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ABSTRACT 

A robust method of solving the reactor point kinetic equations was designed 

using exponential moment methods.  Although the method requires a relatively 

large number of calculations to complete, the accuracy ensured by each 

individual step calculation allows larger time steps to be used.  The algorithm 

designed was verified to converge to the correct value as step size was reduced.  

Additionally, the algorithm can take steps much larger than the average neutron 

lifetime while maintaining some precision.  An error control scheme was designed 

based on changes observed in the results as a function of time step size.  The 

error control adaptively approaches optimal step sizes within a factor of two for 

given tolerances.  When used in conjunction with our algorithm, most cases show 

large mitigation of computational cost.   
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SOLVING POINT-REACTOR KINETICS EQUATIONS USING 

EXPONENTIAL MOMENT METHODS 

I. INTRODUCTION 

I.A. Background 

 

One of the main properties of interest within a nuclear reactor is the neutron 

population at any given time.  Mathematically, this is denoted ( )n t , the number 

of neutrons or more specifically, the neutron density at time t .  This neutron 

density, along with several other properties of the reactor will determine the 

behavior of the reactor.  Each fission within the reactor will produce more 

neutrons, each one with a probability of either creating a fission or being lost to 

some loss mechanism.  Provded this information, one can map ( )n t .  Each fission 

consumes one neutron and produces an average number of neutrons,  , creating 

the potential of multiplying the neutron population.  When the probability of all 

the various loss mechanisms are taken into account, one can find the effective 

multiplication factor of neutrons for each generation, which is denoted effk .  This 

multiplication factor is then used to determine the relative increase between 

generations of fission, also known as reactivity, with the symbol  .  The two are 

related by 
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1eff

eff

k

k





.

  (1) 

Neutrons quickly go through the motion of birth, absorption and fission and 

most reactions quickly end.  The time spent travelling and scattering in a reactor 

until the neutron is absorbed is known as the reproduction lifetime.  The average 

reproduction lifetime is denoted with the symbol  .   

Reactors are carefully designed to control the neutron population using 

delayed neutrons.  Neutrons produced through fission belong to one of two 

different categories.  Prompt neutrons occur directly from the fission process and 

quickly go through the cycle.  However, some of the fission fragments left from 

the fission will not initially produce a neutron.  Instead they will decay through 

other mechanisms, mainly beta decay.  Some of these decay chains eventually 

lead to a decay that will emit a neutron, known as a delayed neutron.  The 

fraction of the neutrons from fission that are delayed is the delayed neutron 

fraction and has the symbol  .  If the reactivity is less than 0, the reactor is said 

to be subcritical.  A reactor with a reactivity exactly equal to 0 is critical.  Once 

the reactivity exceeds 0 the reactor is supercritical.  Finally, if the number of 

prompt neutrons produced alone can exceed the neutron population, a special 

case of super criticality occurs known as prompt critical, or prompt supercritical.  

This will result in a rapid increase in the neutron population on the time scale of 
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the neutron lifetime.  Generally speaking, reactors are not designed to go prompt 

critical because the reactor would be difficult to control in this state. 

Neutrons can be supplementally added to the reactor in through means other 

than fission.  Often a plutonium-beryllium neutron source is placed near a reactor 

and produces extra neutrons at a near constant rate through an alpha, neutron 

reaction.  The reactor materials often produce neutrons as well through 

spontaneous fission.  These additional neutrons that are added to the reactor 

through means that are not influenced by the current neutron population are 

denoted as ( )S t , or the average source rate density. 

Temperature, materials, geometry and current conditions of the reactor will 

determine the functional form of ( )S t  and ( )t .  Reactor kinetics is the study of 

time-dependent phenomena including the use of these conditions in order to 

determine the neutron density ( )n t .  The system of differential equations that 

motivates this work is the point reactor kinetic equations (PRKEs).  The PRKEs 

are a system of nonhomogeneous differential equations of the following form: 

 
( ) ( )

( ) ( ) ( )i i
i

dn t t
n t c t S t

dt
 


         

  (2) 

 
( )

( ) ( )i i
i i

dc t
c t n t

dt


 


 (3) 

where ( )n t  is the neutron density at time t ; ( )ic t  is the precursor density of 

group i  at time t ; ( )t  is the reactivity at time t ; ( )S t  is the source rate density 
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at time t ; i  is the delayed neutron fraction for group i ;  is the sum of all 

delayed neutron fraction groups;  is the neutron lifetime; and i  is the decay 

constant for group i .  In matrix form these equations are 

 

1 2

1
1

1

22
2

( )
. . .

( )
0 . . . 0

( )

( )
0 0 . . 0

.
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. . . . . . ..
. . . . . . .( )

0 . . . 0

n

n

n
n

t

n t

c t

c t

c t

 
  










                                                     
          

1

2
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( ) 0
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. .
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n t S t

c t

c t

c t
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


                                                              

 
 
 
  .

 (4) 

I.B. Motivation 

 

Solving the differential equations that compose the reactor kinetics problem 

has not been a very difficult task for modern mathematics packages.  Depending 

on the form of ( )t  and ( )S t , the solution might even be closed form.  Common 

iterative methods used by state of the art mathematics packages today include 

trapezoid rule, extrapolation techniques or some form of Runge-Kutta methods.  

The main issue with the reactor kinetics equations (RKEs) is the stiffness of the 

problem.  Fission in the reactor leads to the creation of many daughter nuclides 

that are precursors to delayed neutrons.  The amount of time it takes for these 
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various precursors to decay is different by orders of magnitude.  Additionally, all 

of the precursors work in a timescale that is much longer than prompt lifetime.  

In order to accurately estimate the conditions of the reactor at any given time, 

some of these methods require very small step sizes to keep track of the short 

time scale behaviors that can build up over a long time period of interest. A few 

choices are available to use.  Multistep methods are the standard for solving the 

PRKEs, but the complexity of other RKEs makes multistep methods impractical.  

Simple explicit methods, such as Euler, require many small steps because of first 

order convergence.  Larger steps can improve computational cost but ruin the 

accuracy of an answer.  More complex implicit techniques may increase the order 

of convergence but also increase computational cost.  This dilemma is really a 

question of the cost of computation versus the reliability of the solution.  The 

current technological level of modern computers allows differential equations like 

the RKEs to be solved “quickly” with any of the mentioned methods.  That is, a 

single iteration requires little computational time.  However, real world problems 

require many iterations of solving the same system of differential equation.  

Reactors in reality have spatial dependence, are not homogeneous, and factors 

like temperature and material flow for moderator/coolant will greatly influence 

the conditions of the system of equations.  The equation must be solved over 

many time steps, over a spatial grid.  The size of the grid must capture the 

geometry of the reactor, and gradients of neutron density throughout the reactor.  
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Finding a method that solves the PRKEs quickly and accurately can potentially 

reduce the amount of time it takes to solve reactor kinetics diffusion and 

transport problems.  This is the main motivation for the search and analysis of 

new methods of an otherwise straightforward problem. 

I.C. Problem Statement 

Exponential moment methods can be implemented in an algorithm that will 

solve an approximation of the PRKEs.  This research aims to characterize the 

method and evaluate the fidelity of the solution as a function of step size.  This 

method can be expanded using an error control scheme to further enhance the 

value of computational time.  

I.D. Objectives 

I.D.1 Validation of Solution 

The method should be able to produce the correct solution to a certain degree 

specified by the tolerances given as an input.  The solution can be compared to 

the solution produced by a trusted mathematics package, such as Mathematica.  

Certain initial conditions will produce trivial situations that the code should 

accurately replicate.  These include a critical system at steady state and a 

subcritical system with a source.  Standard problems, such as linear reactivity 
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should also be explored.  Problems that have special conditions that require a 

more rigorous approach warrant their own objective. 

 

I.D.2 Controlled Error Accumulation 

The nature of coded solutions results in several sources of error.  The error 

created by the algorithm choices should be observable as it propagates through 

multiple time steps.  This allows the prediction and quantification of error of the 

method itself.  

I.D.3 Solution for Sinusoidal Reactivity 

The algorithm should be able to handle any realistic and well-behaved form of 

reactivity.  Sinusoidal reactivity is an example that exists in reality.  Sinusoidal 

reactivity can occur in actual reactors through periodic rod movement.  

Mathematically, this creates a complication in our approach to solving the 

PRKEs that should be addressed.  The solution should be evaluated for accuracy 

and performance.  Any additional sources of error should be quantified and 

documented. 
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I.D.4 Convergence Performance Evaluation 

Our method should be comparable to other common methods of solving the 

PRKEs for accuracy and feasibility.  One attribute of methods that step through 

the solution share in common is the dependence of error upon step size.  The 

order of convergence can be determined through the analysis of the error and 

compared to other methods if desired.  This order could change for variations of 

the problem, such as the sinusoidal reactivity condition. 

I.D.5 Approximate Solution using Large Time Steps 

The performance of the method should be evaluated for large time steps.  For 

large time steps, error is inevitable but quantifiable.  If the error is tolerable, one 

can quickly observe the general behavior of a solution for many reasons, which 

can be useful for back-of-the-envelop calculation, or more under certain 

circumstances.  In essence, shows the ability to mitigate the effects of stiffness.  If 

the mechanism that defines the convergence is mapped out to large enough step 

sizes, one can determine if large step sizes are feasible in situations where 

accuracy is not as valued as computational cost. 

I.D.6 Error Control Algorithm with Adaptive Time Steps 

Error control allows computation time to be saved during portions of the 

problem where extra time steps are wasted due to the simplicity of the problem 
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conditions in those regions.  A functional error control scheme should have the 

ability to modify the error generated by adjusting tolerances.  The step sizes 

should be appropriate to the behavior of the problem at that time.  An especially 

robust error control scheme can find the solution through problematic regions of 

the given conditions that are especially stiff.  The test case of interest is a reactor 

that has a reactivity that increases over time and passes through prompt 

criticality. 

I.E. Summary of Approach 

The system of differential equations given in (2) and (3) can be converted into 

integral equations.  The neutron density ( )n t  is approximated by an exponential 

form over a time step of 

 ( ) tn t ae . (5) 

By substituting this assumption and taking the 0th and 1st  temporal moment, 

the integral equations can be written with each section matching the form of an 

exponential moment function.  An exponential moment function is the solution to 

a specific form of integral, which can be evaluated recursively.  The general 

definition is 

1 11 1 1 2 2 1
1 ( ) ( )

1: 1 1 20 0 0
( ) (1 ) ... k k k k

u ux u x x u x x un
n k kM x du u e du e du e       . (6) 
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The 0th  and 1st  temporal moments of equation (5) can be set equal to the 0th  

and 1st  temporal moment of the neutron density RKE and there are now two 

equations with two unknowns, a and .  Solving for these two variables and 

substituting back into our original system of equations, one can find the 

approximate neutron and precursor density over the time step.  Adjusting the 

time step size will determine the amount of error in the solution as error has a 

strong dependence on step size for numerical methods such as this one. 
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II. REVIEW OF REACTOR KINETIC EQUATIONS 

II.A. Introduction to Reactor Equations 

Reactor dynamics is the study of the phenomena in a nuclear reactor system 

with knowledge of various aspects of the reactor, such as temperature, control 

rod status, and neutron poison build up.  These listed aspects affect the 

reactivity and if the functional form of the reactivity is determined, the problem 

can be reduced to a reactor kinetics problem.  The RKEs have the following 

independent variables: space, energy, direction of motion of neutrons, and time. 

Reactor equations are balance equations.  That is, they conserve neutrons 

within the problem by considering each mechanism in which neutrons are created 

and lost.  Neutrons are created through fission or added through a source, and 

both of these represent terms in a reactor equation.  Other terms represent 

neutrons that are lost through absorption, or exiting the grid entirely. 

II.B. Transport and Diffusion Equations 

The neutron transport kinetics equation is the neutron balance that takes into 

account the basic reactor kinetic independent variables.  The equation explicitly 

creates terms to represent the phenomena within a reactor system and is 

commonly used to determine the behavior of reactor cores or neutrons beams.  

The equation is  
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
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 

 (7) 

where the independent variables are  

r  Position vector (x,y,z) 

E  Energy 

̂  Unit Vector in direction of motion 

t  Time 

 

and the various terms within the equation are: 

( )v E  Neutron speed 

ˆ( , , , )r E t dr dE d    Angular neutron flux 

( , , )r E t dr dE  Scalar neutron flux 

f  Average number of neutrons produced 

per fission 

f  Density function of neutrons exiting 

with energy E (fission) 

id  Density function of neutrons exiting 

with energy E (delayed) 
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( , , )t r E t  Macroscopic total cross section 

( , , )f r E t  Macroscopic fission cross section 

ˆ ˆ( , , , )s r E E t       Macroscopic scattering cross section 

N  Number of precursor groups 

i  Decay constant for group i  

( , )iC r t  Precursor density for group i  

ˆ( , , , )S r E t  Source term 

 

Often the angular dependence isn’t known and the basic transport equation 

can prove to be difficult to solve. Through some approximation and integration 

with respect to ̂ , one can transform the transport equation into the diffusion 

equation, which is often sufficient for solving realistic problems.  

 
0

1

0

( , , ) ( , , ) ( , , ) ( , , )

( )
( , , ) ( , , ) ( , )

4

( ) ( ) ( , , ) ( , , ) ( , , )

i

r
N d

s i i
i

f f f

D r E t r E t r E t r E t

E
E r E E t r E t C r t

E E E r E t r E t S r E t

 


 


  






   

     

     





 (8) 

Note that the scalar flux is used throughout the equation and the new 

variable D  is the diffusion coefficient which is related to the cross sections.  The 

diffusion equation is much more managable than the full transport equation, but 

still retains a certain degree of complexity [2].   



14 

 

II.C. Point Reactor Kinetic Equations 

Additional simplifications to the diffusion equation will yield the PRKEs, 

which can be used to test novel numerical techniques for studying reactor 

behavior before applying those techniques to the more complicated diffusion or 

transport equations.  The first simplification is integrating energy into groups, or 

even a single energy group that represents the average behavior across all 

energies.  This will remove energy dependence.  Another simplification is 

assuming an infinite, homogeneous region of interest where the spatial 

dependence of the problem is removed.  Knowing that each neutron that leaves a 

region will be replaced symmetrically by another neutron, one can assume that 

any given point in this reactor will mimic all other points.  This is known as the 

point reactor.  The diffusion equation is simplified into this form by merging the 

gain and loss terms as the reactivity of the reactor, and splitting the delayed 

neutron precursors into their own additional equations.  These equations were 

shown in (2) and (3).  Note that the flux has now been replaced by neutron 

density, all loss and gain mechanisms have been contained within the reactivity 

and the equation has been split according to precursor groups. 

Solving the PRKEs with respect to time has its own set of difficulties.  The 

general form of reactivity with time, and the number of delayed precursor groups 

does not allow a closed form solution.  Instead, iterative numerical methods are 
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used.  However, each delayed group presents decay constants that are different 

by orders of magnitude (Table 3).  The result is a very stiff system of differential 

equations.  Various standard methods for solving such differential equations can 

be shown to be ineffective for this specific set.  Forward Euler is an explicit 

method that is very easy to implement.  The nature of forward Euler and most 

other explicit methods requires very small step sizes in order to deal with stiff 

problems.  The result is the requirement of many steps without a guarantee that 

the end solution is reliable.  To compare, backwards Euler is an implicit methods 

that is not prone to numerical instability.  For non-linear problems, such as the 

PRKEs, backwards Euler can be very expensive and require a suitable root 

finding algorithm.  These methods are not normally considered for use.  The 

solution will still develop error linearly according to step size.  There are robust 

explicit and implicit methods that exchange computational cost for a higher order 

of convergence, such as various Runge-Kutta methods, but even these are 

hindered by the stiffness of the problem.   

Overall, any of these various techniques are generally considered acceptable 

for solving a single PRKEs problem because modern computing allows us to solve 

many small time steps or compute complex algorithms in a tolerable time frame.  

However, as shown in the review of RKEs, the PRKEs are a greatly simplified 

adaptation of complex equations that better fit reality.  Once other variables are 

considered, it is no longer acceptable or affordable to solve the problem with 
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these standard methods.  A spatial parameter alone would multiply the amount 

of calculation time by the grid size.  Any time saved in calculation would also be 

multiplied.  Creating a robust solution to PRKE can provide insight to managing 

the computational requirements of other RKEs.  The robust solution of interest is 

using exponential moment methods in order to solve an approximation of the 

PRKE.  Exponential moment methods specify the solution of specific integrals 

with a solution that can be calculated recursively.  Differential equations can be 

converted to integral equations and then converted into moment functions where 

the complexity of the algorithm and step size requirement can be compared with 

other methods.  These results can be used to motivate exploration of exponential 

moment methods in transport and diffusion equations. 
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III. OVERVIEW OF EXPONENTIAL MOMENT FUNCTIONS 

III.A. Definition and Properties of Exponential Moment Functions 

This review section is a presentation of key information from the book 

Exponential Moment Methods, currently in draft [1].  The general form of an 

exponential moment function is 

       M 1 11 2 2 11 1
1

1: 1 1 20 0 0
1 ... k k k k

u un x x u x x ux u
n k kx du u e du e du e      . (9) 

Two defining attributes of any exponential moment function are its order and 

rank.  The general equation above is of order n, and rank k.  The order of the 

function is the power to which  11 u  is raised.  The rank is the number of 

arguments presented in the function.  Exponential moment functions are 

orderless; that is, the value of the function is invariant under permutations of its 

arguments.  Exponential moment functions are also always positive and 

monotonically decreasing.  Mathematical manipulation and perhaps a few 

approximations can be used to turn many equations into the form of the right 

hand side of equation (9).  Exponential moment functions use recursion to create 

an algebraic equivelant of the integral.  In general, the needed recursion will 

reduce a moment function into many moment functions that are order 0 and 

rank 1. 

The main mechanism for reduction in rank is  
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      1: 2 1 1: 2
1:

1

, ,n k k n k k
n k

k k

x x x x
x

x x
  








 
 . (10) 

Using the orderless feature of exponential moment functions, the arguments 

can be sorted in increasing order.  Then by applying the recursive formula using 

the first and last argument, one can force the denominator to be as large as 

possible.  Thus the form of equation (10) used is 

      2: 1: 1
1:

1

n k n k
n k

k

x x
x

x x





 
  (11) 

where x is sorted in decreasing order. 

At a certain threshold, special treatment can be used for arguments that 

become too close together indicating possible issues.  Moment functions are 

poorly conditioned for arguments that differ by small amounts.  In such a case, 

the division leads to catastrophic cancellation and a major loss of precision.  A 

certain approach to the problem can pinpoint this problem when it occurs and 

special treatment can be used to prevent such issues. 

Once all exponential moment functions are of rank 1, the order must be 

reduced.  Backwards recurrence on order is done using 

    11
0

1
n

n

x x
x n

n


  



 . (12) 
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After enough applications of the recurrence relation, all exponential moment 

functions are reduced to rank 1 and order 0.  The basic algebraic definition of 

such an exponential moment function is 

  0
1 xe

x
x


 . (13) 

An exponential moment function can always be reduced to an algebraic 

formula that is just subtractions and divisions.  Depending on the arguments, 

some computational issues may arrive and are addressed accordingly.  

Additionally, some series expansions and other properties of exponential moment 

functions can be used to accelerate the computation or decrease the loss of 

precision and are implemented.  These methods are explained in Exponential 

Moment Methods [1].   
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IV. APPLICATION OF EXPONENTIAL MOMENT METHODS TO THE 

SOLUTION OF POINT REACTOR KINETIC EQUATIONS 

 

This research seeks a numerical scheme to solve the PRKEs.  In Exponential 

Moment Methods, Mathews explains an application of exponential moment 

functions to point-reactor kinetics [1].  This method is replicated throughout this 

section. 

Exponential moment methods are applied to integral equations and thus 

converting the PRKEs into integral equations is our initial step.  Starting with 

the standard equations (2) and (3), integrating factors are used.  For the i th 

second PRKE: 

 

     

    

    

     

       

0 0

0

0

0

0

i i i

i i

i i

i i

ii

t t ti i
i i

t ti
i

t tt ti
i

tt ti
i i

t t tt i
i i

dc t
e c t e n t e

dt
d

c t e n t e
dt

d c t e dt n t e

c t e c e n t dt

c t c e e n t dt

  

 

 

 














  

 

   

 





 


   


   


 




.

 (14) 

The first equation cannot be treated in a similar fashion due to the fact that 

the reactivity is not constant.  A constant is substituted for the sake of forming 

an integral equation and the deviation from the chosen constant will have to be 
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addressed.  The average reactivity,  , over the time step of interest is used as 

the constant.  The deviations from the average are  

    t t     (15) 

and the average reactivity as 

  
0

t dt
t

t
 




 . (16) 

However, reactivity itself isn’t a constant and cannot be used for an 

integrating factor in the first reactor kinetics equation.  A new constant and 

deviation factor is defined. 

 

  ( )t
t

 













 (17) 

Using these the first PRKE can be turned into an integral equation by 

 

 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

i i
i

i i
i

i i
i

i i
i

dn t t
n t c t S t

dt
dn t t

n t c t S t
dt

dn t t
n t c t S t n t

dt
dn t

n t c t S t t n t
dt

 


  


  


  

         
          
           

   








,

 (18) 

then solve using the integrating factor te . 
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 

   

   
 

0 0

0

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (0) ( )

t t t t t
i i

i

t t t t
i i

i
t tt t t t

i i
i

t t tt
i i

i

dn t
e n t e c t e S t e t n t e

dt
d

n t e c t e S t e t n t e
dt

d n t e dt c t e S t e t n t e

n t n e dt c t e

    

   

   



  

 

 



  

 

   

  

           

   





 

    
     

0

0

t t t

t t t

e S t dt

e t n t dt






 

 

 

  





 (19) 

Finally, the dependence on the precursor densities is eliminated by 

substituting the second RPKE in the first. 

 

       

         
     

0
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0 0

.

i

i

t t t tt
i i

i
t tt t t t

t tt t t ti i

i

n t n e c e e dt

e S t dt e t n t dt

e e n t dt dt

 

 

 





 

  

    

     

 

     

 
   
   

 

 

  

 (20) 

At this point, only one equation remains with everything known, except for 

the neutron density which is present within itself.  

IV.A. Neutron Density Approximation 

An exponential form is assumed for the neutron density within a time step.   

   for  0tn t ae t t     (21) 

The exponential form is chosen for its nonlinearity and implicit nature.  

Linear, implicit, single-step methods cannot be A-stable (approach 0 to solutions 

of differential equations that approach 0 as t approaches  ) and more than 
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second-order accurate.  The exponential form has two degrees of freedom, a  and 

  that are to be determined iteratively.  Equation (21) is substituted into (14) 

and (20) to obtain: 

      
0

0 ii i
t tt ti

i ic t c e a e e dt
        

   (22) 

and 
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i
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i
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 

  

  





 

  

   

      

 

    

 
  
   

 

 

  

 (23) 

Currently equation (23) would be the first Picard iteration if a  and   were 

specified.  One may note that equation (23) can be substituted into (14) and (20) 

to obtain what may be a higher order solution.  The form of such a solution 

would be expensive to evaluate.  However, occasionally doing so would allow us 

to find some error margin in order to compare against a threshold for error 

control in an adaptive step size method.  The use of Picard iteration is discussed 

in VIII.A.  For now, a  and   must be determined in a different manner.  

