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Abstract 
 

A photon sieve is a lightweight diffractive optic which can be useful for space-

based imaging applications.  It is limited by chromatic aberration and a narrow 

bandwidth.  A Fresnel zone plate is used to counteract this effect in a manner similar to 

that accomplished with a traditional holographic corrector.   

First, a radiometric analysis established a target for bandwidth improvement.  

Next, a sieve was designed, fabricated, and characterized.  Third, the bandwidth-

broadening correction scheme was developed to correct primary chromatic aberration.  

Finally, a zone plate was designed, fabricated, and tested.  Performance of the corrected 

system was measured over the target bandwidth.   

The corrected system resolved the “3-1” group of a resolution target at the 

primary wavelength and across an 8-nm bandwidth.  The uncorrected system resolved the 

smaller “6-5” group at the primary wavelength but resolved the “3-1” group over only a 

2-nm range.  The lower resolution of the corrected system at the primary wavelength is 

suspected to be a result of corrector design flaws which allowed only the central 2-4 mm 

to be used.  When accounting for this reduced diameter, resolving the “3-1” group does 

indicate nearly diffraction-limited performance over a bandwidth four times greater than 

the uncorrected system at the same resolution.  This result suggests correction is 

occurring.  A redesign of the corrector may increase performance relative to the primary.  
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PHOTON SIEVE BANDWIDTH BROADENING BY REDUCTION OF CHROMATIC 

ABERRATION EFFECTS USING SECOND-STAGE DIFFRACTIVE OPTICS 

 
 

 
I.  Introduction 

 
 

One major difficulty with polychromatic imaging is wavelength-dependent 

aberration caused by the optical system.  In general, this problem (known as chromatic 

aberration) is observed when individual colors of a polychromatic light source are 

independently focused at different locations.  Dissimilar optical elements may exhibit 

differing amounts of this effect.  Diffractive optics, for instance, are known to have much 

greater focus variation than traditional optics (30:76).  Common to both traditional and 

diffractive elements, however, is the necessity to consider this aberration in order to 

achieve effective imaging.  The purpose of this thesis is to address the problem of 

chromatic aberration that specifically affects photon sieve-based imaging systems and 

then subsequently to investigate corrective techniques for improving polychromatic 

applications of these devices.  This chapter provides a synopsis of the problem, the 

research objectives, and expectations.   

 
Problem Overview 

Photon Sieve Chromatic Aberration. 

A device particularly affected by chromatic aberration is the photon sieve, a 

diffractive optic that forms an image using the same physical principles as a Fresnel Zone 
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Plate (FZP).  The theory behind this element will be detailed in a subsequent section; 

however, the main focus of this research can be highlighted by referencing the expression 

for the focal length of a photon sieve in the paraxial region (1:2976):  

 
𝑓 =

𝑅𝑛2

2𝑛𝜆
 . (1) 

Rn and n are parameters of the sieve discussed later, but it is clear that the focus varies 

inversely with respect to the wavelength (λ) of the incident light.  A polychromatic 

source, therefore, will result in chromatic aberration while using this optic (21:496).  To 

illustrate this problem, Fig. 1 depicts magnified images of the number “3” formed at    

740 nm, 741 nm, and 744 nm by a photon sieve.  Because the sieve was designed to 

operate at 740 nm, the image formed at this wavelength (Fig. 1, Left) is clear and sharp.  

As the laser was tuned away from the design wavelength, however, the image quality 

degraded significantly over only a short bandwidth.  Consequently, a sieve used as a 

primary optic would require substantial correction to be effective in polychromatic 

imaging.  

 

Figure 1.  Chromatic Aberration in Imaging.  The three images were formed using a 10-cm diameter photon 
sieve at 740 nm, 741 nm, and 744 nm (left to right).  A 20x microscope objective was used to magnify the 
image from the 740-nm focal plane onto the camera.  As the laser was tuned, the image blurred and is 
unrecognizable only 4 nm from the design wavelength.  Another way of viewing the result is to note that 
the longitudinal position of best focus shifted as the laser was tuned.    
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Bandwidth Broadening. 

One possible method to mitigate the problem of chromatic aberration is to use a 

filter to limit the bandwidth incident on an optical system.  This procedure essentially 

forces the source to be monochromatic and thus may prevent the effects of chromatic 

aberration.  Andersen and Tullson note that the diffraction-limited “useable bandwidth” 

(∆𝜆) of a photon sieve without correction is given by  

 
∆𝜆 ≈  

2𝜆2𝑓
𝐷2  , (2) 

where f is the focal length of the optic and D is the diameter (5:5).  For the particular case 

of the primary sieve used in this thesis, ∆λ = 0.055 nm, indicating that it is effective over 

an extremely small range on either side of the design wavelength.  Thus, in order for a 

clear image to be produced, the incident light would need to be narrowly filtered to this 

value.  Fig. 2 illustrates the effect of sieve bandwidth limitations.  The pictured line group 

was focused at 740 nm (Left), and the laser was tuned until the features were barely 

resolvable (Right).  Eq. 2 gives the bandwidth required to maintain less than 0.25 waves 

of error.  The bars pictured in Fig. 2 are large enough that exceeding this error does not 

result in failure to resolve the features.  In other words, the effective bandwidth obtained 

from Fig. 2 represents a much higher error tolerance (approximately 11 waves of 

aberration) than does that given by Eq. 2 and is therefore much larger than 0.055 nm.   

 

Figure 2.  Chromatic Aberration Bandwidth Limitations.  Left: The 3-1 line grouping from a Negative 
USAF 1951 Test Target at 740 nm was imaged by the sieve.  Right: The same group was imaged at 
approximately 742.5 nm.  The laser was tuned from 740 nm until the lines were barely resolvable, 
illustrating a ± 2.5-nm bandwidth limit for this group (35:3). These images were formed without a diffuser. 
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While the application of a filter offers a useable solution under certain conditions, 

the technique does little to enhance the ability to effectively image multiple colors 

simultaneously.  Furthermore, the method also restricts the collected energy.  When using 

a camera to record an image, filtering most of the incident light necessitates a higher 

integration time in order to gather enough energy for an image.  If the optical system is in 

motion, this longer time can subsequently produce a smeared picture.  In other words, a 

narrow bandwidth not only prevents polychromatic imaging but may also cause distortion 

during monochromatic imaging (17).   

Motivation and Implications 

FalconSAT-7. 

This thesis research is in conjunction with a space-based imaging project 

(FalconSAT-7) currently being pursued by the United States Air Force Academy 

(USAFA).  As depicted in Fig. 3, the satellite uses a photon sieve as the primary optical 

element.  The current system filters incident light to a narrow bandwidth limit of 0.01 nm, 

effectively making the source monochromatic at 656.45 nm (9:5-7).  

 

Figure 3.  FalconSAT-7 Rendering.  The photon sieve is the circular membrane in the center of the 
retractable arms.  Figure used with permission (31). 
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FalconSAT-7 is designed to test the imaging potential of a novel optical system 

while viewing the Sun at a highly-specific wavelength (9:1).   If successful, this concept 

could be employed in future satellite design schemes, especially due to its reduced size 

(the main aperture can be folded) and smaller-mass optical components (the sieve is a 

lightweight membrane) (9:1).   In order to broaden its usefulness, however, the bandwidth 

limitations would almost certainly need to be relaxed to allow polychromatic imaging of 

additional sources.  This requirement leads to the need for inclusion of corrective optical 

components to compensate and remove chromatic aberration effects.   This thesis 

examines methods to enable possible future variations of the FalconSAT system to image 

a broader wavelength with acceptable image quality.     

Secondary Optics. 

As part of her graduate thesis, United States Air Force (USAF) Captain Sarah 

Myers explored methods for correcting chromatic aberration in the FalconSAT system by 

redesigning the photon sieve itself (primary optic).  Her results showed some benefit to 

this technique but pointed toward a focus on adjusting the secondary components to 

enhance imaging (29:93).   The use of a corrector hologram has already been shown to 

effectively reduce chromatic aberration issues and increase bandwidth in similar systems 

(4, 22).  According to the USAFA, however, the current FalconSAT-7 design is too small 

to include diffractive optics as part of a bandwidth-broadening scheme (9:6).  Because 

system size is not a primary consideration in this thesis, the efforts to correct chromatic 

aberration using holography are continued, specifically by employing a FZP or second 

photon sieve as a holographic-style corrector element.  
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Objectives and Hypothesis 

As previously noted, the main goal of this project is to determine a manner by 

which to widen the useable bandwidth of a photon sieve imaging system.  Achieving this 

target will both improve data collection (through production of polychromatic images) 

and also increase the energy gathered during a shorter time period, reducing distortion 

from satellite motion.  This overarching goal can be divided into four distinct objectives: 

1. Determine a target bandwidth through radiometric analysis of a typical system; 2. 

Demonstrate and measure chromatic aberration effects of a photon sieve primary optical 

element; 3. Develop a secondary system designed to correct chromatic aberration unique 

this particular primary element over the target bandwidth; and 4. Demonstrate the 

possibility of diffraction-limited performance (less than 0.25 waves peak-to-valley 

wavefront aberration) of the primary sieve over this improved bandwidth while using the 

secondary corrector (39:26).   

Based on previous research detailed in Chapter II, as well as discussions with the 

USAFA personnel directing the FalconSAT-7 project, it is expected that a holographic-

style optic will sufficiently correct the wavefront error to within the diffraction limit over 

at least the requisite target bandwidth (2).  The equivalence of a FZP to a traditional 

hologram will be noted in the next chapter, and because the FZP structure is the 

foundation of a photon sieve, it is hypothesized that either a FZP or a second sieve can be 

used to adequately expand the bandwidth of the primary optic.   
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Scope and Limitations 

This research does not directly investigate the merits and usefulness of the photon 

sieve as the main imaging element.  Also, as already noted, it does not address methods 

to decrease the aberration by altering the design of the sieve itself (see Ref. 29 for an 

example of primary sieve modification).  The focus is limited to determining a way to 

utilize second-stage optics to correct the aberration introduced by the primary element.  

Furthermore, at the direction of the USAFA, this project does not attempt to meet size 

requirements or other engineering design constraints but rather focuses solely on 

demonstrating the physical possibility of increasing the system bandwidth in this manner.   

Lastly, when determining the target bandwidth (see Chapter III), any energy 

losses due to the use of a secondary corrector were neglected.  In other words, while 

introduction of a second diffractive optics would undoubtedly decrease the energy 

incident on the camera (thereby necessitating a larger starting bandwidth), this energy 

decrease was not considered for several reasons.  First, the radiometric analysis requested 

by the USAFA was for a notional system design and not the particular system used in this 

thesis.  In other words, even if a second element was considered in the analysis, the 

results would not be directly transferrable to this experiment.  Furthermore, the goal of 

this thesis is to serve as a “proof of concept” for correcting chromatic aberration using a 

FZP (or second sieve by extension) and consequently needs only to demonstrate possible 

effectiveness.  Third, the target bandwidth given by the radiometric analysis represents 

the size (order-of-magnitude) of the bandwidth needed to effectively image using this 

type of system.  In essence, it provides a good approximation of the wavelength range 
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required and therefore a good research target.  Lastly, it will be shown in Chapter IV that 

once a basic corrector design scheme is adopted, simply changing parameters of this 

template results in an increase or decrease in system bandwidth.  In this way, if it is later 

determined that too much energy is lost because of the corrector optic, the final design 

can simply be altered slightly to gather more energy while the fundamental design 

scheme remains the same.   

 
Thesis Structure and Preview 

The following portion of the thesis is organized into three major sections and 

concluding remarks.  First, necessary background and previous research is highlighted.  

Specifically, the development of photon sieve theory from underlying diffractive optic 

and FZP concepts will be described.  Information concerning chromatic aberration effects 

in traditional and diffractive imaging systems, typical corrective methods, and aberration 

correction through holography is also included in this section.  Second, the paper will 

cover the basic methods used in the project, including a radiometric analysis, sieve and 

corrector design approaches, and experimental setup.  Finally, theoretical and 

experimental results will be discussed in relation to both characterization of the primary 

sieve and also evaluation of corrector effectiveness. 
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II.  Background and Relevant Research 

 
 
 This chapter reviews the essential concepts necessary to understand the methods 

and techniques employed in this thesis.  Specifically, the advancement of photon sieve 

theory from basic diffractive optics theory will be tracked.  Benefits at each stage of 

progression will be considered.  Additionally, this chapter explores the problem of 

chromatic aberration in greater detail as well as current methods being employed to 

compensate for this issue.  In particular, the principles of holography relevant to 

aberration correction will be investigated.      

 
Diffractive Optics 

Diffractive Optics Overview. 

As with all optics, the use of diffractive elements primarily involves wavefront 

manipulation (30:1).  Optical devices may be constructed such that they adjust portions of 

an incident wavefront (through a phase or amplitude change) as needed to achieve a 

desired result (30:1-2).  This effect is easy to observe in the design of certain diffractive 

optics in particular.  For example, a FZP (which will be discussed shortly) blocks 

portions of a wavefront in a calculated way that results in focusing of the transmitted 

light.   Wavefront error analysis is employed heavily in this thesis as the primary method 

of measuring system aberration and correction effectiveness.  Traditional geometric ray 

analysis is also occasionally considered for purposes such as configuration design (in 

Zemax) and determining expected locations of images throughout the optical system 
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(30:2).  Zone plates, photon sieves, and holograms (to include binary, computer-

generated holograms) are all considered diffractive optics (30:2). 

Diffractive Optics Benefit. 

Diffractive optics offer several advantages over traditional lenses.  First, high 

dispersion is a property of diffractive optics that can be leveraged when used to 

counteract oppositely-oriented dispersion elsewhere in a system.  Greater effort may be 

required to achieve the same net dispersion with traditional optic combinations (30:76).   

Diffractive optics can also be small, providing size and weight benefit (7:1427).  Lastly, 

they can be flat, making them easier to employ in certain applications, such as space-

based imaging where three-dimensional optics are more challenging to set up (1:2976; 

5:1; 9:1).  

 
FZP Theory 

FZP Concept. 

Simply stated, the basic concept of a FZP is to use a binary structure of opaque 

and transparent rings to transmit light that will interfere constructively at the focus while 

blocking light that interferes destructively (34:294).  To understand how the device 

operates, Fig. 4 depicts a wavefront segmented into a similar set of transparent and 

opaque rings (30:9).   
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Figure 4.  FZP Zone Geometry.  The diagram, adapted from Ref. 30, illustrates a two-dimensional 
depiction of a spherical wavefront divided into alternating opaque (gray) and clear (white) rings.  The ring 
edges correspond to a λ/2 increase in distance from an observation point (P) normal to the wavefront.    

The rings (called Fresnel zones) may be considered part of a two-dimensional spherical 

wavefront divided into regions such that the distance from each zone edge to an 

observation point (P) is λ/2 greater than the distance from the preceding zone’s edge 

(30:9).  The Huygens-Fresnel principle states that each point on a wavefront radiates 

secondary wavelets which propagate (causing a phase change) and then interact with each 

other (21:444).  As such, each ring in Fig. 4 will be the source of secondary wavelets 

which start in-phase but later interfere at P with new phase values (34:394; 21:486-487).     

The phase change of a wave is given by   

 𝛿 = 𝑘 ∙ ∆OPL =  2π
𝜆
∙ ∆OPL  (3) 

and is a function of wavenumber, k, and the difference in optical path length (∆OPL) 

(21:283).  Because the OPL (distance from the wavefront to the observation point) 

changes from one ring to the next, the phase of the secondary wavelets at the observation 

point will be varied.  In Fig. 4, ∆OPL from one zone to the next is λ/2, and the resultant 
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phase change is π, suggesting that light from one zone is out-of-phase with light from an 

adjacent zone.   

Consider that a wavelet from the axial position can be represented with the 

expression 𝐴e𝑖𝜑, where φ is the phase of a wave and A is the amplitude. A wavelet from 

the adjacent (first off-axis) zone (with δ = π) will be given by 𝐴𝑒𝑖𝜑+𝜋 = −𝐴𝑒𝑖𝜑.  The 

amplitude of the off-axis wavelet is opposite the original wave and thus cancels (21:487-

488, 495).   

Conversely, skipping a zone results in a change in OPL of λ such that δ = 2π, 

indicating that light from one zone is in-phase with light from a zone two rings away.  

Allowing transmission from every other ring consequently results in constructive 

interference from the in-phase light.  Fig. 5 depicts the central 2 mm of a 3-cm FZP.           

 

Figure 5.  Fresnel Zone Plate Rendering.  The central 2 mm of a 30-mm FZP is depicted.  The plate has a 
designed focal length of 23 mm.  

FZP Benefit. 

A FZP has the same advantages as other diffractive optics in that energy is 

gathered, focused, and intensified as with a lens; however, the device can be much lighter 

and compact.  Additionally, another benefit of a FZP that will be discussed in detail later 
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is that it can be constructed to behave physically like a hologram which, as will be 

shown, may lend itself to practical application (36:591).  Fig. 6 illustrates a final possible 

benefit to using a FZP (21: 497).  Light incident on a FZP results in both positive 

(converging wave) and negative (diverging wave) diffraction orders (21:496-497). As 

will be demonstrated later, the particular system designed to reduce chromatic aberration 

in this experiment employs each of these orders independently for different purposes, 

indicating flexibility of the device. 

 

Figure 6.  FZP Positive and Negative Diffraction Orders.  The diagram is adapted from Ref. 21 and shows 
both a diverging wave (negative diffraction) and a converging wave (positive diffraction) from a FZP.  An 
incident plane wave is converged by the FZP to form a real image.  The FZP also causes divergent light 
such that a negative virtual image is produced behind the optic. 

Photon Sieve Theory 

A photon sieve essentially operates via the same principles as a FZP (1:2976).  

Rather than using opaque rings to block the light from various zones, a sieve employs 

holes in a ring pattern to allow light to pass through (1:2976).  Fig. 7 is a microscopic 

image of the interior rings of an actual photon sieve.   
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Figure 7.  Microscopic Image of Photon Sieve Center.  The circular areas on this 10-cm diameter, f = 0.5 m 
photon sieve are clear apertures on a chrome-coated quartz plate.  

Fresnel Zone Position. 

The radial position of a hole is unique to each ring and is centered on an 

underlying Fresnel zone.  This position can be determined geometrically and by using 

linear superposition field theory.  The geometric approach will be discussed first (21:495-

496; 23:185; 34:394).  Fig. 8 depicts light originating from an axial point a distance 𝜌0 to 

the left of a photon sieve and traveling through the sieve to another axial point 𝑟0 to the 

right of the sieve (21:496).  For the light to focus (interfere constructively) at 𝑟0, all of the 

secondary wavelets from the original wavefront arriving at this point must exhibit a 2πn 

phase shift, where n is an integer.  Note that only one ray is depicted.  As described in the 

previous section, a 2πn phase shift corresponds to a change in OPL of nλ.  Referring to 

Fig. 8, this condition is equivalent to the statement, 

 ∆OPL = 𝑛𝜆 = (𝜌𝑛 + 𝑟𝑛) − (𝜌0 + 𝑟0) . (4) 
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Figure 8.  Fresnel Zone Position Geometry. Light travels from a point source through the photon sieve 
holes to an image plane.  The point will be in-focus (first order) in the image plane at the location where all 
of the wavelets which passed through the sieve interfere constructively.  The figure is adapted from       
Ref. 21. 

When the sieve is illuminated with a plane wave, 𝜌0 =  𝜌𝑛 = ∞, and the only 

difference in path length comes from the post-sieve travel such that 𝑟𝑛 = 𝑟0 + 𝑛𝜆, (see 

Eq. 4).  Note that 𝑟0 = 𝑓 for infinite-conjugate imaging and that 

 
𝑟𝑛 = �𝑅𝑛2 + 𝑟02  (5) 

by the Pythagorean theorem.  An expression for the position of the nth ring (𝑅𝑛) in terms 

of n, λ, and f can be derived: 

 𝑅𝑛2 = 2𝑛𝜆𝑓 +  𝑛2𝜆2 ≈ 2𝑛𝜆𝑓 . (6) 

The same type of argument can be applied if the sieve is illuminated by a point 

source (as is the case in this experiment). In this situation, however, 𝜌0 =  𝑟0 = 2𝑓 for 

one-to-one (referring to magnification size) imaging, and the change in path length, nλ, 

receives equal contributions from travel on both sides of the sieve:  

 
𝜌𝑛 =  𝜌0 +

𝑛𝜆
2

           𝑟𝑛 =  𝑟0 +
𝑛𝜆
2

  .  (7) 

Combining Eqs. 5 and 7 again yields an expression for the center of each ring which is 

approximately the same as that for a sieve illuminated by a plane wave:  
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𝑅𝑛2 = 2𝑛𝜆𝑓 +  

𝑛2𝜆2

4
≈ 2𝑛𝜆𝑓 . (8) 

Fresnel Zone Size. 

As is the case with the radial location, the size of each zone can also be 

determined geometrically.  It has already been noted that the path length difference 

between the top and bottom of a zone to an observation point must be λ/2 (12:2389).  

Referring to Fig. 9, Eq. 4 can be rewritten as    

 
∆OPL =

λ
2

= (𝜌𝑛+ + 𝑟𝑛+) − (𝜌𝑛− + 𝑟𝑛−) , (9) 

where the subscripts n+ and n– refer to the top and bottom edges of the nth zone, 

respectively. 

 

Figure 9.  Fresnel Zone Size Geometry.  Note that the right side geometry is subdued for clarity in the 
figure but is equally important when considering the zone size. w is the size of a Fresnel zone. 

Once again applying the Pythagorean theorem, and additionally defining w as the width 

of a Fresnel zone,     
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𝜌𝑛+ = �𝜌02 + �𝑅𝑛 +

𝑤
2
�
2

  

𝜌𝑛− = �𝜌02 + �𝑅𝑛 −
𝑤
2
�
2

 ,  

(10) 

with similar expressions for 𝑟𝑛+ and 𝑟𝑛−.   Series expansions can be applied to each term 

(𝜌𝑛− ≈  𝜌0 + 1
2𝜌0

�𝑅𝑛 −
𝑤
2
�
2

+ ⋯  ) (12:2389).  Substituting the expanded versions of   

Eq. 10 into Eq. 9 yields the desired expression for the width of a Fresnel zone:  

 
𝑤 =  

𝜆𝑓
2𝑅𝑛

 . (11) 

The sieve holes are placed on top of these zones.  Selecting the size of the hole such that 

as much of this underlying zone as possible is transmitted requires diffraction theory and 

is the subject of the next section. 

