
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2013

Solving Point-Reactor Kinetics Equations Using
Exponential Moment Methods
Paul M. Thelen

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Nuclear Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Thelen, Paul M., "Solving Point-Reactor Kinetics Equations Using Exponential Moment Methods" (2013). Theses and Dissertations.
948.
https://scholar.afit.edu/etd/948

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277528965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/948?utm_source=scholar.afit.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

SOLVING POINT-REACTOR KINETICS EQUATIONS USING EXPONENTIAL
MOMENT METHODS

THESIS

Paul M. Thelen, Civilian

AFIT-ENP-13-M-34

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense,

or the United States Government. This material is declared a work of the U.S.

Government and is not subject to copyright protection in the United States.

AFIT-ENP-13-M-34

SOLVING POINT-REACTOR KINETICS EQUATIONS USING EXPONENTIAL
MOMENT METHODS

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Nuclear Engineering

Paul M. Thelen, BS

Civilian

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENP-13-M-34

SOLVING POINT-REACTOR KINETICS EQUATIONS USING EXPONENTIAL
MOMENT METHODS

Paul M. Thelen, BS

Civilian

Approved:

___________________________________ ________
Kirk Mathews, PhD (Chairman) Date

___________________________________ ________
John McClory, PhD (Member) Date

___________________________________ ________
LTC Stephen McHale (Member) Date

iv

AFIT-ENP-12-M-34

ABSTRACT

A robust method of solving the reactor point kinetic equations was designed

using exponential moment methods. Although the method requires a relatively

large number of calculations to complete, the accuracy ensured by each

individual step calculation allows larger time steps to be used. The algorithm

designed was verified to converge to the correct value as step size was reduced.

Additionally, the algorithm can take steps much larger than the average neutron

lifetime while maintaining some precision. An error control scheme was designed

based on changes observed in the results as a function of time step size. The

error control adaptively approaches optimal step sizes within a factor of two for

given tolerances. When used in conjunction with our algorithm, most cases show

large mitigation of computational cost.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr.

Kirk Mathews. The discoveries made within this thesis are only a fraction of the

discussions and observations we shared. Of the experience I gained during my

endeavor, the most important was not knowledge of reactors, nuclear engineering

or computer science, but that of problem solving and discipline; all of which fall

under Dr. Mathews’ expertise.

 Paul M. Thelen

vi

TABLE OF CONTENTS

Page

Abstract ... iv

Table of Contents .. vi

List of Figures .. viii

List of Tables .. x

I. INTRODUCTION ... 1

I.A. Background ... 1

I.B. Motivation ... 4

I.C. Problem Statement ... 6

I.D. Objectives ... 6

I.E. Summary of Approach .. 9

II. Review of Reactor Kinetic Equations ... 11

II.A. Introduction to Reactor Equations .. 11

II.B. Transport and Diffusion Equations .. 11

II.C. Point Reactor Kinetic Equations ... 14

III. Overview of Exponential Moment Functions .. 17

III.A. Definition and Properties of Exponential Moment Functions 17

IV. Application of Exponential Moment Methods to The Solution of Point

Reactor Kinetic Equations .. 20

IV.A. Neutron Density Approximation .. 22

IV.B. Source Term ... 25

IV.C. Reactivity Term ... 30

IV.D. Neutron Density Determination ... 33

V. Implementation .. 38

vii

V.A. Root-Solving .. 38

V.B. Solution to Sinusoidal Reactivity ... 39

V.C. Initial Condition Domain Shift .. 45

V.D. Error Control Algorithm with Adaptive Time Steps 47

VI. Testing, Results and Analysis ... 54

VI.A. Solution: Trivial Steady State Conditions .. 56

VI.B. Verification: Linear Reactivity ... 61

VI.C. Error Accumulation: Linear Reactivity .. 64

VI.D. Verification and Error Accumulation: Sinusoidal Reactivity 71

VI.E. Verification and Error Accumulation: Periods of Sinusoidal Reactivity

 .. 78

VI.F. Convergence Test: Linear Reactivity .. 84

VI.G. Convergence Test: Sinusoidal Reactivity .. 88

VI.H. Fidelity of Results for Large Time Steps .. 91

VI.I. Verification: Error Control Scheme.. 92

VI.J. Case Study: Prompt Criticality ... 94

VII. Conclusion ..106

VII.A. Future Work ... 107

VIII. Appendices ..110

VIII.A. Picard Iteration for Improved Error Control 110

VIII.B. FORTRAN Code ... 112

VIII.C. Mathematica Worksheet .. 193

IX. Bibliography ..196

viii

LIST OF FIGURES

Page

Figure 1: Critical Steady State Test Results ... 58

Figure 2: Subcritical Steady State with Source Test Results .. 60

Figure 3: Linear Reactivity Test Results .. 62

Figure 4: Error Development within Linear Reactivity Test .. 63

Figure 5: Extended Linear Reactivity Test Results .. 65

Figure 6: Error Development within Linear Reactivity Test 1 ... 66

Figure 7: Error Development within Linear Reactivity Test 2 ... 68

Figure 8: Error Development within Linear Reactivity Test 3 ... 69

Figure 9: Error Development within Linear Reactivity Test 4 ... 70

Figure 10: Sinusoidal Reactivity Test ... 73

Figure 11: Neutron Error Development within Sinusoidal Reactivity Test 2 Periods 0th

Order .. 74

Figure 12: Precursor Error Development within Sinusoidal Reactivity Test 2 Periods 0th

Order .. 75

Figure 13: Error Development within Sinusoidal Reactivity Test 2 Periods 1st Order ... 77

Figure 14: Sinusoidal Reactivity Test ... 79

Figure 15: Neutron Error Development within Sinusoidal Reactivity Test 50 Periods .. 81

Figure 16: Precursor Error Development within Sinusoidal Reactivity Test 50 Periods 0th

Order .. 82

ix

Figure 17: Precursor Error Development within Sinusoidal Reactivity Test 50 Periods 1st

Order .. 83

Figure 18: Relative Error of Linear Reactivity Test Case as a Function of Step Size 86

Figure 19: Log of the Relative Error of Linear Reactivity Test Case as a Function of Log

of Step Size .. 86

Figure 20: Linear Regression of Linear Reactivity Log Error Plot 87

Figure 21: Linear Regression of Sinusoidal Reactivity 0th Order Log Error Plot 89

Figure 22: Linear Regression of Sinusoidal Reactivity 1st Order Log Error Plot 90

Figure 23: Neutron Density Prompt Criticality Test... 97

Figure 24: Neutron Density Error Prompt Criticality Test ... 97

Figure 25: Prompt Criticality Error Control Test 1 .. 99

Figure 26: Error Control Step Sizes Prompt Criticality 1 ... 100

Figure 27: Rate of Growth Prompt Criticality 1 ... 102

Figure 28: Prompt Criticality Error Control Test 2 .. 103

Figure 29: Error Control Step Sizes Prompt Criticality 2 ... 104

Figure 30: Rate of Growth Prompt Criticality 1 ... 105

x

LIST OF TABLES

Page

Table 1: First Four Legendre Polynomials ... 41

Table 2: Coefficients of Legendre Polynomials ... 43

Table 3: Values for Six Group Approximation... 55

Table 4: List of Neutron and Precursor Densities for Critical Steady State Conditions ... 57

Table 5: Code Parameters Used for Critical Steady State Test .. 58

Table 6: Code Parameters Used for Subcritical .. 60

Table 7: Code Parameters Used for Linear Reactivity Test ... 62

Table 8: Code Parameters Used for Linear Reactivity ... 65

Table 9: Code Parameters Used for Linear Reactivity ... 67

Table 10: Code Parameters Used for Linear Reactivity ... 69

Table 11: Code Parameters Used for Linear Reactivity ... 70

Table 12: Code Parameters Used for Sinusoidal .. 72

Table 13: Code Parameters Used for Sinusoidal .. 76

Table 14: Code Parameters Used for Sinusoidal .. 78

Table 15: Convergence Test Step Sizes for Linear Test Case .. 85

Table 16: Convergence Test Step Sizes for Sinusoidal Test Case.................................... 88

Table 17: Validation and Performance Check of Error Control Scheme 93

Table 18: Prompt Criticality Initial Conditions .. 95

Table 19: Code Parameters Used for Prompt Criticality Test .. 96

xi

Table 20: Error Control Parameters Used for Prompt Criticality Test 98

Table 21: Error Control Parameters Used for Prompt Criticality Test 103

1

SOLVING POINT-REACTOR KINETICS EQUATIONS USING

EXPONENTIAL MOMENT METHODS

I. INTRODUCTION

I.A. Background

One of the main properties of interest within a nuclear reactor is the neutron

population at any given time. Mathematically, this is denoted ()n t , the number

of neutrons or more specifically, the neutron density at time t . This neutron

density, along with several other properties of the reactor will determine the

behavior of the reactor. Each fission within the reactor will produce more

neutrons, each one with a probability of either creating a fission or being lost to

some loss mechanism. Provded this information, one can map ()n t . Each fission

consumes one neutron and produces an average number of neutrons,  , creating

the potential of multiplying the neutron population. When the probability of all

the various loss mechanisms are taken into account, one can find the effective

multiplication factor of neutrons for each generation, which is denoted effk . This

multiplication factor is then used to determine the relative increase between

generations of fission, also known as reactivity, with the symbol  . The two are

related by

2

1eff

eff

k

k





.

 (1)

Neutrons quickly go through the motion of birth, absorption and fission and

most reactions quickly end. The time spent travelling and scattering in a reactor

until the neutron is absorbed is known as the reproduction lifetime. The average

reproduction lifetime is denoted with the symbol  .

Reactors are carefully designed to control the neutron population using

delayed neutrons. Neutrons produced through fission belong to one of two

different categories. Prompt neutrons occur directly from the fission process and

quickly go through the cycle. However, some of the fission fragments left from

the fission will not initially produce a neutron. Instead they will decay through

other mechanisms, mainly beta decay. Some of these decay chains eventually

lead to a decay that will emit a neutron, known as a delayed neutron. The

fraction of the neutrons from fission that are delayed is the delayed neutron

fraction and has the symbol  . If the reactivity is less than 0, the reactor is said

to be subcritical. A reactor with a reactivity exactly equal to 0 is critical. Once

the reactivity exceeds 0 the reactor is supercritical. Finally, if the number of

prompt neutrons produced alone can exceed the neutron population, a special

case of super criticality occurs known as prompt critical, or prompt supercritical.

This will result in a rapid increase in the neutron population on the time scale of

3

the neutron lifetime. Generally speaking, reactors are not designed to go prompt

critical because the reactor would be difficult to control in this state.

Neutrons can be supplementally added to the reactor in through means other

than fission. Often a plutonium-beryllium neutron source is placed near a reactor

and produces extra neutrons at a near constant rate through an alpha, neutron

reaction. The reactor materials often produce neutrons as well through

spontaneous fission. These additional neutrons that are added to the reactor

through means that are not influenced by the current neutron population are

denoted as ()S t , or the average source rate density.

Temperature, materials, geometry and current conditions of the reactor will

determine the functional form of ()S t and ()t . Reactor kinetics is the study of

time-dependent phenomena including the use of these conditions in order to

determine the neutron density ()n t . The system of differential equations that

motivates this work is the point reactor kinetic equations (PRKEs). The PRKEs

are a system of nonhomogeneous differential equations of the following form:

() ()

() () ()i i
i

dn t t
n t c t S t

dt
 


         

 (2)

()

() ()i i
i i

dc t
c t n t

dt


 


 (3)

where ()n t is the neutron density at time t ; ()ic t is the precursor density of

group i at time t ; ()t is the reactivity at time t ; ()S t is the source rate density

4

at time t ; i is the delayed neutron fraction for group i ;  is the sum of all

delayed neutron fraction groups;  is the neutron lifetime; and i is the decay

constant for group i . In matrix form these equations are

1 2

1
1

1

22
2

()
. . .

()
0 . . . 0

()

()
0 0 . . 0

.
.
.
.()

0 . . . 0

n

n

n
n

t

n t

c t

c t

c t

 
  










                                                     
          

1

2

() ()

() 0

() 0

. .

. .

. .

() 0n

n t S t

c t

c t

c t





                                                              

 
 
 
  .

 (4)

I.B. Motivation

Solving the differential equations that compose the reactor kinetics problem

has not been a very difficult task for modern mathematics packages. Depending

on the form of ()t and ()S t , the solution might even be closed form. Common

iterative methods used by state of the art mathematics packages today include

trapezoid rule, extrapolation techniques or some form of Runge-Kutta methods.

The main issue with the reactor kinetics equations (RKEs) is the stiffness of the

problem. Fission in the reactor leads to the creation of many daughter nuclides

that are precursors to delayed neutrons. The amount of time it takes for these

5

various precursors to decay is different by orders of magnitude. Additionally, all

of the precursors work in a timescale that is much longer than prompt lifetime.

In order to accurately estimate the conditions of the reactor at any given time,

some of these methods require very small step sizes to keep track of the short

time scale behaviors that can build up over a long time period of interest. A few

choices are available to use. Multistep methods are the standard for solving the

PRKEs, but the complexity of other RKEs makes multistep methods impractical.

Simple explicit methods, such as Euler, require many small steps because of first

order convergence. Larger steps can improve computational cost but ruin the

accuracy of an answer. More complex implicit techniques may increase the order

of convergence but also increase computational cost. This dilemma is really a

question of the cost of computation versus the reliability of the solution. The

current technological level of modern computers allows differential equations like

the RKEs to be solved “quickly” with any of the mentioned methods. That is, a

single iteration requires little computational time. However, real world problems

require many iterations of solving the same system of differential equation.

Reactors in reality have spatial dependence, are not homogeneous, and factors

like temperature and material flow for moderator/coolant will greatly influence

the conditions of the system of equations. The equation must be solved over

many time steps, over a spatial grid. The size of the grid must capture the

geometry of the reactor, and gradients of neutron density throughout the reactor.

6

Finding a method that solves the PRKEs quickly and accurately can potentially

reduce the amount of time it takes to solve reactor kinetics diffusion and

transport problems. This is the main motivation for the search and analysis of

new methods of an otherwise straightforward problem.

I.C. Problem Statement

Exponential moment methods can be implemented in an algorithm that will

solve an approximation of the PRKEs. This research aims to characterize the

method and evaluate the fidelity of the solution as a function of step size. This

method can be expanded using an error control scheme to further enhance the

value of computational time.

I.D. Objectives

I.D.1 Validation of Solution

The method should be able to produce the correct solution to a certain degree

specified by the tolerances given as an input. The solution can be compared to

the solution produced by a trusted mathematics package, such as Mathematica.

Certain initial conditions will produce trivial situations that the code should

accurately replicate. These include a critical system at steady state and a

subcritical system with a source. Standard problems, such as linear reactivity

7

should also be explored. Problems that have special conditions that require a

more rigorous approach warrant their own objective.

I.D.2 Controlled Error Accumulation

The nature of coded solutions results in several sources of error. The error

created by the algorithm choices should be observable as it propagates through

multiple time steps. This allows the prediction and quantification of error of the

method itself.

I.D.3 Solution for Sinusoidal Reactivity

The algorithm should be able to handle any realistic and well-behaved form of

reactivity. Sinusoidal reactivity is an example that exists in reality. Sinusoidal

reactivity can occur in actual reactors through periodic rod movement.

Mathematically, this creates a complication in our approach to solving the

PRKEs that should be addressed. The solution should be evaluated for accuracy

and performance. Any additional sources of error should be quantified and

documented.

8

I.D.4 Convergence Performance Evaluation

Our method should be comparable to other common methods of solving the

PRKEs for accuracy and feasibility. One attribute of methods that step through

the solution share in common is the dependence of error upon step size. The

order of convergence can be determined through the analysis of the error and

compared to other methods if desired. This order could change for variations of

the problem, such as the sinusoidal reactivity condition.

I.D.5 Approximate Solution using Large Time Steps

The performance of the method should be evaluated for large time steps. For

large time steps, error is inevitable but quantifiable. If the error is tolerable, one

can quickly observe the general behavior of a solution for many reasons, which

can be useful for back-of-the-envelop calculation, or more under certain

circumstances. In essence, shows the ability to mitigate the effects of stiffness. If

the mechanism that defines the convergence is mapped out to large enough step

sizes, one can determine if large step sizes are feasible in situations where

accuracy is not as valued as computational cost.

I.D.6 Error Control Algorithm with Adaptive Time Steps

Error control allows computation time to be saved during portions of the

problem where extra time steps are wasted due to the simplicity of the problem

9

conditions in those regions. A functional error control scheme should have the

ability to modify the error generated by adjusting tolerances. The step sizes

should be appropriate to the behavior of the problem at that time. An especially

robust error control scheme can find the solution through problematic regions of

the given conditions that are especially stiff. The test case of interest is a reactor

that has a reactivity that increases over time and passes through prompt

criticality.

I.E. Summary of Approach

The system of differential equations given in (2) and (3) can be converted into

integral equations. The neutron density ()n t is approximated by an exponential

form over a time step of

 () tn t ae . (5)

By substituting this assumption and taking the 0th and 1st temporal moment,

the integral equations can be written with each section matching the form of an

exponential moment function. An exponential moment function is the solution to

a specific form of integral, which can be evaluated recursively. The general

definition is

1 11 1 1 2 2 1
1 () ()

1: 1 1 20 0 0
() (1) ... k k k k

u ux u x x u x x un
n k kM x du u e du e du e       . (6)

10

The 0th and 1st temporal moments of equation (5) can be set equal to the 0th

and 1st temporal moment of the neutron density RKE and there are now two

equations with two unknowns, a and . Solving for these two variables and

substituting back into our original system of equations, one can find the

approximate neutron and precursor density over the time step. Adjusting the

time step size will determine the amount of error in the solution as error has a

strong dependence on step size for numerical methods such as this one.

11

II. REVIEW OF REACTOR KINETIC EQUATIONS

II.A. Introduction to Reactor Equations

Reactor dynamics is the study of the phenomena in a nuclear reactor system

with knowledge of various aspects of the reactor, such as temperature, control

rod status, and neutron poison build up. These listed aspects affect the

reactivity and if the functional form of the reactivity is determined, the problem

can be reduced to a reactor kinetics problem. The RKEs have the following

independent variables: space, energy, direction of motion of neutrons, and time.

Reactor equations are balance equations. That is, they conserve neutrons

within the problem by considering each mechanism in which neutrons are created

and lost. Neutrons are created through fission or added through a source, and

both of these represent terms in a reactor equation. Other terms represent

neutrons that are lost through absorption, or exiting the grid entirely.

II.B. Transport and Diffusion Equations

The neutron transport kinetics equation is the neutron balance that takes into

account the basic reactor kinetic independent variables. The equation explicitly

creates terms to represent the phenomena within a reactor system and is

commonly used to determine the behavior of reactor cores or neutrons beams.

The equation is

12

0

1

4 0

ˆ1 (, , ,) ˆ ˆ ˆ(, , ,) (, ,) (, , ,)
()

()()
() (, ,) (, ,) (,)

4 4

ˆ ˆ ˆ ˆ(, , ,) (, , ,) (, , ,)

i

t

N df
f f i i

i

s

r E t
r E t r E t r E t

v E t
EE

dE E r E t r E t C r t

d dE r E E t r E t S r E t



 


  

 








 
    



     

             



 

 (7)

where the independent variables are

r Position vector (x,y,z)

E Energy

̂ Unit Vector in direction of motion

t Time

and the various terms within the equation are:

()v E Neutron speed

ˆ(, , ,)r E t dr dE d   Angular neutron flux

(, ,)r E t dr dE Scalar neutron flux

f Average number of neutrons produced

per fission

f Density function of neutrons exiting

with energy E (fission)

id Density function of neutrons exiting

with energy E (delayed)

13

(, ,)t r E t Macroscopic total cross section

(, ,)f r E t Macroscopic fission cross section

ˆ ˆ(, , ,)s r E E t      Macroscopic scattering cross section

N Number of precursor groups

i Decay constant for group i

(,)iC r t Precursor density for group i

ˆ(, , ,)S r E t Source term

Often the angular dependence isn’t known and the basic transport equation

can prove to be difficult to solve. Through some approximation and integration

with respect to ̂ , one can transform the transport equation into the diffusion

equation, which is often sufficient for solving realistic problems.

0

1

0

(, ,) (, ,) (, ,) (, ,)

()
(, ,) (, ,) (,)

4

() () (, ,) (, ,) (, ,)

i

r
N d

s i i
i

f f f

D r E t r E t r E t r E t

E
E r E E t r E t C r t

E E E r E t r E t S r E t

 


 


  






   

     

     





 (8)

Note that the scalar flux is used throughout the equation and the new

variable D is the diffusion coefficient which is related to the cross sections. The

diffusion equation is much more managable than the full transport equation, but

still retains a certain degree of complexity [2].

14

II.C. Point Reactor Kinetic Equations

Additional simplifications to the diffusion equation will yield the PRKEs,

which can be used to test novel numerical techniques for studying reactor

behavior before applying those techniques to the more complicated diffusion or

transport equations. The first simplification is integrating energy into groups, or

even a single energy group that represents the average behavior across all

energies. This will remove energy dependence. Another simplification is

assuming an infinite, homogeneous region of interest where the spatial

dependence of the problem is removed. Knowing that each neutron that leaves a

region will be replaced symmetrically by another neutron, one can assume that

any given point in this reactor will mimic all other points. This is known as the

point reactor. The diffusion equation is simplified into this form by merging the

gain and loss terms as the reactivity of the reactor, and splitting the delayed

neutron precursors into their own additional equations. These equations were

shown in (2) and (3). Note that the flux has now been replaced by neutron

density, all loss and gain mechanisms have been contained within the reactivity

and the equation has been split according to precursor groups.

Solving the PRKEs with respect to time has its own set of difficulties. The

general form of reactivity with time, and the number of delayed precursor groups

does not allow a closed form solution. Instead, iterative numerical methods are

15

used. However, each delayed group presents decay constants that are different

by orders of magnitude (Table 3). The result is a very stiff system of differential

equations. Various standard methods for solving such differential equations can

be shown to be ineffective for this specific set. Forward Euler is an explicit

method that is very easy to implement. The nature of forward Euler and most

other explicit methods requires very small step sizes in order to deal with stiff

problems. The result is the requirement of many steps without a guarantee that

the end solution is reliable. To compare, backwards Euler is an implicit methods

that is not prone to numerical instability. For non-linear problems, such as the

PRKEs, backwards Euler can be very expensive and require a suitable root

finding algorithm. These methods are not normally considered for use. The

solution will still develop error linearly according to step size. There are robust

explicit and implicit methods that exchange computational cost for a higher order

of convergence, such as various Runge-Kutta methods, but even these are

hindered by the stiffness of the problem.

Overall, any of these various techniques are generally considered acceptable

for solving a single PRKEs problem because modern computing allows us to solve

many small time steps or compute complex algorithms in a tolerable time frame.

However, as shown in the review of RKEs, the PRKEs are a greatly simplified

adaptation of complex equations that better fit reality. Once other variables are

considered, it is no longer acceptable or affordable to solve the problem with

16

these standard methods. A spatial parameter alone would multiply the amount

of calculation time by the grid size. Any time saved in calculation would also be

multiplied. Creating a robust solution to PRKE can provide insight to managing

the computational requirements of other RKEs. The robust solution of interest is

using exponential moment methods in order to solve an approximation of the

PRKE. Exponential moment methods specify the solution of specific integrals

with a solution that can be calculated recursively. Differential equations can be

converted to integral equations and then converted into moment functions where

the complexity of the algorithm and step size requirement can be compared with

other methods. These results can be used to motivate exploration of exponential

moment methods in transport and diffusion equations.