Moment matching is a robust method of specifying unknowns within an 

expression.  Moments allow us to choose weighting factors for both convenience 

of solution and to capture the behavior of our expressions.  To determine a  and 

 , the 0th and 1st temporal moments of equations (21) and  (23) are set equal to 

each other.  The weight function is chosen to allow the integrals to be 
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manipulated into exponential moment functions.  This tactic is the basic 

approach used for all integrals and reduces the portions of iteration that would 

have to be done otherwise.  For the 0th moment: 

 

 
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 (24) 

and for the 1st moment: 
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 

  





 



 

 (25) 

One may note that if one assumed a different form for the neutron density, 

one could take more moments and choose the weighting factor accordingly in 

order to fit the new form.  These moments must be equated to the moments of 

(23) which after some manipulation are 
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 
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 (26) 



25 

 

and 
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

 (27) 

The form of the source and the reactivity will vary from problem to problem.  

The method is designed to allow the conversion of these factors into exponential 

moment functions, but also to encompass various realistic forms that the source 

and reactivity may undertake. 

IV.B. Source Term 

In general, the source of a reactor system is usually constant.  To add some 

generality and flexibility, the solution is designed to function for any polynomial 

source.  The following general form is used: 

  
0

source
pP

p
p

t
S t s

t

      
 . (28) 

This form is then substituted into the source term of equation (26) and (27).  

The source integral is transformed into an exponential moment function, but the 

means in which that is done is not readily apparent.  A short derivation should 
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shed some insight on the matter. For the 0th moment, the polynomial source term 

is substituted into the 0th moment source integral. 

  poly.source 0
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0
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Applying the following change of variables: 
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

   
.

 (31) 

Reverse the sequence of integration noting that the bounds must change in 

order to integrate correctly. 

    2 1

2

1 1poly.source 0
0 2 2 10

0

sourceP
t u t up

p u
p

n s t du u e du e
    



     (32) 

Apply another change of variables in order to get the bounds to match the 

form of an exponential moment function. 

 2 2

1 1

1

1

v u

v u

 
 

 (33) 

       22 1
1poly.source 0 1 1

0 2 2 10 0
0

1
sourceP

vp t v t v
p

p

n s t dv v e dv e
      



      (34) 

Finally, simplify the exponents and gather the arguments in the form of an 

exponential moment function. 
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     

 

22 1
1poly.source 0

0 2 2 10 0
0

poly.source
0

0

1

,0

source

source

P
vp t v t v

p
p

P

p p
p

n s t dv v e dv e

n s t t

 



   





  

  

  

 

 (35) 

When creating these algorithms to minimize calculation cost, mathematical 

manipulations are applied to reduce the number of total calculations required.  

Recursive techniques benefit greatly from reduction of iterations required and a 

certain identity of exponential moment functions allows us to immediately save 

one iteration.  This identity is 

    1 1:
1: , 0

1
n j

n j

x
x

n






.
 (36) 

Applying (36) to our derivation gives us our solution to the 0th moment for 

polynomial sources. 

  poly.source
0 1

0 1

sourceP
p

p
p

s t
n t

p





 

   (37) 

The 1st moment requires a little more effort.  As before, the polynomial source 

is substituted into the 1st moment source integral. 

  poly.source 0
1 0 0

0

1
source

pP
t t tt

p
p

t t dt dt
n s t e e

t t t t
 



                           
    (38) 

Applying the same change of variables shown in (30). 

      11 2
1poly.source 0

1 1 1 2 20 0
0

1
sourceP

ut u t u p
p

p

n s t du u e du e u
    



      (39) 



28 

 

Reverse the sequence of integration. 

      2 1

2

1 1poly.source 0
1 2 2 1 10

0

1
sourceP

t u t up
p u

p

n s t du u e du u e
    



      (40) 

Apply the same change of variables shown in (33). 

       22 1
1poly.source 0 1 1

1 2 2 1 10 0
0

1
sourceP

vp t v t v
p

p

n s t dv v e dv e v
      



      (41) 

The 1v  term is problematic and doesn’t allow one to produce the form of an 

exponential moment function easily.  Using some creativity, this variable can be 

changed into an additional argument of a rank 3 exponential moment function 

       

       

2 12 1

2 12 1 0

1poly.source 0 1 1
1 2 2 1 00 0 0

0

1poly.source 0 0 0
1 2 2 1 00 0 0

0

1

1

source

source

P
v vp t v t v

p
p

P
v vp t v t v v

p
p

n s t dv v e dv e dv

n s t dv v e dv e dv e

 

 

     



    



  

  

   

   
(42) 

Thus, the form of an exponential moment function reveals itself. 

  poly.source
1

0

, 0, 0
sourceP

p p
p

n s t t


     (43) 

Using identity (36) twice, the solution elegantly simplifies itself to 

 
    poly.source

1 2
0 1 2

sourceP
p

p
p

s t
n t

p p





 

 
  . (44) 

After a  and   are determined through moment matching, the neutron 

density will be calculated.  One of the terms within the neutron density, as 
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shown in (23), is the source term.  The source term here is an integral which can 

be evaluated using exponential moment methods.  The isolated integral is 

      source

0

t t t
n t e S t dt

   
    (45) 

Substituting in the polynomial source assumption and multiplying and 

dividing by t  gives us 

     1 /poly. source

0
0

source
pP

t t t t
p

p

t dt
n t s t e

t t
    



         
  . (46) 

Apply the following change of variables: 

 
t

v
t




 (47) 

       
1 1poly. source

0
0

sourceP
pt v

p
p

n t s t e v dv
  



     (48) 

and another change of variables: 

 1 u v   (49) 

      1poly. source

0
0

1
sourceP

p t u
p

p

n t s t u e du
 



    
,

 (50) 

and once again the form of an exponential moment function is revealed: 

    poly. source

0

sourceP

p p
p

n t s t t


    
. 
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IV.C. Reactivity Term 

The same treatment must be done to the reactivity term,  .  Unlike the 

source term, reactivity can take many forms.  As always, it is our choice to pick 

a method that is both robust and convenient.  The nature of k  compared to the 

actual reactivity,  , must also be taken into account.  The function k  is either 

zero throughout a time step for constant reactivity, or it crosses zero at least 

once.  Our approximation should have this capability as well.  A polynomial 

approximation can be appropriate assuming the time-step is chosen to allow for 

such a fit.  Then any form of reactivity can be transformed into a polynomial 

approximation through moment matching.  Let us assume the same polynomial 

form for the k  term of order P . 

  
0

P p

p
p

t
t

t



 


       
  (51) 

This form is then substituted into the integral containing   in equations 

(26) and (27).  The   term is changed into an exponential moment function, 

but the means in which that is done, like the source term, is not readily 

apparent.   

As with the source term, the polynomial k  term is substituted into the 0th 

moment reactivity integral. 
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  poly.
0 0 0

0

P p
t t tt

p
p

t dt dt
n t e e

t t t

  
 



                
    (52) 

Apply the change of variables given in (30). 

    11 2
1poly.

0 1 2 20 0
0

P
ut u t t u p

p
p

n t du e du e u
   


    



     (53) 

Reverse the sequence of integration. 

    2 1

2

1 1poly.
0 2 2 10

0

P
t t u t up

p u
p

n t du u e du e
   


    



     (54) 

Apply the change of variables given in (33). 

       22 1
1poly. 1 1

0 2 2 10 0
0

1
P

vp t t v t v
p

p

n t dv v e dv e
   


      



      (55) 

Simplify exponents and gather arguments. 

      2 12
1poly.

0 2 2 10 0
0

1
P

vp t t t vt t vt
p

p

n te dv v e dv e
     

       



     (56) 

Now the form of an exponential moment function reveals itself as 

    0
0

, ,
P

t
p p

p

n a t t e t t t


     



        . (57) 

Similarly, the same method is applied to the 1st moment.  The polynomial k  

term is substituted into the 1st moment reactivity integral. 

  poly.
1 0 0

0

1
P p

t t tt
p

p

t t dt dt
n t e e

t t t t

  
 



                           
    (58) 
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Apply the change of variables given in (30). 

      11 2
1poly.

1 1 1 2 20 0
0

1
P

ut u t t u p
p

p

n t du u e du e u
   


    



      (59) 

Reverse the sequence of integration. 

      2 1

2

1 1poly.
1 2 2 1 10

0

1
P

t t u t up
p u

p

n t du u e du u e
   


    



      (60) 

Apply the change of variables given in (33). 

       22 1
1poly. 1 1

1 2 2 1 10 0
0

1
P

vp t t v t v
p

p

n t dv v e dv e v
   


      



      (61) 

As with the source 1st moment derivation, there is an extra 1v  term.  The 

same trick can be used again to convert it into an extra argument. 

 

       

    

2

2 11 0

1poly.
1 2 20

0

1 00 0

1

.

P
pt t t t t v

p
p

v vt t t v t t v

n te e dv v e

dv e dv e

     

    


        


       


  






 

 
 (62) 

Now the form of an exponential moment function reveals itself as 

    1
0

, , ,
P

t
p p

p

n a t t e t t t t


      



        
.

 (63) 

After a  and   are determined through moment matching, the neutron 

density will be calculated.  One of the terms within the neutron density, as 

shown in (23), is the k term.  The k  term here is an integral which can be 

evaluated using exponential moment methods.  The isolated integral is 
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      
0

t ttn t ae e t dt
   

    .
 (64) 

Substituting in the polynomial source assumption and multiplying and 

dividing by t  gives us 

    
0

0

P p t
t ttt t

p
p

t dt
n t a t e e

t t

   


    



          
 

.

 (65) 

Apply the following change of variable: 

 
t

u
t





 (66) 

    1

0
0

P
t t ut p

p
p

n t a t e u e du
   

   



      (67) 

and another change of variables: 

 1v u   (68) 

        1

0
0

1
P

pt t t t vt
p

p

n t a t e e v e dv
     

       



      (69) 

Again, the form of the exponential moment function reveals itself: 

    
0

P
t

p p
p

n t a t e t t


   



      
.

 (70) 

IV.D. Neutron Density Determination 

As stated previously, the method seeks to find an approximation of the 

neutron density over a time step.  Our two unknowns, a  and  , require a 
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system of two equations in order to be determined.  By matching the 0th and 1st 

moment of equations (21) and (23), the unknowns can be solved: 

 

          

 

 

   

0 0 0

1
0

0

0

0 0 ,

1

,

, , .

source

i i i
i

P
p

p
p

P

p p
p

i i i
i

a t n t c t t t

s t
t

p

a t t t t

t
a t t t t



    



   

    






       


 



       

            









  







 (71) 

 

          

    

 

   

1 1 1

2
0

0

1

0 0 ,

1 2

, ,

, , .

source

i i i
i

P
p

p
p

P

p p
p

i i i
i

a t n t c t t t

s t
t

p p

a t t t t t

t
a t t t t



    



    

    






       


 

 

         

            









  







 (72) 

Some simplification is useful for solving for our unknowns.  The combination 

of variables t  is solved for using a rootsolver.  Thus, the terms containing 

t  are collected on one side, which are all conveniently multiplied by a .  For 

the 0th moment equality: 

  0 0aA t B   (73) 

where 
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     

   

0 0
0

0

,

, ,

P

p p
p

i i i
i

A t t t t t t

t
t t t t



     

    



          

            





 



 (74) 

and 

 

        

 

0 0 0

1
0

0 0 ,

.
1

source

i i i
i

P
p

p
p

B n t c t t t

s t
t

p

   




     


 







 


 (75) 

For the 1st moment: 

  1 1aA t B   (76) 

where 

 
     

   

1 1
0

1

, ,

, ,

P

p p
p

i i i
i

A t t t t t t t

t
t t t t



      

    



            

            





 



 (77) 

and 

 

        

    
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By taking the ratio of these two equations, a  is eliminated and a single 

equation and unknown remains that can be put through a rootsolver algorithm of 

choice. 
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      0 1 1 0 0f t B A t B A t         (80) 

The general behavior of this root-solving problem and our choice of algorithm 

is explained in V.A.  Once   has been determined, a  can be calculated as well 

using either the 0th or 1st moment: 
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. (81) 

Finally, the neutron and precursor densities can be evaluated at time t  

using equations (22) and (23).  Substituting in a  and  , and applying our 

changes of the integrals into moment functions one finds the following equations 

for the densities at the end of the time step: 
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This concludes the overview of the algorithm used to solve a PRKE system 

using exponential moment methods.  The devices and methods chosen to realize 

this algorithm now need to be specified. 
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V. IMPLEMENTATION 

 

The code created to calculate the neutron density utilizes various methods 

that were chosen or constructed to complete modular tasks within the problem in 

a robust manner.  These tasks include root solving, domain shifting and adapting 

to various forms of reactivity.  Additionally, planning the structure of the code 

carefully has allowed the flexibility of new tools to supplement the original 

foundation.  A copy of the code can be found in Appendix I.A. 

V.A. Root-Solving 

Root-solving for t  can be done with many methods that vary in efficiency 

and reliability.  Knowing a bracket that contains the root can initially accelerate 

the process using a bisection method.  Then a rapidly converging method can be 

used.  Rather than jumping in blind for the first iteration of root-solving, a quick 

search is done for a possible bracket with the assumption that the function is 

monotonically increasing or decreasing and defined everywhere.  This assumption 

has been proven true for all cases used during testing, but may not actually be a 

property of the method.  The value of function (80) is evaluated at 0 .  The slope 

is also found by evaluating the function at a small step forward and backwards 

from that point, which is determined by an input parameter.  Using this 

information, the bracket can be found by approaching the root by doubling the 
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step size until the sign of the function changes.  Once the sign changes, a bracket 

is found given by (0)f  and some other point that has the opposite sign of (0)f  

which may exist above or below 0.  The exception is for a steady state system 

where the neutron density does not change.  In this case, (0)f  will be the root 

itself.  Once the bracket is set around the root, an estimation of the root location 

is calculated by drawing a secant between the bracketed points.  The function is 

evaluated at this point and will replace the bracketed point that shares the same 

sign.  This is known as the method of false position in root-solving.  It combines 

features of the secant method and bisection method to quickly converge on the 

point, but also guarantee a result given the function is well behaved.  The code 

for the bracket search and secant/bisection rootfinder can be found in Appendix 

VIII.B.8 and Appendix VIII.B.9. 

V.B. Solution to Sinusoidal Reactivity 

The design of our algorithm requires the reactivity term to be in the form of a 

polynomial.  However, as stated earlier, realistic problems will often have a 

functional form of reactivity that is not a polynomial.  For example, control rods 

being inserted and withdrawn periodically on a wheel can create a sinusoidal 

form.  This creates a need to fit a polynomial to a given form.  There are several 

methods that fit a polynomial to other functional forms.  The design choices 

must fulfill two major objectives: quickly fit a polynomial because the method 
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will have to be done for every time-step, and accurately fit a polynomial 

throughout the domain of interest because error from our fit will propagate into 

our final solution.  A polynomial fit is needed within our time step for the 

following form of reactivity: 

 ( ) sin( )t a t     (84) 

With these constants that define the sinusoid, a few options can be used to 

create a polynomial fit.  First off, the smaller the time scale with respect to the 

period of the sinusoid, the better the fit will be for the same order of fit.  

However, this will require more steps.  In general, the step size requirement of 

approximating the reactivity as an exponential will be sufficiently small for 

realistic sinusoidal problems, such as those caused by control rod movement.   

Well-known methods, such as a Taylor series are useful for predicting function 

behavior near a specific point.  Accuracy is required throughout a domain and 

thus a Taylor expansion will entail too many terms before the accuracy goal is 

satisfied.  Instead, a type of moment matching using Legendre polynomials is 

applied.  Various properties of Legendre polynomials allow us to create fits with 

some quick and simple arithmetic, and the behaviors of the original function are 

mimicked throughout the domain.   

Fitting a polynomial to a given function using Legendre polynomials is simple 

and systematic, as long as the function behaves somewhat like a polynomial in 
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the region of interest.  The polynomial fit requires the Legendre polynomials up 

to the order of our fit.  The first five Legendre polynomials were shown to be 

overly sufficient. 

 

Table 1: First Four Legendre Polynomials 

n ( )nP x  

0 1 

1 x  

2  21
3 1

2
x   

3  31
5 3

2
x x  

4  4 21
35 30 3

8
x x   

 

The sum is taken of the inner product of our function of interest with each 

Legendre polynomial up to the order desired to fit the function.  The formula for 

this summation is 

 
1

1
0

2 1
( ) ( ) ( ) ( ) for 1 1

2

order

fit n n
n

n
f x P x f x P x dx x




           
  . (85) 

Although this fit is a simple calculation, the function can have many forms 

and the nature of the inner product may require special treatment.  Creating an 
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algorithm to solve the inner product in a robust manner for any function and any 

order can be a feat on its own.  Instead, knowledge of the function required 

allows the creation of a reference table of solutions.  In the proposed situation, 

the function is sinusoidal, and only a specified number of inner products are 

required which is determined by user input. 

The first step in solving for the table of inner products is shifting the function 

into the correct domain.  Legendre polynomials are orthogonal between -1 and 1 

and thus require us to shift the sinusoid into the same domain, -1 to 1.  For the 

general sinusoid given in (84), the three constants are shifted as 
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 (86) 

where it  is the time at the beginning of the step, and t  is the length of the 

step.  The order of our polynomial is limited to 4th order.  The coefficients for 

these Legendre polynomials are given on the next page. 
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Table 2: Coefficients of Legendre Polynomials 

Polynomial 

Number 

Order Coefficient 

0 0 1 

1 1 1 

2 0 -.5 

2 2 1.5 

3 1 -1.5 

3 3 2.5 

4 0 .125 

4 2 3.75 

4 4 4.375 

 

These coefficients are reconventionalized in the form ( , )p n order .  For 

example, (3,1) 1.5p   .  Additionally, the inner product of our function in (84) 

and each Legendre polynomial is required.  The solutions for the first four of 

these inner products are given as  
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Given these inner product constants and the Legendre polynomial coefficients, 

the fitted polynomial is solved through a mathematics package and can be 

calculated with simple arithmetic. 

For a 0th order fit: 

 0 (0) (0,0)poly cip p 
.
 (88) 

For a 1st order fit: 

 1 3 (1) (1,1)poly cip p t 
.
 (89) 

For a 2nd order fit: 

 2
2 (0) (0,0) 5 (2) (2,0) 5 (2) (2,2)poly cip p cip p cip p t   

.
 (90) 
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For a 3rd order fit: 

 3
3 3 (1) (1,1) 7 (3) (3,1) 7 (3) (3,3)poly cip p t cip p t cip p t   

.
 (91) 

And finally a 4th order fit: 

 4
2 2 4

(0) (0,0) 5 (2) (2,0) 9 (4) (4,0)

5 (2) (2,2) 9 (4) (4,2) 9 (4) (4,4)
poly cip p cip p cip p

cip p t cip p t cip p t

   

 
.

 (92) 

Once the polynomial order is chosen, a fit for the sinusoid is now available.  

All that remains is to move the polynomial from the -1 to 1 domain back into the 

it  to it t  domain.  Binomial coefficients are used to shift polynomials from 

one domain to another and the method in which this is done so is explained 

thoroughly in the next section.   

V.C. Initial Condition Domain Shift 

After each time step, recalculating the average reactivity is required before 

repeating the algorithm.  The problem has a few nuances that must be considered 

after the first time step in order to correctly calculate future iterations.  Each 

time step, the average reactivity is calculated and is a major part of our 

algorithm’s calculation.  Additionally, our derivation was for the first time step, 

and thus the initial time is 0, greatly simplifying a lot of the math.  Rather than 

deriving everything once again for the time between t  and t t , the final 

population densities of the previous iteration are used as the initial condition for 
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the next iteration and the reactivity and source polynomials are shifted by t .  

The reactivity and source are both assumed to be polynomials and thus the 

method applied to both is identical.  For a polynomial source of the form 
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   (93) 

one can apply a shift of some amount of time denoted as passedt .  Thus the 

shifted source is now 
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Once again, binomial expansion is used to determine the new coefficients for 

the source: 

  
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j p
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  (95) 

and now a revised shifted source equation can be used. 
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To reiterate, reactivity is done the same way as if it is naturally in a 

polynomial form. 

For a sinusoidal reactivity, this shift must occur before refitting a polynomial 

every time-step.  For this form shown in (84), we can shift by passedt .  In order to 
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do so, the constants 1  and 3  remain the same, but the second constant must 

shift accordingly: 

 2 2 3new passedt     (97) 

 1 2 3( ) sin( )shifted newt t      (98) 

After shifting the reactivity, the polynomial fit technique shown in V.B can 

be used to meet the requirements of our algorithm.  Each polynomial fit is only 

good for the time domain it was calculated, so our problem requires a constant 

shifting of the reactivity. 

V.D. Error Control Algorithm with Adaptive Time Steps 

The purpose of error control is to minimize the costs of finding a solution 

while keeping the error below some stated tolerance.  In order to design such a 

feature into our algorithm, one must first understand the source and behavior of 

error in this particular problem.  Error introduces itself in our solution from 

several sources.  Our limitation of precision, the number of digits stored for 

calculation purposes, results in some small finite amount of error.  Another 

source of error is created due to the fact that we the method solves an 

approximation of the problem.  Various sources of error will usually differ by 

orders of magnitude in relevance.  While designing an algorithm, knowing which 

source of error is the most relevant and creating a method to reduce it is the 
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main mechanism for improving the fidelity of the solution.  From an error control 

perspective, if one source of error clearly dominates, the other sources may be 

ignored.   

Error control schemes in general operate by solving an iteration of a given 

problem and comparing the error to a specified tolerance.  The tolerance will 

determine if the solution is usable and if the step size was optimal.  Depending 

on this result, the scheme may redo the iteration with a different time step, use a 

different time step on the next iteration, or use the same time step on the next 

iteration. In order for this decision to be made, the error must be known to 

compare to the tolerance. 

Due to the nature of our problem, it is very difficult to know exactly what the 

exact solution is and thus the exact error.  For verification purposes, the solution 

from a mathematics package is produced and compared, a luxury that won’t be 

incorporated with the code on a regular basis.  However, using the information 

from the verification portion of the results, one can gain some insight of the 

properties of the error.  When tolerances are set very tight and the time steps 

taken are small relative to all the inputs, one may notice that the error associated 

with our solution is on the same order of magnitude as the precision allowed.  

This result is expected and additional reduction of the tolerances or step size does 

not further improve the fidelity of the answer.  However, increasing the step size 

reveals another source of error that is associated with the properties of our 
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algorithm.  Once this source of error dominates over the precision error, 

regression can be used to find the form of the error.  Our results imply that this 

source of error follows the following form: 

 ( )pa t    (99) 

where   is the relative error and a  and p  are simply constants that are 

determined by the nature of the problem being solved.  Using this information, 

an adaptive error control scheme can be created that changes the step size based 

on an estimation of the error.  The error can be estimated by calculating the 

solution twice using different sized time steps.  For our algorithm specifically, the 

step size is changed by a factor of two.  This design decision doesn’t allow much 

flexibility in how close to the optimal step size one can get and may seem crude.  