Photon Sieve Field Theory. 

Cao and Jahns present another method for obtaining the radial positions of the 

zones and also the sizes of the holes.  Their method is based on diffracted field analysis 

and is both more general and more complicated.  The highlights of their argument will be 

discussed; for a comprehensive review, see Refs. 10-12.  The derivation begins by 

defining the field at the focus as the sum of the fields diffracted by each individual hole,     

 
𝑈𝐹𝑂𝐶𝑈𝑆 = �𝑈𝑛 ,

𝑁

𝑛=1

  (12) 

where N represents the total number of holes and n identifies the particular hole 

(12:2387).  Next, they apply the Fresnel diffraction integral to determine the individual 

diffracted fields (𝑈𝑛) that propagate from each hole to the focal plane: 
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𝑈𝑛  =

1
𝜆𝑓

� 𝑉𝑛(𝑥,𝑦)𝑒𝑥𝑝 �𝑗𝑘
(𝑋 − 𝑥)2 + (𝑌 − 𝑦)2

2𝑓
�𝑑𝑥𝑑𝑦

∞

−∞
 . (13) 

The uppercase coordinates (X, Y) represent the focal plane, the lowercase coordinates   

(x, y) represent the sieve plane, the term 𝑉𝑛 is an amplitude term dependent on the wave 

incident on the sieve, and they have neglected a phase factor in the expression which 

should vanish when converting to an intensity distribution (12:2387).  Applying several 

coordinate transforms and approximations, they simplify Eq. 13 to an expression for the 

axial image-plane field of an individual hole under point-source illumination: 

 
𝑈𝑛 (0, 0) = 2𝐴𝑛 𝑁𝑓exp �𝑗𝑘 �

𝑅𝑛2

2𝑓
�� 𝐽𝑖𝑛𝑐 �

𝑘 �𝑑2�
𝑓

𝑅𝑛� , (14) 

where 𝑑 is the diameter of the hole,  𝑁𝑓 =  𝜋𝑑2 4𝜆𝑓⁄  is the Fresnel number, and 𝐴𝑛 

represents an amplitude term (12:2389).  The maximum field intensity (|𝑈𝑛(0, 0)|2) will 

occur physically when the hole is centered on the zone and mathematically when the 

individual terms of Eq. 14 are maximized (12:2389).  Accordingly, the exponential term 

in Eq. 14 is maximized to 1 when its argument equals 2π (12:2389).  Setting this 

argument to 2π and solving for 𝑅𝑛2 again yields the first term of Eq. 8, demonstrating an 

alternate method to determine the radial positions of the Fresnel zones.  Note that, by 

starting with the Fresnel diffraction integral, Cao and Jahns had already made the paraxial 

approximation which is why the squared term in Eq. 8 is not present in this case.  The 

validity of this approximation in terms of this experiment is discussed in Chapter III.   

Photon Sieve Hole Size. 

From Fig. 10 it is evident that a ring of non-overlapping holes will not completely 

fill the underlying Fresnel zone, reducing transmission and overall device efficiency.   
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Figure 10.  Photon Sieve Efficiency.  A FZP is laid on top of a corresponding photon sieve.  Notice that the 
holes do not completely fill the zones, indicating a loss of transmission efficiency between a FZP and sieve. 

Analysis published by Kipp’s group addresses this issue and suggests increasing 

underlying zone transmission by increasing the associated hole diameters such that their 

diameters are actually greater than the width of the zone (23).  Fig. 11 illustrates this 

approach but also indicates that this scheme, while permitting more coverage of the 

transmission zones, allows light from opaque (destructive) zones through as well.   

 

Figure 11.  Hole-Zone Width Comparison.  A photon sieve is laid on top of a corresponding FZP (opposite 
of Fig. 10).  Notice that while more of the underlying zone is transmitted by expanding the hole diameter, 
some of the light from the “dark” (destructive) zones is also transmitted.   

Kipp notes that the ratio of hole diameter to zone width (d/w) has a somewhat 

oscillatory effect on the focal field amplitude (23:185).  As d/w is increased, the 
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amplitude increases to a maximum value at d/w ≈ 1.5, 3.5, 5.5.  At some point, however, 

enough light is passed from dark zones to completely cancel the light from the bright 

zones.  This effect is observed at d/w ≈ 2.4, 4.4, 6.4 (23:186).  For this reason, the size of 

each photon sieve hole is typically (see Ref. 1:2976) set such that       

 
 
𝑑
𝑤

= 1.53 , (15) 

the position of the first intensity maximum (see Fig. 12).  

To understand this effect, it is necessary to revisit the Cao and Jahns analysis.  

Hole size information can be extracted from the Jinc term in Eq. 14 by combining it with 

Eq. 11 and noting again that exp�𝑗𝑘 �𝑅𝑛
2

2𝑓
�� = 1 for a hole centered on the underlying zone 

(12:2389-2390).  Their final expression,   

 
𝑈𝑛 (0, 0) ∝  

𝑑
𝑤
𝐽1 �

𝜋
2
𝑑
𝑤
� , (16) 

is plotted in Fig. 12, which clearly displays the variable nature of the field amplitude over 

a range of d/w values.  

 

Figure 12.  Variation of Field Amplitude as a Function of d/w. As the ratio of hole size to underlying zone 
is varied, the field amplitude in the image plane changes.  The hole size can be increased beyond the 
underlying zone size (d/w > 1) with increasing amplitude until too much dark zone contribution results in a 
reduction of amplitude and ultimate complete cancellation of the field. 
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Photon Sieve Benefit. 

As a diffractive optic element, the benefits over traditional optics already 

discussed also apply to photon sieves.  Additionally, there are several unique advantages 

to using this particular element.  First, sieves allow the control of higher diffraction 

orders (11:566; 23:184-185).  Next, a FZP requires either a substrate or some other form 

of binding element to hold the separated rings together, a problem that is not an issue for 

a photon sieve (1:2976; 5:1).  To be fair, because the rings of a photon sieve are formed 

by making holes that are interconnected, there is still some form of material between the 

transmission regions.  Additionally, note that for this experiment the photon sieve was 

constructed by printing the hole pattern in chrome on an underlying quartz substrate.  

This choice was made for durability and cost reasons and need not be a limiting factor in 

actual sieve development (as with the FalconSAT-7 membrane sieve).  In other words, an 

actual sieve may not require a mounting plate. 

Andersen notes a third benefit of using a sieve: “Apodization is easily 

incorporated into a photon sieve simply by modifying the number of holes” and is useful 

for unique space-based missions (1:2976; 5:1).  Finally, overall resolution of the optic is a 

factor of smallest Fresnel zone.  Kipp’s group demonstrated that because the size of 

pinholes can be constructed smaller than rings of a FZP, it is possible to achieve better 

resolution with a sieve (23:184-186).   
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Chromatic Aberration 

Traditional Optics. 

The concept of chromatic aberration is most easily understood within the 

framework of traditional lens optics.  Because the index of refraction of a material (n) can 

be generally defined as a function of wavelength, the focal length of a lens of this 

material will also be a function of wavelength according to the familiar relation  

 1
𝑓

= [𝑛(𝜆) − 1] �
1
𝑅1

−  
1
𝑅2
� , (17) 

where R1 and R2 are the radii of curvature of the lens surfaces (21:268). Solving for f and 

substituting this variable focal length into the imaging equation from geometric optics 

makes it evident that the image distance (si) will also be varied for different wavelength 

values: 

 
𝑠𝑖 =  

𝑠o 𝑓(𝜆)
𝑠o −  𝑓(𝜆)

  . (18) 

 

Figure 13.  Chromatic Aberration.  The colors of a polychromatic plane wave are dispersed such that the 
individual wavelengths focus at different locations along the optical axis. 
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Eq. 18 makes it clear that light of different colors will form focused images at different 

locations.  When a source is polychromatic, the resultant image will be distorted as the 

various wavelengths of light are “smeared” across a range of image planes.  Fig. 13 

demonstrates this concept as the blue light is focused closer to the lens than the red light.  

An image composed of these two colors would consequently be blurred.  

Diffractive Optics. 

In the previous example, the focal length was indirectly a function of wavelength 

(through the index of refraction).  In the case of diffractive optics, this effect is more 

directly apparent and magnified well-beyond the dispersion of traditional glass lenses 

(30:76).  For example, by solving Eq. 8 for f, it is evident that the focal length of a photon 

sieve is directly, and very much, dependent on wavelength and will thus be subject to 

chromatic aberration (21:496): 

 𝑓 =  �𝑅𝑛2 −
𝑛2𝜆2

4
� 2𝑛𝜆 � . (19) 

Measurement. 

Chromatic aberration can be quantified for an optical system in several ways.  

First, it may be measured by comparing the difference in focal length between light of 

two different wavelengths, a value Hecht refers to as Axial Chromatic Aberration (ACA) 

(21:268).  ACA may be calculated using:  

 ACA =  ∆𝑓 =  𝑓𝜆2 − 𝑓𝜆1   . (20) 

No convention is specified as to which direction is considered positive ACA; however, 

the method adopted for this thesis is to consider focal movement away from the imaging 

optic as positive and movement back toward the optic as negative.  For example, if the 
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focus occurs at 10 cm for an optic at its primary wavelength but focuses at 15 cm at a 

second wavelength, the second wavelength would show positive ACA of 5 cm.  In      

Fig. 14, the left image was formed using a photon sieve at 741 nm with the image 

magnifier in the focal plane corresponding to 740 nm.  In other words, at 740 nm the 

image would be clear, but at 741 nm it is blurred due to chromatic aberration.  The image 

magnifier was then moved toward the sieve until the number became focused.  The 

distance moved was approximately -2.5 mm and is the difference in image location at 

740 nm and 741 nm.  The difference in focal length can be determined from this change 

in image location (discussed later), allowing calculation of ACA from Eq. 20.  Note that 

when specifically addressing chromatic aberration, ACA is the type referenced 

throughout this thesis.   

 

Figure 14.  Wavelength-Dependent Focal Distance Changes.  Both images were formed by a 10-cm photon 
sieve using a Ti:Sapphire laser at 741 nm.  The left image was captured in the 740-nm image plane.  The 
right image was captured in the 741-nm image plane and is in focus.  The difference between the image 
planes was -2.5 mm.  No diffuser was used to form these images. 

A variation of the ACA measurement described by Eq. 20 is defined in terms of 

lens power: 𝜙 =  1 𝑓⁄ .  In this case, the aberration is measured as a difference in power 

rather than focal length (and is primarily a convenience in certain applications):   

 ∆𝜙 =  𝜙𝐿𝑂𝑁𝐺 𝜆 −  𝜙𝑆𝐻𝑂𝑅𝑇 𝜆 =  𝑐(𝑛𝐿𝑂𝑁𝐺 𝜆 − 𝑛𝑆𝐻𝑂𝑅𝑇 𝜆) , (21) 

where c represents the lens curvature (30:61).  In a laboratory setting, however, it is still 

necessary to measure the image position, so Eq. 20 is used throughout this thesis.   
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Still another manner in which to view chromatic aberration is in terms of Lateral 

Chromatic Aberration (LCA).  Eq. 18 illustrates a dependence of 𝑠𝑖 on wavelength.  

Because 𝑠𝑖 is used to determine vertical magnification, the vertical size of an image will 

also change at each wavelength in addition to the in-focus location.  This difference in 

height of images at two different colors is LCA (21:268). 

 
Aberration Correction 

Traditional Method. 

Traditional correction of chromatic aberration has involved constructing a system 

of lenses that compensate for each other: “Chromatic aberration can be corrected by 

combining lenses whose total power is equal to the required power, but whose total 

dispersion is zero” (30:62).  An achromatic doublet, for example, combines a positive and 

a negative lens such that rays refracted first by the positive lens are refracted in the 

opposite direction by the negative lens in a manner that allows different colors to focus at 

the same point (21:269).  It is important to note, however, that the designs of these 

compensators are optimized for particular wavelengths and will thus still show chromatic 

aberration at other colors and even imperfect correction at the chosen colors (21:269; 

30:61).  A quantity known as the Abbe number (𝑉𝑑) is typically published as a way of 

listing how well a lens performs over a polychromatic range and is based on the method 

of  aberration measurement described by Eq. 21.  Higher numbers indicate less chromatic 

aberration (30:61):    

 ∆𝜙
𝜙𝐶𝐸𝑁𝑇𝐸𝑅 𝜆

=  
1
𝑉𝑑

 . (22) 
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Diffractive Optics Methods. 

Diffractive optics may also be used instead of lenses to fix chromatic aberration 

(30:63).  One major advantage of using these devices is that, as previously mentioned, the 

high dispersion of diffractive optics means that “only a small amount of diffractive power 

is required to correct a chromatic lens” (30:76).  Furthermore, as illustrated in Fig. 6, 

some optics of this type may produce both the positive and negative diffraction orders, 

allowing for flexibility depending on which direction of corrective dispersion is required.   

Several techniques have already been demonstrated to provide diffractive optic-

based chromatic aberration correction.  For example, a diffraction grating can be used to 

help offset spectral dispersion (28:2440).  Holography has also been employed to correct 

general aberrations in an optical system (see Refs. 5; 7; 27; 28; 36) and also as a manner 

in which to address chromatic aberration specifically (see Refs. 4 and 22).  In particular, 

Ref. 5 claims a 47-nm effective bandwidth for a sieve employing holographic correction 

(5:6).  While the concept of holography will be detailed below, Ref. 36 discusses the key 

principle governing the use of holograms in this manner:   

The hologram thus constructed behaves like a diffraction grating, producing a 
zero order and a pair of first-order diffracted waves.  One of the first-order waves 
is of the form 𝑎0𝑎1𝑒𝑗(𝛼𝑢− 𝜙); this term contains a phase defect, 𝑒−𝑗𝜙, that is the 
conjugate to the one which the lens produces, and can therefore be used to correct 
the aberration. (36:589) 

 
In theory, a FZP (or photon sieve) can be used as a hologram and should therefore also be 

able to compensate for primary optic aberrations.  The equivalence of these diffractive 

optics to holograms is the subject of the next section. 
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Holograms 

Traditional Holograms. 

Traditional holographic elements may be used for aberration correction by 

essentially storing information about how an optic causes aberration in an image and then 

using this information to reconstruct an unaberrated version of the desired image (19:297, 

386).  Fig. 15 illustrates the basic concept of holographic correction (7:1428).  In its 

simplest form, a wavefront is focused by an aberrated optic, and in the process, the 

wavefront is also distorted by the aberrations in the element.  The aberrated wavefront is 

then interfered with a controlled reference wavefront, and the resulting pattern is 

recorded as a hologram on film (7:1427-1428).  The hologram is placed in position after 

the primary optic and corrects the wavefront by imparting “complementary” aberration to 

cancel the problems with the primary (26:4).       

 

Figure 15.  Hologram Recording Geometry.  Adapted from Ref. 7, this diagram shows the basic recording 
and reconstructing geometry of a hologram. Aberrations imparted to the wavefront by the primary optic are 
recorded on the hologram which is then used as a corrector to remove the aberrations from a new wavefront 
showing the same problems.  
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Computer-Generated Holograms. 

The method described in the previous section can also be accomplished 

synthetically through a process described in Ref. 19.  Using Fig. 15 as an example, it 

would be necessary to first simulate the interference of the object and reference fields at 

the hologram location and mimic this interference pattern synthetically.  Next, the 

synthetic hologram would have to be produced for use (19:355).  As Goodman suggests, 

one of the benefits to using this type of element is that the problems associated with 

manually forming a hologram (including the requirement to actually have the object 

being recorded) are negated (19:355).     

Binary Holograms. 

Lee highlights a particular subset of computer-generated holograms in which the 

mathematical (computer-generated) function that describes the hologram is reduced to a 

set of binary values (24:1677-1678).  The hologram is thus a set of points that are “on” or 

“off” and consequently affect both amplitude and phase of an incident wavefront 

(24:1677; 25:3663).  A benefit of a binary hologram suggested by Goodman is that the 

binary nature is easier to print for application as opposed to a more fluid spectrum 

(grayscale) of phase and amplitude changes (19:366).  Of course, Lee notes that the other 

side to this argument is that the “on” and “off” nature limits the information in the 

hologram to binary approximations only (24:1677). 

FZP or Photon Sieve as a Hologram. 

The main property of binary holograms relevant to this research is that they can 

represent interference patterns (25:3661).  This result is not unexpected as traditional 

holograms are interference patterns recorded on film.  What is interesting, however, is 
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that a FZP (or a photon sieve) is itself a binary hologram which can be used in aberration 

correction (36:591).    

Fig. 16 helps illustrate this idea (24:1680).  Lee conducted an experiment in 

which a binary hologram was imaged with a lens using two incident plane waves such 

that both the +1 and -1 diffraction orders were reconstructed by the hologram and 

combined (interfered) in the image plane.   

 

Figure 16.  Hologram Modeled by Interference Pattern.  Adapted from Ref. 24, a hologram is imaged with 
a lens, and the resulting image is itself a FZP. 

The interference pattern (which is essentially an image of the +1 and -1 

holograms combined) was of the same form as a FZP (see Ref. 24:1679-1680).  In other 

words, the experiment demonstrated that a FZP based on the resultant image is essentially 

equivalent to the original hologram.   

The key point of emphasis is that a FZP, or a photon sieve by extension, can be 

used as a holographic corrector.  Because both the locations of the holes as well as the 

diameters can be manipulated, this method offers a flexible correction technique.  
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Furthermore, the process of filming a hologram, and its associated difficulties, is avoided 

(40:109).   

 
Chapter Summary 

This chapter offered a review of the primary imaging concepts as well as the 

proposed correction methods applicable to this research.  First, the application of photon 

sieves in visual imaging was discussed using both geometric and field theory analysis.  

Next, correction techniques were reviewed with a focus on reduction of aberration effects 

using holography.  Lastly, the relationship between a hologram and a FZP (or photon 

sieve) was developed such that either device could theoretically be utilized to reduce 

chromatic aberration. 
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III.  Methodology 

 
 
 This chapter discusses the experimental methods and techniques applied to the 

major phases of this project.  First, the results of the radiometric analysis, performed to 

determine a bandwidth target for a corrector system, will be presented.  Next, overall 

design considerations for both the primary and secondary photon sieves will be detailed.  

Finally, the laboratory setup, equipment used, and general experimental procedures will 

be addressed.  

 
Radiometry 

USAFA Analysis. 

In order to determine an approximate bandwidth goal for this experiment, a 

radiometric study of the problem was necessary.  In 2012, the USAFA conducted a 

similar analysis using the primary sieve characteristics from the current FalconSAT-7 

design (32).  For this thesis, they requested that another analysis be conducted for an 

optical system using a 30-cm, f/4 photon sieve (versus the current 20-cm, f/2 optic) (9:6).  

In contrast to the USAFA report, this analysis specifically targeted the imaging 

bandwidth required given a set integration time and no binning (32:9-10).  The goal was 

to determine the signal-to-noise ratio (SNR) incident on a single pixel during photon 

sieve Earth-imaging across several bandwidth ranges.  Specifically, the main objective 

was to find the bandwidth required to achieve an SNR of 6 (32:9).  In addition to 

referencing the USAFA study and a similar analysis by Captain Myers, the essential 

theory governing the calculations below was derived primarily from Ref. 14.    
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Notional Bandwidth Analysis. 

The following characteristics represent values and assumptions utilized 

throughout the problem.  The optical system (photon sieve and detector array) orbits the 

Earth at a distance of 𝑟𝐸−𝑆𝑉  = 450 km (32:8).  The sieve has a diameter dSV = 30 cm with 

a focal length of f = 1.2 m such that collimated (distant) incident light is focused on the 

detector placed a distance f behind the optic.  The transmission (T = 0.1) of the sieve and 

quantum efficiency of the detector (η = 0.4) are assumed to be the same as those utilized 

in the USAFA analysis (32:8-9).  The length of a square pixel is dP  = 4.65 µm (29:84).    

The first task was to determine the field-of-view (FOV) of an individual detector 

pixel.  Fig. 17 illustrates the setup of this problem which assumes that the surfaces of the 

Earth, sieve, and detector are all parallel.  Furthermore, it is noted that the portion of the 

Earth imaged onto the detector is much smaller (by a factor of ~ 107) than the diameter of 

the Earth, making the curvature of the Earth negligible.  Using the geometric optics 

relationship between the size of an object and the size of its image, the height of a square 

portion of the Earth’s surface (dE) that is imaged onto one pixel is given by (14:19):  

 𝑑𝐸 =  
𝑟𝐸−𝑆𝑉
𝑟𝑆𝑉−𝑃

𝑑𝑃 . (23) 

 

Figure 17.  Radiometric Analysis Geometry.  Energy is collected by the photon sieve from the portion of 
the Earth within a single-pixel FOV. 
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It is useful to rewrite Eq. 23 in terms of surface area, noting that 𝑟𝑆𝑉−𝑃 = f, and that the 

area is simply the height squared: 

 
𝐴𝐸 =  �

𝑟𝐸−𝑆𝑉
𝑓

�
2
𝐴𝑃 . (24) 

The flux collected by the sieve from this area of the Earth is determined using  

 
𝛷𝑆𝑉 =  𝐿𝐸𝐴𝐸𝛺𝑆𝑉 ,𝛺𝑆𝑉 =  

𝐴𝑆𝑉
𝑟𝐸−𝑆𝑉2

 , (25) 

where LE [W/m2 sr] is the radiance of the Earth (calculated later), AE [m2] is the area of 

the square on the Earth imaged by the pixel, and ΩSV  [sr] is the solid angle subtended by 

the sieve (14:50, Eq. 2.25).   