17

III. OVERVIEW OF EXPONENTIAL MOMENT FUNCTIONS

III.A. Definition and Properties of Exponential Moment Functions

This review section is a presentation of key information from the book

Exponential Moment Methods, currently in draft [1]. The general form of an

exponential moment function is

       M 1 11 2 2 11 1
1

1: 1 1 20 0 0
1 ... k k k k

u un x x u x x ux u
n k kx du u e du e du e      . (9)

Two defining attributes of any exponential moment function are its order and

rank. The general equation above is of order n, and rank k. The order of the

function is the power to which  11 u is raised. The rank is the number of

arguments presented in the function. Exponential moment functions are

orderless; that is, the value of the function is invariant under permutations of its

arguments. Exponential moment functions are also always positive and

monotonically decreasing. Mathematical manipulation and perhaps a few

approximations can be used to turn many equations into the form of the right

hand side of equation (9). Exponential moment functions use recursion to create

an algebraic equivelant of the integral. In general, the needed recursion will

reduce a moment function into many moment functions that are order 0 and

rank 1.

The main mechanism for reduction in rank is

18

      1: 2 1 1: 2
1:

1

, ,n k k n k k
n k

k k

x x x x
x

x x
  








 
 . (10)

Using the orderless feature of exponential moment functions, the arguments

can be sorted in increasing order. Then by applying the recursive formula using

the first and last argument, one can force the denominator to be as large as

possible. Thus the form of equation (10) used is

      2: 1: 1
1:

1

n k n k
n k

k

x x
x

x x





 
 (11)

where x is sorted in decreasing order.

At a certain threshold, special treatment can be used for arguments that

become too close together indicating possible issues. Moment functions are

poorly conditioned for arguments that differ by small amounts. In such a case,

the division leads to catastrophic cancellation and a major loss of precision. A

certain approach to the problem can pinpoint this problem when it occurs and

special treatment can be used to prevent such issues.

Once all exponential moment functions are of rank 1, the order must be

reduced. Backwards recurrence on order is done using

    11
0

1
n

n

x x
x n

n


  



 . (12)

19

After enough applications of the recurrence relation, all exponential moment

functions are reduced to rank 1 and order 0. The basic algebraic definition of

such an exponential moment function is

  0
1 xe

x
x


 . (13)

An exponential moment function can always be reduced to an algebraic

formula that is just subtractions and divisions. Depending on the arguments,

some computational issues may arrive and are addressed accordingly.

Additionally, some series expansions and other properties of exponential moment

functions can be used to accelerate the computation or decrease the loss of

precision and are implemented. These methods are explained in Exponential

Moment Methods [1].

20

IV. APPLICATION OF EXPONENTIAL MOMENT METHODS TO THE

SOLUTION OF POINT REACTOR KINETIC EQUATIONS

This research seeks a numerical scheme to solve the PRKEs. In Exponential

Moment Methods, Mathews explains an application of exponential moment

functions to point-reactor kinetics [1]. This method is replicated throughout this

section.

Exponential moment methods are applied to integral equations and thus

converting the PRKEs into integral equations is our initial step. Starting with

the standard equations (2) and (3), integrating factors are used. For the i th

second PRKE:

     

    

    

     

       

0 0

0

0

0

0

i i i

i i

i i

i i

ii

t t ti i
i i

t ti
i

t tt ti
i

tt ti
i i

t t tt i
i i

dc t
e c t e n t e

dt
d

c t e n t e
dt

d c t e dt n t e

c t e c e n t dt

c t c e e n t dt

  

 

 

 














  

 

   

 





 


   


   


 




.

 (14)

The first equation cannot be treated in a similar fashion due to the fact that

the reactivity is not constant. A constant is substituted for the sake of forming

an integral equation and the deviation from the chosen constant will have to be

21

addressed. The average reactivity,  , over the time step of interest is used as

the constant. The deviations from the average are

    t t    (15)

and the average reactivity as

  
0

t dt
t

t
 




 . (16)

However, reactivity itself isn’t a constant and cannot be used for an

integrating factor in the first reactor kinetics equation. A new constant and

deviation factor is defined.

  ()t
t

 













 (17)

Using these the first PRKE can be turned into an integral equation by

 

() ()
() () ()

() ()
() () ()

() ()
() () () ()

()
() () () ()

i i
i

i i
i

i i
i

i i
i

dn t t
n t c t S t

dt
dn t t

n t c t S t
dt

dn t t
n t c t S t n t

dt
dn t

n t c t S t t n t
dt

 


  


  


  

         
          
           

   








,

 (18)

then solve using the integrating factor te .

22

 

   

   
 

0 0

0

()
() () () ()

() () () ()

() () () ()

() (0) ()

t t t t t
i i

i

t t t t
i i

i
t tt t t t

i i
i

t t tt
i i

i

dn t
e n t e c t e S t e t n t e

dt
d

n t e c t e S t e t n t e
dt

d n t e dt c t e S t e t n t e

n t n e dt c t e

    

   

   



  

 

 



  

 

   

  

           

   





 

    
     

0

0

t t t

t t t

e S t dt

e t n t dt






 

 

 

  





 (19)

Finally, the dependence on the precursor densities is eliminated by

substituting the second RPKE in the first.

       

         
     

0

0 0

0 0

0 0

.

i

i

t t t tt
i i

i
t tt t t t

t tt t t ti i

i

n t n e c e e dt

e S t dt e t n t dt

e e n t dt dt

 

 

 





 

  

    

     

 

     

 
   
   

 

 

  

 (20)

At this point, only one equation remains with everything known, except for

the neutron density which is present within itself.

IV.A. Neutron Density Approximation

An exponential form is assumed for the neutron density within a time step.

   for 0tn t ae t t    (21)

The exponential form is chosen for its nonlinearity and implicit nature.

Linear, implicit, single-step methods cannot be A-stable (approach 0 to solutions

of differential equations that approach 0 as t approaches ) and more than

23

second-order accurate. The exponential form has two degrees of freedom, a and

 that are to be determined iteratively. Equation (21) is substituted into (14)

and (20) to obtain:

      
0

0 ii i
t tt ti

i ic t c e a e e dt
        

  (22)

and

       

       
   

0

0 0

0 0

0 0

.

i

i

t t t tt
i i

i
t tt t tt

t tt t t t ti i

i

n t n e c e e dt

e S t dt ae e t dt

a e e e dt dt

 

  

  





 

  

   

      

 

    

 
  
   

 

 

  

 (23)

Currently equation (23) would be the first Picard iteration if a and  were

specified. One may note that equation (23) can be substituted into (14) and (20)

to obtain what may be a higher order solution. The form of such a solution

would be expensive to evaluate. However, occasionally doing so would allow us

to find some error margin in order to compare against a threshold for error

control in an adaptive step size method. The use of Picard iteration is discussed

in VIII.A. For now, a and  must be determined in a different manner.

Moment matching is a robust method of specifying unknowns within an

expression. Moments allow us to choose weighting factors for both convenience

of solution and to capture the behavior of our expressions. To determine a and

 , the 0th and 1st temporal moments of equations (21) and (23) are set equal to

each other. The weight function is chosen to allow the integrals to be

24

manipulated into exponential moment functions. This tactic is the basic

approach used for all integrals and reduces the portions of iteration that would

have to be done otherwise. For the 0th moment:

 

0 0

0 0
1 ()

0 0

0 0

()
t

t t

t u

dt
n n t

t
dt

n a e
t

n a e du

n a t











  









  







 





 

 (24)

and for the 1st moment:

  
 

1 0

1 ()
1 0

1 1

1 ()

1

.

t

t u

t dt
n n t

t t

n a u e du

n a t







  

        

 

  





 



 

 (25)

One may note that if one assumed a different form for the neutron density,

one could take more moments and choose the weighting factor accordingly in

order to fit the new form. These moments must be equated to the moments of

(23) which after some manipulation are

          

   
   
   

0 0 0

0

0

0 0

0 0

, 0 0 ,

, ,

.

i i i
i

i i i
i

t t tt

t t tt

n a t n t c t t t

t
a t t t t

dt
e e S t dt

t
dt

a e e t dt
t



 

    

    



 

 

      

            
 
  
   
 
  
   





 

 

 



 (26)

25

and

          

   
   
   

1 1 1

1

0

0 0

0 0

, 0 0 ,

, ,

1

1 .

i i i
i

i i i
i

t t tt

t t tt

n a t n t c t t t

t
a t t t t

t dt
e e S t dt

t t
t dt

a e e t dt
t t



 

    

    



 

 

      

            
               
               





 

 

 



 (27)

The form of the source and the reactivity will vary from problem to problem.

The method is designed to allow the conversion of these factors into exponential

moment functions, but also to encompass various realistic forms that the source

and reactivity may undertake.

IV.B. Source Term

In general, the source of a reactor system is usually constant. To add some

generality and flexibility, the solution is designed to function for any polynomial

source. The following general form is used:

  
0

source
pP

p
p

t
S t s

t

      
 . (28)

This form is then substituted into the source term of equation (26) and (27).

The source integral is transformed into an exponential moment function, but the

means in which that is done is not readily apparent. A short derivation should

26

shed some insight on the matter. For the 0th moment, the polynomial source term

is substituted into the 0th moment source integral.

  poly.source 0
0 0 0

0

source
pP

t t tt
p

p

t dt dt
n s t e e

t t t
 



                
   (29)

Applying the following change of variables:

1

2

t
u

t
t

u
t








 (30)

    11 2
1poly.source 0

0 1 2 20 0
0

sourceP
ut u t u p

p
p

n s t du e du e u
    



   
.

 (31)

Reverse the sequence of integration noting that the bounds must change in

order to integrate correctly.

    2 1

2

1 1poly.source 0
0 2 2 10

0

sourceP
t u t up

p u
p

n s t du u e du e
    



    (32)

Apply another change of variables in order to get the bounds to match the

form of an exponential moment function.

 2 2

1 1

1

1

v u

v u

 
 

 (33)

       22 1
1poly.source 0 1 1

0 2 2 10 0
0

1
sourceP

vp t v t v
p

p

n s t dv v e dv e
      



     (34)

Finally, simplify the exponents and gather the arguments in the form of an

exponential moment function.

27

     

 

22 1
1poly.source 0

0 2 2 10 0
0

poly.source
0

0

1

,0

source

source

P
vp t v t v

p
p

P

p p
p

n s t dv v e dv e

n s t t

 



   





  

  

  

 

 (35)

When creating these algorithms to minimize calculation cost, mathematical

manipulations are applied to reduce the number of total calculations required.

Recursive techniques benefit greatly from reduction of iterations required and a

certain identity of exponential moment functions allows us to immediately save

one iteration. This identity is

    1 1:
1: , 0

1
n j

n j

x
x

n






.
 (36)

Applying (36) to our derivation gives us our solution to the 0th moment for

polynomial sources.

  poly.source
0 1

0 1

sourceP
p

p
p

s t
n t

p





 

  (37)

The 1st moment requires a little more effort. As before, the polynomial source

is substituted into the 1st moment source integral.

  poly.source 0
1 0 0

0

1
source

pP
t t tt

p
p

t t dt dt
n s t e e

t t t t
 



                           
   (38)

Applying the same change of variables shown in (30).

      11 2
1poly.source 0

1 1 1 2 20 0
0

1
sourceP

ut u t u p
p

p

n s t du u e du e u
    



     (39)

28

Reverse the sequence of integration.

      2 1

2

1 1poly.source 0
1 2 2 1 10

0

1
sourceP

t u t up
p u

p

n s t du u e du u e
    



     (40)

Apply the same change of variables shown in (33).

       22 1
1poly.source 0 1 1

1 2 2 1 10 0
0

1
sourceP

vp t v t v
p

p

n s t dv v e dv e v
      



     (41)

The 1v term is problematic and doesn’t allow one to produce the form of an

exponential moment function easily. Using some creativity, this variable can be

changed into an additional argument of a rank 3 exponential moment function

       

       

2 12 1

2 12 1 0

1poly.source 0 1 1
1 2 2 1 00 0 0

0

1poly.source 0 0 0
1 2 2 1 00 0 0

0

1

1

source

source

P
v vp t v t v

p
p

P
v vp t v t v v

p
p

n s t dv v e dv e dv

n s t dv v e dv e dv e

 

 

     



    



  

  

   

   
(42)

Thus, the form of an exponential moment function reveals itself.

  poly.source
1

0

, 0, 0
sourceP

p p
p

n s t t


    (43)

Using identity (36) twice, the solution elegantly simplifies itself to

    poly.source

1 2
0 1 2

sourceP
p

p
p

s t
n t

p p





 

 
  . (44)

After a and  are determined through moment matching, the neutron

density will be calculated. One of the terms within the neutron density, as

29

shown in (23), is the source term. The source term here is an integral which can

be evaluated using exponential moment methods. The isolated integral is

      source

0

t t t
n t e S t dt

   
   (45)

Substituting in the polynomial source assumption and multiplying and

dividing by t gives us

     1 /poly. source

0
0

source
pP

t t t t
p

p

t dt
n t s t e

t t
    



         
  . (46)

Apply the following change of variables:

t

v
t




 (47)

       
1 1poly. source

0
0

sourceP
pt v

p
p

n t s t e v dv
  



    (48)

and another change of variables:

 1 u v  (49)

      1poly. source

0
0

1
sourceP

p t u
p

p

n t s t u e du
 



    
,

 (50)

and once again the form of an exponential moment function is revealed:

    poly. source

0

sourceP

p p
p

n t s t t


    
.

30

IV.C. Reactivity Term

The same treatment must be done to the reactivity term,  . Unlike the

source term, reactivity can take many forms. As always, it is our choice to pick

a method that is both robust and convenient. The nature of k compared to the

actual reactivity,  , must also be taken into account. The function k is either

zero throughout a time step for constant reactivity, or it crosses zero at least

once. Our approximation should have this capability as well. A polynomial

approximation can be appropriate assuming the time-step is chosen to allow for

such a fit. Then any form of reactivity can be transformed into a polynomial

approximation through moment matching. Let us assume the same polynomial

form for the k term of order P .

  
0

P p

p
p

t
t

t



 


       
 (51)

This form is then substituted into the integral containing  in equations

(26) and (27). The  term is changed into an exponential moment function,

but the means in which that is done, like the source term, is not readily

apparent.

As with the source term, the polynomial k term is substituted into the 0th

moment reactivity integral.

31

  poly.
0 0 0

0

P p
t t tt

p
p

t dt dt
n t e e

t t t

  
 



                
   (52)

Apply the change of variables given in (30).

    11 2
1poly.

0 1 2 20 0
0

P
ut u t t u p

p
p

n t du e du e u
   


    



    (53)

Reverse the sequence of integration.

    2 1

2

1 1poly.
0 2 2 10

0

P
t t u t up

p u
p

n t du u e du e
   


    



    (54)

Apply the change of variables given in (33).

       22 1
1poly. 1 1

0 2 2 10 0
0

1
P

vp t t v t v
p

p

n t dv v e dv e
   


      



     (55)

Simplify exponents and gather arguments.

      2 12
1poly.

0 2 2 10 0
0

1
P

vp t t t vt t vt
p

p

n te dv v e dv e
     

       



     (56)

Now the form of an exponential moment function reveals itself as

    0
0

, ,
P

t
p p

p

n a t t e t t t


     



        . (57)

Similarly, the same method is applied to the 1st moment. The polynomial k

term is substituted into the 1st moment reactivity integral.

  poly.
1 0 0

0

1
P p

t t tt
p

p

t t dt dt
n t e e

t t t t

  
 



                           
   (58)

32

Apply the change of variables given in (30).

      11 2
1poly.

1 1 1 2 20 0
0

1
P

ut u t t u p
p

p

n t du u e du e u
   


    



     (59)

Reverse the sequence of integration.

      2 1

2

1 1poly.
1 2 2 1 10

0

1
P

t t u t up
p u

p

n t du u e du u e
   


    



     (60)

Apply the change of variables given in (33).

       22 1
1poly. 1 1

1 2 2 1 10 0
0

1
P

vp t t v t v
p

p

n t dv v e dv e v
   


      



     (61)

As with the source 1st moment derivation, there is an extra 1v term. The

same trick can be used again to convert it into an extra argument.

       

    

2

2 11 0

1poly.
1 2 20

0

1 00 0

1

.

P
pt t t t t v

p
p

v vt t t v t t v

n te e dv v e

dv e dv e

     

    


        


       


  






 

 
 (62)

Now the form of an exponential moment function reveals itself as

    1
0

, , ,
P

t
p p

p

n a t t e t t t t


      



        
.

 (63)

After a and  are determined through moment matching, the neutron

density will be calculated. One of the terms within the neutron density, as

shown in (23), is the k term. The k term here is an integral which can be

evaluated using exponential moment methods. The isolated integral is

33

      
0

t ttn t ae e t dt
   

    .
 (64)

Substituting in the polynomial source assumption and multiplying and

dividing by t gives us

    
0

0

P p t
t ttt t

p
p

t dt
n t a t e e

t t

   


    



          
 

.

 (65)

Apply the following change of variable:

t

u
t





 (66)

    1

0
0

P
t t ut p

p
p

n t a t e u e du
   

   



     (67)

and another change of variables:

 1v u  (68)

        1

0
0

1
P

pt t t t vt
p

p

n t a t e e v e dv
     

       



     (69)

Again, the form of the exponential moment function reveals itself:

    
0

P
t

p p
p

n t a t e t t


   



      
.

 (70)

IV.D. Neutron Density Determination

As stated previously, the method seeks to find an approximation of the

neutron density over a time step. Our two unknowns, a and  , require a

34

system of two equations in order to be determined. By matching the 0th and 1st

moment of equations (21) and (23), the unknowns can be solved:

          

 

 

   

0 0 0

1
0

0

0

0 0 ,

1

,

, , .

source

i i i
i

P
p

p
p

P

p p
p

i i i
i

a t n t c t t t

s t
t

p

a t t t t

t
a t t t t



    



   

    






       


 



       

            









  







 (71)

          

    

 

   

1 1 1

2
0

0

1

0 0 ,

1 2

, ,

, , .

source

i i i
i

P
p

p
p

P

p p
p

i i i
i

a t n t c t t t

s t
t

p p

a t t t t t

t
a t t t t



    



    

    






       


 

 

         

            









  







 (72)

Some simplification is useful for solving for our unknowns. The combination

of variables t is solved for using a rootsolver. Thus, the terms containing

t are collected on one side, which are all conveniently multiplied by a . For

the 0th moment equality:

  0 0aA t B  (73)

where

35

     

   

0 0
0

0

,

, ,

P

p p
p

i i i
i

A t t t t t t

t
t t t t



     

    



          

            





 



 (74)

and

        

 

0 0 0

1
0

0 0 ,

.
1

source

i i i
i

P
p

p
p

B n t c t t t

s t
t

p

   




     


 







 


 (75)

For the 1st moment:

  1 1aA t B  (76)

where

     

   

1 1
0

1

, ,

, ,

P

p p
p

i i i
i

A t t t t t t t

t
t t t t



      

    



            

            





 



 (77)

and

        

    

1 1 1

2
0

0 0 ,

.
1 2

source

i i i
i

P
p

p
p

B n t c t t t

s t
t

p p

   




     


 

 





 


 (78)

By taking the ratio of these two equations, a is eliminated and a single

equation and unknown remains that can be put through a rootsolver algorithm of

choice.

36

 
 

1 1

00

A t B

BA t









 (79)

      0 1 1 0 0f t B A t B A t        (80)

The general behavior of this root-solving problem and our choice of algorithm

is explained in V.A. Once  has been determined, a can be calculated as well

using either the 0th or 1st moment:

 

0

0

B
a

A t



. (81)

Finally, the neutron and precursor densities can be evaluated at time t

using equations (22) and (23). Substituting in a and  , and applying our

changes of the integrals into moment functions one finds the following equations

for the densities at the end of the time step:

      00 i t t
i i i i

t
c t c e a e t t     

     


 (82)

     

     

 

0

0 0

0

0

0 ,

,

source
i

P
tt

p p i
p i

i i i i i

P
t

p p
p

n t n e s t t t e

t
c t t a t t t t

a t e t t






 

      

  

  







       

              

    

 





 



 (83)

37

This concludes the overview of the algorithm used to solve a PRKE system

using exponential moment methods. The devices and methods chosen to realize

this algorithm now need to be specified.

38

V. IMPLEMENTATION

The code created to calculate the neutron density utilizes various methods

that were chosen or constructed to complete modular tasks within the problem in

a robust manner. These tasks include root solving, domain shifting and adapting

to various forms of reactivity. Additionally, planning the structure of the code

carefully has allowed the flexibility of new tools to supplement the original

foundation. A copy of the code can be found in Appendix I.A.

V.A. Root-Solving

Root-solving for t can be done with many methods that vary in efficiency

and reliability. Knowing a bracket that contains the root can initially accelerate

the process using a bisection method. Then a rapidly converging method can be

used. Rather than jumping in blind for the first iteration of root-solving, a quick

search is done for a possible bracket with the assumption that the function is

monotonically increasing or decreasing and defined everywhere. This assumption

has been proven true for all cases used during testing, but may not actually be a

property of the method. The value of function (80) is evaluated at 0 . The slope

is also found by evaluating the function at a small step forward and backwards

from that point, which is determined by an input parameter. Using this

information, the bracket can be found by approaching the root by doubling the

39

step size until the sign of the function changes. Once the sign changes, a bracket

is found given by (0)f and some other point that has the opposite sign of (0)f

which may exist above or below 0. The exception is for a steady state system

where the neutron density does not change. In this case, (0)f will be the root

itself. Once the bracket is set around the root, an estimation of the root location

is calculated by drawing a secant between the bracketed points. The function is

evaluated at this point and will replace the bracketed point that shares the same

sign. This is known as the method of false position in root-solving. It combines

features of the secant method and bisection method to quickly converge on the

point, but also guarantee a result given the function is well behaved. The code

for the bracket search and secant/bisection rootfinder can be found in Appendix

VIII.B.8 and Appendix VIII.B.9.

V.B. Solution to Sinusoidal Reactivity

The design of our algorithm requires the reactivity term to be in the form of a

polynomial. However, as stated earlier, realistic problems will often have a

functional form of reactivity that is not a polynomial. For example, control rods

being inserted and withdrawn periodically on a wheel can create a sinusoidal

form. This creates a need to fit a polynomial to a given form. There are several

methods that fit a polynomial to other functional forms. The design choices

must fulfill two major objectives: quickly fit a polynomial because the method

40

will have to be done for every time-step, and accurately fit a polynomial

throughout the domain of interest because error from our fit will propagate into

our final solution. A polynomial fit is needed within our time step for the

following form of reactivity:

 () sin()t a t    (84)

With these constants that define the sinusoid, a few options can be used to

create a polynomial fit. First off, the smaller the time scale with respect to the

period of the sinusoid, the better the fit will be for the same order of fit.

However, this will require more steps. In general, the step size requirement of

approximating the reactivity as an exponential will be sufficiently small for

realistic sinusoidal problems, such as those caused by control rod movement.

