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Abstract 

 Single crystal, hydrothermally grown, thorium dioxide (ThO2) samples were 

studied using depth-resolved cathodoluminescence (CL) to characterize the surface and 

bulk electronic states.  X-ray diffraction (XRD) measurements were collected to confirm 

that these crystals were ThO2 in the fluorite structure.  Understanding the chemical and 

structural quality of ThO2 will aid in the fabrication of better neutron detectors as well as 

in the power production with thorium breeder reactors. 

 Monte Carlo simulations using CASINO were used to predict the expected 

energy-dependent electron interaction depths in the ThO2 crystals.  CL was conducted 

with an electron energy range of 1.5 - 12 keV, a current range of 30-62 µA, in vacuums 

of 5˟10-7 to 1.2˟10-9 Torr, and sample temperatures of 24 K – 297 K.  The initial CL 

measurements indicated that the as-grown sample exhibited more of an energy 

dependency than the cut and polished sample.  However, in a companion study, time of 

flight secondary ion mass spectrometry (TOF SIMS) was conducted on the samples.  In 

the process, the sample surfaces were partially cleaned.  Additional CL measurements 

were conducted on both samples after their inadvertent cleaning, which indicated that the 

as-grown sample no longer exhibited the observed energy dependency.  

 Deconvolution of the CL spectra indicated that there were five peaks that made up 

the CL spectra in all cases.  One of these peaks was the band edge luminescence at 5.1 eV 

which was confirmed with transmittance measurements which indicated the existence of 

an absorption edge near 5.4 eV.           
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DEPTH-RESOLVED CATHODOLUMINESCENCE OF THORIUM DIOXIDE 

 
 

I Introduction 

 

Nuclear weapon non-proliferation is a major goal of the world as there is a 

constant fear that terrorists could obtain the special nuclear material (SNM) to make their 

own weapons.   The Department of Homeland Security (DHS) desires to create better 

neutron detectors to thwart terrorist activities.   Detecting the radioactive decay products 

of the nuclear material prevents terrorists from transporting SNM. Also, as the world’s 

energy demands continue to increase,  new non-fossil fuel sources are being studied 

(Mann & Thompson, 2010).   Thorium dioxide (ThO2) is an emerging energy option to 

produce nuclear energy as well as for use in neutron detectors.   

Thorium can absorb a neutron and undergo two beta-decays to form fissionable 

uranium-233 (233U).  Thorium is resistant to nuclear weapons proliferation because unlike 

natural uranium, natural thorium contains only trace amounts of fissile material (such as 

thorium-231), which are insufficient to initiate a nuclear chain reaction.  The thorium fuel 

cycle produces only small amounts of 235U, which is a key isotope of uranium used in the 

development of plutonium-239 (239Pu)-based nuclear weapons.  Thorium also results in 

less highly radioactive waste in comparison to the uranium fuels. 

Thorium is four times more plentiful in the earth’s crust than uranium, and it does 

not need isotopic enrichment before use (Martin & Cooke, 2012).  For example, over the 

http://en.wikipedia.org/wiki/Natural_uranium
http://en.wikipedia.org/wiki/Thorium-231
http://en.wikipedia.org/wiki/Nuclear_chain_reaction
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past few decades, India has been researching thorium.  India has approximately 290,000 

tons of economically extractable thorium (Maitura, 2005).  Globally, there is sufficient 

thorium to provide the world’s energy needs for several thousand years (Martin & Cooke, 

2012).  As a result, since the uranium reserves around the world are decreasing, the 

thorium fuel cycle is becoming a cost-effective material for supplying future power 

needs. 

The thorium fuel is likely to take the form of ThO2 or ThO2 with uranium added 

to it (uranium-doped) when it is used in reactors.  The fertile 232Th is converted into 

fissile 233U, with the fuel elements remaining within the reactor cores for years rather 

than months, as is the case with conventional uranium fuel (Martin & Cooke, 2012).  A 

full understanding of the material properties of thorium and its performance in intense 

radiation fields is essential.  A quality depth-resolved CL study is a method to ultimately 

ensure that we can utilize thorium as a potentially safer and more sustainable fuel.  In this 

study, luminescence spectroscopy, particularly CL, will be utilized to evaluate the quality 

of the undoped ThO2 crystals produced by hydrothermal growth.  This method was 

chosen because it is capable of producing large single crystals that can be mounted for 

cathodoluminescence (CL) experiments.  CL is sensitive to the presence of defects, and 

the energy of the electrons of the excitation beam can be varied.  The flexibility of 

varying the electron beam energies allows for easy examination of the material at 

different depths into the material determined by the beam energy. 
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1.1 Focus of Research  

This study seeks to characterize ThO2 via CL.  The CL spectra will explain how 

hydrothermally grown ThO2 behaves electronically in both the surface and bulk.  The 

quality of the samples will be observed by conducting an in-depth energy and 

temperature dependence study.  This study will also address the band gap for this 

hydrothermally grown ThO2 crystal.       

1.2 Document Structure 

This document is arranged into five chapters.  Chapter II provides background for 

the study.  It will cover the properties and crystal structure of ThO2, ThO2 hydrothermal 

growth, X-Ray Diffraction (XRD), CL, Atomic Force Microscopy (AFM), Time of Flight 

Secondary Ion Mass Spectrometry (TOF SIMS), the optical transmittance measurement, 

and previous luminescence studies of ThO2.  Chapter III details the material used and 

explains the experimental set-up that will be used to obtain the data for this study.  

Chapter IV includes the results and analysis, which are followed by the conclusions and 

recommendations for future research in Chapter V.   
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II Literature Review and Theory  

 

 

2.1 Chapter Overview 

This chapter will first present ThO2, its properties, and crystal structure.  Next, the 

hydrothermal growth method will be covered followed by XRD that indicated a high 

degree of crystallinity for the hydrothermally grown ThO2 crystal.  The primary 

experimental technique—CL—will be described as well as a description of how the 

Atomic Force Microscope (AFM), Time of Flight Secondary Ion Mass Spectroscopy 

(TOF SIMS), and optical transmittance work.  Lastly, previous luminescence studies on 

ThO2 will be presented.      

2.2 ThO2 and its Crystal Structure 

First, it is instrumental to develop an understanding of the physical properties of 

ThO2.  Thorium is an actinide, and filling the unfilled 4f electronic orbit shell is the high 

interest for experimenters today.  This study looked at an oxide of an actinide.  ThO2 is 

depicted in Figure 1.  The oxygen atoms are arranged in the face-centered cubic (FCC) 

structure, whereas the thorium atoms are in the simple cubic (SC) structure (Fluorite-unit, 

2012).  Thorium-232 is one of two naturally found actinides in the earth, where the other 

element is uranium-235.  All the other actinides are created in scientific laboratories.        
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Figure 1.  The ThO2 fluorite structure (Fluorite-unit, 2012). 
 

2.3 Hydrothermal Crystal Growth Method 

The ThO2 crystals used in this study were grown by the hydrothermal low 

temperature growth technique, where it mimics the naturally occurring mineral formation 

from an aqueous solution.  The ThO2 crystals used in this study were grown by Dr. James 

M. Mann at Clemson University (Mann M. J., 2009).  This technique performs crystal 

growth between 100oC and 800oC in an aqueous solution, typically water, contained in a 

closed vessel.   Hydrothermal synthesis is known to induce very few crystalline defects in 

the final crystal; however, this is tempered by the disadvantage of its slow growth rate.  

The small growth rates necessitate a significant time investment for industrial growth of 

large single crystals.   

 Spontaneous nucleation reactions were performed in silver ampoules of various 

lengths (2-8”) and diameters (1/4 – 3/8”) (Mann & Thompson, 2010).  The 99.99% ThO2 

powder was placed into the ampoule with a basic mineralizer such as cesium fluoride.   

The ampoule was then welded shut as seen in Figure 2.  The mineralizer was loaded into 

the ampoule in its solid form, and then using a syringe, deionized water was added to 
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reach the desired concentration.  The ampoules were then placed in a 27 mL internal 

volume Inconel autoclave with the remaining volume filled with water to provide 

counter-pressure (Mann & Thompson, 2010).  Once the mineralizer and reactants were 

loaded, the open end of the ampoule was crimped and then welded shut.     

 

Figure 2.  A schematic of the Tuttle cold seal and a view of the autoclave with the head assembly.  
Adopted from (Mann M. J., 2009).  Permission granted by Dr. Mann on 27 FEB 2013 to use these 
diagrams from his PhD dissertation, Clemson University, Department of Material Sciences.   
 

 The vessel was then heated to temperatures between 400oC and 750oC, which 

generated pressures between 10 and 30 kpsi (Mann & Thompson, 2010).  A seed crystal 

of ThO2 was drilled and hung from a ladder using 0.1 mm silver wire (Mann & 

Thompson, 2010).  In Figure 2, a typical autoclave is depicted, and it can withstand 

temperatures of 800oC and extremely high pressures.  Before attaching the plunger, 

pressure relief valve, and the pressure gauge, water was added to the remaining internal 



7 

volume of the autoclave to act as counter pressure.  This prevents the silver ampoules 

from bursting when heated.  Band heaters enable the autoclave to reach synthesis 

temperatures as shown in Figure 3.   

 

Figure 3.  Band heaters required to heat the ampoules up to 750oC (Mann M. J., 2009).  Permission 
granted by Dr. Mann on 27 FEB 2013 to use these diagrams from his PhD dissertation, Clemson 
University, Department of Material Sciences.     
 

Once the aforementioned components are assembled on top of the autoclave, a 

tight Tuttle cold seal is formed as shown in Figure 2.  The synthesis temperature is within 

the range of 400o-750oC, where these temperatures generate high pressures.  Reactions 

are held at temperature generally between 5-21 days.  The autoclave is then cooled to 
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room temperature and opened.  In order to form crystals larger than 1 mm in length, 

transport growth experiments are performed.  Seed crystals of approximately 3 mm in 

size must be used, and they can be formed from spontaneous nucleation reactions.  ThO2 

is formed by using seed crystals, and it grew 1 mm/week (Mann M. J., 2009).  Although 

these ThO2 samples are single crystals, there are defects. 

2.4 XRD  

XRD, or X-ray diffraction, is a versatile, non-destructive technique that can be 

utilized to reveal information about the chemical composition and crystallographic 

structure of ThO2.  Diffraction can indirectly reveal details of the internal structure of 

the order of 10-8 cm in size (Cullity, 1956).  Diffraction is the result of electromagnetic 

waves starting out in phase and rejoining with some phase difference, usually the result 

of the waves having different optical path lengths before rejoining.  If the path length is 

different by an integer wavelength, the waves will still be in phase.   