Using the paraxial optics approximation, ΩSV is defined by  

 
 𝛺𝑆𝑉 =  

𝐴𝑆𝑉
𝑟𝐸−𝑆𝑉2

 , (26) 

and, when combined with Eqs. 24 and 25, yields (14:39) 

 
𝛷𝑆𝑉 =  𝐿𝐸

𝐴𝑃
𝑓2

𝐴𝑆𝑉  . (27) 

Eq. 27 represents the power in energy per second [J/sec] collected by the sieve.  To 

convert this quantity to number of photons collected per second (𝛷𝑃), divide Eq. 27 by 

the approximate energy of each photon (hc/λHα) (29:84), giving   

 
𝛷𝑃 =  𝐿𝐸

𝐴𝑃
𝑓2

𝐴𝑆𝑉 �
𝜆𝐻𝛼
ℎ𝑐

� , (28) 

where λHα = 656.28 nm is the center of the bandwidth range used in the USAFA analysis 

(32:5).  To convert the number of photons collected by the sieve to the number of 

electrons incident on one detector pixel (Ne) during a set camera integration time (t), 

multiply Eq. 28 by this time as well as T and η (32:8), yielding 
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𝑁𝑒 =  𝐿𝐸

𝐴𝑃
𝑓2

𝐴𝑆𝑉
𝜆𝐻𝛼
ℎ𝑐

𝑇𝑡𝜂 . (29) 

All of the quantities in Eq. 29 are known except LE which is a result of the radiance of the 

Sun (LS) reflected off of the Earth.  Treating the Sun as a blackbody, LS is determined 

using Planck’s blackbody integral (14:56, 66, Table 2.4, Eq. 2.79),  

 
𝐿𝑆 =  �

2ℎ𝑐2

𝜆5(𝑒
ℎ𝑐
𝑘𝜆𝑇 − 1)

𝑑𝜆
𝜆2

𝜆1
 . (30) 

To determine the irradiance (EE) on the Earth, it is necessary to view the Sun as an 

extended source and use  

 
𝐸𝐸 = 𝜋𝑠𝑖𝑛2𝜃𝐿𝑆 =

𝐴𝑆
𝑟𝐸−𝑆2

𝐿𝑆 = 𝛺𝑆𝐿𝑆  , (31) 

where θ is the half-angle between the center of the Earth and the edge of the Sun (14:54-

55, Fig. 2.21, Eq. 2.38).  Eq. 31 uses the small angle approximation, sin θ ≈ 𝑟𝑆𝑈𝑁
𝑟𝐸−𝑆

, where 

the radius of the Sun (𝑟𝑆𝑈𝑁) is 6.96 × 108 m and the distance between the Earth and the 

Sun (𝑟𝐸−𝑆) is 1.52 × 1011 m.  The exitance (ME) of the Earth is the reflectance (R) 

multiplied by EE:   

 
𝑀𝐸 = 𝑅

𝐴𝑆
𝑟𝐸−𝑆2

𝐿𝑆  . (32) 

Finally, assuming the Earth is Lambertian and applying 

 𝑀𝐸 = 𝜋𝐿𝐸  , (33) 

the radiance is written as (14:47, Eq. 2.18): 

 
𝐿𝐸 =

1
𝜋
𝑅

𝐴𝑆
𝑟𝐸−𝑆2

𝐿𝑆  .  (34) 

Combining Eqs. 30 and 34 yields  
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𝐿𝐸 =

1
𝜋
𝑅

𝐴𝑆
𝑟𝐸−𝑆2

 ��
2ℎ𝑐2

𝜆5(𝑒
ℎ𝑐
𝑘𝜆𝑇 − 1)

𝑑𝜆
𝜆2

𝜆1
� , (35) 

and, when inserted into Eq. 29, gives the total number of electrons incident on a pixel: 

 
𝑁𝑒 =  

𝑅
𝜋

𝐴𝑆
𝑟𝐸−𝑆2

��
2ℎ𝑐2𝑑𝜆

𝜆5(𝑒
ℎ𝑐
𝑘𝜆𝑇 − 1)

𝜆2

𝜆1
�
𝐴𝑃
𝑓2

𝐴𝑆𝑉 �
𝜆𝐻𝛼
ℎ𝑐

� 𝑇𝑡𝜂 .  (36) 

The energy of each photon is considered nearly constant across the bandwidth, allowing 

the inverse of this term (λHα/hc) to remain outside the integral.  For consistency, SNR is 

determined using the same assumptions and expression as the USAFA (32:9, 29:85): 

 SNR =  
𝑁𝑒

�𝑁𝑒 +  𝑛𝑅𝐸𝐴𝐷2
 , (37) 

where the read noise, 𝑛𝑅𝐸𝐴𝐷, was assumed to be 10 electrons (32:9).   

The final piece of information necessary for analysis is the camera integration 

time (t).  FalconSAT-7 uses an exposure time of 2.3 msec (9:7).  Without derivation, the 

integration time selected for this notional sieve-based system was 1.5 msec. Evaluating 

Eq. 37 and plotting SNR against bandwidth results in the plots shown in Figs. 18 and 19.  

A SNR of 6 corresponds to a bandwidth of approximately 8 nm, the value that will thus 

be used as the target bandwidth for this experiment. 
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Figure 18.  SNR-Bandwidth Correlation.  In order to achieve a SNR of 6 with the notional f/4 system and a 
1.5-msec integration time, the bandwidth needs to be approximately 8 nm.   

 

Figure 19.  SNR-Bandwidth Correlation across Design Options.  Varying the f/# results in different SNR 
curves. Of interest, the dark blue (second-from-bottom) line compared to the green (bottom) line 
demonstrates the improvement of the notional system (second-from-bottom) over the current (bottom) 
design. The figure shows that an SNR of 6 corresponds to a bandwidth of 8 nm in this analysis but could be 
achieved with a 2 nm bandwidth using a 30-cm f/2 sieve (red, top line). 
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Design 

Primary. 

After determining a target bandwidth, a primary photon sieve was constructed and 

characterized in order to first measure its chromatic aberration and then design a method 

to correct it.  Several parameters had to be considered when creating the sieve in addition 

to the hole locations and diameters.  Some of the considerations that will be discussed 

include required laboratory space and available equipment, wavelength and desired light 

source, precision of the sieve (whether the paraxial approximation is valid), and printing 

resolution concerns.   

The available laboratory space and equipment at the Air Force Institute of 

Technology (AFIT) were primary considerations.  First, due to a lack of large collimating 

optics, a good size (10-cm) sieve could not be designed for infinite conjugate imaging.  

Instead, point-to-point imaging was required.  This restriction, however, was a concern 

because more table-space was necessary.  Rather than requiring only enough space prior 

to the sieve to collimate a beam and then one focal length after the sieve, a distance of 2f 

was required on both sides to image a point.  The optics table was approximately 3.6 m, 

so it was decided to build the sieve such that f = 0.5 m to give adequate space to 

configure the experiment and include necessary corrector optics.   

Additionally, because increased bandwidth in the visible region was the goal, the 

USAFA requested that the test source likewise be in the visible spectrum.  Furthermore, 

wavelength tuning was required, so a Spectra Physics Model 3900S Ti:Sapphire laser 

was selected.  The laser was pumped by a Coherent Verdi 18W (max power) diode-

pumped, frequency-doubled Nd:Vanadate laser and output approximately 5-15% of the 
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pump setting depending on the wavelength.  The pump was only set to 2-8 W during 

testing.  Based on these two requirements, 740 nm was selected as the design wavelength 

because it was in the visible region and also provided sufficient range to tune the laser 

and still get a useable output power (see Fig. 20).   

 

Figure 20.  Ti:Sapphire Output Power.  740 nm was chosen as the design wavelength for the primary sieve 
due to sufficient power output being available in a 20-nm range about the central wavelength.  The pump 
was operated at 3.3 W during testing.  The max output of approximately 275 mW thus represents 8.3% of 
the pump power. 

Next, although the full version of Eq. 8 was utilized to determine the radial 

position of the holes, the shorter (paraxial) version is also valid with this setup.  Recall 

that Cao and Jahns used the Fresnel diffraction integral to determine the radial zone 

positions.  The Fresnel integral employs the paraxial approximation to the Rayleigh-

Sommerfeld integral, and with this approximation is an associated error (19:66-67; 

10:1006).   For this particular experiment, an error of 6.6 radians in making the paraxial 

approximation is determined by (10:1006):   
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Error =  
2𝜋
𝜆
�𝐷𝑆𝐼𝐸𝑉𝐸2 �

4

8(2𝑓)3
 . (38) 

This error can be neglected, as Goodman suggests, if it does not “significantly” alter the 

outcome of the Rayleigh-Sommerfeld integral (19:69).  In this case, the additional 6.6 

radians changes the expression insignificantly, allowing use of the paraxial 

approximation if desired.    

Lastly, resolution of the printing process was a major consideration in the primary 

sieve design.  The printing company guaranteed a tolerance of ± 0.25 µm for hole 

diameter and required at least 1.5 µm of space between features.  Because of these 

restrictions, the radial positions of the holes as well as the lateral number of holes in each 

ring was adjusted from the ideal configuration.   

 

Figure 21.  Radial Hole Spacing.  The ratio d/w was adjusted such that there would always be the required 
1.5 µm between holes. 
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In order to comply with the required radial spacing, the hole diameter was 

adjusted such that 1.5 µm of space existed between adjacent holes (see Fig. 21).  The 

smallest zone (and therefore minimum spacing between holes) occurs at the outside of a 

sieve (see Eq. 11).  The width of the outermost ring was thus determined by 

 
𝑤𝑀𝐼𝑁 =  

𝜆𝑓
2𝑅𝑀𝐴𝑋

= 3.7µm . (39) 

Once the minimum zone size was calculated, a restriction on the largest hole diameter in 

this ring was found (𝑑 ≤ 5.65 µm) according to  

 
�2 × �

𝑑 + 0.25
2

�� + 1.5 ≥ 2𝑤 . (40) 

Combining these results yields d/w = 1.52703 in the outer ring, which is slightly less than 

the optimal value of 1.53 already discussed.  Fig. 12, however, shows that there should 

still be constructive interference using this ratio, and Ref. 1 demonstrates a precedent for 

applying a non-ideal (but acceptable) d/w value for resolution concerns.  Accordingly, in 

rings where the hole separation became less than 1.5 µm, d/w = 1.52 was used.  Applying 

this scheme, 99.36% of the sieve was still covered by normal holes, indicating that there 

was not a significant loss in coverage.  

In order to provide at least 1.5 µm of lateral spacing a similar approach was taken.  

Essentially, the number of holes in each ring was reduced below the maximum number of 

possible holes in order to provide enough space between the features.  Referring to      

Fig. 22, each hole was linked with the space to the left of it, forming a hole-space pair.  

The ratio of hole diameter to this hole-space distance was calculated and then multiplied 

by the maximum number of holes possible in each ring.     
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Figure 22.  Lateral Hole Spacing.  The number of holes per ring was scaled to less than maximum to ensure 
the required spacing. 

This procedure effectively set the number of holes that could fit in the ring given 

the required spacing and was always less than the maximum number possible.  In the 

actual primary design, the number of holes in the outer rings (where the overlap was most 

of a concern) was reduced to 72% of the maximum value.  In the inner rings, the 

maximum value was only reduced to 97% (and that was because of an included buffer of 

3%).   Note that lateral overlapping of holes is not as extreme a problem as radial 

overlapping.  Because the underlying Fresnel zones are rings, lateral overlap simply 

provides more coverage.  Because the point of this project was to test a sieve specifically, 

however, the separation was necessary.  

 MATLAB was used to create code which accounted for these considerations and 

output positions and sizes for each of the 71,715,741 holes incorporated in the primary 

sieve.  The MATLAB code generated a text file of aperture dimensions and positions in 

Gerber file format for use by the printing company (18; 15; 38).  The MATLAB code is 
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included in the Appendix as well as sample Gerber format text file.  Table 1 lists the 

specifications of the primary sieve designed for this project.  Of note, approximately 48% 

of the sieve surface is covered by holes.  While this value is close to the desired 50% 

coverage of the underlying FZP, the hole diameters are larger than the underlying zones, 

so actual coverage of the FZP transmission zones by holes is not this high (2).  

Additionally, Figs. 23 and 24 show photos and additional measurements of the optic. 

Table 1. Primary Photon Sieve Characteristics 
Wavelength (nm) 740 
Focal Length (cm) 50 

Diameter (cm) 10 
F/# 5 

Total Rings 3,376 
Total Holes 71,715,741 

Minimum Scale Factor (Lateral Separation) 0.72 
Maximum Scale Factor (Lateral Separation) 0.97 

Area Covered By Standard Hole Size (%) 99.02% 
Maximum Hole Diameter (μm) 329.04 
Minimum Hole Diameter (μm) 5.65 

nMax Lateral Hole Separation (μm) 2.24 
Outer Ring d/w 1.52 

Area Covered (%) 47.97 
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Figure 23.  Primary Photon Sieve Image.  The sieve was created by printing the hole pattern in chrome on a 
quartz substrate.  It has a 10-cm diameter and a focal length of 0.5 m.  There are 3,376 rings and 
71,715,741 holes with sizes ranging from 329.04 µm (center) to 5.65 µm (edge). 

 

 

Figure 24.  Profilometer Images of Photon Sieve Center.  Top: The rendering shows the three-dimensional 
effect of printing the pattern in chrome on quartz.  Bottom:  Using a side view of the image, it can be seen 
that the depth of the holes is approximately 0.06 µm.    
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Secondary. 

This section discusses basic design considerations for the corrector elements.  

Specifically, the purpose is to review any major differences from the primary design as 

well as briefly highlight the correction approach. This section does not include examples 

or comparisons of corrector designs as this is reserved for Chapter IV where the analysis 

utilized to settle on a final design is detailed.  Considerations unique to the optical design 

software used (Zemax) are also introduced. 

 Considerations and Assumptions. 

First, the basic scheme used for correction in this experiment is the same as that 

presented in Ref. 22.  This method requires that a traditional lens image the primary optic 

onto the secondary such that the combined system ray matrix does not have a wavelength 

dependence (and therefore theoretically shows no chromatic aberration) (22).   The post-

lens beam need not be collimated; however, due to simplicity in modeling the corrector 

device, a collimated beam was selected (22).  The corrector, therefore, was designed for 

infinite conjugate imaging (as opposed to point-to-point).   

Next, as will be discussed in Chapter IV, the size of the beam incident on the 

corrector was smaller than that incident on the primary (only 2.3 cm in one case as 

opposed to the 10-cm primary beam).  With a collimated, it is not helpful to make a 

corrector larger than the beam.  Consequently, the corrector elements themselves were 

small.  

With small devices, concerns arise regarding the size of the features and the 

printing resolution.  With the primary sieve, the zone size was always larger than the 

smallest printable feature.  With the small corrector, however, the zone (and associated 



45 

hole) sizes became smaller than that allowed by the printing resolution.  In order to deal 

with this problem, the hole sizes were set to a minimum value of 1.5 µm, a technique 

adapted from Andersen (1:2976). Again, the d/w was not ideal as d remained constant 

while w decreased.  Using the information in Table 6 (p. 74) and Fig. 12 (p. 20), the d/w 

values (2.02 and 1.40) were still sufficient to provide some constructive interference.  An 

additional problem arose because the zone sizes kept reducing while the hole size 

remained constant, leading to decreased radial spacing between holes.  To deal with this 

problem, every other ring in the outer portion of the sieve (and rings in the corresponding 

FZP) was skipped.  While this method solved the problem, the number of holes (and 

overall sieve efficiency) was heavily decreased (down to 19% coverage in one case).  

Zemax Modeling. 

Zemax optical design software was used to model the primary photon sieve 

system and determine an adequate corrector design scheme.  Treating a photon sieve as a 

form of hologram has already been discussed.  As such, in Zemax the sieves and zone 

plates were modeled as holographic elements (2; 8).   In particular, the primary photon 

sieve was simulated as a hologram that provided point-to-point imaging with one-to-one 

magnification, which occurs when both the object and image distances are 2f from the 

optic (see Eq. 18).      

 

Figure 25.  Primary Photon Sieve Ray Fan.  A point source placed at a distance 2f to the left of the sieve is 
imaged at a distance 2f to the right of the sieve.  The image will be inverted but unmagnified.   

To simulate a hologram, Zemax allows entry of the coordinates of both the 

construction (object) and reference sources as well as construction wavelength, aperture 
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size, and required diffraction order (39:168-169).    Fig. 26 illustrates the basic geometry 

for the general case of object, reference, and reconstruction point sources unrestricted in 

three dimensions.   

 

Figure 26.  Hologram Geometry.  An object and reference beam are interfered to create the hologram.  A 
reconstruction source is then passed through the hologram, producing an image according to Eq. 41. 

The location of an image produced by a hologram is given by   

 

 
𝑧𝑖 = �

1
𝑧𝑠

±
𝜆2
𝜆1𝑧𝑟

∓
𝜆2
𝜆1𝑧0

�
−1

, (41) 

where λ1 and λ2 refer to the construction and reconstruction wavelengths, respectively, 

and are equal for the primary sieve in this experiment (19:319, Eq. 9-38).  As already 

noted, the reconstruction source (to be imaged by the sieve) was placed at zs = 2f to 

achieve the desired one-to-one imaging.  Furthermore, when zr = z0 = 2f, the image 

location is given by zi = ± 2f.  Modeled in this way, the hologram thus behaves exactly 

like the designed sieve in that two images (one positive and one negative) are formed at 

the one-to-one imaging distance, ± 2f.       



47 

Correction Scheme Design. 

After modeling the primary sieve, the next step was to develop a secondary 

correction scheme that allowed diffraction-limited performance of this particular sieve 

across a larger bandwidth than that of the primary alone.  As previously noted, two 

requirements of the secondary system are that 1) the primary sieve needs to be imaged 

onto the corrector by an achromat (See Ref. 22), and 2) the corrector needs to have 

dispersion opposite that of the first element.  Additionally, a third requirement is that the 

focal length of the corrector be selected such that the transmitted light does not diverge 

too fast to be collected and focused (2).  Fig. 27 illustrates this setup.  Note that the light 

traveling through the system does not reflect from the second sieve (as would appear in 

the figure).  The light is transmitted and then diverges.  Zemax projects this divergent 

light backward to a virtual source.  This technique allows analysis of the point of 

divergence (or how good the point source is after traversing the optical system) (2).   

 

Figure 27.  Corrected System Ray Fan.  The lower image is a magnified portion of the top.  Light from a 
point source travels through the primary photon sieve and is focused.  An achromatic doublet is used to 
collimate the diverging light.  A second photon sieve is placed in this collimated beam at the image location 
of the primary sieve (imaged by the doublet).  Light then diverges (and also converges as both positive and 
negative diffraction orders are present) after passing through the second sieve.  Only the divergent order is 
pictured and is illustrated as a backward projection of the divergent transmitted light (a virtual source).   
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The secondary FZP/sieve was modeled in the same manner as the first; however, 

design parameters were allowed to vary (during optimization) in order to achieve the best 

correction (as opposed to the primary sieve where both f and λ were set).  The diameter of 

the corrector was determined by the collimated beam size.  Several collimating lenses 

(different focal lengths) were modeled and resulted in different beam sizes (see Chapter 

IV).  For a given lens, however, the beam size was fixed.  Consequently, the only 

variables allowed to change were f and λ of the second FZP/sieve.  Once these parameters 

were optimized, the corrector could be created easily with slight modifications to the 

MATLAB code already developed (see Appendix).   

Zemax has the built-in ability to vary these factors in order to optimize the system 

for a given parameter.  The chosen parameter to minimize was RMS (Root-Mean-Square) 

Wavefront Error with Respect to Centroid (RWCE) (2; 39:296).  According to the Zemax 

manual, both RMS and centroid references are the most common while performing 

wavefront optimization (39:274).  Note that, throughout this thesis, diffraction-limited 

performance results are judged according to peak-to-valley (PTV) wavefront error being 

less than 0.25λ rather than an RMS error threshold.  The RWCE routine allows 

optimization over all sources of error, however, and therefore should yield the best 

possible wavefront (39:274). Because of this expectation, the RWCE scheme was 

adopted. The next section discusses further the link between wavelength adjustment and 

wavefront aberration.         

Wavelength Adjustment. 

A correlation between the wavelength of the light source and the induced optical 

system wavefront aberration was observed while conducting laboratory characterization 
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of the primary photon sieve.  During testing it became necessary to tune the laser away 

from the sieve design wavelength (740 nm) by nearly 9 nm to achieve diffraction-limited 

performance.  It was later determined that the poor performance at 740 nm (where it was 

expected to be optimal) was because the distance between the point-source and the sieve 

was not equal to the distance between the sieve and the focus as had been planned.  In 

effect, the system had been unintentionally setup to operate best at 731 nm.  This error 

resulted in a system that exhibited off-wavelength aberration at 740 nm; however, it also 

suggested a way to remove the aberration (tuning the laser to a new wavelength).  

This link between wavelength variation and resultant aberration was immediately 

applied to design of the secondary.  Further research offered an explanation as to why this 

effect was observed.  As previously noted, a hologram (or equivalent element) can be 

utilized for aberration correction.  A hologram, however, is recorded at a unique 

wavelength and will itself cause wavefront aberration if reconstructed using light of a 

different color (20:31).  In particular, Munch and Wuerker state that “the magnitude of 

the [system] aberration is recorded as a phase shift at the recording wavelength.”  When 

the hologram is reconstructed at a different wavelength, the phase shift applied to the 

wavefront may be too large or too small (27:1316).  In other words, an off-wavelength 

hologram could increase or decrease the overall system wavefront aberration.  Andersen 

and Knize note that, in the latter case, there may still be some amount of improvement 

short of total correction (6:590).  While this effect is typically regarded as problematic, 

the idea of applying less-than-total correction was leveraged in this project where 

maximum correction at the primary wavelength was not required but rather acceptable 

(diffraction-limited) correction over a polychromatic range. 
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Accordingly, using Zemax, both focal length and wavelength of the corrector 

were permitted to vary as part of the program’s optimization scheme.  First, without 

varying design wavelength (restricting it to 740 nm and solely varying focal length), 

diffraction-limited performance was only predicted over a bandwidth of approximately 

0.001-0.01 nm.  Second, it is demonstrated in Chapter IV that also varying the 

construction wavelength (by only 1 nm) effectively expanded the predicted diffraction-

limited bandwidth approximately 800 times larger than that achieved by varying f alone.  