Well-known methods, such as a Taylor series are useful for predicting function

behavior near a specific point. Accuracy is required throughout a domain and

thus a Taylor expansion will entail too many terms before the accuracy goal is

satisfied. Instead, a type of moment matching using Legendre polynomials is

applied. Various properties of Legendre polynomials allow us to create fits with

some quick and simple arithmetic, and the behaviors of the original function are

mimicked throughout the domain.

Fitting a polynomial to a given function using Legendre polynomials is simple

and systematic, as long as the function behaves somewhat like a polynomial in

41

the region of interest. The polynomial fit requires the Legendre polynomials up

to the order of our fit. The first five Legendre polynomials were shown to be

overly sufficient.

Table 1: First Four Legendre Polynomials

n ()nP x

0 1

1 x

2  21
3 1

2
x 

3  31
5 3

2
x x

4  4 21
35 30 3

8
x x 

The sum is taken of the inner product of our function of interest with each

Legendre polynomial up to the order desired to fit the function. The formula for

this summation is

1

1
0

2 1
() () () () for 1 1

2

order

fit n n
n

n
f x P x f x P x dx x




           
  . (85)

Although this fit is a simple calculation, the function can have many forms

and the nature of the inner product may require special treatment. Creating an

42

algorithm to solve the inner product in a robust manner for any function and any

order can be a feat on its own. Instead, knowledge of the function required

allows the creation of a reference table of solutions. In the proposed situation,

the function is sinusoidal, and only a specified number of inner products are

required which is determined by user input.

The first step in solving for the table of inner products is shifting the function

into the correct domain. Legendre polynomials are orthogonal between -1 and 1

and thus require us to shift the sinusoid into the same domain, -1 to 1. For the

general sinusoid given in (84), the three constants are shifted as

2

2

new

new i

new

a a

t
t

t


  







  




 (86)

where it is the time at the beginning of the step, and t is the length of the

step. The order of our polynomial is limited to 4th order. The coefficients for

these Legendre polynomials are given on the next page.

43

Table 2: Coefficients of Legendre Polynomials

Polynomial

Number

Order Coefficient

0 0 1

1 1 1

2 0 -.5

2 2 1.5

3 1 -1.5

3 3 2.5

4 0 .125

4 2 3.75

4 4 4.375

These coefficients are reconventionalized in the form (,)p n order . For

example, (3,1) 1.5p   . Additionally, the inner product of our function in (84)

and each Legendre polynomial is required. The solutions for the first four of

these inner products are given as

44

2

1 2 3

sin()sin()
(0)

cos()sin() cos()cos()
(1)

3 cos()sin() 3 sin()sin() sin()sin()
(2)

(3)

n

new new new

new

new new new new
new

newnew

new new new new new new

newnew new

a
cip

cip a

cip

cip

 



   



     


 





 
   
  
 
    
  


3

1

4 2

4 2

1

15 cos()cos() cos()cos()

15 cos()sin() 6 cos()sin()

105 cos()sin() 10 cos()sin()

105 sin()sin(
(4)

n

n

new new new new

newnew

new new new new

new new

new new new new

new new

newcip

   


   

 
   

 
 



 
  
 
 
   
 
 




 
5 3

) 45 sin()sin()

sin()sin()

new new new

new new

new new

new

 

 
 



 
 
 
 
 
  
 
 
 
  
 

(87)

Given these inner product constants and the Legendre polynomial coefficients,

the fitted polynomial is solved through a mathematics package and can be

calculated with simple arithmetic.

For a 0th order fit:

 0 (0) (0,0)poly cip p 
.
 (88)

For a 1st order fit:

 1 3 (1) (1,1)poly cip p t 
.
 (89)

For a 2nd order fit:

 2
2 (0) (0,0) 5 (2) (2,0) 5 (2) (2,2)poly cip p cip p cip p t   

.
 (90)

45

For a 3rd order fit:

 3
3 3 (1) (1,1) 7 (3) (3,1) 7 (3) (3,3)poly cip p t cip p t cip p t   

.
 (91)

And finally a 4th order fit:

 4
2 2 4

(0) (0,0) 5 (2) (2,0) 9 (4) (4,0)

5 (2) (2,2) 9 (4) (4,2) 9 (4) (4,4)
poly cip p cip p cip p

cip p t cip p t cip p t

   

 
.

 (92)

Once the polynomial order is chosen, a fit for the sinusoid is now available.

All that remains is to move the polynomial from the -1 to 1 domain back into the

it to it t domain. Binomial coefficients are used to shift polynomials from

one domain to another and the method in which this is done so is explained

thoroughly in the next section.

V.C. Initial Condition Domain Shift

After each time step, recalculating the average reactivity is required before

repeating the algorithm. The problem has a few nuances that must be considered

after the first time step in order to correctly calculate future iterations. Each

time step, the average reactivity is calculated and is a major part of our

algorithm’s calculation. Additionally, our derivation was for the first time step,

and thus the initial time is 0, greatly simplifying a lot of the math. Rather than

deriving everything once again for the time between t and t t , the final

population densities of the previous iteration are used as the initial condition for

46

the next iteration and the reactivity and source polynomials are shifted by t .

The reactivity and source are both assumed to be polynomials and thus the

method applied to both is identical. For a polynomial source of the form

0

()
sourceP

p
p

p

S t S t


  (93)

one can apply a shift of some amount of time denoted as passedt . Thus the

shifted source is now

  
0

()
sourceP

p

shifted p passed
p

S t S t t


  . (94)

Once again, binomial expansion is used to determine the new coefficients for

the source:

  
source

new

P
j p

p j passed
j p

j
S S t

p





      
 (95)

and now a revised shifted source equation can be used.

0

()
source

new

P
p

shifted p
p

S t S t


  (96)

To reiterate, reactivity is done the same way as if it is naturally in a

polynomial form.

For a sinusoidal reactivity, this shift must occur before refitting a polynomial

every time-step. For this form shown in (84), we can shift by passedt . In order to

47

do so, the constants 1 and 3 remain the same, but the second constant must

shift accordingly:

 2 2 3new passedt    (97)

 1 2 3() sin()shifted newt t     (98)

After shifting the reactivity, the polynomial fit technique shown in V.B can

be used to meet the requirements of our algorithm. Each polynomial fit is only

good for the time domain it was calculated, so our problem requires a constant

shifting of the reactivity.

V.D. Error Control Algorithm with Adaptive Time Steps

The purpose of error control is to minimize the costs of finding a solution

while keeping the error below some stated tolerance. In order to design such a

feature into our algorithm, one must first understand the source and behavior of

error in this particular problem. Error introduces itself in our solution from

several sources. Our limitation of precision, the number of digits stored for

calculation purposes, results in some small finite amount of error. Another

source of error is created due to the fact that we the method solves an

approximation of the problem. Various sources of error will usually differ by

orders of magnitude in relevance. While designing an algorithm, knowing which

source of error is the most relevant and creating a method to reduce it is the

48

main mechanism for improving the fidelity of the solution. From an error control

perspective, if one source of error clearly dominates, the other sources may be

ignored.

Error control schemes in general operate by solving an iteration of a given

problem and comparing the error to a specified tolerance. The tolerance will

determine if the solution is usable and if the step size was optimal. Depending

on this result, the scheme may redo the iteration with a different time step, use a

different time step on the next iteration, or use the same time step on the next

iteration. In order for this decision to be made, the error must be known to

compare to the tolerance.

Due to the nature of our problem, it is very difficult to know exactly what the

exact solution is and thus the exact error. For verification purposes, the solution

from a mathematics package is produced and compared, a luxury that won’t be

incorporated with the code on a regular basis. However, using the information

from the verification portion of the results, one can gain some insight of the

properties of the error. When tolerances are set very tight and the time steps

taken are small relative to all the inputs, one may notice that the error associated

with our solution is on the same order of magnitude as the precision allowed.

This result is expected and additional reduction of the tolerances or step size does

not further improve the fidelity of the answer. However, increasing the step size

reveals another source of error that is associated with the properties of our

49

algorithm. Once this source of error dominates over the precision error,

regression can be used to find the form of the error. Our results imply that this

source of error follows the following form:

 ()pa t   (99)

where  is the relative error and a and p are simply constants that are

determined by the nature of the problem being solved. Using this information,

an adaptive error control scheme can be created that changes the step size based

on an estimation of the error. The error can be estimated by calculating the

solution twice using different sized time steps. For our algorithm specifically, the

step size is changed by a factor of two. This design decision doesn’t allow much

flexibility in how close to the optimal step size one can get and may seem crude.

However, there are two main redeeming features of this choice. First, only three

calculations must be done in order to estimate the error, solving the problem

twice in succession with the half step size, and once with the full step size.

Second, if the error proves to be minimal, the solution of the error control now

becomes the solution to the main problem, thus minimizing the number of

calculations necessary.

Although the actual solution of a specified problem is not known, one can

presume that the error, our solution and the real solution are related in the

following way:

50

()

()p
S t S

a t
S


 

  


. (100)

where S is the actual solution and ()S t is our solution for given step size t

(not to be mistaken with ()S t , the source term). The solution can then be found

in terms of other factors.

  () 1 ()pS t S a t    (101)

If one assumes the same amount of error is accumulated when two half steps

are added, then the associated error for the half solution will be

  () () () 1 2 ()ph h h hS t S t S t S S a t            . (102)

Solving the same problem again using full step sizes yields

  (2) 1 2 ()p p
h hS t S a t    . (103)

The two results are then combined to eliminate the actual solution, which is

unknown.

 

 
2 () 2 ()(2) ()

() 1 2 ()

p p p
h hh h

p
h h

S a t a tS t S t

S t S a t

    


   

 



 (104)

If the magnitude of the step size is relatively small to the solution, one can

use the following approximation:

(2) ()

(2 2) ()
()

p ph h
h

h

S t S t
a t

S t

  
  



 



. (105)

And finally, this can be used as a rough estimate of the error.

51

(2) ()

()
(2 2) ()

p h h
h p

h

S t S t
a t

S t


  
  

 

 



 (106)

With this information, a pair of tolerances can be used to manipulate the

behavior of our algorithm by changing step size. If the relative error estimation

is below some tolerance, the doubling tolerance, the information found by our

error scheme is assumed to be of an acceptable error level and is justifiably

recorded. Next, the size of the step is doubled because the above derivation

proposes that a larger step size would also be acceptable and require less total

calculations in the long run. However, the next iteration of error control will test

to see if this assumption is correct. If the relative error estimation is above some

other critical tolerance, the halving tolerance, the error estimation has become

too great to risk using the information that was just computed. Instead, the step

size will be halved, and the error control routine will test the new value. After

some finite number of iterations, the error control will find the step size that

contributes an acceptable amount of error or fail to reach a value and deliver a

stop command. If the relative error estimation is between our two tolerances,

then the algorithm assumes the answer has enough fidelity to be acceptable, but

not enough to warrant the search of a more effective step size. Thus, the total

error accumulated will be some magnitude between the thresholds per step.

However, it is known that error accumulates, so for long problems that may take

52

many steps to solve, the tolerances should be set such that the accumulation of

error meets the prespecified goals.

The behavior and performance of our error control scheme is attributed

partially to the tolerances set. The halving tolerance is the main mechanism for

reducing the error. Due to the fact that a given result won’t be accepted and

recorded unless the halving tolerance is met, tightening up the halving tolerance

will result in less accumulation of error in the long run in exchange for shorter

step sizes, and thus increasing computational cost. The doubling tolerance has

an interesting effect on the accuracy and cost of operation. If the doubling

tolerance is set too strict, the step size may never double into another acceptable

step size, increasing computational cost by a factor of 2. With an extremely strict

doubling tolerance, the increase in operation cost grows by a factor of 2n where

n is the number of times it could have doubled and still remained under the

halving threshold. In return, the accumulation of error will be lower than one

would expect from the halving tolerance. However, if the doubling tolerance is

set too loose (very close to the halving tolerance), the additional error may cause

the next iteration to trigger the halving mechanism. That is, the step size is

never in the comfortable region between the two tolerances. In this case, the step

size will jump back and forth and half of the iterations will not be used. The

result is that the computational cost increases by a factor of 2.

53

Knowing these properties of this error control scheme, one may note that even

with well set tolerances, it is possible that the algorithm proposed step size may

be suboptimal by up to a factor of 2. This fact is one of the attributes that

makes this error control scheme somewhat crude. With more information on the

effects of step size on error, the algorithm can be enhanced to set the step size

accordingly. This information can only be provided with extensive testing, which

is not within the scope of our goals.

Finally, an additional method of error control has been developed during our

research. Rather than using a raw calculation with assumptions about how error

is a function of step size, one can calculate our densities to a higher order using

another Picard iteration. This method may provide an advantage in situations

where there is some source of error that does not follow the standard form for

error associated with the step size. Situations like these are not observed in our

results, but perhaps another functional form of reactivity can produce such a

circumstance. This method was not pursued because the original error control

scheme was successful for the selected test cases, but a general introduction to

using Picard iterations is provided in Appendix VIII.A.

54

VI. TESTING, RESULTS AND ANALYSIS

Our testing procedure aims to meet the goals listed in the problem statement

and goals section. These goals generally fit within two categories: validation and

performance assessment. These categories are appropriate because numerical

methods in general are judged based on the accuracy of the result they produce,

and the number of operations it took to reach the result. Unfortunately,

improvements in one of these properties usually results in reduction of the other.

For validation based goals, the value of our method can be quantified based on

the error within the result produced. For performance assessment, the cost of

running our method can be quantified based on the number of operations

necessary to complete it. This is done by exploring the relationship between step

size and relative error, knowing that step size is the main factor that determines

computational costs. In essence, our testing will demonstrate the relationship

between accuracy and cost for our particular method.

In order to quantify our success in meeting our goals, the correct solution to

each test problem is required. Mathematica, a standard math package, is used in

order to solve the same test problems using the built in numerical differential

equation solver. For certain test problems, the code did not converge to the

result produced by Mathematica using default options. This implies that either

there is an error in the method, or some error accumulated in the method used

55

by Mathematica that exceeds the precision required. By increasing the working

precision, precision goal, and accuracy goal on Mathematica, this issue can be

rectified for all of our selected test problems. The NDSolve() function is used to

solve the PRKEs which applies a combination of numerical methods including

Runge-Kutta, trapezoid rule, and extrapolation. The performance effecting

options were set arbitrarily high to ensure accuracy at values of 30 for the

working precision, 15 for the precision goal and 15 for the accuracy goal. For the

purpose of our testing, the results given by Mathematica are assumed to be

correct to at least as many digits as the precision level set within our code. The

worksheet for our Mathematica testing suite can be found in Appendix VIII.C.

The test problems throughout these results use a six group approximation for

the production of all results produced within this paper. The i and i values

are given within the following table.

Table 3: Values for Six Group Approximation

Group Number i i

1 0.00021 0.0126

2 0.00142 0.0301

3 0.00127 0.112

4 0.00257 0.301

5 0.00075 1.14

6 0.00027 3.01

56

The neutron lifetime used for the majority of our tests, 0.0824528053 s  ,

is based on an experimental reactor. However, a longer lifetime like this does not

accurately represent the average reactor once it goes through prompt criticality.

In this situation, the behavior of the reactor is no longer dominated by delayed

neutrons and our choice of prompt lifetime will affect the results greatly. For the

prompt criticality tests, a neutron lifetime of 53 10   s is used instead which

redefines the reactor conditions. The fact that all of the tests do not use this

lifetime is simply a result of observations found while testing our method with

prompt criticality, which was final task performed during research. The original

longer lifetime is sufficient for showing the behaviors in situations where delayed

neutrons determine the behavior of the population densities.

VI.A. Solution: Trivial Steady State Conditions

Due to the fact that most reactors are usually left in a steady state condition

or naturally enter into one eventually, creating a set of steady state conditions

and confirming that our algorithm produces steady state results is a good starting

point for our validation process. One can use any set of neutron and precursor

concentrations, so our test cases arbitrarily use a neutron density of 81 10 . We

can now solve for the precursor densities that match. One may note that our

densities can be of any unit and our algorithm is correct as long as all densities

have the same unit.

57

There are two steady state conditions. The first is the steady state condition

of criticality. With no source inserted into the reactor and 0  , the reactor

will eventually reach a steady state condition. This condition can be solved using

the given information and equation (2) and (3).

0

0 () ()i i
i

n t c t



        

 (107)

 0 () ()i
i ic t n t


 


 (108)

Given the neutron density set arbitrarily for test cases, one can use the second

equation to solve for each of the precursor densities.

 () ()i
i

i

c t n t






 (109)

Table 4: List of Neutron and Precursor Densities for Critical Steady State

Conditions

n 100000000.000000

1c 20213583.5233573

2c 57215857.6807323

3c 13752455.9328556

4c 10355264.3830621

5c 797904.612764104

6c 108790.715308435

58

One can now use these initial conditions and verify our algorithms ability to

correctly treat this steady state condition. Table 5 displays the parameters used

within our algorithm and the results produced.

Table 5: Code Parameters Used for Critical Steady State Test

t 0.01

Number of Steps 100

()t 0

()S t 0

Figure 1: Critical Steady State Test Results

59

As expected, there is no change shown in the neutron densities. The

precursor densities produce a similar result. Our algorithm uses the solution of

each time step as the initial condition for the next step which is why the result

continues with time.

As previously stated, there are two steady state conditions. If there is a

source within the reactor and the reactor is subcritical, the densities will settle

into densities that will allow the loss of neutrons to be offset by the addition of

the source term. For this situation, the PRKEs are now

 0
00 () ()i i

i

n t c t S
 


        

 (110)

 0 () ()i
i ic t n t


 


. (111)

Once again, one can solve for the steady state conditions given a set neutron

concentration. The same neutron population as before is used for simplicity.

The source rate is now required in addition to the precursor densities. The

source rate can be found by substituting (111) into (110).

 0
0

()n t
S





 (112)

The precursor densities are the same as the critical steady state conditions,

but they can be written in terms of the source term for convenience.

60

 0

0

() i
i

i

S
c t



 



 (113)

The densities listed in Table 4 are used once again. The code parameters

used are listed in Table 6.

Table 6: Code Parameters Used for Subcritical

Steady State with Source Test

t 0.01

Number of Steps 100

()t -0.001

()S t 1212815.01140145

The results produced by these conditions are shown in Figure 2.

Figure 2: Subcritical Steady State with Source Test Results

61

Again, the solution is as expected. Our algorithm maintains the densities at

the same value when steady state conditions are met.

VI.B. Verification: Linear Reactivity

Much of our error analysis can be based on a simple, but effective set of

problem conditions. A reactor is assumed to be in critical steady state condition

with the given densities shown in Table 4. At time 0t  , the reactivity step

changes to some positive value. The reactivity then increases linearly. The step

size is chosen to be 0.001. This value is approximately a sixth of our  value.

This decision was to allow the delayed neutrons to dominate the behavior of the

population, while still being critical. One may find similar conditions when

powering up a reactor. A sample problem is created that fits this description and

verify our algorithms ability to produce the correct answer. This sample problem

can then be used later in our results to study the effects of our tolerances, step

size, and error control. The code parameters are given in Table 7.

62

Table 7: Code Parameters Used for Linear Reactivity Test

t 0.001

Number of Steps 10000

()t 0.001 0.00001t

()S t 0

The results produced from these conditions can be found in Figure 3.

Figure 3: Linear Reactivity Test Results

The results seem to correctly fit the given conditions, but our goals require

the analsis of the error of the neutron and precursor population densities. In

order to do so, 11 points are sampled that are evenly spaced within our results

63

and the relative error is calculated against the result in Mathematica. For the

precursor populations, the error accumulated is of the same order of magnitude

for all groups, so the relative error of the precursor group with the largest i

value is arbitrarily exhibited to represent the behavior of the error in all of the

precursor groups. The resulting analysis is shown in Figure 4.

Figure 4: Error Development within Linear Reactivity Test

One may note that the error for both the neutron and precursor density are

extremely small values, some positive, some negative, and initially with no

pattern. Error of this magnitude matches what would be expected for minor

precision loss caused by a single pass through our algorithm. The random

positive and negative values suggest the same. Precision error such as this tends

64

to not accumulate like other errors because the values average out to 0. Instead,

whatever error is accumulated is explained as a random walk. After some

thousands of time steps, it seems like the neutron and precursor errors behaviors

start to mimic each other. This may indicate the accumulation of error from a

source that affects all densities equally. Error accumulation will be studied in

our next result.

VI.C. Error Accumulation: Linear Reactivity

Our previous study of linear reactivity may hint at another source of error

within our algorithm, which is expected. In order to differentiate this error from

the precision error, the same conditions are used for a much longer time period to

allow for the error to accumulate to a recognizable and quantifiable amount. The

results imply that this accumulation of error is created by the fact that our

method is solving an approximation of the actual problem. If this statement is

true, the error accumulation rate would be related to the size of the steps taken.

The same case can be solved with different time steps in order to view their

effects on the accumulation of error. A solution utilizing small step sizes is first

shown and the step size increases from there. The following parameters are used

in the initial test.

65

Table 8: Code Parameters Used for Linear Reactivity

Error Accumulation Test 1

t 0.01

Number of Steps 100000

()t 0.001 0.00001t

()S t 0

The neutron density produced by these conditions is shown in the next figure.

Note that this is just an extension of Figure 3 by 990 seconds.

Figure 5: Extended Linear Reactivity Test Results

66

The actual interest of this test case is the behavior of the error. As with the

previous case, one can view the relative error of the neutron density and a chosen

precursor density in Figure 6.

Figure 6: Error Development within Linear Reactivity Test 1

The neutron and precursor errors clearly follow each other, implying that

their errors stem from the same source and they seem to have approximately the

same relative magnitude. The overall error is still very low but clearly a couple

digits of precision are now gone. One may note that within the first 200 seconds,

the magnitude of the error is approximately the same as that found in our

previous test overall. At some point, the accumulating error dominates over the

67

precision loss, and the error accumulates at an increasing rate. This fact may

explain the curvature of our results. The random walk caused by precision loss is

always present, but as time passes, the error from this source slowly becomes less

relevant compared to systematic error accumulation from our algorithm. The

error accumulated is all positive, that is the algorithm result is consistently

higher than it should be. This behavior is a function of the conditions of the case

itself. For negative reactivity, our algorithm tends to produce negative error, or

results that are consistently lower than they should be. Rather than setting up

an example showing this behavior, our study of sinusoids does an excellent job of

characterizing this phenomenon.

As stated, the test setup seeks to verify that the error observed is a function

of step size. The next test uses a step size that is 10 times larger than the

previous test with the same conditions. This operation is repeated a few times in

order to verify the dependence on step size.

Table 9: Code Parameters Used for Linear Reactivity

Error Accumulation Test 2

t 0.1

Number of Steps 10000

()t 0.001 0.00001t

()S t 0

68

Figure 7: Error Development within Linear Reactivity Test 2

With a simple increase of time step, one can obtain a better understanding of

this error source. The error has increased by multiple orders of magnitude.

Additionally, even though the precursor and neutron density errors follow the

same path, the precursor error is consistently greater than the neutron error by

approximately the same amount. This is probably an artifact of our algorithm

itself. Now that precision loss is many orders of magnitude below the error loss

caused by our algorithm, the error development appears linear. That is, every

step contributes an approximately set amount of error. One may predict that

increasing the step size will reinforce these results further, unless some other

mode of error becomes relevant. The rest of our tests are shown below.