However, there are two main redeeming features of this choice.  First, only three 

calculations must be done in order to estimate the error, solving the problem 

twice in succession with the half step size, and once with the full step size.  

Second, if the error proves to be minimal, the solution of the error control now 

becomes the solution to the main problem, thus minimizing the number of 

calculations necessary. 

Although the actual solution of a specified problem is not known, one can 

presume that the error, our solution and the real solution are related in the 

following way: 
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where S  is the actual solution and ( )S t  is our solution for given step size t  

(not to be mistaken with ( )S t , the source term).  The solution can then be found 

in terms of other factors. 

  ( ) 1 ( )pS t S a t     (101) 

If one assumes the same amount of error is accumulated when two half steps 

are added, then the associated error for the half solution will be 

  ( ) ( ) ( ) 1 2 ( )ph h h hS t S t S t S S a t            . (102) 

Solving the same problem again using full step sizes yields 

  (2 ) 1 2 ( )p p
h hS t S a t    . (103) 

The two results are then combined to eliminate the actual solution, which is 

unknown. 
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If the magnitude of the step size is relatively small to the solution, one can 

use the following approximation: 
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. (105) 

And finally, this can be used as a rough estimate of the error. 
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 (106) 

With this information, a pair of tolerances can be used to manipulate the 

behavior of our algorithm by changing step size.  If the relative error estimation 

is below some tolerance, the doubling tolerance, the information found by our 

error scheme is assumed to be of an acceptable error level and is justifiably 

recorded.  Next, the size of the step is doubled because the above derivation 

proposes that a larger step size would also be acceptable and require less total 

calculations in the long run.  However, the next iteration of error control will test 

to see if this assumption is correct.  If the relative error estimation is above some 

other critical tolerance, the halving tolerance, the error estimation has become 

too great to risk using the information that was just computed.  Instead, the step 

size will be halved, and the error control routine will test the new value.  After 

some finite number of iterations, the error control will find the step size that 

contributes an acceptable amount of error or fail to reach a value and deliver a 

stop command.  If the relative error estimation is between our two tolerances, 

then the algorithm assumes the answer has enough fidelity to be acceptable, but 

not enough to warrant the search of a more effective step size.  Thus, the total 

error accumulated will be some magnitude between the thresholds per step.  

However, it is known that error accumulates, so for long problems that may take 
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many steps to solve, the tolerances should be set such that the accumulation of 

error meets the prespecified goals. 

The behavior and performance of our error control scheme is attributed 

partially to the tolerances set.  The halving tolerance is the main mechanism for 

reducing the error.  Due to the fact that a given result won’t be accepted and 

recorded unless the halving tolerance is met, tightening up the halving tolerance 

will result in less accumulation of error in the long run in exchange for shorter 

step sizes, and thus increasing computational cost.  The doubling tolerance has 

an interesting effect on the accuracy and cost of operation.  If the doubling 

tolerance is set too strict, the step size may never double into another acceptable 

step size, increasing computational cost by a factor of 2. With an extremely strict 

doubling tolerance, the increase in operation cost grows by a factor of 2n where 

n  is the number of times it could have doubled and still remained under the 

halving threshold.  In return, the accumulation of error will be lower than one 

would expect from the halving tolerance.  However, if the doubling tolerance is 

set too loose (very close to the halving tolerance), the additional error may cause 

the next iteration to trigger the halving mechanism.  That is, the step size is 

never in the comfortable region between the two tolerances.  In this case, the step 

size will jump back and forth and half of the iterations will not be used.  The 

result is that the computational cost increases by a factor of 2. 
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Knowing these properties of this error control scheme, one may note that even 

with well set tolerances, it is possible that the algorithm proposed step size may 

be suboptimal by up to a factor of 2.  This fact is one of the attributes that 

makes this error control scheme somewhat crude.  With more information on the 

effects of step size on error, the algorithm can be enhanced to set the step size 

accordingly.  This information can only be provided with extensive testing, which 

is not within the scope of our goals. 

Finally, an additional method of error control has been developed during our 

research.  Rather than using a raw calculation with assumptions about how error 

is a function of step size, one can calculate our densities to a higher order using 

another Picard iteration.  This method may provide an advantage in situations 

where there is some source of error that does not follow the standard form for 

error associated with the step size.  Situations like these are not observed in our 

results, but perhaps another functional form of reactivity can produce such a 

circumstance.  This method was not pursued because the original error control 

scheme was successful for the selected test cases, but a general introduction to 

using Picard iterations is provided in Appendix VIII.A. 
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VI. TESTING, RESULTS AND ANALYSIS 

 

Our testing procedure aims to meet the goals listed in the problem statement 

and goals section.  These goals generally fit within two categories: validation and 

performance assessment.  These categories are appropriate because numerical 

methods in general are judged based on the accuracy of the result they produce, 

and the number of operations it took to reach the result.  Unfortunately, 

improvements in one of these properties usually results in reduction of the other.  

For validation based goals, the value of our method can be quantified based on 

the error within the result produced.  For performance assessment, the cost of 

running our method can be quantified based on the number of operations 

necessary to complete it.  This is done by exploring the relationship between step 

size and relative error, knowing that step size is the main factor that determines 

computational costs.  In essence, our testing will demonstrate the relationship 

between accuracy and cost for our particular method. 

In order to quantify our success in meeting our goals, the correct solution to 

each test problem is required.  Mathematica, a standard math package, is used in 

order to solve the same test problems using the built in numerical differential 

equation solver.  For certain test problems, the code did not converge to the 

result produced by Mathematica using default options.  This implies that either 

there is an error in the method, or some error accumulated in the method used 
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by Mathematica that exceeds the precision required.  By increasing the working 

precision, precision goal, and accuracy goal on Mathematica, this issue can be 

rectified for all of our selected test problems.  The NDSolve() function is used to 

solve the PRKEs which applies a combination of numerical methods including 

Runge-Kutta, trapezoid rule, and extrapolation.  The performance effecting 

options were set arbitrarily high to ensure accuracy at values of 30 for the 

working precision, 15 for the precision goal and 15 for the accuracy goal.  For the 

purpose of our testing, the results given by Mathematica are assumed to be 

correct to at least as many digits as the precision level set within our code.  The 

worksheet for our Mathematica testing suite can be found in Appendix VIII.C. 

The test problems throughout these results use a six group approximation for 

the production of all results produced within this paper.  The i  and i  values 

are given within the following table. 

Table 3: Values for Six Group Approximation 

Group Number i  i  

1 0.00021 0.0126 

2 0.00142 0.0301 

3 0.00127 0.112 

4 0.00257 0.301 

5 0.00075 1.14 

6 0.00027 3.01 
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The neutron lifetime used for the majority of our tests, 0.0824528053 s  , 

is based on an experimental reactor.  However, a longer lifetime like this does not 

accurately represent the average reactor once it goes through prompt criticality.  

In this situation, the behavior of the reactor is no longer dominated by delayed 

neutrons and our choice of prompt lifetime will affect the results greatly.  For the 

prompt criticality tests, a neutron lifetime of 53 10   s is used instead which 

redefines the reactor conditions.  The fact that all of the tests do not use this 

lifetime is simply a result of observations found while testing our method with 

prompt criticality, which was final task performed during research.  The original 

longer lifetime is sufficient for showing the behaviors in situations where delayed 

neutrons determine the behavior of the population densities. 

VI.A. Solution: Trivial Steady State Conditions 

Due to the fact that most reactors are usually left in a steady state condition 

or naturally enter into one eventually, creating a set of steady state conditions 

and confirming that our algorithm produces steady state results is a good starting 

point for our validation process.  One can use any set of neutron and precursor 

concentrations, so our test cases arbitrarily use a neutron density of 81 10 .  We 

can now solve for the precursor densities that match.  One may note that our 

densities can be of any unit and our algorithm is correct as long as all densities 

have the same unit.   
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There are two steady state conditions.  The first is the steady state condition 

of criticality.  With no source inserted into the reactor and 0  , the reactor 

will eventually reach a steady state condition.  This condition can be solved using 

the given information and equation (2) and (3). 
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Given the neutron density set arbitrarily for test cases, one can use the second 

equation to solve for each of the precursor densities. 

 ( ) ( )i
i

i

c t n t






 (109) 

Table 4: List of Neutron and Precursor Densities for Critical Steady State 

Conditions 

n  100000000.000000 

1c  20213583.5233573 

2c  57215857.6807323 

3c  13752455.9328556 

4c  10355264.3830621 

5c  797904.612764104 

6c  108790.715308435 
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One can now use these initial conditions and verify our algorithms ability to 

correctly treat this steady state condition.  Table 5 displays the parameters used 

within our algorithm and the results produced. 

 

Table 5: Code Parameters Used for Critical Steady State Test 

t  0.01 

Number of Steps 100 

( )t  0 

( )S t  0 

 

 

Figure 1: Critical Steady State Test Results 
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As expected, there is no change shown in the neutron densities.  The 

precursor densities produce a similar result.  Our algorithm uses the solution of 

each time step as the initial condition for the next step which is why the result 

continues with time. 

As previously stated, there are two steady state conditions.  If there is a 

source within the reactor and the reactor is subcritical, the densities will settle 

into densities that will allow the loss of neutrons to be offset by the addition of 

the source term.  For this situation, the PRKEs are now 

 0
00 ( ) ( )i i

i

n t c t S
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
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Once again, one can solve for the steady state conditions given a set neutron 

concentration.  The same neutron population as before is used for simplicity.  

The source rate is now required in addition to the precursor densities.  The 

source rate can be found by substituting (111) into (110). 

 0
0

( )n t
S





 (112) 

The precursor densities are the same as the critical steady state conditions, 

but they can be written in terms of the source term for convenience. 
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The densities listed in Table 4 are used once again.  The code parameters 

used are listed in Table 6. 

Table 6: Code Parameters Used for Subcritical  

Steady State with Source Test 

t  0.01 

Number of Steps 100 

( )t  -0.001 

( )S t  1212815.01140145 

 

The results produced by these conditions are shown in Figure 2. 

 

Figure 2: Subcritical Steady State with Source Test Results 
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Again, the solution is as expected.  Our algorithm maintains the densities at 

the same value when steady state conditions are met. 

VI.B. Verification: Linear Reactivity 

Much of our error analysis can be based on a simple, but effective set of 

problem conditions.  A reactor is assumed to be in critical steady state condition 

with the given densities shown in Table 4.  At time 0t  , the reactivity step 

changes to some positive value.  The reactivity then increases linearly.  The step 

size is chosen to be 0.001.  This value is approximately a sixth of our  value.  

This decision was to allow the delayed neutrons to dominate the behavior of the 

population, while still being critical.  One may find similar conditions when 

powering up a reactor. A sample problem is created that fits this description and 

verify our algorithms ability to produce the correct answer.  This sample problem 

can then be used later in our results to study the effects of our tolerances, step 

size, and error control.  The code parameters are given in Table 7. 
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Table 7: Code Parameters Used for Linear Reactivity Test 

t  0.001 

Number of Steps 10000 

( )t  0.001 0.00001t  

( )S t  0 

 

The results produced from these conditions can be found in Figure 3. 

 

Figure 3: Linear Reactivity Test Results 

 

The results seem to correctly fit the given conditions, but our goals require 

the analsis of the error of the neutron and precursor population densities.  In 

order to do so, 11 points are sampled that are evenly spaced within our results 
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and the relative error is calculated against the result in Mathematica.  For the 

precursor populations, the error accumulated is of the same order of magnitude 

for all groups, so the relative error of the precursor group with the largest i  

value is arbitrarily exhibited to represent the behavior of the error in all of the 

precursor groups.  The resulting analysis is shown in Figure 4. 

 

Figure 4: Error Development within Linear Reactivity Test 

 

One may note that the error for both the neutron and precursor density are 

extremely small values, some positive, some negative, and initially with no 

pattern.  Error of this magnitude matches what would be expected for minor 

precision loss caused by a single pass through our algorithm.  The random 

positive and negative values suggest the same.  Precision error such as this tends 
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to not accumulate like other errors because the values average out to 0.  Instead, 

whatever error is accumulated is explained as a random walk.  After some 

thousands of time steps, it seems like the neutron and precursor errors behaviors 

start to mimic each other.  This may indicate the accumulation of error from a 

source that affects all densities equally.  Error accumulation will be studied in 

our next result.  

VI.C. Error Accumulation: Linear Reactivity 

Our previous study of linear reactivity may hint at another source of error 

within our algorithm, which is expected.  In order to differentiate this error from 

the precision error, the same conditions are used for a much longer time period to 

allow for the error to accumulate to a recognizable and quantifiable amount.  The 

results imply that this accumulation of error is created by the fact that our 

method is solving an approximation of the actual problem.  If this statement is 

true, the error accumulation rate would be related to the size of the steps taken.  

The same case can be solved with different time steps in order to view their 

effects on the accumulation of error.  A solution utilizing small step sizes is first 

shown and the step size increases from there.  The following parameters are used 

in the initial test. 
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Table 8: Code Parameters Used for Linear Reactivity  

Error Accumulation Test 1 

t  0.01 

Number of Steps 100000 

( )t  0.001 0.00001t  

( )S t  0 

 

The neutron density produced by these conditions is shown in the next figure.  

Note that this is just an extension of Figure 3 by 990 seconds. 

 

 

Figure 5: Extended Linear Reactivity Test Results 
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The actual interest of this test case is the behavior of the error.  As with the 

previous case, one can view the relative error of the neutron density and a chosen 

precursor density in Figure 6.   

 

Figure 6: Error Development within Linear Reactivity Test 1 

 

The neutron and precursor errors clearly follow each other, implying that 

their errors stem from the same source and they seem to have approximately the 

same relative magnitude.  The overall error is still very low but clearly a couple 

digits of precision are now gone.  One may note that within the first 200 seconds, 

the magnitude of the error is approximately the same as that found in our 

previous test overall.  At some point, the accumulating error dominates over the 
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precision loss, and the error accumulates at an increasing rate.  This fact may 

explain the curvature of our results.  The random walk caused by precision loss is 

always present, but as time passes, the error from this source slowly becomes less 

relevant compared to systematic error accumulation from our algorithm.  The 

error accumulated is all positive, that is the algorithm result is consistently 

higher than it should be.  This behavior is a function of the conditions of the case 

itself.  For negative reactivity, our algorithm tends to produce negative error, or 

results that are consistently lower than they should be.  Rather than setting up 

an example showing this behavior, our study of sinusoids does an excellent job of 

characterizing this phenomenon.    

As stated, the test setup seeks to verify that the error observed is a function 

of step size.  The next test uses a step size that is 10 times larger than the 

previous test with the same conditions.  This operation is repeated a few times in 

order to verify the dependence on step size. 

 

Table 9: Code Parameters Used for Linear Reactivity  

Error Accumulation Test 2 

t  0.1 

Number of Steps 10000 

( )t  0.001 0.00001t  

( )S t  0 
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Figure 7: Error Development within Linear Reactivity Test 2 

 

With a simple increase of time step, one can obtain a better understanding of 

this error source.  The error has increased by multiple orders of magnitude.  

Additionally, even though the precursor and neutron density errors follow the 

same path, the precursor error is consistently greater than the neutron error by 

approximately the same amount.  This is probably an artifact of our algorithm 

itself.  Now that precision loss is many orders of magnitude below the error loss 

caused by our algorithm, the error development appears linear.  That is, every 

step contributes an approximately set amount of error.  One may predict that 

increasing the step size will reinforce these results further, unless some other 

mode of error becomes relevant.  The rest of our tests are shown below. 
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Table 10: Code Parameters Used for Linear Reactivity  

Error Accumulation Test 3 

t  1 

Number of Steps 1000 

( )t  0.001 0.00001t  

( )S t  0 

 

 

 

Figure 8: Error Development within Linear Reactivity Test 3 
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Table 11: Code Parameters Used for Linear Reactivity  

Error Accumulation Test 4 

 

t  10 

Number of Steps 100 

( )t  0.001 0.00001t  

( )S t  0 

 

 

Figure 9: Error Development within Linear Reactivity Test 4 

 

As expected these graphs are nearly identical, except each increase of step size 

results in a large increase in error.  One additional nuance is shown in Figure 8.  
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The precursor and neutron densities slowly converge.  Perhaps in the other test 

cases this behavior would eventually be observed given more time.  However, the 

fact that it is only observed with 1 second time steps, but not with the .1 or 10 

second time steps used in Figure 7 and Figure 9 does not give sufficient 

information to imply any logical pattern. 

VI.D. Verification and Error Accumulation: Sinusoidal Reactivity 

A sine wave was chosen to represent our ability to treat reactivity cases that 

are not easily represented by a polynomial.  The algorithm fits a polynomial to a 

piece of the sine wave that is much smaller than the period using moment 

matching and then goes through the standard procedure.  With this in mind, one 

can assume that in addition to the normal errors associated with the basic 

algorithm, our sinusoid fitting scheme will contribute some amount of error as 

well.  By observing some test results involving sinusoidal reactivity, one can 

determine if this amount of additional error is relevant compared to the other 

sources of error. 

First, a sine wave must be designed for this exploration.  The amplitude of 

the sine wave should be a fraction of the   value.  The choice used in the linear 

tests will work here as well.  Additionally, a period must be picked for the sine 

wave.  This sine wave is supposed to mimic a control rod being inserted and 

withdrawn from the reactor periodically.  The shorter the period, the faster the 
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sine wave will turn, which puts more stress on the fitting algorithm.  A quick 

period that is still somewhat realistic is somewhere around 1 second.  Finally, the 

polynomial approximation of the sine is set to be 0th order in order to observe the 

problem case before analyzing the effects of our fitting parameters.  The problem 

design uses the same critical steady state, and at 0t  , the reactivity will follow 

the given sine wave. 

 

Table 12: Code Parameters Used for Sinusoidal  

Reactivity Test 2 Periods 0th Order 

t  0.01 

Number of Steps 200 

( )t  0.001sin(6.28 )t  

( )S t  0 

Poly. Order 0 

 

The result produced by these conditions is shown in Figure 10. 
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Figure 10: Sinusoidal Reactivity Test  

Results 2 Periods 0th Order 

 

The result is also sinusoidal in nature, but offset from the reactivity by 

approximately / 2 .  If one observes the plot closely, one may note that the 

second period is lower than the first in both peak and trough.  This is the 

interaction that the delayed groups have on the densities for a sinusoidal 

reactivity.  In order to better understand this interaction, the length of the same 

calculation is extended to 50 periods.  Before discussion of the currect case is 

abandoned, additional insight can be gained from analyzing the error within the 

period of the sine.  The discussion of accumulating effects over many periods is 

reconvened in VI.E. 
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As stated before, the sinusoidal reactivity has an additional component of 

error due to the polynomial approximation.  In addition, a few new properties are 

introduced.  There is curvature to our reactivity, and periodically our reactivity 

goes negative.  These are all factors that will influence the sources of error in our 

solution.  By observing relative error over time, perhaps some insight about these 

factors can be found.  For the case listed in Table 12, the following error figure is 

produced. 

 

 

Figure 11: Neutron Error Development within Sinusoidal  

Reactivity Test 2 Periods 0th Order 
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Figure 12: Precursor Error Development within Sinusoidal  

Reactivity Test 2 Periods 0th Order 

 

Our crude 11 point sampling has hurt the resolution of our figures now that 

curvature is involved, but information can still be gained by analyzing the plots.  

One initial observation is the order of magnitude of error between the neutron 

density and the precursor density is vastly different by a couple orders of 

magnitude.  This differs from the linear case where the two had approximately 

the same amount of error.  Additionally, both curves also have sinusoidal shapes 

in general, but they are out of synchronization.  In order to determine the cause 

of the difference in magnitude of error, one can vary the problem parameters 

until the neutron and precursor densities reach a similar magnitude of error.  By 
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doing this, it was found that 0th order polynomial approximation of the sine 

contributed to the error of the precursors more than the neutron population.  

However, the reason this behavior occurs is still elusive.  This phenomenon can 

be shown by running the same test with a better approximation.  

 

 

Table 13: Code Parameters Used for Sinusoidal  

Reactivity Test 2 Periods 1st Order 

t  0.01 

Number of Steps 200 

( )t  0.001sin(6.28 )t  

( )S t  0 

Poly. Order 1 
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Figure 13: Error Development within Sinusoidal  

Reactivity Test 2 Periods 1st Order 

 

By simply increasing the order, the error of the neutron and precursor 

densities is immediately improved.  The plot is similar to Figure 4 in a few ways:  

there seems to be no pattern, the neutron and precursor densities are of the same 

magnitude, and there are positive and negative values.  However, the magnitude 

of precision loss for our sinusoidal case is greater by a couple of orders of 

magnitude.  It isn’t fair to necessarily state that the linear results produce less 

error at this point as the step sizes of our two problems are different as well.  

Instead, an in depth analysis is done to provide insight on step size and 

convergence rate in VI.F and VI.G. 
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VI.E. Verification and Error Accumulation: Periods of Sinusoidal Reactivity 

Now that some understanding of the local sinusoidal error is established, the 

properties of many periods are of interest in terms of how the error will 

accumulate over time.  The same conditions from the previous section are used, 

but calculate out to 50 periods instead of 2.  These are the slightly modified code 

parameters used and the resulting graph. 

 

Table 14: Code Parameters Used for Sinusoidal  

Reactivity Test 50 Periods 0th Order 

t  0.01 

Number of Steps 5000 

( )t  0.001sin(6.28 )t  

( )S t  0 

Poly. Order 0 
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Figure 14: Sinusoidal Reactivity Test  

Results 50 Periods 0th Order 

 

With many more periods, the behavior of the result can be characterized.  An 

initial observation is that each period is slightly lower than the previous one, a 

property first observed in the analysis of 2 periods.  However, as time continues, 

the trend seems to reach some equilibrium sinusoid.  The average value during 

this equilibrium is above the starting steady state value.  However, the trough of 

each wave dips well below the starting value.  This overall behavior is created by 

the interactions of having a sinusoidal reactivity.  A regular sine wave has 

positive reactivity early and negative reactivity later. The precursors lag behind 

the sine wave and do not contribute as much as required during the negative 
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portion.  The result is a net loss of neutrons.  As time passes by, this effect fades 

as each sine may look like similar to any of its shifted versions.  Although not 

shown here, the same reactivity function was studied after being shifted by 

increments of / 2 .  This is the equivalent of a cosine wave, negative sine wave 

and negative cosine wave.  The negative sine wave looks similar, but flipped over 

an imaginary line equal to the starting density.  Now that the negative reactivity 

comes early, the precursors are always larger than required and slowly increase 

the neutron population.  Thus, the overall average is below the starting density, 

but after each period, the neutron population is above the starting density.  For 

cosine reactivity, there is some positive reactivity early and late, but negative in 

between.  The reverse is true as well.  The resulting graphs are also flipped over 

the starting density, but they do not have any net gain or loss.  Instead, a simple 

sine wave was observed.  