The atoms that comprise the crystal will scatter the incident x-rays in all 

directions, with some directions producing beams that are in phase.  The condition that 

produces rays that are completely in phase is the Bragg law: 

                                              n  2d sinθλ = ,                                                      (1)  

with θ being the angle of incidence and d being distance between planes in the crystal; n 

is the order of reflection which may be any integral value that does not force sin(θ) to be 

greater than unity.  Waves that are out of phase will cause destructive interference, thus 

annulling one another.  Constructive interference, therefore, can only occur at certain 

angles of incidence.  If the wavelength is fixed, and the x-ray scans over θ, the lattice 
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spacing can be determined for a given axis of rotation of the crystal.  This is known as the 

rotating-crystal method.  One can then determine the structure of the crystal based on the 

angles that cause diffraction. 

 Powder XRD of ThO2 is presented in the upper spectrum of Figure 4.  The lower 

histogram peaks were taken from the ICSD (Inorganic Crystal Structure Database) 

(Karlsruhe, 2013).  The positions and relative intensities of the peak match the reference 

powder diffraction profile for ThO2 (Castilow, 2012).   

 

Figure 4.  2-Theta plotted by Jacob Castilow, ThO2 crystal grower, ENP Student.  The upper XRD 
measurement was conducted by Dr. Matthew Mann.  Permission granted by Dr. Mann via email on 
27 FEB 2013 for the use of plot from his PhD dissertation.     
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ThO2 is only known to have the fluorite phase.  To identify a crystal structure, the peaks 

in the XRD spectrum should identify with the several peaks that are contained in the 

powder diffraction profile.  Therefore, the sharp diffraction peaks emitted from the (111), 

(200), (220), (311), and (222) planes indicate a crystal in the fluorite structure possessing 

a high degree of crystallinity.      

2.5 Cathodoluminescence (CL) 

CL is the primary experimental technique used in this study.  The basis of this 

technique is based upon the fact that when atoms in a crystal are excited by high energy 

electron beams, electrons in these atoms are excited to higher energy states.  

Subsequently, the atoms emit light by spontaneous emission when electrons in these 

excited states drop down to lower energy states by radiative transitions (Fox, 2010).  In 

solids, the radiative emission process is called luminescence.  Luminescence emission 

involves radiative transitions between electronic energy levels of the material and an 

emission is characteristic of the material (Lumb, 1978, Nomura, 2003).  Since the 

intensity of the luminescence depends on the number of excited states which are 

populated, one focus will be on understanding how the excited electronic levels can be 

populated allowing one to study and characterize the undoped ThO2 (Lumb, 1978, 

Nomura, 2003). 

The basic processes that occur when an electron beam strikes a crystal are 

depicted in Figure 5.  For example, at low temperatures and in the absence of any 

exciting mechanism, level zero (top of the valence band) alone is occupied.  After 
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excitation, level five can be occupied.  Because levels two to five are close together, the 

excitation can drop to level two by a non-radiative cascade process.  If the gap between 

level two and the next lower level is large enough, the excitation in level two cannot be 

dissipated non-radiatively.  With such a large gap the transition from level two to level 

one or zero may occur radiatively by emission of a photon of electromagnetic radiation, 

that is, by the emission of luminescence (Lumb, 1978).   

Many possible electron energy levels exist within the forbidden gap, which is 

between Eo (top of the valence band) and E2 (defined as the bottom of conduction band) 

in Figure 5.  Luminescence then occurs when an electron becomes excited to one of these 

levels and relaxes to recombine back at Eo.  The full band gap transition will exhibit the 

maximum energy photon at a certain sample temperature.  The band gap energy 

decreases as a function of increasing sample temperature since the interatomic spacing 

increases with temperature due to linear expansion of ThO2.  An increased interatomic 

spacing decreases the average potential seen by electrons in ThO2, which in turn 

decreases the band gap.     
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Figure 5.  The process of excitation and luminescence. 
 

 Another exciting mechanism is when an electron becomes excited and relaxes 

down to a shallow donor level, close to the bottom of the conduction band.  If ThO2 had 

been unintentionally doped with n-type materials, then the material would exhibit 

photons with an energy that is less than the band gap energy—photons resulting from 

electrons recombining from the donor level to Eo.  Electrons may become trapped deep 

near E-fermi and then recombine at Eo as temperature changes.  Or electrons could travel 

from the bottom of the conduction band to the acceptor level and emit a photon with a 

lesser energy than band gap energy.  The objective of this report is to determine the 

different mechanisms occurring within the band gap of hydrothermally grown ThO2 as 

well as determine the full band gap.   

The electrons in the electron beam are called primary electrons.  They have an 

energy that is determined by the voltage applied to the electron gun, which is typically 1-
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100 keV.  The penetrating electrons lose their energy by elastic and inelastic collisions 

with the lattice ions along the electron trajectories, generating x-rays, Auger electrons, 

secondary electrons, EHPs, and phonons (Ozawa, 1990).     

The production of BEs, X-ray emissions, and absorbed energy in the sample can 

be modeled by the “monte CArlo SImulation of electroN trajectory in sOlids” (CASINO) 

Version 2.42 program (Drouin & Couture, 2007).  CASINO allows for a good 

approximation of what the expected depth penetrations are for various electron gun 

energies applied to the sample.  CASINO’s major assumption is that no relativistic effect 

has been included within the models since this effect will only start to be more important 

at higher energy (>50 keV) (Drouin & Couture, 2007).  For this experimental study, the 

beam energies were within the 1-15 keV range.  Once the user defines the type of 

material that will be studied, CASINO assumes a Gaussian-shaped electron beam, where 

the user can specify the electron-beam diameter of the instrument.  The physical models 

behind CASINO give information about the absorbed energy in the sample and the 

electrons escaping the surface of the sample with energy higher than 50 eV (Drouin & 

Couture, 2007).  From such information, different representations of the data, depending 

on users’ requirements, can be generated by the program.  For example, Figure 6 depicts 

an example of the overview distribution panel display for a thin 35 nm silicon film 

simulated using 200,000 electrons of 1 keV.   
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Figure 6.  Different distributions of CASINO output of Z Max for silicon. 
 

Figure 6 shows the maximum electron beam penetration depth in the silicon 

sample.  As the simulation for ThO2 is conducted, the output images should appear 

different from Figure 6 because there is a vast difference in the atomic number between 

the silicon example and thorium.  Silicon has an atomic number of 14, whereas thorium 

has an atomic number of 90.  Since the depth penetration is dependent on the atomic 

number, the energy depositions will occur at much shallower depths.  The ThO2 

distributions will be presented in the subsequent chapter.      
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Figure 7.  A CASINO simulation of an arbitrary number of electrons with a random beam energy on 
an arbitrary sample to show the percentage of the incident energy absorbed on the sample area.   

 

 As the CL occurs, the energy by position feature of CASINO is a very interesting 

tool to investigate absorbed energy in the sample (Drouin & Couture, 2007).  This feature 

records the amount of energy lost by all the simulated electron trajectories.  In Figure 7, 

the 10% line contains an area, where 90% of the absorbed energy is deposited.  A gray 

shading overlay of the density of absorbed energy is also shown in Figure 7.  The gray 

shade ranges from light to dark as the density increases (Drouin, 2007).        

 The region of the crystal that interacts with the electron beam is called the 

excitation volume, and the distance the beam travels is called the penetration depth or 

electron range, Re (Fox, 2010).  The penetration depth increases with increasing primary 

electron energy, and the values of Re are in the range of 95-320 nm.  The Re can be less 

than 150 nm for electron beam energies below approximately 7 keV.  Irradiation by an 
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electron beam generates electron hole pairs (EHPs) in the excitation volume.  The 

penetration depth can be determined with  
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where x is the thickness of ThO2, A is the atomic weight in g/mol, ρ is the density in 

g/cm3, Z is the atomic number, and E is the acceleration voltage in keV (Yoshikawa, 

2002).  A primary energetic beam experiences energy loss when it interacts with 

materials.  For example, during the irradiation of Si by primary electrons, the electrons 

suffer energy losses due to the excitation of the valence-band electrons towards the 

conduction band (Liao, 2012).  This inelastic process induces EHP formation.  The 

carriers (holes and electrons) generated inside the interaction volume undergo several 

processes e.g. escape from the surface, diffuse away from the generation region, undergo 

recombination, and become partially trapped (Liao, 2012).  The number of EHPs 

generated per incident beam electron, called EHP generation factor, is given by, 
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where γ is the fractional electron beam energy loss due to backscattered and emitted 

electrons, Ep is the incident beam energy of the primary electron, and Ei is the ionization 

energy which is the energy required for the formation of an electron-hole pair (Fox, 

2010) (Liao, 2012).  The EHPs are produced by a complicated multi-step process 

involving the re-emission and subsequent inelastic scattering of secondary electrons.  For 
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a wide range of materials, it has been found that Ei is given by the following simple semi-

empirical formula that is related to the band-gap of the materials:  

 '2.8 ,i
gE E E= +   (4) 

where Eʹ depends only on the material, and has a magnitude in the range 0-1 eV (Fox, 

2010) and (Liao, 2012).  The ionization energy is therefore approximately 3Eg.     

 By varying the beam energy levels, ThO2 can be investigated from the surface to 

bulk states of the material.  A higher energy will increase the penetration depth and 

thereby the volume of excitation, whereas a higher current density will increase the 

density of excited centers (Lumb, 1978).   

2.6 Time of Flight Secondary Ion Mass Spectrometry (TOF SIMS) 

TOF SIMS is a process where a pulsed primary ion beam bombards the ThO2 

surface with carbon-60 (60C or Buckyballs).  The pulsed ion beam causes the emission of 

atomic and molecular secondary ions (Schueler, 1992).  The secondary ions are then 

electrostatically accelerated into a field free drift region with a kinetic energy.  Since 

lighter ions will have higher velocities than the heavier ones, they will arrive at the 

detector at the end of the drift region earlier than higher masses.  Different ion types 

arrive sequentially at the detector, and they are recorded in the mass spectrum.  As the 

Buckyballs impinge upon ThO2, in this measurement the surface is necessarily sputtered 

and as a result partially cleaned; thereby, exposing more of the true ThO2 surface.      

2.7 Atomic Force Microscope (AFM) 

In order to confirm that the partial cleaning which occurred in the TOF SIMS 

measurement was effective, the surfaces of the ThO2 samples were scanned by an atomic 
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force microscope (AFM).  AFM measured the interatomic forces acting between a 

detecting tip having a sufficiently sharp point and the surface of ThO2.  The forces were 

measured as a displacement of the spring element attached with the detecting tip.  

