 4, we first notice that as our hyperspectral image f becomes

less and less sparse, this algorithm does a poor job of reconstructing the original

image. This of course makes sense because L and K have large null spaces, and

so it is unreasonable to expect to find f unless it is sparse. Indeed, the entire

motivation behind the Split Bregman algorithm is the assumption of sparsity. The
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graph also confirms, as we previously predicted, that we can better reconstruct

the original image using data produced by L as opposed to the data produced by

the more realistic operator K. Indeed, as detailed in Chapters III and IV, the

frequency components of f that lie off of certain planes are annihilated by both

operators. However, K also diminishes the high frequency components of f that

lie on these planes. That is why, when looking at Figure 4, the more realistic

model consistently underperforms the less realistic one. This is not a bad thing:

no real-world system would truly perform as well as our L does; meanwhile, K

may indeed do a good job modeling the underlying physics, and so its performance

curve is probably a better indicator of when real-world CT reconstruction could be

accomplished in practice. Regardless, the investigation of these operators is a step

towards better understanding the CT reconstruction problem in all settings. We

can use these models to better understand the limitations of current systems and to

suggest improvements to future systems.
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Figure 4: This plot shows the magnitudes of the relative errors between randomly generated 64× 64× 64 simulated
hyperspectral images and their reconstructions obtained via chromotomographic measurements. Specifi-
cally, it gives the magnitudes of these relative errors as a function of the proportion of stars in a simulated
astronomical scene. For each proportion, 30 such images were randomly generated. Each star had an
independently-generated 10%-sparse color spectrum. For each simulated image f , we computed the corre-
sponding chromotomographic camera measurements g = Lf that arise from our discrete X-ray transform
as well as those measurements g = Kf that arise from its more-realistic cousin. In both cases, we used
8 discrete prism “angles” {(ψ1[q], ψ2[q])}8q=0. These corresponded to the “knight’s moves” depicted in
Figure 1. For each of these g’s, we then used the Split Bregman algorithm to reconstruct f according to
additional assumption that it is sparse. This is only computationally feasible due to the Fourier-based
diagonalizations of L∗L and K∗K that we provided in Theorems 1 and 3, respectively; they let us perform
the least-squares step of the Split Bregman algorithm using three-dimensional Fast Fourier Transforms.
We draw two important conclusions from this graph. First, we see that chromotomographic reconstruction
via the Split Bregman algorithm is indeed possible, and can be very successful provided the underlying
image is sufficiently sparse. Second, we have numerical confirmation of the observation we made at the end
of Chapter 4: it is indeed easier to reconstruct f from its idealized discrete X-ray transform measurements
Lf than from its more realistic measurements Kf . Based on its greater faithfulness to the underlying
physics, we believe the higher of these two curves will be a better indication of the actual performance of
a real-world chromotomographic imager, should such a system be fielded.
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