Although these are interesting behaviors generated by the nature of the 

PRKEs, our goals guide our interests towards the accumulated error of this test 

case and how our polynomial approximation order affects that error.  First, the 

neutron density error is examined. 
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Figure 15: Neutron Error Development within Sinusoidal  

Reactivity Test 50 Periods 

 

Our sampling rate allows the error to be calculated after every 5 periods.  

Unlike the increasing linear reactivity cases, the algorithm is now generating 

negative error, or predicting densities that are lower than the actual value.  The 

0th order value seems to be generating more negative error over time.  This 

implies that using constants to approximate the sinusoid incrementally 

contributes error.  The 1st order approximation does not have this problem and 

maintains approximately the same order of error that was seen in the case of 2 

periods.  If there are any errors that have the potential to accumulate, they most 



82 

 

likely cancel out when the reactivity changes sign.  Next, the precursors are 

examined. 

 

Figure 16: Precursor Error Development within Sinusoidal  

Reactivity Test 50 Periods 0th Order 
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Figure 17: Precursor Error Development within Sinusoidal  

Reactivity Test 50 Periods 1st Order 

 

The 1st order graph of the precursors is what one would expect.  The 

magnitude of the error is some low amount approximately the same magnitude as 

the 1st order neutron density error.  The error walks randomly, but never 

becomes negative in our sample.  This may be a coincidence due to low sampling 

rates.   

In comparison, the 0th order graph has a much greater magnitude of error.  

This result is quite interesting.  The initial kink is created because there is no 

error at 0t  .  However, the error decreases after the first jump almost perfectly 

in a linear fashion.  The sampling system does calculate error on the same point 
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of the wave at every given point because the objective is to see the behavior of 

the whole picture (behavior of each individual wave is discussed in VI.D), which 

allows the possibility of such an observation.  Perhaps more information can be 

gained with some magnification in sampling of the earlier portion of the graph.  

Additionally, the linear portion of the error is cut off after 50 periods.  Some 

mechanism seems to be removing error generated in the early periods.  

Eventually the error will probably be dominated by some other source and the 

linear pattern will deviate.  To truly understand the influence of the order of 

polynomial approximation has over the relative error, it must be observed in 

conjunction with the step size.  This is done in VI.G. 

VI.F. Convergence Test: Linear Reactivity 

One important feature of our method is its ability to converge to the correct 

value.  The verification tests show that our algorithm can produce values with 

relative errors almost as low as there are digits of precision.  In order to quantify 

the performance of our method itself, the rate of convergence must be mapped as 

a function of step size.  It is assumed that relative error follows the form given in 

equation (99).  The constant p  gives us the order of convergence.  Logarithms 

can be used in order to create a form that makes solving for the constants easier: 

 log( ) log( ) log( )a p t    . (114) 
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With a list of step sizes and their associated errors, linear regression can be 

used in order to determine the constants.  The same conditions are used for 

linear reactivity verification tests over a variety of step sizes.  The tested step 

sizes are listed as  

 

Table 15: Convergence Test Step Sizes for Linear Test Case 

Step Count t  

2 50 

5 20 

10 10 

50 2 

100 1 

500 0.2 

1000 0.1 

5000 0.02 

10000 0.01 

50000 0.002 

100000 0.001 

 

The result of running these different cases is shown in Figure 18 and Figure 

19. 
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Figure 18: Relative Error of Linear Reactivity Test  

Case as a Function of Step Size 

 

Figure 19: Log of the Relative Error of Linear Reactivity Test  

Case as a Function of Log of Step Size 
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In our log plot, one may notice a decent linear region.  However, for lower 

time steps the error no longer follows a linear pattern.  This is explained by the 

fact that the error cannot fall below the precision level within the code itself.  

Instead loss of precision error dominates over the error that would accumulate in 

the algorithm.  These points are removed allowing a linear regression to be 

calculated using the remaining points. 

 

Figure 20: Linear Regression of Linear Reactivity Log Error Plot 

 

The regression produces a strong fit.  Using the values solved, one can 

calculate the constants for the relative error in linear reactivity. 

 7 3.07863.3437 10 ( )t    (115) 
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The method produces slightly better than 3rd order convergence. 

VI.G. Convergence Test: Sinusoidal Reactivity 

The rate of convergence for sinusoidal reactivity could differ from the linear 

case because there is an additional source of relevant error.  A different set of 

step sizes are used that are more appropriate for a 50 seconds/50 periods case 

study.  Additionally, 0th order and 1st order polynomial approximations are used 

separately in two different test cases.  The list of step sizes used is given below. 

 

Table 16: Convergence Test Step Sizes for Sinusoidal Test Case 

Step Count t  

25 2 

50 1 

100 0.5 

500 0.1 

1000 0.05 

5000 0.01 

10000 0.005 

50000 0.001 
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These step sizes are used in the same procedure as before: take the log of 

error and time step, remove the points that are from alternative sources of error, 

and create a linear regression of the remaining points. 

 

 

Figure 21: Linear Regression of Sinusoidal Reactivity  

0th Order Log Error Plot 
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Figure 22: Linear Regression of Sinusoidal Reactivity  

1st Order Log Error Plot 

 

These results provide us with the constants for relative error for 0th order 

 5 1.88631.1319 10 ( )t    (116) 

and 1st order 

 5 3.50986.8711 10 ( )t   . (117) 

 

The 1st order polynomial approximation for the sinusoidal reactivity test case 

produces an excellent convergence rate; about halfway between 3rd and 4th order.  

However, the 0th order approximation produces a convergence rate shy of 2nd 

order. 
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VI.H. Fidelity of Results for Large Time Steps 

One of the goals was to observe the result of using large time steps and 

analyze their use.  Rather than create a new test case, the tests in VI.F and VI.G 

should be sufficient for some discussion on this matter.  How useful a result is 

depends on the requirements of the problem itself.  In many of our test cases, 

large time steps were used. These time steps are relatively large compared to all 

of the precursor lifetimes and especially large compared to the neutron lifetime.  

For some especially large time steps, such as the ones taken in VI.F, one may 

note that only a few digits of precision remain.  These calculations may be useful 

for interpreting the overall behavior of a problem set, especially if it is mostly 

well behaved.  If there are any odd behaviors in the reactivity or source term, it 

may be wise to individually solve those sections with the appropriate step size.  

The convergence tests show how the relative error varies with time step size.  

Those equations can roughly calculate the largest step size allowed if given an 

error limit.  Some numerical methods have a quality that slows the divergence of 

the error with respect to step size on a log-log plot.  That characteristic was not 

observed with this method.  If it exists, it is outside the scope of step sizes tested. 
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VI.I. Verification: Error Control Scheme 

Several attributes were sought after while designing the error control scheme.  

Overall, the goal of the error control is to reduce the cost of calculation while still 

maintaining an accuracy goal.  The error control scheme should produce the 

correct result regardless of how crude it is.  The linear reactivity test case was 

used for a time period of 10 seconds with a variety of tolerances and starting t  

values in order to verify the final answer given, and to observe the effect of 

tolerances on the performance and accuracy of the result.  These effects are 

explained in I.D.6.  Note that each step is composed of 3 passes of our algorithm. 
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Table 17: Validation and Performance Check of Error Control Scheme 

Case it  relTolhalf relToldoub   Steps Taken 

1 0.01 41 10  111 10  118.84 10  35 

2 2 41 10  111 10  071.42 10  3 

3 10 41 10  111 10  75.64 10   1 

4 0.01 91 10  111 10  118.29 10  32 

5 2 91 10  111 10  103.29 10  20 

6 10 91 10  111 10  118.84 10  35 

7 0.01 41 10  71 10  53.12 10  21 

 

The relative error produced in each case is lower than the halving tolerance, 

which was our original goal.  One must keep in mind that the halving tolerance 

keeps the error down for the current iteration, but error accumulates over time. 

The halving tolerance will eventually be exceeded once a sufficient amount of 

error has accumulated.  A quick discussion of each of these cases will confirm our 

predictions of how the interaction of the two tolerances will affect performance 

and accuracy.  The first case has a very lenient halving tolerance, but the 

doubling tolerance gives little room to improve the performance.  The result is an 
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especially accurate result with comparably poor performance time.  The second 

and third cases approach the same tolerances using a large time step instead.  

Due to the fact that the error is low already, the error control scheme just 

doubles the 2 second step size once and does nothing to the 10 second time step.  

Cases 4, 5 and 6 have very strict tolerances.  No matter what initial step size 

used, the algorithm reduces it in order to meet the accuracy goal.  The initial 

time step size of 2 is coincidentally close to some multiple of 2 to the optimal 

step size for the given accuracy goal.  The result is fewer steps are required.  This 

is a good example of motivation towards a more robust error control scheme than 

the current solution.  The final case loosens up the halving tolerance but starts 

with a low step size.  The result is several instances of doubling in order to 

quickly solve the problem.  As a comparison, if the error control scheme is turned 

off, the same case would take 1000 passes of the algorithm.  Each iteration of the 

error control scheme requires 3 passes, for a total of 63 passes; a massive increase 

in performance while still meeting accuracy goals. 

VI.J. Case Study: Prompt Criticality 

It is expected that our error control activity is a function of the time scales 

present within a problem set.  Prompt criticality problems provide many 

magnitudes of change in population growth rate.  This makes them an excellent 

case for revealing the limitations of our error control scheme.  Time spans are 
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initially dominated by the precursors, but eventually the neutrons can sustain 

themselves and the rate of increase in population drastically changes.  If short 

time steps are used for the entire process, the computational costs will be high.  

If longer time steps are used, fidelity is lost during the portions that required a 

closer look.  Additionally, it is difficult to know what magnitude of step size will 

accomplish a specified accuracy goal.  A well functioning error control scheme 

will attempt to address these issues. 

As stated at the beginning of the testing section, a different neutron lifetime 

is used for this case study, resulting in different initial conditions entirely.  A 

neutron lifetime of 53 10   s is used.  This results in the following densities. 

 

Table 18: Prompt Criticality Initial Conditions 

n  100000000.000000 

1c  55555555555.55 

2c  157253599114.0 

3c  37797619047.62 

4c  28460686600.22 

5c  2192982456.14 

6c  299003322.26 
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These initial conditions represent a critical steady state without source.  

Reactivity is then linearly increased and eventually it passes the limit for prompt 

criticality.  These initial conditions are represented in our code by the following 

parameters. 

 

Table 19: Code Parameters Used for Prompt Criticality Test 

t  0.0001 

Number of Steps 150000 

( )t  0.0005t  

( )S t  0 

 

With these initial conditions, prompt criticality will be achieved in 

approximately 13 seconds.  The first test run untilizes no error control in order to 

get an idea of the behavior of this system, and to provide additional verification 

to the original algorithm itself.  The neutron density for this system is shown in 

Figure 23. 
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Figure 23: Neutron Density Prompt Criticality Test 

 

Strict time steps are used in order to minimize the accumulation of error.  In 

order to verify this, the error is monitored as time progresses.   

 

Figure 24: Neutron Density Error Prompt Criticality Test 
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One may observe that many significant digits are maintained.  The approach 

to the prompt critical region may prove to be problematic.  At first, significant 

positive error is generated.  Afterwards, some mechanism is causing negative 

error to build up.  However, these results verify that the algorithm keeps a 

sufficient number of digits of precision without the error control scheme.  Now, 

the error control scheme can be tested for how much accuracy is sacrificed by 

each step saved. 

The first error control test will use lenient tolerances.  The following 

parameters were used. 

 

Table 20: Error Control Parameters Used for Prompt Criticality Test 

it  0.001 

relTolhalf 
51 10  

relToldoub 
81 10  

 

Using these tolerances and running the same problem conditions, the code 

used 1,700 iterations of the error control mechanism.  This is the equivalent of 

5,100 passes of the algorithm.  This is compared to the 15,000 passes that would 

have to be done without error control, or 150,000 passes done in the previous 
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verification example.  One can observe the accumulation of error in the following 

graph. 

 

Figure 25: Prompt Criticality Error Control Test 1 

 

As with the case with no error control, positive error is generated before going 

critical and negative error afterwards at a rapid rate.  The total amount of error 

accumulated at the end of the solution is an order of magnitude larger than our 

tolerance.  However, it was discussed that the halving tolerance just monitors the 

error within its current iteration.  Error is accumulated in a linear fashion, so 

eventually the total relative error would exceed the halving tolerance given a 

sufficient number of iterations.  In this case, 1,700 iterations resulted in an error 

higher than the tolerance.  Perhaps a more viable accuracy goal would be 

comparing the tolerance with the relative error divided by the total number of 

iterations.  The total amount of accumulated error only left about 5 digits of 
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precision left.  Although this is enough to get an idea of the general behavior of 

our problem case, most applications will require better accuracy.  After fully 

analyzing the results from our current tolerances, additional insight can only be 

gained by analyzing the same problem using strict tolerances. 

One may predict that the growth rate of populations would influence the 

error accumulated in addition to the time step size.  Although the interaction is 

probably too complicated to easily map out, some features can be observed.  In 

order to do so, the step size as a function of time reveals where the error control 

mechanism took action. 

 

Figure 26: Error Control Step Sizes Prompt Criticality 1 

 

As expected, a shift is observed where prompt criticality becomes more 

relevant.  As the precursors become less of a factor, the solution mimics a much 

simpler solution involving just the reactivity and neutron lifetime.  The step size 
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can then increase.  However, reactivity continues to grow at a linear rate, and 

neutron population grows at time scales equivalent to its lifetime.  Due to the 

fact that the reactivity isn’t a constant, an exponential approximation isn’t exact 

and eventually smaller time steps are required to accurately map out the 

behavior of the system.  The error control scheme will change the step size in 

order to compensate for this.  The relationship between the rate of growth and 

error control activity may provide some insight on this prediction.  The rate is 

given by 

  log ( )
d P

P t
dt P




. (118) 

The code generates a list of all populations of interest with their associated 

timestamps as the algorithm runs.  This information can be used to create an 

approximation using a backwards finite difference. 

 1k k

k

n nP
P n t








 (119) 

This approximation is applied across the compilation of data produced by the 

code. 
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Figure 27: Rate of Growth Prompt Criticality 1 

 

The minor hiccup in the graph was created by the error control scheme 

shifting to another time step.  This interaction caused the finite difference poorly 

approximate the derivative.  However, the goal was to examine the shape of the 

graph and compare it to the activity of the error control scheme.  The error 

control scheme seems to use small time steps early where precursors determine 

the growth rate.  Additionally, the error control scheme favors small time steps 

later when the growth rate is large and increasing.   

Finally, this analysis is repeated with strict tolerances in order to try and 

mitigate some of the error found in this case study.  Additionally, the time of 

interest is increased to 21 seconds in order to further analyze what happens after 

prompt criticality.  The following tolerances in Table 21 are used. 
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Table 21: Error Control Parameters Used for Prompt Criticality Test 

it  0.001 

relTolhalf 
91 10  

relToldoub 
101 10  

 

Using those parameters resulted in 9,512 iterations of error control, or almost 

30,000 passes of the algorithm.  This is compared to the 21,000 passes that would 

have occurred if error control was not used.  Unfortunately, this is a rare example 

(associated with long runs) where error control ends up hindering the 

performance more than it helps.  However, error control still is useful here for 

showing approximately what order of magnitude of step size is necessary in order 

to achieve certain accuracy goals.  As before, the accumulation of error is of 

interest.  The first 15 seconds are compared with the previous test case. 

 

Figure 28: Prompt Criticality Error Control Test 2 
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The overall error is better than the previous test, but only by a couple of 

orders of magnitude.  The tolerance is once again larger than the total 

accumulated error, but less than the relative error divided by the number of 

iterations.  Next the step size as a function of time is analyzed to observe where 

the error control tolerances are met. 

 

Figure 29: Error Control Step Sizes Prompt Criticality 2 

 

The result is similar to the previous case, with overall smaller step sizes.  

Additionally, another reduction of step size occurs after the 15 second mark.  

This supports our claim that shorter step sizes must be used well after prompt 

criticality to accurately map the behavior of the problem.  Finally, the growth 

rate of the neutrons is observed in Figure 30. 
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Figure 30: Rate of Growth Prompt Criticality 1 

 

With smaller step sizes, there are no longer any blatant discontinuities from 

our finite difference.  Comparing this figure with the time stamps of step size 

changes, the observations of our error control scheme are confirmed; more steps 

are needed for precursor dominated regions and regions with high changes in 

growth rate.  
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VII. CONCLUSION 

 

A method using exponential moment methods in order to solve the PRKEs 

was designed.  The goals were oriented towards two major categories, accuracy 

and performance.  Exponential moment methods provide opportunity for 

improvements in accuracy and performance, providing our main motivation for 

exploring their applications.  The features presented within our method were 

designed to progress towards one or both of these categories.  The algorithm was 

coded in FORTRAN in order to provide a platform for testing.  Test cases were 

designed to evaluate both the algorithm as a whole and individual design features 

provided by the algorithm.   

For our accuracy oriented goals, a series of verification tests were designed.  

Our results show that our algorithm converges to the correct value for the cases 

tested and discussed.  The designed error control scheme was also tested for 

verification purposes.  Solutions provided by the error control scheme produced 

relative errors less than the tolerance per iteration in our test cases.   

Our performance based goals, convergence rate and cost analysis tests were 

used.  The rate of convergence of the base algorithm depends on the test case 

varying from third to fourth order.  Our sinusoidal suite can provide performance 

of similar caliber with well selected polynomial approximations.  Poor polynomial 

approximations still converged to the correct value, but at a much slower rate.  
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In order to improve performance, the error control scheme was designed to 

minimize computational costs given an accuracy goal.  The error control scheme 

was successful in most cases; however, it was noted that the accuracy goal was 

only effective for individual iterations.  For longer runs, accumulation of error 

can jeopardize the accuracy goal.  The performance of the error control scheme is 

a function of selected tolerances and starting conditions.  For many cases, the 

error control scheme was effective in reducing the total number of calculations 

taken.  However, the overall design of the error control scheme is crude and 

inflexible, and many aspects can benefit from further improvement. 

VII.A. Future Work 

The process of design and testing of our method revealed several opportunities 

for improvement of our algorithm. 

• Our approximation for the neutron density is exponential in form with 

two degrees of freedom.  The approximation was sufficient in 

converging to the correct value with appropriate step sizes and fulfilled 

the goal of producing solutions that are strictly positive.  One feature 

of our exponential approximation is positive concavity.  Due to the fact 

that the outer constant, a , is always positive, the second derivative of 

our approximation will also always be positive.  Moment matching is 

then used to fit the exponential approximation.  For situations where 

the neutron population has negative concavity, perhaps this leads to 

preventable accumulation of error.  Although moment matching is 
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effective at mitigating much of this error, perhaps a third degree of 

freedom would provide additional flexibility.  However, the 

repercussions on the derivation of our algorithms have not been 

considered.  One repercussion that can easily be imagined is that a 

form that encorporates negative concavity will allow negative solutions 

without some strict conditions.  The proposed form for testing could 

perhaps be 

 

 ( ) tn t a be  . (120) 

• The effects of accumulation of error and the relationship to reactivity 

have been somewhat observed throughout this work.  In general, it was 

observed that moments that favored more reactivity early and less at 

later times would accumulate negative error.  The reverse is true as 

well.  Additionally, in cases where reactivity varies from positive to 

negative resulted in the normal sources of accumulating error to 

mitigate each other.  These observations may provide a starting point 

for some research of a higher ordered method. 

• The properties of the error control scheme reveal crude design features 

that can be improved.  The method of estimating error is somewhat 

arbitrary and can possibly be fooled by certain test cases where the 

estimation is relatively low compared to the actual error.  This may be 

the case in prompt criticality, but further investigation is required to 

warrant this conclusion.  Perhaps a higher ordered method of error 

estimation would improve the ability of our error control scheme to 

make decisions correctly against the provided tolerances.  One method 

is taking a Picard iteration using the exponential approximation once 
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the constants are known.  Additionally, the error control scheme has a 

poor adaptive structure.  Any changes in step size are done by factors 

of 2.  The resulting step size can be far from optimal.  With a robust 

error estimation scheme, an algorithm can be created that selects 

optimal step sizes.  This improved algorithm would then just need a 

single tolerance in the form of an accuracy goal.  Such an improvement 

is well beyond the scope of this research. 

• The time step used for our approximation is also the time step used for 

approximating sinusoidal reactivity using polynomials.  Higher ordered 

polynomial approximations are useful for larger portions of the sinusoid 

where curvature becomes relevant.  Before the time step becomes large 

enough to benefit from this, the error is dominated by the original 

algorithm.  By separating these two factors, the sine can be 

approximated for a certain time step and many smaller time steps of 

that fitted polynomial can define the solution. 
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VIII. APPENDICES 

VIII.A. Picard Iteration for Improved Error Control 

After each pass of our algorithm, there is now have an estimate for the 

neutron population within our time step.  The estimation is given by the 

knowledge of a  and   within equation (5).  Our normal solution is to substitute 

these values into equation (23).  This method solves an approximation from the 

actual problem.  Knowing that (23) is a higher ordered approximation for 

neutron population than (5), one can solve the first Picard iteration, eliminating 

some of the higher ordered errors.  This method would be useful in an error 

control scheme.  In order to do so, equation (23) is substituted into (14) after 

solving for a  and  .  Using some exponential moment methods, one can reduce 

the equation to arithmetic.  Then the precursors can be compared to the original 

algorithm and relative errors can be calculated.  A further extension of this would 

be substituting the precursors back in and solving for neutrons again.  This 

process can be repeated for multiple Picard iterations.  Unfortunately, the testing 

and feasibility of using Picard iterations for the purpose of error control was 

beyond the scope of this project.  In order to give some insight to this technique, 

the solution will be given of calculating the precursors to a higher order by 

substituting (23) into (14).  The solution is untested, but may give a decent 

starting point for future works. 
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  The precursors are divided into 5 major integrals that need to be converted 

into moment functions.  Rather than showing the lengthy process the untested 

solutions of each integral will be given. 
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Thus, one can have a higher order estimate of the precursor population using 

              1 2 3 4 50 it
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VIII.B. FORTRAN Code 

A few notes about the FORTRAN code: 

• The FORTRAN code was originally designed to just run the algorithm.  The additional testing required for add 

on modules littered some of the overhead structure. 

• Some variables are poorly named (mainly del_T, this is delta T or t ).  Some temporary variables are used in 

order to ease some computation.  This may create some difficulty when following the code. 

• Some methods that were either rejected or improved upon still remain in the code in the form of comments.  

These were used for reference and testing purposes. 