69

Table 10: Code Parameters Used for Linear Reactivity

Error Accumulation Test 3

t 1

Number of Steps 1000

()t 0.001 0.00001t

()S t 0

Figure 8: Error Development within Linear Reactivity Test 3

70

Table 11: Code Parameters Used for Linear Reactivity

Error Accumulation Test 4

t 10

Number of Steps 100

()t 0.001 0.00001t

()S t 0

Figure 9: Error Development within Linear Reactivity Test 4

As expected these graphs are nearly identical, except each increase of step size

results in a large increase in error. One additional nuance is shown in Figure 8.

71

The precursor and neutron densities slowly converge. Perhaps in the other test

cases this behavior would eventually be observed given more time. However, the

fact that it is only observed with 1 second time steps, but not with the .1 or 10

second time steps used in Figure 7 and Figure 9 does not give sufficient

information to imply any logical pattern.

VI.D. Verification and Error Accumulation: Sinusoidal Reactivity

A sine wave was chosen to represent our ability to treat reactivity cases that

are not easily represented by a polynomial. The algorithm fits a polynomial to a

piece of the sine wave that is much smaller than the period using moment

matching and then goes through the standard procedure. With this in mind, one

can assume that in addition to the normal errors associated with the basic

algorithm, our sinusoid fitting scheme will contribute some amount of error as

well. By observing some test results involving sinusoidal reactivity, one can

determine if this amount of additional error is relevant compared to the other

sources of error.

First, a sine wave must be designed for this exploration. The amplitude of

the sine wave should be a fraction of the  value. The choice used in the linear

tests will work here as well. Additionally, a period must be picked for the sine

wave. This sine wave is supposed to mimic a control rod being inserted and

withdrawn from the reactor periodically. The shorter the period, the faster the

72

sine wave will turn, which puts more stress on the fitting algorithm. A quick

period that is still somewhat realistic is somewhere around 1 second. Finally, the

polynomial approximation of the sine is set to be 0th order in order to observe the

problem case before analyzing the effects of our fitting parameters. The problem

design uses the same critical steady state, and at 0t  , the reactivity will follow

the given sine wave.

Table 12: Code Parameters Used for Sinusoidal

Reactivity Test 2 Periods 0th Order

t 0.01

Number of Steps 200

()t 0.001sin(6.28)t

()S t 0

Poly. Order 0

The result produced by these conditions is shown in Figure 10.

73

Figure 10: Sinusoidal Reactivity Test

Results 2 Periods 0th Order

The result is also sinusoidal in nature, but offset from the reactivity by

approximately / 2 . If one observes the plot closely, one may note that the

second period is lower than the first in both peak and trough. This is the

interaction that the delayed groups have on the densities for a sinusoidal

reactivity. In order to better understand this interaction, the length of the same

calculation is extended to 50 periods. Before discussion of the currect case is

abandoned, additional insight can be gained from analyzing the error within the

period of the sine. The discussion of accumulating effects over many periods is

reconvened in VI.E.

74

As stated before, the sinusoidal reactivity has an additional component of

error due to the polynomial approximation. In addition, a few new properties are

introduced. There is curvature to our reactivity, and periodically our reactivity

goes negative. These are all factors that will influence the sources of error in our

solution. By observing relative error over time, perhaps some insight about these

factors can be found. For the case listed in Table 12, the following error figure is

produced.

Figure 11: Neutron Error Development within Sinusoidal

Reactivity Test 2 Periods 0th Order

75

Figure 12: Precursor Error Development within Sinusoidal

Reactivity Test 2 Periods 0th Order

Our crude 11 point sampling has hurt the resolution of our figures now that

curvature is involved, but information can still be gained by analyzing the plots.

One initial observation is the order of magnitude of error between the neutron

density and the precursor density is vastly different by a couple orders of

magnitude. This differs from the linear case where the two had approximately

the same amount of error. Additionally, both curves also have sinusoidal shapes

in general, but they are out of synchronization. In order to determine the cause

of the difference in magnitude of error, one can vary the problem parameters

until the neutron and precursor densities reach a similar magnitude of error. By

76

doing this, it was found that 0th order polynomial approximation of the sine

contributed to the error of the precursors more than the neutron population.

However, the reason this behavior occurs is still elusive. This phenomenon can

be shown by running the same test with a better approximation.

Table 13: Code Parameters Used for Sinusoidal

Reactivity Test 2 Periods 1st Order

t 0.01

Number of Steps 200

()t 0.001sin(6.28)t

()S t 0

Poly. Order 1

77

Figure 13: Error Development within Sinusoidal

Reactivity Test 2 Periods 1st Order

By simply increasing the order, the error of the neutron and precursor

densities is immediately improved. The plot is similar to Figure 4 in a few ways:

there seems to be no pattern, the neutron and precursor densities are of the same

magnitude, and there are positive and negative values. However, the magnitude

of precision loss for our sinusoidal case is greater by a couple of orders of

magnitude. It isn’t fair to necessarily state that the linear results produce less

error at this point as the step sizes of our two problems are different as well.

Instead, an in depth analysis is done to provide insight on step size and

convergence rate in VI.F and VI.G.

78

VI.E. Verification and Error Accumulation: Periods of Sinusoidal Reactivity

Now that some understanding of the local sinusoidal error is established, the

properties of many periods are of interest in terms of how the error will

accumulate over time. The same conditions from the previous section are used,

but calculate out to 50 periods instead of 2. These are the slightly modified code

parameters used and the resulting graph.

Table 14: Code Parameters Used for Sinusoidal

Reactivity Test 50 Periods 0th Order

t 0.01

Number of Steps 5000

()t 0.001sin(6.28)t

()S t 0

Poly. Order 0

79

Figure 14: Sinusoidal Reactivity Test

Results 50 Periods 0th Order

With many more periods, the behavior of the result can be characterized. An

initial observation is that each period is slightly lower than the previous one, a

property first observed in the analysis of 2 periods. However, as time continues,

the trend seems to reach some equilibrium sinusoid. The average value during

this equilibrium is above the starting steady state value. However, the trough of

each wave dips well below the starting value. This overall behavior is created by

the interactions of having a sinusoidal reactivity. A regular sine wave has

positive reactivity early and negative reactivity later. The precursors lag behind

the sine wave and do not contribute as much as required during the negative

80

portion. The result is a net loss of neutrons. As time passes by, this effect fades

as each sine may look like similar to any of its shifted versions. Although not

shown here, the same reactivity function was studied after being shifted by

increments of / 2 . This is the equivalent of a cosine wave, negative sine wave

and negative cosine wave. The negative sine wave looks similar, but flipped over

an imaginary line equal to the starting density. Now that the negative reactivity

comes early, the precursors are always larger than required and slowly increase

the neutron population. Thus, the overall average is below the starting density,

but after each period, the neutron population is above the starting density. For

cosine reactivity, there is some positive reactivity early and late, but negative in

between. The reverse is true as well. The resulting graphs are also flipped over

the starting density, but they do not have any net gain or loss. Instead, a simple

sine wave was observed.

Although these are interesting behaviors generated by the nature of the

PRKEs, our goals guide our interests towards the accumulated error of this test

case and how our polynomial approximation order affects that error. First, the

neutron density error is examined.

81

Figure 15: Neutron Error Development within Sinusoidal

Reactivity Test 50 Periods

Our sampling rate allows the error to be calculated after every 5 periods.

Unlike the increasing linear reactivity cases, the algorithm is now generating

negative error, or predicting densities that are lower than the actual value. The

0th order value seems to be generating more negative error over time. This

implies that using constants to approximate the sinusoid incrementally

contributes error. The 1st order approximation does not have this problem and

maintains approximately the same order of error that was seen in the case of 2

periods. If there are any errors that have the potential to accumulate, they most

82

likely cancel out when the reactivity changes sign. Next, the precursors are

examined.

Figure 16: Precursor Error Development within Sinusoidal

Reactivity Test 50 Periods 0th Order

83

Figure 17: Precursor Error Development within Sinusoidal

Reactivity Test 50 Periods 1st Order

The 1st order graph of the precursors is what one would expect. The

magnitude of the error is some low amount approximately the same magnitude as

the 1st order neutron density error. The error walks randomly, but never

becomes negative in our sample. This may be a coincidence due to low sampling

rates.

In comparison, the 0th order graph has a much greater magnitude of error.

This result is quite interesting. The initial kink is created because there is no

error at 0t  . However, the error decreases after the first jump almost perfectly

in a linear fashion. The sampling system does calculate error on the same point

84

of the wave at every given point because the objective is to see the behavior of

the whole picture (behavior of each individual wave is discussed in VI.D), which

allows the possibility of such an observation. Perhaps more information can be

gained with some magnification in sampling of the earlier portion of the graph.

Additionally, the linear portion of the error is cut off after 50 periods. Some

mechanism seems to be removing error generated in the early periods.

Eventually the error will probably be dominated by some other source and the

linear pattern will deviate. To truly understand the influence of the order of

polynomial approximation has over the relative error, it must be observed in

conjunction with the step size. This is done in VI.G.

VI.F. Convergence Test: Linear Reactivity

One important feature of our method is its ability to converge to the correct

value. The verification tests show that our algorithm can produce values with

relative errors almost as low as there are digits of precision. In order to quantify

the performance of our method itself, the rate of convergence must be mapped as

a function of step size. It is assumed that relative error follows the form given in

equation (99). The constant p gives us the order of convergence. Logarithms

can be used in order to create a form that makes solving for the constants easier:

 log() log() log()a p t    . (114)

85

With a list of step sizes and their associated errors, linear regression can be

used in order to determine the constants. The same conditions are used for

linear reactivity verification tests over a variety of step sizes. The tested step

sizes are listed as

Table 15: Convergence Test Step Sizes for Linear Test Case

Step Count t

2 50

5 20

10 10

50 2

100 1

500 0.2

1000 0.1

5000 0.02

10000 0.01

50000 0.002

100000 0.001

The result of running these different cases is shown in Figure 18 and Figure

19.

86

Figure 18: Relative Error of Linear Reactivity Test

Case as a Function of Step Size

Figure 19: Log of the Relative Error of Linear Reactivity Test

Case as a Function of Log of Step Size

87

In our log plot, one may notice a decent linear region. However, for lower

time steps the error no longer follows a linear pattern. This is explained by the

fact that the error cannot fall below the precision level within the code itself.

Instead loss of precision error dominates over the error that would accumulate in

the algorithm. These points are removed allowing a linear regression to be

calculated using the remaining points.

Figure 20: Linear Regression of Linear Reactivity Log Error Plot

The regression produces a strong fit. Using the values solved, one can

calculate the constants for the relative error in linear reactivity.

 7 3.07863.3437 10 ()t   (115)

88

The method produces slightly better than 3rd order convergence.

VI.G. Convergence Test: Sinusoidal Reactivity

The rate of convergence for sinusoidal reactivity could differ from the linear

case because there is an additional source of relevant error. A different set of

step sizes are used that are more appropriate for a 50 seconds/50 periods case

study. Additionally, 0th order and 1st order polynomial approximations are used

separately in two different test cases. The list of step sizes used is given below.

Table 16: Convergence Test Step Sizes for Sinusoidal Test Case

Step Count t

25 2

50 1

100 0.5

500 0.1

1000 0.05

5000 0.01

10000 0.005

50000 0.001

89

These step sizes are used in the same procedure as before: take the log of

error and time step, remove the points that are from alternative sources of error,

and create a linear regression of the remaining points.

Figure 21: Linear Regression of Sinusoidal Reactivity

0th Order Log Error Plot

90

Figure 22: Linear Regression of Sinusoidal Reactivity

1st Order Log Error Plot

These results provide us with the constants for relative error for 0th order

 5 1.88631.1319 10 ()t   (116)

and 1st order

 5 3.50986.8711 10 ()t   . (117)

The 1st order polynomial approximation for the sinusoidal reactivity test case

produces an excellent convergence rate; about halfway between 3rd and 4th order.

However, the 0th order approximation produces a convergence rate shy of 2nd

order.

91

VI.H. Fidelity of Results for Large Time Steps

One of the goals was to observe the result of using large time steps and

analyze their use. Rather than create a new test case, the tests in VI.F and VI.G

should be sufficient for some discussion on this matter. How useful a result is

depends on the requirements of the problem itself. In many of our test cases,

large time steps were used. These time steps are relatively large compared to all

of the precursor lifetimes and especially large compared to the neutron lifetime.

For some especially large time steps, such as the ones taken in VI.F, one may

note that only a few digits of precision remain. These calculations may be useful

for interpreting the overall behavior of a problem set, especially if it is mostly

well behaved. If there are any odd behaviors in the reactivity or source term, it

may be wise to individually solve those sections with the appropriate step size.

The convergence tests show how the relative error varies with time step size.

Those equations can roughly calculate the largest step size allowed if given an

error limit. Some numerical methods have a quality that slows the divergence of

the error with respect to step size on a log-log plot. That characteristic was not

observed with this method. If it exists, it is outside the scope of step sizes tested.

92

VI.I. Verification: Error Control Scheme

Several attributes were sought after while designing the error control scheme.

Overall, the goal of the error control is to reduce the cost of calculation while still

maintaining an accuracy goal. The error control scheme should produce the

correct result regardless of how crude it is. The linear reactivity test case was

used for a time period of 10 seconds with a variety of tolerances and starting t

values in order to verify the final answer given, and to observe the effect of

tolerances on the performance and accuracy of the result. These effects are

explained in I.D.6. Note that each step is composed of 3 passes of our algorithm.

93

Table 17: Validation and Performance Check of Error Control Scheme

Case it relTolhalf relToldoub  Steps Taken

1 0.01 41 10 111 10 118.84 10 35

2 2 41 10 111 10 071.42 10 3

3 10 41 10 111 10 75.64 10  1

4 0.01 91 10 111 10 118.29 10 32

5 2 91 10 111 10 103.29 10 20

6 10 91 10 111 10 118.84 10 35

7 0.01 41 10 71 10 53.12 10 21

The relative error produced in each case is lower than the halving tolerance,

which was our original goal. One must keep in mind that the halving tolerance

keeps the error down for the current iteration, but error accumulates over time.

The halving tolerance will eventually be exceeded once a sufficient amount of

error has accumulated. A quick discussion of each of these cases will confirm our

predictions of how the interaction of the two tolerances will affect performance

and accuracy. The first case has a very lenient halving tolerance, but the

doubling tolerance gives little room to improve the performance. The result is an

94

especially accurate result with comparably poor performance time. The second

and third cases approach the same tolerances using a large time step instead.

Due to the fact that the error is low already, the error control scheme just

doubles the 2 second step size once and does nothing to the 10 second time step.

Cases 4, 5 and 6 have very strict tolerances. No matter what initial step size

used, the algorithm reduces it in order to meet the accuracy goal. The initial

time step size of 2 is coincidentally close to some multiple of 2 to the optimal

step size for the given accuracy goal. The result is fewer steps are required. This

is a good example of motivation towards a more robust error control scheme than

the current solution. The final case loosens up the halving tolerance but starts

with a low step size. The result is several instances of doubling in order to

quickly solve the problem. As a comparison, if the error control scheme is turned

off, the same case would take 1000 passes of the algorithm. Each iteration of the

error control scheme requires 3 passes, for a total of 63 passes; a massive increase

in performance while still meeting accuracy goals.

VI.J. Case Study: Prompt Criticality

It is expected that our error control activity is a function of the time scales

present within a problem set. Prompt criticality problems provide many

magnitudes of change in population growth rate. This makes them an excellent

case for revealing the limitations of our error control scheme. Time spans are

95

initially dominated by the precursors, but eventually the neutrons can sustain

themselves and the rate of increase in population drastically changes. If short

time steps are used for the entire process, the computational costs will be high.

If longer time steps are used, fidelity is lost during the portions that required a

closer look. Additionally, it is difficult to know what magnitude of step size will

accomplish a specified accuracy goal. A well functioning error control scheme

will attempt to address these issues.

As stated at the beginning of the testing section, a different neutron lifetime

is used for this case study, resulting in different initial conditions entirely. A

neutron lifetime of 53 10   s is used. This results in the following densities.

Table 18: Prompt Criticality Initial Conditions

n 100000000.000000

1c 55555555555.55

2c 157253599114.0

3c 37797619047.62

4c 28460686600.22

5c 2192982456.14

6c 299003322.26

96

These initial conditions represent a critical steady state without source.

Reactivity is then linearly increased and eventually it passes the limit for prompt

criticality. These initial conditions are represented in our code by the following

parameters.

Table 19: Code Parameters Used for Prompt Criticality Test

t 0.0001

Number of Steps 150000

()t 0.0005t

()S t 0

With these initial conditions, prompt criticality will be achieved in

approximately 13 seconds. The first test run untilizes no error control in order to

get an idea of the behavior of this system, and to provide additional verification

to the original algorithm itself. The neutron density for this system is shown in

Figure 23.

97

Figure 23: Neutron Density Prompt Criticality Test

Strict time steps are used in order to minimize the accumulation of error. In

order to verify this, the error is monitored as time progresses.

Figure 24: Neutron Density Error Prompt Criticality Test

98

One may observe that many significant digits are maintained. The approach

to the prompt critical region may prove to be problematic. At first, significant

positive error is generated. Afterwards, some mechanism is causing negative

error to build up. However, these results verify that the algorithm keeps a

sufficient number of digits of precision without the error control scheme. Now,

the error control scheme can be tested for how much accuracy is sacrificed by

each step saved.

The first error control test will use lenient tolerances. The following

parameters were used.

Table 20: Error Control Parameters Used for Prompt Criticality Test

it 0.001

relTolhalf
51 10

relToldoub
81 10

Using these tolerances and running the same problem conditions, the code

used 1,700 iterations of the error control mechanism. This is the equivalent of

5,100 passes of the algorithm. This is compared to the 15,000 passes that would

have to be done without error control, or 150,000 passes done in the previous

99

verification example. One can observe the accumulation of error in the following

graph.

Figure 25: Prompt Criticality Error Control Test 1

As with the case with no error control, positive error is generated before going

critical and negative error afterwards at a rapid rate. The total amount of error

accumulated at the end of the solution is an order of magnitude larger than our

tolerance. However, it was discussed that the halving tolerance just monitors the

error within its current iteration. Error is accumulated in a linear fashion, so

eventually the total relative error would exceed the halving tolerance given a

sufficient number of iterations. In this case, 1,700 iterations resulted in an error

higher than the tolerance. Perhaps a more viable accuracy goal would be

comparing the tolerance with the relative error divided by the total number of

iterations. The total amount of accumulated error only left about 5 digits of

100

precision left. Although this is enough to get an idea of the general behavior of

our problem case, most applications will require better accuracy. After fully

analyzing the results from our current tolerances, additional insight can only be

gained by analyzing the same problem using strict tolerances.

One may predict that the growth rate of populations would influence the

error accumulated in addition to the time step size. Although the interaction is

probably too complicated to easily map out, some features can be observed. In

order to do so, the step size as a function of time reveals where the error control

mechanism took action.

Figure 26: Error Control Step Sizes Prompt Criticality 1

As expected, a shift is observed where prompt criticality becomes more

relevant. As the precursors become less of a factor, the solution mimics a much

simpler solution involving just the reactivity and neutron lifetime. The step size

101

can then increase. However, reactivity continues to grow at a linear rate, and

neutron population grows at time scales equivalent to its lifetime. Due to the

fact that the reactivity isn’t a constant, an exponential approximation isn’t exact

and eventually smaller time steps are required to accurately map out the

behavior of the system. The error control scheme will change the step size in

order to compensate for this. The relationship between the rate of growth and

error control activity may provide some insight on this prediction. The rate is

given by

  log ()
d P

P t
dt P




. (118)

The code generates a list of all populations of interest with their associated

timestamps as the algorithm runs. This information can be used to create an

approximation using a backwards finite difference.

 1k k

k

n nP
P n t








 (119)

This approximation is applied across the compilation of data produced by the

code.

102

Figure 27: Rate of Growth Prompt Criticality 1

The minor hiccup in the graph was created by the error control scheme

shifting to another time step. This interaction caused the finite difference poorly

approximate the derivative. However, the goal was to examine the shape of the

graph and compare it to the activity of the error control scheme. The error

control scheme seems to use small time steps early where precursors determine

the growth rate. Additionally, the error control scheme favors small time steps

later when the growth rate is large and increasing.

Finally, this analysis is repeated with strict tolerances in order to try and

mitigate some of the error found in this case study. Additionally, the time of

interest is increased to 21 seconds in order to further analyze what happens after

prompt criticality. The following tolerances in Table 21 are used.

103

Table 21: Error Control Parameters Used for Prompt Criticality Test

it 0.001

relTolhalf
91 10

relToldoub
101 10

Using those parameters resulted in 9,512 iterations of error control, or almost

30,000 passes of the algorithm. This is compared to the 21,000 passes that would

have occurred if error control was not used. Unfortunately, this is a rare example

(associated with long runs) where error control ends up hindering the

performance more than it helps. However, error control still is useful here for

showing approximately what order of magnitude of step size is necessary in order

to achieve certain accuracy goals. As before, the accumulation of error is of

interest. The first 15 seconds are compared with the previous test case.

Figure 28: Prompt Criticality Error Control Test 2

104

The overall error is better than the previous test, but only by a couple of

orders of magnitude. The tolerance is once again larger than the total

accumulated error, but less than the relative error divided by the number of

iterations. Next the step size as a function of time is analyzed to observe where

the error control tolerances are met.

Figure 29: Error Control Step Sizes Prompt Criticality 2

The result is similar to the previous case, with overall smaller step sizes.

Additionally, another reduction of step size occurs after the 15 second mark.

This supports our claim that shorter step sizes must be used well after prompt

criticality to accurately map the behavior of the problem. Finally, the growth

rate of the neutrons is observed in Figure 30.

105

Figure 30: Rate of Growth Prompt Criticality 1

With smaller step sizes, there are no longer any blatant discontinuities from

our finite difference. Comparing this figure with the time stamps of step size

changes, the observations of our error control scheme are confirmed; more steps

are needed for precursor dominated regions and regions with high changes in

growth rate.

106

VII. CONCLUSION

A method using exponential moment methods in order to solve the PRKEs

was designed. The goals were oriented towards two major categories, accuracy

and performance. Exponential moment methods provide opportunity for

improvements in accuracy and performance, providing our main motivation for

exploring their applications. The features presented within our method were

designed to progress towards one or both of these categories. The algorithm was

coded in FORTRAN in order to provide a platform for testing. Test cases were

designed to evaluate both the algorithm as a whole and individual design features

provided by the algorithm.

For our accuracy oriented goals, a series of verification tests were designed.

Our results show that our algorithm converges to the correct value for the cases

tested and discussed. The designed error control scheme was also tested for

verification purposes. Solutions provided by the error control scheme produced

relative errors less than the tolerance per iteration in our test cases.

Our performance based goals, convergence rate and cost analysis tests were

used. The rate of convergence of the base algorithm depends on the test case

varying from third to fourth order. Our sinusoidal suite can provide performance

of similar caliber with well selected polynomial approximations. Poor polynomial

approximations still converged to the correct value, but at a much slower rate.