Therefore the shape of the ThO2 surface was charted using a control signal for 

maintaining the displacement amount of the spring element constant (Yamamoto, 1995).  

The ThO2 surface was scanned while maintaining the displacement amount of the spring 

element at a constant.  The image of the ThO2 surface presented in Chapter 4 was the 

result of the AFM scanning. 

2.8 Peak Fit 4.0 

The Peak Fit 4.0 software allowed the broad CL bands to be de-convolved.  The 

minimum number of peaks had to be used in order to resolve features that couple with 

expected physical processes.  In this report, it is evident that five peaks exist to form the 

broad band peak.  Therefore, combinations of the five peaks were set, based-off the first 

peak at the high energy side, where then the subsequent peaks were off-set by a certain 

wavelength away from each other.  With the increase of temperature, the main broad 

peak is expected to shift, so a new set-point was set for the first high energy peak and 

then the subsequent peaks were off-set according to the first fitted combination.  After 

each combinational fit, a regression value was out-putted by Peak Fit 4.0.   

2.9 Optical Transmittance Measurement 

In addition to the CL experiments, seven optical transmittance measurements 

were conducted on the ThO2 crystal samples.  A Varian UV-Vis-NIR Spectrophotometer 

Cary 5000 enabled analysis and characterization of the ThO2 samples by measuring the 



19 

transmittance of ultraviolet and visible radiation.  The transmittance spectrum provides 

information on the wavelengths of electromagnetic radiation that can be transmitted by 

the ThO2 crystals.  This is determined by varying the wavelength and recording the 

intensity of the transmitted beam.  When photons are absorbed, the energy of the 

absorbed photons is used to excite a transition between electronic levels (Vij, 1998).  The 

positions of excited states can be obtained from the transmittance spectrum. 

2.10 Previous Luminescence Studies 

2.10.1 Photoluminescence (PL) 

 Luminescence can be achieved by exciting the electrons of a substance with high 

energy electrons or photons.  Both CL and Photoluminescence (PL) can effectively 

determine the electrical properties of ThO2.  In this previous luminescence study, Harvey 

and Hallett’s research goals were to document well-characterized data on the PL of 

thoria, to point out that many factors can influence the PL behavior, and to illustrate these 

behaviors (Harvey, 1976).  High purity ThO2 powder was obtained from the American 

Potash Chemical Corporation, and they were arc-fused and single crystals were cut from 

the arc-fused boules with a diamond wire saw (Harvey, 1976).  A wide variety of 

impurities were reported as a result of creating these ThO2 crystals with the arc-fuse 

method.  The crystals were annealed at 1675 K in four different atmospheres: air, carbon 

dioxide, carbon monoxide, and dry hydrogen (Harvey, 1976).   

 The effects of changing the UV excitation wavelength on the PL can be found in 

Harvey et al.  For a pure crystal annealed in air at 1675 K, fast cooled, and measured at 

80 K, a broad asymmetric band is observed at 450 nm with 255 nm optimum excitation 
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(Harvey, 1976).  With 280 nm excitation, a sharp line doublet is observed with peaks at 

497 and 503 nm.  The doublet is attributed to transitions from the 3P0 and 3P1 4f levels to 

the 3H4 ground state for the trivalent rare earth Pr+3 (Saranathan, 1970).   The trivalent 

rare earth praseodymium was accidentally doped in ThO2.  Harvey et al concluded that 

the 450 nm emission is directly dependent on the oxygen vacancy concentration (Harvey, 

1976).  The same broad asymmetric emission band at “450 nm may be due to closely 

overlapping F and F+ centers possibly associated with the reduced state of variable 

valence impurities (Harvey, 1976).”  The origin of the second band at 540 nm is 

unknown.  Lastly, the emission band at 785 nm is probably from the presence of 

transition metal impurities (Fe+3, Cr+3, or Ti+2). 

 

2.10.2 Cathodoluminescence (CL) 

Vook et al determined the origin and nature of the blue luminescence observed 

when the surface of a clean thorium crystal is irradiated by an electron beam (2-6 keV) in 

the presence of various gases.  The samples involved in Vook’s experiments consisted of 

the (533) and (111) faces on high-purity thorium crystals that were mounted onto a 

thorium substrate of similar purity by spot-welded thorium tabs (Vook & Colmenares, 

1982).  Then the surfaces were cleaned by argon ion bombardment at 1173 K followed by 

cooling to room temperature.  The CL experiments were conducted at room temperature.   

According to Vook, the 468 nm (2.6 eV) main peak is attributed to F center 

excitation.  F centers occur in ThO2 as a result of oxygen atom vacancies formed during 

the oxidation process (Colmenares, 1981).  Saxena and Pant stated that electron beam 

irradiation could be expected to excite one of the two trapped electrons in the F center to 
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the conduction band leaving behind an F+ center, where only a single electron remains in 

the oxygen ion vacancy (Saxena, 1954).  Vook stated that in the case of very pure ThO2 

crystals, these electrons drop back down to the F+ center levels and convert them to 

excited F centers (F*).  The F*s lose their energy of excitation by the emission of photons 

that comprise the large 468 nm band in the CL.   

 

2.10.3 Absorption Measurement 

 Harvey et al examined the effect on the UV absorbance of doping the pure 

material with selected impurities and conduct related measurements of fluorescence from 

the pure and doped specimens following both oxidizing and reducing treatments (Harvey 

& Childs, 1973).  Harvey obtained the high-purity ThO2 powder from American Potash 

and Chemical Corp., West Chicago, IL.  Batches of ThO2 powder were arc-fused, and the 

sections with parallel sides were cut from the resulting boules using a diamond wire saw.  

The cut samples were also polished with a series of diamond pastes to produce optically 

flat single-crystal wafers approximately 0.25 mm thick (Harvey & Childs, 1973).  The 

samples were also put into one of two standard reduction/oxidation conditions by 

annealing it for one hour at 1400oC in either high-purity Ar or air (Harvey & Childs, 

1973).  The absorption spectra from 220 to 370 nm of pure, Ca2+-doped, and Y3+-doped 

ThO2 crystals can be found in Harvey et al.  The doped samples exhibited no obvious 

bands but exhibited an apparent absorption edge at 240 nm (or 5.16 eV).  Harvey et al 

attribute the absorption bands in the reduced pure material and in both the reduced and 

the oxidized doped materials to defect centers involving oxygen vacancies (Harvey & 

Childs, 1973).              
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III Experimental Set-Up and Materials Examined 

 

 

3.1 Chapter Overview 

In this chapter, a description of the overall CL system utilized in this study will be 

given, followed by a description of each component in the system as well as the 

procedure for obtaining a CL spectrum.  Following the system description, the samples 

studied will be described and shown.   

3.2 CL Experimental Set-Up 

The CL experiment requires a source of electrons, in this case an electron gun, a 

sample holder on which to mount the target of ThO2, and an apparatus that facilitates the 

electron stream to impinge upon the target for a given beam energy and current.  As 

depicted in Figure 8, the experiment apparatus consists of: 

• an electron gun with controller 
• a cooling system with temperature controller 
• a vacuum pumping system 
• a spectrometer  
• a photomultiplier tube with cooling system 
• a means of capturing data & plotting 

 
These components are then mounted in an ultra high vacuum chamber.  Images of the lab 

are depicted in Figure 8, and a schematic of the system is shown in Figure 9. 
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        Figure 8.  Cathodoluminescence Experimental Set-up. 
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            Figure 9.  AFIT CL Experimental Diagram 
            
            Table 1.  Equipment Data for CL Components 
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Here, the sample is mounted on an oxygen free high conductivity (OFHC) 101Cu 

sample holder shown in Figure 10.  The samples are fastened onto a thin, highly 

conductive tantalum sheet as shown in Figure 10 using tantalum wires spot welded to the 

sheet which is then mounted on the Cu sample holder.  The sample is then moved into the 

main chamber by a horizontal load-lock mechanism which can be seen in Figure 8 and 

which is depicted in the bottom portion of Figure 9.       

 

Figure 10.  ThO2 and another sample mounted on a thin tantalum sheet by arc welding tantalum 
wires to secure the samples.  The configuration is then secured onto the OFHC 101Cu sample holder 
of 1”˟ 0.375” ˟ 0.375” (length ˟ width ˟ height).   
 

The sample load-lock chamber is then pumped down in pressure to 10-6 Torr 

using the sample chamber mini-turbomolecular pump.  The main chamber valve is then 

opened and the sample is moved by the load-lock mechanism.  The cold finger is the 

lower end of the Cryo-cooler that is mounted on top of the main chamber.  The cold 

finger is responsible for cooling the sample down to 20 K.  The temperature is monitored 

and regulated by Lakeshore’s temperature controller. The temperature can be lowered or 

raised to the desired setting for study.  From this point on, all the components of the CL 

apparatus will be described as to how they function.  The exact procedure, as to how each 

CL experiment was conducted, is found in Appendix A.      
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3.2.1 Electron Gun 

The electron gun coupled with the spectrometer and the photomultiplier tube 

detection system allows for a precise and in-depth CL study.  The Kimball EMG-12 

electron gun shown in Figure 11, has beam energy of 100 eV to 20 keV, and is capable of 

delivering a beam current of 10 nA to 100 µA (Kimball, 1999).  The major components 

of the gun are the cathode, the grid or Wehnelt, the anode, and the deflection plates.  The 

cathode, grid, and anode form a triode of elements.     

 

Figure 11  A derivative of a model EMG-12 electron gun (Kimball Physics, 2012) 
 

The electrons emitted from the cathode are accelerated to full kinetic energy by the 

triode’s electric field, which also causes the beam to crossover in the triode region.  This 

crossover forms the object imaged at the target by the focusing lens.   

 The cathode is a thermionic emitter that is directly heated by an isolated voltage 

source.  The electron emission is a function of both cathode temperature and energy.  The 

standard cathode uses a refractory metal thermionic emitter consisting of a disk mounted 

on a hairpin filament wire.  The disk provides a circular, planar emission surface that 
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emits electrons when the filament wire is heated by the voltage source.  The cathode is 

held at a negative high voltage of between 0 and -20 keV.   

 The Wehnelt or the grid is a tubular structure with an aperture fixed to one end 

that houses the cathode.  The Wehnelt potential is controlled by a voltage source 

referenced to the negative 0 – 20 kV energy supply, where increasing the Wehnelt 

potential makes the Wehnelt aperture more negative with respect to the cathode.  