This result would suggest that adjusting the design wavelength of a corrector away from 

the primary wavelength of the system may be beneficial to bandwidth broadening.    

 
Primary and Secondary Characterization 

Setup. 

Once the primary sieve was designed and constructed, it was necessary to 

characterize its performance 1) as a baseline for correction effectiveness and 2) as a way 

to judge how well Zemax modeled it.  The method of characterizing the primary photon 

sieve was essentially the same as that applied in Ref. 5.  In fact, some characterization 

was accomplished during a visit to the USAFA to work with Andersen directly.  The 

results of the characterization study are discussed in Chapter IV; however, the 

experimental setup is depicted in Figs. 28 and 30.  Three tests were conducted to test the 

performance of the sieve: focal spot analysis, imaging, and interference pattern study.    



51 

 

Figure 28.  Lab Setup for Focal Spot and Imaging Analysis.  Laser light was spatially-filtered by focusing 
the beam through a 25-µm pinhole using a 20x microscope objective.  The light diverged until it was 
focused by the sieve a distance 2f = 1 m from the optic.  A 10x or 20x microscope objective magnified the 
focus for viewing with a camera.  While imaging, the spatial filter was replaced with a test target. 

Focal Spot. 

Referring to Fig. 28, the primary photon sieve was utilized to create an image of a 

point source for ACA and spot size analysis.  A point source was created in the AFIT 

laboratory by spatially-filtering light from the tunable Ti:Sapphire laser using a 20x 

microscope objective to focus the beam through a 25-µm pinhole.  The light then 

diverged and fell incident on the photon sieve at a distance 1 m (2f).  The sieve focused 

the light to a point about 1 m away, and a microscope objective (10x or 20x) was placed 

on a translation stage to magnify the image onto a SBIG STF-8300M camera for viewing.  

As noted in Chapter I, tuning the laser resulted in varying image plane locations.  Using 

the translation stage to move the magnifying objective, the in-focus spot position at each 

wavelength was estimated through visual analysis.  The distance difference between the 

reference position at 740 nm and the off-wavelength focus was measured.  This 

difference in image location was converted to a difference in focal length (ACA).  A 

similar setup was used during the trip to the USAFA; however, the equipment parameters 
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were different.  All of the chromatic aberration measurements, however, were taken in 

the AFIT lab.  The spot size at 740 nm was also measured and compared to predictions.    

Of note is the fact that the pinhole used to create a point source was likely too 

large, but no other pinhole was made available at AFIT.  As such, the pinhole was not 

used during some measurements (specifically the size measurement in Fig. 39).  Based on 

the calculations below, it was determined that the pinhole was likely passing most of the 

incident beam even while being used and was therefore superfluous.    

Several different methods are described below for determining the required 

pinhole size for a spatial filter, but they all point to the need for a significantly smaller 

pinhole than the 25-µm pinhole used in this experiment.  According to the Newport 

Corporation website, the appropriate diameter for a pinhole is given by  

 
𝐷𝑃𝐼𝑁𝐻𝑂𝐿𝐸 =

𝑓𝜆
𝑤1′

=  9.26 µm , (42) 

where 𝑤1′ = 0.64 mm is the projected actual 1 𝑒2⁄  radius of the laser beam at the pinhole 

and was calculated using data from the experiment described in Ref. 13 (13, 33).  The 

radius values assume that the spatial filter is approximately 0.7 m from the beam waist.      

Another method for determining the pinhole diameter uses the size of an ideal and 

collimated laser beam incident on the pinhole and is calculated according to (37:78):   

 
𝐷𝑃𝐼𝑁𝐻𝑂𝐿𝐸 =

4
3

× 2 ×
𝑓𝜆
𝜋𝑤1

= 8.82 µm , (43) 

where 𝑤1 = 0.57 mm is the projected ideal beam radius at the pinhole (13).  A pinhole is 

then selected to clip the excess light above this radius (33).  Note that Eq. 43 assumes a 

perfectly Gaussian beam and uses a multiplicative factor of 4/3 to account for lens 

aberrations (37:78).  Perhaps the most accurate method to determine the required pinhole 
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size is derived in Ref. 13.  It still assumes an ideal beam but takes into consideration the 

beam curvature at the lens (𝑅1= 1.44 m).  This method gives the beam size at the pinhole: 

 
𝐷𝑃𝐼𝑁𝐻𝑂𝐿𝐸 =

4
3

× 2 ×  �
𝜋𝑤1
𝜆

�
1
𝑓
−

1
𝑅1
��
−1

= 8.84 µm . (44) 

In all three cases, the required pinhole size is near 10 µm.   

Imaging. 

The same experiment described in the previous section was repeated using a 

ThorLabs Negative USAF 1951 Test Target instead of a point source (see Fig. 29).  The 

target was placed at the location of the spatial filter.  Again, in-focus distances of the 

image were measured to determine chromatic aberration effects.  The target also allowed 

additional determination of diffraction-limited performance via resolution measurements 

of the resultant image.  A spinning diffuser was added to the system such that the laser 

passed through a ground glass element prior to hitting the test target.  The diffuser 

diminished speckle and resulted in better imaging and more accurate analysis of the sieve 

performance.  Imaging and focal spot measurements were also performed on the FZP 

used in correction testing.  All of the characterization results for both the primary and 

secondary are detailed in Chapter IV.  

 

Figure 29.  Resolution Chart Image.  Each element grouping of the ThorLabs Negative USAF 1951 Test 
Target is characterized by the bar spacing and size.  From this information, along with optical system 
arrangement data, it is possible to determine the resolution of a system. 
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Interferometry. 

Lastly, it was possible to measure actual wavefront error using interference 

techniques and fringe analysis software.  Fig. 30 represents a schematic of the setup.  

Point source light was again passed through the sieve and focused; however, divergent 

light from the focus was collimated using an achromatic lens.  A second beam was split 

from the primary, passed through a spatial filter and also collimated.  The second beam 

did not pass through the sieve and was therefore theoretically free of aberrations.  The 

two collimated beams were interfered, and a picture was taken of the interference pattern.  

Fig. 31 is representation of one such interference pattern exhibiting high aberration due to 

an off-wavelength condition described in the previous section (the light that passed 

through the sieve was near 532 nm while the sieve was designed to operate at 740 nm).  

Using these images and the fringe analysis software, actual wavefront aberration was 

determined (see Chapter IV). 

 

Figure 30.  Lab Setup for Interference Pattern Analysis.  As in Fig. 28, a point source was imaged by the 
sieve.  The focused light, however, was collimated and interfered with another collimated beam free of 
aberrations from the photon sieve.  The interference pattern was recorded using a camera.   
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Figure 31.  Off-Wavelength Interferogram.  As described in the previous section, when light of one 
wavelength is passed through a hologram designed to operate at a different wavelength, aberration results.  
Light at approximately 532 nm was passed through a photon sieve designed to operate at 740 nm and then 
interfered with a theoretically unaberrated reference beam to produce this fringe pattern.  If no aberrations 
were present, the fringes would be straight (2, 5).  The curved nature of the fringes depicted here indicates 
high aberration (off-wavelength) of the system in this case. 

Correction Effectiveness 

Once a corrector optic was placed in the system, its effectiveness had to be 

measured.  Again, these methods were adapted from Ref. 5.  Fig. 32 depicts the 

correction system geometry.  The primary sieve was utilized to image a point source.  

This focused light was collimated and passed through a corrector device (a second photon 

sieve or FZP).  The device was placed in the plane where “the aberrations of the collector 

are imaged” (27:1312; 2; 26:4).  In other words, the second sieve had to be located at the 

position where the collimating lens imaged the primary sieve (calculated in Zemax).  The 

second sieve produced both divergent and convergent beams which were collected using 

a Nikon Nikkor 50-mm, f/1.4 camera lens placed close enough to the corrector to capture 

all the light (4:3708).  The focused point could again be magnified and captured by the 

camera.  Using this setup, the same experiments could be conducted as were done with 

the primary except now with an additional phase of optics.   
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Figure 32.  Lab Setup with Corrector.  A spatially-filtered laser beam (point source) illuminated a photon 
sieve and was focused and then collimated.  A corrector was placed at the location where the primary sieve 
was imaged by the collimated lens.  The divergent light transmitted by the corrector was captured by a 
camera lens, focused, and magnified onto a camera for imaging. 

Chapter Summary 

This chapter discussed the radiometric analysis conducted to determine a target 

bandwidth required for the secondary design scheme.  The 8-nm range neglects any 

losses due to the corrector but serves as an approximate goal for correction effectiveness.  

Modeling photon sieves in Zemax as well as basic wavefront error optimization concepts 

were also introduced.  Finally, the experimental setups used to characterize the primary 

and secondary elements and also determine corrector effectiveness were highlighted.  The 

next chapter details the results of this characterization and provides an in-depth analysis 

of the different secondary design schemes and their theoretical aberration-reduction 

effectiveness.   
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IV.  Results and Analysis 

 
 
 Chapter III provided an overview of both the simulation techniques and the 

experimental methods used throughout this thesis.  This chapter details the modeling and 

laboratory results.  First, theoretical predictions of the primary photon sieve performance 

are presented followed by a discussion regarding how the experimental results compare 

to this simulated data.  Next, modeling analysis of various secondary correction schemes 

is provided along with discussion as to which systems were chosen and why.  Lastly, 

experimental data from a corrected system is reviewed.      

 
 
Primary Modeling Predictions 

Focal Spot. 

Modeling the primary photon sieve in Zemax allowed estimates of the 

performance of the optic across various spectral bands.  Zemax was able to simulate the 

image produced by a point source placed 1 m from the sieve (see Fig. 25).  Fig. 33 

illustrates this in-focus spot prediction at seven discrete wavelengths.  Although not 

apparent in the depiction, the outer ring actually consists of two sets of overlaid dots.  

This ring represents the extreme wavelengths examined (731 nm, 749 nm) and shows 

that, over this bandwidth, the focal spot should span approximately 2400 µm.  

Additionally, Zemax predicted a RMS diameter of about 1330 µm.  Note that the RMS 

measurement accounts for contribution from each ray in the focal spot while the edge-to-

edge extent only considers the most divergent light.  In other words, the RMS 

measurement is tighter because of a higher ray density near the center (39:78).  The 
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diffraction-limited Airy disk diameter is 18 µm at the primary wavelength which is much 

smaller than the predicted image, indicating that the primary sieve will not provide 

diffraction-limited performance across this polychromatic range.    

 

Figure 33.  Polychromatic Primary Sieve Focal Spot Prediction.  This Zemax-produced figure shows what a 
polychromatic image of a point source made by the primary photon sieve should look like in the image 
plane.  Seven wavelengths (731 nm, 733 nm, 736 nm, 740 nm, 744 nm, 747 nm, and 749 nm) were 
considered.  The outer ring represents light from the extreme wavelengths.  Because the predicted Airy disk 
at 740 nm is 18 µm in diameter, it is evident that this polychromatic spot is far from diffraction-limited. 

Without discussion yet of how the enhancement was achieved, but for comparison 

purposes, Fig. 34 shows a corrected focal spot over the same 18-nm range.  Note that 

only the extreme and center wavelengths are pictured.  Not only is the spot pattern much 

tighter (nearly 12 µm), most of the light is contained near the 3-µm Airy disk (the RMS 

diameter is about 5 µm).  The ring pattern in this picture also more closely resembles 

what would be expected for a diffraction-limited point source and indicates that it is 
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possible to achieve such performance over an extended bandwidth by employing 

secondary optics. 

 

Figure 34.  Corrected Focal Spot.  A focal spot much closer to that expected for a diffraction-limited optic 
can be achieved over a wide spectral band by adding secondary optics to correct the wavefront aberration.  
This figure depicts an RMS diameter (5 µm) very close to the Airy disk diameter (3µm) over an 18-nm 
range. 

Chromatic Aberration. 

Theoretical axial chromatic aberration was also predicted using both geometric 

analysis and Zemax.  First, Eq. 8 can be rewritten to yield the expected focal length of the 

primary sieve at an off-design wavelength (𝜆2),  

 

𝑓𝜆2 =
𝑅𝑆𝐼𝐸𝑉𝐸2 −  𝑛𝑆𝐼𝐸𝑉𝐸

2𝜆2
2

4
2𝑛𝑆𝐼𝐸𝑉𝐸𝜆2

 , (45) 

where 𝑅𝑆𝐼𝐸𝑉𝐸  = 0.05 m and 𝑛𝑆𝐼𝐸𝑉𝐸  = 3376 rings.  Noting that 𝑓𝜆1  = 500.04 mm (the 

design focal length of the sieve at 740 nm), the ACA between 𝜆2 and 740 nm can be 

determined by first applying Eq. 45 and then using Eq. 20.  Table 2, Column 7 lists these 
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predictions which reveal possible ACA up to 2.72 mm across an 8-nm bandwidth.  

Comparison to experimental measurements is presented later.  

 Additionally, Zemax can also be used to predict ACA.  As the wavelength is 

adjusted, the software will provide an image location (𝑠𝑖𝜆2) based on marginal ray height 

for a point source 1 m away from the sieve.  Using the imaging equation from geometric 

optics, 

 1
𝑓𝜆2

=
1
𝑠0𝜆2

+
1
𝑠𝑖𝜆2

, (46) 

where 𝑠0𝜆2 = 2𝑓SIEVE , the adjusted focal length (𝑓𝜆2) can be determined and inserted into 

Eq. 20 to determine ACA (note that these values are not shown in Table 2). 

Wavefront Error. 

The final primary sieve aberration explored using Zemax was peak-to-valley 

wavefront error.  Fig. 35 depicts simulations of the wavefront passed by the sieve at    

736 nm, 740 nm, and 744 nm, respectively.  As expected, the middle (740-nm) wavefront 

shows no aberration while the outer cases exhibit approximately 18.35 and 18.15 waves 

of aberration.  These values well-exceed the diffraction-limited condition of 0.25 waves 

and therefore predict a highly-aberrated wavefront and a poor image.  The predicted 

wavefront error at all seven discrete wavelengths is presented later in Table 7, Row 5.   

 

Figure 35.  Primary Wavefront Depiction Prediction at Various Wavelengths.  The Zemax-predicted 
wavefront is shown at 736 nm, 740 nm, and 744 nm (left to right) after passing through the primary photon 
sieve.  The outer wavefronts each show approximately 18 waves of aberration and therefore indicate 
wavelength-specific performance degradation and a limited bandwidth.  
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Primary Experimental Results 

Focal Spot and Chromatic Aberration. 

The previous section noted methods to predict ACA.  Experimental measurements 

were taken that show close agreement with these simulations.  Using the setup depicted 

in Fig. 28, the image location (translation stage micrometer setting) was recorded at each 

wavelength between 736 nm and 744 nm (see Table 2, Column 2).  The difference 

between this location and that at 740 nm (∆𝑠𝑖) was calculated (see Table 2, Column 3).  

Table 2. Primary Photon Sieve Chromatic Aberration Focal Spot Measurements 

λ  
(nm) 

Micrometer 
Setting  
(mm) 

∆si 
(mm) 

fEFF 
(mm) 

Measured 
ACA 
(mm) 

ACA 
Error 
(mm) 

Predicted 
ACA 
(mm) 

Δ ACA 
(mm) 

736 19.96 10.91 502.75 2.71 0.10 2.72 0.01 
737 17.15 8.10 502.06 2.02 0.09 2.04 0.02 
738 14.32 5.27 501.35 1.31 0.09 1.36 0.04 
739 11.70 2.65 500.70 0.66 0.09 0.68 0.02 
740 9.05 0.00 500.04 0.00 0.00 0.00 0.00 
741 6.26 -2.79 499.34 -0.70 0.09 -0.68 0.02 
742 3.80 -5.25 498.72 -1.32 0.09 -1.35 0.03 
743 1.24 -7.81 498.08 -1.96 0.10 -2.02 0.06 
744 -1.40 -10.45 497.41 -2.63 0.10 -2.69 0.07 

 
Note that the point source (spatial filter) was placed such that 𝑠0 = 2𝑓SIEVE ≈ 1 m 

and was constant throughout the measurements.  Furthermore, the sieve was designed 

such that, at 740 nm, when 𝑠0 = 2𝑓SIEVE, 𝑠𝑖 = 2𝑓SIEVE.  Accordingly, the difference in the 

image location of an off-design wavelength (𝜆2) and that at 740 nm is given by 

 ∆𝑠𝑖 =  𝑠𝑖𝜆2 − 𝑠𝑖𝜆1  = 𝑠𝑖𝜆2 − 2𝑓SIEVE . (47) 

Applying this information, Eq. 46 becomes 
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 1
𝑓𝜆2

=
1
𝑠0𝜆2

+
1
𝑠𝑖𝜆2

=  
1

2𝑓SIEVE
+

1
2𝑓SIEVE + ∆𝑠𝑖

  , (48) 

and, when solved for 𝑓𝜆2 and combined with Eq. 20, yields the desired expression for 

ACA:  

 
ACA =  ∆𝑓 =  𝑓𝜆2 −  𝑓SIEVE =  

𝑓SIEVE
4𝑓SIEVE + ∆𝑠𝑖 

. (49) 

This ACA (based solely on measured ∆𝑠𝑖) was tabulated and compared to the predicted 

values (see Table 2, Columns 5 and 7).  In all cases, the measured ACA was within      

0.1 mm of the predicted ACA.   Figs. 36 and 37 graphically illustrate the high agreement 

between the measured and predicted values. 

 

Figure 36.  Plot of Measured versus Predicted ACA.  The triangles represent the experimentally-measured 
data listed in Table 2, Column 5 while the circles represent the ACA values predicted using Eqs. 20 and 45 
(see Table 2, Column 7). 
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Figure 37.  Difference in Measured versus Predicted ACA.  This figure is a plot of Table 2, Column 8 
versus wavelength and shows that the difference between the experimentally-determined and predicted 
ACA values is very small (< 0.1 mm). 

 One source of error in experimentally measuring ∆𝑠𝑖 was pinpointing an exact 

location of the in-focus spot.  In Fig. 38, the focused image of the 740-nm spot is 

depicted (Left).  As the laser was tuned by only a small amount, the image became 

increasingly distorted.   

 

Figure 38.  Polychromatic Focal Spot Distortion.  The focal spot was imaged at 740 nm, 739 nm, and     
736 nm (left to right) in the 740-nm image place.  The 740-nm image is the best while the image becomes 
significantly distorted as the laser is tuned away from 740 nm.   
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As such, around the focal spot, it was difficult to visualize the smallest and least-

distorted image precisely, and a range of possible focal spot values was determined.  

First, to account for the error in the reference (740-nm) spot position measurement, three 

different measurements were taken and an average value (u) calculated.  The difference 

between this average and the furthest measurement was used as the error: 𝜎𝑢 = 0.2 mm.  

Second, to account for the error in the spot position measurements at other wavelengths 

(v), the edges of what could be considered the focus were measured.  Specifically, these 

limits were determined by when the spot began to expand in either the horizontal or 

vertical direction.  Of the six measurements made, the worst-case offset was used as the 

error in this quantity: 𝜎𝑣 = 0.325 mm.  Because ∆𝑠𝑖 is simply the difference in focused 

spot location measurements (∆𝑠𝑖 = 𝑣 − 𝑢), the error in ∆𝑠𝑖 is 

 
𝜎∆𝑠𝑖 = ��𝜕∆𝑠𝑖

𝜕𝑢
�
2
𝜎𝑢2 + �𝜕∆𝑠𝑖

𝜕𝑣
�
2
𝜎𝑣2 = ±0.38 𝑚𝑚 .  (50) 

 To calculate the total error in ACA, the error in ∆𝑠𝑖 had to be propagated through 

Eqs. 20 and 48.  See the Appendix for a full set of calculations, but in general,  

 
 ACA =

𝑠0𝜆2
2∆𝑠𝑖 − 𝑠0𝜆2∆𝑠𝑖𝑓SIEVE + 𝑠0𝜆2

2𝑓SIEVE
𝑠0𝜆22 + 𝑠0𝜆2∆𝑠𝑖 − ∆𝑠𝑖𝑓SIEVE

− 𝑓SIEVE . (51) 

Note that this expression differs from Eq. 49 because 𝑠0𝜆2  was left as a variable (even 

though it is assumed to be 2𝑓SIEVE for numerical calculations) due to small uncertainty in 

the exact placement of the point source relative to the sieve that must be accounted for in 

the total error.  This total error is computed by  

 
𝜎ACA = ��

∂ACA
𝜕𝑠0𝜆2

�
2

𝜎𝑠0𝜆2
2 + �

𝜕ACA
𝜕∆𝑠𝑖

�
2

𝜎∆𝑠𝑖2 , (52) 
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where 𝜎𝑠0𝜆2was measured to be approximately 5 mm.  The error ranges from 0.09 mm to 

0.10 mm and is reflected by the error bars in Fig. 36 and listed in Table 2, Column 6.    

 A second check of the sieve performance was determination of whether the 

observed focal spot size was consistent with theoretical predictions.  For a diffraction-

limited system, the spot size is given by (21:468-470):  

 
𝑑𝑓 = Focal Spot Diameter = 2.44 ×

𝜆
𝐷

(2𝑓) . (53) 

Fig. 39 shows an enlarged picture of the actual spot magnified from the image plane by a 

20x microscope objective.   

 

Figure 39.   In-focus Spot Measurement.  The depicted spot contains approximately 153.75 pixels.  At     
5.4 µm per pixel, the spot diameter measures about 830 µm which is close to the diffraction-limited 
prediction of 846 µm. 

Using Eq. 53 and adjusting for magnification, the diameter of a diffraction-limited 

spot on the camera should be approximately 846 µm.  Several measurements were taken 

using the photo in Fig. 39 in which the number of pixels across the spot was estimated 

and multiplied by the camera pixel size, 5.4 µm.  Determining the first minimum in the 
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photo precisely was difficult, yielding diameter estimates ranging from 775 µm to       

944 µm.  The most confident measurement (depicted in the figure) suggests an Airy disk 

diameter of 830 µm which is close to the theoretical value.  In any case, however, the 

predicted value falls within the range of measured values, indicating sieve performance at 

least close to diffraction limited.   