107

In order to improve performance, the error control scheme was designed to

minimize computational costs given an accuracy goal. The error control scheme

was successful in most cases; however, it was noted that the accuracy goal was

only effective for individual iterations. For longer runs, accumulation of error

can jeopardize the accuracy goal. The performance of the error control scheme is

a function of selected tolerances and starting conditions. For many cases, the

error control scheme was effective in reducing the total number of calculations

taken. However, the overall design of the error control scheme is crude and

inflexible, and many aspects can benefit from further improvement.

VII.A. Future Work

The process of design and testing of our method revealed several opportunities

for improvement of our algorithm.

• Our approximation for the neutron density is exponential in form with

two degrees of freedom. The approximation was sufficient in

converging to the correct value with appropriate step sizes and fulfilled

the goal of producing solutions that are strictly positive. One feature

of our exponential approximation is positive concavity. Due to the fact

that the outer constant, a , is always positive, the second derivative of

our approximation will also always be positive. Moment matching is

then used to fit the exponential approximation. For situations where

the neutron population has negative concavity, perhaps this leads to

preventable accumulation of error. Although moment matching is

108

effective at mitigating much of this error, perhaps a third degree of

freedom would provide additional flexibility. However, the

repercussions on the derivation of our algorithms have not been

considered. One repercussion that can easily be imagined is that a

form that encorporates negative concavity will allow negative solutions

without some strict conditions. The proposed form for testing could

perhaps be

 () tn t a be  . (120)

• The effects of accumulation of error and the relationship to reactivity

have been somewhat observed throughout this work. In general, it was

observed that moments that favored more reactivity early and less at

later times would accumulate negative error. The reverse is true as

well. Additionally, in cases where reactivity varies from positive to

negative resulted in the normal sources of accumulating error to

mitigate each other. These observations may provide a starting point

for some research of a higher ordered method.

• The properties of the error control scheme reveal crude design features

that can be improved. The method of estimating error is somewhat

arbitrary and can possibly be fooled by certain test cases where the

estimation is relatively low compared to the actual error. This may be

the case in prompt criticality, but further investigation is required to

warrant this conclusion. Perhaps a higher ordered method of error

estimation would improve the ability of our error control scheme to

make decisions correctly against the provided tolerances. One method

is taking a Picard iteration using the exponential approximation once

109

the constants are known. Additionally, the error control scheme has a

poor adaptive structure. Any changes in step size are done by factors

of 2. The resulting step size can be far from optimal. With a robust

error estimation scheme, an algorithm can be created that selects

optimal step sizes. This improved algorithm would then just need a

single tolerance in the form of an accuracy goal. Such an improvement

is well beyond the scope of this research.

• The time step used for our approximation is also the time step used for

approximating sinusoidal reactivity using polynomials. Higher ordered

polynomial approximations are useful for larger portions of the sinusoid

where curvature becomes relevant. Before the time step becomes large

enough to benefit from this, the error is dominated by the original

algorithm. By separating these two factors, the sine can be

approximated for a certain time step and many smaller time steps of

that fitted polynomial can define the solution.

110

VIII. APPENDICES

VIII.A. Picard Iteration for Improved Error Control

After each pass of our algorithm, there is now have an estimate for the

neutron population within our time step. The estimation is given by the

knowledge of a and  within equation (5). Our normal solution is to substitute

these values into equation (23). This method solves an approximation from the

actual problem. Knowing that (23) is a higher ordered approximation for

neutron population than (5), one can solve the first Picard iteration, eliminating

some of the higher ordered errors. This method would be useful in an error

control scheme. In order to do so, equation (23) is substituted into (14) after

solving for a and  . Using some exponential moment methods, one can reduce

the equation to arithmetic. Then the precursors can be compared to the original

algorithm and relative errors can be calculated. A further extension of this would

be substituting the precursors back in and solving for neutrons again. This

process can be repeated for multiple Picard iterations. Unfortunately, the testing

and feasibility of using Picard iterations for the purpose of error control was

beyond the scope of this project. In order to give some insight to this technique,

the solution will be given of calculating the precursors to a higher order by

substituting (23) into (14). The solution is untested, but may give a decent

starting point for future works.

111

       
     

     
   

0

0 0

0 0

0 0

0

ii

i ii

i

i

t t tt ti
i i

t tt t t t ti
ii ii

ii
t tt t t ti

t t tti

c t c e e n e dt

e c e e dt dt

e e S t dt dt

e ae e

 

  

 

  











    

        

       

    

  


 
  
   

 
   
   






 

 

 
     

0 0

0 0 0
i i

t t

t t tt t t t t t ti i i

i

t dt dt

e a e e e dt dt dt
   



  

 

             

 
   
  
              

 

  

(121)

 The precursors are divided into 5 major integrals that need to be converted

into moment functions. Rather than showing the lengthy process the untested

solutions of each integral will be given.

  1 0

(0)
()iti

i i

n t
c t e t t

 
   


 (122)

    
2

2 0

()
(0) () ,()iti

i ii ii i ii i
ii

t
c t c e t t

    
    

   (123)

  
2

3
0

()
() (,)

sP
pi

i p p i
p

t
c t s t t t


 




   

   (124)

    
2

4
0

()
() () ,()

P
p ti

i p p i
p

a t
c t k t e t t




   




      

   (125)

    
2

3
5 02

()
() () ,() ,()ti i

i i i

a
c t t e t t t 

            


 (126)

Thus, one can have a higher order estimate of the precursor population using

              1 2 3 4 50 it
i i i i i i ic t c e c t c t c t c t c t            (127)

112

VIII.B. FORTRAN Code

A few notes about the FORTRAN code:

• The FORTRAN code was originally designed to just run the algorithm. The additional testing required for add

on modules littered some of the overhead structure.

• Some variables are poorly named (mainly del_T, this is delta T or t). Some temporary variables are used in

order to ease some computation. This may create some difficulty when following the code.

• Some methods that were either rejected or improved upon still remain in the code in the form of comments.

These were used for reference and testing purposes.

VIII.B.1 Main

Program RPK
!***
!Program: main execution
!Purpose: Calculate n(del_T) and c_i(del_T) given inital n and C_i,
! and source/reactivity info
!Created: 16 Nov 2011
!Version: 1.2
!***

Use User_Data, Only: Get_Working_Directory, &
 & Get_Problem_Data, & !N(0), C_i(0), S(0), rho(0), del_T, betai, Ci
 & Source_and_Reactivity_Calc
Use SolutionSteps, Only: SolveB, SolveAlpharobust, SolveA, SolveNC

113

Use Finalize, Only: RecordSolution, Initial_Condition_Reset
Use Variables, Only: Test, stepcount, Directory, OutputFolder, &
 & currentstep, N0, C_i0, Ndt, C_idt, del_T, &
 & EC, relTolhalf, relToldoub, Tfinal, Ntest, &
 & currenttime, C_i0O, S_CoeffO, rho_CoeffO, &
 & N0O, S_Coeff, rho_Coeff, del_Tmin
Use Kinds, Only: dp

Implicit None

 Character(120)::OutputFile
 Integer :: i

 !For sampling in EC
 Real :: SampleT
 Logical :: ECsampleSwitch =.True.
 Integer:: ECsamplei

!Setting up problem

 Call Get_Working_Directory
 Call Get_Problem_Data

!Done setting up problem

!Creating the output files for recording solution

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'n.txt'
 Open(unit=27, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c1.txt'
 Open(unit=21, file=OutputFile)

114

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c2.txt'
 Open(unit=22, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c3.txt'
 Open(unit=23, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c4.txt'
 Open(unit=24, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c5.txt'
 Open(unit=25, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c6.txt'
 Open(unit=26, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'time.txt'
 Open(unit=28, file=OutputFile)

 !Specialty Output
 OutputFile = Trim(Directory)//Trim(OutputFolder)//'n10.txt'
 Open(unit=29, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'c610.txt'
 Open(unit=30, file=OutputFile)

 OutputFile = Trim(Directory)//Trim(OutputFolder)//'time10.txt'
 Open(unit=31, file=OutputFile)

!Done creating output files

!Write initial conditions in output
Write(28,*)"0"
Write(27,*)N0
Write(21,*)C_i0(1)

115

Write(22,*)C_i0(2)
Write(23,*)C_i0(3)
Write(24,*)C_i0(4)
Write(25,*)C_i0(5)
Write(26,*)C_i0(6)

Write(29,*)N0
Write(30,*)C_i0(6)
Write(31,*)"0"
!Done writing initial conditions in output

if(EC)then
currentstep=1
currenttime=0._dp
if(ECsampleSwitch)SampleT=Tfinal/200._dp
if(ECsampleSwitch)ECsamplei=1
Do

 N0O=N0
 C_i0O=C_i0
 rho_CoeffO=rho_Coeff
 S_CoeffO=S_Coeff

 !Solve for test value
 del_T=del_T*2._dp

 Call Source_and_Reactivity_Calc
 Call SolveB
 if(Test)write(*,*)"solved B"
 Call SolveAlpharobust
 if(Test)write(*,*)"solved alpha"
 Call SolveA
 if(Test)write(*,*)"solved A"

116

 Call SolveNC
 if(Test)write(*,*)"solved NC"

 Ntest=Ndt !Ntest is the full value
 !Done solving test value

 !Solve first of 2 steps
 del_T=del_T/2._dp !Original del_T
 !currenttime=currenttime+del_T

 Call Source_and_Reactivity_Calc
 Call SolveB
 if(Test)write(*,*)"solved B"
 Call SolveAlpharobust
 if(Test)write(*,*)"solved alpha"
 Call SolveA
 if(Test)write(*,*)"solved A"
 Call SolveNC
 if(Test)write(*,*)"solved NC"

 !if(currenttime>=Tfinal)Call RecordSolution
!
! Write(28,*)currenttime
! Write(27,*)Ndt
! Write(21,*)C_idt(1)
! Write(22,*)C_idt(2)
! Write(23,*)C_idt(3)
! Write(24,*)C_idt(4)
! Write(25,*)C_idt(5)
! Write(26,*)C_idt(6)

 !if(currenttime>=Tfinal)Exit

 Call Initial_Condition_Reset

117

 !Done solving first of 2 steps

 !Solve second step

 !currenttime=currenttime+del_T

 Call Source_and_Reactivity_Calc
 Call SolveB
 if(Test)write(*,*)"solved B"
 Call SolveAlpharobust
 if(Test)write(*,*)"solved alpha"
 Call SolveA
 if(Test)write(*,*)"solved A"
 Call SolveNC
 if(Test)write(*,*)"solved NC"

! if(currenttime>=Tfinal)Call RecordSolution
!
! Write(28,*)currenttime
! Write(27,*)Ndt
! Write(21,*)C_idt(1)
! Write(22,*)C_idt(2)
! Write(23,*)C_idt(3)
! Write(24,*)C_idt(4)
! Write(25,*)C_idt(5)
! Write(26,*)C_idt(6)
!
! if(currenttime>=Tfinal)Exit

 Call Initial_Condition_Reset

 !Done Solving second step

118

 !Error control
 if((Abs(Ntest-Ndt)/Ndt)>relToldoub .AND. (Abs(Ntest-Ndt)/Ndt)<relTolhalf)then !del_T is just
right
 currenttime=currenttime+(2._dp*del_T)
 if(currenttime>=Tfinal)Call RecordSolution

 Write(28,*)currenttime
 Write(27,*)Ndt
 Write(21,*)C_idt(1)
 Write(22,*)C_idt(2)
 Write(23,*)C_idt(3)
 Write(24,*)C_idt(4)
 Write(25,*)C_idt(5)
 Write(26,*)C_idt(6)

 if(ECsampleSwitch)then
 if(currenttime>(SampleT*ECsamplei))Write(29,*)Ndt
 if(currenttime>(SampleT*ECsamplei))Write(30,*)C_idt(6)
 if(currenttime>(SampleT*ECsamplei))Write(31,*)currenttime
 if(currenttime>(SampleT*ECsamplei))ECsamplei=ECsamplei+1
 end if

 if(currenttime>=Tfinal)Exit
 end if

 if((Abs(Ntest-Ndt)/Ndt)<=relToldoub)then !del_T is too small, but good answer
 currenttime=currenttime+(2._dp*del_T)
 if(currenttime>=Tfinal)Call RecordSolution

 Write(28,*)currenttime
 Write(27,*)Ndt
 Write(21,*)C_idt(1)
 Write(22,*)C_idt(2)
 Write(23,*)C_idt(3)

119

 Write(24,*)C_idt(4)
 Write(25,*)C_idt(5)
 Write(26,*)C_idt(6)

 if(ECsampleSwitch)then
 if(currenttime>(SampleT*ECsamplei))Write(29,*)Ndt
 if(currenttime>(SampleT*ECsamplei))Write(30,*)C_idt(6)
 if(currenttime>(SampleT*ECsamplei))Write(31,*)currenttime
 if(currenttime>(SampleT*ECsamplei))ECsamplei=ECsamplei+1
 end if

 if(currenttime>=Tfinal)Exit
 del_T=del_T*2._dp
 end if

 if((Abs(Ntest-Ndt)/Ndt)>=relTolhalf)then !del_T is too large, bad answer. redo
 del_T=del_T*.5_dp
 !reset conditions
 N0=N0O
 C_i0=C_i0O
 rho_Coeff=rho_CoeffO
 S_Coeff=S_CoeffO
 end if

 if(del_T<del_Tmin)STOP "del_T min reached"

! if((Abs(Ndt-Ntest)/Ntest)<relToldoub)del_T=del_T*2._dp
! if((Abs(Ndt-Ntest)/Ntest)>relTolhalf)then
! currenttime=currenttime-(2._dp*del_T)
! del_T=del_T/2._dp
! N0=N0O
! C_i0=C_i0O
! rho_Coeff=rho_CoeffO
! S_Coeff=S_CoeffO

120

! end if
! if(del_T<del_Tmin)STOP "del_T min reached"
! !Done Error controlling

 currentstep=currentstep+1
End do

else !Error control off, regular operation

!Looping through steps

Do i=1,stepcount
 !new time step defined here
 currentstep=i

 Call Source_and_Reactivity_Calc
 Call SolveB
 if(Test)write(*,*)"solved B"
 Call SolveAlpharobust
 if(Test)write(*,*)"solved alpha"
 Call SolveA
 if(Test)write(*,*)"solved A"
 Call SolveNC
 if(Test)write(*,*)"solved NC"
 if(i .eq. stepcount)Call RecordSolution

 Write(28,*)currentstep*del_T
 Write(27,*)Ndt
 Write(21,*)C_idt(1)
 Write(22,*)C_idt(2)
 Write(23,*)C_idt(3)
 Write(24,*)C_idt(4)
 Write(25,*)C_idt(5)
 Write(26,*)C_idt(6)

121

 if(MOD(currentstep*10,stepcount)==0)Write(29,*)Ndt
 if(MOD(currentstep*10,stepcount)==0)Write(30,*)C_idt(6)
 if(MOD(currentstep*10,stepcount)==0)Write(31,*)currentstep*del_T

 !need previous time step length to go in here for correct condition reset

 Call Initial_Condition_Reset

End Do

End if
!Done looping

End Program RPK

VIII.B.2 Variables

Module Variables
 !Global Variables
 Use Kinds, Only: dp
 Implicit None

 !************************************
 !create logicals for internal tests or break up modules for testing individual sections
 !or both?
 !************************************
 Logical :: Test = .False.
 Logical :: Sinrho
 Logical :: EC !Error Control

122

 !Global Characters
 Character(len=120) :: directory !directory of the program
 Character(len=60) :: OutputFolder='\Output\'
 Character(len=60) :: InputFolder='\Input\'
 Character(len=60) :: GroupData='GroupInfo.txt'
 Character(len=60) :: ProbData='ProbData.txt' !inital problem data (neutrons, time, etc)
 Character(len=60) :: PrecursorData='PrecursorData.txt'
 Character(len=60) :: SourceData='SourceData.txt'
 Character(len=60) :: RhoData='RhoData.txt'
 Character(len=60) :: ErrorControl='ErrorControl.txt'

 !Global Integers
 Integer :: n_simpsons !Interval Number for Simpson's Rule (must be even)
 Integer :: b_integral !subsections for double B0 and B1 integrals
 Integer :: TotalGroups !Number of delayed neutron groups
 Integer :: P_S !Order of Source Polynomial (and Sp)
 Integer :: P_rho !Order of Reactivity Polynomial (and dkp)
 Integer :: stepcount !Number of timesteps
 Integer :: currentstep

 !Allocatable global reals
 Real(dp), Allocatable :: beta_i(:) !Neutron group birth fraction
 Real(dp), Allocatable :: lambda_i(:)!Neutron Group decay constant
 Real(dp), Allocatable :: C_i0(:) !Inital Precursor amount
 Real(dp), Allocatable :: C_idt(:) !Final Precursor amount
 Real(dp), Allocatable :: S_coeff(:) !Coefficients for source term
 Real(dp), Allocatable :: rho_coeff(:)!Coefficients for reactivity
 Real(dp), Allocatable :: Sp_coeff(:)!Coefficients for source/dt
 Real(dp), Allocatable :: dkp_coeff(:)!Coefficients for d_kappa/dt
 Real(dp), Allocatable :: SourceMom(:)!Moments used in source term
 Real(dp), Allocatable :: rho_sin(:) !rho constants for sin function

123

 !Global Reals
 Real(dp) :: N0 !Initial Neutron Concentration
 Real(dp) :: Ndt !Final Neutron Concentration
 Real(dp) :: Ndtapprox !Approximate Final Neutron Concentration
 Real(dp) :: del_T !Timestep of interest
 Real(dp) :: N_Lifetime !Reproductive lifetime of neutron
 Real(dp) :: beta_Tot !Sum of beta_i (delayed neutron frac)
 Real(dp) :: rho_bar !average reactivity in time scale of interest
 Real(dp) :: kappa_bar
 Real(dp) :: B0 !B0 used for solving a and alpha
 Real(dp) :: B1 !B1 used for solving a and alpha
 Real(dp) :: a !outer coefficient for neutron approximation
 Real(dp) :: alpha !exponential coefficient for neutron approx
 Real(dp) :: kbdt !kappa bar times delta t

 !Global Reals used in error control

 Real(dp) :: Tfinal !Final Time
 Real(dp) :: del_Tmin !Minimum size for del_T
 Real(dp) :: relTolhalf !Threshold for changing step size cut in half
 Real(dp) :: relToldoub !Threshold for changing step size double
 Real(dp) :: Ntest !Neutron Concentration test variable
 Real(dp) :: currenttime !Current time
 Real(dp) :: N0O !Original N

 Real(dp), Allocatable :: C_i0O(:) !Original C_i0
 Real(dp), Allocatable :: S_coeffO(:) !Original Coefficients for source term
 Real(dp), Allocatable :: rho_coeffO(:) !Original Coefficients for reactivity

End Module Variables

124

VIII.B.3 User Data

Module User_Data
!Handles program set up and variable input
 Implicit None
 Private
 Public Get_Working_Directory, & !Done
 & Get_Problem_Data, & !N(0), C_i(0), S(0), rho(0), del_T, betai, Ci
 Source_and_Reactivity_Calc

 Contains

Subroutine Get_Working_Directory
 Use Variables, Only: Directory
 Implicit None
 Integer:: errortemp
 Character(len=1) check

 Open(Unit=20, File='Directory.txt', IOSTAT=errortemp)
 If (errortemp .ne. 0) Then
 !File does not exist, get directory
 Write(*,*) 'Please specify directory.'
 Read(*,*) directory
 Else
 !Check to see if directory is valid
 Read(20,*,IOSTAT=errortemp) directory
 If(errortemp==0) Then
 Write(*,*) 'Last directory used was:',directory
 Do

125

 Write(*,*) 'Is this directory still valid? (Y,N)'
 Read(*,*) check
 Select Case (check)
 Case ('Y','y')
 EXIT
 Case ('N','n')
 Write(*,*) 'Please specify directory.'
 Read(*,*) directory
 REWIND(20)
 Write(20,*) directory
 EXIT
 Case Default
 Write (*,*) "Please choose 'Y' or 'N' only."
 CYCLE
 End Select
 End Do
 Else
 Write(*,*) 'Please specify directory.'
 Read(*,*) directory
 Write(20,*) directory
 End If
 End If
 Close(20)
End Subroutine Get_Working_Directory

Subroutine Get_Problem_Data
 Use Kinds, Only: dp
 Use Variables, Only: InputFolder, Directory, ProbData, &
 & TotalGroups, C_i0, PrecursorData, &
 & N0, del_T, N_Lifetime, SourceData, &
 & RhoData, P_S, P_rho, S_Coeff, &
 & rho_Coeff, GroupData, beta_i, lambda_i, &
 & beta_Tot, rho_bar, n_simpsons, &

126

 & kappa_bar, dkp_coeff, Sp_coeff, C_idt, &
 & SourceMom, b_integral, &
 & stepcount, currentstep, rho_sin, sinrho, &
 & ErrorControl, EC, Tfinal, relTolhalf, relToldoub, &
 & C_i0O, S_CoeffO, rho_CoeffO, del_Tmin

 !Use Helper, Only: SimpsonsInt
 Use RPKFunctions, Only: rhoFunc, SolveRhoBar

 Implicit none

 Character(120)::WorkingFile
 Integer::i

 !Gather problem Data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//ProbData

 Open(20,file=WorkingFile)
 Read(20,*)N0 !Initial Neutron Conc
 Read(20,*)del_T !Timestep size
 Read(20,*)stepcount !Number of timesteps
! Read(20,*)N_Lifetime !Neutron Reproductive Life Time
! Read(20,*)n_simpsons
! Read(20,*)b_integral
 Close(20)

 !Gather Group Data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//GroupData

 Open(20, file=WorkingFile)
 Read(20,*)TotalGroups
 Allocate(beta_i(TotalGroups))
 Allocate(lambda_i(TotalGroups))

127

 Do i=1,TotalGroups
 Read(20,*)beta_i(i),lambda_i(i)
 End Do

 beta_Tot=sum(beta_i)

 !Calculate NLifetime instead of using a preset amount (optional)
 N_Lifetime = 12.7_dp*beta_Tot + 3._dp*(1._dp - beta_Tot)*(10._dp)**-5;
 N_Lifetime = 3._dp*(10._dp)**-5;

 Close(20)

 !Gather Precursor inital data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//PrecursorData

 Open(20,file=WorkingFile)
 Allocate(C_i0(TotalGroups))
 Allocate(C_i0O(TotalGroups))
 Allocate(C_idt(TotalGroups))

 Do i=1,TotalGroups
 Read(20,*)C_i0(i)
 End Do

 Close(20)

 !Gather Source Data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//SourceData

 Open(20,file=WorkingFile)
 Read(20,*)P_S
 Allocate(S_Coeff(0:P_S))
 Allocate(S_CoeffO(0:P_S))
 Allocate(SourceMom(0:P_S))

128

 Do i=0,P_S
 Read(20,*)S_Coeff(i)
 End Do
 Close(20)

 !Gather Rho Data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//RhoData

 Open(20,file=WorkingFile)
 Read(20,*)P_rho

 If(P_rho==-1)then
 Sinrho = .True.
 Allocate(rho_sin(1:4))
 Do i=1,4
 Read(20,*)rho_sin(i)
 End Do
 P_rho=rho_sin(4)
 Allocate(rho_Coeff(0:P_rho))
 Allocate(rho_CoeffO(0:P_rho))
 Else
 Sinrho= .False.
 Allocate(rho_Coeff(0:P_rho))
 Allocate(rho_CoeffO(0:P_rho))
 Do i=0,P_rho
 Read(20,*)rho_Coeff(i)
 End Do
 End If