Therefore, if enough grid potential is applied, the beam will be completely suppressed. 

The grid is utilized to adjust the beam current without changing the filament source 

current.  These adjustments are extremely critical to the life of the filament.     

 The anode is an aperture plate that is the third element of the triode, and it is 

located downstream of the Wehnelt.  The trajectory of the electrons emitted from the 

cathode is determined by the potential difference between the cathode and the anode.  An 

accurate reading of the beam current can be determined by utilizing the Faraday cup 

assembly that is at the end of the electron gun.  During the experiment, the beam power 

must not exceed two watts.      

    

3.2.2 Leybold Coolpower 4.2 GM Cryocooler 

Cryocoolers have recently become the most widely used of the high vacuum 

cooling systems.  This is due to their dry operation and low maintenance requirements 

(Leybold, 2012).  The cryocooler works by cooling internal arrays down to cryogenic 

temperatures.  Figure 12 is a depiction of the equipment that allows the samples used in 
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this experiment to be held at room temperature down to 20 K.  When operating, the 

cryocooler also serves as a cryopump in addition to its primary role as a sample cooler.     

 

Figure 12.  COOLPOWER 4.2 GM Cryocooler allows for cooling the samples down to 20 K in 
approximately 90 minutes.  Figure is from (Leybold, 2012). 
 

3.2.3 Vacuum System 

The vacuum atmosphere required to accomplish the CL measurements consisted 

of a Varian vac-ion pump, an Agilent turbomolecular pump, a Pfeiffer turbomolecular 

pump, and a Scroll pump.  A steel “beer keg” was used as a buffer volume for the Scroll 

pump which was used as the roughing pump of the system.  Once the main chamber 

reaches a pressure of 10-2 Torr using the Scroll pump, the Agilent turbomolecular pump 

can be turned-on.  This turbo-pump will pump the system down to 10-6 Torr.  When the 

main chamber is at 1.0 x 10-6 Torr, the vac-ion pump can be turned-on.  The minimum 

pressure values are required to be reached by each pump; otherwise, the subsequent pump 

in the system will be over-worked.  Once a pressure of 10-6 Torr is reached, the vac-ion is 

always on. 

During normal operations involving sample changes utilizing the sample change 

chamber and load-lock system, the smaller Pfeiffer turbo-pump is utilized.  This pump 
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ensures that the pressure outside the main chamber within the load-lock system is 10-7 

Torr prior to opening the main chamber to change samples.   

3.2.4 Spectrometer—Spex 500M 

The CL photons emitted from the sample in the evacuated main chamber travel 

through a quartz window, through two focusing external lenses, and onto the entrance slit 

of a SPEX 500M spectrometer as shown in Figure 13.  These photons are dispersed by 

the plane grating in the spectrometer and the resulting narrow band of wavelengths passes 

through the exit slit.  

 

Figure 13.    Optical diagram of SPEX 500M monochromator (HORIBA, MSeries). 
 

A scan motor is used to correctly position the grating of the monochromator for the 

required wavelengths.  The grating that is utilized in the spectrometer for these 

experiments is a holographically recorded 1200 gr/mm grating blazed at 2500 Å with a 

spectral range of 1900-7000 Å.  After the light leaves the exit slit of the monochromator, 

it strikes the detector as depicted in Figure 9: PMT.       
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3.2.5 PMT 

The PMT creates an electrical current proportional to the number of photons 

striking the light-sensitive cathode of the PMT (photoemission) (Bennett & Gupta, 2001).   

 

Figure 14.  PMT Housing that contains the actual detector and allows for the detector to be cooled 
with LN2 (Research). 
 

The electrical current coming out of the PMT is amplified by a low-noise current 

amplifier that provides low bandpass filtering for high-frequency noise reduction, signal 

amplification, and selectable current-to-voltage conversion ranging from 1 pA/V to 1 

mA/V.  The electrical noise is further reduced by cooling the PMT housing unit with 

liquid nitrogen as seen in Figure 14.  Cooling of the photocathode of the PMT is required 

to reduce the thermionic emission from the photocathode and as a result reduce the noise 

due to the dark current.  

 

3.2.6 Data Acquisition—SynerJY  

HORIBA Scientific SynerJY™ software is a fully integrated data acquisition and 

data analysis software for spectroscopic systems.  The software provides intuitive control 

of spectrometers, detectors (offering simultaneous detector control), and accessories. The 

user-friendly interface allows for quick access to powerful data processing and 
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presentation tools (HORIBA, SynerJY).  SynerJY allows for easy experimentation 

because its input parameters are user-friendly.  The wavelength start and stop positions, 

the bin size, and the integration time can be easily set for the spectrometer to deliver the 

data to the PMT detector.  SynerJY also provides a tool, where one can stay on a 

wavelength to determine if there is a signal and then observe as the optimal signal-to-

noise ratio is achieved.  The maximum signal-to-noise ratio is achieved by: 

• Manipulating the two lenses that are positioned between the main 

chamber of the CL system and the spectrometer in the X-, Y-, and Z- 

directions 

• Manipulating the X- and Y- deflections of the electron beam on the 

sample target 

• Manipulating the beam spot size by varying the focus voltage of the gun 

• Increasing the spectrometer entrance and exit slit size widths 

• Increasing the beam current 

• Cooling the PMT 

 

3.3 ThO2 sample investigated  

Two hydrothermally produced ThO2 crystals—samples #001TO and #004TO—

were studied in this research.  Figure 15 presents what sample #001TO looked like prior 

to and during irradiation.   
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a)   b)   
Figure 15.  ThO2 Sample #001TO a) has a thickness of 0.144 inch, and it b) glows bright blue when it 

is irradiated with a 10 keV energy and 40 µA beam current.   
 
Sample #001TO has a mass of 0.4199 grams with a thorium weight percent of 2.24%; 

therefore, 9.4 milligrams of it is thorium.  Sample #004TO is a cut and polished sample 

that is 0.037 grams as depicted in Figure 16. 

 

Figure 16.  Polished ThO2 Sample #004TO. 
      

Depth-resolved CL and optical transmittance measurements were carried out on these 

two samples.     
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IV Results and Analysis 

  
 
 

4.1 Chapter Overview 

Based on CASINO simulations of electron beam interactions in ThO2, CL 

measurements were made on the two ThO2 samples over a range of energies, sample 

temperatures, and surface conditions.  In addition, optical transmittance measurements 

were also made on both samples.  These simulations and measurements are covered in 

this chapter.   

4.2 CASINO Depth Penetration Simulation 

The purpose of CASINO is to approximate the penetration depth of energetic 

electrons to be used in depth-resolved CL.  The CASINO simulations with 20,000 

electrons at various beam energies are presented in Table 2.  Backscattered electrons 

(BEs) are depicted in red, and it is expected that there are so many BEs as a result of the 

thorium.  Figure 17 details how the maximum energy deposition of the blue primary 

electrons interacts on the surface of ThO2, where depths of 95 nm or below are perhaps 

considered the surface of ThO2.   
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Figure 17.  CASINO simulation with 20,000 electrons at beam energy of 7 keV interacting on the 
surface of ThO2.  Blue is the primary electrons, and red is the backscattered electrons.     
 
 

 Table 2 details how the increase in beam energy results in deeper electron 

interaction within the bulk of the crystals.  According to Mann, the as-grown crystal 

(Sample #001TO) is more pure because of the hydrothermal growth process.  Therefore, 

it is expected that the spectra from Sample #001TO should be better defined.  On the 

other hand, the cut and polished sample may have unintentional impurities.       

 

Table 2.  Expected Electron Interaction within ThO2.   
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Figure 18. ZMax plot of 20,000 electrons of 5 keV energy; maximum energy deposition at 
approximately 95 nm.   
 

CASINO simulations depicted in Figure 19 were conducted several times with different 

beam energies.  Maximum energy deposition plots such as the one depicted in Figure 18 

were obtained as a result of the CASINO simulations.  Table 2 tabulates the maximum 

energy deposition locations from Figure 18 and other figures for the different beam 

energies.  The location of maximum energy deposition for ThO2 when it is excited with 5 

keV energy electrons, occurs at approximately 95 nm.   
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Figure 19.  CASINO simulation with 20,000 electrons at beam energy of 10 keV interacting in the 
bulk of ThO2.   
 

On the other hand, Figure 19 portrays relatively good electron interaction within the bulk 

of ThO2, and thus what one might expect to find in the actual experiment with a 10 keV 

beam energy.  Here the expected interaction depth is 280 nm.  Based on these 

simulations, the experiment was conducted using beam energies of 5, 7, 10, and 12 keV 

as well as limited measurements at 1.5 keV to examine the surface of the samples.       
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4.3 ThO2 Depth-Resolved CL 

4.3.1 As-grown Sample #001TO  

In this depth-resolved CL experiment, the as-grown and cut and polished samples 

were examined and compared.  The lowest beam energy of 1.5 keV was utilized to begin 

the study on the as-grown sample.  The system response was corrected, but the spectrum 

in Figure 20 had a significant amount of noise and was not well defined.  As the beam 

energy is increased, the signal-to-noise ratio will become greater resulting in a more 

defined spectrum.  Observe that the main peak location is at 3700 Å at this temperature of 

22 K and beam energy of 1.51 keV.   

  

Figure 20.  ThO2 #001TO irradiated with beam energy and current of 1.51 keV and 30 uA, 
respectively, at 22 K.   
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 As the beam energy was increased from 1.51 keV to the higher energies of 7, 10, 

and 12 keV, the as-grown ThO2 sample behaved as shown in Figure 21. 

 

                        Figure 21.  ThO2 #001TO Energy Dependent Experiment at 192 K. 
 
     Table 3. Sample #001TO Energy Dependent Peak Locations at 192 K. 

 

 In Figure 21, varying the beam energy at 192 K yields a set of spectra with the 

primary peak energy at 3.6 eV (Peak #1).  The four peaks tabulated in Table 3 are based 

off the 7 keV spectrum, and graphically, they correspond well with the 10 and 12 keV 
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peak locations.  The 7 keV spectrum depicts a peak transition from Peak #1 (3396 Å) to 

Peak #2 (3518 Å).  The two shoulders are evident at Peak #3 and Peak #4, which 

constitute the broad blue luminescence band that can be seen.  The as-grown ThO2 

sample appears to have an energy dependency as the peaks shifted as a function of 

increasing beam energy.   

 

Figure 22.  At various temperatures, #001TO irradiated with a beam energy and current of 7 keV 
and 50 uA, respectively. 
 