VIII.B.1 Main 

Program RPK 
!*************************************************************************************** 
!Program: main execution  
!Purpose:   Calculate n(del_T) and c_i(del_T) given inital n and C_i,  
!           and source/reactivity info 
!Created: 16 Nov 2011 
!Version: 1.2 
!*************************************************************************************** 
 
Use User_Data, Only:    Get_Working_Directory, & 
                        & Get_Problem_Data, & !N(0), C_i(0), S(0), rho(0), del_T, betai, Ci 
                        & Source_and_Reactivity_Calc 
Use SolutionSteps, Only:  SolveB, SolveAlpharobust, SolveA, SolveNC 
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Use Finalize, Only: RecordSolution, Initial_Condition_Reset 
Use Variables, Only: Test, stepcount, Directory, OutputFolder, & 
                    & currentstep, N0, C_i0, Ndt, C_idt, del_T, & 
                    & EC, relTolhalf, relToldoub, Tfinal, Ntest, & 
                    & currenttime, C_i0O, S_CoeffO, rho_CoeffO, & 
                    & N0O, S_Coeff, rho_Coeff, del_Tmin 
Use Kinds, Only: dp 
 
Implicit None 
 
    Character(120)::OutputFile 
    Integer :: i 
     
    !For sampling in EC 
    Real :: SampleT 
    Logical :: ECsampleSwitch =.True. 
    Integer:: ECsamplei 
     
     
!Setting up problem 
 
    Call Get_Working_Directory 
    Call Get_Problem_Data 
 
!Done setting up problem 
 
!Creating the output files for recording solution 
 
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'n.txt' 
    Open(unit=27, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c1.txt' 
    Open(unit=21, file=OutputFile) 
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    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c2.txt' 
    Open(unit=22, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c3.txt' 
    Open(unit=23, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c4.txt' 
    Open(unit=24, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c5.txt' 
    Open(unit=25, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c6.txt' 
    Open(unit=26, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'time.txt' 
    Open(unit=28, file=OutputFile) 
     
    !Specialty Output 
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'n10.txt' 
    Open(unit=29, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'c610.txt' 
    Open(unit=30, file=OutputFile) 
     
    OutputFile = Trim(Directory)//Trim(OutputFolder)//'time10.txt' 
    Open(unit=31, file=OutputFile) 
 
!Done creating output files 
 
!Write initial conditions in output 
Write(28,*)"0" 
Write(27,*)N0 
Write(21,*)C_i0(1) 
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Write(22,*)C_i0(2) 
Write(23,*)C_i0(3) 
Write(24,*)C_i0(4) 
Write(25,*)C_i0(5) 
Write(26,*)C_i0(6) 
 
Write(29,*)N0 
Write(30,*)C_i0(6) 
Write(31,*)"0" 
!Done writing initial conditions in output 
 
if(EC)then 
currentstep=1 
currenttime=0._dp 
if(ECsampleSwitch)SampleT=Tfinal/200._dp 
if(ECsampleSwitch)ECsamplei=1 
Do 
     
    N0O=N0 
    C_i0O=C_i0 
    rho_CoeffO=rho_Coeff 
    S_CoeffO=S_Coeff 
     
     
    !Solve for test value 
    del_T=del_T*2._dp 
     
    Call Source_and_Reactivity_Calc 
    Call SolveB 
        if(Test)write(*,*)"solved B" 
    Call SolveAlpharobust 
        if(Test)write(*,*)"solved alpha" 
    Call SolveA 
        if(Test)write(*,*)"solved A" 
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    Call SolveNC 
        if(Test)write(*,*)"solved NC" 
         
    Ntest=Ndt !Ntest is the full value 
    !Done solving test value 
     
    !Solve first of 2 steps 
    del_T=del_T/2._dp !Original del_T 
    !currenttime=currenttime+del_T 
     
    Call Source_and_Reactivity_Calc 
    Call SolveB 
        if(Test)write(*,*)"solved B" 
    Call SolveAlpharobust 
        if(Test)write(*,*)"solved alpha" 
    Call SolveA 
        if(Test)write(*,*)"solved A" 
    Call SolveNC 
        if(Test)write(*,*)"solved NC" 
     
    !if(currenttime>=Tfinal)Call RecordSolution 
!     
!    Write(28,*)currenttime 
!    Write(27,*)Ndt 
!    Write(21,*)C_idt(1) 
!    Write(22,*)C_idt(2) 
!    Write(23,*)C_idt(3) 
!    Write(24,*)C_idt(4) 
!    Write(25,*)C_idt(5) 
!    Write(26,*)C_idt(6) 
     
    !if(currenttime>=Tfinal)Exit 
     
    Call Initial_Condition_Reset 
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    !Done solving first of 2 steps 
     
    !Solve second step 
     
    !currenttime=currenttime+del_T 
     
    Call Source_and_Reactivity_Calc 
    Call SolveB 
        if(Test)write(*,*)"solved B" 
    Call SolveAlpharobust 
        if(Test)write(*,*)"solved alpha" 
    Call SolveA 
        if(Test)write(*,*)"solved A" 
    Call SolveNC 
        if(Test)write(*,*)"solved NC" 
     
!    if(currenttime>=Tfinal)Call RecordSolution 
!     
!    Write(28,*)currenttime 
!    Write(27,*)Ndt 
!    Write(21,*)C_idt(1) 
!    Write(22,*)C_idt(2) 
!    Write(23,*)C_idt(3) 
!    Write(24,*)C_idt(4) 
!    Write(25,*)C_idt(5) 
!    Write(26,*)C_idt(6) 
!     
!    if(currenttime>=Tfinal)Exit 
     
    Call Initial_Condition_Reset 
     
    !Done Solving second step 
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    !Error control 
    if((Abs(Ntest-Ndt)/Ndt)>relToldoub .AND. (Abs(Ntest-Ndt)/Ndt)<relTolhalf)then  !del_T is just 
right 
        currenttime=currenttime+(2._dp*del_T) 
        if(currenttime>=Tfinal)Call RecordSolution 
         
        Write(28,*)currenttime 
        Write(27,*)Ndt 
        Write(21,*)C_idt(1) 
        Write(22,*)C_idt(2) 
        Write(23,*)C_idt(3) 
        Write(24,*)C_idt(4) 
        Write(25,*)C_idt(5) 
        Write(26,*)C_idt(6) 
         
        if(ECsampleSwitch)then 
            if(currenttime>(SampleT*ECsamplei))Write(29,*)Ndt 
            if(currenttime>(SampleT*ECsamplei))Write(30,*)C_idt(6) 
            if(currenttime>(SampleT*ECsamplei))Write(31,*)currenttime 
            if(currenttime>(SampleT*ECsamplei))ECsamplei=ECsamplei+1 
        end if 
         
        if(currenttime>=Tfinal)Exit 
    end if 
     
    if((Abs(Ntest-Ndt)/Ndt)<=relToldoub)then  !del_T is too small, but good answer 
        currenttime=currenttime+(2._dp*del_T) 
        if(currenttime>=Tfinal)Call RecordSolution 
         
        Write(28,*)currenttime 
        Write(27,*)Ndt 
        Write(21,*)C_idt(1) 
        Write(22,*)C_idt(2) 
        Write(23,*)C_idt(3) 
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        Write(24,*)C_idt(4) 
        Write(25,*)C_idt(5) 
        Write(26,*)C_idt(6) 
         
        if(ECsampleSwitch)then 
            if(currenttime>(SampleT*ECsamplei))Write(29,*)Ndt 
            if(currenttime>(SampleT*ECsamplei))Write(30,*)C_idt(6) 
            if(currenttime>(SampleT*ECsamplei))Write(31,*)currenttime 
            if(currenttime>(SampleT*ECsamplei))ECsamplei=ECsamplei+1 
        end if 
         
        if(currenttime>=Tfinal)Exit 
        del_T=del_T*2._dp 
    end if 
     
    if((Abs(Ntest-Ndt)/Ndt)>=relTolhalf)then !del_T is too large, bad answer. redo 
        del_T=del_T*.5_dp 
        !reset conditions 
        N0=N0O 
        C_i0=C_i0O 
        rho_Coeff=rho_CoeffO 
        S_Coeff=S_CoeffO 
    end if 
     
    if(del_T<del_Tmin)STOP "del_T min reached" 
     
!    if((Abs(Ndt-Ntest)/Ntest)<relToldoub)del_T=del_T*2._dp 
!    if((Abs(Ndt-Ntest)/Ntest)>relTolhalf)then 
!    currenttime=currenttime-(2._dp*del_T) 
!    del_T=del_T/2._dp 
!    N0=N0O 
!    C_i0=C_i0O 
!    rho_Coeff=rho_CoeffO 
!    S_Coeff=S_CoeffO 
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!    end if 
!    if(del_T<del_Tmin)STOP "del_T min reached" 
!    !Done Error controlling 
         
    currentstep=currentstep+1 
End do 
 
else !Error control off, regular operation 
 
!Looping through steps 
 
Do i=1,stepcount 
    !new time step defined here 
    currentstep=i 
     
    Call Source_and_Reactivity_Calc 
    Call SolveB 
        if(Test)write(*,*)"solved B" 
    Call SolveAlpharobust 
        if(Test)write(*,*)"solved alpha" 
    Call SolveA 
        if(Test)write(*,*)"solved A" 
    Call SolveNC 
        if(Test)write(*,*)"solved NC" 
    if(i .eq. stepcount)Call RecordSolution 
     
    Write(28,*)currentstep*del_T 
    Write(27,*)Ndt 
    Write(21,*)C_idt(1) 
    Write(22,*)C_idt(2) 
    Write(23,*)C_idt(3) 
    Write(24,*)C_idt(4) 
    Write(25,*)C_idt(5) 
    Write(26,*)C_idt(6) 
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    if(MOD(currentstep*10,stepcount)==0)Write(29,*)Ndt 
    if(MOD(currentstep*10,stepcount)==0)Write(30,*)C_idt(6) 
    if(MOD(currentstep*10,stepcount)==0)Write(31,*)currentstep*del_T 
     
    !need previous time step length to go in here for correct condition reset 
     
    Call Initial_Condition_Reset 
     
End Do 
 
End if 
!Done looping 
 
 
End Program RPK 

 

VIII.B.2 Variables 

Module Variables 
    !Global Variables 
    Use Kinds, Only: dp 
    Implicit None 
     
    !************************************ 
    !create logicals for internal tests or break up modules for testing individual sections 
    !or both? 
    !************************************ 
    Logical             :: Test = .False. 
    Logical             :: Sinrho 
    Logical             :: EC           !Error Control 
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    !Global Characters 
    Character(len=120)  :: directory    !directory of the program 
    Character(len=60)   :: OutputFolder='\Output\' 
    Character(len=60)   :: InputFolder='\Input\' 
    Character(len=60)   :: GroupData='GroupInfo.txt' 
    Character(len=60)   :: ProbData='ProbData.txt' !inital problem data (neutrons, time, etc) 
    Character(len=60)   :: PrecursorData='PrecursorData.txt' 
    Character(len=60)   :: SourceData='SourceData.txt' 
    Character(len=60)   :: RhoData='RhoData.txt' 
    Character(len=60)   :: ErrorControl='ErrorControl.txt' 
     
    !Global Integers 
    Integer :: n_simpsons               !Interval Number for Simpson's Rule (must be even) 
    Integer :: b_integral               !subsections for double B0 and B1 integrals 
    Integer :: TotalGroups              !Number of delayed neutron groups 
    Integer :: P_S                      !Order of Source Polynomial (and Sp) 
    Integer :: P_rho                    !Order of Reactivity Polynomial (and dkp) 
    Integer :: stepcount                !Number of timesteps 
    Integer :: currentstep 
                                         
     
    !Allocatable global reals 
 Real(dp), Allocatable :: beta_i(:)  !Neutron group birth fraction 
 Real(dp), Allocatable :: lambda_i(:)!Neutron Group decay constant 
 Real(dp), Allocatable :: C_i0(:)    !Inital Precursor amount 
 Real(dp), Allocatable :: C_idt(:)   !Final Precursor amount 
 Real(dp), Allocatable :: S_coeff(:) !Coefficients for source term 
 Real(dp), Allocatable :: rho_coeff(:)!Coefficients for reactivity 
 Real(dp), Allocatable :: Sp_coeff(:)!Coefficients for source/dt 
 Real(dp), Allocatable :: dkp_coeff(:)!Coefficients for d_kappa/dt 
 Real(dp), Allocatable :: SourceMom(:)!Moments used in source term 
 Real(dp), Allocatable :: rho_sin(:) !rho constants for sin function 
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 !Global Reals 
 Real(dp) :: N0                      !Initial Neutron Concentration 
 Real(dp) :: Ndt                     !Final Neutron Concentration 
 Real(dp) :: Ndtapprox               !Approximate Final Neutron Concentration 
 Real(dp) :: del_T                   !Timestep of interest 
 Real(dp) :: N_Lifetime              !Reproductive lifetime of neutron 
 Real(dp) :: beta_Tot                !Sum of beta_i (delayed neutron frac) 
 Real(dp) :: rho_bar                 !average reactivity in time scale of interest 
 Real(dp) :: kappa_bar                
 Real(dp) :: B0                      !B0 used for solving a and alpha 
 Real(dp) :: B1                      !B1 used for solving a and alpha 
 Real(dp) :: a                       !outer coefficient for neutron approximation 
 Real(dp) :: alpha                   !exponential coefficient for neutron approx 
 Real(dp) :: kbdt                    !kappa bar times delta t 
  
 !Global Reals used in error control 
  
 Real(dp) :: Tfinal                  !Final Time 
 Real(dp) :: del_Tmin                !Minimum size for del_T 
 Real(dp) :: relTolhalf              !Threshold for changing step size cut in half 
 Real(dp) :: relToldoub              !Threshold for changing step size double 
 Real(dp) :: Ntest                   !Neutron Concentration test variable 
 Real(dp) :: currenttime             !Current time 
 Real(dp) :: N0O                     !Original N 
  
 Real(dp), Allocatable :: C_i0O(:)       !Original C_i0 
 Real(dp), Allocatable :: S_coeffO(:)    !Original Coefficients for source term 
 Real(dp), Allocatable :: rho_coeffO(:)  !Original Coefficients for reactivity 
  
  
End Module Variables 
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VIII.B.3 User Data 

Module User_Data 
!Handles program set up and variable input 
    Implicit None 
    Private 
    Public Get_Working_Directory, & !Done 
           & Get_Problem_Data, & !N(0), C_i(0), S(0), rho(0), del_T, betai, Ci 
           Source_and_Reactivity_Calc 
            
    Contains 
     
Subroutine Get_Working_Directory 
    Use Variables, Only: Directory 
    Implicit None 
    Integer:: errortemp 
    Character(len=1) check 
     
     
    Open(Unit=20, File='Directory.txt', IOSTAT=errortemp) 
    If (errortemp .ne. 0) Then 
        !File does not exist, get directory 
        Write(*,*) 'Please specify directory.' 
     Read(*,*) directory 
 Else 
     !Check to see if directory is valid 
     Read(20,*,IOSTAT=errortemp) directory 
     If(errortemp==0) Then 
         Write(*,*) 'Last directory used was:',directory 
  Do 
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   Write(*,*) 'Is this directory still valid? (Y,N)' 
   Read(*,*) check 
   Select Case (check) 
    Case ('Y','y') 
     EXIT 
    Case ('N','n') 
     Write(*,*) 'Please specify directory.' 
     Read(*,*) directory 
     REWIND(20) 
     Write(20,*) directory 
     EXIT 
    Case Default 
     Write (*,*) "Please choose 'Y' or 'N' only." 
     CYCLE 
   End Select 
  End Do 
     Else 
  Write(*,*) 'Please specify directory.' 
  Read(*,*) directory 
  Write(20,*) directory 
     End If 
    End If 
    Close(20) 
End Subroutine Get_Working_Directory 
         
 
Subroutine Get_Problem_Data 
    Use Kinds, Only: dp 
    Use Variables, Only:    InputFolder, Directory, ProbData, & 
                            & TotalGroups, C_i0, PrecursorData, & 
                            & N0, del_T, N_Lifetime, SourceData, & 
                            & RhoData, P_S, P_rho, S_Coeff, &  
                            & rho_Coeff, GroupData, beta_i, lambda_i, & 
                            & beta_Tot, rho_bar, n_simpsons, & 
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                            & kappa_bar, dkp_coeff, Sp_coeff, C_idt, & 
                            & SourceMom, b_integral,  & 
                            & stepcount, currentstep, rho_sin, sinrho, & 
                            & ErrorControl, EC, Tfinal, relTolhalf, relToldoub, & 
                            & C_i0O, S_CoeffO, rho_CoeffO, del_Tmin 
                             
    !Use Helper, Only: SimpsonsInt 
    Use RPKFunctions, Only: rhoFunc, SolveRhoBar 
                             
    Implicit none 
     
    Character(120)::WorkingFile 
    Integer::i 
     
    !Gather problem Data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//ProbData 
     
    Open(20,file=WorkingFile) 
    Read(20,*)N0            !Initial Neutron Conc 
    Read(20,*)del_T         !Timestep size 
    Read(20,*)stepcount     !Number of timesteps 
!    Read(20,*)N_Lifetime    !Neutron Reproductive Life Time 
!    Read(20,*)n_simpsons 
!    Read(20,*)b_integral 
    Close(20) 
     
    !Gather Group Data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//GroupData 
     
    Open(20, file=WorkingFile) 
    Read(20,*)TotalGroups 
    Allocate(beta_i(TotalGroups)) 
    Allocate(lambda_i(TotalGroups)) 
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    Do i=1,TotalGroups 
        Read(20,*)beta_i(i),lambda_i(i) 
    End Do 
     
    beta_Tot=sum(beta_i) 
     
    !Calculate NLifetime instead of using a preset amount (optional) 
    N_Lifetime = 12.7_dp*beta_Tot + 3._dp*(1._dp - beta_Tot)*(10._dp)**-5; 
    N_Lifetime = 3._dp*(10._dp)**-5; 
     
    Close(20) 
     
    !Gather Precursor inital data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//PrecursorData 
     
    Open(20,file=WorkingFile) 
    Allocate(C_i0(TotalGroups)) 
    Allocate(C_i0O(TotalGroups)) 
    Allocate(C_idt(TotalGroups)) 
     
    Do i=1,TotalGroups 
        Read(20,*)C_i0(i) 
    End Do 
     
    Close(20) 
     
    !Gather Source Data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//SourceData 
     
    Open(20,file=WorkingFile) 
    Read(20,*)P_S 
    Allocate(S_Coeff(0:P_S)) 
    Allocate(S_CoeffO(0:P_S)) 
    Allocate(SourceMom(0:P_S)) 
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    Do i=0,P_S 
        Read(20,*)S_Coeff(i) 
    End Do 
    Close(20) 
     
    !Gather Rho Data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//RhoData 
     
    Open(20,file=WorkingFile) 
    Read(20,*)P_rho 
     
     
    If(P_rho==-1)then 
        Sinrho = .True. 
        Allocate(rho_sin(1:4)) 
        Do i=1,4 
            Read(20,*)rho_sin(i) 
        End Do 
        P_rho=rho_sin(4) 
        Allocate(rho_Coeff(0:P_rho)) 
        Allocate(rho_CoeffO(0:P_rho)) 
    Else 
        Sinrho= .False. 
        Allocate(rho_Coeff(0:P_rho)) 
        Allocate(rho_CoeffO(0:P_rho)) 
        Do i=0,P_rho 
            Read(20,*)rho_Coeff(i) 
        End Do 
    End If 
         
    Close(20) 
     
    currentstep=0 
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    !Gather EC Data 
    WorkingFile = Trim(Directory)//Trim(InputFolder)//ErrorControl 
     
    Open(20,file=WorkingFile) 
     
    Read(20,*)EC 
     
    if(EC)then 
        Read(20,*)del_T 
        Read(20,*)Tfinal 
        Read(20,*)relTolhalf 
        Read(20,*)relToldoub 
        Read(20,*)del_Tmin 
    End if 
     
     
End Subroutine Get_Problem_Data 
 
Subroutine Source_and_Reactivity_Calc 
     
    Use Kinds, Only: dp 
    Use Variables, Only:    del_T, N_Lifetime, P_S, P_rho,  &  
                            & rho_Coeff, S_Coeff, & 
                            & beta_Tot, rho_bar,  & 
                            & kappa_bar, dkp_coeff, Sp_coeff, & 
                            & stepcount, currentstep, Sinrho, & 
                            & rho_sin 
    Use Sinpoly, Only: SinReactivity 
                             
    !Use Helper, Only: SimpsonsInt 
    Use RPKFunctions, Only:  SolveRhoBar 
                             
    Implicit none 
     



130 

 

    Character(120):: WorkingFile 
    Integer:: i 
    Real(dp):: currenttime 
     
    currenttime= Real(currentstep,dp)*del_T 
     
    If(Sinrho)then 
        Call SinReactivity (rho_sin(1),rho_sin(2),rho_sin(3), 0._dp, del_T, P_rho) 
    End if 
     
    !Solve for rho_bar 
    !rho_bar=SimpsonsInt(rhoFunc,n_simpsons,0._dp,del_T)/del_T 
    rho_bar=SolveRhoBar(0._dp,del_T) 
     
    !Solve for kappa_bar 
    kappa_bar=(beta_tot-rho_bar)/N_lifetime 
     
    !Solve for d_kappa Coeff and Sp coeff 
    if(.not. allocated(dkp_Coeff))Allocate(dkp_Coeff(0:P_rho)) 
    if(.not. allocated(sp_Coeff))Allocate(sp_Coeff(0:P_S)) 
     
    dkp_Coeff=rho_coeff 
     
    dkp_Coeff(0)=dkp_Coeff(0)-rho_bar 
     
    Do i=0,P_rho 
        dkp_Coeff(i)=dkp_Coeff(i)/N_Lifetime 
    End Do 
     
    sp_Coeff=S_Coeff 
     
    Do i=1,P_rho 
        dkp_Coeff=dkp_Coeff*(del_T**(Real(i,dp))) 
    End Do 
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    Do i=1,P_S 
        sp_Coeff=sp_Coeff*(del_T**(Real(i,dp))) 
    End Do 
     
     
    !Equilibrium condition for given N(0) 
     
!        N0=1.0E8_dp 
!        Write(*,*)"C1: ",beta_i(1)*N0/(lambda_i(1)*N_Lifetime) 
!        Write(*,*)"C2: ",beta_i(2)*N0/(lambda_i(2)*N_Lifetime) 
!        Write(*,*)"C3: ",beta_i(3)*N0/(lambda_i(3)*N_Lifetime) 
!        Write(*,*)"C4: ",beta_i(4)*N0/(lambda_i(4)*N_Lifetime) 
!        Write(*,*)"C5: ",beta_i(5)*N0/(lambda_i(5)*N_Lifetime) 
!        Write(*,*)"C6: ",beta_i(6)*N0/(lambda_i(6)*N_Lifetime) 
 
    !Done 
     
     
     
     
End Subroutine Source_and_Reactivity_Calc 
     
     
     
 
End Module User_Data 
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VIII.B.4 Solution Steps 

Module SolutionSteps 
!Handles program major steps towards Solution 
    Implicit None 
    Private 
    Public SolveB 
            