 Close(20)

 currentstep=0

129

 !Gather EC Data
 WorkingFile = Trim(Directory)//Trim(InputFolder)//ErrorControl

 Open(20,file=WorkingFile)

 Read(20,*)EC

 if(EC)then
 Read(20,*)del_T
 Read(20,*)Tfinal
 Read(20,*)relTolhalf
 Read(20,*)relToldoub
 Read(20,*)del_Tmin
 End if

End Subroutine Get_Problem_Data

Subroutine Source_and_Reactivity_Calc

 Use Kinds, Only: dp
 Use Variables, Only: del_T, N_Lifetime, P_S, P_rho, &
 & rho_Coeff, S_Coeff, &
 & beta_Tot, rho_bar, &
 & kappa_bar, dkp_coeff, Sp_coeff, &
 & stepcount, currentstep, Sinrho, &
 & rho_sin
 Use Sinpoly, Only: SinReactivity

 !Use Helper, Only: SimpsonsInt
 Use RPKFunctions, Only: SolveRhoBar

 Implicit none

130

 Character(120):: WorkingFile
 Integer:: i
 Real(dp):: currenttime

 currenttime= Real(currentstep,dp)*del_T

 If(Sinrho)then
 Call SinReactivity (rho_sin(1),rho_sin(2),rho_sin(3), 0._dp, del_T, P_rho)
 End if

 !Solve for rho_bar
 !rho_bar=SimpsonsInt(rhoFunc,n_simpsons,0._dp,del_T)/del_T
 rho_bar=SolveRhoBar(0._dp,del_T)

 !Solve for kappa_bar
 kappa_bar=(beta_tot-rho_bar)/N_lifetime

 !Solve for d_kappa Coeff and Sp coeff
 if(.not. allocated(dkp_Coeff))Allocate(dkp_Coeff(0:P_rho))
 if(.not. allocated(sp_Coeff))Allocate(sp_Coeff(0:P_S))

 dkp_Coeff=rho_coeff

 dkp_Coeff(0)=dkp_Coeff(0)-rho_bar

 Do i=0,P_rho
 dkp_Coeff(i)=dkp_Coeff(i)/N_Lifetime
 End Do

 sp_Coeff=S_Coeff

 Do i=1,P_rho
 dkp_Coeff=dkp_Coeff*(del_T**(Real(i,dp)))
 End Do

131

 Do i=1,P_S
 sp_Coeff=sp_Coeff*(del_T**(Real(i,dp)))
 End Do

 !Equilibrium condition for given N(0)

! N0=1.0E8_dp
! Write(*,*)"C1: ",beta_i(1)*N0/(lambda_i(1)*N_Lifetime)
! Write(*,*)"C2: ",beta_i(2)*N0/(lambda_i(2)*N_Lifetime)
! Write(*,*)"C3: ",beta_i(3)*N0/(lambda_i(3)*N_Lifetime)
! Write(*,*)"C4: ",beta_i(4)*N0/(lambda_i(4)*N_Lifetime)
! Write(*,*)"C5: ",beta_i(5)*N0/(lambda_i(5)*N_Lifetime)
! Write(*,*)"C6: ",beta_i(6)*N0/(lambda_i(6)*N_Lifetime)

 !Done

End Subroutine Source_and_Reactivity_Calc

End Module User_Data

132

VIII.B.4 Solution Steps

Module SolutionSteps
!Handles program major steps towards Solution
 Implicit None
 Private
 Public SolveB

 Contains

!Subroutine SourceMoments !Solves for Moments for Source Term
! Use Kinds, Only: dp
! Use Variables, Only: P_S, SourceMom, kappa_bar, del_T
! Use M0Functions, Only: M0
! Use Helper, Only: nStart
! Implicit None
! Integer:: StartingOrder, i, changeNum
! Real(dp):: x, CurrentMoment
!
! x=kappa_bar*del_T
!
! SourceMom(0)=M0(x)
!
! i=1
!
! Do
! !Forwards recurrence
! if(i>P_S)Exit
! if(i>x)Exit
! SourceMom(i)= (1._dp-Real(i,dp)*SourceMom(i-1))/x
! i=i+1
!
! End Do

133

!
! changeNum=i
!
! if(P_S > x)then
! !Solve for starting order of moment for backwards recurrence
! StartingOrder = nStart(P_S,x)
!
! !Solve for Moment at StartingOrder M_StartingOrder(x)
!
! CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp))
!
! Do i= StartingOrder-1, P_S+1, -1
!
! CurrentMoment = (1._dp-x*CurrentMoment)/((Real(i,dp)+1._dp)
!
! End Do
!
! SourceMom(P_S) = (1._dp-x*CurrentMoment)/((Real(i,dp)+1._dp)
!
! Do i = P_S-1, changeNum, -1
!
! SourceMom(i) = (1._dp-x*SourceMom(i+1))/((Real(i,dp)+1._dp)
!
! End Do
!
! End if
! !**
! !Put all these goodies into M0functions to be used for any order anytime?
! !**
!
!End Subroutine

Subroutine SolveB !Solves for B1 and B0

134

 Use Kinds, Only: dp
 Use Variables, Only: N0, kappa_bar, del_t, c_i0, lambda_i, sp_coeff, &
 & B0, B1, TotalGroups,kbdt
 Use RPKFunctions, Only: SFunc
 Use MomentFunctions
 Implicit None
 Integer::i
 Real(dp),Allocatable::temp1(:),temp2(:),temp3(:)

 Allocate(temp1(1))
 Allocate(temp2(2))
 Allocate(temp3(3))

 kbdt = kappa_bar*del_t
 temp1(1)=kbdt

 !Solve for B0

 B0=N0*M(0,1,temp1)

 temp2(1)=kbdt

 Do i=1,TotalGroups
 temp2(2)=lambda_i(i)*del_t
 B0 = B0 + c_i0(i)*lambda_i(i)*del_t*M(0,2,temp2)
 End do

 Do i=0,P_S
 B0=B0 + ((sp_coeff*del_t*M(i+1,1,temp1))/Real((i+1),dp))
 End Do

 !Solve for B1

 B1=N0*M(1,1,temp1)

135

 Do i=1,TotalGroups
 temp2(2)=lambda_i(i)*del_t
 B1 = B1 + c_i0(i)*lambda_i(i)*del_t*M(1,2,temp2)
 End do

 Do i=0,P_S
 B1=B1 + ((sp_coeff*del_t*M(i+2,1,temp1))/(Real((i+2),dp)*Real((i+1),dp)))
 End do

End Subroutine SolveB

!Subroutine SolveB !Solves for B1 and B0
! Use Kinds, Only: dp
! Use Variables, Only: N0, kappa_bar, del_t, c_i0,, lambda_i, S_coeff, &
! & b_integral, B0, B1, TotalGroups
! Use RPKFunctions, Only: SFunc
! Use MomentFunctions
! Implicit None
! Integer::i
! Real(dp), Allocatable :: innerint(:), outerint(:), tempint(:)
! Real(dp):: stepsize, temptime
! Real(dp), Allocatable :: temp1(:),temp2(:),temp3(:)
!
! !***
! !Solve the double integral using trapizodal rule (for B1), should this be done with exp
moment func?
! !***
!
! Allocate(innerint(0:b_integral))
! Allocate(outerint(0:b_integral))

136

! Allocate(tempint(0:b_integral))
!
! innerint(0)=0
! outerint(0)=0
! tempint(0)=0
!
! stepsize = del_t/b_integral
!
! !Need to fix the SFunc function... include source moments whoops....
!
! Do i=1, b_integral
! temptime = Real(i,dp)*stepsize
! tempint(i) = SFunc(temptime)*exp(kappa_bar*temptime)
! innerint(i)=innerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp
! End Do
!
! Do i=1,b_integral
! temptime = Real(i,dp)*stepsize
! tempint(i)=innerint(i)*exp(-1._dp*kappa_bar*temptime)
! tempint(i)=tempint(i)*(1._dp-(temptime/del_t))/del_t
! outerint(i)=outerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp
! End Do
!
! !Solve for B1
!
! B1=outerint(b_integral) + N0*M(1,1,(kappa_bar*del_t))
!
! Allocate(temp(2))
!
! temp(1)=kappa_bar*del_t
!
! Do i=1,TotalGroups
! temp(2)=lambda_i(i)*del_t
! B1=B1 + c_i0(i)*lambda_i(i)*del_t*M(1,2,temp)

137

! End Do
!
! !Solve the double integral using trapizodal rule (for B0)
!
! Do i=1,b_integral
! temptime = Real(i,dp)*stepsize
! tempint(i)=innerint(i)*exp(-1._dp*kappa_bar*temptime)/del_t
! outerint(i)=outerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp
! End Do
!
! !Solve for B0
!
! B0=outerint(b_integral) + N0*M(0,1,(kappa_bar*del_t))
!
!
! Do i=1,TotalGroups
! temp(2)=lambda_i(i)*del_t
! B0=B0 + c_i0(i)*lambda_i(i)*del_t*M(0,2,temp)
! End Do
!
!End Subroutine

Subroutine SolveAlphaA !Solves for alpha and a
 Use Kinds, Only: dp
 Use Variables, Only: a, alpha, del_t, B0
 Use RPKFunctions, Only: fadtFunc
 Use Helper, Only: NewtonsMet
 Implicit None
 !Note: Tol and guess are arbitraily selected, need better guess (bisect?)
 alpha = NewtonsMet(fadtFunc,1000,1._dp,.0001_dp,.01_dp)/del_t

 a = B0/A0Func(alpha*del_t)

End Subroutine

138

Subroutine SolveAlphaAExact
 Use Kinds, Only: dp
 Use RPKFunctions, Only: fadtFunc, dA1func, dA0func
 Use Variables, Only: del_t, P_rho, dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime ,a, alpha, &
 & B0, B1
 Implicit None
 Real(dp)::current,absTol,slope,next, dA0, dA1
 Integer::maxiter, i
 !Note: Tol and guess are arbitraily selected, need better guess (bisect?)

 current=1._dp !initial guess
 maxiter=1000 !max num of iterations
 absTol=.0001_dp !absolute Tol.

 !**
 !is this solution wrong? check derivatives
 !perhaps above method would be more reliable
 !**

 Do i=1,maxiter
 slope = B0*dA1func(current) - B1*dA0func(current)
 next=current-(fadtFunc(current)/slope)
 if(abs(fadtFunc(next)<absTol)alpha=next
 if(abs(fadtFunc(next)<absTol)Exit
 current=next
 if(i==maxiter)STOP "max iterations reached on newton's method"
 End Do

End Subroutine

139

Subroutine SolveAlphaAFalsePosition

!***
!how do I determine 2 good starting points?
!***

 Use Kinds, Only: dp
 Use RPKFunctions, Only: fadtFunc, dA1func, dA0func
 Use Variables, Only: del_t, P_rho, dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime ,a, alpha, &
 & B0, B1
 Implicit None
 Real(dp)::current,absTol,pos1,pos2, slope, temp
 Integer::maxiter, i

 current=1._dp !initial guess
 maxiter=1000 !max num of iterations
 absTol=.0001_dp !absolute Tol.

 !finding 2 positions hopefully

 if(abs(fadtFunc(1))>abs(fadtFunc(-1)))then
 pos1=1
 else
 pos1=-1
 end if

 if(fadtFunc(pos1)>0)then
 if(fadtFunc(pos1-1)<fadtFunc(pos1))then
 Do i=1, maxiter
 if (fadtFunc(pos1-i)<0)then
 pos2=pos1-i
 exit
 end if

140

 end do
 else
 Do i=1, maxiter
 if (fadtFunc(pos1+i)<0)then
 pos2=pos1+i
 exit
 end if
 end do
 end if
 else
 if(fadtFunc(pos1-1)>fadtFunc(pos1))then
 Do i=1, maxiter
 if (fadtFunc(pos1-i)>0)then
 pos2=pos1-i
 exit
 end if
 end do
 else
 Do i=1, maxiter
 if (fadtFunc(pos1+i)>0)then
 pos2=pos1+i
 exit
 end if
 end do
 end if
 end if

 !can be rewritten to be wayyyyy more efficient

 do i=1,maxiter

 slope = (fadtFunc(pos2)-fadtFunc(pos1))/(pos2-pos1)
 temp=((-1*fadtFunc(pos1))/slope)+pos1

141

 if(abs(fadtFunc(temp))<absTol)then
 alpha=temp
 exit
 end if

 if(fadtFunc(temp)>0)then
 if(fadtFunc(pos1)>0)then
 pos1=temp
 else
 pos2=temp
 end if
 else
 if(fadtFunc(pos1)<0)then
 pos1=temp
 else
 pos2=temp
 end if
 end if

 end do

End Subroutine

Subroutine SolveAlpharobust
 Use Kinds, Only: dp
 Use RPKFunctions, Only: fadtFunc
 Use Helper, Only: BisectionStarter
 Use Variables, Only: N_Lifetime, alpha, del_t
 Use Rootsolvers, Only: Secant_Bisection

 Implicit None
 Real(dp)::aa,bb !bracketing points
 Integer::errint
 Real(dp)::alphadt

142

 Logical::rootWorked

 !Find two starting points
 Call BisectionStarter(f=fadtFunc,a=aa,b=bb,smalliter=N_Lifetime,maxIter=100)
 !if(errint==2)STOP "max iterations during bracket finding"

 rootWorked=Secant_Bisection(x=alphadt, f=fadtFunc, a=aa, b=bb)
 if(rootWorked)then
 alpha=alphadt/del_t
 else
 STOP"Failed to find root"
 end if

End Subroutine SolveAlpharobust

Subroutine SolveA
 Use Variables, Only: a, alpha, del_t, B0
 Use RPKFunctions, Only: A0Func
 Use Kinds
 Implicit None

 a = B0/A0Func(alpha*del_t)

End Subroutine SolveA

Subroutine SolveNC !Solves for neutron and precursor amounts at dt
 Use Kinds, Only: dp
 Use MomentFunctions
 Use Variables, Only: Ndt, Ndtapprox, C_idt, C_i0, lambda_i, del_t, &
 & a, beta_i, N_Lifetime, alpha,, N0, kappa_bar, &

143

 & P_S, sp_Coeff, TotalGroups, P_rho, dkp_coeff
 Implicit None
 Integer::i
 Real(dp)::temp
 Real(dp)::temp1(1),temp2(2)

 !Solve for N(dt) approximation

 Ndtapprox= a*exp(alpha*del_t)

 !Solve for Precursor groups

 Do i=1, TotalGroups
 C_idt(i) = c_i0(i)*exp(-1._dp*lambda(i)*del_t)
 temp1(1)=alpha*del_t+lambda_i(i)*del_t
 C_idt(i)=C_idt(i) +a*beta_i(i)*del_t*exp(alpha*del_t)*M(0,1,temp1)/N_lifetime
 End Do

 !Solve for N(dt)
 Allocate(tempM(2))
 temp1(1)=kappa_bar*del_t
 Ndt=N0*exp(-1._dp*kappa_bar*del_t)

 Do i=0, P_S
 Ndt=Ndt+ sp_coeff(i)*del_t*M(i,1,temp1)
 End Do

 Do i= 1, TotalGroups
 temp2(1)=kappa_bar*del_t-lambda_i(i)*del_t
 temp2(2)=-1._dp*alpha*del_t-lambda_i(i)*del_t
 temp=a*beta_i(i)*del_t*M(0,2,tempM)/N_lifetime
 temp1(1)=kappa_bar*del_t-lambda_i(i)*del_t
 temp=temp+c_i0(i)*M(0,1,temp1)

144

 Ndt=Ndt+ (temp*lambda_i(i)*del_t*exp(-1._dp*lambda_i(i)*del_t)))
 End Do

 temp1(1)=kappa_bar*del_t+alpha*del_t

 Do i=0, P_rho
 Ndt=Ndt+ a*del_t*dkp_Coeff(i)*exp(alpha*del_t)*M(i,1,temp1)
 End Do

End Subroutine SolveNC

End Module SolutionSteps

VIII.B.5 Finalize

Module Finalize
Implicit None

 Private
 Public RecordSolution, Initial_Condition_Reset

Contains

Subroutine RecordSolution
Use Variables, Only: Ndt, Ndtapprox, C_idt, TotalGroups, directory, OutputFolder, alpha, a
Implicit None
Character(120)::WorkingFile
Integer::i

145

WorkingFile = Trim(Directory)//Trim(OutputFolder)//'Output.txt'
Open(unit=20, file=WorkingFile)

Write(20,*)"alpha is: "
Write(20,*)alpha
Write(20,*)"a is: "
Write(20,*)a

Write(20,*)"Approximate N at dt:"
Write(20,*)Ndtapprox

Write(20,*)"N at dt:"
Write(20,*)Ndt

Write(20,*)"Precursor Groups (starting at 1):"

Do i=1,TotalGroups
 Write(20,*)C_idt(i)
End Do

End Subroutine RecordSolution

Subroutine Initial_Condition_Reset
 Use Variables, Only: Ndt,C_idt,N0,C_i0,P_rho, P_S, S_Coeff, rho_coeff,del_T,Sinrho, rho_sin
 Use Kinds, Only: dp
 Use Helper, Only: choose
 Implicit None
 Real(dp)::newrho(0:P_rho),newS(0:P_S)
 Integer::i,j

 N0=Ndt
 C_i0=C_idt

146

 newrho=0._dp
 newS=0._dp

 !shift rho and source (needs del_T of previous)
 if(Sinrho)then
 rho_sin(2) = rho_sin(2)+ rho_sin(3)*del_T
 else
 Do i=0,P_rho
 Do j=i,P_rho
 newrho(i)=newrho(i)+rho_coeff(j)*(del_T**(j-i))*Real(choose(j,i),dp)
 End do
 End do
 end if

 Do i=0,P_S
 Do j=i,P_S
 newS(i)=newS(i)+S_coeff(j)*(del_T**(j-i))*Real(choose(j,i),dp)
 End do
 End do

 rho_coeff=newrho
 S_coeff=newS

End Subroutine Initial_Condition_Reset

End Module Finalize

147

VIII.B.6 Moment Functions

Module M0_Functions
 Use Kinds, Only: dp
 Implicit None

 Interface M0
 Module Procedure M0Scalar
 Module Procedure M0Vector
 End Interface M0

 Private
 Public:: M0, RunM0Tests, M

 Real(dp), Parameter:: Large = 39._dp
 Real(dp), Parameter:: Small = 0.6931471805599453_dp ! Log[2]

Contains

Function M0Scalar(x) Result(f)
 ! Calculates the order 0 rank 1
 ! exponential moment function M0(x)
 ! using a variety of algorithms such that
 ! error is always negligible:
 ! less than or about 1 bit in Real(dp)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x
 Real(dp):: ax, m
 Integer:: j

148

 ax = Abs(x)
 If (ax > Large) then
 !Exp[-39.] < 1.16E-17
 m = 1._dp / x
 Else if (ax < Small) then
 ! Maclaurin Series, equivalent to
 ! Backward recurrence from M15(x)
 ! to M0(x) where
 ! M15(x) = 0.6127 (+/-0.012)
 ! for 0 <= x <= Log[2.]
 ! so that |error in M0| < 4.E-18
 m = 0.06127_dp
 Do j = 15, 1, -1
 m = (1._dp - ax * m) / Real(j,dp)
 End do
 Else
 ! Loss of precision <= 0.4 digit (about 1 bit)
 ! for x >= Log[2.]
 m = (1._dp - Exp(-x)) / x
 End if
 If (x < 0._dp) then
 f = m * Exp(ax)
 Else
 f = m
 End if
End Function M0Scalar

!Probably move these next couple functions since they're not M0

!Function M(order,k,x) result (f)
! Use Kinds, Only: dp
! Use Sorters, Only: Sort, ReverseOrder
! Use Helper, Only: nStart
! Implicit None

149

! Real(dp):: f
! Real(dp),intent(in):: x(1:k)
! Integer,intent(in)::k
! Integer,intent(in)::order
! Real(dp)::y(1:k)
! Integer::Startingorder, i
! Real(dp)::CurrentMoment
!
!
! if(order==0 .and. k>1)then
! f=M0Vector(x,k)
! return
! else if(order==0 .and. k==1)then
! f=M0(x(1))
! return
! else if(k<1)then
! Stop "Error in calling M0(x,k): k < 1 "
! else if(k>1 .and. order>1)then
! !Need some help for k>1 order>1 case
! !somehow have to reduce k to 1... not sure if I can just use decay chain
! !conditioning??
! y=x
! Call Sort(y, k)
! Call ReverseOrder(y, k)
! f = MVectorHelper(order,y, k)
!
!
! else !k==1 order>1
!
! if(order>x(1))then !backwards recurrence
! Startingorder= nstart(order,x(1))
! CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp))
!
! Do i= StartingOrder-1, order, -1

150

!
! CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp)
!
! End Do
!
! f=CurrentMoment
!
!
! else !forward recurrence
!
! CurrentMoment = M0(x(1))
!
! Do i=1,order
! CurrentMoment = (1._dp-Real(i,dp)*CurrentMoment)/x(1)
! End do
!
! end if
!
! end if
!
!End Function
!
!Recursive Function MVectorHelper(order, x, k) Result(f)
! Use Kinds, Only: dp
! Use Helper, Only: nStart
! Implicit None
! Real(dp):: f
! Real(dp), Intent(In):: x(1:k) ! argument
! Integer, Intent(In) :: k ! rank
! Integer,intent(in)::order
! Integer::Startingorder, i
! Real(dp)::CurrentMoment
!
! if(order==0 .and. k>1)then

151

! f=M0Vector(x,k)
! return
! else if(order==0 .and. k==1)then
! f=M0(x(1))
! return
! else if(k<1)then
! Stop "Error in calling M0(x,k): k < 1 "
! else if(k>1 .and. order>1)then
!
! !Will break for small x
! f=(MVectorhelper(order,x(2:k),k-1)-(order*MVectorhelper(order-1,x,k)))/x(1)
!
! else !k==1 order>1
!
! if(order>x(1))then !backwards recurrence
! Startingorder= nstart(order,x(1))
! CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp))
!
! Do i= StartingOrder-1, order, -1
!
! CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp)
!
! End Do
!
! f=CurrentMoment
!
!
! else !forward recurrence
!
! CurrentMoment = M0(x(1))
!
! Do i=1,order
! CurrentMoment = (1._dp-Real(i,dp)*CurrentMoment)/x(1)
! End do

152

!
! end if
!
! end if
!
!
!End Function MVectorHelper

Function M(order, k, x) Result (f)
 ! Calculates the order "order" rank "k"
 ! exponential moment function
 Use Sorters, Only: Sort, ReverseOrder
 Use Kinds, Only: dp
 Use Helper, Only: nStart
 Implicit None
 Real(dp)::f
 Real(dp), Intent(In)::x(1:k)
 Integer, Intent(In) :: k
 Integer, Intent(In) :: order
 Real(dp):: y(1:k)
 Integer::Startingorder, i
 Real(dp)::CurrentMoment

 if (order==0) then
 f = M0Vector(x,k)
 Return
 else if (k<1)
 Stop "Error in calling moment (k < 1)"
 else if (k==1 .AND. order>x(1)) then !backwards recurrence
 Startingorder= nstart(order,x(1))
 CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp))