               Table 4.  Sample #001TO Temperature Dependent Peak Locations at 7 keV. 
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 A beam energy of 7 keV resulted in peaks identified in Table 4, where the relative 

intensities decrease and the peaks shift to lower energy levels as a function of increased 

temperature.  The intensities decrease because of the increased phonon-interactions as the 

temperature is increased.  Superimposed peaks create the broad ultraviolet band with an 

anomalous peak around 4300 Å (2.88 eV) (Gruber & Gray, 1967).  At 192 K, the 

beginning of a double peak transition is observed at 3396 Å and 3518 Å.   

Before experimenting in-depth at a beam energy of 10 keV, a single, long run was 

conducted with an integration time of 1 second per bin to observe if there was any 

improvement in the definition of the multiple peaks.      

 

Figure 23.  24 K CL spectrum of ThO2 Sample #001TO obtained using beam energy of 10 keV, beam 
current of 41 uA, and corrected for system response.       
 



41 

 The result is shown in Figure 23 which depicts two distinct shoulders on the lower 

energy side of the peak.  The temperature dependent experiments using a 10 keV beam 

energy as shown in Figure 24 and Figure 25 further exhibit the locations of these two 

shoulders (marked by red numbers “2” and “3”) as well as the main peak (red number 

“1”) and the tail of the broad-band (red number “4”) visible luminescence.    

 

Figure 24.  Sample #001TO examined with 10 keV at low and room temperatures 
 

According to Harvey and Hallett, peaks 1 and 2 appear to be competing transitions from 

the 3P0 and 3P1  4f levels to the 3H4 ground state (Harvey, 1976).  The origin of peak 3 is 

unknown, and peak 4 probably arises from the presence of transition metal impurities 

such as iron and chromium present in oxidized crystals (Harvey, 1976).  Other 
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researchers like Vook attribute the peaks to F centers in ThO2 (Vook & Colmenares, 

1982).   

 

                 Figure 25.  Sample #001TO examined with 10 keV at intermediate temperatures. 
 

    Table 5.  Sample #001TO Temperature Dependent Peak Locations at 10 keV. 
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 The full range of temperatures—24 K through room temperature—allows for a 

closer investigation of the peak locations and the behavior of ThO2’s possible center sites.  

Based-off Figure 25’s 242 K magenta spectrum, the peaks of the two shoulders and the 

broad-band visible peak were easily identifiable.  Table 5 delineates the four peaks for 

242 K, and those four peaks remain in their same locations as temperature varies.  This is 

further evidenced in Figure 24 but not as pronounced as in the intermediate temperatures 

of Figure 25.       

 Generally, as evidenced by the different temperature variation plots of Figure 24,                  

Figure 25, and Figure 26, it can be claimed that the as-grown ThO2 sample does not 

exhibit much temperature dependency.   

 

Figure 26.  ThO2 #001TO at various temperatures irradiated by beam energy and current of 12 keV 
and 36 uA, respectively.   
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    Table 6.  Sample #001TO Temperature Dependent Peak Locations at 12keV.     

 

 The peak locations of the spectra in Figure 26 are tabulated in Table 6.  In this 

case, the electron interactions are now taking place deep within the bulk of ThO2.  The 

ripples visible (at the peaks of the 192 K and 242 K spectra) in the broad UV band are 

possibly due to the microcavity effect (Billeb, Grieshaber, & Stocker, 1997).  Changes in 

the signal intensity in CL depth profiles are caused by variations in physical properties 

throughout the sample (which can be induced by the electron beam), self-absorption, 

surface recombination, and recombination competition effects.  Although Figure 26 

appears uniform and Gaussian, the 92 K and 242 K main peaks tend towards higher 

energy.  This change to higher energy as well as the increase in intensity from 36 K to 

242 K can be attributed to recombination competition effects.            
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Figure 27.  ThO2 #001TO Current Dependency study at 12 keV. 
 

 The variation of the 12 keV spectra with electron beam current is shown in Figure 

27.  These spectra show a decrease in the electron hole pair recombination with a 

decrease of the beam current.  The spectra generally maintain their form, where the peaks 

are relatively on the same location.  As the current decreases, the shoulders become a 

broader band.        

 

 



46 

4.3.2 Cut and Polished Sample #004TO 

Depth-resolved CL spectra for the polished ThO2 sample are shown in Figure 28, 

tabulated in Table 7.  These spectra show very little energy dependency.     

 

Figure 28.  An energy dependency study of ThO2 #004TO at 27 K.   
 

 A uniform shift to shorter wavelengths is observed when the spectra taken at 7 

keV and 10 keV beam energies and a temperature of 27 K are compared to the similar 

spectra taken at 192 K for the as-grown Sample #001TO (Figure 21 and Table 3).  In 

referencing the 192 K Table 3, the peak for the 7 keV beam energy keV is at 3396 Å and 

the peak for the 10 keV beam energy is at 3390 Å.  When the temperature is lowered to 



47 

27 K, the polished Sample #004TO has a peak at 3132 Å and 3136 Å for beam energy 7 

keV and 10 keV, respectively.     

 

                          Table 7.  Sample #004TO Energy Dependent Peak Locations at 27 K.   

 

After investigating the energy dependency of the polished ThO2 sample, a 

temperature variation study was conducted at beam energies of 5, 7, and 10 keV.  Only 

the 7 keV temperature study will be included in the main body of this report.  The other 

two energy spectra are located in Appendix B.      

 The set of 7 keV temperature dependent data is depicted in Figure 29 and            

Figure 30 with the tabulated peak values found in Table 8.  Qualitatively, in comparison 

to the as-grown Sample #001TO’s 7 keV runs found in Figure 22, the shape of the 

polished sample 7 keV spectra are similar to the as-grown spectra.  From Table 4, the 

bottom three values in the table for the as-grown 7 keV have peaks that are close together 

near 3392 Å.  Likewise, from Table 8, the cleaved 7 keV spectra have peaks that are all at 

3330 Å.  For both samples, the peaks remain stable. 

In exploring the temperature dependency for Sample #004TO taken at a beam 

energy of 7 keV, Figure 29 depicts a sudden shift to a lower energy from the 27 K peak 

(black line) to the 77 K peak (red line).  This sudden shift in energy was investigated in 

detail by obtaining spectra at 40 K and 52 K to observe that shift.  Figure 30 confirms 
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that the peak does gradually shift to lower energy from 27 K (black), to 40 K (red), to 52 

K (green), and then to 77 K (blue).    

  

Figure 29.  ThO2 #004TO irradiated with beam energy and current of 7 keV and 62 uA,  respectively.   
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           Figure 30.  A closer 7 keV inspection of ThO2 #004TO from 77 K to 40 K to note peak shift. 
   

    Table 8.  Sample #004TO Temperature Dependent Peak Location at 7 keV. 

 

  

 At this point in the research, the samples were subjected to a TOF-SIMS study by 

Mr. Tony Kelly.  The CL measurements presented from this point on were taken on the 

samples after the TOF-SIMS measurements.  Since the surface was altered as a result of 
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the TOF-SIMS study, the data that follows will be referred to as post “TOF-SIMS” 

measurements.     
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4.4 Post-TOF SIMS Measurements 

The as-grown and polished ThO2 samples were then analyzed by TOF SIMS to 

determine if any surface artifacts existed as a result of the samples having been exposed 

to the atmosphere since they were grown over two years ago.  TOF-SIMS surface scans 

for Na and K are shown in Figure 31.  Figure 31’s red, orange, and yellow spots indicate 

that sodium (Na), potassium (K), and other elements exist on the surface of the crystals.  

In TOF-SIMS, the crystal surface was bombarded with Carbon-60 (60C) “Buckyballs,” 

which removed six 300 µm2 spot areas of surface contaminants off the surfaces.  As a 

result of the TOF-SIMS measurements, several surface impurities were identified.  These 

include Na, K, Li, F, H, C, Cs, Cl, CH, C2, and OH. 

 

Figure 31.  TOF SIMS measurements taken by Mr. Tony Kelly identified Na, K, and other elements 
present on the surface of the ThO2 crystals.   
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In addition to the TOF-SIMS measurements, Atomic Force Microscope (AFM) 

images were taken of the polished ThO2 sample.  The images also indicated that the 

surface had been polluted by being exposed to the atmosphere over time.  See Figure 32.        

 

Figure 32.  Atomic Force Microscope image of polished ThO2 was speckled with much surface layer 
impurities present.  Measurement taken by Dr. Alex Li.     
 

The presence of surface impurities on the samples and the fact that the spots have been 

“cleaned,” as a result of the “Buckyball” sputtering in TOF SIMS initiated a further in-

depth CL investigation of the as-grown and polished samples of “post TOF SIMS” ThO2.  

If enough of the surface has been spot-cleaned, then the expectation is that there should 

be a change in the radiative behavior of the crystals in CL.   
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4.4.1 Post-TOF SIMS: CL of As-Grown Sample #001TO 

It appears that TOF SIMS partially cleaned the surface of the ThO2 crystals, so 

both the as-grown and cut/polished samples were reinvestigated with depth-resolved CL.  

First, the as-grown sample had an energy dependency study conducted on it.       

 

          Figure 33.  Post-TOF SIMS, As-Grown ThO2 Energy Dependency Runs.  E=5, 7, & 10 keV.   
 



54 

                Table 9.  Post-TOF SIMS As-Grown ThO2 Energy Dependent Peak Locations 

 

 The as-grown ThO2 crystal was irradiated again with varied electron gun energies, 

which caused photon emission at the energies for the main peaks listed in Table 9.  At low 

beam energies (1.51 and 2.5 keV), the locations of the main peaks did not significantly 

change, and as the beam energy was increased to 5, 7, and 10 keV, the main peak held 

constant at approximately 3030 Å.  It appears that the Buckyball “cleaning” had an effect 

on the as-grown sample as the main peak locations now remain relatively stable.  This 

effect, in turn, reverses the trend observed in the pre-TOF SIMS CL measurements, 

where the peak shifts were highly dependent on the beam energy.   
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Figure 34.  Post-TOF SIMS, As-Grown ThO2 (#001TO) Energy Dependency Runs.  E=1.51 & 2.5 
keV.    
 