    Contains 
     
!Subroutine SourceMoments !Solves for Moments for Source Term 
!    Use Kinds, Only: dp 
!    Use Variables, Only: P_S, SourceMom, kappa_bar, del_T 
!    Use M0Functions, Only: M0 
!    Use Helper, Only: nStart 
!    Implicit None 
!    Integer:: StartingOrder, i, changeNum 
!    Real(dp):: x, CurrentMoment 
!     
!    x=kappa_bar*del_T 
!     
!    SourceMom(0)=M0(x) 
!     
!    i=1 
!     
!    Do 
!    !Forwards recurrence 
!        if(i>P_S)Exit 
!        if(i>x)Exit 
!        SourceMom(i)= (1._dp-Real(i,dp)*SourceMom(i-1))/x 
!        i=i+1 
!         
!    End Do 
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!     
!    changeNum=i 
!     
!    if(P_S > x)then 
!    !Solve for starting order of moment for backwards recurrence 
!    StartingOrder = nStart(P_S,x) 
!     
!    !Solve for Moment at StartingOrder M_StartingOrder(x) 
!     
!    CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp)) 
!     
!    Do i= StartingOrder-1, P_S+1, -1 
!     
!        CurrentMoment = (1._dp-x*CurrentMoment)/((Real(i,dp)+1._dp) 
!         
!    End Do 
!     
!    SourceMom(P_S) = (1._dp-x*CurrentMoment)/((Real(i,dp)+1._dp) 
!     
!    Do i = P_S-1, changeNum, -1 
!     
!        SourceMom(i) = (1._dp-x*SourceMom(i+1))/((Real(i,dp)+1._dp) 
!         
!    End Do 
!     
!    End if 
!    !******************************************** 
!    !Put all these goodies into M0functions to be used for any order anytime? 
!    !******************************************** 
!     
!End Subroutine 
     
     
Subroutine SolveB    !Solves for B1 and B0 
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    Use Kinds, Only: dp 
    Use Variables, Only:    N0, kappa_bar, del_t, c_i0, lambda_i, sp_coeff, & 
                            & B0, B1, TotalGroups,kbdt 
    Use RPKFunctions, Only: SFunc 
    Use MomentFunctions 
    Implicit None 
    Integer::i 
    Real(dp),Allocatable::temp1(:),temp2(:),temp3(:) 
     
    Allocate(temp1(1)) 
    Allocate(temp2(2)) 
    Allocate(temp3(3)) 
     
    kbdt = kappa_bar*del_t 
    temp1(1)=kbdt 
     
    !Solve for B0 
     
    B0=N0*M(0,1,temp1) 
     
    temp2(1)=kbdt 
     
    Do i=1,TotalGroups 
        temp2(2)=lambda_i(i)*del_t 
        B0 = B0 + c_i0(i)*lambda_i(i)*del_t*M(0,2,temp2) 
    End do 
     
    Do i=0,P_S 
        B0=B0 + ((sp_coeff*del_t*M(i+1,1,temp1))/Real((i+1),dp)) 
    End Do 
     
    !Solve for B1 
     
    B1=N0*M(1,1,temp1) 
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    Do i=1,TotalGroups 
        temp2(2)=lambda_i(i)*del_t 
        B1 = B1 + c_i0(i)*lambda_i(i)*del_t*M(1,2,temp2) 
    End do 
     
     
    Do i=0,P_S 
        B1=B1 + ((sp_coeff*del_t*M(i+2,1,temp1))/(Real((i+2),dp)*Real((i+1),dp))) 
    End do 
     
End Subroutine SolveB 
     
     
     
!Subroutine SolveB  !Solves for B1 and B0 
!    Use Kinds, Only: dp 
!    Use Variables, Only:    N0, kappa_bar, del_t, c_i0,, lambda_i, S_coeff, & 
!                            & b_integral, B0, B1, TotalGroups 
!    Use RPKFunctions, Only: SFunc 
!    Use MomentFunctions 
!    Implicit None 
!    Integer::i 
!    Real(dp), Allocatable :: innerint(:), outerint(:), tempint(:) 
!    Real(dp):: stepsize, temptime 
!    Real(dp), Allocatable :: temp1(:),temp2(:),temp3(:) 
!     
!    !******************************************************* 
!    !Solve the double integral using trapizodal rule (for B1), should this be done with exp 
moment func? 
!    !******************************************************* 
!     
!    Allocate(innerint(0:b_integral)) 
!    Allocate(outerint(0:b_integral)) 
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!    Allocate(tempint(0:b_integral)) 
!     
!    innerint(0)=0 
!    outerint(0)=0 
!    tempint(0)=0 
!     
!    stepsize = del_t/b_integral 
!     
!    !Need to fix the SFunc function... include source moments whoops.... 
!     
!    Do i=1, b_integral 
!        temptime = Real(i,dp)*stepsize 
!        tempint(i) = SFunc(temptime)*exp(kappa_bar*temptime) 
!        innerint(i)=innerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp 
!    End Do 
!     
!    Do i=1,b_integral 
!        temptime = Real(i,dp)*stepsize 
!        tempint(i)=innerint(i)*exp(-1._dp*kappa_bar*temptime) 
!        tempint(i)=tempint(i)*(1._dp-(temptime/del_t))/del_t 
!        outerint(i)=outerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp 
!    End Do 
!     
!    !Solve for B1 
!     
!    B1=outerint(b_integral) + N0*M(1,1,(kappa_bar*del_t)) 
!     
!    Allocate(temp(2)) 
!     
!    temp(1)=kappa_bar*del_t 
!     
!    Do i=1,TotalGroups 
!        temp(2)=lambda_i(i)*del_t 
!        B1=B1 + c_i0(i)*lambda_i(i)*del_t*M(1,2,temp) 
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!    End Do 
!     
!    !Solve the double integral using trapizodal rule (for B0) 
!     
!    Do i=1,b_integral 
!        temptime = Real(i,dp)*stepsize 
!        tempint(i)=innerint(i)*exp(-1._dp*kappa_bar*temptime)/del_t 
!        outerint(i)=outerint(i-1) + stepsize*(tempint(i-1)+tempint(i))/2._dp 
!    End Do 
!     
!    !Solve for B0 
!     
!    B0=outerint(b_integral) + N0*M(0,1,(kappa_bar*del_t)) 
!     
!     
!    Do i=1,TotalGroups 
!        temp(2)=lambda_i(i)*del_t 
!        B0=B0 + c_i0(i)*lambda_i(i)*del_t*M(0,2,temp) 
!    End Do 
!     
!End Subroutine 
 
Subroutine SolveAlphaA !Solves for alpha and a 
    Use Kinds, Only: dp 
    Use Variables, Only: a, alpha, del_t, B0 
    Use RPKFunctions, Only: fadtFunc 
    Use Helper, Only: NewtonsMet 
    Implicit None 
    !Note: Tol and guess are arbitraily selected, need better guess (bisect?) 
    alpha = NewtonsMet(fadtFunc,1000,1._dp,.0001_dp,.01_dp)/del_t 
 
    a = B0/A0Func(alpha*del_t) 
 
End Subroutine 
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Subroutine SolveAlphaAExact 
    Use Kinds, Only: dp 
    Use RPKFunctions, Only: fadtFunc, dA1func, dA0func 
    Use Variables, Only: del_t, P_rho, dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime ,a, alpha, & 
                        & B0, B1 
    Implicit None 
    Real(dp)::current,absTol,slope,next, dA0, dA1 
    Integer::maxiter, i 
    !Note: Tol and guess are arbitraily selected, need better guess (bisect?) 
     
    current=1._dp   !initial guess 
    maxiter=1000    !max num of iterations 
    absTol=.0001_dp !absolute Tol. 
     
    !********************************************************** 
    !is this solution wrong? check derivatives 
    !perhaps above method would be more reliable 
    !********************************************************** 
     
     
    Do i=1,maxiter 
        slope = B0*dA1func(current) - B1*dA0func(current)   
        next=current-(fadtFunc(current)/slope) 
        if(abs(fadtFunc(next)<absTol)alpha=next 
        if(abs(fadtFunc(next)<absTol)Exit 
        current=next 
        if(i==maxiter)STOP "max iterations reached on newton's method" 
    End Do 
         
     
End Subroutine 
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Subroutine SolveAlphaAFalsePosition 
 
!********************************************* 
!how do I determine 2 good starting points? 
!********************************************* 
 
    Use Kinds, Only: dp 
    Use RPKFunctions, Only: fadtFunc, dA1func, dA0func 
    Use Variables, Only: del_t, P_rho, dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime ,a, alpha, & 
                        & B0, B1 
    Implicit None 
    Real(dp)::current,absTol,pos1,pos2, slope, temp 
    Integer::maxiter, i 
     
    current=1._dp   !initial guess 
    maxiter=1000    !max num of iterations 
    absTol=.0001_dp !absolute Tol. 
     
    !finding 2 positions hopefully 
     
    if(abs(fadtFunc(1))>abs(fadtFunc(-1)))then 
    pos1=1 
    else 
    pos1=-1 
    end if 
     
    if(fadtFunc(pos1)>0)then 
        if(fadtFunc(pos1-1)<fadtFunc(pos1))then 
            Do i=1, maxiter 
                if (fadtFunc(pos1-i)<0)then 
                    pos2=pos1-i 
                    exit 
                end if 
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            end do 
        else 
            Do i=1, maxiter 
                if (fadtFunc(pos1+i)<0)then 
                    pos2=pos1+i 
                    exit 
                end if 
            end do 
        end if 
    else 
        if(fadtFunc(pos1-1)>fadtFunc(pos1))then 
            Do i=1, maxiter 
                if (fadtFunc(pos1-i)>0)then 
                    pos2=pos1-i 
                    exit 
                end if 
            end do 
        else 
            Do i=1, maxiter 
                if (fadtFunc(pos1+i)>0)then 
                    pos2=pos1+i 
                    exit 
                end if 
            end do 
        end if 
    end if 
         
    !can be rewritten to be wayyyyy more efficient 
     
    do i=1,maxiter 
     
    slope = (fadtFunc(pos2)-fadtFunc(pos1))/(pos2-pos1) 
    temp=((-1*fadtFunc(pos1))/slope)+pos1 
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    if(abs(fadtFunc(temp))<absTol)then 
        alpha=temp 
        exit 
    end if 
     
    if(fadtFunc(temp)>0)then 
        if(fadtFunc(pos1)>0)then 
            pos1=temp 
        else 
            pos2=temp 
        end if 
    else 
        if(fadtFunc(pos1)<0)then 
            pos1=temp 
        else 
            pos2=temp 
        end if 
    end if 
     
    end do         
     
End Subroutine 
 
Subroutine SolveAlpharobust 
 Use Kinds, Only: dp 
    Use RPKFunctions, Only: fadtFunc 
 Use Helper, Only: BisectionStarter 
 Use Variables, Only: N_Lifetime, alpha, del_t 
 Use Rootsolvers, Only: Secant_Bisection 
     
    Implicit None 
 Real(dp)::aa,bb !bracketing points 
 Integer::errint 
 Real(dp)::alphadt 
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 Logical::rootWorked 
  
     
    !Find two starting points 
 Call BisectionStarter(f=fadtFunc,a=aa,b=bb,smalliter=N_Lifetime,maxIter=100) 
 !if(errint==2)STOP "max iterations during bracket finding" 
  
 rootWorked=Secant_Bisection(x=alphadt, f=fadtFunc, a=aa, b=bb) 
 if(rootWorked)then 
  alpha=alphadt/del_t 
 else 
  STOP"Failed to find root" 
 end if 
  
End Subroutine SolveAlpharobust 
  
  
  
Subroutine SolveA 
 Use Variables, Only: a, alpha, del_t, B0 
    Use RPKFunctions, Only: A0Func 
 Use Kinds 
 Implicit None 
  
 a = B0/A0Func(alpha*del_t) 
  
End Subroutine SolveA 
 
 
Subroutine SolveNC !Solves for neutron and precursor amounts at dt 
    Use Kinds, Only: dp 
    Use MomentFunctions 
    Use Variables, Only: Ndt, Ndtapprox, C_idt, C_i0, lambda_i, del_t, & 
                        & a, beta_i, N_Lifetime, alpha,, N0, kappa_bar, & 
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                        & P_S, sp_Coeff, TotalGroups, P_rho, dkp_coeff 
    Implicit None 
    Integer::i 
    Real(dp)::temp 
    Real(dp)::temp1(1),temp2(2) 
     
     
    !Solve for N(dt) approximation 
     
    Ndtapprox= a*exp(alpha*del_t) 
     
    !Solve for Precursor groups 
     
     Do i=1, TotalGroups 
        C_idt(i) = c_i0(i)*exp(-1._dp*lambda(i)*del_t) 
        temp1(1)=alpha*del_t+lambda_i(i)*del_t 
        C_idt(i)=C_idt(i) +a*beta_i(i)*del_t*exp(alpha*del_t)*M(0,1,temp1)/N_lifetime 
    End Do 
     
    !Solve for N(dt) 
    Allocate(tempM(2)) 
    temp1(1)=kappa_bar*del_t 
    Ndt=N0*exp(-1._dp*kappa_bar*del_t) 
     
    Do i=0, P_S 
        Ndt=Ndt+ sp_coeff(i)*del_t*M(i,1,temp1) 
    End Do 
     
    Do i= 1, TotalGroups 
        temp2(1)=kappa_bar*del_t-lambda_i(i)*del_t 
        temp2(2)=-1._dp*alpha*del_t-lambda_i(i)*del_t 
        temp=a*beta_i(i)*del_t*M(0,2,tempM)/N_lifetime 
  temp1(1)=kappa_bar*del_t-lambda_i(i)*del_t 
        temp=temp+c_i0(i)*M(0,1,temp1) 
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        Ndt=Ndt+ (temp*lambda_i(i)*del_t*exp(-1._dp*lambda_i(i)*del_t))) 
    End Do 
     
    temp1(1)=kappa_bar*del_t+alpha*del_t 
     
    Do i=0, P_rho 
        Ndt=Ndt+ a*del_t*dkp_Coeff(i)*exp(alpha*del_t)*M(i,1,temp1) 
    End Do 
     
         
 
End Subroutine SolveNC 
 
End Module SolutionSteps 

 

VIII.B.5 Finalize 

Module Finalize 
Implicit None 
 
    Private 
    Public RecordSolution, Initial_Condition_Reset 
 
Contains 
 
Subroutine RecordSolution 
Use Variables, Only: Ndt, Ndtapprox, C_idt, TotalGroups, directory, OutputFolder, alpha, a 
Implicit None 
Character(120)::WorkingFile 
Integer::i 
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WorkingFile = Trim(Directory)//Trim(OutputFolder)//'Output.txt' 
Open(unit=20, file=WorkingFile) 
 
Write(20,*)"alpha is: " 
Write(20,*)alpha 
Write(20,*)"a is: " 
Write(20,*)a 
 
Write(20,*)"Approximate N at dt:" 
Write(20,*)Ndtapprox 
 
Write(20,*)"N at dt:" 
Write(20,*)Ndt 
 
Write(20,*)"Precursor Groups (starting at 1):" 
 
Do i=1,TotalGroups 
    Write(20,*)C_idt(i) 
End Do 
 
End Subroutine RecordSolution 
 
Subroutine Initial_Condition_Reset 
    Use Variables, Only: Ndt,C_idt,N0,C_i0,P_rho, P_S, S_Coeff, rho_coeff,del_T,Sinrho, rho_sin 
    Use Kinds, Only: dp 
    Use Helper, Only: choose 
    Implicit None 
    Real(dp)::newrho(0:P_rho),newS(0:P_S) 
    Integer::i,j 
     
     
    N0=Ndt 
    C_i0=C_idt 
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    newrho=0._dp 
    newS=0._dp 
     
    !shift rho and source (needs del_T of previous) 
    if(Sinrho)then 
        rho_sin(2) = rho_sin(2)+ rho_sin(3)*del_T 
    else 
        Do i=0,P_rho 
            Do j=i,P_rho 
                newrho(i)=newrho(i)+rho_coeff(j)*(del_T**(j-i))*Real(choose(j,i),dp) 
            End do 
        End do 
    end if 
     
    Do i=0,P_S 
        Do j=i,P_S 
            newS(i)=newS(i)+S_coeff(j)*(del_T**(j-i))*Real(choose(j,i),dp) 
        End do 
    End do 
     
    rho_coeff=newrho 
    S_coeff=newS 
     
     
     
End Subroutine Initial_Condition_Reset 
 
End Module Finalize 
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VIII.B.6 Moment Functions 

Module M0_Functions 
    Use Kinds, Only: dp 
    Implicit None 
        
    Interface M0 
        Module Procedure M0Scalar 
        Module Procedure M0Vector 
    End Interface M0 
     
     
    Private 
    Public:: M0, RunM0Tests, M 
 
    Real(dp), Parameter:: Large = 39._dp 
    Real(dp), Parameter:: Small = 0.6931471805599453_dp ! Log[2] 
         
Contains 
     
 
Function M0Scalar(x) Result(f) 
    ! Calculates the order 0 rank 1  
    ! exponential moment function M0(x) 
    ! using a variety of algorithms such that 
    ! error is always negligible:  
    ! less than or about 1 bit in Real(dp) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: x 
    Real(dp):: ax, m 
    Integer:: j 
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    ax = Abs(x) 
    If (ax > Large) then 
        !Exp[-39.] < 1.16E-17 
        m = 1._dp / x 
    Else if (ax < Small) then 
        ! Maclaurin Series, equivalent to 
        ! Backward recurrence from M15(x) 
        ! to M0(x) where  
        ! M15(x) = 0.6127 (+/-0.012) 
        ! for 0 <= x <= Log[2.] 
        ! so that |error in M0| < 4.E-18 
        m = 0.06127_dp 
        Do j = 15, 1, -1 
            m = (1._dp - ax * m) / Real(j,dp) 
        End do 
    Else  
        ! Loss of precision <= 0.4 digit (about 1 bit) 
        ! for x >= Log[2.] 
        m = (1._dp - Exp(-x)) / x 
    End if 
    If (x < 0._dp) then 
        f = m * Exp(ax) 
    Else 
        f = m 
    End if  
End Function M0Scalar 
 
!Probably move these next couple functions since they're not M0 
 
!Function M(order,k,x) result (f) 
!    Use Kinds, Only: dp 
!    Use Sorters, Only: Sort, ReverseOrder 
!    Use Helper, Only: nStart 
!    Implicit None 
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!    Real(dp):: f 
!    Real(dp),intent(in):: x(1:k) 
!    Integer,intent(in)::k 
!    Integer,intent(in)::order 
!    Real(dp)::y(1:k) 
!    Integer::Startingorder, i 
!    Real(dp)::CurrentMoment 
!     
!     
!    if(order==0 .and. k>1)then 
!        f=M0Vector(x,k) 
!        return 
!    else if(order==0 .and. k==1)then 
!        f=M0(x(1)) 
!        return 
!    else if(k<1)then 
!        Stop "Error in calling M0(x,k): k < 1 " 
!    else if(k>1 .and. order>1)then 
!    !Need some help for k>1 order>1 case 
!    !somehow have to reduce k to 1... not sure if I can just use decay chain 
!    !conditioning?? 
!    y=x 
!    Call Sort(y, k) 
!    Call ReverseOrder(y, k) 
!    f = MVectorHelper(order,y, k) 
!     
!     
!    else !k==1 order>1   
!     
!        if(order>x(1))then !backwards recurrence 
!        Startingorder= nstart(order,x(1)) 
!        CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp)) 
!         
!        Do i= StartingOrder-1, order, -1 
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!     
!            CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp) 
!         
!        End Do 
!             
!            f=CurrentMoment 
!     
!         
!        else !forward recurrence 
!         
!        CurrentMoment = M0(x(1)) 
!         
!        Do i=1,order 
!            CurrentMoment =  (1._dp-Real(i,dp)*CurrentMoment)/x(1) 
!        End do 
!         
!        end if 
!     
!    end if 
!     
!End Function 
! 
!Recursive Function MVectorHelper(order, x, k) Result(f) 
!    Use Kinds, Only: dp 
!    Use Helper, Only: nStart 
!    Implicit None 
!    Real(dp):: f 
!    Real(dp), Intent(In):: x(1:k)   ! argument 
!    Integer, Intent(In) :: k        ! rank 
!    Integer,intent(in)::order 
!    Integer::Startingorder, i 
!    Real(dp)::CurrentMoment 
!     
!    if(order==0 .and. k>1)then 
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!        f=M0Vector(x,k) 
!        return 
!    else if(order==0 .and. k==1)then 
!        f=M0(x(1)) 
!        return 
!    else if(k<1)then 
!        Stop "Error in calling M0(x,k): k < 1 " 
!    else if(k>1 .and. order>1)then 
!     
!    !Will break for small x 
!    f=(MVectorhelper(order,x(2:k),k-1)-(order*MVectorhelper(order-1,x,k)))/x(1) 
!     
!    else !k==1 order>1   
!     
!        if(order>x(1))then !backwards recurrence 
!        Startingorder= nstart(order,x(1)) 
!        CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp)) 
!         
!        Do i= StartingOrder-1, order, -1 
!     
!            CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp) 
!         
!        End Do 
!             
!            f=CurrentMoment 
!     
!         
!        else !forward recurrence 
!         
!        CurrentMoment = M0(x(1)) 
!         
!        Do i=1,order 
!            CurrentMoment =  (1._dp-Real(i,dp)*CurrentMoment)/x(1) 
!        End do 
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!         
!        end if 
!     
!    end if 
!     
!     
!End Function MVectorHelper 
 
Function M(order, k, x) Result (f) 
 ! Calculates the order "order" rank "k" 
 ! exponential moment function 
 Use Sorters, Only: Sort, ReverseOrder 
 Use Kinds, Only: dp 
 Use Helper, Only: nStart 
 Implicit None 
 Real(dp)::f 
 Real(dp), Intent(In)::x(1:k) 
 Integer, Intent(In) :: k  
 Integer, Intent(In) :: order 
    Real(dp):: y(1:k) 
 Integer::Startingorder, i 
 Real(dp)::CurrentMoment 
  
 if (order==0) then 
  f = M0Vector(x,k) 
  Return 
 else if (k<1) 
  Stop "Error in calling moment (k < 1)" 
 else if (k==1 .AND. order>x(1)) then !backwards recurrence 
  Startingorder= nstart(order,x(1)) 
        CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp)) 
         
        Do i= StartingOrder-1, order, -1 
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            CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp) 
         
        End Do 
             
        f=CurrentMoment 
    
 else if (k==1 .AND. order<=x(1)) then 
  CurrentMoment = M0(x(1)) 
   
  Do i=1,order 
            CurrentMoment =  (1._dp-Real(i,dp)*CurrentMoment)/x(1) 
        End do 
   
  f= CurrentMoment 
   
 else !k>1 
 y = x 
 Call Sort(y,k) 
 Call ReverseOrder(y,k) !decreasing order, x(1) is largest 
 f= MHelp(order, k, y) 
  
 end if 
End Function M 
 
Recursive Function MHelp(order, x, k) result (f) 
 Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: x(1:k)   ! argument 
    Integer, Intent(In) :: k        ! rank 
 Integer, Intent(In) :: order 
    Real(dp), Parameter:: closeTol = 0.5_dp 
    Real(dp):: smallest, largest, kminus1 
    smallest = x(k) 
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    largest = x(1) 
  
 if (order==0) then 
  f = M0Vector(x,k) 
  Return 
 else if (k<1) 
  Stop "Error in calling moment (k < 1)" 
 else if (k==1 .AND. order>x(1)) then !backwards recurrence 
  Startingorder= nstart(order,x(1)) 
        CurrentMoment = 1._dp/(2._dp*(Real(StartingOrder,dp)+1._dp)) 
         