 Do i= StartingOrder-1, order, -1

153

 CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp)

 End Do

 f=CurrentMoment

 else if (k==1 .AND. order<=x(1)) then
 CurrentMoment = M0(x(1))

 Do i=1,order
 CurrentMoment = (1._dp-Real(i,dp)*CurrentMoment)/x(1)
 End do

 f= CurrentMoment

 else !k>1
 y = x
 Call Sort(y,k)
 Call ReverseOrder(y,k) !decreasing order, x(1) is largest
 f= MHelp(order, k, y)

 end if
End Function M

Recursive Function MHelp(order, x, k) result (f)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x(1:k) ! argument
 Integer, Intent(In) :: k ! rank
 Integer, Intent(In) :: order
 Real(dp), Parameter:: closeTol = 0.5_dp
 Real(dp):: smallest, largest, kminus1
 smallest = x(k)

154

 largest = x(1)

 if (order==0) then
 f = M0Vector(x,k)
 Return
 else if (k<1)
 Stop "Error in calling moment (k < 1)"
 else if (k==1 .AND. order>x(1)) then !backwards recurrence
 Startingorder= nstart(order,x(1))
 CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp))

 Do i= StartingOrder-1, order, -1

 CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp)

 End Do

 f=CurrentMoment

 else if (k==1 .AND. order<=x(1)) then
 CurrentMoment = M0(x(1))

 Do i=1,order
 CurrentMoment = (1._dp-Real(i,dp)*CurrentMoment)/x(1)
 End do

 f= CurrentMoment

 else if (largest>small) then !k>1, n>0, there is one somewhat large positive argument
 CurrentMoment= Real(order,dp)*MHelp(order-1,x,k)
 CurrentMoment = MHelp(order, x(2:k),k-1)-CurrentMoment
 f= CurrentMoment/x(1)

 else if (abs(smallest)>small !k>1,n>0, there is one somewhat large negative argument

155

 CurrentMoment= Real(order,dp)*MHelp(order-1,x,k)
 kminus1 = k - 1
 CurrentMoment = MHelp(order, x(1:kminus1),k-1)-CurrentMoment
 f=CurrentMoment/x(k)

 else !k>1, n>0 all arguments are between -smallest and smallest (.693)
 f = MMaclaurin(order,x,k)
 end if

End function MHelp

Function MMaclaurin(order,x,k) Result(f)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x(1:k) ! argument
 Integer, Intent(In) :: k ! rank
 Integer, Intent(In) :: order
 Real(dp), Parameter:: relTol = 1.E-17_dp
 Real(dp):: d, p(1:k), s, t
 Integer:: j,kordersum, orderplus1

 kordersum= k + order
 orderplus1 = order + 1

 d = 1._dp
 p = 1._dp
 Do j = orderplus1, kordersum
 d = d * Real(j,dp)
 End do

 s = 1._dp / d
 j = kordersum

156

 Do
 j = j + 1
 d = -d * Real(j,dp)
 p = p * x
 t = RunningSum(p) / d
 s = s + t
 If (Abs(t) <= relTol * s) Exit
 End do
 f = s
End Function MMaclaurin

Function M0Vector(x, k) Result(f)
 ! Calculates the order 0 rank k
 ! exponential moment function M0(x(1:k))
 ! M0 is an orderless function.
 ! To facilitate minimizing loss of precision,
 ! this function sorts a copy of the
 ! argument vector into increasing order,
 ! reverses it to decreasing order,
 ! and calls a recursive helper
 ! that evaluates M0 without further sorting.
 Use Sorters, Only: Sort, ReverseOrder
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x(1:k) ! argument
 Integer, Intent(In) :: k ! rank
 Real(dp):: y(1:k)
 If (k==1) then
 ! call M directly to avoid needless overhead
 f = M0(x(1))
 Return
 Else if (k < 1) then

157

 Stop "Error in calling M0(x,k): k < 1 "
 Else
 ! Use a copy of x so that x can be intent(In)
 ! i.e., eliminate side effect of changing x
 y = x
 Call Sort(y, k)
 Call ReverseOrder(y, k)
 f = M0VectorHelper(y, k)
 End if
End Function M0Vector

Recursive Function M0VectorHelper(x, k) Result(f)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x(1:k) ! argument
 Integer, Intent(In) :: k ! rank
 Real(dp), Parameter:: closeTol = 0.5_dp
 Real(dp):: smallest, largest
 smallest = x(k)
 largest = x(1)
 If (k==1) then
 ! Special case to which larger cases are reduced
 f = m0(x(1))
 Else if (smallest >= Large) then
 ! all the arguments > large
 f = 1._dp / Product(x)
 Else if (All(Abs(x) < Small)) then
 f = M0Maclaurin(x, k)
 Else if (Abs(largest-smallest) <= &
 & closeTol * (Abs(smallest) + Abs(largest))/2._dp) then
 ! All close together
 ! Use decay chain function recurrence
 f = (M0VectorHelper(x(2:k),k-1) - &

158

 & Exp(-x(k))*M0VectorHelper(x(1:k-1)-x(k),k-1)) / x(1)
! @@@ add check to use x(1) or X(K) BASED ON LARGER IN MAGNITUDE
 Else
 ! use recurrence on rank
 f = (M0VectorHelper(x(2:k),k-1) - &
 M0VectorHelper(x(1:k-1),k-1))&
 & / (x(1) - x(k))
 End if
End Function M0VectorHelper

Function M0Maclaurin(x, k) Result(f)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x(1:k) ! argument
 Integer, Intent(In) :: k ! rank
 Real(dp), Parameter:: relTol = 1.E-17_dp
 Real(dp):: d, p(1:k), s, t
 Integer:: j
 d = 1._dp
 p = 1._dp
 Do j = 2, k
 d = d * Real(j,dp)
 End do
 s = 1._dp / d
 j = k
 Do
 j = j + 1
 d = -d / Real(j,dp)
 p = p * x
 t = RunningSum(p) / d
 s = s + t
 If (Abs(t) <= relTol * s) Exit
 End do

159

 f = s
End Function M0Maclaurin

Function RunningSum(x)
 ! The result value is the same as
 ! that of the intrinsic Sum function,
 ! but RunningSum differs by its side effect:
 ! after returning, x(j) is the sum of
 ! the original x(1:j) for j=1,k
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: RunningSum
 Real(dp), Intent(InOut):: x(1:)
 Integer :: k
 Integer:: j
 k = Size(x,1)
 Do j = 2, k
 x(j) = x(j) + x(j-1)
 End do
 RunningSum = x(k)
End Function RunningSum

Subroutine RunM0Tests
 Use Kinds, Only: dp
 Implicit None
 Integer :: order
 Real(dp):: x, f, factor
 Integer :: rank
 Character(len=1):: choice
 Do
 Print *, "Test of M0 function."
 Write (*, "(1x,a)",Advance='no') "Enter Rank: k = "
 Read (*,*) rank

160

 Write (*, "(1x,a)",Advance='no') "Enter base x: x = "
 Read (*,*) x
 Write (*, "(1x,a)",Advance='no') "Enter factor for growth of x entries: factor = "
 Read (*,*) factor
 Print *
 f = TestM0(x, rank, factor)
 Write (*, "(1x,a)",Advance='no') "Run M0 test again? (y/n): "
 Read(*,*) choice
 Do
 If (choice=='y' .or. choice=='n' .or. choice=='Y' .or. choice =='N') Exit
 Write (*, "(1x,a)",Advance='no') 'Please enter either "y" or "n": '
 Read(*,*) choice
 End do
 If (choice=="n" .or. choice=="N") Exit
 End do
End Subroutine RunM0Tests

Function TestM0(xBase, rank, factor) Result(f)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: xBase
 Integer, Intent(In):: rank
 Real(dp), Intent(In):: factor
 Real(dp):: x(1:rank)
 Integer:: j
 x(1) = xBase
 Do j = 2, rank
 x(j) = x(j-1) * factor
 End do
 f = M0(x, rank)
 Print *, "M0(", x, ") ="
 Print *, f
End Function TestM0

161

End Module M0_Functions

VIII.B.7 Kinds

Module Kinds
 Implicit None
 Integer, Parameter:: sp = Selected_Real_Kind(p=6)
 Integer, Parameter:: dp = Selected_Real_Kind(p=15)
End Module Kinds

VIII.B.8 Helper

Module Helper
Implicit None

Contains

Function SimpsonsInt(f,n,a,b) Result(answer) !function, n intervals (even), low bound, up bound
Use kinds, Only:dp
Implicit None
Integer, Intent(in)::n
Real(dp), Intent(in)::a,b

Interface
function f(x) result(ans)

162

Use kinds, only: dp
implicit none
real(dp), intent(in)::x
real(dp)::ans
end function f
end interface

Real(dp):: answer, h
Integer::j

h= (b-a)/Real(n,dp)

answer=f(a)+f(b)

Do j=1,((n/2)-1)
 answer=answer+ 2._dp*f(a+(2._dp*Real(j,dp))*h)
End Do

Do j=1, n/2
 answer=answer +4._dp*f(a+(2._dp*Real(j,dp)-1._dp)*h)
End Do

answer=answer*(h/3._dp)

End Function

Function NewtonsMet(f,maxiter,initialguess,absTol,dx) Result(next)
Use Kinds, Only:dp
Implicit None

Interface
function f(x) result(ans)

163

Use kinds, only: dp
implicit none
real(dp), intent(in)::x
real(dp)::ans
end function f
end interface

Integer, Intent(in)::maxiter
Real(dp), Intent(in)::initialguess
Real(dp), Intent(in)::absTol
Real(dp), Intent(in)::dx !half size of derivative measurement
Real(dp)::current, next, slope
Integer::i

current=initialguess

Do i=1,maxiter
 slope= (f(current+dx)-f(current-dx))/(2._dp*dx)
 next=current - (f(current)/slope)
 if(abs(f(next))<absTol)Exit
 current=next
 if(i==maxiter)STOP "max iterations reached on newton's method"
End do

End Function

Function nStart(nMax,x) Result(nS)
Use Kinds, Only: dp
Implicit None
Integer:: nS
Integer, Intent(In):: nMax ! Max order of M[n,x] to be evaluated
Real(dp), Intent(In):: x

164

Real(dp):: xPower, FactorialRatio, Tol, denom
Real(dp), Parameter:: RelTol = 1.E-15_dp
If (x < 0._dp .or. nMax < 1 .or. x > nMax) &
& STOP "nStart: illegal argument"
Tol = RelTol / (Real(nMax+1,dp)+x)
nS = nMax
xPower = x
FactorialRatio = 1._dp / Real(nS+1,dp)
Do
nS = nS + 1
xPower = xPower * x
FactorialRatio = FactorialRatio / Real(nS+1,dp)
denom = 2._dp * (Real(nS+1,dp)+x) * (Real(nS+2,dp)+x)
If (xPower * FactorialRatio / denom <= Tol) Exit
End do
End Function nStart

Subroutine BisectionStarter(f,p,b,smalliter,maxIter, err)
!Finds two starting points that contain the root (a and b) for func f
 Use Kinds, Only: dp
 Implicit None
 Interface
 Function f(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x
 End Function f
 End Interface
 Real(dp), Intent(Out):: a, b
 Real(dp), Intent(In), Optional:: smalliter, maxIter
 Integer, Intent(Out), Optional:: err
 Real(dp)::itersmall, fa, fb, iterMax
 Integer::iter

165

 If (Present(smalliter)) then
 itersmall = smalliter
 Else
 itersmall = 1.E-4_dp
 End if

 If (Present(maxIter)) then
 iterMax = maxIter
 Else
 iterMax = 50
 End if

 If (Present(err)) err = 0

 a=0._dp
 fa=f(0)
 if(fa==0)then
 a=-1._dp*itersmall
 fa=f(a)
 end if
 if(isNAN(fa))then
 a=-1._dp*itersmall/3._dp
 fa=f(a)
 end if

 iter=0

 if(fa>0)then !positive f at a
 Do
 b=a+itersmall*((2)**iter)
 fb=f(b)
 if (fb<0)Return

166

 if(iter>iterMax)return
 End do
 if(iter>iterMax)then
 iter=0
 Do
 b=a-itersmall*((2)**iter)
 fb=f(b)
 if (fb<0)Return
 if(iter>iterMax)return
 End do
 end if
 else !negative f at a
 Do
 b=a+itersmall*((2)**iter)
 fb=f(b)
 if (fb>0)Return
 if(iter>iterMax)return
 End do
 if(iter>iterMax)then
 iter=0
 Do
 b=a-itersmall*((2)**iter)
 fb=f(b)
 if (fb>0)Return
 if(iter>iterMax)return
 End do
 end if

 end if

 if(iter>iterMax)then
 If (Present(err)) err = 2 !max iter reached
 end if

167

End Subroutine BisectionStarter

End Module

VIII.B.9 Root solvers

Module Rootsolvers

 Implicit None
 Private
 Public:: Bisection , NewtonSolver, Converged

Contains

Function Bisection(x, f, xL, xR, fRoot, absTol, relTol, maxIter, err) Result(foundRoot)
 ! Finds x such that f(x) = fRoot using bisection
 Use Kinds, Only: dp
 Implicit None
 Logical:: foundRoot
 Real(dp), Intent(Out):: x
 Interface
 Function f(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x
 End Function f
 End Interface
 Real(dp), Intent(InOut):: xL, xR ! initial bounds on x

168

 Real(dp), Intent(In), Optional:: fRoot
 Real(dp), Intent(In), Optional:: absTol, relTol
 Integer, Intent(In), Optional:: maxIter
 Integer, Intent(Out), Optional:: err
 Real(dp):: fAtRoot
 Real(dp):: xC, fC, fL, fR
 Logical:: HighLeft, HighRight, HighCenter
 Real(dp):: aTol, rTol
 Integer:: iter, iterMax
 If (Present(fRoot)) then
 fAtRoot = fRoot
 Else
 fAtRoot = 0._dp
 End if
 If (Present(absTol)) then
 aTol = absTol
 Else
 aTol = 0._dp
 End if
 If (Present(relTol)) then
 rTol = relTol
 Else
 rTol = 1.E-8_dp
 End if
 If (Present(maxIter)) then
 iterMax = maxIter
 Else
 iterMax = 50
 End if
 If (Present(err)) err = 0 ! presume success
 FoundRoot = .True.
 fL = f(xL)
 If (fL == fAtRoot) then
 x = xL

169

 Return
 Else
 HighLeft = (fL > fAtRoot)
 End if
 fR = f(xR)
 If (fR == fAtRoot) then
 x = xR
 Return
 Else
 HighRight = (fR > fAtRoot)
 End if
 If (HighLeft == HighRight) then
 If (Present(err)) err = 1 ! Need initial brackets such that fRoot is between fL and fR
 foundRoot = .False.
 Return
 End if
 iter = 0
 Do
 iter = iter + 1
 xC = (xL+xR) / 2._dp
 If (Converged(xL, xR, aTol, rTol)) then
 x = xC
 Return
 End if
 fC = f(xC)
 If (IsNaN(fC)) then
 If (Present(err)) err = -1 ! xC is out of function's defined domain
 foundRoot = .False.
 Return
 End if
 If (fC == fAtRoot) then
 x = xC
 Return
 Else

170

 HighCenter = (fC > fAtRoot)
 End if
 If (HighLeft == HighCenter) then
 xL = xC
 Else
 xR = xC
 End if
 If (iter > iterMax) Then
 If (Present(err)) err = 2 ! too many iterations
 foundRoot = .False.
 End if
 End do
End Function Bisection

Function NewtonSolver(x, f, dfdx, fRoot, absTol, relTol, maxIter, err) Result(foundRoot)
 ! Finds x such that f(x) = fRoot using bisection
 Use Kinds, Only: dp
 Implicit None
 Logical:: foundRoot
 Real(dp), Intent(InOut):: x
 Interface
 Function f(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x
 End Function f
 Function dfdx(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: dfdx
 Real(dp), Intent(In):: x
 End Function dfdx

171

 End Interface
 Real(dp), Intent(In), Optional:: fRoot
 Real(dp), Intent(In), Optional:: absTol, relTol
 Integer, Intent(In), Optional:: maxIter
 Integer, Intent(Out), Optional:: err
 Real(dp):: fAtRoot
 Real(dp):: xOld, y, dydx
 Real(dp):: aTol, rTol
 Integer:: iter, iterMax
 If (Present(fRoot)) then
 fAtRoot = fRoot
 Else
 fAtRoot = 0._dp
 End if
 If (Present(absTol)) then
 aTol = absTol
 Else
 aTol = 0._dp
 End if
 If (Present(relTol)) then
 rTol = relTol
 Else
 rTol = 1.E-8_dp
 End if
 If (Present(maxIter)) then
 iterMax = maxIter
 Else
 iterMax = 50
 End if
 If (Present(err)) err = 0 ! presumes success
 foundRoot = .True.
 iter = 0
 Do
 iter = iter + 1

172

 xOld = x
 y = f(x)
 If (IsNaN(y)) then
 If (Present(err)) err = -1 ! x is out of function's defined domain
 foundRoot = .False.
 Return
 End if
 dydx = dfdx(x)
 If (IsNaN(dydx)) then
 If (Present(err)) err = -2 ! x is out of derivative function's defined domain
 foundRoot = .False.
 Return
 End if
 x = x - (y - fAtRoot) / dydx
 If (Converged(x, xOld, aTol, rTol)) Return
 If (iter > iterMax) Then
 If (Present(err)) err = 2 ! too many iterations
 foundRoot = .False.
 Return
 End if
 End do
End Function NewtonSolver

Function Secant_Simple(f, a, b, absTol, relTol, maxIter) Result(x)
 ! Finds x such that f(x) = 0 using Secant method
 ! Secant uses the slope of the chord to approximate f'(x) in Newton's method
 ! Thus it has simlar failure modes.
 ! The starting points must be "close enough" to the root,
 ! which depends on the shape of f.
 ! This function is used as follows: var = Secant_Simple(...)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: x

173

 Interface
 Function f(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x
 End Function f
 End Interface
 Real(dp), Intent(In):: a, b ! search interval is [a,b]
 Real(dp), Intent(In), Optional:: absTol, relTol
 Integer, Intent(In), Optional:: maxIter
 Real(dp):: x0, x1, x2, f0, f1, f2
 Integer:: iterMax
 Real(dp):: aTol, rTol
 Integer:: iter
 If (Present(absTol)) then
 aTol = absTol
 Else
 aTol = 0._dp
 End if
 If (Present(relTol)) then
 rTol = relTol
 Else
 rTol = 1.E-10_dp
 End if
 If (Present(maxIter)) then
 iterMax = maxIter
 Else
 iterMax = 50
 End if
 x0 = a; f0 = f(x0)
 x1 = b; f1 = f(x1)
 iter = 0
 Do

174

 iter = iter + 1
 x2 = (f1*x0 - f0*x1)/(f1 - f0)
 If (Converged(x1, x2, aTol, rTol)) then
 x = x2
 Return
 End if
 If (iter >= iterMax) then
 Print *, "Secant_Simple failed to converge"
 Print *, "x0 = ", x0
 Print *, "x1 = ", x1
 Print *, "x2 = ", x2
 Print *, "f0 = ", f0
 Print *, "f1 = ", f1
 Print *, "f2 = ", f2
 Stop
 End if
 f2 = f(x2)
 x0 = x1; f0 = f1
 x1 = x2; f1 = f2
 End do
End Function Secant_Simple

Function Secant_Bisection(x, f, a, b, fRoot, absTol, relTol, maxIter, err) Result(foundRoot)

 ! Finds x such that f(x) = fRoot using Secant

 ! Maintains bisection bounds and uses bisection when secant jumps outside the bounds.
 ! This requires that the interval (a,b) is a bounding interval with
 ! f(a) <= fRoot <= f(b) or f(b) <= fRoot <= f(a)

 ! Tightens the bounds at each iteration.

 ! This function returns a logical value to indicate whether the root was found.

175

 ! Therefore it is used as follows:

 ! ... Code to find bounds as above around the desired root ...
 ! Do
 ! If (Secant_Bisection(var, ...) .and. root is desired root) Exit
 ! ... Code to find better bounds (to get correct root)
 ! End do

 ! If you know there is only one root, (as when f(x) is continuous and monotonic everywhere)
 ! use it as follows:

 ! ... Code to find bounds as above around the desired root ...
 ! If (.Not. Secant_Bisection(var, ...) then
 ! Print *, error message and info for troubleshooting
 ! Stop
 ! End if

 ! Convergence is guaranteed if
 ! f(x) is continuous in [a,b],
 ! f(x) is monotonic in [a,b],
 ! a <= root <= b OR a <= root <= b,
 ! 0 < Min(Abs(f'(x))) in [a,b],
 ! and enough iterations are allowed.