 
 In contrast to the pre-TOF SIMS CL measurement of this sample in Figure 20, it 

is observed that there is a more pronounced double peak near 3,000 Å for the 1.51 keV 

beam energy run in Figure 34.  This effect is attributed to the TOF SIMS “cleaning” since 

more of the true ThO2 surface is available for the low beam energies to penetrate and 

interact with the surface.  To further confirm that TOF SIMS partially cleaned the ThO2 

samples, the cut/polished sample was further investigated with CL using higher energy 

electron beams as is shown in Figure 35. 
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4.4.1 Post-TOF SIMS: CL of Polished Sample #004TO 

The first study conducted on the polished sample was an energy dependency 

study, where the results as shown in Figure 35 are little changed from similar spectra 

taken before TOF SIMS and furthermore mirror the results of the as-grown post-TOF 

SIMS energy dependency runs.   

   

 

Figure 35.  Post-TOF SIMS, Polished ThO2 (#004TO) Energy Dependency Runs.    
    

After the energy dependency runs, a deconvolution was conducted on the 1.5 keV 

spectrum with Peak Fit 4.0 to locate the sub-peaks that comprise the broad UV band.   
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Figure 36.  Post-TOF SIMS, Polished ThO2 irradiated with 1.5 keV beam energy, 51 uA beam 
current at 48 K (actual data in red).  Also portrayed is the peak fit generated spectrum (in blue).   
  

The cut/polished ThO2 crystal was rigorously investigated again but this time with peak 

fitting and de-convolving the main peaks to observe whether or not the de-convolved 

mini-peaks’ wavelength differences remain the same (wavelength and energy).  These 

results are shown in Table 10.   Table 10 provides the five peak locations as determined 

from Peak Fit 4.0 for each of the spectra for 1.5, 2.5, and 7 keV.  The differences between 

these peaks are also shown.  Observe that the differences in mini-peak locations (or ∆λ) 

are relatively the same for beam energies 1.51 keV and 7 keV.  Furthermore, the mini-
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peak wavelength differences for the 2.5 keV energy’s peaks (2) and (3) are relatively 

close to those of the other beam energies.      
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Table 10.  Post-TOF SIMS Polished ThO2 Sample Energy Dependent Peak Locations, Peak-Fitted 
De-convolved Peak Locations with Wavelength Differences, and Regression Values.  (1)-(5) denote 
the mini-peaks de-convolved.   
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Figure 37.  Post-TOF SIMS, Polished ThO2 de-convolution with 5 superimposed peaks that result in 
a R2 = 0.980 generated peak fit depicted in Figure 36.  

 

              Figure 38.  Zoomed-in depiction of the as-grown 12 keV, 192 K spectrum; Figure 26. 
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Examination of the spectra in Figure 34 indicates the existence of a small peak 

near 2500 Å.  Figure 37 depicts how the addition of the small peak at 2432.1 Å enables 

the regression R2 value to be increased 0.980, whereas without the peak the R2 value is 

0.95.  This effect combined by the addition of the short wavelength (high energy) peaks 

on the other beam energy experiments demonstrates an existence of a small peak that is  

normally dominated by the main UV peak.  There are several instances that the small 

high energy peak actually manifests itself in both the cleaved and as-grown spectra.  The 

manifestations highly indicate the existence of a small peak even more.   

 In Figure 26, the as-grown 12 keV 192 K (spectrum in black) and the 242 K (teal 

color spectrum) runs, note that there exists a small peak slightly above 2500 Å that is 

dwarfed by the prominent UV peak.  Figure 38 zoomed-in Figure 26’s spectrum (12 keV, 

192 K).  Observe that there is a peak between 2600 – 2800 Å.  Lastly, in Figure 30, as we 

inspect the drastic shift in peaks due to temperature variance, observe the evidence of a 

bump in the higher energy side of the 52 K and 77 K spectra.   
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    Figure 39.  Post-TOF SIMS, Cut/Polished ThO2 irradiated with 2.5 keV beam energy, 34 uA beam      
current at 31 K (actual data in black).  Peak-fitted spectrum with a R2=0.996 (in blue).   

  

The post-TOF SIMS CL measurements with de-convolution further indicate that a 

peak exists on the higher energy side of the main peak.  As a result of TOF SIMS’ 

cleaning, that small peak is more pronounced.  The de-convolution analysis indicates that 

the addition of the—for example, the 2440 Å peak—refines the Peak Fit R2 value to 

equal 0.996 in Figure 39.   
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Figure 40.  Post-TOF SIMS, Cu and Polished ThO2 de-convolution with 5 superimposed peaks that 
result in a R2 = 0.996 generated peak fit depicted in Figure 39.   
 

 The inclusion of a well-fit mini-peak that steadily maintains its mini-peak 

wavelength difference as the main peak shifts due to either energy or temperature 

variances while providing an extremely good overall fit highly suggests of a small peak’s 

existence.  After deconvolving the 1.5 and 2.5 keV spectra, nine more spectra were 

deconvolved.  As shown in Table 11, spectra from pre- and post-TOF SIMS of both as-

grown and polished ThO2 crystals were deconvolved to show that the highest energy 

photon peak can be the band gap.     
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Table 11.  Peak Fit 4.0 Deconvolution of CL Peaks with 5-sub-peaks; the wavelength differences 
between each combination of fits based-off the shortest wavelength (band gap); and regression value 
of best-fit.   

 

 The de-convolution analysis of the main peak and the experimental results 

described in the discussion of previous experimental studies highly indicate that the peak 

at 2500 Å is associated with the band gap.  Thus from the depth-resolved CL results, one 

can conjecture that the hydrothermally grown ThO2’s absorption edge is 5.1 eV (2436 Å).  

The value of 5.1 eV is based on the Peak #1 average of Deconvolution #6-10 in Table 11.       
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Figure 41.   Post-TOF SIMS ThO2 Comparison between As-Grown and Polished samples; both 
irradiated at beam energy of 1.51 keV.   

 
The comparison plots in Figure 41 simply depict how the “Buckyball” sputtering in TOF 

SIMS was effective in partially cleaning the surface of ThO2.  The as-grown and polished 
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spectra at the low beam energy of 1.51 keV were achievable after TOF SIMS whereas 

when before TOF SIMS they were not.      

 

4.5 Optical Transmittance Spectrum 

As has been explained, the deconvolution work strongly indicated that the ThO2 

band gap is 5.1 eV; however, an absorption measurement confirmed that the absorption 

edge is indeed approximately 5.1 eV.   

 

Figure 42.  Optical Transmittance Spectrum at room temperature.  Spectrum taken by Mr. Mike 
Ranft.   
Figure 42’s cut-off value of 2265 Å (or 5.4 eV) was determined by taking the derivative 

at each point on the data spectrum.  The derivative at each point indicated the inflection 

point, where that inflection point was the absorption edge of this cleaved ThO2.  The 
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absorption measurement was conducted twice to demonstrate that this result was 

reproducible.  The second run of the absorption spectrum for the polished sample was 

identical to the first run; therefore, the 5.4 eV absorption edge value can be taken with 

confidence.  The six spectra taken of the as-grown sample proved not so helpful however.  

The as-grown sample was so thick that the light source could not accurately be detected 

by the spectrophotometer.  Hence, the optical transmittance data for the as-grown sample 

cannot be taken with confidence and was not included in this report.     
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V Conclusions and Recommendations for Future Research 

 

5.1 CASINO 

The ThO2 crystals were modeled in an electron depth penetration program called 

CASINO.  CASINO simulates with electrons at various beam energies to determine how 

far electrons will impinge in a material.  The simulation was conducted for beam energies 

of 1-12 keV, and Table 2 provides the expected interaction depth.  With this information, 

CL experiments were designed to investigate by probing from the surface of the material 

down to its bulk. 

5.2 CL 

Depth-resolved CL explored two different ThO2 samples: as-grown and polished.  

TOF SIMS was conducted on these two samples.  Prior to TOF SIMS, the as-grown 

spectra exhibited a dependency upon beam energy (variation of 1.5 – 12 keV) but not 

upon temperature.  On the other hand, the polished sample exhibited little dependence 

upon beam energy (variation of 5 – 10 keV) but significant dependence upon 

temperature.  TOF SIMS inadvertently partially “cleaned” the surface of the ThO2 

samples.  After TOF SIMS, the as-grown sample had no variation in spectral shifts as 

beam energy was changed from 1.5 – 10 keV.  The polished sample continued to exhibit 

little dependence upon beam energy.  All spectra were deconvolved and peak fitted, 

which resulted the band gap value of 5.1 eV.  An optical transmittance measurement 

indicated an absorption edge at 5.4 eV.     
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5.3 Recommendations for Future Research 

First, a temperature variation study should be conducted to determine if TOF 

SIMS had an effect on the crystals.  The ThO2 crystals should then be chemically cleaned 

with ether, which should take all of the surface artifacts off.  Followed by this, AFM 

measurements on the samples should be done to confirm that the surface elements are 

gone.  Then, another detailed depth-resolved CL should be conducted in order to confirm 

the results and analyses in this report.   

The ThO2 crystals can be studied by electron paramagnetic resonance (EPR) to 

characterize some of the electronic defect structure of thorium.  An unpaired electron can 

move between the two energy levels by either absorbing or emitting electromagnetic 

radiation of energy such that the resonance condition is obeyed.  Attaining a better 

understanding of the electronic defects can help explain the radiative behavior of ThO2 

under CL.   

Another possible future research is conducting an in-depth photoluminescence 

(PL) study.  Having a detailed PL report to combine and compare with this depth-

resolved CL study can confirm or deny any of the current findings.  The PL 

measurements can be coupled with either SEM CL or profilometer (“Stylus”) so images 

of the surface of the material can be obtained while collecting CL data to complement the 

current surface and bulk findings.   
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Appendix A 

CL Start-Up Procedure  

The procedure to begin taking measurements on the CL system is detailed, where 

prior to mounting the sample HfO2, the sample has to be cleaned with acetone (Dugan, 

2011).  A bead of vacuum grease attaches the sample to the CL sample holder.  Also, a 

copper plate was placed above the samples to dissipate the electric charge build-up 

(Dugan, 2011).  In the CL Lab at the Air Force Institute of Technology (AFIT), the start-

up procedure is as follows (Dugan, 2011): 

A. Turn on the mechanical pump (keg fore pump) and then the turbomolecular pump 
to evacuate the system.  Once the system with the sample in it is evacuated, bake 
the system down overnight. 
1. Ensure valve attached to the thin white tube under the table is on (in the up 

position) 
2. Turn on Alcatel (turbomolecular pump power) 
3. Ensure the plug on floor outlet behind chamber is plugged in 
4. Turn manual override switch (black box with switch on front) and the little 

button on outlet 
5. Wait until pressure drops to 100 on Ion Gauge Controller and Set Point 2 

(SP2) and SP1 needs to be on. 
6. At 9.9x10-2 Torr turn off beeping switch when SP1 and SP2 lights come on 
7. Press start button on turbo pump 
8. Turn on ionization gauge after pressure is 1.0x10-3 Torr and turn has 27,000 

RPMs. 
 