 Lastly, Fig. 40 is an image taken at the USAFA of the spot produced by the 

primary sieve.  This high quality image shows an Airy pattern consisting of a solid center 

surrounded by a lower-intensity ring.  Furthermore, the image displays a fairly round 

center.  While no computational measurements were performed using this particular 

image, it is included because of its basic agreement with expectations of how the image 

of a diffraction-limited point source should appear (21:469). 

 

Figure 40.  Primary Photon Sieve Spot Image at 731 nm.  This image conforms highly to expectations of 
how a diffraction-limited point source should appear.  The image was taken at 731 nm because that was the 
position of best focus due to the misplacement of the sieve in relation to the point source at the USAFA 
(see Chapter III). 

Imaging. 

To test the imaging capability of the primary sieve, an image was made of a 

resolution test target (again according to the method illustrated in Fig. 28).  Fig. 41 shows 

images formed while using a spinning diffuser at two wavelengths while Fig. 42 shows a 
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comparison between images taken with and without the diffuser.  The distortions 

apparent in Fig. 42 (Right) are the result of speckle which resulted because a coherent 

laser was used to illuminate the chart, causing interference and degradation (20:40-41).  

 

Figure 41.  Diffraction-Limited Image of Resolution Chart from Primary Sieve.  Left: The red circle 
indicates the smallest resolvable group.  A group is identified by its column and row number.  Note that the 
“6-1” group is actually at the bottom of the column labeled “7.”  The “6-5” to “6-6” groups should be 
resolved for a diffraction-limited system and are resolved in the figure.  Right: A picture of the same area 
was taken at 739 nm.  None of the groups are resolvable, showing a very narrow diffraction-limited range.  

 

Figure 42.  Image of Resolution Chart with and without Diffuser.  The left image is of the 6/7 columns of a 
resolution target at 740 nm using a diffuser.  The right image is of the same area without a diffuser.  The 
resolution in the right image is not as good due to the effects of laser speckle. 

The red circles in each picture indicate the smallest resolvable grouping.  A 

grouping is resolved when the lines in both directions can be distinguished and the 

number of lines determined (35:3).  In order to gauge sieve performance, it was necessary 
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to determine theoretically which grouping should be resolved for a diffraction-limited 

device.  The Rayleigh criterion for resolution is given by  

 
𝛿 = Min Resolvable Image Separation = 1.22 ×

𝑧𝑖𝜆
𝐷

 (54) 

where 𝑧𝑖 = 2𝑓 is the image distance and D is the diameter of the optic.  Using the 

parameters unique to this setup, δ = 0.009028 mm.  This result implies that to resolve the 

bars, the centers need to be approximately 9 µm apart.  In other words, the width of a 

line-space pair in the smallest resolvable group would be 9 µm.  Because the bars in each 

grouping are the same width as the space between them, each bar in the smallest 

resolvable group would be about 4.5 µm.  From Table 3, it is evident that 4.5-µm bars 

would occur between groups 6-5 and 6-6.  A diffraction-limited system should therefore 

be able to resolve those lines.  This is the case in Fig. 41, so the sieve is diffraction-

limited at 740 nm.  Speckle is likely contributing to the blurring in Fig. 42 (Right) which 

does not show diffraction-limited performance.  The smallest resolvable group is 6-1.       

Table 3. Resolution Chart Data (35) 

Block Lines/mm 
Line Thickness 

(µm) 
3 1 8.00 62.50 

5 
5 50.80 9.84 
6 57.02 8.77 

6 

1 64.00 7.81 
2 71.84 6.96 
3 80.63 6.20 
4 90.51 5.52 
5 101.59 4.92 
6 114.04 4.38 

7 1 128.00 3.91 

 As a quick check of the ACA measurements made using the focal spot positions, 

the experiment was repeated using the number “3” column header on the resolution chart 
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without a diffuser (one was not available at the time of the measurement). The in-focus 

position of the number “3” seemed easier to visually determine than the spot position.  

The same procedure employed for spot ACA measurements (described in the previous 

section) was again utilized.  These measurements were taken from 741 nm to 744 nm, 

and the values obtained are listed in Table 4.   

Table 4. Primary Photon Sieve Chromatic Aberration Resolution Chart Measurements 

λ (nm) 
Micrometer 

Setting  (mm) 
∆si 

(mm) 
fEFF 

(mm) 
ACA 
(mm) 

740 18.26 0.00 500.04 0.00 
741 15.77 -2.49 499.42 -0.62 
742 12.84 -5.42 498.68 -1.36 
743 10.14 -8.12 498.00 -2.04 
744 7.00 -11.26 497.21 -2.83 

Fig. 43 shows a comparative plot between the values for ACA determined using 

spot measurements and those obtained using the resolution target.  The proximity of the 

lines indicates good agreement between the methods and consistency of results. 

 

Figure 43.  Comparative ACA Measurement.  The circles represent ACA measurements made by 
comparing spot (point source) image locations.  The triangles represent ACA measurements made by 
comparing in-focus locations of the number “3” on the resolution target.   



70 

Interferometry (Wavefront Error). 

Interferometry testing was conducted at the USAFA.  Using the procedure 

illustrated in Fig. 30, the primary photon sieve was illuminated with a point source at  

731 nm.  The transmitted beam was collimated and interfered with a theoretically-

unaberrated reference beam (also at 731 nm) to produce the fringe pattern in Fig. 44.   

 

Figure 44.  Interferogram of Primary Sieve with a Reference Beam.  This figure is an image of the 
interference between an unaberrated reference beam and the aberrated wavefront transmitted by the sieve. 

As noted, the sieve was designed to focus 740-nm light at a distance 2f = 1 m 

from the optic.  During testing setup, the distance between the source and the sieve was 

inadvertently changed from 1 m, thereby introducing off-wavelength aberration in the 

system.  Because the optics were already aligned properly, however, it was decided that 

the laser would simply be tuned to the wavelength of best performance (731 nm in this 

case) to measure the aberration of sieve. 

Using fringe analysis software, the peak-to-valley wavefront error was calculated 

to be 0.2227 waves (adjusted to 740 nm performance).  While this value is much higher 

than the predicted value of 0 (a perfect optic), it is below the diffraction-limited value of 

0.25 waves.  This result is important because it demonstrates that the primary photon 

sieve functions properly and is diffraction-limited.  Any further error in the resulting 
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image is therefore due to other factors, such as chromatic aberration.  Care was taken 

during setup to try and minimize aberration due to alignment and positioning of the optics 

and thereby eliminate sources of aberration other than dispersion.   

Efficiency. 

 While not directly linked to determining chromatic aberration, an efficiency 

measurement was taken to further characterize the primary sieve.  The power incident on 

the sieve was calculated and compared to the power measured in the in-focus spot.  The 

Ti:Sapphire laser was pumped at 8 W, giving an expected output power of approximately 

0.8-1.2 W which was subsequently decreased by a 50-50 beam splitter, two mirrors, and a 

spatial filter.  A ThorLabs D3MM power meter was used.  The measurement surface had 

a diameter of approximately 9 mm.  When placed in front of the sieve, the meter 

registered 10.7 ± 0.5 mW of incident power.  Assuming that the sieve was illuminated 

evenly, the total power incident on the sieve was 330.3 mW using the middle of the range 

(2).  The meter was transferred to the image plane where 10.1 ± 0.6 mW of power was 

measured.  Using these values, the sieve efficiency was calculated to be 2.8-3.4% with a 

median efficiency of 3.1%.  Note that this value may be high because no filter (to block 

any additional light diverging from the sieve) was used while making the second power 

measurement, but it is near the expected value of 3-4% (2).   

 

Zemax Modeling and Optimization 

Optimization. 

As discussed in Chapter III, the Zemax RWCE optimization routine was used to 

determine both a focal length and wavelength for the secondary corrector.  This routine 
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minimizes wavefront error over the specified bandwidth.  During modeling, different 

wavelength ranges were entered into the software, optimization performed, and the 

wavefront analyzed.  If the error exceeded the diffraction-limited value (0.25λ), the 

bandwidth was adjusted and the optimization performed again.   

As a side note, Zemax offers an optimization routine (AXCL) based on the axial 

image distance between two wavelength values (39:280).  This routine seemed promising 

because the axial difference in focus between the colors of a polychromatic source was 

what the correction scheme was being designed to minimize.  What was determined, 

however, was that while the predicted value of  ∆𝑠𝑖 using the AXCL function was 

approximately equal to the value achieved using the RWCE function, the wavefront 

aberration was much higher using the former and well beyond the diffraction limit (see 

Table 8).  As such, the AXCL optimization routine was not used.  

Design Comparisons. 

 Multiple corrector designs were investigated.  During the process, several factors 

had to be considered when selecting a design.  First, the divergent light transmitted by the 

secondary had to be collected and focused to form an image.  A camera lens was used for 

this task and had to have a diameter large enough to gather all of the diverging light.  The 

farther away from the corrector that the lens was placed, the larger the lens would need to 

be.  It was determined that a reasonably-priced Nikon f/1.4 lens could be purchased.  The 

diameter of this lens therefore limited the largest diameter of the beam incident on the 

second optic to approximately 35 mm.     

 Working backwards through the optical system, this maximum beam size drove a 

second parameter: the focal length of the lens used to collimate the light from the primary 
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sieve.  Because the collimating lens was placed at a distance equal to its focal length from 

the primary sieve’s image plane, a larger focal length would result in a larger beam.  

Consequently, the limit on beam size resulted in limits on the collimating lens focal 

length.  As an additional note, the type of collimating lens (achromatic doublet) was 

selected such that it did not introduce significant chromatic aberration into the imaging 

system (see Ref. 22).  Again, availability and cost of these higher-quality lenses were 

factors considered in design. 

 Table 5 lists three lenses determined acceptable for collimating the light in this 

correction scheme and shows the optimized corrector parameters (wavelength and focal 

length) determined by Zemax when including these lenses.  When using a collimating 

lens with a 220-mm focal length, for example, Zemax suggested that the corrector be 

designed to operate at 739 nm with a 23-mm focal length to achieve optimal wavefront 

performance across a particular bandwidth (which will be discussed later).  The last row 

lists the beam diameter at the secondary, which is less than the required 35 mm in all 

cases.  Only the first two lenses, an OptoSigma 026-1495 220-mm achromatic doublet 

and a ThorLabs AC508-300-B 300-mm near-IR achromat, were purchased for 

experimental testing.   

Table 5. Optimized Design Parameters 

  
OptoSigma 

220 mm 
Collimator (A) 

ThorLabs     
300 mm 

Collimator (B) 

ThorLabs     
350 mm 

Collimator (C) 
Required Wavelength 

(nm) 739 739 739 
Required Focal Length 

(mm) 23.077 43.762 59.959 
Required Diameter 

(mm) 22.026 29.964 34.936 
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Final System Design. 

Using the Zemax-determined parameters for lenses A and B in Table 5, corrector 

sieves were designed and fabricated in the same way as the primary.  Table 6, Columns 2 

and 4 list the parameters of these devices.  As discussed in Chapter III, because these 

sieves were small in diameter, every other ring near the edges of the sieves was skipped.  

As a result, the total area covered by holes (and therefore the total transmission of the 

sieve) was decreased to well-below the desired 50% (see Table 6, Row 14).    

Table 6. Corrector Element Comparison 
Element A-SIEVE A-FZP B-SIEVE B-FZP 

Wavelength (nm) 739 739 739 739 
Focal Length (mm) 23.077 23.077 43.762 43.762 

Diameter (mm) 22.999 22.999 29.999 30.000 
Total Rings 2195 2606 2187 2739 

Transition Ring 728 1550 978 2082 
Total Holes 28795151 N/A 34670938 N/A 

Area Covered By Standard Hole/Ring 
Size (%) 33.12 59.44 44.67 75.98 

Maximum Hole/Ring Thickness (μm) 70.64 46.17 97.06 63.44 
Minimum Hole/Ring Thickness (μm) 1.50 1.50 1.50 1.50 
nMax Lateral Hole Separation (μm) 1.57 N/A 1.57 N/A 
nMax Radial Hole/Ring Separation 

(μm) 1.81 1.81 3.04 3.04 
Outer Ring d/w 2.02 N/A 1.40 N/A 

Area Covered (%) 18.84 42.90 19.44 41.54 

 Due to uncertainty as to whether the Ti:Sapphire would have enough power to 

allow correction measurements with such low transmission, a FZP with the same 

parameters as each sieve was also constructed.  Because the width of the FZP rings 

equals the width of the underlying Fresnel zone (and not scaled bigger like the holes of a 

photon sieve), more of the FZP could be covered before outer rings had to be skipped.  
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Consequently, the zone plates allowed higher transmission (about double).  The 

parameters of these equivalent zone plates are listed in Table 6, Columns 3 and 5.   

 

Secondary Modeling Predictions 

Wavefront Error. 

Using Zemax, the performance of each of the correctors associated with the 

various collimating lenses listed in Table 5 (labeled A, B, or C) was simulated to 

determine both predicted wavefront aberration as well as focus and image characteristics.  

Table 7 lists the predicted wavefront error for each corrector at each of the seven 

considered wavelength values.  A green (light gray in grayscale) box indicates that the 

error is well-below the diffraction limit of 0.25 waves.  A yellow (white) box indicates 

that the system is approaching the diffraction limit (yet still below it) while a red (dark 

gray) box indicates that the limit has been exceeded.  The last column lists the bandwidth 

across which the corrector should theoretically compensate for the primary aberration.  

Corrector A (the 220-mm collimator) allows diffraction-limited performance across the 

target 8-nm range.   

Recall that it was discussed in Chapter I that the efficiency of the corrector was 

not considered when determining this target.  The decrease in transmitted energy from the 

secondary would clearly necessitate a higher starting bandwidth.  What is evident from 

Table 7, however, is that a larger bandwidth can be achieved by simply increasing the 

focal length of the collimating lens.  As such, this scheme is adaptable (to the extent that 

it fits within the engineering constraints of the application).  Furthermore, the scheme 

should provide correction over a desired bandwidth limited only by other factors already 
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covered (incident beam size, space, or element required to collect the divergent light, for 

example).  The last row in Table 7 lists the uncorrected wavefront aberration, clearly 

indicating necessity of the secondary optics in any imaging application. 

Table 7. Predicted Peak-to-Valley Wavefront Error (Waves) 
λ            

(nm) 731 733 736 740 744 747 749 
∆λ       

(nm) 
A 0.5572 0.4317 0.2446 0.0033 0.2495 0.4375 0.5645 8 
B 0.3167 0.2443 0.1406 0.0081 0.1381 0.2421 0.3163 14 
C 0.2387 0.1852 0.1093 0.0069 0.1066 0.1850 0.239 18 

Primary 41.5696 32.2434 18.3495 0.000 18.1517 31.6377 40.5681 N/A 

Fig. 45 depicts Zemax simulations of the wavefront at 736 nm, 740 nm, and     

744 nm after passing through the primary sieve-secondary combination (using Corrector 

A).  For comparison, Fig. 35 shows the wavefront at the same three wavelength values 

but does not include correction optics.  Note an apparent contradiction between the 

figures.  In Fig. 35, Zemax predicted an unaberrated wavefront at 740 nm while in       

Fig. 45, there is clearly some error (approximately 0.003 waves).  The small aberration is 

likely a result of multiple wavelength values being considered during optimization and 

the resultant corrector design wavelength (739 nm).   

 

Figure 45. Corrected Wavefront Depiction at Various Wavelengths.  The Zemax-predicted wavefront is 
shown at 736 nm, 740 nm, and 744 nm (left to right) after passing through the primary photon sieve, a  
220-mm collimating lens (Corrector A), and the corrector.  The outer wavefronts each show approximately 
0.25 waves of aberration while the aberration at the center wavelength is minimal although not zero.  The 
non-zero value at 740 nm may be due to a tradeoff between optimal performance at the primary wavelength 
and acceptable performance at peripheral wavelengths.   
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Focal Spot and Chromatic Aberration. 

As was the case when modeling the primary sieve, Zemax was used to determine 

the combined system (primary and secondary) image locations using light of various 

wavelengths.  The image distances were compared to the reference distance at 740 nm.  

The Zemax-predicted values are listed in Table 8.  Note that the last row lists the values 

modeled for the primary sieve alone, showing a clear improvement with correction.  To 

understand the color scheme in Table 8, a discussion of the idea of “depth of focus” is 

warranted.    

Fischer defines depth of focus as “the amount of image defocus which 

corresponds to [the condition when]…the optical path difference between the real 

wavefront…and a reference wavefront…is one-quarter of the wavelength of light” 

(16:58).  Because ACA = ∆𝑓, ACA can be viewed in terms of depth of focus by 

determining how much change in focus results in 0.25λ wavefront aberration.  ∆𝑓, in 

turn, can be determined by measuring ∆𝑠𝑖 (see Eq. 49, for example).  In this particular 

case, however, the corrected system involved three additional optics, making calculation 

of ∆𝑓 much more complicated than with the primary sieve alone.  As such, the colors in 

Table 8 correspond to the change in image location that corresponds to 0.25λ (see Table 

7) and consequently exceeds the depth of focus.  Green (light gray) indicates ∆𝑠𝑖 below 

the threshold, yellow (white) indicates the limit is approaching, and red (dark gray) 

annotates ∆𝑠𝑖 that has caused a focal spot to exceed the depth of focus at the design 

wavelength.  Note that the anticipated difference in ∆𝑠𝑖 between the corrected versus 

uncorrected systems is approximately two orders of magnitude. 
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Table 8. Predicted Change in Image Location (mm) 
Wavelength 

(nm) 731 733 736 740 744 747 749 
Corrector A 0.071 0.055 0.031 0.000 -0.031 -0.054 -0.069 
Corrector B 0.134 0.105 0.059 0.000 -0.059 -0.103 -0.131 
Corrector C 0.185 0.143 0.081 0.000 -0.081 -0.141 -0.181 

Primary 24.931 19.284 10.929 0.000 -10.695 -18.568 -23.747 
 

Fig. 34 already illustrated the impact a corrector should have on a focal spot size 

and appearance.   Fig. 46 illustrates another effect that is not as relevant to measuring 

ACA but is an interesting observation regarding the aberration nonetheless.  The figure 

shows the focal spot at various locations (spaced by 5 µm) along the optical axis.  In 

essence, it represents what the focal spot would look like from an observer traveling 

along the axis starting prior to the focus and passing through it to the other side.  As 

expected, the focal spot size increases to the left and right of the focus.  What is 

interesting, however, is that the increase on either side is due to light of different 

wavelengths.  On the right side, the expansion is primarily seen at 744 nm while on the 

left side, it is a result of the 736-nm light.     

 

Figure 46.  Along-Axis Corrected Focal Spot Predictions.  These focal spot “snapshots” are separated by    
5-µm increments along the optical axis with the middle image representing the actual focus.  The red dots 
(outer ring in the right spot) represent 744-nm light, and the green dots (outer ring in left spot) represent 
736-nm light.   
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Secondary Experimental Results 

Zone Plate Characterization.   

Corrector A-FZP (the zone plate designed to work with the 220-mm collimating 

achromat) was used for the correction effectiveness measurements.  During testing, it was 

suspected that elements of the optical system were misaligned or that the corrector was 

not functioning fully as expected, leading to a degraded final image (see Figs. 51 and 54).  

The system alignment was checked and determined not likely to be the cause of the main 

image problems.  The corrector, therefore, was suspected and independently tested by 

illuminating the FZP with a collimated beam at 739 nm (the design wavelength of the 

corrector).  An adjustable aperture was placed as close as possible (approximately 3 cm) 

in front of the FZP in order to adjust the effective diameter of the device.  This procedure 

essentially permitted testing of only the central portion of the FZP.  Fig. 47 illustrates the 

focal spot formed by the FZP at various aperture positions.  The image on the left was 

taken with the aperture fully closed (a diameter of approximately 2 mm); the image on 

the right was taken with the aperture fully open (a diameter of approximately 2 cm); and 

the central image was taken with the aperture positioned in between. 

 

Figure 47. Corrector A-FZP Focal Spot.  These images of the focal spot (formed by the f = 23 mm FZP 
corrector) were taken with an adjustable aperture (in front of the FZP) fully closed to approximately 2 mm 
(left), fully open to approximately 2 cm (right), and in between.  The incident 739-nm light was collimated. 
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Fig. 47 seems to indicate that as more of the FZP is illuminated, the spot image 

degrades and appears to show a significant amount of aberration when the majority of the 

corrector is being used.  For comparison, the resolution chart was imaged and showed 

similar behavior.  Fig. 48 shows images of the test target with the aperture fully open 

(Right) and slightly open but not fully closed (Left).  Note that when the aperture is fully 

open, there appears to be a “smearing” effect toward the upper left of the image.  In each 

case, the resolved line grouping seems to be the same, but the image quality is greatly 

enhanced as the aperture is closed.  One additional note is that, under the magnification 

used to form the images in Fig. 48, it was not possible to observe the expected least-

resolvable line group (in the “7” column) to completely quantify the FZP performance.  

 

Figure 48.  Corrector A-FZP Resolution Chart.  These images of the resolution chart were formed by the     
f = 23 mm FZP corrector and were taken with an adjustable aperture in front of the FZP slightly open (left) 
and fully open (right).  The incident 739-nm light was collimated. 

These observations are important, however, as they imply that the outer portions 

of the FZP may not be performing properly, possibly due to design or printing error.  The 

latter is unlikely as the central portion seems to function adequately (and the primary 

sieve, fabricated by the same process, performs well also).  More likely then is that the 

design of the FZP (specifically the outer rings) needs to be reevaluated.  Due to time 
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constraints, this investigation is left for future work, and the FZP was used in conjunction 

with an adjustable aperture to limit the illumination to the central 2-4 mm. 