 Use Kinds, Only: dp
 Implicit None
 Logical:: foundRoot
 Real(dp), Intent(Out):: x
 Interface
 Function f(x)
 Use Kinds, Only: dp
 Implicit None
 Real(dp):: f
 Real(dp), Intent(In):: x

176

 End Function f
 End Interface
 Real(dp), Intent(In):: a, b ! search interval is [a,b]
 Real(dp), Intent(In), Optional:: fRoot
 Real(dp), Intent(In), Optional:: absTol, relTol
 Integer, Intent(In), Optional:: maxIter
 Integer, Intent(Out), Optional:: err
 Real(dp):: fAtRoot ! Finds x such that f(x) = fAtRoot, default is fAtRoot = 0._dp
 Real(dp):: xL, xR ! Refined search interval
 Real(dp):: fL, fR
 Real(dp):: x0, x1, x2 ! Secant search points
 Real(dp):: f0, f1, f2
 Logical:: HighLeft, HighRight, HighCenter
 Real(dp):: aTol, rTol
 Integer:: iter, iterMax
 If (Present(fRoot)) then
 fAtRoot = fRoot
 Else
 fAtRoot = 0._dp
 End if
 If (Present(absTol)) then
 aTol = absTol
 Else
 aTol = 0._dp
 End if
 If (Present(relTol)) then
 rTol = relTol
 Else
 rTol = 1.E-10_dp
 End if
 If (Present(maxIter)) then
 iterMax = maxIter
 Else
 iterMax = 50

177

 End if
 If (Present(err)) err = 0 ! presume success
 FoundRoot = .True.
 xL = Min(a,b)
 xR = Max(a,b)
 fL = f(xL)
 If (Converged(fL, fAtRoot, aTol, rTol)) then
 x = xL
 Return
 Else
 HighLeft = (fL > fAtRoot)
 End if
 fR = f(xR)
 If (Converged(fR, fAtRoot, aTol, rTol)) then
 x = xR
 Return
 Else
 HighRight = (fR > fAtRoot)
 End if
 If (HighLeft == HighRight) then
 If (Present(err)) err = 1 ! Need initial bracket does not guarantee root
 foundRoot = .False.
 Return
 End if
 iter = 0
 x0 = xL; f0 = fL
 x1 = xR; f1 = fR
 Do
 iter = iter + 1
 x2 = (f1*x0 - f0*x1)/(f1 - f0)
 If (x2 <= xL .or. x2 >= xR) then
 x2 = (xL+xR) / 2._dp
 x0 = xL; f0 = fL
 x1 = xR; f1 = fR

178

 End if
 If (Converged(x1, x2, aTol, rTol)) then
 x = x2
 Return
 End if
 f2 = f(x2)
 If (Converged(f2, fAtRoot, aTol, rTol)) then
 x = x2
 Return
 End if
 If (IsNaN(f2)) then
 If (Present(err)) err = -1 ! xC is out of function's defined domain
 foundRoot = .False.
 Return
 End if
 If (iter > iterMax) Then
 If (Present(err)) err = 2 ! too many iterations
 foundRoot = .False.
 Return
 End if
 HighCenter = (f2 > fAtRoot)
 If (HighLeft == HighCenter) then
 xL = x2
 Else
 xR = x2
 End if
 x0 = x1; f0 = f1
 x1 = x2; f1 = f2
 End do
End Function Secant_Bisection

Function Converged(x, y, absTol, relTol) Result (OK)

179

 Use Kinds, Only: dp
 Implicit None
 Logical:: OK
 Real(dp), Intent(In):: x, y ! Values to compare
 Real(dp), Intent(In):: absTol, relTol ! tolerances
 Real(dp):: avgAbs, absDif
 avgAbs = (Abs(x) + Abs(y)) / 2._dp
 absDif = Abs(x-y)
 OK = (absDif <= absTol) .or. (absDif <= relTol * avgAbs)
End Function Converged

End Module Rootsolvers

VIII.B.10 Reactor Kinetics Functions

Module RPKFunctions
 Implicit None
 Private
 Public RhoFunc, SFunc

Contains

Function RhoFunc(t) Result(rho) !function that returns reactivity given time
 Use Kinds, Only: dp
 Use Variables, Only: P_rho, rho_coeff
 Implicit None
 Real(dp), Intent(In):: t
 Real(dp)::rho
 Integer::i

180

 rho=0._dp
 Do i=0, P_rho
 rho=rho+rho_coeff(i)*(t**i)
 End Do

End Function RhoFunc

Function SFunc(t) Result (S) !function that returns source given time
 Use Kinds, Only: dp
 Use Variables, Only: P_S, S_coeff
 Implicit None
 Real(dp), Intent(In):: t
 Real(dp)::S
 Integer::i

 !Needs to use source moments to be correct... fix this

 S=0._dp
 Do i=0, P_S
 S=S+S_coeff(i)*(t**i)
 End Do

End Function SFunc

Function delRhoFunc(t) Result (delRho)
!function that returns difference in current reactivity vs average reactivity given time

 Use Kinds, Only: dp
 Use Variables, Only: rho_bar
 Implicit None
 Real, Intent(in):: t
 Real(dp):: delRho

181

 delRho=rhoFunc(t)-rho_bar
End Function delRhoFunc

Function kappaFunc(t) Result (kappa)
!function that returns kappa given time

 Use Kinds, Only: dp
 Use Variables, Only: beta_tot, N_Lifetime
 Implicit None
 Real, Intent(in):: t
 Real(dp):: kappa

 kappa=(beta_tot-rhoFunc(t))/N_Lifetime
End Function kappaFunc

Function delKappaFunc(t) Result (delKappa)
!function that returns the difference in current kappa and kappa bar

 Use Kinds, Only: dp
 Use Variables, Only: kappa_bar
 Implicit None
 Real, Intent(in)::t
 Real(dp):: delKappa

 delKappa=kappa_bar-kappaFunc(t)

End Function delKappaFunc

Function A1Func(adt) Result (A1)
!function that returns A1 given alpha*del_t

 Use Kinds, Only: dp
 Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime

182

 Use MomentFunctions
 Real, Intent)(in) :: adt
 Integer :: i
 Real(dp) :: temp3(3), temp1(1)
 Real(dp) :: A1

 temp3(1)=-1._dp*kappa_bar*del_t - adt
 temp3(2)=-1._dp*adt
 temp3(3)=-1._dp*adt
 temp1(1)=-1._dp*adt

 A1=M(1,1,temp1)

 Do i=0,P_rho
 A1=A1- del_t*dkp_coeff(i)*M(i,3,temp3)
 End do

 temp3(1)=kappa_bar*del_t

 Do i=1, TotalGroups
 temp3(2)=lambda(i)*del_t
 A1=A1-beta_i(i)*lambda_i(i)*del_t*del_t*M(1,3,temp3)/N_Lifetime
 End Do

End Function A1Func

Function A0Func(adt) Result (A0)
!function that returns A0 given alpha*del_t

 Use Kinds, Only: dp
 Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime
 Use MomentFunctions
 Real(dp), Intent)(in) :: adt

183

 Integer :: i
 Real(dp) :: temp3(3), temp2(2), temp1(1)
 Real(dp) :: A0

 temp2(1)=-1._dp*kappa_bar*del_t - adt
 temp2(2)=-1._dp*adt
 temp1(1)=-1._dp*adt

 A0=M(0,1,temp1)

 Do i=0,P_rho
 A0=A0- del_t*dkp_coeff(i)*M(i,2,temp2)
 End do

 temp3(1)=kappa_bar*del_t
 temp3(3)=-1._dp*adt

 Do i=1, TotalGroups
 temp3(2)=lambda(i)*del_t
 A0=A0-beta_i(i)*lambda_i(i)*del_t*del_t*M(0,3,temp3)/N_Lifetime
 End Do

End Function

Function fadtFunc(adt) Result(f) !Special Equation used in root solving for finding alpha
 Use Kinds, Only: dp
 Use Variables, Only: B1, B0
 Real(dp), Intent(in)::adt
 Real(dp) :: f

 f= B0*A1Func(adt) - B1*A0(adt)

End Function A0func

184

Function dA1func(adt) Result(dA1)
 Use Kinds, Only: dp
 Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime
 Use MomentFunctions
 Real, Intent)(in) :: adt
 Integer :: i
 Real(dp), Allocatable :: temp2(:),temp4(:)
 Real(dp) :: dA1

 Allocate(temp2(2))
 Allocate(temp4(4))

 temp2(1)=-1._dp*adt
 temp2(2)=-1._dp*adt

 temp4(1)=-1._dp*kappa_bar*del_t - adt
 temp4(2)=-1._dp*adt
 temp4(3)=-1._dp*adt
 temp4(4)=-1._dp*adt

 dA1=M(1,2,temp2)

 Do i=0,P_rho
 dA1=dA1+ 6._dp*del_t*dkp_coeff(i)*M(i,4,temp4)
 End do

 temp4(1)=kappa_bar*del_t
 temp4(3)=-1._dp*adt
 temp4(4)=-1._dp*adt

 Do i=1, TotalGroups
 temp4(2)=lambda(i)*del_t

185

 dA1=dA1+beta_i(i)*lambda_i(i)*del_t*del_t*M(1,4,temp4)/N_Lifetime
 End Do

End Function dA1func

Function dA0func(adt) Result(dA0)
 Use Kinds, Only: dp
 Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, &
 & beta_i, lambda_i, N_Lifetime
 Use MomentFunctions
 Real(dp), Intent)(in) :: adt
 Integer :: i
 Real(dp), Allocatable :: temp2(:), temp3(:),temp4(:)
 Real(dp) :: dA0

 Allocate(temp2(2))
 Allocate(temp3(3))
 Allocate(temp4(4))

 temp3(1)=-1._dp*kappa_bar*del_t - adt
 temp3(2)=-1._dp*adt
 temp3(3)=-1._dp*adt

 temp2(1)=-1._dp*adt
 temp2(2)=-1._dp*adt

 dA0=-1._dp*M(0,2,temp2)

 Do i=0,P_rho
 dA0=dA0- 2._dp*del_t*dkp_coeff(i)*M(i,3,temp3)
 End do

 temp4(1)=kappa_bar*del_t
 temp4(3)=-1._dp*adt

186

 temp4(4)=-1._dp*adt

 Do i=1, TotalGroups
 temp4(2)=lambda(i)*del_t
 dA0=dA0+beta_i(i)*lambda_i(i)*del_t*del_t*M(0,4,temp4)/N_Lifetime
 End Do
End Function dA0func

End Module

VIII.B.11 Sin Poly

Module SinPoly
Implicit None

Contains

 Subroutine SinReactivity (aa0, bb0, cc0, ti, dt, order)

 Use Kinds, Only: dp
 Use Helper, Only: choose
 Use Variables, Only: rho_coeff
 Implicit None
 Real(dp), Intent(In) :: aa0, bb0, cc0, ti, dt ! 5 initial inputs
 ! a0 * Sin(b0 + c0 * t) for t = ti to ti + dt
 ! We want to fit a polynomial to this using moments of the Legendre polynomials
 Integer,Intent(In) :: order ! order of solution of interest
 Real(dp) :: p(0:4,0:4) !Legendre Polynomial Coefficients: p(n,coefficient order)
 Real(dp) :: aa,bb,cc !sin constants after variable change to u (between -1 and 1)
 Real(dp) :: cip(0:4) !inner product of sin and Legendre Poly
 Real(dp) :: fu(0:4,0:4) ! Polynomial representation variable u f(n,coefficient order)

187

 Real(dp) :: ft(0:4) !Polynomial representation variable t ff(coefficient order)
 Real(dp) :: aat, bbt !transformation constants
 Integer :: i, j

 !Set up table of Legendre Polynomial Coefficients
 p=0._dp

 p(0,0) = 1._dp

 p(1,1) = 1._dp

 p(2,0) = -.5_dp
 p(2,2) = 1.5_dp

 p(3,1) = -1.5_dp
 p(3,3) = 2.5_dp

 p(4,0) = .125_dp
 p(4,2) = 3.75_dp
 p(4,4) = 4.375_dp

 !change function for u = -1 to 1

 aa = aa0
 bb = bb0 + (cc0 * dt / 2._dp) + cc0 * ti
 cc = cc0 * dt / 2._dp

 !Solve inner product constants

 cip(0) = aa*sin(bb)*sin(cc)/cc

 cip(1) = cos(bb)*sin(cc)/(cc**2._dp)
 cip(1) = cip(1) - cos(bb)*cos(cc)/cc

188

 cip(1) = aa*cip(1)

 cip(2) = 3._dp*cos(cc)*sin(bb)/(cc**2._dp)
 cip(2) = cip(2) - 3._dp*sin(bb)*sin(cc)/(cc**3._dp)
 cip(2) = cip(2) + sin(bb)*sin(cc)/cc
 cip(2) = aa*cip(2)

 cip(3) = 15._dp*cos(bb)*cos(cc)/(cc**3._dp)
 cip(3) = cip(3) - cos(bb)*cos(cc)/cc
 cip(3) = cip(3) - 15._dp*cos(bb)*sin(cc)/(cc**4._dp)
 cip(3) = cip(3) + 6._dp*cos(bb)*sin(cc)/(cc**2._dp)
 cip(3) = aa*cip(3)

 cip(4) = -105._dp*cos(cc)*sin(bb)/(cc**4._dp)
 cip(4) = cip(4) + 10._dp*cos(cc)*sin(bb)/(cc**2._dp)
 cip(4) = cip(4) + 105._dp*sin(bb)*sin(cc)/(cc**5._dp)
 cip(4) = cip(4) - 45._dp*sin(bb)*sin(cc)/(cc**3._dp)
 cip(4) = cip(4) + sin(bb)*sin(cc)/cc
 cip(4) = aa*cip(4)

 !Set up f, the polynomial equivelant with respect to u

 fu=0._dp

 Do i=0,4
 fu(i,0) = cip(0)*p(0,0)
 End Do

 Do i = 1,4
 fu(i,1) = fu(i,1) + cip(1)*3._dp*p(1,1)
 End Do

 Do i = 2,4
 fu(i,0) = fu(i,0) + cip(2)*5._dp*p(2,0)

189

 fu(i,2) = fu(i,2) + cip(2)*5._dp*p(2,2)
 End Do

 Do i=3,4
 fu(i,1) = fu(i,1) + cip(3)*7._dp*p(3,1)
 fu(i,3) = fu(i,3) + cip(3)*7._dp*p(3,3)
 End Do

 fu(4,0) = fu(4,0) + cip(4)*9._dp*p(4,0)
 fu(4,2) = fu(4,2) + cip(4)*9._dp*p(4,2)
 fu(4,4) = fu(4,4) + cip(4)*9._dp*p(4,4)

 !Transform fu to ft (back into correct time domain

 aat = -1._dp - (2._dp*ti/dt)
 bbt = 2._dp/dt

 ft=0._dp

 Do i=0,order
 Do j=i,order
 ft(i)=ft(i)+fu(order,j)*(aat**(j-i))*Real(choose(j,i),dp)*(bbt**i)
 End do
 End do

 Do i = 0, order
 rho_coeff(i)=ft(i)
 End Do

 End Subroutine SinReactivity

End Module SinPoly

190

VIII.B.12 Sorters

Module Sorters
 Implicit None

 Interface Sort
 Module Procedure BubbleSort_dp
 Module Procedure BubbleSort_Integer
 End Interface Sort

 Interface ReverseOrder
 Module Procedure ReverseOrder_dp
 Module Procedure ReverseOrder_Integer
 End Interface ReverseOrder

 Private
 Public:: Sort, ReverseOrder
 Public:: Test_Sort_and_ReverseOrder_dp
 Public:: Test_Sort_and_ReverseOrder_Integer

Contains

Subroutine Test_Sort_and_ReverseOrder_dp
 Use Kinds, Only: dp
 Implicit None
 Integer, Parameter:: n = 4
 Real(dp):: x(1:n)
 x = Real((/ 5, 3, 4, 2 /), dp)
 Print *, "X before sorting = ", x
 Call Sort(x, n)
 Print *, "X after sorting = ", x
 Call ReverseOrder(x, n)
 Print *, "X after sorting and then reversing order = ", x

191

End Subroutine Test_Sort_and_ReverseOrder_dp

Subroutine BubbleSort_dp(a, n)
 Use Kinds, Only: dp
 Implicit None
 Integer, Intent(In):: n
 Real(dp), Intent(InOut):: a(1:n)
 Integer:: j,k
 Do j = 1, n-1
 Do k = n, j+1, -1
 If (a(k) < a(k-1)) Call Swap_dp(a(k), a(k-1))
 End do
 End do
End Subroutine BubbleSort_dp

Subroutine ReverseOrder_dp(a, n)
 Use Kinds, Only: dp
 Implicit None
 Integer, Intent(In):: n
 Real(dp), Intent(InOut):: a(1:n)
 Integer:: j
 Do j = 1, n/2
 Call Swap_dp(a(j), a(n+1-j))
 End do
End Subroutine ReverseOrder_dp

Subroutine Swap_dp(x, y)
 Use Kinds, Only: dp
 Implicit None
 Real(dp), Intent(InOut):: x, y
 Real(dp):: SwapHolder
 SwapHolder = x
 x = y
 y = SwapHolder

192

End Subroutine Swap_dp

Subroutine Test_Sort_and_ReverseOrder_Integer
 Use Kinds, Only: dp
 Implicit None
 Integer, Parameter:: n = 4
 Integer:: x(1:n)
 x = (/ 5, 3, 4, 2 /)
 Print *, "X before sorting = ", x
 Call Sort(x, n)
 Print *, "X after sorting = ", x
 Call ReverseOrder(x, n)
 Print *, "X after sorting and then reversing order = ", x
End Subroutine Test_Sort_and_ReverseOrder_Integer

Subroutine BubbleSort_Integer(a, n)
 Implicit None
 Integer, Intent(In):: n
 Integer, Intent(InOut):: a(1:n)
 Integer:: j,k
 Do j = 1, n-1
 Do k = n, j+1, -1
 If (a(k) < a(k-1)) Call Swap_Integer(a(k),a(k-1))
 End do
 End do
End Subroutine BubbleSort_Integer

Subroutine ReverseOrder_Integer(a, n)
 Implicit None
 Integer, Intent(In):: n
 Integer, Intent(InOut):: a(1:n)
 Integer:: j
 Do j = 1, n/2
 Call Swap_Integer(a(j), a(n+1-j))

193

 End do
End Subroutine ReverseOrder_Integer

Subroutine Swap_Integer(x, y)
 Implicit None
 Integer, Intent(InOut):: x, y
 Integer:: SwapHolder
 SwapHolder = x
 x = y
 y = SwapHolder
End Subroutine Swap_Integer

End Module Sorters

VIII.C. Mathematica Worksheet

(* ClearAll["Global`*"] *)
N0 = 1*10^8;
delT =50;

TotalGroups = 6;

betai={.00021,.00142,.00127,.00257,.00075,.00027};
betatot=Sum[k,{k,betai}];

NLifetime = 12.7*betatot + 3*(1-betatot)*10^-5;

lambdai = {.0126,.0301,.112,.301,1.14,3.01};

194

Ci0constant=1*10^4;
Ci0={20213583.5233573,57215857.6807323,13752455.9328556,10355264.3830621,797904.612764104
,108790.715308435};
Cidt=Range[TotalGroups];

PS=2;
SCoeff:={SCoeff0,SCoeff1,SCoeff2}; (*length PS+1*)

SCoeff0=0;
SCoeff1=0;
SCoeff2=0;

Prho=2;
rhoCoeff:={rhoCoeff0,rhoCoeff1,rhoCoeff2}

rhoCoeff0=0.001;
rhoCoeff1=0.000001;
rhoCoeff2=0;

rhofunc=0;
Do[rhofunc=rhofunc+rhoCoeff[[n+1]]*t^n,{n,0,Prho,1}];

rhofunc=0;
rhofunc=.001Sin[6.28t];

Sfunc=0;
Do[Sfunc=Sfunc+SCoeff[[n+1]]*t^n,{n,0,PS,1}];

s=NDSolve[{n'[t] ((r h o f u n c-
betatot)*n[t]/NLifetime)+Sfunc+lambdai[[1]]*C1[t]+lambdai[[2]]*C2[t]+lambdai[[3]]*C3[t]+l
ambdai[[4]]*C4[t]+lambdai[[5]]*C5[t]+lambdai[[6]]*C6[t],C1'[t]==(betai[[1]]*n[t]/NLifetim

195

e)-lambdai[[1]]*C1[t],C2'[t]==(betai[[2]]*n[t]/NLifetime)-
lambdai[[2]]*C2[t],C3'[t]==(betai[[3]]*n[t]/NLifetime)-
lambdai[[3]]*C3[t],C4'[t]==(betai[[4]]*n[t]/NLifetime)-
lambdai[[4]]*C4[t],C5'[t]==(betai[[5]]*n[t]/NLifetime)-
lambdai[[5]]*C5[t],C6'[t]==(betai[[6]]*n[t]/NLifetime)-lambdai[[6]]*C6[t], n[0]==N0,
C1[0]==Ci0[[1]],C2[0]==Ci0[[2]],C3[0]==Ci0[[3]],C4[0]==Ci0[[4]],C5[0]==Ci0[[5]],C6[0]==Ci
0[[6]]},{n,C1,C2,C3,C4,C5,C6},{t,0,delT},WorkingPrecision 3 0 , Ac c u r a c
l 1 5] ;
Plot[Evaluate[n[t]/.s],{t,0,delT},PlotRange Al l]

{n[delT]/.s,{
 C1[delT]/.s,
 C2[delT]/.s,
 C3[delT]/.s,
 C4[delT]/.s,
 C5[delT]/.s,
 C6[delT]/.s}}//FullForm
{1.03552643830621`*^7}//FullForm
108787.76821347115`
n[delT]
n[49.5]/.s//FullForm
C6[50.]/.s//FullForm

196

IX. BIBLIOGRAPHY

[1] Mathews, Kirk. Exponential Moment Methods.

[2] Shultis, Kenneth J., Faw, Richard E. Fundamentals of Nuclear Science

and Engineering. Marcel Dekker, Inc., 2nd Edition, 2002.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)
21-03-2013

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From — To)
Oct 2011 – Mar 2013

4. TITLE AND SUBTITLE
Solving Point-Reactor Kinetics Equations Using
Exponential Moment Methods

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Thelen, Paul

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENY)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT-ENP-13-M-34

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Intentionally left blank.

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.
14. ABSTRACT
A robust method of solving the reactor point kinetic equations was designed using exponential moment methods.
Although the method requires a relatively large number of calculations to complete, the accuracy ensured by each
individual step calculation allows larger time steps to be used. The algorithm designed was verified to converge to
the correct value as step size was reduced. Additionally, the algorithm can take steps much larger than the
average neutron lifetime while maintaining some precision. An error control scheme was designed based on
changes observed in the results as a function of time step size. The error control adaptively approaches optimal
step sizes within a factor of two for given tolerances. When used in conjunction with our algorithm, most cases
show large mitigation of computational cost.

15. SUBJECT TERMS
Point-Reactor Kinetics Equations, Exponential Moment Methods, Error Control

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Kirk Mathews, ENP

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937)255-3636, ext 4508

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

 209

	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	Solving Point-Reactor Kinetics Equations Using Exponential Moment Methods
	Paul M. Thelen
	Recommended Citation

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	SOLVING POINT-REACTOR KINETICS EQUATIONS USING EXPONENTIAL MOMENT METHODS
	I. INTRODUCTION
	I.A. Background
	I.B. Motivation
	I.C. Problem Statement
	I.D. Objectives
	I.D.1 Validation of Solution
	I.D.2 Controlled Error Accumulation
	I.D.3 Solution for Sinusoidal Reactivity
	I.D.4 Convergence Performance Evaluation
	I.D.5 Approximate Solution using Large Time Steps
	I.D.6 Error Control Algorithm with Adaptive Time Steps

	I.E. Summary of Approach

	II. Review of Reactor Kinetic Equations
	II.A. Introduction to Reactor Equations
	II.B. Transport and Diffusion Equations
	II.C. Point Reactor Kinetic Equations

	III. Overview of Exponential Moment Functions
	III.A. Definition and Properties of Exponential Moment Functions

	IV. Application of Exponential Moment Methods to The Solution of Point Reactor Kinetic Equations
	IV.A. Neutron Density Approximation
	IV.B. Source Term
	IV.C. Reactivity Term
	IV.D. Neutron Density Determination

	V. Implementation
	V.A. Root-Solving
	V.B. Solution to Sinusoidal Reactivity
	V.C. Initial Condition Domain Shift
	V.D. Error Control Algorithm with Adaptive Time Steps

	VI. Testing, Results and Analysis
	VI.A. Solution: Trivial Steady State Conditions
	VI.B. Verification: Linear Reactivity
	VI.C. Error Accumulation: Linear Reactivity
	VI.D. Verification and Error Accumulation: Sinusoidal Reactivity
	VI.E. Verification and Error Accumulation: Periods of Sinusoidal Reactivity
	VI.F. Convergence Test: Linear Reactivity
	VI.G. Convergence Test: Sinusoidal Reactivity
	VI.H. Fidelity of Results for Large Time Steps
	VI.I. Verification: Error Control Scheme
	VI.J. Case Study: Prompt Criticality

	VII. Conclusion
	VII.A. Future Work

	VIII. Appendices
	VIII.A. Picard Iteration for Improved Error Control
	VIII.B. FORTRAN Code
	VIII.B.1 Main
	VIII.B.2 Variables
	VIII.B.3 User Data
	VIII.B.4 Solution Steps
	VIII.B.5 Finalize
	VIII.B.6 Moment Functions
	VIII.B.7 Kinds
	VIII.B.8 Helper
	VIII.B.9 Root solvers
	VIII.B.10 Reactor Kinetics Functions
	VIII.B.11 Sin Poly
	VIII.B.12 Sorters

	VIII.C. Mathematica Worksheet

	IX. Bibliography