B. Cool chamber with liquid helium  
1. Turn on water valve which is the orange hose under table (up position) 
2. Turn on power, compressor, and then cold head switch on cooler behind table. 
3. Turn on Lakeshore temperature controller 
4. Wait for system to reach 7 K (~5 hours). 
 

C. Cool photomuliplier tube by switching knob on PMT housing control. 
 

D. Turn on electron gun power supply and electron gun 
1. First turn on electron gun high voltage power supply 
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2. Turn Voltage key, press power button, red HV switch, red source knob, blue 
deflection button 

3. Energy, focus, Source/ECC grid should be at zero. 
4. Function switch should be turned to energy and raise to desired energy. 
 

E. Turn on Keithley ammeter for gun and slowly raise current to 50 µA, which is 
achieved with about 2.45 filament amps on electron gun power supply (this is also 
dependent on the beam energy).   
1. To clear select I, local, zero check, auto. 

 
F. Open electron gun and watch current decrease to approximately 6 µA. 

 
G. Turn on photomultiplier tube at Stanford Research System. 

1. Cathode has 1200 Volts and anode is grounded. 
 

H. Ensure gun is aligned properly with sample.  Turn off light to align luminescence 
from sample with spectrometer slit by adjusting the two optic lenses. 
 

I. Calibrate light from sample. 
1. Turn on monitor 
2. Open SynerJV 
3. Press third button from right on top menu 
4. Select Hardware of 3000 Grating 
5. Enter dial reading on monochromator 
6. Select Data Scan and DSS and unchecked “active” 
7. Go to Data preview and uncheck continuous 
8. Select wavelength near desired wavelength and press play 
9. Adjust optics, x/y deflection knobs, and slit widths to gain optimal signal. 
10. Gradually lower slit widths to get maximum signal to noise ratio 
11. Once found highest signal at lowest slit width, return to main screen 
 

J. Run Sample. 
1. Adjust slit widths and optics to maximize signal between iterations. 
2. Calibrate signal to noise ratio after each iteration. 
3. Save data & plot to check spectra. 

 
The CL shut-down procedure is as follows (Dugan, 2011):   

A. Warm chamber from liquid helium temperatures 
1. Close liquid helium valve 
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2. Increase temperature on lakeshore controller to 300 K 
3. Turn off cold head, compressor, then power on cooler behind table 
4. Turn off water valve under table. 
5. Turn off Lakeshore temperature controller 
 

B. Warm photomuliplier tube 
1. Switch off PMT Housing box (box will beep) 
2. Close valve to liquid nitrogen 
3. Turn off PMT Stanford Research Systems Controller 

 
C. Turn off electron gun 

1. Turn down filament power with source button slowly counterclockwise 
2. Depress Red source switch 
3. Turn down grid voltage with grid potentiometer counterclockwise 
4. Turn down Energy and Focus potentiometers counterclockwise 
5. Depress the red H.V. switch 
6. Depress the power switch 
7. Turn key to off 
8. Turn off high voltage power source for gun 
9. Turn off Keithley ammeter for gun 

 
D. Turn off turbomolecular and roughing pump 

1. Unplug the floor outlet which isolates the turbo pump from the roughing 
pump 

2. Select the stop button on Alcatel pump box 
3. Turn off the turbo pump power supply which will cause the rough pump to 

operate in air 
4. Turn off the second wall switch from right to turn off roughing pump 
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Appendix B 

ThO2 Cleaved Sample, 10 keV Temperature Variation runs 
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ThO2 Cleaved Sample, 5 keV Temperature Variation runs 

 

 
 

  



75 

Bibliography 

Agilent Technologies.  “Cary 5000 UV-Vis-NIR,” 2013.  20 February 2013 
http://www.chem.agilent.com/en-US/products-services/Instruments-
Systems/Molecular-Spectroscopy/Cary-5000-UV-Vis-NIR/Pages/default.aspx#. 

K. W. Bennett, N. Gupta, and R. Dahmani.  “Development of In-House Grating 
Spectrometer System for Validating Acousto-Optic Tunable Fileter Spectrometer 
Results.”  Army Research Laboratory Report ARL-MR-495, 2001.  1 January 
2013  http://www.arl.army.mil/arlreports/2001/ARL-MR-495.pdf. 

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr..  
“Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures.”  
Applied Physics Letters, 70, no. 21 (1997):  2790-2792. 

J. Bolze, S. Rekhi, K. Macchiarola, B. Litteer.  “Size Distribution Determination of 
Nanoparticles and Nanosized Pores by Small-Angle X-ray Scattering on a Multi-
Purpose X-ray Diffractometer Platform.”  Nanotech 2010: Technical Proceedings 
of the 2010 NSTI Nanotechnology Conference and Expo, vol 1.  Cambridge MA:  
Nanoscience and Technology Institute, 2010. 

D. K. Bowen and B. K. Tanner.  X-Ray Metrology in Semiconductor Manufacturing, 
Boca Raton FL:  Taylor & Francis Group, LLC, 2006. 

J. Castilow.  MS Student, Department of Engineering Physics, Air Force Institute of 
Technology.  Personal Interview.  31 December 2012. 

C. A. Colmenares.  Unpublished Research.  Lawrence Livermore National Laboratory, 
Livermore, CA, 1981. 

B. D. Cullity.  Elements of X-ray Diffraction.  Reading MA:  Addison-Wesley, 1956. 

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin.  “CASINO 
V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron 
Microscopy and Microanalysis Users.”  Scanning, 29 (2007):  92-101. 

C. L. Dugan.  “Cathodoluminescence and photoemission of doped lithium tetraborate.”  
MS Thesis, Air Force Institute of Technology, 2011. 

W.P. Ellis, A.M. Boring, J.W. Allen, L.E. Cox, R.D. Cowan, B.B. Pate, A.J. Arko, and I. 
Lindau.  “Valance-Band photoemission intensities in thorium dioxide.”  Solid 
State Communications, 72, no. 7 (1989):  725-729. 

“Expanding the Frontiers of Science.” (n.d.) 12 October 2012 http://www.newport.com. 

K. Fleischer, M. Toth, M. R. Philips, J. Zou, G. Li, and S. J. Chua.  “Depth profiling of 
GaN by cathodoluminescence microanalysis.”  Applied Physics Letters, 74, no. 8 
(1999):  1114-1116. 



76 

“Fluorite-unit.” (19 March 2007).  23 December 2012 
http://en.wikipedia.org/wiki/File:Fluorite-unit-cell-3D-ionic.png. 

M. Fox.  Optical Properties of Solids, 2 ed..  New York NY:  Oxford University Press, 
2010. 

W. A. Harrison.  Solid State Theory.  New York NY:  McGraw-Hill, 1970. 

P. J. Harvey and J. B. Hallett.  ”Factors Influencing the Photoluminescence Behavior of 
Thoria.”  Journal of the Electrochemical Society, 123, no. 3 (1976):  398-403. 

P. J. Harvey, B. G. Childs, and J. Moerman.  ”Optical Absorbance and Fluorescence in 
Pure and Doped ThO2.”  Journal of the American Ceramic Society, 56, no. 3 
(1973):  134-136. 

R. L. Hengehold.  Course notes, “Optical Radiometry and Detection.”  Department of 
Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB 
OH, 2012. 

“High Vacuum Products.”  (n.d.)  26 December 2012 
http://www.highervacuum.com/product/p4/Cold_heads.pdf. 

A. Holmes-Siedle and L. Adams.  Handbook of Radiation Effects, 2 ed.. New York NY:  
Oxford University Press, 2002. 

“HORIBA Jobin Yvon Spectrometers.” (n.d.)  01 January 2013  http://www.horiba.com/. 

“ICSD.”  (n.d.)  01 January 2013, http://www.fiz-karlsruhe.com/icsd.html. 

A. M. Kiefer.  Wright-Patterson Air Force Base.  Personal Interview.  2 October 2012. 

-----.  Personal Interview.  12 October 2012. 

“EGG-3013/EGPS-3103.” (n.d.)  1 December 2012 http://www.kimballphysics.com/ 
electron-gun-systems/electron-gun-products/medium-energy/egg-3103-egps-
3103. 

Kimball Physics, Inc..  Operator’s Manual:  EMG-12/EGPS-12 Electron Gun and Power 
Supply.  Wilton NH:  Kimball Physics, Inc., 1999. 

G. F. Knoll.  Radiation Detection and Measurement, 4 ed..  New York NY:  Wiley, 2010. 

T.R.G. Kutty, M.R. Nair, P. Sengupta, U. Basak, Arun Kumar, and H.S. Kamath.  
“Characterization of (Th,U)O2 fuel pellets made by impregnation technique.”  
Journal of Nuclear Materials, 374 (2008):  9-19. 

Y. Liao.  “Practical Electron Microscopy and Database.” (4 March 2012)  1 September 
2012 http://www.globalsino.com/EM/page4832.html. 

M. D. Lumb.  Luminescence Spectroscopy. New York NY:  Academic Press, 1978. 



77 

R. Maitura.  Nuclear Reports (2005):  46-53. 

M. Mann.  “Hydrothermal Crystal Growth of Tetravalent and Pentavalent Metal Oxides.”  
PhD dissertation, Clemson University, 2009. 

M. Mann, D. Thompson, K. Serivalsatit, T. M. Tritt, J. Ballato, and J. Kolis.  
“Hydrothermal Growth and Thermal Property Characterization of ThO2 Single 
Crystals.”  Crystal Growth & Design, 10, no. 5 (2010):  2146-2151. 

P. Martin, D. J. Cooke, and R. Cywinski.  “A molecular dynamics study of the thermal 
properties of thorium oxide.”  Journal of Applied Physics, 112, 073507 (2012). 

J. P. McKelvey.  Solid State Physics for Engineering and Materials Science.  Malabar 
FL:  Krieger Publishing Company, 1993. 

“MSeries.” (n.d.)  26 December 2012, http://www.horiba.com/fileadmin/uploads/ 
Scientific/Documents/OSD/MSeries.pdf. 

V. I. Neeley, J. B. Gruber, and W. J. Gray.  “F Centers in Thorium Oxide.”  Physical 
Review, 158, no. 3 (1967):  809-813. 

K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono.  “Thin-Film 
Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor.”  
Science, 300, no. 5623 (2003):  1269-1272. 