Because the system was limited to using the middle section of the FZP, the spot 

corresponding to this limit (Fig. 47, Left) was measured against the expected size for a 

diffraction-limited device.  Using Fig. 49, the approximate spot diameter (to the first 

minimum) was measured (df = 22 cm × 7 pixels/cm × 5.4 µm/pixel ≈ 831.6 µm).  The 

diameter of the Airy disk for a diffraction-limited system (2-mm aperture, f = 23 mm,     

λ = 739 nm) was determined to be 20.8 µm which, when magnified 35.6 times, gives an 

expected on-camera diameter of 740.5 µm.  The measured spot is larger than expected; 

however, it was difficult to determine the first minimum of the observed Airy pattern, and 

the result is within 12% of the expected value.  Consequently, the central portion of the 

FZP, while not definitively performing in a diffraction-limited manner, seems to be 

working well enough to conduct correction effectiveness analysis.      

 

Figure 49. Corrector A-FZP Spot Measurement.  The depicted spot contains approximately 154 pixels.  At     
5.4 µm per pixel, the spot diameter measures about 832 µm. The magnified (36×) diffraction-limited 
predicted size is 741 µm. 
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Corrected Focal Spot and Chromatic Aberration. 

The FZP was placed after the primary photon sieve to evaluate the correction 

effectiveness.  With the available equipment, it would be difficult to directly measure 

ACA in the corrected system in the same way as was done with the primary.  The 

predicted ∆𝑠𝑖 for the corrected system (see Table 8) is much less than the error in 

measurement of ∆𝑠𝑖 of the primary (see Eq. 50).  Future work may be able to address this 

issue. 

Thus, to analyze the corrector effectiveness, the system was set up according to 

Fig. 32 using the 220-mm collimating lens (Table 5, Collimator A) and Corrector A-FZP    

(Table 6).  Note that the sieve-equivalent to this corrector was damaged beyond use and 

consequently not tested.  Theoretically, the sieve and FZP should operate similarly with 

the benefit that the FZP offers additional transmission.  The light from the spot imaged by 

the primary sieve was collimated by the lens, and the corrector was placed at the location 

where the primary sieve was imaged by the achromat (26.76 cm).  The camera lens was 

then positioned at the maximum distance from the corrector such that the front of the lens 

could collect all of the divergent light from the FZP (approximately 1.4 cm). 

In order to observe the corrected spot, it was first necessary to locate it.  Because 

the system consisted of two diffractive elements, multiple spots (resulting from 

combinations of the various diffraction orders) were visible.  Each element produced 

multiple orders, of which five from the primary were analyzed: the +1 and +3 

(converging) orders, the 0 (undiffracted) order, and the -1 and -3 (diverging) orders.  

Combining these orders with the +1, 0, and -1 orders from the FZP, 15 combinations 

generated by the second optic were possible (2).  Fig. 50 depicts the system geometry 
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along with the appropriate distances and focal lengths needed to apply the imaging 

formula (Eq. 46) and determine the spot locations.  Table 9 lists where each order was 

expected to focus based on this geometry.  The last column lists the imaging distance 

from the back vertex of the camera lens.  Green (light gray) indicates spots believed to be 

observed; yellow (white) indicates spots that could be observed but were not (either by 

choice to not look for them or possibly due to low light); and red (dark gray) indicates 

virtual, unobservable spots. Note that the locations of the front and rear camera lens 

principal planes were estimated (17). 

 

Figure 50.  Corrected Focal Spot Location.  A point source is imaged by the primary sieve.  Aperture 1 was 
used to limit the light from the zero-order diffraction from the sieve.  The light is collimated and passed 
through Aperture 2 and then a corrector element.  Aperture 2 limited the light incident on the corrector FZP 
due to suspected issues with the outer rings.  The transmitted light is then collected by the camera lens, and 
several focal spots are formed (resulting from the multiple diffraction orders). 
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Table 9. Expected Focal Spot Locations 

DIFFRACTION 
ORDER    

(SIEVE / FZP) 

SIEVE       
IMAGE           

(cm) 

LENS     
IMAGE       

(cm) 

FZP    
IMAGE    

(cm) 

CAMERA            
IMAGE                       

(cm) 

0 

+1 N/A 24.42 152.80 3.84 
0 N/A 24.42 N/A 22.72 
-1 N/A 24.42 -1.16 161.51 

+1 

+1 100.00 -1188.00 2.30 -3.57 
0 100.00 -1188.00 N/A 4.02 
-1 100.00 -1188.00 -2.30 23.30 

+3 

+1 20.00 28.08 0.84 -9.60 
0 20.00 28.08 N/A -6.77 
-1 20.00 28.08 3.10 -2.10 

-1 

+1 -33.33 25.64 -2.18 25.19 
0 -33.33 25.64 N/A 213.95 
-1 -33.33 25.64 -0.75 -97.13 

-3 

+1 -14.29 26.25 -0.66 -68.57 
0 -14.29 26.25 N/A -47.03 
-1 -14.29 26.25 -0.42 -38.92 

 

In total, six spots were observed.  The first two are believed to correspond to the   

0 / +1 and +1 / 0 orders respectively as they are in the expected locations and respond 

appropriately when the primary zero-order light is removed (Aperture 1 was placed at the 

location of the first-order primary image such that approximately only the +1 order was 

transmitted).  Two additional areas of apparent focused light were also observed near   

8.7 cm and 12.5 cm.  These spots did not correspond to any expected spots, and further 

investigation is needed to determine their origin.  Based on the calculations in Table 9, it 

is assumed that neither of these spots could be the desired +1 / -1 order, and they were 

presently neglected.  The remaining two observed spots are believed to be 0 / 0 and       

+1 / -1 spots, again because of their agreement with expected location and response 
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characteristics.   Fig. 51 shows an image of what is believed to be the +1 / -1 spot, which 

was observed at approximately 21.5 cm from the back of the camera lens.   

 

Figure 51.  Corrected Spot.  The image shows what is assumed to be the spot produced by the primary 
sieve +1 and the corrector FZP -1 orders.   

 While this spot does not appear to be sharp, there are several reasons why it was 

concluded that it is the most likely (of the spots observed) to be the desired +1 / -1 order:  

1. The spot is near the expected location, and the other nearby spot is affected by 

the size of Aperture 1 (the +1 / -1 order should not be affected).   

2. The spot is only visible when the primary sieve’s zero-order is removed (using 

Aperture 1).  The transmission of the zero-order is expected to be much higher than the 

other orders, indicating that it would dominate (2).  Furthermore, it may be possible that 

the camera lens was not completely gathering all of the light diverging from the corrector 

(due to positioning error and lens curvature), additionally reducing the focused light.  

3.  When the image is defocused (either by moving the magnifying objective or 

by tuning the laser), a diffraction pattern emerges similar to what would be expected for a 

focal spot (see Fig. 52, Left).   

4.  The poor quality of the spot may be a result of additional diffraction orders 

that could not be fully removed, other unidentified light transmitted by the FZP and 
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captured by the camera lens, and/or aberration due to system alignment or FZP design 

(which is what is suspected based on analysis of the FZP independently).   

 

Figure 52.  Corrected Spot Characteristics.  Left: As the laser is tuned below 740 nm, an image typical of a 
defocused point is observed.  Center: Using less filter (referring to the light incident on the camera), a set of 
concentric rings is observed to the lower right of the central spot, indicating possible aberration or 
interference.  Right:  With the aperture fully open (allowing the primary zero-order through), a set of 
concentric rings (with curvature opposite the Center image) is observed.   

  5. When the resolution chart was used instead of the point source, an image 

appeared in the same location (see Fig. 54) with similar characteristics.   

This spot is thus the best candidate to represent the desired +1 / -1 order.  One 

additional test was performed using this spot to evaluate its response to changing 

wavelength.  Fig. 53 shows images taken at seven discrete wavelengths (731 nm, 736 nm, 

739 nm, 740 nm, 741 nm, 744 nm, and 749 nm).  While the image clearly changes across 

the 8-nm range of expected good performance, it does not appear to change much 1 nm to 

either side of 740 nm.  If this is the correct spot, this observation is promising because, 

without correction, the expected bandwidth was much smaller than 2 nm.   

 

Figure 53.  Corrected Spot Wavelength Variation.  The images of the corrected spot were taken (left to 
right) at 731 nm, 736 nm, 739 nm, 740 nm, 741 nm, 744 nm, and 749 nm.  Note that the images do not 
change appreciably over the 2-nm central range, indicating possible effectiveness of the corrector element 
if this spot does in fact represent the correct order. 
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Time constraints prevented any additional attempts to remove the diffraction 

orders and further isolate the correct spot.  Instead, the remaining time was used to test 

the resolution target and to qualitatively and quantitatively investigate correction 

effectiveness (see below).  Future work, however, should be able to confirm this is indeed 

the correct spot as well as sharpen the image such that testing using interferometry can be 

performed.  Also, note that measurements of the spot size are not presented as they would 

likely be inaccurate due to the issues discovered with the FZP which were compensated 

for during testing of the resolution chart but not when viewing the focus. 

The left image in Fig. 54 (formed by the primary-secondary combination) shows 

the test target’s column “3” header.  The image shows a similar “smeared” behavior as 

the spot in Fig. 51 and even suggests a possible double image.  These observations would 

seem to align with the hypothesis that the outer rings of the FZP may be performing 

differently than the inner section.  Furthermore, as the aperture in front of the FZP was 

closed (Fig. 54, Left to Right), the image quality improved in the same manner as did the 

spot during characterization of the FZP (see Fig. 47).  Accordingly, this aperture was 

positioned such that only the central 2-4 mm of the corrector plate was illuminated.   

 

Figure 54. Aperture Adjustments to Corrected Image.  This image of the resolution chart’s “3” header was 
formed at 740 nm using the combined primary-secondary system.  As the size of the aperture in front of the 
corrector FZP was reduced, the image quality improved (left to right).  The horizontal line across the right 
image was not identified but is suspected to be an issue with the camera during image capture. 

To qualitatively observe the behavior of the corrected system, images of the 

number “3” (with Aperture 2 sized such that the clearest corrected image was produced) 
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were taken at various wavelengths and compared to images taken with the primary alone 

(uncorrected at the same wavelengths).  From Fig. 55, it is evident that the corrected “3” 

can be identified over a much broader range than the uncorrected case. 

 

Figure 55. Corrected 3 Comparison.  Top: The images of the uncorrected “3” were taken (left to right) at 
731 nm, 736 nm, 739 nm, 740 nm, 741 nm, 744 nm, and 749 nm using only the primary sieve (with a 
diffuser positioned prior to the resolution target).  Bottom: The images of the corrected “3” were taken at 
the same corresponding wavelengths, again with a diffuser.     

More quantitative analysis involved analyzing the resolution target’s line 

groupings.  It was determined that the “3-1” group was the smallest resolvable set by the 

corrected system at 740 nm (the primary system wavelength).    Fig. 56 shows images of 

this grouping, both uncorrected (Top) and corrected (Bottom) across the target 8-nm 

bandwidth. 

 

Figure 56. Corrected Line Group Comparison.  Top: The images of the uncorrected “3-1” line group were 
taken (left to right) at 736 nm, 737 nm, 738 nm, 739 nm, 740 nm, 741 nm, 742 nm, 743 nm, and 744 nm 
using only the primary sieve (with a diffuser positioned prior to the resolution target).  Bottom: The images 
of the corrected “3-1” group were taken at the same corresponding wavelengths, again with a diffuser.     

Note that the corrected lines can be resolved all the way to the 744-nm right limit.  They 

do not seem to be resolved beyond 736-737 nm on the left side; however, the correction 

still marks improvement over the uncorrected bandwidth.  Additionally, although not 
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pictured, the grouping was still resolvable beyond 744 nm on the right side.  Fig. 56 

clearly shows an improved bandwidth (close to the target 8 nm) with the corrector.  

 One question, however, is the benefit of the correction when the primary sieve 

was able to resolve the “6-5” line grouping (4.92 μm between bars), and the corrected 

system, although it has an improved bandwidth, can only resolve the much larger “3-1” 

grouping (62.50 μm between bars).  This resolution is almost 13 times the resolution of 

the primary alone.  Because only the central 2-4 mm of the FZP was used for correction 

(due to Aperture 2 in front of the FZP), only a small portion of the sieve was actually 

used as well.  When a 2-mm FZP is imaged back through the achromat, the portion of the 

sieve actually “seen” by the corrector is the central 0.75 cm.  If Eq. 54 is again applied 

using this “smaller” sieve, the minimum resolvable spacing between the lines should be 

60.2 µm, which is closest to the “3-1” grouping (35:8).  If the aperture in front of the FZP 

were opened to 4 mm, the smallest resolvable group by the sieve should be the “4-1” set.  

The actual size of the aperture was estimated to be between 2 mm and 4 mm but likely 

within the 2-3 mm range.  This analysis indicates that with the stopped-down aperture, 

the corrected system should only be able to resolve lines close to the “3-1” group, 

suggesting that the system is working as it should when only the central portion of the 

corrector is used.   

 One final observation is depicted in Fig. 57.  The images of the “3-1” line 

grouping were formed at 738 nm using only the primary photon sieve.  The left image 

was captured with a diffuser in front of the test target while no diffuser was used on the 

right.  From these images, it seems like the diffuser actually limited the uncorrected 

bandwidth as the bars on the right side are still resolvable.  The diffuser, however, was 
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necessary to observe diffraction-limited performance of the sieve.  It was therefore 

included for all the correction comparison measurements and the resulting analysis.       

 

Figure 57. Diffuser Influence on Bandwidth.  Both images of the “3-1” line grouping were formed at      
738 nm using only the primary photon sieve.  The left image was formed with a diffuser in front of the 
resolution target while there was no diffuser present in the right image.   

 
Chapter Summary 

This chapter covered primary and secondary sieve performance.  First, the 

primary sieve operation was predicted and compared to results from laboratory 

characterization.  The experimental results confirmed diffraction-limited performance of 

the primary sieve and also validated the Zemax models used to predict ACA and simulate 

a photon sieve.  Second, several correction schemes were presented based on this 

modeling.  It was shown that ACA could theoretically be removed over an expanded 

bandwidth using a corrector FZP or second sieve.  Experimentally, correction 

effectiveness was measured using a FZP and showed an improved bandwidth over the 

uncorrected system when limitations were placed on the corrector size.    Further 

investigation is necessary to determine why the corrector is not performing as desired and 

whether similar resolution, with regards to the “6-5” grouping visible to the primary 

alone, is achievable.        
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V.  Conclusion 

 
 
 The purpose of this chapter is to provide an overview of the major tasks 

accomplished and the results achieved throughout this research project.  Specifically, it 

will evaluate the thesis with regard to the four objectives outlined at the beginning: 

establishing a realistic target bandwidth; designing and characterizing an imaging photon 

sieve; creating a bandwidth-broadening correction scheme for this particular sieve based 

on a FZP (or corresponding second photon sieve); and demonstrating effectiveness of this 

correction process.  Ideas for continuing this research and starting new endeavors will be 

discussed.    

 
 
Conclusion 

First, a radiometric analysis was conducted on a system consisting only of a 

notional photon sieve with no additional correction.  The bandwidth required to allow an 

appropriate amount of energy to be collected by this sieve was determined to be 8 nm. 

This value provided an order-of-magnitude target for similar sieve-based imaging and 

thus satisfied the first objective.   

Next, a functional primary photon sieve was designed and fabricated.  While this 

device was built specifically for use in the AFIT laboratory environment, the physical 

principles governing its operation are representative of many systems using a similar 

optic.  Diffraction-limited performance and imaging capability of the sieve was 

demonstrated at the primary wavelength.  Additionally, the chromatic aberration effects 

across an 8-nm range were experimentally characterized, satisfying the second objective.   
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The experimental data showed strong agreement with both geometrically-

predicted values as well as Zemax simulations.  The computer modeling confirmed that 

the software was correctly simulating both the system and the photon sieve performance.  

Zemax could thus be reliably used to model a corrector.  Accordingly, a flexible 

correction scheme was developed that allowed variation in collimating optic focal length 

to achieve a particular bandwidth, satisfying the third objective.   

Correction scheme models showed diffraction-limited performance over a much 

greater bandwidth range than the primary alone.  The useable bandwidths ranged from    

8 nm to 18 nm, demonstrating improvement over the uncorrected system.  Furthermore, 

the upper value of 18 nm is a factor of the 350-mm collimating lens used and can be 

adjusted by simply changing the lens focal length. Secondary photon sieves and 

corresponding FZPs based on these parameters were designed and fabricated for two of 

the correction (achromat) options.  Experimental testing of one of the FZP corrector 

optics was accomplished and demonstrated bandwidth enhancement over the primary 

sieve alone.  This corrected system did not achieve the same resolution when compared 

to the design-wavelength capability of the primary sieve.  This effect was likely due to 

the design and performance of the outer portion of the corrector.  When the reduced size 

of the corrector (and corresponding reduced size of the primary) was considered, 

however, the system did exhibit performance close to what was expected over the nearly 

8-nm target bandwidth (an improvement over the primary sieve alone), satisfying the 

fourth objective.  Additionally, because the experimental characterization of the primary 

sieve so closely matched the predictions, there is presently no reason to doubt that, if 
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constructed properly, a corrector FZP (or sieve) would yield experimental data much 

different than the theoretical data examined. 

In summary, experimental testing of the primary sieve demonstrated that Zemax 

could adequately model the system and thus be used to design a corrector and forecast 

correction effectiveness.  Simulations involving this secondary optic demonstrated that a 

FZP or second photon sieve should be able to be usefully employed to correct for 

chromatic aberration and effectively expand the bandwidth of a sieve-based (primary) 

imaging system.  Experimentally, the FZP could not be tested as intended most likely due 

to problems with the outer rings (design or fabrication).  With the reduced diameter of the 

FZP, the system demonstrated correction over a nearly 8 nm bandwidth at a resolution of 

approximately 13 times that of the primary sieve.  However, this resolution, while worse 

than that of the primary, does represent nearly diffraction-limited performance when the 

fact that the stopped-down FZP effectively limits the useable diameter of the primary 

sieve is considered.  Thus, in conclusion, an effective correction scheme based on the use 

of a FZP was demonstrated.       

 

Future Work and Action 

Several modifications could be made to this particular project to enhance the 

results.  First and foremost, the corrector must be analyzed and likely redesigned 

(possibly as a photon sieve) to be able to use the full extent of the device.  Constraints on 

the printing process restricted the design of the FZP, and the methods used to compensate 

for these restrictions may be responsible for the ineffectiveness of the outer portion. 

Additionally, unidentified system alignment issues may also be causing problems.   
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Once the corrector has been analyzed, diffraction orders must be adequately 

separated to correctly identify the spot for analysis and then conduct testing based on 

interferometry to more precisely determine the corrector effectiveness.  Because of 

laboratory equipment constraints, measuring ACA (using image location measurements) 

in the corrector system would not be possible.  In order to accomplish this task, a larger 

translation stage with a more sensitive micrometer would be needed.  Additionally, 

image-analysis software would likely be required to help determine the location of the 

focus (smallest spot).   

A new radiometric analysis could be conducted that more closely models the 

desired system.  Now that a practical correction scheme has been determined, the 

parameters of this scheme could be added to the analysis to give a more accurate idea of 

the required bandwidth.  The correction scheme could then be adjusted as necessary.   

Moving forward, the next step would be to work on constructing a system for use 

in an actual application, such as a future variation of the FalconSAT payload.  