        Do i= StartingOrder-1, order, -1 
     
            CurrentMoment = (1._dp-x(1)*CurrentMoment)/((Real(i,dp)+1._dp) 
         
        End Do 
             
        f=CurrentMoment 
    
 else if (k==1 .AND. order<=x(1)) then 
  CurrentMoment = M0(x(1)) 
   
  Do i=1,order 
            CurrentMoment =  (1._dp-Real(i,dp)*CurrentMoment)/x(1) 
        End do 
   
  f= CurrentMoment 
   
 else if (largest>small) then !k>1, n>0, there is one somewhat large positive argument 
  CurrentMoment= Real(order,dp)*MHelp(order-1,x,k) 
  CurrentMoment = MHelp(order, x(2:k),k-1)-CurrentMoment 
  f= CurrentMoment/x(1) 
   
 else if (abs(smallest)>small !k>1,n>0, there is one somewhat large negative argument 
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  CurrentMoment= Real(order,dp)*MHelp(order-1,x,k) 
  kminus1 = k - 1 
  CurrentMoment = MHelp(order, x(1:kminus1),k-1)-CurrentMoment 
  f=CurrentMoment/x(k) 
   
 else !k>1, n>0 all arguments are between -smallest and smallest (.693) 
  f = MMaclaurin(order,x,k) 
 end if 
  
End function MHelp 
 
Function MMaclaurin(order,x,k) Result(f) 
 Use Kinds, Only: dp 
 Implicit None 
 Real(dp):: f 
    Real(dp), Intent(In):: x(1:k)   ! argument 
    Integer, Intent(In) :: k        ! rank 
 Integer, Intent(In) :: order 
    Real(dp), Parameter:: relTol = 1.E-17_dp 
 Real(dp):: d, p(1:k), s, t 
    Integer:: j,kordersum, orderplus1 
 
 kordersum= k + order 
 orderplus1 = order + 1 
  
 d = 1._dp 
    p = 1._dp 
    Do j = orderplus1, kordersum 
        d = d * Real(j,dp) 
    End do 
  
 s = 1._dp / d 
    j = kordersum 
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 Do 
  j = j + 1 
  d = -d * Real(j,dp) 
  p = p * x 
  t = RunningSum(p) / d 
  s = s + t 
  If (Abs(t) <= relTol * s) Exit 
    End do 
    f = s 
End Function MMaclaurin 
 
 
Function M0Vector(x, k) Result(f) 
    ! Calculates the order 0 rank k  
    !   exponential moment function M0(x(1:k)) 
    ! M0 is an orderless function.  
    !   To facilitate minimizing loss of precision,  
    !   this function sorts a copy of the  
    !   argument vector into increasing order, 
    !   reverses it to decreasing order, 
    !   and calls a recursive helper  
    !   that evaluates M0 without further sorting.  
    Use Sorters, Only: Sort, ReverseOrder 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: x(1:k)   ! argument 
    Integer, Intent(In) :: k        ! rank 
    Real(dp):: y(1:k) 
    If (k==1) then 
        ! call M directly to avoid needless overhead 
        f = M0(x(1)) 
        Return 
    Else if (k < 1) then 
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        Stop "Error in calling M0(x,k): k < 1 " 
    Else 
        ! Use a copy  of x so that x can be intent(In) 
        ! i.e., eliminate side effect of changing x 
        y = x 
        Call Sort(y, k) 
        Call ReverseOrder(y, k) 
        f = M0VectorHelper(y, k) 
    End if 
End Function M0Vector 
 
Recursive Function M0VectorHelper(x, k) Result(f) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: x(1:k)   ! argument 
    Integer, Intent(In) :: k        ! rank 
    Real(dp), Parameter:: closeTol = 0.5_dp 
    Real(dp):: smallest, largest 
    smallest = x(k) 
    largest = x(1) 
    If (k==1) then 
        ! Special case to which larger cases are reduced 
        f = m0(x(1)) 
    Else if (smallest >= Large) then 
        ! all the arguments > large 
        f = 1._dp / Product(x) 
    Else if (All(Abs(x) < Small)) then 
        f = M0Maclaurin(x, k) 
    Else if (Abs(largest-smallest) <= & 
           & closeTol * (Abs(smallest) + Abs(largest))/2._dp) then 
        ! All close together 
        ! Use decay chain function recurrence 
        f = (M0VectorHelper(x(2:k),k-1) - & 
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             & Exp(-x(k))*M0VectorHelper(x(1:k-1)-x(k),k-1)) / x(1) 
! @@@ add check to use x(1) or X(K) BASED ON LARGER IN MAGNITUDE 
   Else  
        ! use recurrence on rank 
        f = (M0VectorHelper(x(2:k),k-1) - & 
                M0VectorHelper(x(1:k-1),k-1))& 
           & / (x(1) - x(k)) 
    End if 
End Function M0VectorHelper 
 
Function M0Maclaurin(x, k) Result(f) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: x(1:k)   ! argument 
    Integer, Intent(In) :: k        ! rank 
    Real(dp), Parameter:: relTol = 1.E-17_dp 
    Real(dp):: d, p(1:k), s, t 
    Integer:: j 
    d = 1._dp 
    p = 1._dp 
    Do j = 2, k 
        d = d * Real(j,dp) 
    End do 
    s = 1._dp / d 
    j = k 
    Do 
        j = j + 1 
        d = -d / Real(j,dp) 
        p = p * x 
        t = RunningSum(p) / d 
        s = s + t 
        If (Abs(t) <= relTol * s) Exit 
    End do 
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    f = s 
End Function M0Maclaurin 
 
Function RunningSum(x) 
    ! The result value is the same as 
    !   that of the intrinsic Sum function, 
    !   but RunningSum differs by its side effect: 
    !   after returning, x(j) is the sum of 
    !   the original x(1:j) for j=1,k 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: RunningSum 
    Real(dp), Intent(InOut):: x(1:) 
    Integer :: k         
    Integer:: j 
    k = Size(x,1) 
    Do j = 2, k 
        x(j) = x(j) + x(j-1) 
    End do 
    RunningSum = x(k) 
End Function RunningSum     
 
 
Subroutine RunM0Tests 
    Use Kinds, Only: dp 
    Implicit None 
    Integer :: order 
    Real(dp):: x, f, factor 
    Integer :: rank 
    Character(len=1):: choice 
    Do 
        Print *, "Test of M0 function." 
        Write (*, "(1x,a)",Advance='no') "Enter Rank:  k = " 
        Read (*,*) rank 
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        Write (*, "(1x,a)",Advance='no') "Enter base x:  x = " 
        Read (*,*) x 
        Write (*, "(1x,a)",Advance='no') "Enter factor for growth of x entries:  factor = " 
        Read (*,*) factor 
        Print * 
        f = TestM0(x, rank, factor) 
        Write (*, "(1x,a)",Advance='no') "Run M0 test again? (y/n): " 
        Read(*,*) choice 
        Do 
            If (choice=='y' .or. choice=='n' .or. choice=='Y' .or. choice =='N') Exit 
            Write (*, "(1x,a)",Advance='no') 'Please enter either "y" or "n": ' 
            Read(*,*) choice 
        End do 
        If (choice=="n" .or. choice=="N") Exit 
    End do    
End Subroutine RunM0Tests 
 
Function TestM0(xBase, rank, factor) Result(f) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: f 
    Real(dp), Intent(In):: xBase 
    Integer,  Intent(In):: rank 
    Real(dp), Intent(In):: factor 
    Real(dp):: x(1:rank) 
    Integer:: j 
    x(1) = xBase 
    Do j = 2, rank 
        x(j) = x(j-1) * factor 
    End do 
    f = M0(x, rank) 
    Print *, "M0(", x, ") =" 
    Print *, f 
End Function TestM0 
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End Module M0_Functions 
 
 

VIII.B.7 Kinds 

Module Kinds 
    Implicit None 
    Integer, Parameter:: sp = Selected_Real_Kind(p=6) 
    Integer, Parameter:: dp = Selected_Real_Kind(p=15) 
End Module Kinds 

 

VIII.B.8 Helper 

Module Helper 
Implicit None 
 
Contains 
 
Function SimpsonsInt(f,n,a,b) Result(answer) !function, n intervals (even), low bound, up bound 
Use kinds, Only:dp 
Implicit None 
Integer, Intent(in)::n 
Real(dp), Intent(in)::a,b 
 
Interface 
function f(x) result(ans) 
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Use kinds, only: dp 
implicit none 
real(dp), intent(in)::x 
real(dp)::ans 
end function f 
end interface 
 
Real(dp):: answer, h 
Integer::j 
 
h= (b-a)/Real(n,dp) 
 
answer=f(a)+f(b) 
 
Do j=1,((n/2)-1) 
    answer=answer+ 2._dp*f(a+(2._dp*Real(j,dp))*h) 
End Do 
 
Do j=1, n/2 
    answer=answer +4._dp*f(a+(2._dp*Real(j,dp)-1._dp)*h) 
End Do 
 
answer=answer*(h/3._dp) 
 
End Function 
 
 
 
Function NewtonsMet(f,maxiter,initialguess,absTol,dx) Result(next) 
Use Kinds, Only:dp 
Implicit None 
 
Interface 
function f(x) result(ans) 
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Use kinds, only: dp 
implicit none 
real(dp), intent(in)::x 
real(dp)::ans 
end function f 
end interface 
 
Integer, Intent(in)::maxiter 
Real(dp), Intent(in)::initialguess 
Real(dp), Intent(in)::absTol 
Real(dp), Intent(in)::dx  !half size of derivative measurement 
Real(dp)::current, next, slope 
Integer::i 
 
current=initialguess 
 
Do i=1,maxiter 
    slope= (f(current+dx)-f(current-dx))/(2._dp*dx) 
    next=current - (f(current)/slope) 
    if(abs(f(next))<absTol)Exit 
    current=next 
    if(i==maxiter)STOP "max iterations reached on newton's method" 
End do 
 
 
 
End Function 
 
Function nStart(nMax,x) Result(nS) 
Use Kinds, Only: dp 
Implicit None 
Integer:: nS 
Integer, Intent(In):: nMax ! Max order of M[n,x] to be evaluated 
Real(dp), Intent(In):: x 
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Real(dp):: xPower, FactorialRatio, Tol, denom 
Real(dp), Parameter:: RelTol = 1.E-15_dp 
If (x < 0._dp .or. nMax < 1 .or. x > nMax) & 
& STOP "nStart: illegal argument" 
Tol = RelTol / (Real(nMax+1,dp)+x) 
nS = nMax 
xPower = x 
FactorialRatio = 1._dp / Real(nS+1,dp) 
Do 
nS = nS + 1 
xPower = xPower * x 
FactorialRatio = FactorialRatio / Real(nS+1,dp) 
denom = 2._dp * (Real(nS+1,dp)+x) * (Real(nS+2,dp)+x) 
If (xPower * FactorialRatio / denom <= Tol) Exit 
End do 
End Function nStart 
 
Subroutine BisectionStarter(f,p,b,smalliter,maxIter, err) 
!Finds two starting points that contain the root (a and b) for func f 
 Use Kinds, Only: dp 
    Implicit None 
 Interface  
        Function f(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: f 
            Real(dp), Intent(In):: x 
        End Function f 
    End Interface 
 Real(dp), Intent(Out):: a, b 
 Real(dp), Intent(In), Optional:: smalliter, maxIter 
 Integer, Intent(Out), Optional:: err 
 Real(dp)::itersmall, fa, fb, iterMax 
 Integer::iter 
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 If (Present(smalliter)) then 
        itersmall = smalliter 
    Else 
        itersmall = 1.E-4_dp 
    End if 
  
 If (Present(maxIter)) then 
        iterMax = maxIter 
    Else 
        iterMax = 50 
    End if 
  
 If (Present(err)) err = 0 
  
 a=0._dp 
 fa=f(0) 
 if(fa==0)then 
  a=-1._dp*itersmall 
  fa=f(a) 
 end if 
 if(isNAN(fa))then 
  a=-1._dp*itersmall/3._dp 
  fa=f(a) 
 end if 
  
  
 iter=0 
  
 if(fa>0)then !positive f at a 
  Do  
   b=a+itersmall*((2)**iter) 
   fb=f(b) 
   if (fb<0)Return 
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   if(iter>iterMax)return 
  End do 
  if(iter>iterMax)then 
   iter=0 
   Do 
    b=a-itersmall*((2)**iter) 
    fb=f(b) 
    if (fb<0)Return 
    if(iter>iterMax)return 
   End do 
  end if 
 else !negative f at a 
  Do  
   b=a+itersmall*((2)**iter) 
   fb=f(b) 
   if (fb>0)Return 
   if(iter>iterMax)return 
  End do 
  if(iter>iterMax)then 
   iter=0 
   Do 
    b=a-itersmall*((2)**iter) 
    fb=f(b) 
    if (fb>0)Return 
    if(iter>iterMax)return 
   End do 
  end if 
   
 end if 
  
 if(iter>iterMax)then 
  If (Present(err)) err = 2 !max iter reached 
 end if 
  



167 

 

End Subroutine BisectionStarter 
    
 
End Module 
 

 

VIII.B.9 Root solvers 

Module Rootsolvers 
 
    Implicit None 
    Private 
    Public:: Bisection , NewtonSolver, Converged 
     
Contains 
 
Function Bisection(x, f, xL, xR, fRoot, absTol, relTol, maxIter, err) Result(foundRoot) 
    ! Finds x such that f(x) = fRoot using bisection 
    Use Kinds, Only: dp 
    Implicit None 
    Logical:: foundRoot 
    Real(dp), Intent(Out):: x 
    Interface  
        Function f(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: f 
            Real(dp), Intent(In):: x 
        End Function f 
    End Interface 
    Real(dp), Intent(InOut):: xL, xR   ! initial bounds on x 
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    Real(dp), Intent(In), Optional:: fRoot 
    Real(dp), Intent(In), Optional:: absTol, relTol 
    Integer, Intent(In), Optional:: maxIter 
    Integer, Intent(Out), Optional:: err 
    Real(dp):: fAtRoot 
    Real(dp):: xC, fC, fL, fR 
    Logical:: HighLeft, HighRight, HighCenter 
    Real(dp):: aTol, rTol 
    Integer:: iter, iterMax 
    If (Present(fRoot)) then 
        fAtRoot = fRoot 
    Else 
        fAtRoot = 0._dp 
    End if 
    If (Present(absTol)) then 
        aTol = absTol 
    Else 
        aTol = 0._dp 
    End if 
    If (Present(relTol)) then 
        rTol = relTol 
    Else 
        rTol = 1.E-8_dp 
    End if 
    If (Present(maxIter)) then 
        iterMax = maxIter 
    Else 
        iterMax = 50 
    End if 
    If (Present(err)) err = 0   ! presume success 
    FoundRoot = .True. 
    fL = f(xL) 
    If (fL == fAtRoot) then 
        x = xL 
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        Return 
    Else 
        HighLeft = (fL > fAtRoot) 
    End if 
    fR = f(xR) 
    If (fR == fAtRoot) then 
        x = xR 
        Return 
    Else 
        HighRight = (fR > fAtRoot) 
    End if 
    If (HighLeft == HighRight) then 
        If (Present(err)) err = 1 ! Need initial brackets such that fRoot is between fL and fR 
        foundRoot = .False. 
        Return 
    End if 
    iter = 0 
    Do 
        iter = iter + 1 
        xC = (xL+xR) / 2._dp 
        If (Converged(xL, xR, aTol, rTol)) then 
            x = xC 
            Return 
        End if 
        fC = f(xC) 
        If (IsNaN(fC)) then 
            If (Present(err)) err = -1 ! xC is out of function's defined domain 
            foundRoot = .False. 
            Return 
        End if 
        If (fC == fAtRoot) then 
            x = xC 
            Return 
        Else  
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            HighCenter = (fC > fAtRoot) 
        End if 
        If (HighLeft == HighCenter) then 
            xL = xC 
        Else 
            xR = xC 
        End if 
        If (iter > iterMax) Then 
            If (Present(err)) err = 2 ! too many iterations 
            foundRoot = .False. 
        End if 
    End do 
End Function Bisection 
 
 
Function NewtonSolver(x, f, dfdx, fRoot, absTol, relTol, maxIter, err) Result(foundRoot) 
    ! Finds x such that f(x) = fRoot using bisection 
    Use Kinds, Only: dp 
    Implicit None 
    Logical:: foundRoot 
    Real(dp), Intent(InOut):: x 
    Interface  
        Function f(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: f 
            Real(dp), Intent(In):: x 
        End Function f 
        Function dfdx(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: dfdx 
            Real(dp), Intent(In):: x 
        End Function dfdx 
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    End Interface 
    Real(dp), Intent(In), Optional:: fRoot 
    Real(dp), Intent(In), Optional:: absTol, relTol 
    Integer, Intent(In), Optional:: maxIter 
    Integer, Intent(Out), Optional:: err 
    Real(dp):: fAtRoot 
    Real(dp):: xOld, y, dydx 
    Real(dp):: aTol, rTol 
    Integer:: iter, iterMax 
    If (Present(fRoot)) then 
        fAtRoot = fRoot 
    Else 
        fAtRoot = 0._dp 
    End if 
    If (Present(absTol)) then 
        aTol = absTol 
    Else 
        aTol = 0._dp 
    End if 
    If (Present(relTol)) then 
        rTol = relTol 
    Else 
        rTol = 1.E-8_dp 
    End if 
    If (Present(maxIter)) then 
        iterMax = maxIter 
    Else 
        iterMax = 50 
    End if 
    If (Present(err)) err = 0   ! presumes success 
    foundRoot = .True. 
    iter = 0 
    Do 
        iter = iter + 1 
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        xOld = x 
        y = f(x) 
        If (IsNaN(y)) then 
            If (Present(err)) err = -1 ! x is out of function's defined domain 
            foundRoot = .False. 
            Return 
        End if 
        dydx = dfdx(x) 
        If (IsNaN(dydx)) then 
            If (Present(err)) err = -2 ! x is out of derivative function's defined domain 
            foundRoot = .False. 
            Return 
        End if 
        x = x - (y - fAtRoot) / dydx 
        If (Converged(x, xOld, aTol, rTol)) Return 
        If (iter > iterMax) Then 
            If (Present(err)) err = 2 ! too many iterations 
            foundRoot = .False. 
            Return 
        End if 
    End do 
End Function NewtonSolver 
 
 
Function Secant_Simple(f, a, b, absTol, relTol, maxIter) Result(x) 
    ! Finds x such that f(x) = 0 using Secant method 
    ! Secant uses the slope of the chord to approximate f'(x) in Newton's method 
    ! Thus it has simlar failure modes.  
    ! The starting points must be "close enough" to the root, 
    !   which depends on the shape of f. 
    ! This function is used as follows:     var = Secant_Simple(...) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp):: x 
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    Interface  
        Function f(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: f 
            Real(dp), Intent(In):: x 
        End Function f 
    End Interface 
    Real(dp), Intent(In):: a, b     ! search interval is [a,b] 
    Real(dp), Intent(In), Optional:: absTol, relTol 
    Integer, Intent(In), Optional:: maxIter 
    Real(dp):: x0, x1, x2, f0, f1, f2 
    Integer:: iterMax 
    Real(dp):: aTol, rTol 
    Integer:: iter 
    If (Present(absTol)) then 
        aTol = absTol 
    Else 
        aTol = 0._dp 
    End if 
    If (Present(relTol)) then 
        rTol = relTol 
    Else 
        rTol = 1.E-10_dp 
    End if 
    If (Present(maxIter)) then 
        iterMax = maxIter 
    Else 
        iterMax = 50 
    End if 
    x0 = a; f0 = f(x0) 
    x1 = b; f1 = f(x1) 
    iter = 0 
    Do 
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        iter = iter + 1 
        x2 = (f1*x0 - f0*x1)/(f1 - f0) 
        If (Converged(x1, x2, aTol, rTol)) then 
            x = x2 
            Return 
        End if 
        If (iter >= iterMax) then 
            Print *, "Secant_Simple failed to converge" 
            Print *, "x0 = ", x0 
            Print *, "x1 = ", x1 
            Print *, "x2 = ", x2 
            Print *, "f0 = ", f0 
            Print *, "f1 = ", f1 
            Print *, "f2 = ", f2 
            Stop 
        End if 
        f2 = f(x2) 
        x0 = x1; f0 = f1  
        x1 = x2; f1 = f2 
    End do 
End Function Secant_Simple 
 
 
Function Secant_Bisection(x, f, a, b, fRoot, absTol, relTol, maxIter, err) Result(foundRoot) 
 
    ! Finds x such that f(x) = fRoot using Secant 
 
    ! Maintains bisection bounds and uses bisection when secant jumps outside the bounds. 
    ! This requires that the interval (a,b) is a bounding interval with 
    !       f(a) <= fRoot <= f(b)   or   f(b) <= fRoot <= f(a) 
 
    ! Tightens the bounds at each iteration. 
 
    ! This function returns a logical value to indicate whether the root was found. 
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    ! Therefore it is used as follows: 
     
    !   ... Code to find bounds as above around the desired root ... 
    !   Do 
    !       If (Secant_Bisection(var, ...) .and. root is desired root) Exit 
    !       ... Code to find better bounds (to get correct root) 
    !   End do 
     
    ! If you know there is only one root, (as when f(x) is continuous and monotonic everywhere) 
    !   use it as follows: 
     
    !   ... Code to find bounds as above around the desired root ... 
    !   If (.Not. Secant_Bisection(var, ...) then 
    !       Print *, error message and info for troubleshooting 
    !       Stop 
    !   End if 
     
    ! Convergence is guaranteed if  
    !   f(x) is continuous in [a,b], 
    !   f(x) is monotonic in [a,b], 
    !   a <= root <= b   OR  a <= root <= b, 
    !   0 < Min(Abs(f'(x))) in [a,b], 
    !   and enough iterations are allowed. 
 