L. Ozawa.  Cathodoluminescence:  Theory and Applications.  New York NY:  VCH 
Publishers, 1990. 

“PANalytical.” (n.d.)  2 October 2012 http://www.panalytical.com/index.cfm?pid=135. 

“Products for Research, Inc.” (n.d.).  26 December 2012  
http://www.photocool.com/tocool.htm. 

“Photocool Products.” (n.d.)  26 December 2012  http://www.photocool.com/. 

T. R. Saranathan, V. A. Fassel, and E. L. DeKalb.  “Analytical applications of x-ray 
excited optical fluorescence spectra. Direct determination of fractional parts per 
million amounts of rare earths in thorium.”  Analytical Chemistry, 42, no. 3 
(1970):  325-329. 

B. D. Saksena and L. M. Pant.  “Cathodo-Luminescence of MgO.”  Proceedings of the 
Physical Society.  Section B, 67, no. 11 (1954):  811-816. 

B. W. Schueler.  “Microscope imaging by time-of-flight secondary ion mass 
spectrometry.”  Microscopy Microanalysis Microstructures, 3, no. 2-3 (1992):  
119-139. 

SPECS GmbH.  CCX 60 Water Cooling Unit.  Berlin:  SPECS GmbH, 2009. 



78 

“SynerJY.” (n.d.)  26 December 2012, http://www.horiba.com/scientific/products/optical-
spectroscopy/software/synerjy/. 

S. M. Sze.  Semiconductor Devices, 2 ed..  New York NY:  John Wiley & Sons, 2002. 

B. Szpunar and J.A. Szpunar. (n.d.)  2012  “Application of density functional theory in 
assessing properties of thoria and recycled fuels.”  Journal of Nuclear Materials, 
in press.  Available online at 
http://www.sciencedirect.com/science/article/pii/S0022311512005259. 

R. Terki, H. Feraoun, G. Bertrand, and H. Aourag.  “First principles calculations of 
structural, elastic and electronic properties of XO2 (X = Zr, Hf and Th) in fluorite 
phase.”  Computational Materials Science, 33, no. 1-3 (2005):  44-52. 

“Thorium.” (n.d.).  23 December 2012, http://en.wikipedia.org/wiki/Thorium_fuel_cycle. 

D. R. Vij.  Luminescence of Solids.  New York NY:  Plenum Press, 1998. 

R. E. Viturro, J. L. Shaw, L. J. Brillson, J. M. Woodall, P. D. Kirchner, G. D. Pettit, and 
S. L. Wright.  “Arsenic- and metal-induced GaAs interface states by low-energy 
cathodoluminescence spectroscopy.”  Journal of Vacuum Science & Technology 
B, 6, no. 4 (1988):  1397-1402. 

R.W. Vook, C.A. Colmenares, R.L. Smith, and R.G. Gutmacher.  “Cathodoluminescence 
of thorium in the presence of O2, CO and gas mixtures of CO-O2 and CO-H2.”  
Journal of Luminescence, 27, no. 2 (1982):  115-126. 

B. T. Wang, H. Shi, W.-D. Li, and P. Zhang.  “First-principles study of ground-state 
properties and high pressure behavior of ThO2.”  Journal of Nuclear Materials, 
399, no. 2-3 (2010):  181-188. 

H. Yamamoto.  “Atomic Force Microscope.”  United States Patent, US 5,406,833 (18 
April 1995). 

M. Yoshikawa, K. Matsuda, Y. Yamaguchi, T. Matsunobe, Y. Nagasawa, H. Fujino, and 
T. Yamane.  “Characterization of silicon dioxide film by high spatial resolution 
cathodoluminescence spectroscopy.”  Journal of Applied Physics, 92, no. 12 
(2002):  7153-7156. 



79 

Vita 

 
Major Michael G. Lee commissioned in the Infantry, from the United States Military 
Academy in 2002, with a Bachelor of Science degree in Civil Engineering.  He served as 
a Rifle Platoon Leader, Executive Officer, and Air Operations Officer in 3rd Battalion, 
504th Parachute Infantry Regiment, 82nd Airborne Division at FT Bragg, North 
Carolina.   
  
In December of 2003, MAJ Lee deployed to Balad, Iraq as a Rifle Platoon Leader in 
support of Operation Iraqi Freedom 3.  MAJ Lee served as a Rifle Company Executive 
Officer from August 2004 through August 2005.  He became the S-3 AIR in August 
2005, and he deployed 3-504th PIR to Al Asad, Iraq in support of Operation Iraqi 
Freedom 6.  After completing the Infantry Captains Career Course and the Mechanized 
Leader Course in 2006, MAJ Lee reported for duty at 1-72 Armor Combined Arms 
Battalion, to serve as the Battalion S-4 for seven months and Mechanized Infantry Rifle 
Company Commander for 17 months.   
  
On 12 January 2009, MAJ Lee assumed command of Headquarters and Headquarters 
Company, 4th Ranger Training Battalion at FT Benning, GA.  He served there for 18 
months supporting the training of Ranger leaders and trained the company’s opposition 
force Infantry Platoons and medics in preparation for their follow-on assignments after 
duty at 4th Ranger Training Battalion.   
 
MAJ Lee's awards and decorations include the Combat Infantryman Badge, Expert 
Infantryman Badge, Ranger Tab, Senior Parachutist Badge, the Bronze Star Medal, 
Meritorious Service Medal with 1 oak leaf cluster, Army Commendation Medal (1OLC), 
Army Achievement Medal (1 OLC), Iraq Service Medal, Global War on Terrorism 
Expeditionary Medal, and other service medals and service ribbons.  MAJ Lee’s next 
assignment will be at the Defense Intelligence Agency—Counter-Proliferation and 
Terrorism—in Charlottesville, VA. 
 
MAJ Lee is a native of Colorado Springs, Colorado.  He is married and blessed with three 
children. 
 
 
    



80 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 21

21-03-2013 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

  

TITLE AND SUBTITLE 
 
Depth-Resolved Cathodoluminescence of ThO2  

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Lee, Michael G., Major, USA 
 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/ENP) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

      AFIT-ENP-13-M-21 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Department of Homeland Defense, Domestic Nuclear Detection Office 
Samantha Kentis 
245 Murray Lane SW 
Washington, DC 20407 

10. SPONSOR/MONITOR’S 
ACRONYM(S) DHS/DNDO

 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.  DISTRIBUTION STATEMENT A. 

13. SUPPLEMENTARY NOTES  
 

14. ABSTRACT  
 
     Single crystal thorium dioxide (ThO2) samples were hydrothermally grown and studied using depth-resolved 
cathodoluminescence (CL) to characterize the surface and bulk electronic states.  X-ray diffraction (XRD) measurements were 
collected to confirm that these crystals were ThO2 in the fluorite structure.  Understanding the chemical and structural quality of 
ThO2 will aid in the fabrication of better neutron detectors as well as in the power production with thorium breeder reactors. 
     Monte Carlo simulations predicted the expected energy-dependent electron interaction depths in the ThO2 crystals.  CL was 
conducted with electron energy range of 1.5 - 12 keV, a current range of 30-62 µA, at pressures of 5˟10-7 to 1.2˟10-9 Torr, and 
temperatures of 24 K – 297 K.  The initial CL measurements indicated that the as-grown sample exhibited more of an energy 
dependency than the cleaved sample.  Time of flight secondary ion mass spectrometry (TOF SIMS) was conducted on the samples, 
which cleaned the surface.  Additional CL measurements were conducted on both samples, which showed that the as-grown 
sample no longer had an energy dependency.  
     With the CL results and peak deconvolutions, it is compelling to believe that the absorption edge is 5.1 eV, which is 
complemented with the absorption measurement of 5.4 eV.           
 
 
15. SUBJECT TERMS 
   Thorium Dioxide, Depth-Resolved Cathodoluminescence, absorption edge, hydrothermal growth method. 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 

UU 

18. 
NUMBER  
OF PAGES 
 

93 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Robert L. Hengehold (AFIT/ENP) 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4502 
(robert.hengehold@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

whall
Typewritten Text
June

whall
Typewritten Text

whall
Typewritten Text

whall
Typewritten Text
2011 - March 2013

whall
Typewritten Text


	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	Depth-Resolved Cathodoluminescence of ThO2
	Michael G. Lee
	Recommended Citation


	Abstract
	To my loving Wife
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	DEPTH-RESOLVED CATHODOLUMINESCENCE OF THORIUM DIOXIDE
	1 Introduction
	1.1 Focus of Research
	1.2 Document Structure

	2 Literature Review and Theory
	2.1 Chapter Overview
	2.2 ThO2 and its Crystal Structure
	2.3 Hydrothermal Crystal Growth Method
	2.4 XRD
	2.5 Cathodoluminescence (CL)
	2.6 Time of Flight Secondary Ion Mass Spectrometry (TOF SIMS)
	2.7 Atomic Force Microscope (AFM)
	2.8 Peak Fit 4.0
	2.9 Optical Transmittance Measurement
	2.10 Previous Luminescence Studies
	2.10.1 Photoluminescence (PL)
	2.10.2 Cathodoluminescence (CL)
	2.10.3 Absorption Measurement


	3 Experimental Set-Up and Materials Examined
	3.1 Chapter Overview
	3.2 CL Experimental Set-Up
	3.2.1 Electron Gun
	3.2.2 Leybold Coolpower 4.2 GM Cryocooler
	3.2.3 Vacuum System
	3.2.4 Spectrometer—Spex 500M
	3.2.5 PMT
	3.2.6 Data Acquisition—SynerJY

	3.3 ThO2 sample investigated

	4 Results and Analysis
	4.1 Chapter Overview
	4.2 CASINO Depth Penetration Simulation
	4.3 ThO2 Depth-Resolved CL
	4.3.1 As-grown Sample #001TO
	4.3.2 Cut and Polished Sample #004TO

	4.4 Post-TOF SIMS Measurements
	4.4.1 Post-TOF SIMS: CL of As-Grown Sample #001TO
	4.4.1 Post-TOF SIMS: CL of Polished Sample #004TO

	4.5 Optical Transmittance Spectrum

	5 Conclusions and Recommendations for Future Research
	5.1 CASINO
	5.2 CL
	5.3 Recommendations for Future Research

	Appendix A
	CL Start-Up Procedure
	The CL shut-down procedure is as follows (Dugan, 2011):
	Appendix B
	ThO2 Cleaved Sample, 10 keV Temperature Variation runs
	ThO2 Cleaved Sample, 5 keV Temperature Variation runs
	Vita