Engineering constraints would no longer be neglected, and the system would have to be 

developed to meet certain size and weight criteria.   Additionally, more research would be 

necessary to determine other factors requiring consideration that are unique to a specific 

application.   
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Appendix 

 

Radiometry MATLAB Code 

 This script computes and plots the SNR as a function of bandwidth when using a 

photon sieve to conduct Earth imaging.  It uses a variety of sieve parameters (labeled 

“Iteration A, B, C, or D”).   

clear all 
clc 
  
%Constants 
c=3e8;                     %Speed of light [m] 
h=6.626e-34;              %Planck's constant [J*s] 
k=1.38e-23;               %Boltzmann constant [J/K] 
Temp=5778;               %Blackbody (Sun) temperature [K]  
lambda_halpha=656.28e-9; %Center wavelength [m] 
As=1.52e18;               %Sun area [m^2] 
re_s=1.52e11;             %Earth-Sun distance [m] 
  
%% Iteration A (parameters set to 30cm sieve (f/4) with 1.5ms integration time) 
  
%Adjustable parameters 
dsv=0.3;                  %Sieve diameter [m] 
Asv=pi*((dsv/2)^2);       %Sieve area [m^2] 
R=0.2;                    %Earth reflectivity 
T=0.1;                    %Sieve transmission 
n=0.4;                     %Sieve quantum efficiency 
f=1.2;                     %Sieve focal length [m] 
dp=4.65e-6;               %Pixel size 
Ap=dp^2;                  %Pixel area [m^2] 
t=1.5e-3;                 %Integration time [s] 
  
%Define array sizes 
Ls=zeros(1000,1); 
Ne=zeros(1000,1); 
SNR_A=zeros(1000,1); 
  
%Compute solar radiance using blackbody integral 
C1=2*h*c^2; 
C2=h*c/(k*Temp); 
func=@(x)C1./((x.^5).*(exp(C2./x)-1)); 
delta_nm=0.01:0.01:10;       %Bandwidth (variable) [nm] 
delta_nm=delta_nm'; 
delta=delta_nm.*1e-9;         %Bandwidth [m] 
for i=1:1000 
a=lambda_halpha-delta(i)/2;  %Lower integration limit 
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b=lambda_halpha+delta(i)/2;  %Upper integration limit 
Ls(i)=integral(func,a,b);     %Solar radiance [W/(m^2*sr)] 
  
%Compute electron count per pixel 
Ne(i)=(R*As*Ls(i)*Ap*Asv*lambda_halpha*T*t*n)/(2*pi*(re_s^2)*(f^2)*h*c); 
  
%Compute SNR 
SNR_A(i)=Ne(i)/((Ne(i)+100)^(1/2)); 
end 
  
figure; 
plot (delta_nm,SNR_A,'LineWidth',2) 
grid on; 
xlim([0.01 10]); 
xlabel({'Bandwidth, \lambda'; '[nm]'},'FontWeight','bold', 'FontSize', 18); 
ylabel({'SNR'},'FontWeight','bold', 'FontSize', 18); 
set(gca,'XMinorTick','on','YMinorTick','on'); 
 
%% Iteration B (parameters set to 20cm sieve (f/2) with 2.3ms integration time) 
  
%Adjustable parameters 
dsv=0.2;                  %Sieve diameter [m] 
Asv=pi*((dsv/2)^2);       %Sieve area [m^2] 
R=0.2;                    %Earth reflectivity 
T=0.1;                    %Sieve transmission 
n=0.4;                     %Sieve quantum efficiency 
f=1.2;                     %Sieve focal length [m] 
dp=4.65e-6;               %Pixel size 
Ap=dp^2;                  %Pixel area [m^2] 
t=2.3e-3;                 %Integration time [s] 
  
%Define array sizes 
Ls=zeros(1000,1); 
Ne=zeros(1000,1); 
SNR_B=zeros(1000,1); 
  
%Compute solar radiance using blackbody integral 
C1=2*h*c^2; 
C2=h*c/(k*Temp); 
func=@(x)C1./((x.^5).*(exp(C2./x)-1)); 
delta_nm=0.01:0.01:10;       %Bandwidth (variable) [nm] 
delta_nm=delta_nm'; 
delta=delta_nm.*1e-9;         %Bandwidth [m] 
for i=1:1000 
a=lambda_halpha-delta(i)/2;  %Lower integration limit 
b=lambda_halpha+delta(i)/2;  %Upper integration limit 
Ls(i)=integral(func,a,b);     %Solar radiance [W/(m^2*sr)] 
  
%Compute electron count per pixel 
Ne(i)=(R*As*Ls(i)*Ap*Asv*lambda_halpha*T*t*n)/(2*pi*(re_s^2)*(f^2)*h*c); 
  
%Compute SNR 
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SNR_B(i)=Ne(i)/((Ne(i)+100)^(1/2)); 
end 
  
%% Iteration C (parameters set to 30cm sieve (f/2) with 1.5ms integration time) 
  
%Adjustable parameters 
dsv=0.3;                  %Sieve diameter [m] 
Asv=pi*((dsv/2)^2);       %Sieve area [m^2] 
R=0.2;                    %Earth reflectivity 
T=0.1;                    %Sieve transmission 
n=0.4;                    %Sieve quantum efficiency 
f=0.6;                     %Sieve focal length [m] 
dp=4.65e-6;               %Pixel size 
Ap=dp^2;                  %Pixel area [m^2] 
t=1.5e-3;                 %Integration time [s] 
  
%Define array sizes 
Ls=zeros(1000,1); 
Ne=zeros(1000,1); 
SNR_C=zeros(1000,1); 
  
%Compute solar radiance using blackbody integral 
C1=2*h*c^2; 
C2=h*c/(k*Temp); 
func=@(x)C1./((x.^5).*(exp(C2./x)-1)); 
delta_nm=0.01:0.01:10;       %Bandwidth (variable) [nm] 
delta_nm=delta_nm'; 
delta=delta_nm.*1e-9;         %Bandwidth [m] 
for i=1:1000 
a=lambda_halpha-delta(i)/2;  %Lower integration limit 
b=lambda_halpha+delta(i)/2;  %Upper integration limit 
Ls(i)=integral(func,a,b);     %Solar radiance [W/(m^2*sr)] 
  
%Compute electron count per pixel 
Ne(i)=(R*As*Ls(i)*Ap*Asv*lambda_halpha*T*t*n)/(2*pi*(re_s^2)*(f^2)*h*c); 
  
%Compute SNR 
SNR_C(i)=Ne(i)/((Ne(i)+100)^(1/2)); 
end 
  
%% Iteration D (parameters set to 30cm sieve (f/3) with 1.5ms integration time) 
  
%Adjustable parameters 
dsv=0.3;                  %Sieve diameter [m] 
Asv=pi*((dsv/2)^2);       %Sieve area [m^2] 
R=0.2;                    %Earth reflectivity 
T=0.1;                    %Sieve transmission 
n=0.4;                    %Sieve quantum efficiency 
f=0.9;                     %Sieve focal length [m] 
dp=4.65e-6;               %Pixel size 
Ap=dp^2;                  %Pixel area [m^2] 
t=1.5e-3;                 %Integration time [s] 
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%Define array sizes 
Ls=zeros(1000,1); 
Ne=zeros(1000,1); 
SNR_D=zeros(1000,1); 
  
%Compute solar radiance using blackbody integral 
C1=2*h*c^2; 
C2=h*c/(k*Temp); 
func=@(x)C1./((x.^5).*(exp(C2./x)-1)); 
delta_nm=0.01:0.01:10;       %Bandwidth (variable) [nm] 
delta_nm=delta_nm'; 
delta=delta_nm.*1e-9;         %Bandwidth [m] 
for i=1:1000 
a=lambda_halpha-delta(i)/2;  %Lower integration limit 
b=lambda_halpha+delta(i)/2;  %Upper integration limit 
Ls(i)=integral(func,a,b);     %Solar radiance [W/(m^2*sr)] 
  
%Compute electron count per pixel 
Ne(i)=(R*As*Ls(i)*Ap*Asv*lambda_halpha*T*t*n)/(2*pi*(re_s^2)*(f^2)*h*c); 
  
%Compute SNR 
SNR_D(i)=Ne(i)/((Ne(i)+100)^(1/2)); 
end 
  
%% Plot composite figures 
figure; 
plot (delta_nm,SNR_A,delta_nm,SNR_B,delta_nm,SNR_C,delta_nm,SNR_D,'LineWidth',2); 
grid on; 
xlim([0.01 0.1]); 
xlabel({'Bandwidth, \lambda'; '[nm]'},'FontWeight','bold', 'FontSize', 18); 
ylabel({'SNR'},'FontWeight','bold', 'FontSize', 18); 
set(gca,'XMinorTick','on','YMinorTick','on'); 
legend('30cm, f/4, 1.5ms','20cm, f/2, 2.3ms','30cm, f/2, 1.5ms','30cm, f/3, 1.5ms') 
 
figure; 
plot (delta_nm,SNR_A,delta_nm,SNR_B,delta_nm,SNR_C,delta_nm,SNR_D,'LineWidth',2); 
grid on; 
xlim([0.01 10]); 
xlabel({'Bandwidth, \lambda'; '[nm]'},'FontWeight','bold', 'FontSize', 18); 
ylabel({'SNR'},'FontWeight','bold', 'FontSize', 18); 
set(gca,'XMinorTick','on','YMinorTick','on'); 
legend('30cm, f/4, 1.5ms','20cm, f/2, 2.3ms','30cm, f/2, 1.5ms','30cm, f/3, 1.5ms') 
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Primary Photon Sieve Design MATLAB Code 

This script identifies the sizes and position of the photon sieve holes and exports 

the information in Gerber format for processing.  It is adapted from the code created by 

Andersen (3).  It ignores any considerations relating to fabrication resolution.   

clear all 
clc 
  
%% Set user defined values 
lambda=740e-9;                              %Wavelength [m] 
f=0.5;                                           %Focal length [m] 
svdiam=.1;                                       %Desired sieve diameter [m] 
scalefactor=0.9;                                %Fraction of max number of holes per ring 
  
%% Calculate additional constants from user input 
fnumber=f/svdiam;                          %f/# 
rmax=svdiam/2;                                %Max radius [m] 
nmax=floor((-4*f+2*sqrt(4*f^2+rmax^2))/lambda);  %Outermost ring 
  
%% Open the Gerber File for editing and write header/parameters applicable to the entire file 
GerberFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_no_resolution.gbr','w+');  
fprintf(GerberFile,'G75*\r\n');                   %Set Multi Quadrant Mode; \r for Notepad viewing 
fprintf(GerberFile,'%%FSLAX35Y35*%%\r\n');       %Set coordinate Format Specification to omit 
Leading zeros, use Absolute notation, set number of integer positions in X,Y coordinates to 3 and decimal 
positions to 5 
fprintf(GerberFile,'%%IPPOS*%%\r\n');            %Set image polarity to "positive" 
fprintf(GerberFile,'%%LPD*%%\r\n');              %Set layer polarity to "dark" 
fprintf(GerberFile,'%%MOMM*%%\r\n');             %Set units to [mm] 
  
tic; 
%% Create aperture for each ring 
for j=1 nmax                                    
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4);    %Ring radius [m]        
    w=lambda*f/(2*rn);                            %Fresnel zone size at rn [m] 
    d=1.53*w;                                      %Hole diameter [m] 
    if n<2; 
        maxdiam=d; 
    end 
    diam=1000*d;                                  %Hole diameter [mm] 
    apnum=j+9;                                    %Aperture number (>10) 
    fprintf(GerberFile,'%%ADD%dC,%.5f*%%\r\n',apnum,diam); 
end 
  
%% Position apertures 
area=0; 
totholes=0; 
for j=1 nmax 
    phi=2*pi*random('unif',1);                    %Random starting angle 
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    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4); 
    w=lambda*f/(2*rn); 
    d=1.53*w; 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum);        %Identifies which aperture to place 
    C=asin(d/2/rn); 
    numholes=floor(scalefactor*(2*pi/(2*C)));    %Max number of angular holes scaled 
    totholes=totholes+numholes;                   %Total number of holes 
    holegap=(2*pi-numholes*2*C)/numholes;        %Angular gap between holes [rad]             
    area=area+numholes*pi*(d/2)^2;                %Total area covered by holes 
    for i=1 numholes                              %Position each hole at an x,y coordinate 
        x=100000000*rn*cos(phi);                  %x coordinate [um] 
        y=100000000*rn*sin(phi);                  %y coordinate [um] 
        fprintf(GerberFile,'X%.0fY%.0fD03*\r\n',x,y); 
        phi=phi+2*C+holegap;                      %Reset hole center 
    end 
end 
areacoverage=100*area/(pi*rn^2);                  %Total area covered by holes [%] 
holesep=(2*C+holegap)*rn-d;                       %Outer ring hole separation [m] 
  
%% Terminate and close Gerber File 
fprintf(GerberFile,'M02*');                       %End Gerber File 
fclose(GerberFile); 
toc; 
  
%% Display useful information 
ReadFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_no_resolution.txt','w+');  
fprintf(ReadFile,'Photon Sieve Specifications\r\n'); 
fprintf(ReadFile,'Incident Wavelength: %.0f [nm]\r\n',lambda*1e9); 
fprintf(ReadFile,'Focal Length: %.2f [m]\r\n',f); 
fprintf(ReadFile,'Target Diameter: %.2f [m]\r\n',svdiam); 
fprintf(ReadFile,'Actual Diameter: %.2f [m]\r\n',2*rn+d/2); 
fprintf(ReadFile,'F Number: %.1f\r\n',fnumber); 
fprintf(ReadFile,'Total Rings: %.1f\r\n',nmax); 
fprintf(ReadFile,'Total Holes: %.1f\r\n',totholes); 
fprintf(ReadFile,'Max Hole Size: %.2f [um]\r\n',maxdiam*1e6); 
fprintf(ReadFile,'Min Hole Size: %.2f [um]\r\n',d*1e6); 
fprintf(ReadFile,'Min Zone Size: %.2f [um]\r\n',w*1e6); 
fprintf(ReadFile,'nmax Hole Separation: %.2f [um]\r\n',holesep*1e6); 
fprintf(ReadFile,'nmax d/w: %.2f\r\n',d/w); 
fprintf(ReadFile,'File Generation Time: %.2f [min]\r\n',toc/60); 
fprintf(ReadFile,'Area Covered: %.2f%%\r\n',areacoverage); 
  
  
High Precision Primary Photon Sieve Design MATLAB Code 

 This script identifies the sizes and position of the photon sieve holes and exports 

the information in Gerber format for processing.  It is again adapted from the code 
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created by Andersen (3).  The method considers the resolution of the printing process 

which specifies both an error in the feature size and a minimum separation distance 

(radial and lateral).  The d/w ratio is adjusted to prevent radial overlap.  The lateral scale 

factor is adjusted for each ring such that the maximum number of holes is scaled below 

maximum to prevent lateral overlap. 

clear all 
clc 
  
%% Set initial user-defined values 
lambda=740e-9;                                   %Wavelength [m] 
f=0.5;                                            %Focal length [m] 
svdiam=.1;                                        %Desired sieve diameter [m] 
minholesep=1.5e-6;                               %Minimum hole separation [m] (set by printing requirements) 
reserror=0.25e-6;                                %Error in feature size [m] 
  
%% Calculate additional information from user input 
fnumber=f/svdiam;                                  %f/# 
rmax=svdiam/2;                                     %Approximate max radius [m] (based on 
desired sieve diameter) 
nmax=floor((-4*f+2*sqrt(4*f^2+rmax^2))/lambda);   %Outermost ring # (rounded down) 
rmax=sqrt(2*nmax*lambda*f+(nmax^2)*(lambda^2)/4);    %Max radius [m] (based on nmax)         
wmin=lambda*f/(2*rmax);                            %Min zone size (outer ring) [m]  
dmax=2*wmin-(reserror+minholesep);                %Largest d can be to ensure specified radial 
sep [m] 
d_over_w=floor((dmax/wmin)*100)/100;              %d/w value that gives max diameter (rounds 
down to nearest second decimal as buffer) 
wtrans=(minholesep+reserror)/(2-1.53);            %Hole size using d/w=1.53 that results in 
less than min sep [m] 
rtrans=lambda*f/(2*wtrans);                        %Radius where transition zone occurs [m] 
trans_ratio=rtrans/rmax;                           %Ratio of sieve covered by "normal" sized 
holes to total sieve 
ntrans=floor(trans_ratio*nmax);                    %First ring of "non-standard" holes 
(rounded down) 
  
%% Open the Gerber File for editing and write header/parameters applicable to the entire file 
GerberFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_resolution.gbr','w+');  
fprintf(GerberFile,'G75*\r\n');                   %Set Multi Quadrant Mode; \r for Notepad viewing 
fprintf(GerberFile,'%%FSLAX35Y35*%%\r\n');       %Set coordinate Format Specification to omit 
Leading zeros, use Absolute notation, set number of integer positions in X,Y coordinates to 3 and decimal 
positions to 5 
fprintf(GerberFile,'%%IPPOS*%%\r\n');            %Set image polarity to "positive" 
fprintf(GerberFile,'%%LPD*%%\r\n');              %Set layer polarity to "dark" 
fprintf(GerberFile,'%%MOMM*%%\r\n');             %Set units to [mm] 
  
tic; 
%% Create aperture for each ring 
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for j=1 ntrans-11                                  %Variable diameters until ntrans-10 (start 10 rings 
early for buffer) 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4);    %Ring radius [m]        
    w=lambda*f/(2*rn);                            %Fresnel zone size at rn [m] 
    d=1.53*w;                                      %Hole diameter [m] 
    if n<2; 
        maxdiam=d;                                %Max hole size occurs in first ring 
    end 
    diam=1000*d;                                  %Hole diameter [mm] 
    apnum=j+9;                                    %Aperture number (>10) 
    fprintf(GerberFile,'%%ADD%dC,%.5f*%%\r\n',apnum,diam); 
end 
for j=ntrans-10:nmax                              %Second loop to adjust d/w for outer ring radial 
separation 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4); 
    w=lambda*f/(2*rn); 
    d=d_over_w*w; 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'%%ADD%dC,%.5f*%%\r\n',apnum,diam); 
end 
  
%% Position apertures 
area=0; 
totholes=0; 
for j=1 ntrans-11 
    phi=2*pi*random('unif',1);                     %Random starting angle 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4); 
    w=lambda*f/(2*rn); 
    d=1.53*w; 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum);         %Identifies which aperture to place 
    C=asin(d/2/rn); 
    scalefactor=1-(minholesep/(d+reserror+minholesep))-.03;  %Fraction of max number of holes per ring 
minus 3% buffer (ensures radial spacing)  
     if n<2; 
        maxscale=scalefactor;                      %As n inc, d dec, and scalefactor dec 
     end 
    numholes=floor(scalefactor*(2*pi/(2*C)));     %Max number of angular holes scaled 
    totholes=totholes+numholes;                    %Total number of holes 
    holegap=(2*pi-numholes*2*C)/numholes;         %Angular gap between holes [rad]             
    area=area+numholes*pi*(d/2)^2;                 %Total area covered by holes 
    for i=1 numholes                               %Position each hole at an x,y coordinate 
        x=100000000*rn*cos(phi);                   %x coordinate [um] 
        y=100000000*rn*sin(phi);                   %y coordinate [um] 
        fprintf(GerberFile,'X%.0fY%.0fD03*\r\n',x,y); 
        phi=phi+2*C+holegap;                       %Reset hole center 
    end 
end 
for j=ntrans-10:nmax 
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    phi=2*pi*random('unif',1); 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)/4); 
    w=lambda*f/(2*rn); 
    d=d_over_w*w; 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum); 
    C=asin(d/2/rn); 
    scalefactor=1-(minholesep/(d+reserror+minholesep))-.03; 
    numholes=floor(scalefactor*(2*pi/(2*C))); 
    totholes=totholes+numholes; 
    holegap=(2*pi-numholes*2*C)/numholes; 
    area=area+numholes*pi*(d/2)^2; 
    for i=1 numholes 
        x=100000000*rn*cos(phi); 
        y=100000000*rn*sin(phi); 
        fprintf(GerberFile,'X%.0fY%.0fD03*\r\n',x,y); 
        phi=phi+2*C+holegap; 
    end 
end 
areacoverage=100*area/(pi*rn^2);                  %Total area covered by holes [%] 
holesep=(2*C+holegap)*rn-d;                       %Outer ring hole separation [m] 
  
%% Terminate and close Gerber File 
fprintf(GerberFile,'M02*');                       %End Gerber File 
fclose(GerberFile); 
toc; 
  
%% Display useful information 
ReadFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_resolution.txt','w+');  
fprintf(ReadFile,'Photon Sieve Specifications\r\n'); 
fprintf(ReadFile,'Incident Wavelength: %.1f [nm]\r\n',lambda*1e9); 
fprintf(ReadFile,'Focal Length: %.2f [m]\r\n',f); 
fprintf(ReadFile,'Target Diameter: %.2f [m]\r\n',svdiam); 
fprintf(ReadFile,'Actual Diameter: %.2f [m]\r\n',2*rn+d/2); 
fprintf(ReadFile,'F Number: %.1f\r\n',fnumber); 
fprintf(ReadFile,'Total Rings: %.1f\r\n',nmax); 
fprintf(ReadFile,'Transition Ring: %.1f\r\n',ntrans); 
fprintf(ReadFile,'Total Holes: %.1f\r\n',totholes); 
fprintf(ReadFile,'Min Scale Factor: %.2f%\r\n',scalefactor); 
fprintf(ReadFile,'Max Scale Factor: %.2f%\r\n',maxscale); 
fprintf(ReadFile,'Percent Covered by Normal Hole Size: %.2f%%\r\n',100*(ntrans-11)/nmax); 
fprintf(ReadFile,'Max Hole Size: %.2f [um]\r\n',maxdiam*1e6); 
fprintf(ReadFile,'Min Hole Size: %.2f [um]\r\n',d*1e6); 
fprintf(ReadFile,'nmax Hole Separation: %.2f [um]\r\n',holesep*1e6); 
fprintf(ReadFile,'Outer Ring d/w: %.4f\r\n',d/w); 
fprintf(ReadFile,'Area Covered: %.2f%%\r\n',areacoverage); 
fprintf(ReadFile,'File Generation Time: %.2f [min]\r\n',toc/60); 
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Secondary/Corrector Photon Sieve Design MATLAB Code 

 This script identifies the sizes and position of the photon sieve (corrector) holes 

and exports the information in Gerber format for processing.  It is again adapted from the 

code created by Andersen (3).  This design differs from that of the primary photon sieve 

in that it is designed to be used with a collimated beam (infinite conjugate) rather than in 

point-to-point imaging.  It also skips every other zone near the edge of the sieve to 

compensate for a smaller device and decreased radial spacing.   

clear all 
clc 
  
%% Set initial user-defined values 
lambda=739e-9;                                   %Wavelength [m] 
%f=0.023077;                                      %Focal length [m] for use with 220mm collimator 
f=0.043567;                                       %Focal length [m] for use with 300mm collimator 
%svdiam=.023;                                     %Desired sieve diameter rounded up to capture all light [m] 
for use with 220mm collimator 
svdiam=0.03;                                     %Desired sieve diameter rounded up to capture all light [m] 
for use with 300mm collimator 
minholesize=1.5e-6;                              %Smallest printed feature size [m] 
minholesep=1.5e-6;                               %Minimum hole separation [m] (set by printing requirements) 
reserror=0.25e-6;                                %Error in feature size [m] 
  
%% Calculate additional information from user input 
fnumber=f/svdiam;                                  %f/# 
rmax=svdiam/2;                                     %Approximate max radius [m] (based on 
desired sieve diameter) 
nmax=2*floor(((-f+sqrt(f^2+rmax^2))/lambda)/2);   %Outermost ring # (rounded down to 
nearest EVEN integer) 
rmax=sqrt(2*nmax*lambda*f+(nmax^2)*(lambda^2));  %Max radius [m] (based on nmax)         
wmin=lambda*f/(2*rmax);                            %Min zone size (outer ring) [m]  
wtrans=(minholesep+reserror)/(2-1.53);            %Hole size using d/w=1.53 that results in 
less than min sep [m] 
rtrans=lambda*f/(2*wtrans);                        %Radius where transition zone occurs [m] 
trans_ratio=rtrans/rmax;                           %Ratio of sieve covered by "normal" sized 
holes to total sieve 
ntrans=2*floor((trans_ratio*nmax)/2);             %First ring of "non-standard" holes 
(rounded down to nearest EVEN integer) 
  