    Use Kinds, Only: dp 
    Implicit None 
    Logical:: foundRoot 
    Real(dp), Intent(Out):: x 
    Interface  
        Function f(x) 
            Use Kinds, Only: dp 
            Implicit None 
            Real(dp):: f 
            Real(dp), Intent(In):: x 
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        End Function f 
    End Interface 
    Real(dp), Intent(In):: a, b     ! search interval is [a,b] 
    Real(dp), Intent(In), Optional:: fRoot 
    Real(dp), Intent(In), Optional:: absTol, relTol 
    Integer, Intent(In), Optional:: maxIter 
    Integer, Intent(Out), Optional:: err 
    Real(dp):: fAtRoot              ! Finds x such that f(x) = fAtRoot, default is fAtRoot = 0._dp 
    Real(dp):: xL, xR               ! Refined search interval 
    Real(dp):: fL, fR 
    Real(dp):: x0, x1, x2           ! Secant search points 
    Real(dp):: f0, f1, f2 
    Logical:: HighLeft, HighRight, HighCenter 
    Real(dp):: aTol, rTol 
    Integer:: iter, iterMax 
    If (Present(fRoot)) then 
        fAtRoot = fRoot 
    Else 
        fAtRoot = 0._dp 
    End if 
    If (Present(absTol)) then 
        aTol = absTol 
    Else 
        aTol = 0._dp 
    End if 
    If (Present(relTol)) then 
        rTol = relTol 
    Else 
        rTol = 1.E-10_dp 
    End if 
    If (Present(maxIter)) then 
        iterMax = maxIter 
    Else 
        iterMax = 50 
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    End if 
    If (Present(err)) err = 0   ! presume success 
    FoundRoot = .True. 
    xL = Min(a,b) 
    xR = Max(a,b) 
    fL = f(xL) 
    If (Converged(fL, fAtRoot, aTol, rTol)) then 
        x = xL 
        Return 
    Else 
        HighLeft = (fL > fAtRoot) 
    End if 
    fR = f(xR) 
    If (Converged(fR, fAtRoot, aTol, rTol)) then 
        x = xR 
        Return 
    Else 
        HighRight = (fR > fAtRoot) 
    End if 
    If (HighLeft == HighRight) then 
        If (Present(err)) err = 1 ! Need initial bracket does not guarantee root 
        foundRoot = .False. 
        Return 
    End if 
    iter = 0 
    x0 = xL; f0 = fL 
    x1 = xR; f1 = fR 
    Do 
        iter = iter + 1 
        x2 = (f1*x0 - f0*x1)/(f1 - f0) 
        If (x2 <= xL .or. x2 >= xR) then 
            x2 = (xL+xR) / 2._dp 
            x0 = xL; f0 = fL 
            x1 = xR; f1 = fR 
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        End if 
        If (Converged(x1, x2, aTol, rTol)) then 
            x = x2 
            Return 
        End if 
        f2 = f(x2) 
        If (Converged(f2, fAtRoot, aTol, rTol)) then 
            x = x2 
            Return 
        End if 
        If (IsNaN(f2)) then 
            If (Present(err)) err = -1 ! xC is out of function's defined domain 
            foundRoot = .False. 
            Return 
        End if  
        If (iter > iterMax) Then 
            If (Present(err)) err = 2 ! too many iterations 
            foundRoot = .False. 
            Return 
        End if 
        HighCenter = (f2 > fAtRoot) 
        If (HighLeft == HighCenter) then 
            xL = x2 
        Else 
            xR = x2 
        End if 
        x0 = x1; f0 = f1  
        x1 = x2; f1 = f2         
    End do 
End Function Secant_Bisection 
 
 
 
Function Converged(x, y, absTol, relTol) Result (OK) 
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    Use Kinds, Only: dp 
    Implicit None 
    Logical:: OK 
    Real(dp), Intent(In):: x, y         ! Values to compare 
    Real(dp), Intent(In):: absTol, relTol   ! tolerances 
    Real(dp):: avgAbs, absDif 
    avgAbs = (Abs(x) + Abs(y)) / 2._dp 
    absDif = Abs(x-y) 
    OK = ( absDif <= absTol) .or. (absDif <= relTol * avgAbs) 
End Function Converged         
         
 
End Module Rootsolvers 
 

 

VIII.B.10 Reactor Kinetics Functions 

Module RPKFunctions 
    Implicit None 
    Private 
    Public RhoFunc, SFunc 
 
Contains 
 
Function RhoFunc(t) Result(rho) !function that returns reactivity given time 
    Use Kinds, Only: dp 
    Use Variables, Only:    P_rho, rho_coeff 
    Implicit None 
    Real(dp), Intent(In):: t 
    Real(dp)::rho 
    Integer::i 
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    rho=0._dp 
    Do i=0, P_rho 
        rho=rho+rho_coeff(i)*(t**i) 
    End Do 
     
End Function RhoFunc 
 
Function SFunc(t) Result (S) !function that returns source given time 
    Use Kinds, Only: dp 
    Use Variables, Only:    P_S, S_coeff 
    Implicit None 
    Real(dp), Intent(In):: t 
    Real(dp)::S 
    Integer::i 
     
    !Needs to use source moments to be correct... fix this 
     
    S=0._dp 
    Do i=0, P_S 
        S=S+S_coeff(i)*(t**i) 
    End Do 
     
End Function SFunc 
 
Function delRhoFunc(t) Result (delRho) 
!function that returns difference in current reactivity vs average reactivity given time  
 
    Use Kinds, Only: dp 
    Use Variables, Only: rho_bar 
    Implicit None 
    Real, Intent(in):: t 
    Real(dp):: delRho 
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    delRho=rhoFunc(t)-rho_bar 
End Function delRhoFunc 
 
Function kappaFunc(t) Result (kappa) 
!function that returns kappa given time  
 
    Use Kinds, Only: dp 
    Use Variables, Only: beta_tot, N_Lifetime 
    Implicit None 
    Real, Intent(in):: t 
    Real(dp):: kappa 
     
    kappa=(beta_tot-rhoFunc(t))/N_Lifetime 
End Function kappaFunc 
 
Function delKappaFunc(t) Result (delKappa) 
!function that returns the difference in current kappa and kappa bar 
 
    Use Kinds, Only: dp 
    Use Variables, Only: kappa_bar 
    Implicit None 
    Real, Intent(in)::t 
    Real(dp):: delKappa 
     
    delKappa=kappa_bar-kappaFunc(t) 
 
End Function delKappaFunc 
 
Function A1Func(adt) Result (A1)  
!function that returns A1 given alpha*del_t 
 
    Use Kinds, Only: dp 
    Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime  
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    Use MomentFunctions 
    Real, Intent)(in) :: adt 
    Integer :: i 
    Real(dp) :: temp3(3), temp1(1) 
    Real(dp) :: A1 
     
    temp3(1)=-1._dp*kappa_bar*del_t - adt 
    temp3(2)=-1._dp*adt 
    temp3(3)=-1._dp*adt 
 temp1(1)=-1._dp*adt 
     
    A1=M(1,1,temp1) 
     
    Do i=0,P_rho 
        A1=A1- del_t*dkp_coeff(i)*M(i,3,temp3) 
    End do 
     
    temp3(1)=kappa_bar*del_t 
     
    Do i=1, TotalGroups 
        temp3(2)=lambda(i)*del_t 
        A1=A1-beta_i(i)*lambda_i(i)*del_t*del_t*M(1,3,temp3)/N_Lifetime 
    End Do 
     
End Function A1Func 
 
Function A0Func(adt) Result (A0)  
!function that returns A0 given alpha*del_t 
 
    Use Kinds, Only: dp 
    Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime  
    Use MomentFunctions 
    Real(dp), Intent)(in) :: adt 
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    Integer :: i 
    Real(dp) :: temp3(3), temp2(2), temp1(1) 
    Real(dp) :: A0 
     
 
    temp2(1)=-1._dp*kappa_bar*del_t - adt 
    temp2(2)=-1._dp*adt 
 temp1(1)=-1._dp*adt 
     
    A0=M(0,1,temp1) 
     
    Do i=0,P_rho 
        A0=A0- del_t*dkp_coeff(i)*M(i,2,temp2) 
    End do 
 
    temp3(1)=kappa_bar*del_t 
    temp3(3)=-1._dp*adt 
     
    Do i=1, TotalGroups 
        temp3(2)=lambda(i)*del_t 
        A0=A0-beta_i(i)*lambda_i(i)*del_t*del_t*M(0,3,temp3)/N_Lifetime 
    End Do 
     
End Function 
     
Function fadtFunc(adt) Result(f) !Special Equation used in root solving for finding alpha 
    Use Kinds, Only: dp 
    Use Variables, Only: B1, B0 
    Real(dp), Intent(in)::adt 
    Real(dp) :: f 
     
    f= B0*A1Func(adt) - B1*A0(adt) 
     
End Function A0func 
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Function dA1func(adt) Result(dA1) 
    Use Kinds, Only: dp 
    Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime  
    Use MomentFunctions 
    Real, Intent)(in) :: adt 
    Integer :: i 
    Real(dp), Allocatable :: temp2(:),temp4(:) 
    Real(dp) :: dA1 
     
    Allocate(temp2(2)) 
    Allocate(temp4(4)) 
     
    temp2(1)=-1._dp*adt 
    temp2(2)=-1._dp*adt 
     
    temp4(1)=-1._dp*kappa_bar*del_t - adt 
    temp4(2)=-1._dp*adt 
    temp4(3)=-1._dp*adt 
    temp4(4)=-1._dp*adt 
     
    dA1=M(1,2,temp2) 
     
    Do i=0,P_rho 
        dA1=dA1+ 6._dp*del_t*dkp_coeff(i)*M(i,4,temp4) 
    End do 
     
    temp4(1)=kappa_bar*del_t 
    temp4(3)=-1._dp*adt 
    temp4(4)=-1._dp*adt 
     
    Do i=1, TotalGroups 
        temp4(2)=lambda(i)*del_t 
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        dA1=dA1+beta_i(i)*lambda_i(i)*del_t*del_t*M(1,4,temp4)/N_Lifetime 
    End Do 
 
End Function dA1func 
 
Function dA0func(adt) Result(dA0) 
    Use Kinds, Only: dp 
    Use Variables, Only: del_t,P_rho,dkp_coeff, kappa_bar,TotalGroups, & 
                        & beta_i, lambda_i, N_Lifetime  
    Use MomentFunctions 
    Real(dp), Intent)(in) :: adt 
    Integer :: i 
    Real(dp), Allocatable :: temp2(:), temp3(:),temp4(:) 
    Real(dp) :: dA0 
     
    Allocate(temp2(2)) 
    Allocate(temp3(3)) 
    Allocate(temp4(4)) 
     
    temp3(1)=-1._dp*kappa_bar*del_t - adt 
    temp3(2)=-1._dp*adt 
    temp3(3)=-1._dp*adt 
     
    temp2(1)=-1._dp*adt 
    temp2(2)=-1._dp*adt 
     
    dA0=-1._dp*M(0,2,temp2) 
     
    Do i=0,P_rho 
        dA0=dA0- 2._dp*del_t*dkp_coeff(i)*M(i,3,temp3) 
    End do 
     
    temp4(1)=kappa_bar*del_t 
    temp4(3)=-1._dp*adt 
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    temp4(4)=-1._dp*adt 
     
    Do i=1, TotalGroups 
        temp4(2)=lambda(i)*del_t 
        dA0=dA0+beta_i(i)*lambda_i(i)*del_t*del_t*M(0,4,temp4)/N_Lifetime 
    End Do 
End Function dA0func 
 
End Module 

 

VIII.B.11 Sin Poly 

Module SinPoly 
Implicit None 
 
Contains 
     
    Subroutine SinReactivity (aa0, bb0, cc0, ti, dt, order) 
     
        Use Kinds, Only: dp 
        Use Helper, Only: choose 
        Use Variables, Only: rho_coeff 
        Implicit None 
        Real(dp), Intent(In) :: aa0, bb0, cc0, ti, dt ! 5 initial inputs 
        ! a0 * Sin(b0 + c0 * t) for t = ti to ti + dt 
        ! We want to fit a polynomial to this using moments of the Legendre polynomials 
        Integer,Intent(In) :: order ! order of solution of interest 
        Real(dp) :: p(0:4,0:4) !Legendre Polynomial Coefficients: p(n,coefficient order) 
        Real(dp) :: aa,bb,cc !sin constants after variable change to u (between -1 and 1) 
        Real(dp) :: cip(0:4) !inner product of sin and Legendre Poly 
        Real(dp) :: fu(0:4,0:4) ! Polynomial representation variable u f(n,coefficient order) 
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        Real(dp) :: ft(0:4) !Polynomial representation variable t ff(coefficient order) 
        Real(dp) :: aat, bbt !transformation constants 
        Integer :: i, j 
         
         
        !Set up table of Legendre Polynomial Coefficients 
        p=0._dp 
         
        p(0,0) = 1._dp 
         
        p(1,1) = 1._dp 
         
        p(2,0) = -.5_dp 
        p(2,2) = 1.5_dp 
         
        p(3,1) = -1.5_dp 
        p(3,3) = 2.5_dp 
         
        p(4,0) = .125_dp 
        p(4,2) = 3.75_dp 
        p(4,4) = 4.375_dp 
         
        !change function for u = -1 to 1 
         
        aa = aa0 
        bb = bb0 + (cc0 * dt / 2._dp) + cc0 * ti 
        cc = cc0 * dt / 2._dp 
         
        !Solve inner product constants 
         
        cip(0) = aa*sin(bb)*sin(cc)/cc 
         
        cip(1) = cos(bb)*sin(cc)/(cc**2._dp) 
        cip(1) = cip(1) - cos(bb)*cos(cc)/cc 
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        cip(1) = aa*cip(1) 
         
        cip(2) = 3._dp*cos(cc)*sin(bb)/(cc**2._dp) 
        cip(2) = cip(2) - 3._dp*sin(bb)*sin(cc)/(cc**3._dp) 
        cip(2) = cip(2) + sin(bb)*sin(cc)/cc 
        cip(2) = aa*cip(2) 
         
        cip(3) = 15._dp*cos(bb)*cos(cc)/(cc**3._dp) 
        cip(3) = cip(3) - cos(bb)*cos(cc)/cc 
        cip(3) = cip(3) - 15._dp*cos(bb)*sin(cc)/(cc**4._dp) 
        cip(3) = cip(3) + 6._dp*cos(bb)*sin(cc)/(cc**2._dp) 
        cip(3) = aa*cip(3) 
         
        cip(4) = -105._dp*cos(cc)*sin(bb)/(cc**4._dp) 
        cip(4) = cip(4) + 10._dp*cos(cc)*sin(bb)/(cc**2._dp) 
        cip(4) = cip(4) + 105._dp*sin(bb)*sin(cc)/(cc**5._dp) 
        cip(4) = cip(4) - 45._dp*sin(bb)*sin(cc)/(cc**3._dp) 
        cip(4) = cip(4) + sin(bb)*sin(cc)/cc 
        cip(4) = aa*cip(4) 
         
        !Set up f, the polynomial equivelant with respect to u 
         
        fu=0._dp 
         
        Do i=0,4 
            fu(i,0) = cip(0)*p(0,0) 
        End Do 
         
        Do i = 1,4 
            fu(i,1) = fu(i,1) + cip(1)*3._dp*p(1,1) 
        End Do 
         
        Do i = 2,4 
            fu(i,0) = fu(i,0) + cip(2)*5._dp*p(2,0) 
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            fu(i,2) = fu(i,2) + cip(2)*5._dp*p(2,2) 
        End Do 
         
        Do i=3,4 
            fu(i,1) = fu(i,1) + cip(3)*7._dp*p(3,1) 
            fu(i,3) = fu(i,3) + cip(3)*7._dp*p(3,3) 
        End Do 
         
            fu(4,0) = fu(4,0) + cip(4)*9._dp*p(4,0) 
            fu(4,2) = fu(4,2) + cip(4)*9._dp*p(4,2) 
            fu(4,4) = fu(4,4) + cip(4)*9._dp*p(4,4) 
             
        !Transform fu to ft (back into correct time domain 
             
        aat = -1._dp - (2._dp*ti/dt) 
        bbt = 2._dp/dt 
         
        ft=0._dp 
         
        Do i=0,order 
            Do j=i,order 
                ft(i)=ft(i)+fu(order,j)*(aat**(j-i))*Real(choose(j,i),dp)*(bbt**i) 
            End do 
        End do  
        
        Do i = 0, order 
            rho_coeff(i)=ft(i) 
        End Do 
         
    End Subroutine SinReactivity 
 
End Module SinPoly 
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VIII.B.12 Sorters 

Module Sorters 
    Implicit None 
     
    Interface Sort 
        Module Procedure BubbleSort_dp 
        Module Procedure BubbleSort_Integer 
    End Interface Sort 
     
    Interface ReverseOrder 
        Module Procedure ReverseOrder_dp 
        Module Procedure ReverseOrder_Integer 
    End Interface ReverseOrder 
     
    Private 
    Public:: Sort, ReverseOrder 
    Public:: Test_Sort_and_ReverseOrder_dp  
    Public:: Test_Sort_and_ReverseOrder_Integer 
      
Contains 
 
Subroutine Test_Sort_and_ReverseOrder_dp 
    Use Kinds, Only: dp 
    Implicit None 
    Integer, Parameter:: n = 4 
    Real(dp):: x(1:n) 
    x = Real( (/ 5, 3, 4, 2 /), dp) 
    Print *, "X before sorting = ", x 
    Call Sort(x, n) 
    Print *, "X after sorting = ", x 
    Call ReverseOrder(x, n) 
    Print *, "X after sorting and then reversing order = ", x 



191 

 

End Subroutine Test_Sort_and_ReverseOrder_dp 
 
Subroutine BubbleSort_dp(a, n) 
    Use Kinds, Only: dp 
    Implicit None 
    Integer, Intent(In):: n 
    Real(dp), Intent(InOut):: a(1:n) 
    Integer:: j,k 
    Do j = 1, n-1 
        Do k = n, j+1, -1 
            If ( a(k) < a(k-1) ) Call Swap_dp(a(k), a(k-1)) 
        End do 
    End do 
End Subroutine BubbleSort_dp 
 
Subroutine ReverseOrder_dp(a, n)     
    Use Kinds, Only: dp 
    Implicit None 
    Integer, Intent(In):: n 
    Real(dp), Intent(InOut):: a(1:n) 
    Integer:: j 
    Do j = 1, n/2 
        Call Swap_dp(a(j), a(n+1-j)) 
    End do   
End Subroutine ReverseOrder_dp 
 
Subroutine Swap_dp(x, y) 
    Use Kinds, Only: dp 
    Implicit None 
    Real(dp), Intent(InOut):: x, y  
    Real(dp):: SwapHolder 
    SwapHolder = x 
    x = y 
    y = SwapHolder 
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End Subroutine Swap_dp 
 
Subroutine Test_Sort_and_ReverseOrder_Integer 
    Use Kinds, Only: dp 
    Implicit None 
    Integer, Parameter:: n = 4 
    Integer:: x(1:n) 
    x = (/ 5, 3, 4, 2 /) 
    Print *, "X before sorting = ", x 
    Call Sort(x, n) 
    Print *, "X after sorting = ", x 
    Call ReverseOrder(x, n) 
    Print *, "X after sorting and then reversing order = ", x 
End Subroutine Test_Sort_and_ReverseOrder_Integer 
 
Subroutine BubbleSort_Integer(a, n) 
    Implicit None 
    Integer, Intent(In):: n 
    Integer, Intent(InOut):: a(1:n) 
    Integer:: j,k 
    Do j = 1, n-1 
        Do k = n, j+1, -1 
            If ( a(k) < a(k-1) ) Call Swap_Integer(a(k),a(k-1)) 
        End do 
    End do 
End Subroutine BubbleSort_Integer 
 
Subroutine ReverseOrder_Integer(a, n) 
    Implicit None 
    Integer, Intent(In):: n 
    Integer, Intent(InOut):: a(1:n) 
    Integer:: j 
    Do j = 1, n/2 
        Call Swap_Integer(a(j), a(n+1-j)) 
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    End do   
End Subroutine ReverseOrder_Integer 
 
Subroutine Swap_Integer(x, y) 
    Implicit None 
    Integer, Intent(InOut):: x, y  
    Integer:: SwapHolder 
    SwapHolder = x 
    x = y 
    y = SwapHolder 
End Subroutine Swap_Integer 
 
End Module Sorters        

 

VIII.C. Mathematica Worksheet 

(* ClearAll["Global`*"] *) 
N0 = 1*10^8; 
delT =50; 
 
TotalGroups = 6; 
 
betai={.00021,.00142,.00127,.00257,.00075,.00027}; 
betatot=Sum[k,{k,betai}]; 
 
NLifetime = 12.7*betatot + 3*(1-betatot)*10^-5; 
 
lambdai = {.0126,.0301,.112,.301,1.14,3.01}; 
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Ci0constant=1*10^4; 
Ci0={20213583.5233573,57215857.6807323,13752455.9328556,10355264.3830621,797904.612764104
,108790.715308435}; 
Cidt=Range[TotalGroups]; 
 
PS=2; 
SCoeff:={SCoeff0,SCoeff1,SCoeff2}; (*length PS+1*) 
 
SCoeff0=0; 
SCoeff1=0; 
SCoeff2=0; 
 
Prho=2; 
rhoCoeff:={rhoCoeff0,rhoCoeff1,rhoCoeff2} 
 
rhoCoeff0=0.001; 
rhoCoeff1=0.000001; 
rhoCoeff2=0; 
 
rhofunc=0; 
Do[rhofunc=rhofunc+rhoCoeff[[n+1]]*t^n,{n,0,Prho,1}]; 
 
rhofunc=0; 
rhofunc=.001Sin[6.28t]; 
 
Sfunc=0; 
Do[Sfunc=Sfunc+SCoeff[[n+1]]*t^n,{n,0,PS,1}]; 
 
s=NDSolve[{n'[t] ( ( r h o f u n c-
betatot)*n[t]/NLifetime)+Sfunc+lambdai[[1]]*C1[t]+lambdai[[2]]*C2[t]+lambdai[[3]]*C3[t]+l
ambdai[[4]]*C4[t]+lambdai[[5]]*C5[t]+lambdai[[6]]*C6[t],C1'[t]==(betai[[1]]*n[t]/NLifetim
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e)-lambdai[[1]]*C1[t],C2'[t]==(betai[[2]]*n[t]/NLifetime)-
lambdai[[2]]*C2[t],C3'[t]==(betai[[3]]*n[t]/NLifetime)-
lambdai[[3]]*C3[t],C4'[t]==(betai[[4]]*n[t]/NLifetime)-
lambdai[[4]]*C4[t],C5'[t]==(betai[[5]]*n[t]/NLifetime)-
lambdai[[5]]*C5[t],C6'[t]==(betai[[6]]*n[t]/NLifetime)-lambdai[[6]]*C6[t], n[0]==N0, 
C1[0]==Ci0[[1]],C2[0]==Ci0[[2]],C3[0]==Ci0[[3]],C4[0]==Ci0[[4]],C5[0]==Ci0[[5]],C6[0]==Ci
0[[6]]},{n,C1,C2,C3,C4,C5,C6},{t,0,delT},WorkingPrecision 3 0 , Ac c u r a c
l 1 5 ] ; 
Plot[Evaluate[n[t]/.s],{t,0,delT},PlotRange Al l ] 
 
{n[delT]/.s,{ 
   C1[delT]/.s, 
   C2[delT]/.s, 
   C3[delT]/.s, 
   C4[delT]/.s, 
   C5[delT]/.s, 
   C6[delT]/.s}}//FullForm 
{1.03552643830621`*^7}//FullForm 
108787.76821347115` 
n[delT] 
n[49.5]/.s//FullForm 
C6[50.]/.s//FullForm 
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