%% Open the Gerber File for editing and write header/parameters applicable to the entire file 
GerberFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_corrector_resolution.gbr','w+');  
fprintf(GerberFile,'G75*\r\n');                   %Set Multi Quadrant Mode; \r for Notepad viewing 
fprintf(GerberFile,'%%FSLAX35Y35*%%\r\n');       %Set coordinate Format Specification to omit 
Leading zeros, use Absolute notation, set number of integer positions in X,Y coordinates to 3 and decimal 
positions to 5 
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fprintf(GerberFile,'%%IPPOS*%%\r\n');            %Set image polarity to "positive" 
fprintf(GerberFile,'%%LPD*%%\r\n');              %Set layer polarity to "dark" 
fprintf(GerberFile,'%%MOMM*%%\r\n');             %Set units to [mm] 
  
tic; 
%% Create aperture for each ring 
for j=1 ntrans-1                                   %Variable diameters until ntrans (if ntrans < nmax) 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2));      %Ring radius [m]        
    w=lambda*f/(2*rn);                            %Fresnel zone size at rn [m] 
    d=1.53*w;                                      %Hole diameter [m] 
    if n<2; 
        maxdiam=d;                                %Largest hole occurs in first ring 
    end 
    diam=1000*d;                                  %Hole diameter [mm] 
    apnum=j+9;                                    %Aperture number (>10) 
    fprintf(GerberFile,'%%ADD%dC,%.5f*%%\r\n',apnum,diam); 
end 
for j=ntrans:2 nmax                                 %Second loop to adjust d/w for outer ring radial 
separation (skipping every other zone) 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)); 
    w=lambda*f/(2*rn); 
    d=minholesize;                                  %Holes set at constant value 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'%%ADD%dC,%.5f*%%\r\n',apnum,diam); 
end 
  
%% Position apertures 
area=0; 
totholes=0; 
for j=1 ntrans-1 
    phi=2*pi*random('unif',1);                     %Random starting angle 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)); 
    w=lambda*f/(2*rn); 
    d=1.53*w; 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum);         %Identifies which aperture to place 
    C=asin(d/2/rn); 
    scalefactor=1-(minholesep/(d+reserror+minholesep))-.05; %Fraction of max number of holes per ring 
minus 5% buffer (ensures radial spacing)  
     if n<2; 
        maxscale=scalefactor;                      %As n inc, d dec, and scalefactor dec 
     end 
    numholes=floor(scalefactor*(2*pi/(2*C)));     %Max number of angular holes scaled 
    totholes=totholes+numholes;                    %Total number of holes 
    holegap=(2*pi-numholes*2*C)/numholes;         %Angular gap between holes [rad]             
    area=area+numholes*pi*(d/2)^2;                 %Total area covered by holes 
    for i=1 numholes                               %Position each hole at an x,y coordinate 
        x=100000000*rn*cos(phi);                   %x coordinate [um] 
        y=100000000*rn*sin(phi);                   %y coordinate [um] 
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        fprintf(GerberFile,'X%.0fY%.0fD03*\r\n',x,y); 
        phi=phi+2*C+holegap;                     %Reset hole center 
    end 
end 
for j=ntrans:2 nmax 
    phi=2*pi*random('unif',1); 
    n=j; 
    rn=sqrt(2*n*lambda*f+(n^2)*(lambda^2)); 
    w=lambda*f/(2*rn); 
    d=minholesize; 
    if j<nmax; 
        secondtolast=rn+d/2;                       %Radial distance to outside of second-to-last ring [m] 
    end 
    last=rn-d/2;                                    %Radial distance to inside of last ring [m] 
    diam=1000*d; 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum); 
    C=asin(d/2/rn); 
    scalefactor=1-(minholesep/(d+reserror+minholesep))-.05;                            
    numholes=floor(scalefactor*(2*pi/(2*C))); 
    totholes=totholes+numholes; 
    holegap=(2*pi-numholes*2*C)/numholes; 
    area=area+numholes*pi*(d/2)^2; 
    for i=1 numholes 
        x=100000000*rn*cos(phi); 
        y=100000000*rn*sin(phi); 
        fprintf(GerberFile,'X%.0fY%.0fD03*\r\n',x,y); 
        phi=phi+2*C+holegap; 
    end 
end 
areacoverage=100*area/(pi*rn^2);                 %Total area covered by holes [%] 
holesep=(2*C+holegap)*rn-d;                      %Outer ring hole separation [m] 
  
%% Terminate and close Gerber File 
fprintf(GerberFile,'M02*');                      %End Gerber File 
fclose(GerberFile); 
toc; 
  
%% Display useful information 
ReadFile=fopen('C:\Users\Chris\Desktop\tulip_photonsieve_corrector_resolution.txt','w+');  
fprintf(ReadFile,'Photon Sieve Corrector Specifications\r\n'); 
fprintf(ReadFile,'Incident Wavelength: %.1f [nm]\r\n',lambda*1e9); 
fprintf(ReadFile,'Focal Length: %.2f [m]\r\n',f); 
fprintf(ReadFile,'Target Diameter: %.6f [m]\r\n',svdiam); 
fprintf(ReadFile,'Actual Diameter: %.6f [m]\r\n',2*rn+d/2); 
fprintf(ReadFile,'F Number: %.1f\r\n',fnumber); 
fprintf(ReadFile,'Total Rings: %.1f\r\n',(nmax-ntrans)/2+ntrans); 
fprintf(ReadFile,'Transition Ring: %.1f\r\n',ntrans); 
fprintf(ReadFile,'Total Holes: %.1f\r\n',totholes); 
fprintf(ReadFile,'Min Scale Factor: %.2f%\r\n',scalefactor); 
fprintf(ReadFile,'Max Scale Factor: %.2f%\r\n',maxscale); 
fprintf(ReadFile,'Percent Covered by Normal Hole Size: %.2f%%\r\n',100*(ntrans-1)/((nmax-
ntrans)/2+ntrans)); 
fprintf(ReadFile,'Max Hole Size: %.2f [um]\r\n',maxdiam*1e6); 
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fprintf(ReadFile,'Min Hole Size: %.2f [um]\r\n',d*1e6); 
fprintf(ReadFile,'nmax Lateral Hole Separation: %.2f [um]\r\n',holesep*1e6); 
fprintf(ReadFile,'nmax Radial Hole Separation: %.2f [um]\r\n',(last-secondtolast)*1e6); 
fprintf(ReadFile,'Outer Ring d/w: %.4f\r\n',d/w); 
fprintf(ReadFile,'Area Covered: %.2f%%\r\n',areacoverage); 
fprintf(ReadFile,'File Generation Time: %.2f [min]\r\n',toc/60); 
 
 
Fresnel Zone Plate Design MATLAB Code 

 This script identifies the sizes and position of the Fresnel zone plate (corrector) 

rings and exports the information in Gerber format for processing.  The method considers 

the resolution of the printing process which specifies both an error in the feature size and 

a minimum separation distance (radial). This design is meant to be used with a collimated 

beam (infinite conjugate).  Note that the code uses the Gerber Primitive Macro "Moire" 

by deleting the cross-hair, setting the total rings to “1,” and overlaying many of them to 

make all the rings.  This device can also be designed by writing complete arcs in Gerber 

format to create the rings (2). 

clear all 
clc 
  
%% Set initial user-defined values 
lambda=739e-9;                                   %Wavelength [m] 
%f=0.023077;                                      %Focal length [m] for use with 220mm collimator 
f=0.043567;                                       %Focal length [m] for use with 300mm collimator 
%ptdiam=0.023;                                    %Desired plate diameter rounded up to capture all light [m] 
for use with 220mm collimator 
ptdiam=0.03;                                      %Desired plate diameter rounded up to capture all light [m] 
for use with 300mm collimator 
minringsize=1.5e-6;                              %Smallest printed feature size [m] 
reserror=0.25e-6;                                %Error in feature size [m] 
  
%% Calculate additional information from user input 
fnumber=f/ptdiam;                                  %f/# 
rmax=ptdiam/2;                                     %Approximate max radius [m] (based on 
desired plate diameter) 
nmax=2*floor(((-f+sqrt(f^2+rmax^2))/lambda)/2);   %Outermost ring # (rounded down to 
nearest EVEN integer) 
rmax=sqrt(2*nmax*lambda*f+(nmax^2)*(lambda^2));  %Max radius [m] (based on nmax)         
wmin=lambda*f/(2*rmax);                            %Min zone size (outer ring) [m]  
wtrans=(minringsize+reserror)/(2-1);               %Ring size using d/w=1 that results in less 
than min sep [m] 
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rtrans=lambda*f/(2*wtrans);                       %Radius where transition zone occurs [m] 
trans_ratio=rtrans/rmax;                          %Ratio of plate covered by "normal" sized rings to 
total plate 
ntrans=2*floor((trans_ratio*nmax)/2);             %First ring of "non-standard" rings 
(rounded down to nearest EVEN integer) 
  
%% Open the Gerber File for editing and write header/parameters applicable to the entire file 
GerberFile=fopen('C:\Users\Chris\Desktop\tulip_zoneplate.gbr','w+');  
fprintf(GerberFile,'G01*\r\n');                   %Set Linear Interpolation Mode; \r for Notepad 
viewing 
fprintf(GerberFile,'%%FSLAX35Y35*%%\r\n');       %Set coordinate Format Specification to omit 
Leading zeros, use Absolute notation, set number of integer positions in X,Y coordinates to 3 and decimal 
positions to 5 
fprintf(GerberFile,'%%IPPOS*%%\r\n');            %Set image polarity to "positive" 
fprintf(GerberFile,'%%LPD*%%\r\n');              %Set layer polarity to "dark" 
fprintf(GerberFile,'%%MOMM*%%\r\n');             %Set units to [mm] 
  
tic; 
%% Create each ring as a separate aperture 
totarea=0;                                           %Set initial covered area to 0 
for j=1 ntrans-1                                     %Use normal ring calculations 
until ntrans                       
    rn=sqrt(2*j*lambda*f+(j^2)*(lambda^2));        %Ring radius (to CENTER of ring) 
[m]        
    w=lambda*f/(2*rn);                              %Zone size [m] 
    d=2*rn+w;                                        %Ring diameter (double the radius 
plus half of the zone) [m] 
    totarea=totarea+(3.14*(rn+w/2)^2)-(3.14*(rn-w/2)^2);     %Area of ring [m^2] 
    if j<2; 
        maxthick=w;                                 %First ring is thickest 
    end 
    diam=1000*d;                                    %Conversion (I don't really 
understand why tis is the case mathematically, but it is correct when measured in the viewer) 
    thick=1000*w;                                   %Conversion 
    fprintf(GerberFile,'%%AMRING%d*\r\n',j);       %These 2 lines define the Aperture 
Macro 
    fprintf(GerberFile,'6,0,0,%0.5f,%0.5f,0,1,0,0,0*%%\r\n',diam,thick); 
end 
for j=1 ntrans-1 
    apnum=j+9;                                   
    fprintf(GerberFile,'%%ADD%dRING%d*%%\r\n',apnum,j);  %Define the aperture using the 
created Macro 
end 
  
for j=ntrans:2 nmax                                   %Second loop sets standard ring 
thickness to 1.5 um and skips rings for radial spacing                            
    rn=sqrt(2*j*lambda*f+(j^2)*(lambda^2));            
    w=minringsize;                           
    d=2*rn+w;   
    if j<nmax; 
        secondtolast=rn+w/2;                          %Radial distance to outside of 
second-to-last ring [m] 
    end 
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    last=rn-w/2;                                      %Radial distance to inside of last 
ring [m] 
    totarea=totarea+3.14*(rn+w/2)^2-3.14*(rn-w/2)^2; 
    diam=1000*d; 
    thick=1000*w; 
    fprintf(GerberFile,'%%AMRING%d*\r\n',j); 
    fprintf(GerberFile,'6,0,0,%0.5f,%0.5f,0,1,0,0,0*%%\r\n',diam,thick); 
end 
for j=ntrans:2 nmax  
    apnum=j+9;                                   
    fprintf(GerberFile,'%%ADD%dRING%d*%%\r\n',apnum,j); 
end 
  
%% Position apertures (all centered) 
for j=1 ntrans-1 
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum);        
    fprintf(GerberFile,'X0Y0D03*\r\n'); 
end 
for j=ntrans:2 nmax  
    apnum=j+9; 
    fprintf(GerberFile,'D%d*\r\n',apnum);        
    fprintf(GerberFile,'X0Y0D03*\r\n'); 
end 
  
%% Terminate and close Gerber File 
fprintf(GerberFile,'M02*');                     %End Gerber File 
fclose(GerberFile); 
toc; 
  
%% Display useful information 
ReadFile=fopen('C:\Users\Chris\Desktop\tulip_zoneplate.txt','w+');  
fprintf(ReadFile,'Zone Plate Corrector Specifications\r\n'); 
fprintf(ReadFile,'Incident Wavelength: %.1f [nm]\r\n',lambda*1e9); 
fprintf(ReadFile,'Focal Length: %.2f [m]\r\n',f); 
fprintf(ReadFile,'Target Diameter: %.6f [m]\r\n',ptdiam); 
fprintf(ReadFile,'Actual Diameter: %.6f [m]\r\n',d); 
fprintf(ReadFile,'F Number: %.1f\r\n',fnumber); 
fprintf(ReadFile,'Total Rings: %.1f\r\n',(nmax-ntrans)/2+ntrans); 
fprintf(ReadFile,'Transition Ring: %.1f\r\n',ntrans); 
fprintf(ReadFile,'Percent Covered by Normal Ring Size: %.2f%%\r\n',100*(ntrans-1)/((nmax-
ntrans)/2+ntrans)); 
fprintf(ReadFile,'Max Ring Thickness: %.2f [um]\r\n',maxthick*1e6); 
fprintf(ReadFile,'Min Ring Thickness: %.2f [um]\r\n',w*1e6); 
fprintf(ReadFile,'nmax Ring Separation: %.2f [um]\r\n',(last-secondtolast)*1e6); 
fprintf(ReadFile,'Area Covered: %.2f%%\r\n',100*totarea/(3.14*(ptdiam/2)^2)); 
fprintf(ReadFile,'File Generation Time: %.2f [min]\r\n',toc/60); 
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Sample Gerber Format Photon Sieve Code 

 This section provides an example of text used by the printing company to produce 

a photon sieve.  It illustrates proper Gerber specification in accordance with Ref. 18.  The 

first block contains information relevant to the file as a whole.   The second block 

provides an example of how to define an aperture (shape and size).  In the third section, 

each defined aperture is placed at particular coordinates.  In the last block, the file is 

closed.  

G75* 
%FSLAX35Y35*% 
%IPPOS*% 
%LPD*% 
%MOMM*% 
. 
. 
. 
%ADD10C,0.10405*% 
%ADD11C,0.07358*% 
. 
. 
. 
D10* 
X10760Y-24984D03* 
X19992Y-18448D03* 
X25767Y-8721D03* 
X27087Y2513D03* 
X23723Y13313D03* 
X16257Y21811D03* 
X5980Y26537D03* 
X-5331Y26676D03* 
X-15720Y22201D03* 
X-23391Y13888D03* 
X-27017Y3174D03* 
X-25972Y-8090D03* 
X-20436Y-17954D03* 
X-11367Y-24714D03* 
X-332Y-27201D03* 
D11* 
X31926Y-21465D03* 
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X35593Y-14599D03* 
X37803Y-7136D03* 
X38466Y620D03* 
X37554Y8351D03* 
X35104Y15739D03* 
X31217Y22483D03* 
X26052Y28307D03* 
X19821Y32972D03* 
X12778Y36287D03* 
X5212Y38116D03* 
X-2568Y38385D03* 
X-10242Y37082D03* 
X-17497Y34262D03* 
X-24036Y30038D03* 
X-29590Y24585D03* 
X-33933Y18125D03* 
X-36887Y10923D03* 
X-38331Y3274D03* 
X-38206Y-4509D03* 
X-36516Y-12107D03* 
X-33331Y-19210D03* 
X-28782Y-25526D03* 
X-23055Y-30798D03* 
X-16383Y-34808D03* 
X-9041Y-37393D03* 
X-1329Y-38448D03* 
X6438Y-37928D03* 
X13941Y-35856D03* 
X20873Y-32316D03* 
X26951Y-27452D03* 
. 
. 
. 
M02* 
 

Sample Gerber Format Zone Plate Code 

 This section provides an example of text used by the printing company to produce 

a FZP.  It is the same as that for a photon sieve except for one additional step.  Because 

Gerber does not have a predefined “ring” shape, the shape had to be constructed as an 
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“Aperture Macro” (AM) with specific dimensions.  Once this was accomplished, the 

shape could be used to define an aperture and then place each one as before. 

 G01* 
%FSLAX35Y35*% 
%IPPOS*% 
%LPD*% 
%MOMM*% 
. 
. 
. 
%AMRING1* 
6,0,0,0.41554,0.04617,0,1,0,0,0*% 
%AMRING2* 
6,0,0,0.55502,0.03265,0,1,0,0,0*% 
%AMRING3* 
6,0,0,0.66643,0.02666,0,1,0,0,0*% 
. 
. 
. 
%ADD10RING1*% 
%ADD11RING2*% 
%ADD12RING3*% 
. 
. 
. 
D10* 
X0Y0D03* 
D11* 
X0Y0D03* 
D12* 
X0Y0D03* 
. 
. 
. 
M02* 
 
 
Sample Zemax Photon Sieve Modeling Code 

 Fig. 47 provides an example of how to model a photon sieve in Zemax (2).  It is 

adapted from the code created by the USAFA (8).  Note that “Thickness” refers to the 
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distance from the selected point to the next, “Semi-Diameter” refers to the radius of the 

sieve, and “Pars 3” and “6” refer to the axial positions of the beams being interfered to 

create the hologram.  See Eq. 41 and the accompanying text to understand the values 

employed. Additionally note that “Hologram 2” was used in this case.  While it is not 

readily apparent from Ref. 39 why this is required, selection of this aperture type allowed 

the system to behave as desired to model the primary sieve.   Note also that there are 

numerous general Zemax parameters that need to be set in addition to the design scheme. 

Fig. 48 provides an example of how to model the complete system (primary and 

corrector) in Zemax (2).  It is adapted from the code created by the USAFA (8).  Note 

that “Hologram 1” was used for the corrector.  Again, it is not readily apparent why this 

is required.  It does, however, allow the desired system performance. 
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Figure 58. Zemax Photon Sieve Code 
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Figure 59. Zemax Corrected System Code. 

ACA Error Propagation Analysis 

Experimental techniques introduced error in the placement of the point source 

relative to the photon sieve (𝜎𝑠0 = 5 mm) as well as in the measurement of the relative 
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image distance at each wavelength. (𝜎∆ = 0.38 mm).  The analysis below covers the 

propagation of this uncertainty through the formula for determining ACA (Eq. A1). 

 ACA =  ∆𝑓 =  𝑓𝜆2 − 𝑓𝜆1    (A1) 

Note that 𝑓𝜆1 is simply the design focal length of the primary sieve and is constant. 

 𝑓𝜆1 = 𝑓740𝑛𝑚 = 𝑓SIEVE = 𝑓 = 500.04 mm  (A2) 

Using the familiar imaging equation from geometric optics, 𝑓𝜆2 and 𝑠𝑖𝜆1 can be defined in 

terms of the other equation parameters. 

 1
𝑓

=
1
𝑠0

+
1
𝑠𝑖

  ⇒ (A3) 

 

  𝑓𝜆2 =
𝑠𝑖𝜆2𝑠0𝜆2

𝑠𝑖𝜆2 + 𝑠0𝜆2
  (A3.1) 

 

 
𝑠𝑖𝜆1 =

𝑠0𝜆1𝑓𝜆1
 𝑠0𝜆1 − 𝑓𝜆1

  (A3.2) 

∆𝑠𝑖 is defined such that it is the difference between the image distance at a non-primary 

wavelength and the image distance at 740 nm. 

 ∆𝑠𝑖 = ∆ =  𝑠𝑖𝜆2 −  𝑠𝑖𝜆1 ⟹ 𝑠𝑖𝜆2 = 𝑠𝑖𝜆1 + ∆  (A4) 

The object distance remained constant throughout the measurements. 

 𝑠0𝜆1 = 𝑠0𝜆2 = 𝑠0  (A5) 

Substitute Eq. A3.2 into Eq. A4, and then substitute Eq. A4 into Eq. A3.1.  Make the 

notation changes suggested by Eqs. A2 and A5. 
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𝑓𝜆2 =

𝑠02∆ − 𝑠0∆𝑓 + 𝑠02𝑓
𝑠02 + 𝑠0∆ − ∆𝑓

  (A6) 

Substitute Eq. A6 into Eq. A1. 

 
ACA =

𝑠02∆ − 𝑠0∆𝑓 + 𝑠02𝑓
𝑠02 + 𝑠0∆ − ∆𝑓

− 𝑓  (A7) 

The error in ACA is given by 

 
𝜎ACA = ��

∂ACA
𝜕𝑠0

�
2

𝜎𝑠02 + �
𝜕ACA
𝜕∆

�
2

𝜎∆2 . (A8) 

Take the derivatives in Eq. A8.  The algebra is not shown. 

 ∂ACA
𝜕𝑠0

=
2𝑠0∆ − ∆𝑓 + 2𝑠0𝑓
𝑠02 + 𝑠0∆ − ∆𝑓

−
(2𝑠0 + ∆)(𝑠0

2∆ − 𝑠0∆𝑓 + 𝑠02𝑓)
(𝑠02 + 𝑠0∆ − ∆𝑓)2   (A9) 

 

 ∂ACA
𝜕∆

=
𝑠02∆ − 𝑠0𝑓

𝑠02 + 𝑠0∆ − ∆𝑓
−

(𝑠0 − 𝑓)(𝑠02∆ − 𝑠0∆𝑓 + 𝑠02𝑓)
(𝑠02 + 𝑠0∆ − ∆𝑓)2   (A10) 

Set the object distance to approximately twice the focal length of the primary sieve. 

 𝑠0  ≈ 2𝑓 (A11) 

Substitute Eq. A11 into Eqs. A8 and A9 to arrive at the expressions below. 

 ∂ACA
𝜕𝑠0

=  
∆

4𝑓 +  ∆
 (A12) 

 

 ∂ACA
𝜕∆

=  
4𝑓2

(4𝑓 +  ∆)2 (A13) 

Finally substitute Eqs. A12 and A13 into Eq. A8 along with the values for 𝜎𝑠0 and 𝜎∆ to 

determine the total error in the calculation of ACA. 
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𝜎ACA = ��

∆
4𝑓 +  ∆

�
2

𝜎𝑠02 + �
4𝑓2

(4𝑓 +  ∆)2�
2

𝜎∆2 

= ��
∆

2000.16 mm +  ∆
�
2

25 mm2 + �
106 mm

(2000.16 mm +  ∆)2�
2

0.14 mm2  

(A14) 
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